WO2020080081A1 - Silsesquioxane derivative composition and use of same - Google Patents

Silsesquioxane derivative composition and use of same Download PDF

Info

Publication number
WO2020080081A1
WO2020080081A1 PCT/JP2019/038571 JP2019038571W WO2020080081A1 WO 2020080081 A1 WO2020080081 A1 WO 2020080081A1 JP 2019038571 W JP2019038571 W JP 2019038571W WO 2020080081 A1 WO2020080081 A1 WO 2020080081A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silsesquioxane derivative
oxygen storage
storage material
layered compound
Prior art date
Application number
PCT/JP2019/038571
Other languages
French (fr)
Japanese (ja)
Inventor
賢明 岩瀬
武士 藤田
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to JP2020553021A priority Critical patent/JP7276348B2/en
Priority to CN201980068688.8A priority patent/CN112888715B/en
Priority to KR1020217012966A priority patent/KR102640556B1/en
Publication of WO2020080081A1 publication Critical patent/WO2020080081A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F30/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F30/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F30/08Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/014Stabilisers against oxidation, heat, light or ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present specification relates to a composition containing a silsesquioxane derivative and its use.
  • Silsesquioxane is a compound having a unit represented by RSiO 1.5 as a structural unit and having a three-dimensional crosslinked structure by a siloxane bond, and R may have various functional groups including an organic functional group. it can.
  • Such silsesquioxane derivatives are known as excellent heat resistant materials (Patent Documents 1 and 2). Since the silsesquioxane derivative is an inorganic-organic hybrid material, it can exhibit organic characteristics such as flexibility and solubility in addition to the inorganic characteristics such as heat resistance.
  • a certain type of silsesquioxane derivative is used as a curable adhesive or the like because it has a polymerizable functional group such as an epoxy group as an organic group (Patent Document 3).
  • the organic group included in the silsesquioxane derivative is oxidized depending on the conditions such as the atmosphere and the heating temperature, whereby the original mechanical properties such as mechanical properties at high temperature are deteriorated. It was found that the properties of silsesquioxane can change.
  • the present specification provides a technique for enhancing heat resistance by suppressing the oxidation of silsesquioxane, and its use.
  • the present inventors focused on the possibility of an additive capable of suppressing the oxidation of the organic group in the silsesquioxane derivative, and searched for such an additive. As a result, it was found that both the layered compound and the oxygen storage material can suppress the oxidation of the silsesquioxane derivative, and as a result, the heat resistance of the silsesquioxane derivative can be improved.
  • the present specification provides the following means based on these findings.
  • composition [6] The composition according to any one of [1] to [5], further containing an oxygen storage material. [7] a silsesquioxane derivative, Oxygen storage material, A silsesquioxane derivative composition containing: [8] The composition according to [6] or [7], wherein the oxygen storage material is one or more selected from the group consisting of ceria, zirconia, and ceria-zirconia composite oxide. [9] The composition according to any one of [6] to [8], wherein the oxygen storage material is a ceria-zirconia composite oxide.
  • a silsesquioxane derivative having a polymerizable functional group, A layered compound and / or an oxygen storage material A curable silsesquioxane derivative composition comprising: [13] A cured product of a silsesquioxane derivative having a polymerizable functional group, A layered compound and / or an oxygen storage material, A silsesquioxane derivative cured product composition comprising: [14] A method for suppressing oxidation of a silsesquioxane derivative or a cured product thereof, which comprises a step of heating the silsesquioxane derivative together with the layered compound and / or the oxygen storage material.
  • a step of heating the silsesquioxane derivative together with the layered compound and / or the oxygen storage material A method of increasing the heat resistance of a silsesquioxane derivative or a cured product thereof.
  • the disclosure of the present specification relates to a technique of further improving the heat resistance of a silsesquioxane derivative by imparting oxidation resistance to the silsesquioxane derivative.
  • the presence of the layered compound suppresses the oxidation of the silsesquioxane derivative, and thus improves the stability of the silsesquioxane derivative, particularly the stability against heat (heat resistance). Can be made. It is not always clear why the layered compound causes such an effect. It is considered that the gas barrier property and the gas diffusion inhibitory property of the layered compound are involved in the inhibition of the oxidation of the organic group.
  • the disclosure of the present specification also suppresses the oxidation of the silsesquioxane derivative due to the presence of the oxygen storage material, and thus improves the stability of the silsesquioxane derivative, particularly stability against heat (heat resistance). Can be improved. It is considered that such an action is due to its own oxidation / reduction by the oxygen storage material, adsorption of oxygen, and the like.
  • the silsesquioxane derivative can have various organic groups, for example, can have a polymerizable functional group.
  • a silsesquioxane derivative is polymerized, the decomposition of these polymerizable functional groups due to oxidation and the like may greatly affect the properties of the silsesquioxane derivative. Therefore, it is significant to impart oxidation resistance to a silsesquioxane derivative composition containing a silsesquioxane derivative having such a functional group and a cured product obtained by the composition by a layered compound and / or an oxygen storage material. Is.
  • silsesquioxane derivative composition silsesquioxane derivative cured product composition, silsesquioxane oxidation inhibition or heat resistance method, silsesquioxane oxidation inhibitor or heat resistance improver, etc. explain.
  • silsesquioxane derivative composition contains a silsesquioxane derivative and a layered compound and / or an oxygen storage material. .
  • silsesquioxane is a polysiloxane having a main chain skeleton made of Si—O bonds and having (RSiO 1.5 ) units.
  • the silsesquioxane derivative is a compound having one or more units represented by such polysiloxane and (RSiO 1.5 ) (T unit).
  • the silsesquioxane derivative is represented by, for example, the following formula (1) having the structural units (1-1), (1-2), (1-3), (1-4) and (1-5). be able to.
  • V, w, x, y and z in the formula (1) each represent the number of moles of the constituent units (1-1) to (1-5).
  • v, w, x, y and z mean the average value of the ratio of the number of moles of each structural unit contained in one molecule of the silsesquioxane derivative.
  • Each of the structural units (1-2) to (1-5) in the formula (1) may be only one type, or may be two or more types. Further, the actual condensed form of the structural unit of the silsesquioxane derivative is not limited to the arrangement order represented by the formula (1), and is not particularly limited.
  • the silsesquioxane derivative has five constitutional units in the formula (1), namely, the constitutional unit (1-1), the constitutional unit (1-2), the constitutional unit (1-3) and the constitutional unit (1-4).
  • the constitutional unit selected from the above can be provided in combination so as to include at least one polymerizable functional group.
  • the silsesquioxane derivative contains at least the structural unit (1-2).
  • the silsesquioxane derivative can contain the structural unit (1-2) together with the structural unit (1-2).
  • w is a positive number.
  • w and x are positive numbers, and v, y, and z are 0 or positive numbers.
  • the silsesquioxane derivative may be composed of only the structural unit (1-2) (w is positive and the others are 0).
  • T unit> This structural unit defines the T unit as the basic structural unit of polysiloxane.
  • R 1 of this structural unit is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms (hereinafter, also referred to as a unit, a C 1-10 alkyl group), an alkenyl group having 1 to 10 carbon atoms, and the number of carbon atoms. It may be at least one selected from the group consisting of 1 to 10 alkynyl groups, aryl groups, aralkyl groups, and polymerizable functional groups.
  • R 1 may be a hydrogen atom.
  • the present structural unit and / or other structural unit include an organic group having 2 to 10 carbon atoms containing a hydrosilylatable carbon-carbon unsaturated bond included in the polymerizable functional group ( Hereinafter, when it is simply referred to as an unsaturated organic group), a crosslinking reaction between these units becomes possible.
  • R 1 may be a C 1-10 alkyl group.
  • the C 1-10 alkyl group may be either an aliphatic group or an alicyclic group, and may be linear or branched. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group and a decyl group.
  • Such an alkyl group is, for example, a linear alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a methyl group, an ethyl group, It is a linear alkyl group having 1 to 4 carbon atoms such as propyl group and butyl group. Further, for example, a methyl group.
  • R 1 may be a C 1-10 alkenyl group.
  • the C 1-10 alkenyl group may be an aliphatic group, an alicyclic group or an aromatic group, and may be linear or branched.
  • Specific examples of the alkenyl group include ethenyl (vinyl) group, orthostyryl group, metastyryl group, parastyryl group, 1-propenyl group, 2-propenyl (allyl) group, 1-butenyl group, 1-pentenyl group, 3-methyl group. Examples thereof include a 1-butenyl group, a phenylethenyl group, an allyl (2-propenyl) group and an octenyl (7-octen-1-yl) group.
  • R 1 may be a C 1-10 alkynyl group.
  • the C 1-10 alkynyl group may be any of an aliphatic group, an alicyclic group and an aromatic group, and may be linear or branched. Specific examples of the alkynyl group include an ethynyl group, a 1-propynyl group, a 1-butynyl group, a 1-pentynyl group, a 3-methyl-1-butynyl group and a phenylbutynyl group.
  • R 1 may be an aryl group.
  • the number of carbon atoms is, for example, 6 or more and 20 or less, and is, for example, 6 or more and 10 or less.
  • Examples of the aryl group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group and the like.
  • R 1 may be an aralkyl group.
  • the number of carbon atoms is, for example, 7 or more and 20 or less, and is, for example, 7 or more and 10 or less.
  • Examples of the aralkyl group include phenylalkyl groups such as benzyl group.
  • R 1 may be a polymerizable functional group.
  • the polymerizable functional group include a thermosetting or photocurable polymerizable functional group.
  • the polymerizable functional group is not particularly limited, and includes the above-mentioned functional groups such as vinyl group, allyl group and styryl group.
  • a polymerizable functional group having a (meth) acryloyl group, an oxetanyl group and an epoxy group can be mentioned.
  • the polymerizable functional group having a (meth) acryloyl group is preferably, for example, a group represented by the following formula or a group containing this group.
  • R 5 represents a hydrogen atom or a methyl group
  • R 6 represents an alkylene group having 1 to 10 carbon atoms.
  • R 6 is preferably an alkylene group having 2 to 10 carbon atoms.
  • the oxetanyl group is not particularly limited, and examples thereof include a (3-ethyl-3-oxetanyl) methyloxy group and a (3-ethyl-3-oxetanyl) oxy group.
  • the group containing an oxetanyl group is preferably a group represented by the following formula, or a group containing this group.
  • R 7 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 8 represents an alkylene group having 1 to 6 carbon atoms.
  • R 7 is preferably a hydrogen atom, a methyl group or an ethyl group, more preferably an ethyl group.
  • R 8 is preferably an alkylene group having 2 to 6 carbon atoms, and more preferably a propylene group.
  • the epoxy group is not particularly limited, but examples thereof include alkyl having 1 to 10 carbon atoms substituted with a glycidoxy group such as ⁇ -glycidoxyethyl, ⁇ -glycidoxypropyl, ⁇ -glycidoxybutyl.
  • the polymerizable functional group is the above-mentioned unsaturated organic group, that is, a functional group having a carbon-carbon double bond or a carbon-carbon triple bond capable of undergoing a hydrosilylation reaction with a hydrogen atom (hydrosilyl group) bonded to a silicon atom.
  • the unsaturated organic group can also function as a polymerizable functional group in the sense that due to the presence of a hydrogen atom in the hydrosilyl group, it is polymerized with the hydrogen atom by a hydrosilylation reaction to form a hydrosilylated structural moiety.
  • Specific examples of such unsaturated organic groups include the above-mentioned alkenyl groups and alkynyl groups.
  • vinyl group orthostyryl group, metastyryl group, parastyryl group, acryloyl group, methacryloyl group, acryloxy group, methacryloxy group, 1-propenyl group, 1-butenyl group, 1-pentenyl group, 3-methyl-1-butenyl group, phenylethenyl group, ethynyl group, 1-propynyl group, 1-butynyl group, 1-pentynyl group, 3-methyl-1-butynyl group, phenylbutynyl group, allyl (2- Examples thereof include a propenyl) group and an octenyl (7-octen-1-yl) group.
  • unsaturated organic groups are, for example, vinyl groups, parastyryl groups, allyl (2-propenyl) groups, octenyl (7-octen-1-yl) groups, and also vinyl groups, for example.
  • the silsesquioxane derivative as a whole may contain two or more polymerizable functional groups, in which case all the polymerizable functional groups may be the same as or different from each other. Moreover, a plurality of polymerizable functional groups may be the same and may further include different polymerizable functional groups.
  • the C 1-10 alkyl group, C 1-10 alkenyl group and C 1-10 alkynyl group may be substituted with aryl groups, aralkyl groups and polymerizable functional groups.
  • hydroxyl-protecting group of the protected hydroxyl group a known hydroxyl-protecting group can be used without particular limitation.
  • a protecting group an acyl-based protecting group represented by —C ( ⁇ O) R (wherein R is a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, An alkyl group having 1 to 6 carbon atoms such as an isobutyl group, an s-butyl group, a t-butyl group, and an n-pentyl group; or a phenyl group having a substituent or not having a substituent.
  • the substituent of the phenyl group has a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, an n-hexyl group.
  • Alkyl groups such as n-heptyl group, n-octyl group and isooctyl group; halogen atoms such as fluorine atom, chlorine atom and bromine atom; alkoxy groups such as methoxy group and ethoxy group), trimethylsilyl group, triethyl
  • a silyl protecting group such as a ryl group, a t-butyldimethylsilyl group and a t-butyldiphenylsilyl group; a methoxymethyl group, a methoxyethoxymethyl group, a 1-ethoxyethyl group, a tetrahydropyran-2-yl group and a tetrahydrofuran-2.
  • An acetal-based protecting group such as an yl group; an alkoxycarbonyl-based protecting group such as a t-butoxycarbonyl group; a methyl group, an ethyl group, a t-butyl group, an octyl group, an allyl group, a triphenylmethyl group, a benzyl group, and ether-type protecting groups such as p-methoxybenzyl group, fluorenyl group, trityl group and benzhydryl group;
  • the silsesquioxane derivative may be provided with one kind or a combination of two or more kinds of the present structural unit.
  • it can be as one alkyl group of R 1 in the structural unit, the R 1 of one other constituent unit and a polymerizable functional group.
  • it can be one of the unsaturated organic groups of R 1 in the structural unit as a hydrogen atom, a R 1 of one other constituent unit as a polymerizable functional group.
  • W which is the ratio of the number of moles of this structural unit in the silsesquioxane derivative, is a positive number.
  • w is not particularly limited, for example, w / (v + w + x + y) is 0.25 or more, for example, 0.3 or more, and for example, 0.35 or more, and for example, 0.4 or more, for example 0.5 or more, for example 0.6 or more, for example 0.7 or more, for example 0.8 or more, and for example 0.9 or more And is, for example, 0.95 or more, and is, for example, 0.99 or more, and is, for example, 1.
  • D unit> This constitutional unit defines the D unit as the basic constitutional unit of the silsesquioxane derivative.
  • R 2 of the present structural unit is at least selected from the group consisting of hydrogen atom, C 1-10 alkyl group, C 1-10 alkenyl group, C 1-10 alkynyl group, aryl group, aralkyl group and polymerizable functional group. It can be one kind. R 2 s in this structural unit may be the same or different.
  • C 1-10 alkyl group C 1-10 alkenyl group, C 1-10 alkynyl group, aryl group, aralkyl group, and polymerizable functional group
  • the various embodiments already described can be directly applied to the present structural unit.
  • the silsesquioxane derivative may be provided with one kind or a combination of two or more kinds of the present structural unit.
  • at least a part of the present structural units for example, two R 2 are both C 1-10 alkyl groups, and for example, all of the present structural units have two R 2 All are C 1-10 alkyl groups.
  • X which is the ratio of the number of moles of this structural unit in the silsesquioxane derivative, is 0 or a positive number.
  • x is not particularly limited, for example, x / (v + w + x + y) is 0.25 or more, for example, 0.3 or more, and for example, 0.35 or more, and for example, It is 0.4 or more.
  • the same numerical value is, for example, 0.5 or less, and for example, 0.45 or less.
  • M unit> This structural unit defines the M unit as the basic structural unit of the silsesquioxane derivative.
  • R 3 of the present structural unit is at least selected from the group consisting of hydrogen atom, C 1-10 alkyl group, C 1-10 alkenyl group, C 1-10 alkynyl group, aryl group, aralkyl group, and polymerizable functional group. It can be one kind. At least one selected from the group consisting of a hydrogen atom, a polymerizable functional group, and a C 1-10 alkyl group can be used. R 3 s in this structural unit may be the same or different.
  • C 1-10 alkyl group C 1-10 alkenyl group, C 1-10 alkynyl group, aryl group, aralkyl group, and polymerizable functional group
  • the various embodiments already described can be directly applied to the present structural unit.
  • the silsesquioxane derivative may be provided with one kind or a combination of two or more kinds of the present structural unit.
  • at least a part of the present structural units for example, two R 3 are both C 1-10 alkyl groups, and for example, all of the present structural units have two R 3 All are C 1-10 alkyl groups.
  • Y which is the ratio of the number of moles of this structural unit in the silsesquioxane derivative, is 0 or a positive number.
  • y is not particularly limited, for example, y / (v + w + x + y) is 0.25 or more, for example, 0.3 or more, and for example, 0.35 or more, and for example, It is 0.4 or more.
  • the same numerical value is, for example, 0.5 or less, and for example, 0.45 or less.
  • This structural unit defines a unit containing an alkoxy group or a hydroxyl group in the silsesquioxane derivative. That is, R 4 in this structural unit is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the alkyl group may be either an aliphatic group or an alicyclic group, and may be linear or branched. Specific examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, a pentyl group and a hexyl group.
  • it is an alkyl group having 2 to 10 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, and an isopropyl group, and is also an alkyl group having 1 to 6 carbon atoms.
  • the alkoxy group in the present structural unit is formed by replacing the "alkoxy group", which is a hydrolyzable group contained in the raw material monomer described later, or the alcohol contained in the reaction solvent, with the hydrolyzable group of the raw material monomer.
  • the hydroxyl group in the present structural unit is, for example, a hydroxyl group remaining in the molecule without being polycondensed after the "alkoxy group" is hydrolyzed.
  • Z which is the ratio of the number of moles of this structural unit in the silsesquioxane derivative, is 0 or a positive number.
  • the silsesquioxane derivative preferably comprises one or more selected from the group consisting of structural unit (1-1), structural unit (1-3) and structural unit (1-4). That is, in the formula (1), one or more of v, x and y are preferably positive numbers.
  • the number average molecular weight of the silsesquioxane derivative is preferably in the range of 300 to 10,000.
  • the silsesquioxane derivative itself has low viscosity, is easily dissolved in an organic solvent, the viscosity of the solution is easy to handle, and is excellent in storage stability.
  • the number average molecular weight is preferably 300 to 8,000, preferably 300 to 6,000, more preferably 300 to 3,000, and more preferably 300, in consideration of coating properties, storage stability, heat resistance and the like. ⁇ 2,000, and preferably 500 to 2,000.
  • the number average molecular weight is measured by GPC (gel permeation chromatograph), for example, under the measurement conditions in [Example] described later, and can be determined by using polystyrene as a standard substance.
  • the silsesquioxane derivative is preferably liquid.
  • the viscosity at 25 ° C. is, for example, 500 mPa ⁇ s or more, more preferably 1000 mPa ⁇ s or more, further preferably 2000 mPa ⁇ s or more, from the viewpoint of filler mixing.
  • the silsesquioxane derivative can be produced by a known method.
  • the method for producing a silsesquioxane derivative is described in WO 2005/010077, WO 2009/066608, 2013/099909, JP2011-052170A, JP2013-147659A.
  • WO 2005/010077 WO 2009/066608, 2013/099909
  • JP2011-052170A JP2013-147659A.
  • JP2013-147659A are disclosed in detail as a method for producing polysiloxane.
  • the silsesquioxane derivative can be produced, for example, by the following method. That is, the method for producing a silsesquioxane derivative is provided with a condensation step of performing hydrolysis / polycondensation reaction of a raw material monomer which gives the constitutional unit in the above formula (1) by condensation in a suitable reaction solvent. it can. In this condensation step, a structural unit (1-2) is formed with a silicon compound having four siloxane bond-forming groups (hereinafter referred to as “Q monomer”) that forms the structural unit (1-1).
  • Q monomer silicon compound having four siloxane bond-forming groups
  • T monomer A silicon compound having three siloxane bond-forming groups (hereinafter referred to as "T monomer”) and a silicon compound having two siloxane bond-forming groups (hereinafter referred to as “D monomer”) to form the structural unit (1-3). And a silicon compound (hereinafter, referred to as “M monomer”) forming a structural unit (1-4) having one siloxane bond-forming group.
  • the siloxane bond-forming group contained in the raw material monomer Q monomer, T monomer, D monomer or M monomer is a hydroxyl group or a hydrolyzable group.
  • examples of the hydrolyzable group include a halogeno group and an alkoxy group.
  • At least one of the Q monomer, T monomer, D monomer and M monomer preferably has a hydrolyzable group.
  • the hydrolyzable group is preferably an alkoxy group, more preferably an alkoxy group having 1 to 4 carbon atoms, since it has good hydrolyzability and does not produce an acid as a by-product.
  • a silicone compound having a siloxane bond-forming group represented by the following formulas (2) and (3) (hereinafter, also referred to as a D oligomer) is used instead of the D monomer. You can also
  • X is a siloxane bond-forming group
  • R 9 and R 12 are each an alkoxy group, an aryloxy group, an alkyl group, a cycloalkyl group or an aryl group
  • R 10 , R 11 and R 13 are each an alkyl group, a cycloalkyl group or aryl
  • m and n are positive integers.
  • the siloxane bond-forming group possessed by the D oligomer means an atom or an atomic group capable of forming a siloxane bond with the silicon atom in the silane compound, and specific examples thereof include a methoxy group, an ethoxy group, and n-propoxy group.
  • Group, i-propoxy group, n-butoxy group, i-butoxy group, alkoxy group such as t-butoxy group, cycloalkoxy group such as cyclohexyloxy group, aryloxy group such as phenyloxy group, hydroxyl group, hydrogen atom, etc. is there.
  • the D oligomer represented by the formula 2 has two siloxane bond-forming groups in one molecule, but these may be the same group or different groups.
  • D oligomers those in which the siloxane bond-forming group is a hydroxyl group are easily available.
  • R 9 and R 12 in the D oligomer are each an alkoxy group, an aryloxy group, an alkyl group, a cycloalkyl group or an aryl group, and two R 9 and R 12 present in one molecule are the same group, May be different groups.
  • Specific examples of R 9 and R 12 are methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group, t-butoxy group, cyclohexyloxy group, phenyloxy group, methyl group.
  • R 10 , R 11 and R 13 of the D oligomer are each an alkyl group, a cycloalkyl group or an aryl group, and a plurality of R 10 and R 11 present in one molecule may be the same or different. It may be a group. Specific examples of R 10 , R 11 and R 13 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, cyclohexyl group, phenyl group and the like. is there.
  • D oligomer those in which a plurality of R 10 and R 11 present in one molecule are a methyl group or a phenyl group can be produced from an inexpensive raw material and a cured product obtained by using the present composition is For example, it is preferable because it has excellent adhesiveness and the like, and it is particularly preferable that all are methyl groups.
  • the number of repeating units m and n are positive integers, and the D oligomer preferably has m and n of 10 to 100, more preferably 10 to 50.
  • the siloxane bond-forming group of the Q monomer, T monomer, D monomer or D oligomer corresponding to each constitutional unit is an alkoxy group
  • the siloxane bond-forming group contained in the M monomer is an alkoxy group or a siloxy group. It is preferable.
  • the monomer and oligomer corresponding to each structural unit may be used alone or in combination of two or more kinds.
  • Examples of the Q monomer that gives the structural unit (1-1) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane.
  • Examples of the T monomer that provides the structural unit (1-2) include trimethoxysilane, triethoxysilane, tripropoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, and ethyltrimethoxy.
  • T monomer that provides the structural unit (1-2) include trimethoxyvinylsilane, triethoxyvinylsilane, vinyltris (2-methoxyethoxy) silane, trimethoxyallylsilane, triethoxyallylsilane, and trimethoxy (7-octen-1-yl) silane.
  • Examples of the D monomer that provides the structural unit (1-3) include dimethoxydimethylsilane, dimethoxydiethylsilane, diethoxydimethylsilane, diethoxydiethylsilane, dipropoxydimethylsilane, dipropoxydiethylsilane, dimethoxybenzylmethylsilane, diethoxybenzyl. Examples thereof include methylsilane, dichlorodimethylsilane, dimethoxymethylsilane, dimethoxymethylvinylsilane, diethoxymethylsilane and diethoxymethylvinylsilane.
  • Examples of the M monomer that gives the structural unit (1-4) include hexamethyldisiloxane, hexaethyldisiloxane, hexapropyldisiloxane, 1,1,3,3 that gives two structural units (1-4) by hydrolysis.
  • Examples of the organic compound giving the structural unit (1-5) include 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 2-butanol, 2-methyl-2-propanol, methanol and ethanol. Alcohol. According to the above description, a composition containing such a monomer for obtaining a silsesquioxane derivative is also provided.
  • alcohol can be used as a reaction solvent.
  • the alcohol is an alcohol in a narrow sense represented by the general formula R-OH, and is a compound having no functional group other than the alcoholic hydroxyl group.
  • specific examples thereof include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, 2-butanol, 2-pentanol, 3-pentanol, 2-methyl-2-butanol and 3- Methyl-2-butanol, cyclopentanol, 2-hexanol, 3-hexanol, 2-methyl-2-pentanol, 3-methyl-2-pentanol, 2-methyl-3-pentanol, 3-methyl-3 -Pentanol, 2-ethyl-2-butanol, 2,3-dimethyl-2-butanol, cyclohexanol and the like can be exemplified.
  • these alcohols can be used alone or in combination of two or more.
  • a more preferable alcohol is a compound capable of dissolving water in a concentration required in the condensation step.
  • An alcohol having such a property is a compound having a water solubility of 10 g or more per 100 g of alcohol at 20 ° C.
  • the alcohol used in the condensation step is a silsesquioxane derivative produced by using 0.5% by mass or more of the total amount of all reaction solvents, including an additional amount added during the hydrolysis / polycondensation reaction. It is possible to suppress the gelation of.
  • the preferred amount used is 1% by mass or more and 60% by mass or less, and more preferably 3% by mass or more and 40% by mass or less.
  • the reaction solvent used in the condensation step may be alcohol alone, or may be a mixed solvent with at least one auxiliary solvent.
  • the sub-solvent may be either a polar solvent or a non-polar solvent, or a combination of both.
  • Preferred polar solvents are secondary or tertiary alcohols having 3 or 7 to 10 carbon atoms, diols having 2 to 20 carbon atoms, and the like.
  • the amount used is preferably 5% by mass or less of the whole reaction solvent.
  • a preferred polar solvent is 2-propanol which is industrially available at a low cost, and when 2-propanol is used in combination with the alcohol according to the present invention, the alcohol according to the present invention has a concentration of water necessary for the hydrolysis step. Even when it is insoluble, it is possible to dissolve the required amount of water together with the polar solvent, and the effect of the present invention can be obtained.
  • the amount of the polar solvent is preferably 20 parts by mass or less, more preferably 1 to 20 parts by mass, and particularly preferably 3 to 10 parts by mass with respect to 1 part by mass of the alcohol according to the present invention.
