WO2020080013A1 - Imaging device, method of controlling imaging device, and electronic apparatus - Google Patents

Imaging device, method of controlling imaging device, and electronic apparatus Download PDF

Info

Publication number
WO2020080013A1
WO2020080013A1 PCT/JP2019/036308 JP2019036308W WO2020080013A1 WO 2020080013 A1 WO2020080013 A1 WO 2020080013A1 JP 2019036308 W JP2019036308 W JP 2019036308W WO 2020080013 A1 WO2020080013 A1 WO 2020080013A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
conversion
pixel
unit
period
Prior art date
Application number
PCT/JP2019/036308
Other languages
French (fr)
Japanese (ja)
Inventor
成貴 工藤
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2020080013A1 publication Critical patent/WO2020080013A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Definitions

  • the present invention relates to an imaging device, a method for controlling the imaging device, and an electronic device.
  • Solid-state imaging devices using CMOS (Complementary Metal Oxide Semiconductor) etc. are known.
  • CMOS Complementary Metal Oxide Semiconductor
  • pixels including light receiving elements are arranged in an array, and reading from the pixels arranged in the array is controlled for each row, and a signal from the pixel is output for each column.
  • an AD (Analog to Digital) converter provided for each column converts the signal read from the pixel into a pixel signal by a digital signal and outputs it.
  • the present disclosure aims to provide an imaging device, a method