  • the non-polar solvent is not particularly limited, and examples thereof include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, chlorinated hydrocarbons, alcohols, ethers, amides, ketones, esters and cellosolves. . Of these, aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons are preferable.
  • the non-polar solvent is not particularly limited, but for example, n-hexane, isohexane, cyclohexane, heptane, toluene, xylene, methylene chloride and the like are preferable because they azeotrope with water, and when these compounds are used in combination.
  • the polymerization catalyst such as water and an acid dissolved in water can be efficiently distilled off.
  • the non-polar solvent xylene which is an aromatic hydrocarbon is particularly preferable because it has a relatively high boiling point.
  • the amount of the non-polar solvent used is 50 parts by mass or less, more preferably 1 to 30 parts by mass, and particularly preferably 5 to 20 parts by mass with respect to 1 part by mass of the alcohol according to the present invention.
  • the hydrolysis / polycondensation reaction in the condensation process proceeds in the presence of water.
  • the amount of water used for hydrolyzing the hydrolyzable group contained in the raw material monomer is preferably 0.5 to 5 times mol, and more preferably 1 to 2 times mol, of the hydrolyzable group.
  • the hydrolysis / polycondensation reaction of the raw material monomers may be carried out without a catalyst or using a catalyst. An acid or an alkali is used as a catalyst in the hydrolysis / polycondensation reaction.
  • an acid catalyst exemplified by inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid and phosphoric acid; organic acids such as formic acid, acetic acid, oxalic acid and paratoluenesulfonic acid is preferably used.
  • the amount of the acid catalyst used is preferably 0.01 to 20 mol%, and more preferably 0.1 to 10 mol%, based on the total amount of silicon atoms contained in the raw material monomers. More preferably.
  • an auxiliary agent can be added to the reaction system in the condensation step in the production of the silsesquioxane derivative.
  • examples thereof include an antifoaming agent that suppresses foaming of the reaction solution, a scale control agent that prevents scale adhesion to the reaction canister and the stirring shaft, a polymerization inhibitor, a hydrosilylation reaction inhibitor, and the like.
  • the amount of these auxiliaries used is arbitrary, but is preferably about 1 to 10 mass% with respect to the concentration of the silsesquioxane derivative in the reaction mixture.
  • the reaction solution and the by-products contained in the reaction solution obtained by the condensation step, the residual monomer, the distilling step for distilling off water, etc. The stability and usability of the oxane derivative can be improved.
  • the acid or base used as the polymerization catalyst can be efficiently removed. It should be noted that, although it depends on the boiling point of the solvent used and the like, the pressure may be appropriately reduced at a temperature of 100 ° C. or lower.
  • the composition may contain a layered compound.
  • the layered compound is not particularly limited, and one or more known layered compounds can be used.
  • Examples of the layered compound include silicate layered compounds such as talc (layered magnesium silicate), boron nitride, minerals such as mica and smectite. Among them, talc and boron nitride can be mentioned.
  • Layered compounds are generally in powder form.
  • the particle shape is not particularly limited.
  • the average particle size is also not particularly limited, but is preferably 10 ⁇ m or less, for example. This is because when it is 10 ⁇ m or less, good oxidation resistance is obtained. More preferably, it is 5 ⁇ m or less. Further, it is more preferably 3 ⁇ m or less, and further preferably 2.5 ⁇ m or less.
  • the lower limit is not particularly limited, but is, for example, 0.5 ⁇ m or more, and is 1.0 ⁇ m or more.
  • the average particle size of the layered compound can be measured by a laser diffraction / scattering method.
  • the average particle diameter of the layered compound refers to a particle diameter D50 corresponding to a cumulative frequency of 50% by volume from the fine particle side having a small particle diameter in the volume-based particle size distribution based on the laser diffraction / scattering method.
  • a dispersion liquid in which a layered compound such as talc is dispersed using ultrasonic waves can be used.
  • the content of the layered compound in the composition is not particularly limited, and may be an effective amount that suppresses the oxidation of the silsesquiosane derivative used.
  • the layered compound is, for example, 5% by mass or more, for example 10% by mass or more, for example 15% by mass or more, and for example 20% by mass or more, and for example 25% with respect to the total mass of the silsesquioxane derivative and the layered compound.
  • the content may be, for example, 30% by mass or more, or 30% by mass or more. Further, it can be, for example, 50% by mass or less, or 45% by mass or less, or 40% by mass or less with respect to the total amount.
  • the content of the layered compound is, for example, 5% by mass or more and 50% by mass or less, or, for example, 10% by mass or more and 40% by mass or less, or the like with respect to the total mass of the silsesquioxane derivative and the layered compound. It can be 20% by mass or more and 40% by mass or less.
  • the composition can include an oxygen storage material.
  • the oxygen storage material is a material having an oxygen storage capacity.
  • the oxygen storage material is not particularly limited, and known oxygen storage materials can be used, for example, alumina, titania, zirconia, ceria, iron oxide (Fe 2 O 3 ), ceria-zirconia composite oxide, Examples include certain perovskite type metal oxides.
  • the zirconia and ceria-zirconia composite oxide may be stabilized by a known stabilizer.
  • the oxygen storage material may be such a metal oxide doped with another metal atom.
  • As the oxygen storage material for example, ceria, zirconia, and ceria-zirconia composite oxide can be preferably used.
  • As the oxygen storage material such known oxygen storage materials can be used alone or in combination of two or more kinds.
  • Oxygen storage materials are generally in powder form.
  • the particle shape of the powder is not particularly limited.
  • the average particle size is also not particularly limited, but is preferably 5 ⁇ m or less, for example. It is considered that when the thickness is 5 ⁇ m or less, a high oxygen storage capacity is exhibited due to the surface area. More preferably, it is 1 ⁇ m or less. Further, it is more preferably 500 nm or less, more preferably 100 nm or less, still more preferably 50 nm or less, still more preferably 30 nm or less, still more preferably 20 nm or less.
  • the average particle diameter of the oxygen storage material is calculated by determining the specific surface area by the BET method when the average particle diameter is less than 1 ⁇ m. That is, the specific surface area (m 2 / g obtained by analyzing the gas adsorption amount measured by the gas adsorption method using nitrogen (N 2 ) gas as an adsorbate by the BET method (multipoint method or one-point method) , S), the average particle diameter can be determined.
  • the sample degassed under vacuum at 300 ° C. for 12 hours or more is gas adsorbed at 77K.
  • the average particle diameter is 1 ⁇ m or more, it is calculated by the laser diffraction / scattering method, which will be described with respect to the average particle diameter of the layered compound.
  • the content of the oxygen storage material in the composition is not particularly limited, and may be an effective amount that suppresses the oxidation of the silsesquioxane derivative used.
  • the oxygen storage material is, for example, 0.05 mass% or more, or for example 0.1 mass% or more, for example 0.5 mass% or more, and for example, for the total mass of the silsesquioxane derivative and the oxygen storage material. It can be 1 mass% or more, for example 3 mass% or more, for example 5 mass% or more, for example 10 mass% or more, for example 15 mass% or more. Further, it can be, for example, 25% by mass or less, or for example, 20% by mass or less with respect to the same total amount.
  • the content of the oxygen storage material is, for example, 0.05% by mass or more and 50% by mass or less, for example, 0.1% by mass or more and 40% by mass based on the total mass of the silsesquioxane derivative and the oxygen storage material. It can be, for example, not more than mass%.
  • the composition may contain one or both of a layered compound and an oxygen storage material.
  • both When both are included, the respective unique effects act, and the oxidation of the silsesquioxane derivative is effectively suppressed, and excellent heat resistance can be obtained. Even when both are contained, they may be contained in the respective ranges of the content already described.
  • the present composition contains both the layered compound and the oxygen storage material, the total mass of the layered compound and the oxygen storage material, relative to the total mass of the silsesquioxane derivative, the layered compound and the oxygen storage material.
  • the present composition can take various aspects.
  • the composition includes, for example, an uncured (not crosslinked or polymerized by a polymerizable functional group) silsesquioxane derivative, and the composition before film formation or molding (typically an amorphous shape such as a liquid) It can be the body.)
  • the composition may be, for example, a composition such as a film or a molded product which contains a cured product of a silsesquioxane derivative and is formed into a film on the surface of a workpiece.
  • composition containing uncured silsesquioxane derivative can contain, for example, a silsesquioxane derivative having an organic functional group such as a polymerizable functional group, and a layered compound and / or an oxygen storage material. Furthermore, if necessary, an initiator and / or a polymerization catalyst (curing agent) necessary for curing or polymerization can be included.
  • the composition comprises a layered compound and / or an oxygen storage material together with an uncured silsesquioxane derivative, the silsesquioxane derivative is exposed to heat, cured by heating, or a cured product. When the is exposed to heat, the silsesquioxane derivative or a cured product thereof can be made heat resistant.
  • a solvent can be included as another component.
  • organic peroxides examples include benzoyl peroxide, lauroyl peroxide, cumene hydroperoxide, paramenthane hydroperoxide, and di-t-butyl peroxide.
  • examples of the azo compound include azobisisobutyronitrile, azobisisovaleronitrile, azobisisocapronitrile and the like.
  • the content of the polymerization initiator is not particularly limited, but is preferably 0.01 to 5% by mass, more preferably 0.5 to 3% by mass based on the entire composition.
  • the hydrosilylation catalyst used for curing the silsesquioxane derivative by hydrosilylation includes, for example, cobalt, nickel, Examples include ruthenium, rhodium, palladium, iridium, platinum, and other Group 8 to Group 10 metal simple substances, organic metal complexes, metal salts, metal oxides, and the like. Usually platinum-based catalysts are used.
  • Platinum-based catalysts include cis-PtCl 2 (PhCN) 2 , platinum carbon, a platinum complex (Pt (dvs)) coordinated with 1,3-divinyltetramethyldisiloxane, a platinum vinylmethyl cyclic siloxane complex, platinum carbonyl.
  • Vinylmethyl cyclic siloxane complex tris (dibenzylideneacetone) diplatinum, chloroplatinic acid, bis (ethylene) tetrachlorodiplatinum, cyclooctadienedichloroplatinum, bis (cyclooctadiene) platinum, bis (dimethylphenylphosphine) dichloroplatinum And tetrakis (triphenylphosphine) platinum.
  • platinum complexes Pt (dvs) coordinated with 1,3-divinyltetramethyldisiloxane
  • platinum vinylmethyl cyclic siloxane complexes platinum carbonyl-vinylmethyl cyclic siloxane complexes.
  • Ph represents a phenyl group.
  • the amount of the catalyst used is preferably 0.1 mass ppm or more and 1000 mass ppm or less, more preferably 0.5 to 100 mass ppm, and more preferably 1 to 50 mass% with respect to the amount of the silsesquioxane derivative. More preferably, it is ppm by mass.
  • the hydrosilylation reaction may take precedence over the dehydration polycondensation of the residual alkoxy group or hydroxyl group in the structural unit (1-5).
  • the above-mentioned alkoxy group or hydroxyl group is provided so as to allow further crosslinking reaction.
  • hydrosilylation reaction inhibitor When this composition contains a hydrosilylation catalyst, a hydrosilylation reaction inhibitor may be added in order to suppress gelation of the silsesquioxane derivative and improve storage stability.
  • hydrosilylation reaction inhibitors include methylvinylcyclotetrasiloxane, acetylene alcohols, siloxane-modified acetylene alcohols, hydroperoxides, hydrosilylation reaction inhibitors containing nitrogen atoms, sulfur atoms or phosphorus atoms. .
  • the composition may be a composition for film formation or may be substantially free of a hydrosilylation catalyst.
  • the silsesquioxane derivative can be cured by promoting the hydrosilylation reaction by heat treatment even in the absence of a hydrosilylation catalyst.
  • substantially containing no hydrosilylation catalyst means not only the case where the hydrosilylation catalyst is not intentionally added, but the content of the hydrosilylation catalyst relative to the amount of the silsesquioxane derivative is, for example, , Less than 0.1 mass ppm, and for example, 0.05 mass ppm or less.
  • the silsesquioxane derivative may be used as it is, or may be diluted with a solvent as necessary and used for film formation.
  • the solvent is preferably a solvent that dissolves the silsesquioxane derivative, and examples thereof include aromatic hydrocarbon solvents, chlorinated hydrocarbon solvents, alcohol solvents, ether solvents, amide solvents, ketone solvents, ester solvents, cellosolve solvents. , Various organic solvents such as aliphatic hydrocarbon solvents.
  • a hydrosilylation catalyst such as Pt
  • a solvent other than alcohol is preferable in order to avoid decomposition of the Si-H group.
  • additives may be further added to the composition before it is subjected to curing.
  • the additive include a reactive diluent such as tetraalkoxysilane and trialkoxysilanes (trialkoxysilane, trialkoxyvinylsilane, etc.), and a polymerization functional group that is the same as or similar to the polymerizable functional group of the silsesquioxane derivative. Examples thereof include monomers and oligomers having a functional group. These additives are used within a range in which the obtained cured product of the silsesquioxane derivative does not impair the heat resistance.
  • composition can be supplied to the surface of a workpiece having an arbitrary shape and curing the composition to form a film.
  • the composition can be applied to the surface of the site to be processed and then the composition cured.
  • the supply of the composition to the surface of the object to be processed is not particularly limited, but for example, a usual coating method such as a spray coating method, a casting method, a spin coating method, a bar coating method can be used.
  • composition containing cured product of silsesquioxane derivative The composition can also be a composition containing a cured product obtained by polymerizing and curing a silsesquioxane derivative having a polymerizable functional group with the polymerizable functional group. Such a composition can also contain a layered compound and / or an oxygen storage material.
  • the present composition is, for example, a composition obtained by polymerizing a silsesquioxane derivative having such a functional group by heating or the like in the presence of a layered compound and / or an oxygen storage material.
  • a cured product of a silsesquioxane derivative an unreacted alkoxy group in the silsesquioxane derivative, that is, an alkoxy group or a hydroxyl group of R 4 in the structural unit (1-5) is dehydrated and polycondensed to sufficiently form a siloxane bond.
  • the cured product include a cured product (which is also referred to as primary curing, which is cured by polycondensation of such residual alkoxy groups) by being further formed to promote crosslinking.
  • a cured product hereinafter, also referred to as a primary cured product
  • a primary cured product can be included in the silsesquioxane derivative represented by the composition formula (1).
  • the other cured product of the silsesquioxane derivative is cured by accelerating the cross-linking by the reaction of the polymerizable functional groups included in the structural units (1-2) to (1-4) (this curing is also referred to as secondary curing). .)
  • the cured product is obtained by polymerizing at least a part of the polymerizable functional groups in these constituent units in the silsesquioxane derivative based on the inherent polymerizability of the functional group.
  • a derivative of the silsesquioxane derivative having the above-mentioned structural portion can be included.
  • the other cured product of the silsesquioxane derivative causes a hydrosilylation reaction between a hydrogen atom and an unsaturated organic group included in the structural units (1-2) to (1-4) to further promote crosslinking.
  • a cured product that has been cured (the curing is also referred to as secondary curing) by doing so is given.
  • Such a cured product (hereinafter, also referred to as a secondary cured product) has a functional group (hydrosilyl group and unsaturated organic group) which undergoes a hydrosilylation reaction in these constituent units in the silsesquioxane derivative, at least a part of which is hydrosilylated.
  • Structural portion containing a carbon-carbon bond (single bond or double bond) derived from an unsaturated organic group formed by (-Si-C-C-Rm-Si-, -Si-C C-Rm- Si-) (also referred to herein as a hydrosilylation structure moiety.
  • R is, for example, an organic group having 1 to 8 carbon atoms, and m is an integer of 0 or 1). Derivatives of derivatives can be included.
  • the composition When the composition is formed into a film, the composition is generally a secondary cured product of a silsesquioxane derivative.
  • the hydrosilylated structure portion can contribute to practical membrane strength and membrane performance.
  • the composition contains only the silsesquioxane derivative or a cured product thereof, and may contain other components as necessary.
  • the silsesquioxane derivative or the cured product thereof with a layered compound and / or an oxygen storage material is used. Oxidation is suppressed. Therefore, by including such a step, oxidation of the silsesquioxane derivative or a cured product thereof is suppressed and heat resistance is improved.
  • an oxidation inhibitor or heat resistance improver of a silsesquioxane derivative or a cured product thereof which comprises a layered compound and / or an oxygen storage material as an active ingredient.
  • the present invention will be specifically described with reference to examples. However, the present invention is not limited to this embodiment. Furthermore, the viscosity of the obtained silsesquioxane derivative was measured at 25 ° C. using an E-type viscometer.
  • both parts and% represent parts by mass and% by mass.
  • Test Example 1 The composition of Test Example 1 was applied to a sandblasted aluminum plate, and likewise adhered to the sandblasted aluminum plate and heated at 120 ° C. for 1 hour (Yamato Scientific Co., Ltd., DK63), and then at 150 ° C. The test piece of Test Example 1 was obtained by heating for 1 hour and thermosetting.
  • test piece was held in 350 ° C. air for 1 hour, 24 hours, and 350 ° C. nitrogen atmosphere for 24 hours, and the tensile shear strength of the test piece was measured before temperature treatment and after cooling to room temperature.
  • the tensile shear strength of the test piece was measured using Strograph 20-C manufactured by Toyo Seiki Co., Ltd.
  • the tensile shear of the test piece was also measured while heating at 200 ° C.
  • the pulling speed was 10 mm / min in all cases. The results are shown in Table 1.
  • a composition was prepared in the same manner as in Test Example 1 using only the silsesquioxane derivative, and a test piece was prepared as a test piece of Comparative Example A. Further, a composition containing a bisphenol A type epoxy resin: talc (75 parts: 25 parts) was prepared, and the test piece of Comparative Example B was prepared by curing the composition at 120 ° C. for 1 hour and then at 150 ° C. for 1 hour. Obtained. The test pieces of Comparative Examples 1 and 2 were also subjected to the same temperature treatment, and the tensile shear strength of the test pieces before and after the treatment was measured. The results are shown together in Table 1.
  • test piece prepared from the silsesquioxane derivative containing talc was subjected to tensile shear in the test piece regardless of heating in air at 350 ° C. for 1 hour to several hours.
  • the decrease in strength that is, the decrease in adhesive strength was excellently suppressed.
  • test piece prepared with the silsesquioxane derivative to which talc was not added (Comparative Example A) and the mixed composition of the epoxy resin and talc (Comparative Example B) exhibited a significant decrease in tensile shear strength.
  • silsesquioxane derivative liquid, uncured curable composition
  • MAC-SQ TM-100 silsesquioxane derivative
  • thermosetting composition A was prepared in the same manner as in Example 1, applied to a sandblasted aluminum plate, heated at 120 ° C. for 1 hour (DK63, manufactured by Yamato Scientific Co., Ltd.), and further heated at 150 ° C. for 1 hour. It was heated for a period of time and thermally cured to obtain a cured product A.
  • Example 2 the same silsesquioxane derivative and 0.7 part of a radical initiator (Nippon Oil and Fats, Virtuable E) were operated in the same manner as in Example 1 to prepare a thermosetting composition as a control, and sandblasted. It was applied to an aluminum plate, heated at 120 ° C. for 1 hour (DK63, manufactured by Yamato Scientific Co., Ltd.), further heated at 150 ° C. for 1 hour, and thermally cured to obtain a control cured product.
  • a radical initiator Nippon Oil and Fats, Virtuable E
  • FIG. 2 (a) shows the rate of weight change from 0 ° C. to 1000 ° C.
  • FIG. 2 (b) shows the rate of weight change by expanding the temperature range from 300 ° C. to 600 ° C.
  • the addition of talc shifts the weight reduction start temperature indicating oxidation of the silsesquioxane derivative-containing composition (liquid or uncured curable composition) to a high temperature side, and the polymerization reduction temperature It was found that the temperature was shifted to a temperature higher than the bisphenol A type epoxy resin by 20 ° C or more. Further, when the average particle diameter of talc was 1 to 5 ⁇ m, the weight reduction temperature was shifted to the high temperature side. When these compositions were subjected to TGA in nitrogen, no difference was observed with or without talc.
  • the improvement of heat resistance by the layered compound such as talc and / or the oxygen storage material is due to the suppression of the oxidation of the silsesquioxane derivative (uncured) and its cured product. It was also found that the addition of an oxygen storage material such as ceria-zirconia composite oxide in addition to talc further suppressed the oxidation.
  • Test Examples 1 to 17 of cured product of silsesquioxane derivative and layered compound and / or oxygen storage material The composition and test piece of Test Example 1 were prepared in the same manner as in Example 1. Further, the same operations as in Test Example 1 of Example 1 were carried out except that the respective components shown in the following table were used to prepare the compositions of Test Examples 1 to 17 to prepare each test piece. did.
  • Comparative Examples 1 to 3 of cured product of silsesquioxane derivative alone or silsesquioxane derivative and other components A composition of Comparative Example 1 was prepared in the same manner as in Example 1 to prepare test pieces, and the same operation as in Test Example 1 of Example 1 was carried out except that the components shown in the table below were used. The composition and test pieces of Comparative Examples 2 and 3 were prepared.
  • Comparative Examples 4 to 5 of cured epoxy resin The same operations as in Comparative Example 2 of Example 1 were carried out to prepare the compositions and test pieces of Comparative Examples 4 and 5.
  • test pieces were heated at 350 ° C for 1 hour. Moreover, some test pieces were heated at 200 ° C. for 95 hours, 430 hours, and 1000 hours. Both were heated using DK63 manufactured by Yamato Scientific Co., Ltd. as in Example 1. In addition, some test pieces were heated at 250 ° C. for 95 hours, 430 hours, and 1000 hours.
  • a tensile shear strength test was performed on the test pieces before and after the temperature treatment in accordance with Example 1.
  • a tensile shear test was also performed on some test pieces while heating at 200 ° C. The results are shown in Table 2.
  • MAC-SQ TM-100 Methacryloyl group-containing radical-curable silsesquioxane derivative (manufactured by Toagosei Co., Ltd.)
  • AC-SQ TA-100 Acryloyl group-containing radical-curable silsesquioxane derivative (manufactured by Toagosei Co., Ltd.)
  • the D50 of talc was carried out using SALD200 (manufactured by Shimadzu Corporation) using a dispersion liquid in which talc was dispersed using ultrasonic waves.
  • SALD200 manufactured by Shimadzu Corporation
  • a commercially available particle size distribution measuring device based on a laser diffraction / scattering method can be used.
  • the average particle size of the hexagonal boron nitride was also set to D50, which was measured based on the particle size distribution obtained by the laser diffraction / scattering method.
  • the average particle size of the ceria-zirconia composite oxide, ceria 1, zirconia, and ferric oxide was measured by the gas adsorption method using nitrogen (N 2 ) gas as an adsorbate, and the BET method (multipoint Method) to determine the average particle size from the specific surface area (m 2 / g, S) obtained by analysis.
  • nitrogen gas adsorption amount each sample was degassed under vacuum at 300 ° C. for 12 hours or more, and then gas adsorption was performed at 77K.
  • ceria 2 was measured by the laser diffraction / scattering method in the same manner as talc and the like from the relationship of the particle size.
  • test pieces (Test Examples 1 to 5) bonded with a silsesquioxane derivative cured product containing only a layered compound and cured, and a derivative cured with a layered compound and an oxygen storage material.
  • the test pieces adhered with the cured product (Test Examples 6 to 16) and the test piece adhered with the derivative cured product containing only the oxygen storage material and cured (Test Example 17) were both before and after the temperature treatment.
  • the decrease in tensile shear strength was excellently suppressed.
  • the layered compound as shown in Test Examples 1 to 5, since the use of 3 parts with respect to 7 parts of the silsesquioxane derivative was sufficient, it was confirmed that the layered compound was a silsesquioxane derivative. For example, 5% or more and 50% or less, preferably 10% or more and 40% or less, more preferably 20% or more and 40% or less, with respect to the total mass of the layered compound, the heat resistance effect may be exhibited. all right.
  • the oxygen storage material as shown in Test Examples 6 to 17, it is effective if the oxygen storage material is, for example, 0.007% or more based on the total mass of the silsesquioxane derivative and the oxygen storage material.
  • the oxygen storage material is, for example, 0.07% or more and 30% or less, preferably 0.4% or more and 20% or less with respect to the total mass of the silsesquioxane derivative and the oxygen storage material. I found that I could do it.
  • the layered compound and the oxygen storage material are included, sufficient adhesive strength can be maintained even if the total amount of the silsesquioxane derivative, the tank-shaped compound, and the oxygen storage material exceeds 40%. all right.
  • the oxygen storage material showed a heat resistance effect to the silsesquioxane derivative cured product, but did not show a sufficient heat resistance effect to the epoxy resin.
  • both talc and hexagonal boron nitride which are layered compounds, exhibited excellent heat resistance, but it was found that when the average particle size is small, the heat resistance is greater. That is, when the average particle size exceeds 5 ⁇ m, the heat resistance effect tends to vary. Therefore, it was found that the layered compound preferably has an average particle size of less than 5 ⁇ m, preferably 4 ⁇ m or less, and more preferably 3 ⁇ m or less.
  • the oxygen storage materials of Examples 1 to 5 and Comparative Example 1 exhibited higher heat resistance. It was found that among the oxygen storage materials, the ceria-zirconia composite oxide having a high oxygen storage capacity has the highest oxidation resistance. Further, also in the oxygen storage material, if the average particle size exceeds 5 ⁇ m, the oxidation resistance tends to decrease, and the average particle size of the oxygen storage material is preferably less than 5 ⁇ m, more preferably 4 ⁇ m or less, It has been found that the thickness is more preferably 3 ⁇ m or less, still more preferably 2 ⁇ m or less, and further preferably 1 ⁇ m or less.
  • silsesquioxane A a silsesquioxane derivative having the following oxetanyl group in the SiO 1.5 unit (OX-SQ, TX-100, manufactured by Toagosei Co., Ltd., hereinafter referred to as silsesquioxane A) and the like.
  • the silsesquioxane A, B was used to offset the presence of talc or the like in the composition by multiplying the mass change by 0.63 based on the measured value of the mass change (%).
  • the respective mass changes of sesquioxane A and B are shown.
  • the layered compound and the oxygen storage material similarly exhibited the oxidation suppressing effect and the heat resistance improving effect even in the silsesquioxane cured product having such a polymerizable functional group.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

In order to improve the heat resistance of a silsesquioxane derivative, the present invention provides a silsesquioxane derivative composition which contains a silsesquioxane derivative and a layered compound.

Description

シルセスキオキサン誘導体組成物及びその利用Silsesquioxane derivative composition and use thereof
 本明細書は、シルセスキオキサン誘導体を含有する組成物及びその利用に関する。 The present specification relates to a composition containing a silsesquioxane derivative and its use.
(関連出願の相互参照)
 本出願は、2018年10月18日に出願された日本国特許出願である特願2018-196951の関連出願であり、この日本出願に基づく優先権を主張するものであり、この日本出願に記載された全ての内容が組み込まれるものとする。
(Cross-reference of related applications)
This application is a related application of Japanese Patent Application No. 2018-196951, which is a Japanese patent application filed on October 18, 2018, and claims priority based on this Japanese application, and is described in this Japanese application. All content provided shall be incorporated.
 シルセスキオキサンは、RSiO1.5で表される単位を構造単位として有する、シロキサン結合による三次元架橋構造を備える化合物であり、Rとしては、有機官能基を始めとして種々の官能基を備えることができる。かかるシルセスキオキサンの誘導体(シルセスキオキサン誘導体)は、優れた耐熱性材料として知られている(特許文献1、2)。また、シルセスキオキサン誘導体は、無機-有機ハイブリッド材料であることから、耐熱性などの無機的特性のほかに、柔軟性や可溶性等の有機的特性を発揮することができる。例えば、ある種のシルセスキオキサン誘導体は、有機基として、エポキシ基などの重合性官能基を備えることから硬化性接着剤などとして用いられている(特許文献3)。 Silsesquioxane is a compound having a unit represented by RSiO 1.5 as a structural unit and having a three-dimensional crosslinked structure by a siloxane bond, and R may have various functional groups including an organic functional group. it can. Such silsesquioxane derivatives (silsesquioxane derivatives) are known as excellent heat resistant materials (Patent Documents 1 and 2). Since the silsesquioxane derivative is an inorganic-organic hybrid material, it can exhibit organic characteristics such as flexibility and solubility in addition to the inorganic characteristics such as heat resistance. For example, a certain type of silsesquioxane derivative is used as a curable adhesive or the like because it has a polymerizable functional group such as an epoxy group as an organic group (Patent Document 3).
国際公開第2005/10077号International Publication No. 2005/10077 国際公開第2009/66608号International Publication No. 2009/66608 特開2018-95819号公報JP, 2008-95819, A
 本発明者らによれば、雰囲気や加熱温度などの条件によっては、シルセスキオキサン誘導体が備える有機基が酸化してしまい、それにより、例えば、高温での機械特性などが低下するなど本来のシルセスキオキサンの特性が変化することがあることがわかった。 According to the present inventors, the organic group included in the silsesquioxane derivative is oxidized depending on the conditions such as the atmosphere and the heating temperature, whereby the original mechanical properties such as mechanical properties at high temperature are deteriorated. It was found that the properties of silsesquioxane can change.
 しかしながら、シルセスキオキサン中の有機基の酸化を抑制する技術は報告されていない。また、シルセスキオキサンは耐熱性が高いことが知られているため、その耐熱性をさらに向上させるための有効な技術は提供されていない。まして、シルセスキオキサン中の有機基が酸化されるような過酷な条件での耐熱性を確保する技術は検討もされていないのが現状である。 However, no technology has been reported to suppress the oxidation of organic groups in silsesquioxane. Moreover, since silsesquioxane is known to have high heat resistance, an effective technique for further improving the heat resistance has not been provided. Furthermore, at present, there is no study on a technique for ensuring heat resistance under severe conditions such that the organic group in silsesquioxane is oxidized.
 本明細書は、シルセスキオキサンの酸化を抑制することにより耐熱性を増強する技術及びその利用を提供する。 The present specification provides a technique for enhancing heat resistance by suppressing the oxidation of silsesquioxane, and its use.
 本発明者らは、シルセスキオキサン誘導体中の有機基の酸化を抑制できる添加剤の存在可能性に着目し、かかる添加剤を探索した。その結果、層状化合物及び酸素吸蔵材がいずれもシルセスキオキサン誘導体の酸化を抑制でき、この結果、シルセスキオキサン誘導体の耐熱性を向上させうることがわかった。本明細書は、これらの知見に基づき以下の手段を提供する。 The present inventors focused on the possibility of an additive capable of suppressing the oxidation of the organic group in the silsesquioxane derivative, and searched for such an additive. As a result, it was found that both the layered compound and the oxygen storage material can suppress the oxidation of the silsesquioxane derivative, and as a result, the heat resistance of the silsesquioxane derivative can be improved. The present specification provides the following means based on these findings.
[1]シルセスキオキサン誘導体と、
 層状化合物と、
を含有する、シルセスキオキサン誘導体組成物。
[2]前記層状化合物は、タルク及び窒化ホウ素からなる群から選択される1種又は2種以上である、[1]に記載の組成物。
[3]前記層状化合物は、タルクである、[1]又は[2]に記載の組成物。
[4]前記層状化合物の平均粒子径は5μm以下である、[1]~[3]のいずれかに記載の組成物。
[5]前記層状化合物材を、前記シルセスキオキサン誘導体と前記層状化合物との総質量に対して5質量%以上50質量%以下含有する、[1]~[4]のいずれかに記載の組成物。
[6]さらに、酸素吸蔵材を含有する、[1]~[5]のいずれかに記載の組成物。
[7]シルセスキオキサン誘導体と、
 酸素吸蔵材と、
を含有する、シルセスキオキサン誘導体組成物。
[8]前記酸素吸蔵材は、セリア、ジルコニア及びセリアジルコニア複合酸化物からなる群から選択される1種又は2種以上である、[6]又は[7]に記載の組成物。
[9]前記酸素吸蔵材は、セリアジルコニア複合酸化物である、[6]~[8]のいずれかに記載の組成物。
[10]前記酸素吸蔵材を、前記シルセスキオキサン誘導体と前記酸素吸蔵材との総質量に対して0.1質量%以上40質量%以下含有する、[6]~[9]のいずれかに記載の組成物。
[11]前記シルセスキオキサン誘導体は、重合性官能基を備える、[1]~[10]のいずれかに記載の組成物。
[12]重合性官能基を備えるシルセスキオキサン誘導体と、
 層状化合物及び/又は酸素吸蔵材と、
を備える、硬化性シルセスキオキサン誘導体組成物。
[13]重合性官能基を備えるシルセスキオキサン誘導体の硬化物と、
 層状化合物及び/又は酸素吸蔵材と、
を備える、シルセスキオキサン誘導体硬化物組成物。
[14]層状化合物及び/又は酸素吸蔵材とともにシルセスキオキサン誘導体を加熱する工程、を備える、シルセスキオキサン誘導体又はその硬化物の酸化抑制方法。
[15]層状化合物及び/又は酸素吸蔵材とともにシルセスキオキサン誘導体を加熱する工程、
を備える、シルセスキオキサン誘導体又はその硬化物の耐熱化方法。
[16]層状化合物及び/又は酸素吸蔵材を有効成分とする、シルセスキオキサン誘導体又はその硬化物の酸化抑制剤。
[17]層状化合物及び/又は酸素吸蔵材を有効成分とする、シルセスキオキサン誘導体又はその硬化物の耐熱性向上剤。
[1] a silsesquioxane derivative,
A layered compound,
A silsesquioxane derivative composition containing:
[2] The composition according to [1], wherein the layered compound is one or more selected from the group consisting of talc and boron nitride.
[3] The composition according to [1] or [2], wherein the layered compound is talc.
[4] The composition according to any one of [1] to [3], wherein the layered compound has an average particle size of 5 μm or less.
[5] The layered compound material according to any one of [1] to [4], containing 5% by mass or more and 50% by mass or less of the total mass of the silsesquioxane derivative and the layered compound. Composition.
[6] The composition according to any one of [1] to [5], further containing an oxygen storage material.
[7] a silsesquioxane derivative,
Oxygen storage material,
A silsesquioxane derivative composition containing:
[8] The composition according to [6] or [7], wherein the oxygen storage material is one or more selected from the group consisting of ceria, zirconia, and ceria-zirconia composite oxide.
[9] The composition according to any one of [6] to [8], wherein the oxygen storage material is a ceria-zirconia composite oxide.
[10] Any of [6] to [9], which contains the oxygen storage material in an amount of 0.1% by mass or more and 40% by mass or less based on the total mass of the silsesquioxane derivative and the oxygen storage material. The composition according to.
[11] The composition according to any one of [1] to [10], wherein the silsesquioxane derivative has a polymerizable functional group.
[12] A silsesquioxane derivative having a polymerizable functional group,
A layered compound and / or an oxygen storage material,
A curable silsesquioxane derivative composition comprising:
[13] A cured product of a silsesquioxane derivative having a polymerizable functional group,
A layered compound and / or an oxygen storage material,
A silsesquioxane derivative cured product composition comprising:
[14] A method for suppressing oxidation of a silsesquioxane derivative or a cured product thereof, which comprises a step of heating the silsesquioxane derivative together with the layered compound and / or the oxygen storage material.
[15] A step of heating the silsesquioxane derivative together with the layered compound and / or the oxygen storage material,
A method of increasing the heat resistance of a silsesquioxane derivative or a cured product thereof.
[16] An oxidation inhibitor for a silsesquioxane derivative or a cured product thereof, which comprises a layered compound and / or an oxygen storage material as an active ingredient.
[17] A heat resistance improver for a silsesquioxane derivative or a cured product thereof, which comprises a layered compound and / or an oxygen storage material as an active ingredient.
メタクロイル基を有するシルセスキオキサン誘導体の熱的挙動を示す図である。It is a figure which shows the thermal behavior of the silsesquioxane derivative which has a methacroyl group. シルセスキオキサン誘導体の硬化物の熱的挙動を示す図である。It is a figure which shows the thermal behavior of the hardened | cured material of a silsesquioxane derivative. オキセタニル基及びエポキシ基を有する他のシルセスキオキサン誘導体の熱的挙動を示す図である。It is a figure which shows the thermal behavior of the other silsesquioxane derivative which has an oxetanyl group and an epoxy group.
 本明細書の開示は、シルセスキオキサン誘導体に耐酸化性を付与することで、シルセスキオキサン誘導体の耐熱性をさらに向上させる技術に関する。本明細書の開示によれば、層状化合物が存在することで、シルセスキオキサン誘導体の酸化を抑制し、ひいてはシルセスキオキサン誘導体の安定性、特には熱に対する安定性(耐熱性)を向上させることができる。層状化合物によってかかる作用が生じる理由は必ずしも明らかではない。層状化合物が備えるガスバリア性やガス拡散抑制性が有機基の酸化抑制に関与しているものと考えられる。 The disclosure of the present specification relates to a technique of further improving the heat resistance of a silsesquioxane derivative by imparting oxidation resistance to the silsesquioxane derivative. According to the disclosure of the present specification, the presence of the layered compound suppresses the oxidation of the silsesquioxane derivative, and thus improves the stability of the silsesquioxane derivative, particularly the stability against heat (heat resistance). Can be made. It is not always clear why the layered compound causes such an effect. It is considered that the gas barrier property and the gas diffusion inhibitory property of the layered compound are involved in the inhibition of the oxidation of the organic group.
 本明細書の開示は、また、酸素吸蔵材が存在することで、シルセスキオキサン誘導体の酸化を抑制し、ひいてはシルセスキオキサン誘導体の安定性、特には熱に対する安定性(耐熱性)を向上させることができる。かかる作用は、酸素吸蔵材による自身の酸化/還元や酸素の吸着等によるものと考えられる。 The disclosure of the present specification also suppresses the oxidation of the silsesquioxane derivative due to the presence of the oxygen storage material, and thus improves the stability of the silsesquioxane derivative, particularly stability against heat (heat resistance). Can be improved. It is considered that such an action is due to its own oxidation / reduction by the oxygen storage material, adsorption of oxygen, and the like.
 シルセスキオキサン誘導体は、種々の有機基を備えることができるが、例えば、重合性官能基を備えることができる。かかるシルセスキオキサン誘導体が重合された場合には、これらの重合性官能基の酸化による分解等は、シルセスキオキサン誘導体の特性に大きな影響を与える場合がある。したがって、かかる官能基を備えるシルセスキオキサン誘導体を含むシルセスキオキサン誘導体組成物及び当該組成物によって得られる硬化物に、層状化合物及び/又は酸素吸蔵材によって耐酸化性を付与することは有意義である。 The silsesquioxane derivative can have various organic groups, for example, can have a polymerizable functional group. When such a silsesquioxane derivative is polymerized, the decomposition of these polymerizable functional groups due to oxidation and the like may greatly affect the properties of the silsesquioxane derivative. Therefore, it is significant to impart oxidation resistance to a silsesquioxane derivative composition containing a silsesquioxane derivative having such a functional group and a cured product obtained by the composition by a layered compound and / or an oxygen storage material. Is.
 以下、本開示の代表的かつ非限定的な具体例について、適宜図面を参照して詳細に説明する。この詳細な説明は、本開示の好ましい例を実施するための詳細を当業者に示すことを単純に意図しており、本開示の範囲を限定することを意図したものではない。また、以下に開示される追加的な特徴ならびに発明は、さらに改善された「シルセスキオキサン誘導体組成物及びその利用」を提供するために、他の特徴や発明とは別に、又は共に用いることができる。 Hereinafter, representative and non-limiting specific examples of the present disclosure will be described in detail with reference to the drawings as appropriate. This detailed description is merely intended to present those skilled in the art with details for implementing the preferred examples of the present disclosure and is not intended to limit the scope of the present disclosure. Further, the additional features and inventions disclosed below may be used separately from or together with other features and inventions in order to provide a further improved “silsesquioxane derivative composition and use thereof”. You can
 また、以下の詳細な説明で開示される特徴や工程の組み合わせは、最も広い意味において本開示を実施する際に必須のものではなく、特に本開示の代表的な具体例を説明するためにのみ記載されるものである。さらに、上記及び下記の代表的な具体例の様々な特徴、ならびに、独立及び従属クレームに記載されるものの様々な特徴は、本開示の追加的かつ有用な実施形態を提供するにあたって、ここに記載される具体例のとおりに、あるいは列挙された順番のとおりに組合せなければならないものではない。 In addition, the combination of features and steps disclosed in the following detailed description is not essential in carrying out the present disclosure in the broadest sense, and is only for describing a representative specific example of the present disclosure. It is described. Furthermore, various features of the exemplary embodiments above and below, as well as those of the independent and dependent claims, are set forth herein in providing additional and useful embodiments of the present disclosure. It is not necessary to combine them according to the specific examples shown or in the order in which they are listed.
 本明細書及び/又はクレームに記載された全ての特徴は、実施例及び/又はクレームに記載された特徴の構成とは別に、出願当初の開示ならびにクレームされた特定事項に対する限定として、個別に、かつ互いに独立して開示されることを意図するものである。さらに、全ての数値範囲及びグループ又は集団に関する記載は、出願当初の開示ならびにクレームされた特定事項に対する限定として、それらの中間の構成を開示する意図を持ってなされている。 All the features described in the present specification and / or claims are separated from the configuration of the features described in the embodiments and / or claims individually as a limitation to the original disclosure of the application and the particular matter claimed, And are intended to be disclosed independently of each other. In addition, all numerical ranges and statements regarding groups or groups are intended to disclose the disclosure as originally filed and as limitations on the specific matter claimed, as well as intermediate constructions thereof.
 以下、本開示に係るシルセスキオキサン誘導体の酸化抑制技術及びその利用の各種実施形態について説明する。具体的には、シルセスキオキサン誘導体組成物、シルセスキオキサン誘導体硬化物組成物、シルセスキオキサンの酸化抑制又は耐熱化方法、シルセスキオキサンの酸化抑制剤又は耐熱性向上剤等について説明する。 Hereinafter, various embodiments of the technology for suppressing the oxidation of the silsesquioxane derivative according to the present disclosure and the use thereof will be described. Specifically, silsesquioxane derivative composition, silsesquioxane derivative cured product composition, silsesquioxane oxidation inhibition or heat resistance method, silsesquioxane oxidation inhibitor or heat resistance improver, etc. explain.
(シルセスキオキサン誘導体組成物)
 本明細書に開示されるシルセスキオキサン誘導体組成物(以下、単に、本組成物ともいう。)は、シルセスキオキサン誘導体と、層状化合物及び/又は酸素吸蔵材と、を含有している。
(Silsesquioxane derivative composition)
The silsesquioxane derivative composition (hereinafter, also simply referred to as the present composition) disclosed in the present specification contains a silsesquioxane derivative and a layered compound and / or an oxygen storage material. .
(シルセスキオキサン誘導体)
 本明細書において、シルセスキオキサンとは、主鎖骨格がSi-O結合からなり、(RSiO1.5)単位からなるポリシロキサンである。本明細書における、シルセスキオキサン誘導体は、かかるポリシロキサン及び(RSiO1.5)(T単位)で表される単位を1又は2以上備える化合物である。
(Silsesquioxane derivative)
In the present specification, silsesquioxane is a polysiloxane having a main chain skeleton made of Si—O bonds and having (RSiO 1.5 ) units. In the present specification, the silsesquioxane derivative is a compound having one or more units represented by such polysiloxane and (RSiO 1.5 ) (T unit).
 シルセスキオキサン誘導体は、例えば、構成単位(1-1)、(1-2)、(1-3)、(1-4)及び(1-5)を備える以下の式(1)で表すことができる。式(1)におけるv、w、x、y及びzは、それぞれ(1-1)~(1-5)の構成単位のモル数を表す。なお、式(1)において、v、w、x、yおよびzは、シルセスキオキサン誘導体1分子が含有する各構成単位のモル数の割合の平均値を意味する。 The silsesquioxane derivative is represented by, for example, the following formula (1) having the structural units (1-1), (1-2), (1-3), (1-4) and (1-5). be able to. V, w, x, y and z in the formula (1) each represent the number of moles of the constituent units (1-1) to (1-5). In the formula (1), v, w, x, y and z mean the average value of the ratio of the number of moles of each structural unit contained in one molecule of the silsesquioxane derivative.
 式(1)における構成単位(1-2)~(1-5)のそれぞれは、1種のみであってよいし、2種以上であってもよい。また、実際のシルセスキオキサン誘導体の構成単位の縮合形態は、式(1)で表される配列順序に限定されるものではなく、特に限定されない。 Each of the structural units (1-2) to (1-5) in the formula (1) may be only one type, or may be two or more types. Further, the actual condensed form of the structural unit of the silsesquioxane derivative is not limited to the arrangement order represented by the formula (1), and is not particularly limited.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 シルセスキオキサン誘導体は、式(1)における5つの構成単位、すなわち、構成単位(1-1)、構成単位(1-2)、構成単位(1-3)及び構成単位(1-4)から選択される構成単位において、少なくとも一つの重合性官能基を含むように組み合わせて備えることができる。 The silsesquioxane derivative has five constitutional units in the formula (1), namely, the constitutional unit (1-1), the constitutional unit (1-2), the constitutional unit (1-3) and the constitutional unit (1-4). The constitutional unit selected from the above can be provided in combination so as to include at least one polymerizable functional group.
 また、シルセスキオキサン誘導体は、構成単位(1-2)を少なくとも含む。シルセスキオキサン誘導体は、構成単位(1-2)とともに構成単位(1-3)を含むこともできる。例えば、式(1)において、wは正の数である。例えば、式(1)において、w及びxは正の数であり、v、y及びzは0又は正の数である。また、シルセスキオキサン誘導体は、構成単位(1-2)のみから構成されていてもよい(wが正であり、他は0である。) Further, the silsesquioxane derivative contains at least the structural unit (1-2). The silsesquioxane derivative can contain the structural unit (1-2) together with the structural unit (1-2). For example, in Expression (1), w is a positive number. For example, in formula (1), w and x are positive numbers, and v, y, and z are 0 or positive numbers. Further, the silsesquioxane derivative may be composed of only the structural unit (1-2) (w is positive and the others are 0).
<構成単位(1-1):Q単位>
 本構成単位は、式(1)で表されるままであり、ポリシロキサンの基本構成単位としてのQ単位を規定している。シルセスキオキサン誘導体中における本構成単位の個数は特に限定するものではない。
<Structural unit (1-1): Q unit>
This constitutional unit is still represented by the formula (1) and defines the Q unit as a basic constitutional unit of polysiloxane. The number of this structural unit in the silsesquioxane derivative is not particularly limited.
<構成単位(1-2):T単位>
 本構成単位は、ポリシロキサンの基本構成単位としてのT単位を規定している。本構成単位のR1は、水素原子、炭素原子数1~10のアルキル基(以下、単位、C1-10アルキル基ともういう。)、炭素原子数1~10のアルケニル基、炭素原子数1~10のアルキニル基、アリール基、アラルキル基、重合性官能基からなる群から選択される少なくとも1種とすることができる。
<Structural unit (1-2): T unit>
This structural unit defines the T unit as the basic structural unit of polysiloxane. R 1 of this structural unit is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms (hereinafter, also referred to as a unit, a C 1-10 alkyl group), an alkenyl group having 1 to 10 carbon atoms, and the number of carbon atoms. It may be at least one selected from the group consisting of 1 to 10 alkynyl groups, aryl groups, aralkyl groups, and polymerizable functional groups.
 R1は水素原子であってもよい。水素原子の場合、例えば、本構成単位及び/又は他の構成単位が、重合性官能基に包含されるヒドロシリル化反応可能な炭素-炭素不飽和結合を含む炭素原子数2~10の有機基(以下、単に、不飽和有機基ともいう。)を備える場合に、これらの単位間で架橋反応が可能となる。 R 1 may be a hydrogen atom. In the case of a hydrogen atom, for example, the present structural unit and / or other structural unit include an organic group having 2 to 10 carbon atoms containing a hydrosilylatable carbon-carbon unsaturated bond included in the polymerizable functional group ( Hereinafter, when it is simply referred to as an unsaturated organic group), a crosslinking reaction between these units becomes possible.
 R1は、C1-10アルキル基であってもよい。C1-10アルキル基は、脂肪族基及び脂環族基のいずれでもよく、また、直鎖状及び分岐状のいずれでもよい。アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。かかるアルキル基は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、などの炭素原子数1~6の直鎖アルキル基であり、また例えば、メチル基、エチル基、プロピル基、ブチル基、などの炭素原子数1~4の直鎖アルキル基である。また例えば、メチル基である。 R 1 may be a C 1-10 alkyl group. The C 1-10 alkyl group may be either an aliphatic group or an alicyclic group, and may be linear or branched. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group and a decyl group. Such an alkyl group is, for example, a linear alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a methyl group, an ethyl group, It is a linear alkyl group having 1 to 4 carbon atoms such as propyl group and butyl group. Further, for example, a methyl group.
 R1は、C1-10アルケニル基であってもよい。C1-10アルケニル基は、脂肪族基、脂環族基、芳香族基のいずれでもよく、また、直鎖状及び分岐状のいずれでもよい。アルケニル基の具体例としては、エテニル(ビニル)基、オルトスチリル基、メタスチリル基、パラスチリル基、1-プロペニル基、2-プロペニル(アリル)基、1-ブテニル基、1-ペンテニル基、3-メチル-1-ブテニル基、フェニルエテニル基、アリル(2-プロペニル)基、オクテニル(7-オクテン-1-イル)基等が挙げられる。 R 1 may be a C 1-10 alkenyl group. The C 1-10 alkenyl group may be an aliphatic group, an alicyclic group or an aromatic group, and may be linear or branched. Specific examples of the alkenyl group include ethenyl (vinyl) group, orthostyryl group, metastyryl group, parastyryl group, 1-propenyl group, 2-propenyl (allyl) group, 1-butenyl group, 1-pentenyl group, 3-methyl group. Examples thereof include a 1-butenyl group, a phenylethenyl group, an allyl (2-propenyl) group and an octenyl (7-octen-1-yl) group.
 R1は、C1-10アルキニル基であってもよい。C1-10アルキニル基は、脂肪族基、脂環族基及び芳香族基のいずれでもよく、また、直鎖状及び分岐状のいずれでもよい。アルキニル基の具体例としては、エチニル基、1-プロピニル基、1-ブチニル基、1-ペンチニル基、3-メチル-1-ブチニル基、フェニルブチニル基等が挙げられる。 R 1 may be a C 1-10 alkynyl group. The C 1-10 alkynyl group may be any of an aliphatic group, an alicyclic group and an aromatic group, and may be linear or branched. Specific examples of the alkynyl group include an ethynyl group, a 1-propynyl group, a 1-butynyl group, a 1-pentynyl group, a 3-methyl-1-butynyl group and a phenylbutynyl group.
 R1は、アリール基であってもよい。炭素原子数は、例えば6個以上20個以下であり、また例えば同6個以上10個以下である。アリール基としては、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。 R 1 may be an aryl group. The number of carbon atoms is, for example, 6 or more and 20 or less, and is, for example, 6 or more and 10 or less. Examples of the aryl group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group and the like.
 R1は、アラルキル基であってもよい。炭素原子数は、例えば7個以上20個以下であり、また例えば同7個以上10個以下である。アラルキル基としては、ベンジル基などのフェニルアルキル基が挙げられる。 R 1 may be an aralkyl group. The number of carbon atoms is, for example, 7 or more and 20 or less, and is, for example, 7 or more and 10 or less. Examples of the aralkyl group include phenylalkyl groups such as benzyl group.
 R1は、重合性官能基であってもよい。重合性官能基としては、例えば、熱硬化又は光硬化可能な重合性官能基が挙げられる。重合性官能基としては、特に限定するものではなく、ビニル基、アリル基、スチリル基等の既述の官能基も包含するが、メタクリロイル基、アクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、α-メチルスチリル基、ビニルエーテル基、ビニルエステル基、アクリルアミド基、メタクリルアミド基、N-ビニルアミド基 、マレイン酸エステル基、フマル酸エステル基、N-置換マレイミド基、イソシアネート基、オキセタニル基及びエポキシ基を有する官能基等が挙げられる。なかでも、(メタ)アクリロイル基、オキセタニル基及びエポキシ基を有する重合性官能基が挙げられる。 R 1 may be a polymerizable functional group. Examples of the polymerizable functional group include a thermosetting or photocurable polymerizable functional group. The polymerizable functional group is not particularly limited, and includes the above-mentioned functional groups such as vinyl group, allyl group and styryl group. However, methacryloyl group, acryloyl group, acryloyloxy group, methacryloyloxy group, α- Functions having methylstyryl group, vinyl ether group, vinyl ester group, acrylamide group, methacrylamide group, N-vinyl amide group, maleic acid ester group, fumaric acid ester group, N-substituted maleimide group, isocyanate group, oxetanyl group and epoxy group Groups and the like. Among them, a polymerizable functional group having a (meth) acryloyl group, an oxetanyl group and an epoxy group can be mentioned.
 (メタ)アクリロイル基を有する重合性官能基としては、例えば以下の式で表される基又はこの基を含む基が好ましい。 The polymerizable functional group having a (meth) acryloyl group is preferably, for example, a group represented by the following formula or a group containing this group.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式において、R5は、水素原子又はメチル基を表し、R6は、炭素数1~10のアルキレン基を表す。R6としては、炭素数2~10のアルキレン基が好ましい。 In the above formula, R 5 represents a hydrogen atom or a methyl group, and R 6 represents an alkylene group having 1 to 10 carbon atoms. R 6 is preferably an alkylene group having 2 to 10 carbon atoms.
 オキセタニル基としては、特に限定するものではないが、例えば、(3-エチル-3-オキセタニル)メチルオキシ基、(3-エチル-3-オキセタニル)オキシ基等が挙げられる。オキセタニル基を含む基としては、下記式で表される基、又はこの基を含むものが好ましい。 The oxetanyl group is not particularly limited, and examples thereof include a (3-ethyl-3-oxetanyl) methyloxy group and a (3-ethyl-3-oxetanyl) oxy group. The group containing an oxetanyl group is preferably a group represented by the following formula, or a group containing this group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式において、R7は水素原子又は炭素数1~6のアルキル基を表し、R8は炭素数1~6のアルキレン基を表す。R7としては、水素原子、メチル基、エチル基が好ましく、エチル基がより好ましい。R8としては、炭素数2~6のアルキレン基が好ましく、プロピレン基がより好ましい。 In the above formula, R 7 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 8 represents an alkylene group having 1 to 6 carbon atoms. R 7 is preferably a hydrogen atom, a methyl group or an ethyl group, more preferably an ethyl group. R 8 is preferably an alkylene group having 2 to 6 carbon atoms, and more preferably a propylene group.
 エポキシ基としては、特に限定するものではないが、例えば、β-グリシドキシエチル、γ-グリシドキシプロピル、γ-グリシドキシブチル等のグリシドオキシ基で置換された炭素数1~10のアルキル基、グリシジル基、β-(3,4-エポキシシクロヘキシル)エチル基、γ-(3,4-エポキシシクロヘキシル)プロピル基、β-(3,4-エポキシシクロヘプチル)エチル基、4-(3,4-エポキシシクロヘキシル)ブチル基、5-(3,4-エポキシシクロヘキシル)ペンチル基等のオキシラン基を持った炭素数5~8のシクロアルキル基で置換された炭素数1~10のアルキル基が挙げられる。 The epoxy group is not particularly limited, but examples thereof include alkyl having 1 to 10 carbon atoms substituted with a glycidoxy group such as β-glycidoxyethyl, γ-glycidoxypropyl, γ-glycidoxybutyl. Group, glycidyl group, β- (3,4-epoxycyclohexyl) ethyl group, γ- (3,4-epoxycyclohexyl) propyl group, β- (3,4-epoxycycloheptyl) ethyl group, 4- (3,3 Examples thereof include an alkyl group having 1 to 10 carbon atoms, which is substituted with a cycloalkyl group having 5 to 8 carbon atoms and having an oxirane group such as 4-epoxycyclohexyl) butyl group and 5- (3,4-epoxycyclohexyl) pentyl group. To be
 重合性官能基は、既述の不飽和有機基、すなわち、ケイ素原子に結合する水素原子(ヒドロシリル基)とヒドロシリル化反応可能な、炭素-炭素二重結合又は炭素-炭素三重結合を持つ官能基であってもよい。不飽和有機基は、ヒドロシリル基における水素原子の存在により、当該水素原子とヒドロシリル化反応により重合してヒドロシリル化構造部分を形成する意味において重合性官能基としても機能しうる。かかる不飽和有機基の具体例としては、上記したアルケニル基及びアルキニル基等が挙げられる。特に限定するものではないが、例えば、ビニル基、オルトスチリル基、メタスチリル基、パラスチリル基、アクリロイル基、メタクリロイル基、アクリロキシ基、メタクリロキシ基、1-プロペニル基、1-ブテニル基、1-ペンテニル基、3-メチル-1-ブテニル基、フェニルエテニル基、エチニル基、1-プロピニル基、1-ブチニル基、1-ペンチニル基、3-メチル-1-ブチニル基、フェニルブチニル基、アリル(2-プロペニル)基、オクテニル(7-オクテン-1-イル)基等が例示される。かかる不飽和有機基は、例えば、ビニル基、パラスチリル基、アリル(2-プロペニル)基、オクテニル(7-オクテン-1-イル)基であり、また例えば、ビニル基である。 The polymerizable functional group is the above-mentioned unsaturated organic group, that is, a functional group having a carbon-carbon double bond or a carbon-carbon triple bond capable of undergoing a hydrosilylation reaction with a hydrogen atom (hydrosilyl group) bonded to a silicon atom. May be The unsaturated organic group can also function as a polymerizable functional group in the sense that due to the presence of a hydrogen atom in the hydrosilyl group, it is polymerized with the hydrogen atom by a hydrosilylation reaction to form a hydrosilylated structural moiety. Specific examples of such unsaturated organic groups include the above-mentioned alkenyl groups and alkynyl groups. Although not particularly limited, for example, vinyl group, orthostyryl group, metastyryl group, parastyryl group, acryloyl group, methacryloyl group, acryloxy group, methacryloxy group, 1-propenyl group, 1-butenyl group, 1-pentenyl group, 3-methyl-1-butenyl group, phenylethenyl group, ethynyl group, 1-propynyl group, 1-butynyl group, 1-pentynyl group, 3-methyl-1-butynyl group, phenylbutynyl group, allyl (2- Examples thereof include a propenyl) group and an octenyl (7-octen-1-yl) group. Such unsaturated organic groups are, for example, vinyl groups, parastyryl groups, allyl (2-propenyl) groups, octenyl (7-octen-1-yl) groups, and also vinyl groups, for example.
 なお、シルセスキオキサン誘導体の全体において、重合性官能基を2種以上含むことができるが、その場合、全ての重合性官能基は、互いに同一であってよいし、異なってもよい。また、複数の重合性官能基が同一であり、さらに異なる重合性官能基を含んでいてもよい。 The silsesquioxane derivative as a whole may contain two or more polymerizable functional groups, in which case all the polymerizable functional groups may be the same as or different from each other. Moreover, a plurality of polymerizable functional groups may be the same and may further include different polymerizable functional groups.
 C1-10アルキル基、C1-10アルケニル基、C1-10アルキニル基は、アリール基、アラルキル基、重合性官能基は、いずれも置換されていてもよい。かかる置換基としては、フッ素原子、塩素原子、臭素原子、塩素原子等のハロゲン原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、イソオクチル基等のアルキル基、ヒドロキシ基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、及びオキシ基(=O)、シアノ基、保護された水酸基のうちの少なくとも1つ以上で置換されていてもよい。 The C 1-10 alkyl group, C 1-10 alkenyl group and C 1-10 alkynyl group may be substituted with aryl groups, aralkyl groups and polymerizable functional groups. Examples of the substituent include halogen atoms such as fluorine atom, chlorine atom, bromine atom, chlorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t -Butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, isooctyl group, and other alkyl groups, hydroxy groups, alkoxy groups, aryloxy groups, aralkyloxy groups, and oxy groups (= It may be substituted with at least one of O), a cyano group and a protected hydroxyl group.
 保護された水酸基が有する当該水酸基の保護基は、特に限定しないで公知の水酸基保護基を用いることができる。例えば、かかる保護基としては、-C(=O)Rで表されるアシル系の保護基(式中、Rは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基等の炭素数1~6のアルキル基;又は、置換基を有する、若しくは置換基を有さないフェニル基を表す。置換基を有するフェニル基の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、イソオクチル基等のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基等)、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基等のシリル系の保護基;メトキシメチル基、メトキシエトキシメチル基、1-エトキシエチル基、テトラヒドロピラン-2-イル基、テトラヒドロフラン-2-イル基等のアセタール系の保護基;t-ブトキシカルボニル基等のアルコキシカルボニル系の保護基;メチル基、エチル基、t-ブチル基、オクチル基、アリル基、トリフェニルメチル基、ベンジル基、p-メトキシベンジル基、フルオレニル基、トリチル基、ベンズヒドリル基等のエーテル系の保護基;等が挙げられる。 As the hydroxyl-protecting group of the protected hydroxyl group, a known hydroxyl-protecting group can be used without particular limitation. For example, as such a protecting group, an acyl-based protecting group represented by —C (═O) R (wherein R is a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, An alkyl group having 1 to 6 carbon atoms such as an isobutyl group, an s-butyl group, a t-butyl group, and an n-pentyl group; or a phenyl group having a substituent or not having a substituent. The substituent of the phenyl group has a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, an n-hexyl group. , Alkyl groups such as n-heptyl group, n-octyl group and isooctyl group; halogen atoms such as fluorine atom, chlorine atom and bromine atom; alkoxy groups such as methoxy group and ethoxy group), trimethylsilyl group, triethyl A silyl protecting group such as a ryl group, a t-butyldimethylsilyl group and a t-butyldiphenylsilyl group; a methoxymethyl group, a methoxyethoxymethyl group, a 1-ethoxyethyl group, a tetrahydropyran-2-yl group and a tetrahydrofuran-2. An acetal-based protecting group such as an yl group; an alkoxycarbonyl-based protecting group such as a t-butoxycarbonyl group; a methyl group, an ethyl group, a t-butyl group, an octyl group, an allyl group, a triphenylmethyl group, a benzyl group, and ether-type protecting groups such as p-methoxybenzyl group, fluorenyl group, trityl group and benzhydryl group;
 シルセスキオキサン誘導体は、本構成単位の1種又は2種以上を組み合わせて備えることができる。例えば、1つの本構成単位のR1をアルキル基として、他の1つの構成単位のR1を重合性官能基とすることができる。また例えば、1つの本構成単位のR1を水素原子とし、他の1つの構成単位のR1を重合性官能基としての不飽和有機基とすることもできる。 The silsesquioxane derivative may be provided with one kind or a combination of two or more kinds of the present structural unit. For example, it can be as one alkyl group of R 1 in the structural unit, the R 1 of one other constituent unit and a polymerizable functional group. Further, for example, it can be one of the unsaturated organic groups of R 1 in the structural unit as a hydrogen atom, a R 1 of one other constituent unit as a polymerizable functional group.
 シルセスキオキサン誘導体中における本構成単位のモル数の割合であるwは、正の数である。wは、特に限定するものではないが、例えば、w/(v+w+x+y)は、0.25以上であり、また例えば、0.3以上であり、また例えば、0.35以上であり、また例えば、0.4以上であり、また例えば0.5以上であり、また例えば0.6以上であり、また例えば、0.7以上であり、また例えば0.8以上であり、また例えば0.9以上であり、また例えば0.95以上であり、また例えば、0.99以上であり、また例えば、1である。 W, which is the ratio of the number of moles of this structural unit in the silsesquioxane derivative, is a positive number. Although w is not particularly limited, for example, w / (v + w + x + y) is 0.25 or more, for example, 0.3 or more, and for example, 0.35 or more, and for example, 0.4 or more, for example 0.5 or more, for example 0.6 or more, for example 0.7 or more, for example 0.8 or more, and for example 0.9 or more And is, for example, 0.95 or more, and is, for example, 0.99 or more, and is, for example, 1.
<構成単位(1-3):D単位>
 本構成単位は、シルセスキオキサン誘導体の基本構成単位としてのD単位を規定している。本構成単位のR2は、水素原子、C1-10アルキル基、C1-10アルケニル基、C1-10アルキニル基、アリール基、アラルキル基、重合性官能基からなる群から選択される少なくとも1種とすることができる。本構成単位におけるR2は、同一であってもよいし異なっていてもよい。
<Structural unit (1-3): D unit>
This constitutional unit defines the D unit as the basic constitutional unit of the silsesquioxane derivative. R 2 of the present structural unit is at least selected from the group consisting of hydrogen atom, C 1-10 alkyl group, C 1-10 alkenyl group, C 1-10 alkynyl group, aryl group, aralkyl group and polymerizable functional group. It can be one kind. R 2 s in this structural unit may be the same or different.
 C1-10アルキル基、C1-10アルケニル基、C1-10アルキニル基、アリール基、アラルキル基、重合性官能基については、既に記載した各種態様を本構成単位についてもそのまま適用できる。 With respect to the C 1-10 alkyl group, C 1-10 alkenyl group, C 1-10 alkynyl group, aryl group, aralkyl group, and polymerizable functional group, the various embodiments already described can be directly applied to the present structural unit.
 シルセスキオキサン誘導体は、本構成単位の1種又は2種以上を組み合わせて備えることができる。シルセスキオキサン誘導体は、少なくとも一部の本構成単位が、例えば、2つのR2がいずれも、C1-10アルキル基であり、また例えば、すべての本構成単位が、2つのR2がいずれも、C1-10アルキル基である。 The silsesquioxane derivative may be provided with one kind or a combination of two or more kinds of the present structural unit. In the silsesquioxane derivative, at least a part of the present structural units, for example, two R 2 are both C 1-10 alkyl groups, and for example, all of the present structural units have two R 2 All are C 1-10 alkyl groups.
 シルセスキオキサン誘導体中における本構成単位のモル数の割合であるxは、0又は正の数である。xは、特に限定するものではないが、例えば、x/(v+w+x+y)は、0.25以上であり、また例えば、0.3以上であり、また例えば、0.35以上であり、また例えば、0.4以上である。同数値は、例えば、0.5以下であり、また例えば、0.45以下である。 X, which is the ratio of the number of moles of this structural unit in the silsesquioxane derivative, is 0 or a positive number. Although x is not particularly limited, for example, x / (v + w + x + y) is 0.25 or more, for example, 0.3 or more, and for example, 0.35 or more, and for example, It is 0.4 or more. The same numerical value is, for example, 0.5 or less, and for example, 0.45 or less.
<構成単位(1-4):M単位>
 本構成単位は、シルセスキオキサン誘導体の基本構成単位としてのM単位を規定している。本構成単位のR3は、水素原子、C1-10アルキル基、C1-10アルケニル基、C1-10アルキニル基、アリール基、アラルキル基、重合性官能基からなる群から選択される少なくとも1種とすることができる。水素原子、重合性官能基、及びC1-10アルキル基からなる群から選択される少なくとも1種とすることができる。本構成単位におけるR3は、それぞれ同一であってもよいし異なっていてもよい。
<Structural unit (1-4): M unit>
This structural unit defines the M unit as the basic structural unit of the silsesquioxane derivative. R 3 of the present structural unit is at least selected from the group consisting of hydrogen atom, C 1-10 alkyl group, C 1-10 alkenyl group, C 1-10 alkynyl group, aryl group, aralkyl group, and polymerizable functional group. It can be one kind. At least one selected from the group consisting of a hydrogen atom, a polymerizable functional group, and a C 1-10 alkyl group can be used. R 3 s in this structural unit may be the same or different.
 C1-10アルキル基、C1-10アルケニル基、C1-10アルキニル基、アリール基、アラルキル基、重合性官能基については、既に記載した各種態様を本構成単位についてもそのまま適用できる。 With respect to the C 1-10 alkyl group, C 1-10 alkenyl group, C 1-10 alkynyl group, aryl group, aralkyl group, and polymerizable functional group, the various embodiments already described can be directly applied to the present structural unit.
 シルセスキオキサン誘導体は、本構成単位の1種又は2種以上を組み合わせて備えることができる。シルセスキオキサン誘導体は、少なくとも一部の本構成単位が、例えば、2つのR3がいずれも、C1-10アルキル基であり、また例えば、すべての本構成単位が、2つのR3がいずれも、C1-10アルキル基である。 The silsesquioxane derivative may be provided with one kind or a combination of two or more kinds of the present structural unit. In the silsesquioxane derivative, at least a part of the present structural units, for example, two R 3 are both C 1-10 alkyl groups, and for example, all of the present structural units have two R 3 All are C 1-10 alkyl groups.
 シルセスキオキサン誘導体における本構成単位のモル数の割合であるyは0又は正の数である。yは、特に限定するものではないが、例えば、y/(v+w+x+y)は、0.25以上であり、また例えば、0.3以上であり、また例えば、0.35以上であり、また例えば、0.4以上である。同数値は、例えば、0.5以下であり、また例えば、0.45以下である。 Y, which is the ratio of the number of moles of this structural unit in the silsesquioxane derivative, is 0 or a positive number. Although y is not particularly limited, for example, y / (v + w + x + y) is 0.25 or more, for example, 0.3 or more, and for example, 0.35 or more, and for example, It is 0.4 or more. The same numerical value is, for example, 0.5 or less, and for example, 0.45 or less.
<構成単位(1-5)>
 本構成単位は、シルセスキオキサン誘導体におけるアルコキシ基又は水酸基を含む単位を規定している。すなわち、本構成単位におけるR4は、水素原子、炭素原子数1~10のアルキル基である。当該アルキル基は、脂肪族基及び脂環族基のいずれでもよく、また、直鎖状及び分岐状のいずれでもよい。アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられる。典型的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基等の炭素数2以上10以下のアルキル基であり、また例えば、炭素数1~6のアルキル基である。
<Structural unit (1-5)>
This structural unit defines a unit containing an alkoxy group or a hydroxyl group in the silsesquioxane derivative. That is, R 4 in this structural unit is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. The alkyl group may be either an aliphatic group or an alicyclic group, and may be linear or branched. Specific examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, a pentyl group and a hexyl group. Typically, it is an alkyl group having 2 to 10 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, and an isopropyl group, and is also an alkyl group having 1 to 6 carbon atoms.
 本構成単位におけるアルコキシ基は、後述する原料モノマーに含まれる加水分解性基である「アルコキシ基」、又は、反応溶媒に含まれたアルコールが、原料モノマーの加水分解性基と置換して生成した「アルコキシ基」であって、加水分解・重縮合せずに分子内に残存したものである。また、本構成単位における水酸基は、「アルコキシ基」が加水分解後、重縮合せずに分子内に残存した水酸基等である。 The alkoxy group in the present structural unit is formed by replacing the "alkoxy group", which is a hydrolyzable group contained in the raw material monomer described later, or the alcohol contained in the reaction solvent, with the hydrolyzable group of the raw material monomer. An "alkoxy group" that remains in the molecule without being hydrolyzed or polycondensed. The hydroxyl group in the present structural unit is, for example, a hydroxyl group remaining in the molecule without being polycondensed after the "alkoxy group" is hydrolyzed.
 シルセスキオキサン誘導体における本構成単位のモル数の割合であるzは、0又は正の数である。 Z, which is the ratio of the number of moles of this structural unit in the silsesquioxane derivative, is 0 or a positive number.
 シルセスキオキサン誘導体において、構成単位(1-1)、構成単位(1-3)及び構成単位(1-4)からなる群から選択される1種又は2種以上を備えることが好ましい。すなわち、式(1)において、v、x及びyの1種又は2種以上は正の数であることが好ましい。 The silsesquioxane derivative preferably comprises one or more selected from the group consisting of structural unit (1-1), structural unit (1-3) and structural unit (1-4). That is, in the formula (1), one or more of v, x and y are preferably positive numbers.
<分子量等>
 シルセスキオキサン誘導体の数平均分子量は、300~10,000の範囲にあることが好ましい。かかるシルセスキオキサン誘導体は、それ自体低粘性であり、有機溶剤に溶け易く、その溶液の粘度も扱い易く、保存安定性に優れる。数平均分子量は、塗工性、貯蔵安定性、耐熱性等を考慮すると、好ましくは300~8,000、また好ましくは300~6,000,また好ましくは300~3,000、また好ましくは300~2,000、また好ましくは500~2,000である。数平均分子量はGPC(ゲルパーミエーションクロマトグラフ)により、例えば、後述の〔実施例〕における測定条件であり、標準物質としてポリスチレンを使用して求めることができる。
<Molecular weight>
The number average molecular weight of the silsesquioxane derivative is preferably in the range of 300 to 10,000. The silsesquioxane derivative itself has low viscosity, is easily dissolved in an organic solvent, the viscosity of the solution is easy to handle, and is excellent in storage stability. The number average molecular weight is preferably 300 to 8,000, preferably 300 to 6,000, more preferably 300 to 3,000, and more preferably 300, in consideration of coating properties, storage stability, heat resistance and the like. ˜2,000, and preferably 500 to 2,000. The number average molecular weight is measured by GPC (gel permeation chromatograph), for example, under the measurement conditions in [Example] described later, and can be determined by using polystyrene as a standard substance.
 シルセスキオキサン誘導体は、液状であることが好ましい。シルセスキオキサン誘導体が液体の場合、フィラー混合の観点から、25℃における粘度が、例えば500mPa・s以上、より好ましくは1000mPa・s以上、さらに好ましくは2000mPa・s以上である。 The silsesquioxane derivative is preferably liquid. When the silsesquioxane derivative is a liquid, the viscosity at 25 ° C. is, for example, 500 mPa · s or more, more preferably 1000 mPa · s or more, further preferably 2000 mPa · s or more, from the viewpoint of filler mixing.
<シルセスキオキサン誘導体の製造方法>
 シルセスキオキサン誘導体は、公知の方法で製造することができる。シルセスキオキサン誘導体の製造方法は、国際公開第2005/010077号パンフレット、同第2009/066608号パンフレット、同第2013/099909号パンフレット、特開2011-052170号公報、特開2013-147659号公報等においてポリシロキサンの製造方法として詳細に開示されている。
<Method for producing silsesquioxane derivative>
The silsesquioxane derivative can be produced by a known method. The method for producing a silsesquioxane derivative is described in WO 2005/010077, WO 2009/066608, 2013/099909, JP2011-052170A, JP2013-147659A. Are disclosed in detail as a method for producing polysiloxane.
 シルセスキオキサン誘導体は、例えば、以下の方法で製造することができる。すなわち、シルセスキオキサン誘導体の製造方法は、適当な反応溶媒中で、縮合により、上記式(1)中の構成単位を与える原料モノマーの加水分解・重縮合反応を行う縮合工程を備えることができる。この縮合工程においては、構成単位(1-1)を形成する、シロキサン結合生成基を4個有するケイ素化合物(以下、「Qモノマー」という。)と、構成単位(1-2)を形成する、シロキサン結合生成基を3個有するケイ素化合物(以下、「Tモノマー」という。)と、構成単位(1-3)を形成する、シロキサン結合生成基を2個有するケイ素化合物(以下、「Dモノマー」という。)と、シロキサン結合生成基を1個有する構成単位(1-4)を形成する、ケイ素化合物(以下、「Mモノマー」という。)と、を用いることができる。 The silsesquioxane derivative can be produced, for example, by the following method. That is, the method for producing a silsesquioxane derivative is provided with a condensation step of performing hydrolysis / polycondensation reaction of a raw material monomer which gives the constitutional unit in the above formula (1) by condensation in a suitable reaction solvent. it can. In this condensation step, a structural unit (1-2) is formed with a silicon compound having four siloxane bond-forming groups (hereinafter referred to as “Q monomer”) that forms the structural unit (1-1). A silicon compound having three siloxane bond-forming groups (hereinafter referred to as "T monomer") and a silicon compound having two siloxane bond-forming groups (hereinafter referred to as "D monomer") to form the structural unit (1-3). And a silicon compound (hereinafter, referred to as “M monomer”) forming a structural unit (1-4) having one siloxane bond-forming group.
 本明細書において、具体的には、構成単位(1-1)を形成するQモノマーと、構成単位(1-2)を形成するTモノマーと、構成単位(1-3)を形成するDモノマー及び、構成単位(1-4)を形成するMモノマーのうちの、少なくともTモノマーが用いられる。原料モノマーを、反応溶媒の存在下に、加水分解・重縮合反応させた後に、反応液中の反応溶媒、副生物、残留モノマー、水等を留去させる留去工程を備えることが好ましい。 In the present specification, specifically, a Q monomer forming the structural unit (1-1), a T monomer forming the structural unit (1-2), and a D monomer forming the structural unit (1-3). Also, at least the T monomer is used among the M monomers forming the structural unit (1-4). It is preferable to provide a distilling step of distilling off the reaction solvent, by-products, residual monomers, water and the like in the reaction solution after the raw material monomer is subjected to hydrolysis / polycondensation reaction in the presence of the reaction solvent.
 原料モノマーであるQモノマー、Tモノマー、Dモノマー又はMモノマーに含まれるシロキサン結合生成基は、水酸基又は加水分解性基である。このうち、加水分解性基としては、ハロゲノ基、アルコキシ基等が挙げられる。Qモノマー、Tモノマー、Dモノマー及びMモノマーの少なくとも1つは、加水分解性基を有することが好ましい。縮合工程において、加水分解性が良好であり、酸を副生しないことから、加水分解性基としては、アルコキシ基が好ましく、炭素原子数1~4のアルコキシ基がより好ましい。 The siloxane bond-forming group contained in the raw material monomer Q monomer, T monomer, D monomer or M monomer is a hydroxyl group or a hydrolyzable group. Among these, examples of the hydrolyzable group include a halogeno group and an alkoxy group. At least one of the Q monomer, T monomer, D monomer and M monomer preferably has a hydrolyzable group. In the condensation step, the hydrolyzable group is preferably an alkoxy group, more preferably an alkoxy group having 1 to 4 carbon atoms, since it has good hydrolyzability and does not produce an acid as a by-product.
 なお、シルセスキオキサン誘導体の合成にあたり、Dモノマーに替えて以下の式(2)及び式(3)で表されるシロキサン結合生成基を有するシリコーン化合物(以下、Dオリゴマーともいう。)を用いることもできる。 In the synthesis of the silsesquioxane derivative, a silicone compound having a siloxane bond-forming group represented by the following formulas (2) and (3) (hereinafter, also referred to as a D oligomer) is used instead of the D monomer. You can also
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(上記式(2)及び(3)において、Xはシロキサン結合生成基であり、R9及びR12はそれぞれアルコキシ基、アリールオキシ基、アルキル基、シクロアルキル基又はアリール基であり、R10、R11及びR13はそれぞれアルキル基、シクロアルキル基又はアリールであり、m及びnは正の整数である。) (In the above formulas (2) and (3), X is a siloxane bond-forming group, R 9 and R 12 are each an alkoxy group, an aryloxy group, an alkyl group, a cycloalkyl group or an aryl group, and R 10 , R 11 and R 13 are each an alkyl group, a cycloalkyl group or aryl, and m and n are positive integers.)
 Dオリゴマーが有するシロキサン結合生成基とは、シラン化合物中のケイ素原子との間に、シロキサン結合を生成し得る原子又は原子団を意味し、その具体例は、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、t-ブトキシ基等のアルコキシ基、シクロヘキシルオキシ基等のシクロアルコキシ基、フェニルオキシ基等のアリールオキシ基、水酸基、水素原子等である。式2で表されるDオリゴマーは一分子中に2個のシロキサン結合生成基を有するものであるが、これらは同じ基であってもよいし異なる基であってもよい。 The siloxane bond-forming group possessed by the D oligomer means an atom or an atomic group capable of forming a siloxane bond with the silicon atom in the silane compound, and specific examples thereof include a methoxy group, an ethoxy group, and n-propoxy group. Group, i-propoxy group, n-butoxy group, i-butoxy group, alkoxy group such as t-butoxy group, cycloalkoxy group such as cyclohexyloxy group, aryloxy group such as phenyloxy group, hydroxyl group, hydrogen atom, etc. is there. The D oligomer represented by the formula 2 has two siloxane bond-forming groups in one molecule, but these may be the same group or different groups.
 Dオリゴマーとしては、シロキサン結合生成基が水酸基であるものが入手が容易である。 As D oligomers, those in which the siloxane bond-forming group is a hydroxyl group are easily available.
 Dオリゴマーが有するR9及びR12はそれぞれアルコキシ基、アリールオキシ基、アルキル基、シクロアルキル基又はアリール基であり、一分子中に2個存在するR9及びR12はそれぞれ同じ基であってもよいし異なる基であってもよい。R9及びR12の具体例はメトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、t-ブトキシ基、シクロヘキシルオキシ基、フェニルオキシ基、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、シクロヘキシル基、フェニル基等である。 R 9 and R 12 in the D oligomer are each an alkoxy group, an aryloxy group, an alkyl group, a cycloalkyl group or an aryl group, and two R 9 and R 12 present in one molecule are the same group, May be different groups. Specific examples of R 9 and R 12 are methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group, t-butoxy group, cyclohexyloxy group, phenyloxy group, methyl group. , Ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, cyclohexyl group, phenyl group and the like.
 Dオリゴマーが有するR10、R11及びR13はそれぞれアルキル基、シクロアルキル基又はアリール基であり、一分子中に複数個存在するR10及びR11はそれぞれ同じ基であってもよいし異なる基であってもよい。R10、R11及びR13の具体例はメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、シクロヘキシル基、フェニル基等である。Dオリゴマーとしては、一分子中に複数個存在するR10及びR11がメチル基又はフェニル基であるものが、安価な原料から製造可能であるとともに本組成物を用いて得られる硬化物が、例えば、接着性等に優れたものとなるために好ましく、特にすべてメチル基であるものがより好ましい。 R 10 , R 11 and R 13 of the D oligomer are each an alkyl group, a cycloalkyl group or an aryl group, and a plurality of R 10 and R 11 present in one molecule may be the same or different. It may be a group. Specific examples of R 10 , R 11 and R 13 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, cyclohexyl group, phenyl group and the like. is there. As the D oligomer, those in which a plurality of R 10 and R 11 present in one molecule are a methyl group or a phenyl group can be produced from an inexpensive raw material and a cured product obtained by using the present composition is For example, it is preferable because it has excellent adhesiveness and the like, and it is particularly preferable that all are methyl groups.
 Dオリゴマーにおいて、繰り返し単位数m及びnは正の整数であり、Dオリゴマーとしては、m及びnが10~100であるものが好ましく、10~50であるものが更に好ましい。 In the D oligomer, the number of repeating units m and n are positive integers, and the D oligomer preferably has m and n of 10 to 100, more preferably 10 to 50.
 縮合工程において、各々の構成単位に対応するQモノマー、Tモノマー又はDモノマー若しくはDオリゴマーのシロキサン結合生成基はアルコキシ基であり、Mモノマーに含まれるシロキサン結合生成基はアルコキシ基又はシロキシ基であることが好ましい。また、各々の構成単位に対応するモノマー及びオリゴマーは、単独で用いてよいし、2種以上を組み合わせて用いることができる。 In the condensation step, the siloxane bond-forming group of the Q monomer, T monomer, D monomer or D oligomer corresponding to each constitutional unit is an alkoxy group, and the siloxane bond-forming group contained in the M monomer is an alkoxy group or a siloxy group. It is preferable. Moreover, the monomer and oligomer corresponding to each structural unit may be used alone or in combination of two or more kinds.
 構成単位(1-1)を与えるQモノマーとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等が挙げられる。構成単位(1-2)を与えるTモノマーとしては、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、トリクロロシラン等が挙げられる。構成単位(1-2)を与えるTモノマーとしては、トリメトキシビニルシラン、トリエトキシビニルシラン、ビニルトリス(2-メトキシエトキシ)シラン、トリメトキシアリルシラン、トリエトキシアリルシラン、トリメトキシ(7-オクテン-1-イル)シラン、(p-スチリル)トリメトキシシラン、(p-スチリル)トリエトキシシラン、(3-メタクリロイルオキシプロピル)トリメトキシシラン、(3-メタクリロイルオキシプロピル)トリエトキシシラン、(3-アクリロイルオキシプロピル)トリメトキシシラン、(3-アクリロイルオキシプロピル)トリエトキシシラン等が挙げられる。構成単位(1-3)を与えるDモノマーとしては、ジメトキシジメチルシラン、ジメトキシジエチルシラン、ジエトキシジメチルシラン、ジエトキシジエチルシラン、ジプロポキシジメチルシラン、ジプロポキシジエチルシラン、ジメトキシベンジルメチルシラン、ジエトキシベンジルメチルシラン、ジクロロジメチルシラン、ジメトキシメチルシラン、ジメトキシメチルビニルシラン、ジエトキシメチルシラン、ジエトキシメチルビニルシラン等が挙げられる。構成単位(1-4)を与えるMモノマーとしては、加水分解により2つの構成単位(1-4)を与えるヘキサメチルジシロキサン、ヘキサエチルジシロキサン、ヘキサプロピルジシロキサン、1,1,3,3-テトラメチルジシロキサン、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、メトキシジメチルシラン、エトキシジメチルシラン、メトキシジメチルビニルシラン、エトキシジメチルビニルシランのほか、メトキシトリメチルシラン、エトキシトリメチルシラン、メトキシジメチルフェニルシラン、エトキシジメチルフェニルシラン、クロロジメチルシラン、クロロジメチルビニルシラン、クロロトリメチルシラン、ジメチルシラノール、ジメチルビニルシラノール、トリメチルシラノール、トリエチルシラノール、トリプロピルシラノール、トリブチルシラノール等が挙げられる。構成単位(1-5)を与える有機化合物としては、1-プロパノール、2-プロパノール、1-ブタノール、2-メチル-1-プロパノール、2-ブタノール、2-メチル-2-プロパノール、メタノール、エタノール等のアルコールが挙げられる。以上の説明によれば、シルセスキオキサン誘導体を得るためのこうしたモノマーを含む組成物も提供される。 Examples of the Q monomer that gives the structural unit (1-1) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane. Examples of the T monomer that provides the structural unit (1-2) include trimethoxysilane, triethoxysilane, tripropoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, and ethyltrimethoxy. Examples thereof include silane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, butyltrimethoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane and trichlorosilane. Examples of the T monomer that provides the structural unit (1-2) include trimethoxyvinylsilane, triethoxyvinylsilane, vinyltris (2-methoxyethoxy) silane, trimethoxyallylsilane, triethoxyallylsilane, and trimethoxy (7-octen-1-yl) silane. , (P-styryl) trimethoxysilane, (p-styryl) triethoxysilane, (3-methacryloyloxypropyl) trimethoxysilane, (3-methacryloyloxypropyl) triethoxysilane, (3-acryloyloxypropyl) trimethoxy Examples thereof include silane and (3-acryloyloxypropyl) triethoxysilane. Examples of the D monomer that provides the structural unit (1-3) include dimethoxydimethylsilane, dimethoxydiethylsilane, diethoxydimethylsilane, diethoxydiethylsilane, dipropoxydimethylsilane, dipropoxydiethylsilane, dimethoxybenzylmethylsilane, diethoxybenzyl. Examples thereof include methylsilane, dichlorodimethylsilane, dimethoxymethylsilane, dimethoxymethylvinylsilane, diethoxymethylsilane and diethoxymethylvinylsilane. Examples of the M monomer that gives the structural unit (1-4) include hexamethyldisiloxane, hexaethyldisiloxane, hexapropyldisiloxane, 1,1,3,3 that gives two structural units (1-4) by hydrolysis. -Tetramethyldisiloxane, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, methoxydimethylsilane, ethoxydimethylsilane, methoxydimethylvinylsilane, ethoxydimethylvinylsilane, methoxytrimethylsilane, ethoxytrimethylsilane , Methoxydimethylphenylsilane, ethoxydimethylphenylsilane, chlorodimethylsilane, chlorodimethylvinylsilane, chlorotrimethylsilane, dimethylsilanol, dimethylvinylsilanol, trimethylsilanol, triethylsilanol Tripropyl silanol, tributyl silanol and the like. Examples of the organic compound giving the structural unit (1-5) include 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 2-butanol, 2-methyl-2-propanol, methanol and ethanol. Alcohol. According to the above description, a composition containing such a monomer for obtaining a silsesquioxane derivative is also provided.
 縮合工程においては、反応溶媒としてアルコールを用いることができる。アルコールは、一般式R-OHで表される、狭義のアルコールであり、アルコール性水酸基の他には官能基を有さない化合物である。特に限定するものではないが、かかる具体例としては、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、2-ブタノール、2-ペンタノール、3-ペンタノール、2-メチル-2-ブタノール、3-メチル-2-ブタノール、シクロペンタノール、2-ヘキサノール、3-ヘキサノール、2-メチル-2-ペンタノール、3-メチル-2-ペンタノール、2-メチル-3-ペンタノール、3-メチル-3-ペンタノール、2-エチル-2-ブタノール、2,3-ジメチル-2-ブタノール、シクロヘキサノール等が例示できる。これらの中でも、イソプロピルアルコール、2-ブタノール、2-ペンタノール、3-ペンタノール、3-メチル-2-ブタノール、シクロペンタノール、2-ヘキサノール、3-ヘキサノール、3-メチル-2-ペンタノール、シクロヘキサノール等の第2級アルコールが用いられる。縮合工程においては、これらのアルコールを1種又は2種以上組み合わせて用いることができる。より好ましいアルコールは、縮合工程で必要な濃度の水を溶解できる化合物である。このような性質のアルコールは、20℃におけるアルコールの100gあたりの水の溶解度が10g以上の化合物である。 In the condensation step, alcohol can be used as a reaction solvent. The alcohol is an alcohol in a narrow sense represented by the general formula R-OH, and is a compound having no functional group other than the alcoholic hydroxyl group. Although not particularly limited, specific examples thereof include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, 2-butanol, 2-pentanol, 3-pentanol, 2-methyl-2-butanol and 3- Methyl-2-butanol, cyclopentanol, 2-hexanol, 3-hexanol, 2-methyl-2-pentanol, 3-methyl-2-pentanol, 2-methyl-3-pentanol, 3-methyl-3 -Pentanol, 2-ethyl-2-butanol, 2,3-dimethyl-2-butanol, cyclohexanol and the like can be exemplified. Among these, isopropyl alcohol, 2-butanol, 2-pentanol, 3-pentanol, 3-methyl-2-butanol, cyclopentanol, 2-hexanol, 3-hexanol, 3-methyl-2-pentanol, A secondary alcohol such as cyclohexanol is used. In the condensation step, these alcohols can be used alone or in combination of two or more. A more preferable alcohol is a compound capable of dissolving water in a concentration required in the condensation step. An alcohol having such a property is a compound having a water solubility of 10 g or more per 100 g of alcohol at 20 ° C.
 縮合工程で用いるアルコールは、加水分解・重縮合反応の途中における追加投入分も含めて、全ての反応溶媒の合計量に対して0.5質量%以上用いることで、生成するシルセスキオキサン誘導体のゲル化を抑制することができる。好ましい使用量は1質量%以上60質量%以下であり、更に好ましくは3質量%以上40質量%以下である。 The alcohol used in the condensation step is a silsesquioxane derivative produced by using 0.5% by mass or more of the total amount of all reaction solvents, including an additional amount added during the hydrolysis / polycondensation reaction. It is possible to suppress the gelation of. The preferred amount used is 1% by mass or more and 60% by mass or less, and more preferably 3% by mass or more and 40% by mass or less.
 縮合工程で用いる反応溶媒は、アルコールのみであってよいし、さらに、少なくとも1種類の副溶媒との混合溶媒としても良い。副溶媒は、極性溶剤及び非極性溶剤のいずれでもよいし、両者の組み合わせでもよい。極性溶剤として好ましいものは炭素原子数3若しくは7~10の第2級又は第3級アルコール、炭素原子数2~20のジオール等である。尚、副溶媒として第1級アルコールを用いる場合には、その使用量を、反応溶媒全体の5質量%以下にすることが好ましい。好ましい極性溶剤は、工業的に安価に入手できる2-プロパノールであり、2-プロパノールと、本発明に係るアルコールとを併用することにより、本発明に係るアルコールが加水分解工程で必要な濃度の水を溶解できないものである場合でも、極性溶剤と共に必要量の水を溶解でき、本発明の効果を得ることができる。好ましい極性溶剤の量は、本発明に係るアルコールの1質量部に対して20質量部以下であり、より好ましくは1~20質量部、特に好ましくは3~10質量部である。 The reaction solvent used in the condensation step may be alcohol alone, or may be a mixed solvent with at least one auxiliary solvent. The sub-solvent may be either a polar solvent or a non-polar solvent, or a combination of both. Preferred polar solvents are secondary or tertiary alcohols having 3 or 7 to 10 carbon atoms, diols having 2 to 20 carbon atoms, and the like. When a primary alcohol is used as the auxiliary solvent, the amount used is preferably 5% by mass or less of the whole reaction solvent. A preferred polar solvent is 2-propanol which is industrially available at a low cost, and when 2-propanol is used in combination with the alcohol according to the present invention, the alcohol according to the present invention has a concentration of water necessary for the hydrolysis step. Even when it is insoluble, it is possible to dissolve the required amount of water together with the polar solvent, and the effect of the present invention can be obtained. The amount of the polar solvent is preferably 20 parts by mass or less, more preferably 1 to 20 parts by mass, and particularly preferably 3 to 10 parts by mass with respect to 1 part by mass of the alcohol according to the present invention.
 非極性溶剤としては、特に限定するものではないが、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、塩素化炭化水素、アルコール、エーテル、アミド、ケトン、エステル、セロソルブ等が挙げられる。これらの中では、脂肪族炭化水素、脂環式炭化水素及び芳香族炭化水素が好ましい。こうした非極性溶媒としては、特に限定するものではないが、例えば、n-ヘキサン、イソヘキサン、シクロヘキサン、ヘプタン、トルエン、キシレン、塩化メチレン等が、水と共沸するので好ましく、これらの化合物を併用すると、縮合工程後、シルセスキオキサン誘導体を含む反応混合物から、蒸留によって反応溶媒を除く際に、水分及び水に溶解した酸などの重合触媒を効率よく留去することができる。非極性溶剤としては、比較的沸点が高いことから、芳香族炭化水素であるキシレンが特に好ましい。非極性溶剤の使用量は、本発明に係るアルコールの1質量部に対して50質量部以下であり、より好ましくは1~30質量部、特に好ましくは5~20質量部である。 The non-polar solvent is not particularly limited, and examples thereof include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, chlorinated hydrocarbons, alcohols, ethers, amides, ketones, esters and cellosolves. . Of these, aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons are preferable. The non-polar solvent is not particularly limited, but for example, n-hexane, isohexane, cyclohexane, heptane, toluene, xylene, methylene chloride and the like are preferable because they azeotrope with water, and when these compounds are used in combination. After the condensation step, when removing the reaction solvent from the reaction mixture containing the silsesquioxane derivative by distillation, the polymerization catalyst such as water and an acid dissolved in water can be efficiently distilled off. As the non-polar solvent, xylene which is an aromatic hydrocarbon is particularly preferable because it has a relatively high boiling point. The amount of the non-polar solvent used is 50 parts by mass or less, more preferably 1 to 30 parts by mass, and particularly preferably 5 to 20 parts by mass with respect to 1 part by mass of the alcohol according to the present invention.
 縮合工程における加水分解・重縮合反応は、水の存在下に進められる。原料モノマーに含まれる加水分解性基を加水分解させるために用いられる水の量は、加水分解性基に対して好ましくは0.5~5倍モル、より好ましくは1~2倍モルである。また、原料モノマーの加水分解・重縮合反応は、無触媒で行ってもよいし、触媒を使用して行ってもよい。加水分解・重縮合反応における触媒は、酸又はアルカリが用いられる。かかる触媒としては、例えば、硫酸、硝酸、塩酸、リン酸等の無機酸;ギ酸、酢酸、シュウ酸、パラトルエンスルホン酸等の有機酸に例示される酸触媒が好ましく用いられる。酸触媒の使用量は、原料モノマーに含まれるケイ素原子の合計量に対して、0.01~20モル%に相当する量であることが好ましく、0.1~10モル%に相当する量であることがより好ましい。 The hydrolysis / polycondensation reaction in the condensation process proceeds in the presence of water. The amount of water used for hydrolyzing the hydrolyzable group contained in the raw material monomer is preferably 0.5 to 5 times mol, and more preferably 1 to 2 times mol, of the hydrolyzable group. The hydrolysis / polycondensation reaction of the raw material monomers may be carried out without a catalyst or using a catalyst. An acid or an alkali is used as a catalyst in the hydrolysis / polycondensation reaction. As such a catalyst, for example, an acid catalyst exemplified by inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid and phosphoric acid; organic acids such as formic acid, acetic acid, oxalic acid and paratoluenesulfonic acid is preferably used. The amount of the acid catalyst used is preferably 0.01 to 20 mol%, and more preferably 0.1 to 10 mol%, based on the total amount of silicon atoms contained in the raw material monomers. More preferably.
 縮合工程における加水分解・重縮合反応の終了は、既述の各種公報等に記載される方法にて適宜検出することができる。なお、シルセスキオキサン誘導体の製造の縮合工程においては、反応系に助剤を添加することができる。例えば、反応液の泡立ちを抑える消泡剤、反応罐や撹拌軸へのスケール付着を防ぐスケールコントロール剤、重合防止剤、ヒドロシリル化反応抑制剤等が挙げられる。これらの助剤の使用量は、任意であるが、好ましくは反応混合物中のシルセスキオキサン誘導体濃度に対して1~10質量%程度である。 The completion of the hydrolysis / polycondensation reaction in the condensation step can be appropriately detected by the methods described in the various publications mentioned above. In addition, an auxiliary agent can be added to the reaction system in the condensation step in the production of the silsesquioxane derivative. Examples thereof include an antifoaming agent that suppresses foaming of the reaction solution, a scale control agent that prevents scale adhesion to the reaction canister and the stirring shaft, a polymerization inhibitor, a hydrosilylation reaction inhibitor, and the like. The amount of these auxiliaries used is arbitrary, but is preferably about 1 to 10 mass% with respect to the concentration of the silsesquioxane derivative in the reaction mixture.
 シルセスキオキサン誘導体の製造における縮合工程後、縮合工程より得られた反応液に含まれる反応溶媒及び副生物、残留モノマー、水等を留去させる留去工程を備えることにより、生成したシルセスキオキサン誘導体の安定性や使用性を向上させることができる。特に、反応溶媒として水と共沸する溶媒を用い、同時に留去することで、重合触媒として用いた酸や塩基を効率的に除去することができる。なお、留去には、用いた溶媒の沸点等にもよるが、100℃以下の温度で、適宜減圧条件を用いることができる。 After the condensation step in the production of the silsesquioxane derivative, the reaction solution and the by-products contained in the reaction solution obtained by the condensation step, the residual monomer, the distilling step for distilling off water, etc. The stability and usability of the oxane derivative can be improved. In particular, by using a solvent that is azeotropic with water as the reaction solvent and distilling off at the same time, the acid or base used as the polymerization catalyst can be efficiently removed. It should be noted that, although it depends on the boiling point of the solvent used and the like, the pressure may be appropriately reduced at a temperature of 100 ° C. or lower.
(層状化合物)
 本組成物は、層状化合物を含有することができる。層状化合物としては、特に限定するものではなく、公知の層状化合物の1種又は2種以上を用いることができる。層状化合物は、例えば、タルク(層状珪酸マグネシウム塩)などの珪酸塩層状化合物、窒化ホウ素、雲母やスメクタイト等の鉱物等が挙げられる。なかでも、タルクや窒化ホウ素が挙げられる。
(Layered compound)
The composition may contain a layered compound. The layered compound is not particularly limited, and one or more known layered compounds can be used. Examples of the layered compound include silicate layered compounds such as talc (layered magnesium silicate), boron nitride, minerals such as mica and smectite. Among them, talc and boron nitride can be mentioned.
 層状化合物は、一般的に、粉末形態である。その粒子形状は特に限定するものではない。また、その平均粒子径も、特に限定するものではないが、例えば、10μm以下であることが好ましい。10μm以下であると、良好な耐酸化性が得られているからである。より好ましくは5μm以下である。また、より好ましくは、3μm以下であり、さらに好ましくは2.5μm以下である。また、その下限も特に限定するものではないが、例えば0.5μm以上であり、また例えば1.0μm以上である。なお、層状化合物の平均粒子径は、レーザー回折・散乱法によって測定することができる。本明細書において、層状化合物の平均粒子径は、レーザー回折・散乱法に基づく体積基準の粒度分布において、粒径が小さい微粒子側からの累積頻度50体積%に相当する粒径D50をいうものとする。測定にあたり、タルクなどの層状化合物の超音波を用いて分散させた分散液を用いることができる。 Layered compounds are generally in powder form. The particle shape is not particularly limited. The average particle size is also not particularly limited, but is preferably 10 μm or less, for example. This is because when it is 10 μm or less, good oxidation resistance is obtained. More preferably, it is 5 μm or less. Further, it is more preferably 3 μm or less, and further preferably 2.5 μm or less. The lower limit is not particularly limited, but is, for example, 0.5 μm or more, and is 1.0 μm or more. The average particle size of the layered compound can be measured by a laser diffraction / scattering method. In the present specification, the average particle diameter of the layered compound refers to a particle diameter D50 corresponding to a cumulative frequency of 50% by volume from the fine particle side having a small particle diameter in the volume-based particle size distribution based on the laser diffraction / scattering method. To do. In the measurement, a dispersion liquid in which a layered compound such as talc is dispersed using ultrasonic waves can be used.
 本組成物における層状化合物の含有量は、特に限定するものではなく、用いるシルセスキオサン誘導体の酸化が抑制されるような有効量とすることができる。層状化合物は、シルセスキオキサン誘導体と層状化合物との総質量に対して、例えば5質量%以上、また例えば10質量%以上、また例えば15質量%以上、また例えば20質量%以上、また例えば25質量%以上、また例えば30質量%以上などとすることができる。また、同総量に対して、例えば50質量%以下、また例えば45質量%以下、また例えば40質量%以下などとすることができる。また、層状化合物の含有量は、シルセスキオキサン誘導体と層状化合物との総質量に対して、例えば、5質量%以上50質量%以下、また例えば、10質量%以上40質量%以下また例えば、20質量%以上40質量%以下などとすることができる。 The content of the layered compound in the composition is not particularly limited, and may be an effective amount that suppresses the oxidation of the silsesquiosane derivative used. The layered compound is, for example, 5% by mass or more, for example 10% by mass or more, for example 15% by mass or more, and for example 20% by mass or more, and for example 25% with respect to the total mass of the silsesquioxane derivative and the layered compound. The content may be, for example, 30% by mass or more, or 30% by mass or more. Further, it can be, for example, 50% by mass or less, or 45% by mass or less, or 40% by mass or less with respect to the total amount. The content of the layered compound is, for example, 5% by mass or more and 50% by mass or less, or, for example, 10% by mass or more and 40% by mass or less, or the like with respect to the total mass of the silsesquioxane derivative and the layered compound. It can be 20% by mass or more and 40% by mass or less.
(酸素吸蔵材)
 本組成物は、酸素吸蔵材を含むことができる。酸素吸蔵材は、酸素貯蔵能を有する材料である。酸素吸蔵材としては、特に限定するものではなく、公知の酸素吸蔵材を用いることができるが、例えば、アルミナ、チタニア、ジルコニア、セリア、酸化鉄(Fe23)、セリアジルコニア複合酸化物、ある種のペロブスカイト型金属酸化物等が挙げられる。なお、ジルコニア及びセリアジルコニア複合酸化物については、公知の安定化剤により安定化されていてもよい。酸素吸蔵材は、こうした金属酸化物に、他の金属原子がドープされたものであってもよい。酸素吸蔵材としては、例えば、セリア、ジルコニア、セリアジルコニア複合酸化物を好ましく用いることができる。酸素吸蔵材は、こうした公知の酸素吸蔵材を1種又は2種以上を組み合わせて用いることができる。
(Oxygen storage material)
The composition can include an oxygen storage material. The oxygen storage material is a material having an oxygen storage capacity. The oxygen storage material is not particularly limited, and known oxygen storage materials can be used, for example, alumina, titania, zirconia, ceria, iron oxide (Fe 2 O 3 ), ceria-zirconia composite oxide, Examples include certain perovskite type metal oxides. The zirconia and ceria-zirconia composite oxide may be stabilized by a known stabilizer. The oxygen storage material may be such a metal oxide doped with another metal atom. As the oxygen storage material, for example, ceria, zirconia, and ceria-zirconia composite oxide can be preferably used. As the oxygen storage material, such known oxygen storage materials can be used alone or in combination of two or more kinds.
 酸素吸蔵材は、一般的に、粉末形態である。粉末における粒子形状は、特に限定するものではない。また、その平均粒子径も、特に限定するものではないが、例えば、5μm以下であることが好ましい。5μm以下であると、その表面積によって高い酸素吸蔵能が発揮されると考えられる。より好ましくは1μm以下である。また、さらに好ましくは500nm以下であり、より好ましくは100nm以下であり、なお好ましくは50nm以下であり、一層好ましくは30nm以下であり、より一層好ましくは20nm以下である。 Oxygen storage materials are generally in powder form. The particle shape of the powder is not particularly limited. The average particle size is also not particularly limited, but is preferably 5 μm or less, for example. It is considered that when the thickness is 5 μm or less, a high oxygen storage capacity is exhibited due to the surface area. More preferably, it is 1 μm or less. Further, it is more preferably 500 nm or less, more preferably 100 nm or less, still more preferably 50 nm or less, still more preferably 30 nm or less, still more preferably 20 nm or less.
 なお、本明細書において、酸素吸蔵材の平均粒子径は、その平均粒子径が1μm未満の場合には、BET法により比表面積を求めた上で、粒子径を算出されるものである。すなわち、吸着質として窒素(N2)ガスを用いたガス吸着法により測定されたガス吸着量を、BET法(多点法又は1点法)で解析して得られる比表面積(m2/g、S)から、平均粒子径を求めることができる。なお、窒素ガス吸着量の測定にあたっては、真空下300℃で12時間以上脱気した試料に対して、77Kでガス吸着させるものとする。また、その平均粒子径が1μm以上の場合には、層状化合物の平均粒子径に関して説明する、レーザー回折・散乱法により算出されるものである。 In the present specification, the average particle diameter of the oxygen storage material is calculated by determining the specific surface area by the BET method when the average particle diameter is less than 1 μm. That is, the specific surface area (m 2 / g obtained by analyzing the gas adsorption amount measured by the gas adsorption method using nitrogen (N 2 ) gas as an adsorbate by the BET method (multipoint method or one-point method) , S), the average particle diameter can be determined. When measuring the amount of nitrogen gas adsorbed, the sample degassed under vacuum at 300 ° C. for 12 hours or more is gas adsorbed at 77K. Further, when the average particle diameter is 1 μm or more, it is calculated by the laser diffraction / scattering method, which will be described with respect to the average particle diameter of the layered compound.
 本組成物における酸素吸蔵材の含有量は、特に限定するものではなく、用いるシルセスキオキサン誘導体の酸化が抑制されるような有効量とすることができる。酸素吸蔵材は、シルセスキオキサン誘導体と酸素吸蔵材との総質量に対して、例えば0.05質量%以上、また例えば0.1質量%以上、また例えば0.5質量%以上、また例えば1質量%以上、また例えば3質量%以上、また例えば5質量%以上、また例えば10質量%以上、また例えば15質量%以上などとすることができる。また、同総量に対して、例えば25質量%以下、また例えば20質量%以下などとすることができる。また、酸素吸蔵材の含有量は、シルセスキオキサン誘導体と酸素吸蔵材との総質量に対して、例えば、0.05質量%以上50質量%以下、また例えば、0.1質量%以上40質量%以下などとすることができる。 The content of the oxygen storage material in the composition is not particularly limited, and may be an effective amount that suppresses the oxidation of the silsesquioxane derivative used. The oxygen storage material is, for example, 0.05 mass% or more, or for example 0.1 mass% or more, for example 0.5 mass% or more, and for example, for the total mass of the silsesquioxane derivative and the oxygen storage material. It can be 1 mass% or more, for example 3 mass% or more, for example 5 mass% or more, for example 10 mass% or more, for example 15 mass% or more. Further, it can be, for example, 25% by mass or less, or for example, 20% by mass or less with respect to the same total amount. The content of the oxygen storage material is, for example, 0.05% by mass or more and 50% by mass or less, for example, 0.1% by mass or more and 40% by mass based on the total mass of the silsesquioxane derivative and the oxygen storage material. It can be, for example, not more than mass%.
 本組成物は、層状化合物及び酸素吸蔵材のいずれか一方又は双方を含むことができる。双方を含むと、それぞれの固有の効果が作用して、シルセスキオキサン誘導体の酸化を効果的に抑制して優れた耐熱性を得ることができる。両者を含有する場合においても、それぞれ既に説明した含有量の範囲で含まれうる。また、本組成物が、層状化合物と酸素吸蔵材との双方を含むとき、シルセスキオキサン誘導体と層状化合物と酸素吸蔵材との総質量に対して、層状化合物と酸素吸蔵材との総質量は、例えば、10質量%以上80質量%以下であり、また例えば、15質量%以上70質量%以下であり、また例えば、20質量%以上60質量%以下などとすることができる。 The composition may contain one or both of a layered compound and an oxygen storage material. When both are included, the respective unique effects act, and the oxidation of the silsesquioxane derivative is effectively suppressed, and excellent heat resistance can be obtained. Even when both are contained, they may be contained in the respective ranges of the content already described. Further, when the present composition contains both the layered compound and the oxygen storage material, the total mass of the layered compound and the oxygen storage material, relative to the total mass of the silsesquioxane derivative, the layered compound and the oxygen storage material. Can be, for example, 10% by mass or more and 80% by mass or less, or can be, for example, 15% by mass or more and 70% by mass or less, and can be, for example, 20% by mass or more and 60% by mass or less.
(本組成物の態様)
 本組成物は、各種態様を採ることができる。本組成物は、例えば、未硬化の(重合性官能基によって架橋ないし重合されていない)シルセスキオキサン誘導体を含み、成膜又は成形前の組成物(典型的には液状体などの不定形状体である。)でありうる。
(Aspect of the present composition)
The present composition can take various aspects. The composition includes, for example, an uncured (not crosslinked or polymerized by a polymerizable functional group) silsesquioxane derivative, and the composition before film formation or molding (typically an amorphous shape such as a liquid) It can be the body.)
 本組成物は、また例えば、シルセスキオキサン誘導体の硬化物を含んで、被加工体の表面に成膜された膜状又は成形体等の組成物でありうる。 The composition may be, for example, a composition such as a film or a molded product which contains a cured product of a silsesquioxane derivative and is formed into a film on the surface of a workpiece.
(未硬化のシルセスキオキサン誘導体を含有する組成物)
 かかる態様の本組成物は、例えば、重合性官能基などの有機官能基を備えるシルセスキオキサン誘導体と、層状化合物及び/又は酸素吸蔵材と、を含有することができる。さらに、必要に応じて、硬化や重合に必要な開始剤及び/又は重合触媒(硬化剤)を含むことができる。本組成物が未硬化のシルセスキオキサン誘導体とともに層状化合物及び/又は酸素吸蔵材を備えることで、シルセスキオキサン誘導体が熱に曝されるとき、加熱されて硬化されるとき、又は硬化物が熱に曝されるときなどにおいて、シルセスキオキサン誘導体又はその硬化物の耐熱化が図られる。また、他の成分として、溶剤を含むことができる。
(Composition containing uncured silsesquioxane derivative)
The present composition of this aspect can contain, for example, a silsesquioxane derivative having an organic functional group such as a polymerizable functional group, and a layered compound and / or an oxygen storage material. Furthermore, if necessary, an initiator and / or a polymerization catalyst (curing agent) necessary for curing or polymerization can be included. When the composition comprises a layered compound and / or an oxygen storage material together with an uncured silsesquioxane derivative, the silsesquioxane derivative is exposed to heat, cured by heating, or a cured product. When the is exposed to heat, the silsesquioxane derivative or a cured product thereof can be made heat resistant. Moreover, a solvent can be included as another component.
(重合開始剤)

 本組成物は、重合性官能基によってシルセスキオキサン誘導体を重合するための重合開始剤を含むことができる。重合開始剤の種類は、シルセスキオキサン誘導体が備える重合性官能基の種類によって異なるが、光開始剤、熱開始剤、ラジカル重合開始剤などの種々の開始剤や硬化剤を用いることができる。当業者であれば、用いる重合性官能基や本組成物の用途を考慮して適切な重合開始剤や硬化剤の種類や使用量を適宜選択することができる。例えば、ラジカル重合開始剤としては、公知の有機過酸化物、アゾ化合物、等を用いることができる。
(Polymerization initiator)

The composition can include a polymerization initiator for polymerizing the silsesquioxane derivative through the polymerizable functional group. The type of the polymerization initiator varies depending on the type of the polymerizable functional group included in the silsesquioxane derivative, but various initiators and curing agents such as a photoinitiator, a thermal initiator and a radical polymerization initiator can be used. . Those skilled in the art can appropriately select the type and amount of the appropriate polymerization initiator or curing agent in consideration of the polymerizable functional group to be used and the use of the present composition. For example, a known organic peroxide, azo compound, or the like can be used as the radical polymerization initiator.
 有機過酸化物としては、ベンゾイルペルオキシド、ラウロイルペルオキシド、クメンハイドロペルオキシド、パラメンタンハイドロペルオキシド、ジ-t-ブチルペルオキシド等が挙げられる。また、アゾ化合物としては、アゾビスイソブチロニトリル、アゾビスイソバレロニトリル、アゾビスイソカプロニトリル等が挙げられる。 Examples of organic peroxides include benzoyl peroxide, lauroyl peroxide, cumene hydroperoxide, paramenthane hydroperoxide, and di-t-butyl peroxide. Examples of the azo compound include azobisisobutyronitrile, azobisisovaleronitrile, azobisisocapronitrile and the like.
 重合開始剤の含有量は、特に限定するものではないが、組成物全体に対し、好ましくは0.01~5質量%、より好ましくは0.5~3質量%である。 The content of the polymerization initiator is not particularly limited, but is preferably 0.01 to 5% by mass, more preferably 0.5 to 3% by mass based on the entire composition.
(ヒドロシリル化触媒)
 重合性官能基として、ヒドロシリル基水素原子の存在下に不飽和有機基を備える場合、シルセスキオキサン誘導体のヒドロシリル化による硬化(ヒドロシリル化)に用いるヒドロシリル化触媒としては、例えば、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、イリジウム、白金等の第8属から第10属金属の単体、有機金属錯体、金属塩、金属酸化物等が挙げられる。通常、白金系触媒が使用される。白金系触媒としては、cis-PtCl2(PhCN)2、白金カーボン、1,3-ジビニルテトラメチルジシロキサンが配位した白金錯体(Pt(dvs))、白金ビニルメチル環状シロキサン錯体、白金カルボニル・ビニルメチル環状シロキサン錯体、トリス(ジベンジリデンアセトン)二白金、塩化白金酸、ビス(エチレン)テトラクロロ二白金、シクロオクタジエンジクロロ白金、ビス(シクロオクタジエン)白金、ビス(ジメチルフェニルホスフィン)ジクロロ白金、テトラキス(トリフェニルホスフィン)白金等が例示される。これらのうち、特に好ましくは1,3-ジビニルテトラメチルジシロキサンが配位した白金錯体(Pt(dvs))、白金ビニルメチル環状シロキサン錯体、白金カルボニル・ビニルメチル環状シロキサン錯体である。なお、Phはフェニル基を表す。触媒の使用量は、シルセスキオキサン誘導体の量に対して、0.1質量ppm以上1000質量ppm以下であることが好ましく、0.5~100質量ppmであることがより好ましく、1~50質量ppmであることが更に好ましい。
(Hydrosilylation catalyst)
When an unsaturated organic group is provided in the presence of a hydrogen atom of a hydrosilyl group as the polymerizable functional group, the hydrosilylation catalyst used for curing the silsesquioxane derivative by hydrosilylation (hydrosilylation) includes, for example, cobalt, nickel, Examples include ruthenium, rhodium, palladium, iridium, platinum, and other Group 8 to Group 10 metal simple substances, organic metal complexes, metal salts, metal oxides, and the like. Usually platinum-based catalysts are used. Platinum-based catalysts include cis-PtCl 2 (PhCN) 2 , platinum carbon, a platinum complex (Pt (dvs)) coordinated with 1,3-divinyltetramethyldisiloxane, a platinum vinylmethyl cyclic siloxane complex, platinum carbonyl. Vinylmethyl cyclic siloxane complex, tris (dibenzylideneacetone) diplatinum, chloroplatinic acid, bis (ethylene) tetrachlorodiplatinum, cyclooctadienedichloroplatinum, bis (cyclooctadiene) platinum, bis (dimethylphenylphosphine) dichloroplatinum And tetrakis (triphenylphosphine) platinum. Of these, particularly preferred are platinum complexes (Pt (dvs)) coordinated with 1,3-divinyltetramethyldisiloxane, platinum vinylmethyl cyclic siloxane complexes, and platinum carbonyl-vinylmethyl cyclic siloxane complexes. In addition, Ph represents a phenyl group. The amount of the catalyst used is preferably 0.1 mass ppm or more and 1000 mass ppm or less, more preferably 0.5 to 100 mass ppm, and more preferably 1 to 50 mass% with respect to the amount of the silsesquioxane derivative. More preferably, it is ppm by mass.
 本組成物がヒドロシリル化反応用の触媒を含有する場合、構成単位(1-5)中の残存アルコキシ基又は水酸基の脱水重縮合よりも、ヒドロシリル化反応が優先する場合があり、ヒドロシリル化構造部分を有しつつ、上記アルコキシ基又は水酸基をさらなる架橋反応可能に備える場合がある。 When the composition contains a catalyst for the hydrosilylation reaction, the hydrosilylation reaction may take precedence over the dehydration polycondensation of the residual alkoxy group or hydroxyl group in the structural unit (1-5). In some cases, the above-mentioned alkoxy group or hydroxyl group is provided so as to allow further crosslinking reaction.
 本組成物がヒドロシリル化触媒を含有する場合、シルセスキオキサン誘導体のゲル化抑制および保存安定性向上のため、ヒドロシリル化反応抑制剤が添加されてもよい。ヒドロシリル化反応抑制剤の例としては、メチルビニルシクロテトラシロキサン、アセチレンアルコール類、シロキサン変性アセチレンアルコール類、ハイドロパーオキサイド、窒素原子、イオウ原子またはリン原子を含有するヒドロシリル化反応抑制剤などが挙げられる。 When this composition contains a hydrosilylation catalyst, a hydrosilylation reaction inhibitor may be added in order to suppress gelation of the silsesquioxane derivative and improve storage stability. Examples of hydrosilylation reaction inhibitors include methylvinylcyclotetrasiloxane, acetylene alcohols, siloxane-modified acetylene alcohols, hydroperoxides, hydrosilylation reaction inhibitors containing nitrogen atoms, sulfur atoms or phosphorus atoms. .
 本組成物は、成膜に供するための組成物であってもヒドロシリル化触媒を実質的に含有しないものであってもよい。後述するように、シルセスキオキサン誘導体は、ヒドロシリル化触媒の不存在下でも加熱処理によりヒドロシリル化反応を促進して硬化させることができる。本組成物において、ヒドロシリル化触媒を実質的に含有しないとは、意図的にヒドロシリル化触媒を添加しない場合のほか、シルセスキオキサン誘導体の量に対して、ヒドロシリル化触媒の含有量が、例えば、0.1質量ppm未満、また例えば、0.05質量ppm以下である。 The composition may be a composition for film formation or may be substantially free of a hydrosilylation catalyst. As described later, the silsesquioxane derivative can be cured by promoting the hydrosilylation reaction by heat treatment even in the absence of a hydrosilylation catalyst. In the present composition, substantially containing no hydrosilylation catalyst means not only the case where the hydrosilylation catalyst is not intentionally added, but the content of the hydrosilylation catalyst relative to the amount of the silsesquioxane derivative is, for example, , Less than 0.1 mass ppm, and for example, 0.05 mass ppm or less.
(溶剤)
 シルセスキオキサン誘導体は、そのまま用いることもできるが、必要に応じて溶剤で希釈して成膜のために供することもできる。溶剤は、シルセスキオキサン誘導体を溶解する溶剤が好ましく、その例としては、芳香族系炭化水素溶剤、塩素化炭化水素溶剤、アルコール溶剤、エーテル溶剤、アミド溶剤、ケトン溶剤、エステル溶剤、セロソルブ溶剤、脂肪族系炭化水素溶剤等の各種有機溶剤を挙げることができる。なお、Ptなどのヒドロシリル化触媒存在下では、Si-H基の分解を避けるため、アルコール以外の溶剤が好ましい。
(solvent)
The silsesquioxane derivative may be used as it is, or may be diluted with a solvent as necessary and used for film formation. The solvent is preferably a solvent that dissolves the silsesquioxane derivative, and examples thereof include aromatic hydrocarbon solvents, chlorinated hydrocarbon solvents, alcohol solvents, ether solvents, amide solvents, ketone solvents, ester solvents, cellosolve solvents. , Various organic solvents such as aliphatic hydrocarbon solvents. In the presence of a hydrosilylation catalyst such as Pt, a solvent other than alcohol is preferable in order to avoid decomposition of the Si-H group.
(その他の成分)
 本組成物は、硬化に供されるにあたり、さらに各種添加剤が添加されてもよい。添加剤としては、例えば、テトラアルコキシシラン、トリアルコキシシラン類(トリアルコキシシラン、トリアルコキシビニルシランなど)などの反応性希釈剤や、シルセスキオキサン誘導体が備える重合性官能基と同種又は類似の重合性官能基を備えるモノマーやオリゴマーなどが挙げられる。これら添加剤は、得られるシルセスキオキサン誘導体の硬化物が耐熱性を損なわない範囲で使用される。
(Other ingredients)
Various additives may be further added to the composition before it is subjected to curing. Examples of the additive include a reactive diluent such as tetraalkoxysilane and trialkoxysilanes (trialkoxysilane, trialkoxyvinylsilane, etc.), and a polymerization functional group that is the same as or similar to the polymerizable functional group of the silsesquioxane derivative. Examples thereof include monomers and oligomers having a functional group. These additives are used within a range in which the obtained cured product of the silsesquioxane derivative does not impair the heat resistance.
 本組成物を任意の形状を有する被加工体の表面に供給して硬化させることにより成膜して、耐熱性に優れる膜を形成することができる。例えば、本組成物を、被加工部位の表面に供給し、その後、この組成物を硬化させることができる。 It is possible to form a film having excellent heat resistance by supplying the composition to the surface of a workpiece having an arbitrary shape and curing the composition to form a film. For example, the composition can be applied to the surface of the site to be processed and then the composition cured.
 本組成物の被加工体表面への供給は、特に限定するものではないが、例えば、スプレーコート法、キャスト法、スピンコート法、バーコート法等の通常の塗工方法を用いることができる。 The supply of the composition to the surface of the object to be processed is not particularly limited, but for example, a usual coating method such as a spray coating method, a casting method, a spin coating method, a bar coating method can be used.
(シルセスキオキサン誘導体の硬化物を含有する組成物)
 本組成物は、重合性官能基を備えるシルセスキオキサン誘導体が重合性官能基によって重合し硬化された硬化物を含有する、組成物とすることもできる。かかる組成物も、層状化合物及び/又は酸素吸蔵材と、を含有することができる。本組成物は、例えば、こうした官能基を備えるシルセスキオキサン誘導体を、層状化合物及び/又は酸素吸蔵材の存在下で加熱等により重合させて得られる組成物である。
(Composition containing cured product of silsesquioxane derivative)
The composition can also be a composition containing a cured product obtained by polymerizing and curing a silsesquioxane derivative having a polymerizable functional group with the polymerizable functional group. Such a composition can also contain a layered compound and / or an oxygen storage material. The present composition is, for example, a composition obtained by polymerizing a silsesquioxane derivative having such a functional group by heating or the like in the presence of a layered compound and / or an oxygen storage material.
 シルセスキオキサン誘導体の硬化物としては、シルセスキオキサン誘導体において未反応のアルコキシ基、すなわち、構成単位(1-5)におけるR4のアルコキシ基や水酸基を脱水・重縮合によりシロキサン結合を十分に形成させてより架橋を促進することで硬化(かかる残存アルコキシ基等の重縮合による硬化を一次硬化ともいう。)させた硬化物が挙げられる。かかる硬化物(以下、一次硬化物ともいう。)は、組成式(1)で表されるシルセスキオキサン誘導体に包含されうる。 As a cured product of a silsesquioxane derivative, an unreacted alkoxy group in the silsesquioxane derivative, that is, an alkoxy group or a hydroxyl group of R 4 in the structural unit (1-5) is dehydrated and polycondensed to sufficiently form a siloxane bond. Examples of the cured product include a cured product (which is also referred to as primary curing, which is cured by polycondensation of such residual alkoxy groups) by being further formed to promote crosslinking. Such a cured product (hereinafter, also referred to as a primary cured product) can be included in the silsesquioxane derivative represented by the composition formula (1).
 シルセスキオキサン誘導体の他の硬化物は、構成単位(1-2)~(1-4)に備える重合性官能基による反応で架橋を促進することで硬化(かかる硬化を二次硬化ともいう。)させた硬化物が挙げられる。かかる硬化物(以下、二次硬化物ともいう。)は、シルセスキオキサン誘導体におけるこれらの構成単位における重合性官能基の少なくとも一部が当該官能基が本来的に有する重合性に基づいて重合した構造部分を有するシルセスキオキサン誘導体の誘導体を含むことができる。 The other cured product of the silsesquioxane derivative is cured by accelerating the cross-linking by the reaction of the polymerizable functional groups included in the structural units (1-2) to (1-4) (this curing is also referred to as secondary curing). .) The cured product. Such a cured product (hereinafter, also referred to as a secondary cured product) is obtained by polymerizing at least a part of the polymerizable functional groups in these constituent units in the silsesquioxane derivative based on the inherent polymerizability of the functional group. A derivative of the silsesquioxane derivative having the above-mentioned structural portion can be included.
 シルセスキオキサン誘導体の他の硬化物は、構成単位(1-2)~(1-4)に備える水素原子と不飽和有機基との間でのヒドロシリル化反応を生じさせてより架橋を促進することで硬化(かかる硬化を二次硬化ともいう。)させた硬化物が挙げられる。かかる硬化物(以下、二次硬化物ともいう。)は、シルセスキオキサン誘導体におけるこれらの構成単位におけるヒドロシリル化反応する官能基(ヒドロシリル基及び不飽和有機基)の少なくとも一部がヒドロシリル化反応して形成された不飽和有機基に由来する炭素-炭素結合(一重結合又は二重結合)を含む構造部分(-Si-C-C-Rm-Si-、-Si-C=C-Rm-Si-)(本明細書において、ヒドロシリル化構造部分ともいう。Rは、例えば、炭素原子数1~8の有機基であり、mは0又は1の整数である。)を有するシルセスキオキサン誘導体の誘導体を含むことができる。 The other cured product of the silsesquioxane derivative causes a hydrosilylation reaction between a hydrogen atom and an unsaturated organic group included in the structural units (1-2) to (1-4) to further promote crosslinking. A cured product that has been cured (the curing is also referred to as secondary curing) by doing so is given. Such a cured product (hereinafter, also referred to as a secondary cured product) has a functional group (hydrosilyl group and unsaturated organic group) which undergoes a hydrosilylation reaction in these constituent units in the silsesquioxane derivative, at least a part of which is hydrosilylated. Structural portion containing a carbon-carbon bond (single bond or double bond) derived from an unsaturated organic group formed by (-Si-C-C-Rm-Si-, -Si-C = C-Rm- Si-) (also referred to herein as a hydrosilylation structure moiety. R is, for example, an organic group having 1 to 8 carbon atoms, and m is an integer of 0 or 1). Derivatives of derivatives can be included.
 本組成物が成膜された態様を採る場合、本組成物は、概して、シルセスキオキサン誘導体の二次硬化物である。重合性官能基による重合部分のほかヒドロシリル化構造部分が、実用的な膜強度や膜性能に貢献することができる。 When the composition is formed into a film, the composition is generally a secondary cured product of a silsesquioxane derivative. In addition to the polymerized portion by the polymerizable functional group, the hydrosilylated structure portion can contribute to practical membrane strength and membrane performance.
 シルセスキオキサン誘導体の一次硬化は二次硬化を伴うことがあり、また、二次硬化は一次硬化を伴うことがあるが、二次硬化は、多くの場合、一次硬化を伴う。したがって、シルセスキオキサン誘導体の硬化物は、概して、二次硬化物であり、多くの場合一次硬化を伴うことになる。典型的な硬化物は、二次硬化による架橋構造の有無によって特徴付けられる。硬化物は、例えば、H NMR、29Si NMRを用いた、Q単位、T単位、D単位及びM単位、アルコキシ基などの構成単位や構造の規則性(不規則性)による検出、及びIRスペクトルによる特性基の検出により、その組成や構造を特定することができる。 The primary cure of the silsesquioxane derivative can be accompanied by a secondary cure, and the secondary cure can be accompanied by a primary cure, but the secondary cure is often accompanied by a primary cure. Therefore, the cured product of the silsesquioxane derivative is generally a secondary cured product, and is often accompanied by a primary cure. A typical cured product is characterized by the presence or absence of a crosslinked structure due to secondary curing. The cured product can be detected by, for example, 1 H NMR or 29 Si NMR, which is based on Q units, T units, D units and M units, structural units such as alkoxy groups, or regularity (irregularity) of the structure, and IR. The composition or structure can be specified by detecting the characteristic group by the spectrum.
 本組成物は、シルセスキオキサン誘導体又はその硬化物のみを含むものであるほか、必要に応じて、他の成分を含むことができる。 The composition contains only the silsesquioxane derivative or a cured product thereof, and may contain other components as necessary.
(酸化抑制方法及び耐熱化方法)
 本明細書に開示されるシルセスキオキサン誘導体又はその硬化物の酸化抑制方法は、層状化合物及び/又は酸素吸蔵材とともにシルセスキオキサン誘導体を又はその硬化物を加熱する工程、を備えることができる。酸化抑制方法は、同時に、シルセスキオキサン誘導体又はその硬化物の耐熱化方法でもある。上記した本組成物の種々の態様で、シルセスキオキサン誘導体硬化物を製造する工程及び硬化物を加熱する工程においては、層状化合物及び/又は酸素吸蔵材によるシルセスキオキサン誘導体又はその硬化物の酸化が抑制される。したがって、かかる工程を備えることにより、シルセスキオキサン誘導体又はその硬化物の酸化が抑制され、耐熱化が図られる。
(Oxidation suppression method and heat resistance method)
The method for inhibiting oxidation of a silsesquioxane derivative or a cured product thereof disclosed in the present specification comprises a step of heating the silsesquioxane derivative or a cured product thereof together with the layered compound and / or the oxygen storage material. it can. At the same time, the method for suppressing oxidation is also a method for improving the heat resistance of the silsesquioxane derivative or a cured product thereof. In the various aspects of the present composition described above, in the step of producing a silsesquioxane derivative cured product and the step of heating the cured product, the silsesquioxane derivative or the cured product thereof with a layered compound and / or an oxygen storage material is used. Oxidation is suppressed. Therefore, by including such a step, oxidation of the silsesquioxane derivative or a cured product thereof is suppressed and heat resistance is improved.
 以上のことから、本明細書によれば、層状化合物及び/又は酸素吸蔵材を有効成分とする、シルセスキオキサン誘導体又はその硬化物の酸化抑制剤又は耐熱性向上剤が提供される。 From the above, according to the present specification, there is provided an oxidation inhibitor or heat resistance improver of a silsesquioxane derivative or a cured product thereof, which comprises a layered compound and / or an oxygen storage material as an active ingredient.
 以下、本発明を実施例により具体的に説明する。但し、本発明は、この実施例に何ら限定されるものではない。さらに、得られたシルセスキオキサン誘導体の粘度を、E型粘度計を用いて25℃で測定した。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to this embodiment. Furthermore, the viscosity of the obtained silsesquioxane derivative was measured at 25 ° C. using an E-type viscometer.
 また、以下の説明において、部、%は、いずれも、質量部及び質量%を表すものとする。 Also, in the following description, both parts and% represent parts by mass and% by mass.
(シルセスキオキサン誘導体含有組成物及びその硬化物の作製)
 T単位にメタクリロイル基を有するシルセスキオキサン誘導体(東亞合成株式会社製、MAC-SQ TM-100、粘度4000mPa・s)70部と、タルク(日本タルク、SG95、D50=2.5μm)30部と、熱ラジカル開始剤(日本油脂、バーチブルE、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート)0.7部とを、バイアルに量り取り、自転公転ミキサーを用いて、1800rpmで1分間混合し、試験例1の組成物を得た。
(Preparation of silsesquioxane derivative-containing composition and cured product thereof)
70 parts of a silsesquioxane derivative having a methacryloyl group in the T unit (manufactured by Toagosei Co., Ltd., MAC-SQ TM-100, viscosity 4000 mPa · s) and 30 parts of talc (Nippon Talc, SG95, D50 = 2.5 μm) And 0.7 part of a thermal radical initiator (NOF, Virtuable E, t-butylperoxy-2-ethylhexyl monocarbonate) were weighed into a vial and mixed for 1 minute at 1800 rpm using a rotation revolution mixer. A composition of Test Example 1 was obtained.
 試験例1の組成物を、サンドブラストしたアルミ板に塗布して、同様に、サンドブラストしたアルミ板に貼り合わせして、120℃で1時間加熱(ヤマト科学株式会社製、DK63)後、さらに150℃で1時間加熱して、熱硬化させることで試験例1の試験片を得た。 The composition of Test Example 1 was applied to a sandblasted aluminum plate, and likewise adhered to the sandblasted aluminum plate and heated at 120 ° C. for 1 hour (Yamato Scientific Co., Ltd., DK63), and then at 150 ° C. The test piece of Test Example 1 was obtained by heating for 1 hour and thermosetting.
 試験片を、350℃空気中で1時間、24時間及び、350℃窒素雰囲気で24時間保持して、温度処理前及び室温まで冷却後試験片につき引張せん断強度を測定した。 The test piece was held in 350 ° C. air for 1 hour, 24 hours, and 350 ° C. nitrogen atmosphere for 24 hours, and the tensile shear strength of the test piece was measured before temperature treatment and after cooling to room temperature.
 試験片の引張せん断強度の測定は、東洋精機株式会社製のStrograph20-Cを用いて行った。また、試験片につき、200℃加熱中での引張せん断の測定も行った。引張速度は、いずれも10ミリ/分とした。結果を表1に示す。 The tensile shear strength of the test piece was measured using Strograph 20-C manufactured by Toyo Seiki Co., Ltd. The tensile shear of the test piece was also measured while heating at 200 ° C. The pulling speed was 10 mm / min in all cases. The results are shown in Table 1.
 なお、対照として、シルセスキオキサン誘導体のみを用いて試験例1と同様に組成物を調製し試験片を調製して比較例Aの試験片とした。また、ビスフェノールA型エポキシ樹脂:タルク(75部:25部)を含む組成物を調製し、この組成物を用いて120℃1時間後150℃1時間で硬化させて比較例Bの試験片を得た。これらの比較例1、2の試験片についても、同様の温度処理を施し、処理前後の試験片につき引張せん断強度を測定した。結果を合わせて表1に示す。 As a control, a composition was prepared in the same manner as in Test Example 1 using only the silsesquioxane derivative, and a test piece was prepared as a test piece of Comparative Example A. Further, a composition containing a bisphenol A type epoxy resin: talc (75 parts: 25 parts) was prepared, and the test piece of Comparative Example B was prepared by curing the composition at 120 ° C. for 1 hour and then at 150 ° C. for 1 hour. Obtained. The test pieces of Comparative Examples 1 and 2 were also subjected to the same temperature treatment, and the tensile shear strength of the test pieces before and after the treatment was measured. The results are shown together in Table 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1に示すように、タルクを含有したシルセスキオキサン誘導体で調製した試験片(試験例1)は、空気中350℃において1時間から数時間内の加熱にかかわらず、試験片における引張せん断強度の低下、すなわち、接着強度の低下が優れて抑制されていた。これに対して、タルクが添加されないシルセスキオキサン誘導体(比較例A)及びエポキシ樹脂とタルクの混合組成物(比較例B)で調製した試験片は、著しい引張せん断強度の低下を呈した。 As shown in Table 1, the test piece prepared from the silsesquioxane derivative containing talc (Test Example 1) was subjected to tensile shear in the test piece regardless of heating in air at 350 ° C. for 1 hour to several hours. The decrease in strength, that is, the decrease in adhesive strength was excellently suppressed. On the other hand, the test piece prepared with the silsesquioxane derivative to which talc was not added (Comparative Example A) and the mixed composition of the epoxy resin and talc (Comparative Example B) exhibited a significant decrease in tensile shear strength.
(シルセスキオキサン誘導体含有組成物の熱的挙動)
(シルセスキオキサン誘導体(液状、未硬化の硬化性組成物)組成物の調製)
 実施例1で用いたのと同一のシルセスキオキサン誘導体(MAC-SQ TM-100)70部とタルク(日本タルク、D50=1μm、2.5μm及び5μmの3種類)30部とを混合した3種の硬化性組成物(液状)を調製した。
(Thermal Behavior of Composition Containing Silsesquioxane Derivative)
(Preparation of silsesquioxane derivative (liquid, uncured curable composition) composition)
70 parts of the same silsesquioxane derivative (MAC-SQ TM-100) used in Example 1 and 30 parts of talc (Nippon Talc, D50 = 1 μm, 2.5 μm and 5 μm) were mixed. Three curable compositions (liquid) were prepared.
(シルセスキオキサン誘導体(硬化物)組成物の調製)
 シルセスキオキサン誘導体(MAC-SQTM-100)70部とタルク(SG25、日本タルク、D50=2.5μm)30部と、熱ラジカル開始剤(日本油脂、バーチブルE)0.7部とを、実施例1と同様に操作して熱硬化性組成物Aを調製し、サンドブラストしたアルミ板に塗布して、120℃で1時間加熱(ヤマト科学株式会社製、DK63)後、さらに150℃で1時間加熱して、熱硬化させて硬化物Aを得た。
(Preparation of silsesquioxane derivative (cured product) composition)
70 parts of a silsesquioxane derivative (MAC-SQTM-100), 30 parts of talc (SG25, Nippon Talc, D50 = 2.5 μm), and 0.7 parts of a thermal radical initiator (NOF, Virtuable E), A thermosetting composition A was prepared in the same manner as in Example 1, applied to a sandblasted aluminum plate, heated at 120 ° C. for 1 hour (DK63, manufactured by Yamato Scientific Co., Ltd.), and further heated at 150 ° C. for 1 hour. It was heated for a period of time and thermally cured to obtain a cured product A.
 また、同一のシシルセスキオキサン誘導体、タルク(SG95)及びセリアジルコニア複合酸化物(平均粒子径5~10nm)を、それぞれ、質量比で7:3:1で混合するとともに、熱ラジカル開始剤(日本油脂、バーチブルE)0.7部とを混合し、実施例1と同様に操作して熱硬化性組成物Bを調製し、熱硬化性組成物Bと同様にして、熱硬化させて硬化物Bを得た。 In addition, the same cisylsesquioxane derivative, talc (SG95) and ceria-zirconia composite oxide (average particle size 5 to 10 nm) were mixed in a mass ratio of 7: 3: 1, and a thermal radical initiator ( 0.7 parts of Japanese fats and oils and Virtuable E) are mixed, and a thermosetting composition B is prepared by operating in the same manner as in Example 1. The thermosetting composition B is heat-cured and cured in the same manner as the thermosetting composition B. Item B was obtained.
 さらに、同一のシルセスキオキサン誘導体と、ラジカル開始剤(日本油脂、バーチブルE)0.7部とを、実施例1と同様に操作して対照の熱硬化性組成物を調製し、サンドブラストしたアルミ板に塗布して、120℃で1時間加熱(ヤマト科学株式会社製、DK63)後、さらに150℃で1時間加熱して、熱硬化させて対照硬化物を得た。 Further, the same silsesquioxane derivative and 0.7 part of a radical initiator (Nippon Oil and Fats, Virtuable E) were operated in the same manner as in Example 1 to prepare a thermosetting composition as a control, and sandblasted. It was applied to an aluminum plate, heated at 120 ° C. for 1 hour (DK63, manufactured by Yamato Scientific Co., Ltd.), further heated at 150 ° C. for 1 hour, and thermally cured to obtain a control cured product.
(熱挙動の評価)
 3種の液状組成物MAC-SQ TM-100のみ及びの熱挙動をTGAで評価した。結果を図1に組成物を調製し、これらの組成物について熱挙動をTGAで評価した。また、さらに、ビスフェノールA方エポキシ樹脂の硬化物についても合わせて熱挙動を評価した。結果を図1に示す。尚、図1には、各種組成物の質量変化(%)の実測値の他、タルクを含有しないシルセスキオキサン誘導体の質量減少に 0.7を乗ずることで実効的なシルセスキオキサン誘導体の重量変化率を前記組成物と揃えた質量変化も併せて記載した。
(Evaluation of thermal behavior)
The thermal behavior of the three liquid compositions MAC-SQ TM-100 alone and was evaluated by TGA. The results were prepared into compositions shown in FIG. 1, and the thermal behavior of these compositions was evaluated by TGA. Furthermore, the thermal behavior of the cured product of the bisphenol A type epoxy resin was also evaluated. The results are shown in Fig. 1. In addition, in FIG. 1, in addition to the measured values of the mass change (%) of various compositions, an effective silsesquioxane derivative was obtained by multiplying the mass reduction of the silsesquioxane derivative containing no talc by 0.7. The change in weight was also shown together with the change in weight when the composition was the same as the composition.
 硬化物A、B及び対照硬化物の熱挙動をTGAで評価した。結果を図2に示す。図2(a)には、0℃~1000℃までの重量変化率を示し、同(b)には、300℃~600℃の温度範囲を拡大して重量変化率を示す。 The thermal behavior of the cured products A and B and the control cured product were evaluated by TGA. The results are shown in Figure 2. FIG. 2 (a) shows the rate of weight change from 0 ° C. to 1000 ° C., and FIG. 2 (b) shows the rate of weight change by expanding the temperature range from 300 ° C. to 600 ° C.
 図1に示すように、タルクの添加によって、シルセスキオキサン誘導体含有組成物(液状、未硬化の硬化性組成物)の酸化を示す重量減少開始温度が高温側にシフトし、重合減少温度がビスフェノールA型エポキシ樹脂よりも20℃以上高温側にシフトしたことがわかった。また、タルクの平均粒子径が1~5μmで重量減少温度の高温側シフトが生じた。なお、これら組成物につき、窒素中でもTGAを実施したところ、タルクの有無で差が出なかった。 As shown in FIG. 1, the addition of talc shifts the weight reduction start temperature indicating oxidation of the silsesquioxane derivative-containing composition (liquid or uncured curable composition) to a high temperature side, and the polymerization reduction temperature It was found that the temperature was shifted to a temperature higher than the bisphenol A type epoxy resin by 20 ° C or more. Further, when the average particle diameter of talc was 1 to 5 μm, the weight reduction temperature was shifted to the high temperature side. When these compositions were subjected to TGA in nitrogen, no difference was observed with or without talc.
 また、図2に示すように、シルセスキオキサン誘導体硬化物についても、酸化を示す重合減少開始温度が高温側にシフトしたことがわかった。 Also, as shown in FIG. 2, it was found that the polymerization reduction start temperature indicating oxidation of the cured product of the silsesquioxane derivative was shifted to the high temperature side.
 以上のことから、タルクなどの層状化合物及び/又は酸素吸蔵材による耐熱性の向上は、シルセスキオキサン誘導体(未硬化)及びその硬化物の酸化の抑制が原因であることがわかった。また、タルクに加えて、セリアジルコニア複合酸化物などの酸素吸蔵材の添加により一層酸化が抑制されることがわかった。 From the above, it was found that the improvement of heat resistance by the layered compound such as talc and / or the oxygen storage material is due to the suppression of the oxidation of the silsesquioxane derivative (uncured) and its cured product. It was also found that the addition of an oxygen storage material such as ceria-zirconia composite oxide in addition to talc further suppressed the oxidation.
(シルセスキオキサン誘導体と層状化合物及び/又は酸素吸蔵材との硬化物の試験例1~17)
 実施例1と同様にして試験例1の組成物及び試験片を調製した。また、以下の表に示す成分を各部を用いた以外は、実施例1の試験例1に対するのと同様の操作を行って、試験例1~17の組成物を調製し、各試験片を調製した。
(Test Examples 1 to 17 of cured product of silsesquioxane derivative and layered compound and / or oxygen storage material)
The composition and test piece of Test Example 1 were prepared in the same manner as in Example 1. Further, the same operations as in Test Example 1 of Example 1 were carried out except that the respective components shown in the following table were used to prepare the compositions of Test Examples 1 to 17 to prepare each test piece. did.
(シルセスキオキサン誘導体のみ又はシルセスキオキサン誘導体と他の成分との硬化物の比較例1~3)
 実施例1と同様にして比較例1の組成物を調製し、試験片を調製したほか、以下に示す表の成分を用いた以外は、実施例1の試験例1に対するのと同様の操作を行って、比較例2及び3の組成物及び試験片を調製した。
(Comparative Examples 1 to 3 of cured product of silsesquioxane derivative alone or silsesquioxane derivative and other components)
A composition of Comparative Example 1 was prepared in the same manner as in Example 1 to prepare test pieces, and the same operation as in Test Example 1 of Example 1 was carried out except that the components shown in the table below were used. The composition and test pieces of Comparative Examples 2 and 3 were prepared.
(エポキシ樹脂硬化物の比較例4~5)
実施例1の比較例2に対するのと同様の操作を行って、比較例4及び5の組成物及び試験片を調製した。
(Comparative Examples 4 to 5 of cured epoxy resin)
The same operations as in Comparative Example 2 of Example 1 were carried out to prepare the compositions and test pieces of Comparative Examples 4 and 5.
 これらの試験片の一部につき、350℃で1時間で加熱した。また、一部の試験片につき、200℃で95時間、430時間、1000時間、加熱した。いずれも、実施例1と同様にヤマト科学株式会社製のDK63を用いて加熱した。加えて、一部の試験片については、250℃で95時間、430時間、1000時間、加熱した。 -A portion of these test pieces was heated at 350 ° C for 1 hour. Moreover, some test pieces were heated at 200 ° C. for 95 hours, 430 hours, and 1000 hours. Both were heated using DK63 manufactured by Yamato Scientific Co., Ltd. as in Example 1. In addition, some test pieces were heated at 250 ° C. for 95 hours, 430 hours, and 1000 hours.
 温度処理前後の試験片について、実施例1に準じて引張せん断強度試験を行った。また、一部の試験片について、200℃加熱中での引張せん断試験をも行った。結果を表2に示す。 A tensile shear strength test was performed on the test pieces before and after the temperature treatment in accordance with Example 1. A tensile shear test was also performed on some test pieces while heating at 200 ° C. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 なお、表中の表記について以下に説明する。
MAC-SQ TM-100:メタクリロイル基含有ラジカル硬化型シルセスキオキサン誘導体(東亞合成株式会社製) 
AC-SQ TA-100:アクリロイル基含有ラジカル硬化型シルセスキオキサン誘導体(東亞合成株式会社製)
エポキシ樹脂:ビスフェノールA型エポキシ樹脂
タルクSG95:タルク(層状珪酸マグネシウム塩化合物)、D50=2.5μm(日本タルク株式会社製)
タルクSG2000:タルク(層状珪酸マグネシウム塩化合物)、D50=1μm(日本タルク株式会社製)
タルクP-3:タルク(層状珪酸マグネシウム塩化合物)、D50=5μm(日本タルク株式会社製)
六方晶系窒化ホウ素: hBN(Wako hBN)、平均粒子径2~3μm(和光純薬工業株式会社製)
セリアジルコニア複合酸化物:CeO2/ZrO2、平均粒子径5~10nm
セリア1:CeO2、平均粒子径5~10nm
セリア2:CeO2、平均粒子径5.5μm
ジルコニア:ZrO2、平均粒子径10~15nm
酸化第二鉄:Fe23、平均粒子径50nm以下
パーブチルE:t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(日本油脂株式会社製)
The notations in the table will be described below.
MAC-SQ TM-100: Methacryloyl group-containing radical-curable silsesquioxane derivative (manufactured by Toagosei Co., Ltd.)
AC-SQ TA-100: Acryloyl group-containing radical-curable silsesquioxane derivative (manufactured by Toagosei Co., Ltd.)
Epoxy resin: Bisphenol A type epoxy resin talc SG95: talc (layered magnesium silicate compound), D50 = 2.5 μm (manufactured by Nippon Talc Co., Ltd.)
Talc SG2000: Talc (layered magnesium silicate compound), D50 = 1 μm (manufactured by Nippon Talc Co., Ltd.)
Talc P-3: Talc (layered magnesium silicate compound), D50 = 5 μm (manufactured by Nippon Talc Co., Ltd.)
Hexagonal boron nitride: hBN (Wako hBN), average particle diameter 2 to 3 μm (manufactured by Wako Pure Chemical Industries, Ltd.)
Ceria-zirconia composite oxide: CeO 2 / ZrO 2 , average particle size 5 to 10 nm
Ceria 1: CeO 2 , average particle size 5 to 10 nm
Ceria 2: CeO 2 , average particle size 5.5 μm
Zirconia: ZrO 2 , average particle size 10 to 15 nm
Ferric oxide: Fe 2 O 3 , average particle size 50 nm or less Perbutyl E: t-butyl peroxy-2-ethylhexyl monocarbonate (manufactured by NOF Corporation)
 なお、タルクのD50は、タルクを超音波を用いて分散させた分散液を用いて、SALD200(島津製作所製)を用いて行った。など市販のレーザー回折・散乱法に基づく粒度分布測定装置を用いることができる。また、六方晶系窒化ホウ素の平均粒子径も、レーザー回折・散乱法によって得られた粒度分布に基づいて測定したD50とした。 The D50 of talc was carried out using SALD200 (manufactured by Shimadzu Corporation) using a dispersion liquid in which talc was dispersed using ultrasonic waves. A commercially available particle size distribution measuring device based on a laser diffraction / scattering method can be used. The average particle size of the hexagonal boron nitride was also set to D50, which was measured based on the particle size distribution obtained by the laser diffraction / scattering method.
 セリアジルコニア複合酸化物、セリア1、ジルコニア及び酸化第二鉄の平均粒子径は、吸着質として窒素(N2)ガスを用いたガス吸着法により測定されたガス吸着量を、BET法(多点法)で解析して得られる比表面積(m2/g、S)から、平均粒子径を求めた。なお、窒素ガス吸着量の測定にあたっては、各試料を、真空下300℃で12時間以上脱気した後、77Kでガス吸着させた。また、セリア2については、粒子径の関係から、タルク等と同様、レーザー回折・散乱法によって測定した。 The average particle size of the ceria-zirconia composite oxide, ceria 1, zirconia, and ferric oxide was measured by the gas adsorption method using nitrogen (N 2 ) gas as an adsorbate, and the BET method (multipoint Method) to determine the average particle size from the specific surface area (m 2 / g, S) obtained by analysis. In the measurement of the nitrogen gas adsorption amount, each sample was degassed under vacuum at 300 ° C. for 12 hours or more, and then gas adsorption was performed at 77K. In addition, ceria 2 was measured by the laser diffraction / scattering method in the same manner as talc and the like from the relationship of the particle size.
 表2に示すように、層状化合物のみを含んで硬化させたシルセスキオキサン誘導体硬化物で接着された試験片(試験例1~5)、層状化合物及び酸素吸蔵材を含んで硬化させた誘導体硬化物で接着された試験片(試験例6~16)及び酸素吸蔵材のみを含んで硬化させた誘導体硬化物で接着された試験片(試験例17)は、いずれも、温度処理前後において、引張せん断強度の低下が優れて抑制されていた。なかでも、試験例1~17における350℃1時間加熱処理後の引張せん断強度の変化率と、シルセスキオキサン誘導体硬化物のみの比較例1、他の成分を含有するシルセスキオキサン誘導体硬化物による比較例2~3及びエポキシ樹脂を使用した比較例4の同変化率と対比すると、層状化合物及び/又は酸素吸蔵材を用いた試験例の試験片は、350℃での引張せん断強度の低下がよく抑制されていたことがわかった。また、シリカや炭酸カルシウムなどを添加しても、全く添加しないのと同様であった。なお、層状化合物の一種である鉱物として、雲母及びスメクタイトについて、それぞれ試験例1と同様にして硬化物を取得して、同様に接着強度を測定したところ、層状化合物の添加効果を得ることができることも確認した。 As shown in Table 2, test pieces (Test Examples 1 to 5) bonded with a silsesquioxane derivative cured product containing only a layered compound and cured, and a derivative cured with a layered compound and an oxygen storage material. The test pieces adhered with the cured product (Test Examples 6 to 16) and the test piece adhered with the derivative cured product containing only the oxygen storage material and cured (Test Example 17) were both before and after the temperature treatment. The decrease in tensile shear strength was excellently suppressed. Among them, the rate of change in tensile shear strength after heat treatment at 350 ° C. for 1 hour in Test Examples 1 to 17, Comparative Example 1 containing only the cured product of the silsesquioxane derivative, and curing of the silsesquioxane derivative containing other components In comparison with the same rate of change of Comparative Examples 2 to 3 and Comparative Example 4 using the epoxy resin, the test piece of the test example using the layered compound and / or the oxygen storage material shows a tensile shear strength at 350 ° C. It was found that the decrease was well suppressed. Moreover, even if silica, calcium carbonate, etc. were added, it was the same as not adding at all. In addition, when mica and smectite were used as minerals which are one of the layered compounds and cured products were obtained in the same manner as in Test Example 1 and the adhesive strength was measured in the same manner, the effect of adding the layered compound can be obtained. I also confirmed.
 さらに、層状化合物及び酸素吸蔵材の双方を含む試験例6~16によれば、これら両者を含むことが加熱処理後の引張せん断強度の低下の抑制(耐熱化)に有効であり、これらが相乗的に作用していることがわかった。また、350℃1時間でも、200℃又は250℃下での長時間保持でも、高い耐熱化効果が得られることがわかった。また、重合性官能基としてメタクロイル基であってもアクリロイル基を有するシルセスキオキサン誘導体についてほぼ同等の耐熱化効果が得られたことがわかった。 Furthermore, according to Test Examples 6 to 16 containing both the layered compound and the oxygen storage material, the inclusion of both of them is effective in suppressing the decrease in tensile shear strength after heat treatment (heat resistance), and these are synergistic. It was found to be working. It was also found that a high heat resistance effect can be obtained even at 350 ° C. for 1 hour or at 200 ° C. or 250 ° C. for a long time. It was also found that the silsesquioxane derivative having an acryloyl group, even if it was a methacryl group as a polymerizable functional group, had substantially the same heat resistance effect.
 さらにまた、層状化合物については、試験例1~5に示すように、シルセスキオキサン誘導体7部に対して3部の使用で十分な効果が得られていることから、シルセスキオキサン誘導体と層状化合物との総質量に対して、例えば5%以上50%以下,好ましくは10%以上40%以下、より好ましくは20%以上40%以下の範囲で耐熱化効果を発揮するであろうことがわかった。また、酸素吸蔵材については、試験例6~17に示すように、酸素吸蔵材は、シルセスキオキサン誘導体と酸素吸蔵材との総質量に対して、例えば0.007%以上であれば有効であり、また、0.4%以上であればより有効であり、さらに、10%以上であればさらに有効であり、さらにまた、20%以上であればなお有効であることがわかった。また、添加量は30%であっても十分な接着強度を示していた。以上のことから、酸素吸蔵材は、シルセスキオキサン誘導体と酸素吸蔵材との総質量に対して、例えば0.07%以上30%以下、好ましくは、0.4%以上20%以下などとすることができることがわかった。また、層状化合物と酸素吸蔵材とを含む場合には、シルセスキオキサン誘導体と槽状化合物と酸素吸蔵材との総質量に対して40%を超えても、十分な接着強度を維持できることがわかった。 Further, as for the layered compound, as shown in Test Examples 1 to 5, since the use of 3 parts with respect to 7 parts of the silsesquioxane derivative was sufficient, it was confirmed that the layered compound was a silsesquioxane derivative. For example, 5% or more and 50% or less, preferably 10% or more and 40% or less, more preferably 20% or more and 40% or less, with respect to the total mass of the layered compound, the heat resistance effect may be exhibited. all right. Regarding the oxygen storage material, as shown in Test Examples 6 to 17, it is effective if the oxygen storage material is, for example, 0.007% or more based on the total mass of the silsesquioxane derivative and the oxygen storage material. It was found that 0.4% or more is more effective, 10% or more is more effective, and 20% or more is still effective. Further, even if the amount added was 30%, sufficient adhesive strength was exhibited. From the above, the oxygen storage material is, for example, 0.07% or more and 30% or less, preferably 0.4% or more and 20% or less with respect to the total mass of the silsesquioxane derivative and the oxygen storage material. I found that I could do it. When the layered compound and the oxygen storage material are included, sufficient adhesive strength can be maintained even if the total amount of the silsesquioxane derivative, the tank-shaped compound, and the oxygen storage material exceeds 40%. all right.
 また、酸素吸蔵材は、シルセスキオキサン誘導体硬化物に対しては、耐熱作用を示したが、エポキシ樹脂については耐熱化作用を十分には示していなかった。 Also, the oxygen storage material showed a heat resistance effect to the silsesquioxane derivative cured product, but did not show a sufficient heat resistance effect to the epoxy resin.
 以上のことから、層状化合物及び酸素吸蔵材のこうした作用は、シルセスキオキサン誘導体又はその硬化物に対してより有効に作用していることがわかった。 Based on the above, it was found that such actions of the layered compound and the oxygen storage material act more effectively on the silsesquioxane derivative or the cured product thereof.
 また、層状化合物であるタルク及び六方晶窒化ホウ素は、いずれも優れた耐熱化作用を発揮したが、平均粒子径が小さい場合がより耐熱化作用が大きいことがわかった。すなわち、平均粒子径が5μmを超えると、耐熱化効果がばらつく傾向があった。したがって、層状化合物は、平均粒子径が5μm未満であり、好ましくは4μm以下、より好ましくは3μm以下であることが好適であることがわかった。 Moreover, both talc and hexagonal boron nitride, which are layered compounds, exhibited excellent heat resistance, but it was found that when the average particle size is small, the heat resistance is greater. That is, when the average particle size exceeds 5 μm, the heat resistance effect tends to vary. Therefore, it was found that the layered compound preferably has an average particle size of less than 5 μm, preferably 4 μm or less, and more preferably 3 μm or less.
 また、実施例1~5と比較例1、酸素吸蔵材がより高い耐熱化作用を発揮することがわかった。酸素吸蔵材のなかでは、酸素吸蔵能が高いセリアジルコニア複合酸化物が最も高い耐酸化作用も高いことがわかった。また、酸素吸蔵材においても、平均粒子径が5μmを超えると耐酸化作用が低下する傾向があり、酸素吸蔵材の平均粒子径は、好ましくは5μm未満であり、より好ましくは4μm以下であり、さらに好ましくは3μm以下であり、なお好ましくは2μm以下であり、一層好ましくは1μm以下であることがわかった。 Also, it was found that the oxygen storage materials of Examples 1 to 5 and Comparative Example 1 exhibited higher heat resistance. It was found that among the oxygen storage materials, the ceria-zirconia composite oxide having a high oxygen storage capacity has the highest oxidation resistance. Further, also in the oxygen storage material, if the average particle size exceeds 5 μm, the oxidation resistance tends to decrease, and the average particle size of the oxygen storage material is preferably less than 5 μm, more preferably 4 μm or less, It has been found that the thickness is more preferably 3 μm or less, still more preferably 2 μm or less, and further preferably 1 μm or less.
(他のシルセスキオキサン誘導体硬化物組成物の熱的挙動)
 シルセスキオキサン誘導体として、以下に示すオキセタニル基をSiO1.5単位に備えるシルセスキオキサン誘導体(OX-SQ、TX-100、東亞合成株式会社製、以下、シルセスキオキサンAという。)及び同様に以下に示すエポキシ基をSiO1.5単位に備えるシシルセスキオキサン誘導体(東亞合成株式会社,以下、シルセスキオキサンBという。)を用い、タルク(SG95)及びセリアジルコニア複合酸化物(平均粒子径5~10nm)を用い、それぞれ、質量比で7:3:1で混合して組成物(液状)を調製し、これらの組成物について熱挙動をTGAで評価した。なお、シルセスキオキサンA及びBのみについても同様にTGAを実施した。結果を図3に示す。なお、図3においては、シルセスキオキサンA,Bについての質量変化(%)の実測値に基づきその質量変化に0.63を乗ずることで前記組成物中におけるタルク等の存在を相殺したシルセスキオキサンA、Bのそれぞれの質量変化を示した。
(Thermal Behavior of Other Silsesquioxane Derivative Cured Compositions)
As a silsesquioxane derivative, a silsesquioxane derivative having the following oxetanyl group in the SiO 1.5 unit (OX-SQ, TX-100, manufactured by Toagosei Co., Ltd., hereinafter referred to as silsesquioxane A) and the like. In addition, talc (SG95) and ceria-zirconia composite oxide (average particle diameter) are used by using a cisilsesquioxane derivative having the following epoxy group in the SiO 1.5 unit (Toagosei Co., Ltd., hereinafter referred to as silsesquioxane B). 5 to 10 nm), and each was mixed at a mass ratio of 7: 3: 1 to prepare compositions (liquid), and thermal behavior of these compositions was evaluated by TGA. In addition, TGA was similarly performed only on the silsesquioxanes A and B. The results are shown in Fig. 3. In FIG. 3, the silsesquioxane A, B was used to offset the presence of talc or the like in the composition by multiplying the mass change by 0.63 based on the measured value of the mass change (%). The respective mass changes of sesquioxane A and B are shown.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 図3に示すように、タルク及びセリアジルコニア複合酸化物の添加によって、シルセスキオキサン誘導体硬化の酸化を示す重量減少開始温度が高温側にシフトしたことがわかった。 As shown in FIG. 3, it was found that the addition of talc and ceria-zirconia composite oxide shifted the weight loss initiation temperature indicating oxidation of curing of the silsesquioxane derivative to the high temperature side.
 以上のことから、層状化合物及び酸素吸蔵材は、こうした重合性官能基を備えるシルセスキオキサン硬化物においても、同様に酸化抑制作用及び耐熱化作用を奏することがわかった。
 
From the above, it was found that the layered compound and the oxygen storage material similarly exhibited the oxidation suppressing effect and the heat resistance improving effect even in the silsesquioxane cured product having such a polymerizable functional group.

Claims (17)

  1.  シルセスキオキサン誘導体と、
     層状化合物と、
    を含有する、シルセスキオキサン誘導体組成物。
    A silsesquioxane derivative,
    A layered compound,
    A silsesquioxane derivative composition containing:
  2.  前記層状化合物は、タルク及び窒化ホウ素からなる群から選択される1種又は2種以上である、請求項1に記載の組成物。 The composition according to claim 1, wherein the layered compound is one or more selected from the group consisting of talc and boron nitride.
  3.  前記層状化合物は、タルクである、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the layered compound is talc.
  4.  前記層状化合物の平均粒子径は5μm以下である、請求項1~3のいずれかに記載の組成物。 The composition according to any one of claims 1 to 3, wherein the layered compound has an average particle size of 5 µm or less.
  5.  前記層状化合物材を、前記シルセスキオキサン誘導体と前記層状化合物との総質量に対して5質量%以上50質量%以下含有する、請求項1~4のいずれかに記載の組成物。 5. The composition according to any one of claims 1 to 4, wherein the layered compound material is contained in an amount of 5% by mass or more and 50% by mass or less based on the total mass of the silsesquioxane derivative and the layered compound.
  6.  さらに、酸素吸蔵材を含有する、請求項1~5のいずれかに記載の組成物。 The composition according to any one of claims 1 to 5, further containing an oxygen storage material.
  7.  シルセスキオキサン誘導体と、
     酸素吸蔵材と、
    を含有する、シルセスキオキサン誘導体組成物。
    A silsesquioxane derivative,
    Oxygen storage material,
    A silsesquioxane derivative composition containing:
  8.  前記酸素吸蔵材は、セリア、ジルコニア及びセリアジルコニア複合酸化物からなる群から選択される1種又は2種以上である、請求項6又は7に記載の組成物。 The composition according to claim 6 or 7, wherein the oxygen storage material is one or more selected from the group consisting of ceria, zirconia, and ceria-zirconia composite oxide.
  9.  前記酸素吸蔵材は、セリアジルコニア複合酸化物である、請求項6~8のいずれかに記載の組成物。 The composition according to any one of claims 6 to 8, wherein the oxygen storage material is a ceria-zirconia composite oxide.
  10.  前記酸素吸蔵材を、前記シルセスキオキサン誘導体と前記酸素吸蔵材との総質量に対して0.1質量%以上40質量%以下含有する、請求項6~9のいずれかに記載の組成物。 The composition according to any one of claims 6 to 9, wherein the oxygen storage material is contained in an amount of 0.1% by mass or more and 40% by mass or less based on a total mass of the silsesquioxane derivative and the oxygen storage material. .
  11.  前記シルセスキオキサン誘導体は、重合性官能基を備える、請求項1~10のいずれかに記載の組成物。 The composition according to any one of claims 1 to 10, wherein the silsesquioxane derivative has a polymerizable functional group.
  12.  重合性官能基を備えるシルセスキオキサン誘導体と、
     層状化合物及び/又は酸素吸蔵材と、
    を備える、硬化性シルセスキオキサン誘導体組成物。
    A silsesquioxane derivative having a polymerizable functional group,
    A layered compound and / or an oxygen storage material,
    A curable silsesquioxane derivative composition comprising:
  13.  重合性官能基を備えるシルセスキオキサン誘導体の硬化物と、
     層状化合物及び/又は酸素吸蔵材と、
    を備える、シルセスキオキサン誘導体硬化物組成物。
    A cured product of a silsesquioxane derivative having a polymerizable functional group,
    A layered compound and / or an oxygen storage material,
    A silsesquioxane derivative cured product composition comprising:
  14.  層状化合物及び/又は酸素吸蔵材とともにシルセスキオキサン誘導体を加熱する工程、を備える、シルセスキオキサン誘導体又はその硬化物の酸化抑制方法。 A method for suppressing oxidation of a silsesquioxane derivative or a cured product thereof, which comprises a step of heating the silsesquioxane derivative together with the layered compound and / or the oxygen storage material.
  15.  層状化合物及び/又は酸素吸蔵材とともにシルセスキオキサン誘導体を加熱する工程、
    を備える、シルセスキオキサン誘導体又はその硬化物の耐熱化方法。
    Heating the silsesquioxane derivative together with the layered compound and / or the oxygen storage material,
    A method of increasing the heat resistance of a silsesquioxane derivative or a cured product thereof.
  16.  層状化合物及び/又は酸素吸蔵材を有効成分とする、シルセスキオキサン誘導体又はその硬化物の酸化抑制剤。 An oxidation inhibitor of a silsesquioxane derivative or a cured product thereof, which contains a layered compound and / or an oxygen storage material as an active ingredient.
  17.  層状化合物及び/又は酸素吸蔵材を有効成分とする、シルセスキオキサン誘導体又はその硬化物の耐熱性向上剤。 A heat resistance improver for a silsesquioxane derivative or a cured product thereof, which contains a layered compound and / or an oxygen storage material as an active ingredient.
PCT/JP2019/038571 2018-10-18 2019-09-30 Silsesquioxane derivative composition and use of same WO2020080081A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020553021A JP7276348B2 (en) 2018-10-18 2019-09-30 Silsesquioxane derivative composition and use thereof
CN201980068688.8A CN112888715B (en) 2018-10-18 2019-09-30 Silsesquioxane derivative composition and use thereof
KR1020217012966A KR102640556B1 (en) 2018-10-18 2019-09-30 Silsesquioxane derivative composition and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018196951 2018-10-18
JP2018-196951 2018-10-18

Publications (1)

Publication Number Publication Date
WO2020080081A1 true WO2020080081A1 (en) 2020-04-23

Family

ID=70284550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038571 WO2020080081A1 (en) 2018-10-18 2019-09-30 Silsesquioxane derivative composition and use of same

Country Status (5)

Country Link
JP (1) JP7276348B2 (en)
KR (1) KR102640556B1 (en)
CN (1) CN112888715B (en)
TW (1) TW202035570A (en)
WO (1) WO2020080081A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114426785A (en) * 2020-10-29 2022-05-03 阪田油墨股份有限公司 Active energy ray-curable composition
WO2022168804A1 (en) * 2021-02-05 2022-08-11 東亞合成株式会社 Undercoat agent composition for inorganic substance layer lamination, cured product thereof, and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002653A (en) * 2002-04-22 2004-01-08 Shin Kobe Electric Mach Co Ltd Prepreg for printed circuit board and method for manufacturing the same, and printed circuit board
JP2009256662A (en) * 2008-03-26 2009-11-05 Nagase Chemtex Corp Silsesquioxane derivative and method for producing the same
JP2011148784A (en) * 2009-12-24 2011-08-04 Dow Corning Toray Co Ltd Surface-treatment agent for powder for use in cosmetic and cosmetic containing powder treated with the same
JP2015010151A (en) * 2013-06-28 2015-01-19 チェイル インダストリーズ インコーポレイテッド Resin film, method of producing resin film and coating liquid
WO2015072540A1 (en) * 2013-11-15 2015-05-21 株式会社コーセー Surface-treated powder obtained using theanine, and cosmetic preparation containing same
CN106739277A (en) * 2016-11-16 2017-05-31 苏州大学 The preparation method of the shape with Magnetron Sputtered Diamond-like Thin Carbon Films and application
CN107722828A (en) * 2017-09-29 2018-02-23 广东冠能电力科技发展有限公司 The special antifouling wet coating material of reactor and its manufacture method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297731B2 (en) * 2003-03-11 2007-11-20 3M Innovative Properties Company Coating dispersions for optical fibers
KR101054569B1 (en) 2003-07-29 2011-08-04 도아고세이가부시키가이샤 Silicone-containing polymer compound, process for producing the same, heat-resistant resin composition and heat-resistant film
US20100304152A1 (en) * 2007-10-22 2010-12-02 Flexible Ceramics , Inc. Fire resistant flexible ceramic resin blend and composite products formed therefrom
WO2009066608A1 (en) 2007-11-19 2009-05-28 Toagosei Co., Ltd. Polysiloxane, method for producing the same, and method for producing cured product of the same
WO2010131258A1 (en) * 2009-05-12 2010-11-18 Council Of Scientific & Industrial Research Clay nanocomposite forming microcapsule useful for guest encapsulation and process thereof
US20120153342A1 (en) * 2010-06-08 2012-06-21 Takashi Nishimura Die-bonding material for optical semiconductor devices and optical semiconductor device using same
DE102010041676A1 (en) * 2010-09-29 2012-03-29 Wacker Chemie Ag Crosslinkable organopolysiloxane composition
US20150098973A1 (en) * 2012-05-09 2015-04-09 Dow Corning Corporation Composition for application to the skin comprising silsesquioxane resin wax and solid particulate
EP2878638B1 (en) * 2012-07-27 2019-05-22 LG Chem, Ltd. Hardening composition
JP6021605B2 (en) * 2012-11-19 2016-11-09 新日鉄住金化学株式会社 Cage type silsesquioxane compound, curable resin composition and resin cured product using the same
CN103305036B (en) * 2013-06-18 2016-09-14 武汉绿凯科技有限公司 A kind of containing POSS antireflective coating coating liquid and preparation method and application
WO2015079677A1 (en) * 2013-11-29 2015-06-04 東レ・ダウコーニング株式会社 Optical material
JP6849596B2 (en) * 2014-12-30 2021-03-24 株式会社ブリヂストン End-functional polymers and related methods
WO2017038943A1 (en) * 2015-09-02 2017-03-09 日産化学工業株式会社 Polymerizable composition comprising silsesquioxane compound having acrylic group
KR102453363B1 (en) * 2015-09-30 2022-10-07 (주)아모레퍼시픽 Cosmetic composition having improved performance of transfer-resistant, and processing method thereof
CN105176296B (en) * 2015-10-12 2017-12-08 中国科学院宁波材料技术与工程研究所 The high-temperature resistant coating being modified based on polysilsesquioxane and its application
CN108699340A (en) * 2016-03-02 2018-10-23 捷恩智株式会社 The manufacturing method of heat release component composition, heat release component, e-machine and heat release component
CN106519701A (en) * 2016-10-21 2017-03-22 沈阳化工大学 Method for preparing heatproof silicone rubber having ethyl phenyl hydrogen-assisted cage-type silsesquioxane
JP7069449B2 (en) 2016-12-16 2022-05-18 株式会社ダイセル Curable compositions, adhesive sheets, cured products, laminates, and equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002653A (en) * 2002-04-22 2004-01-08 Shin Kobe Electric Mach Co Ltd Prepreg for printed circuit board and method for manufacturing the same, and printed circuit board
JP2009256662A (en) * 2008-03-26 2009-11-05 Nagase Chemtex Corp Silsesquioxane derivative and method for producing the same
JP2011148784A (en) * 2009-12-24 2011-08-04 Dow Corning Toray Co Ltd Surface-treatment agent for powder for use in cosmetic and cosmetic containing powder treated with the same
JP2015010151A (en) * 2013-06-28 2015-01-19 チェイル インダストリーズ インコーポレイテッド Resin film, method of producing resin film and coating liquid
WO2015072540A1 (en) * 2013-11-15 2015-05-21 株式会社コーセー Surface-treated powder obtained using theanine, and cosmetic preparation containing same
CN106739277A (en) * 2016-11-16 2017-05-31 苏州大学 The preparation method of the shape with Magnetron Sputtered Diamond-like Thin Carbon Films and application
CN107722828A (en) * 2017-09-29 2018-02-23 广东冠能电力科技发展有限公司 The special antifouling wet coating material of reactor and its manufacture method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114426785A (en) * 2020-10-29 2022-05-03 阪田油墨股份有限公司 Active energy ray-curable composition
WO2022168804A1 (en) * 2021-02-05 2022-08-11 東亞合成株式会社 Undercoat agent composition for inorganic substance layer lamination, cured product thereof, and method for producing same
CN116897195A (en) * 2021-02-05 2023-10-17 东亚合成株式会社 Primer composition for inorganic substance layer lamination, cured product thereof, and method for producing same

Also Published As

Publication number Publication date
TW202035570A (en) 2020-10-01
CN112888715B (en) 2023-11-03
JPWO2020080081A1 (en) 2021-09-02
KR20210068108A (en) 2021-06-08
KR102640556B1 (en) 2024-02-27
CN112888715A (en) 2021-06-01
JP7276348B2 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
JP6524901B2 (en) Silicone rubber composition and cured product thereof
KR101827045B1 (en) Composition of olefinically functionalised siloxane oligomers based on alkoxysilanes
KR20110096063A (en) Silsesquioxane resins
JP7276348B2 (en) Silsesquioxane derivative composition and use thereof
CN101107337A (en) A binder composition
JP2006257355A (en) Curable polyorganosiloxane composition for sealing, and gasket
JP2005281684A (en) Fluoropolyether-based adhesive composition
MX2014006141A (en) Low chloride compositions of olefinically functionalised siloxane oligomers based on alkoxysilanes.
JP5031436B2 (en) Low moisture permeability polyorganosiloxane composition
JP3886556B2 (en) Adhesive property organosiloxane compound
JP5821971B2 (en) Method for producing polysiloxane
JP2007146031A (en) Curable polymethylsiloxane resin, method for producing the same, curable polymethylsiloxane resin composition and article having cured film thereof
CN115103872B (en) Silsesquioxane derivative and use thereof
KR101655511B1 (en) Aqueous crosslinkable dispersions based on organosilicon compounds
JPWO2004076534A1 (en) Method for producing cationically curable silicon-containing compound
JP6930354B2 (en) Curable composition and its use
JP7210998B2 (en) Adhesive composition and its use
JP4553562B2 (en) Adhesive polyorganosiloxane composition
JP5214229B2 (en) Release agent composition
JP2000086765A (en) Organic silicon composition
KR102075615B1 (en) Room temperature curing coating materials containing silan oligomer
US20210238445A1 (en) Water repellent and oil repellent film composition and use thereof
JP7397558B2 (en) Water- and oil-repellent film composition and its use
JP2019210477A (en) Water-repellent oil-repellent film composition and use thereof
KR20100129993A (en) Inorganic ceramic binder with eco-friendly property

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553021

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217012966

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19873382

Country of ref document: EP

Kind code of ref document: A1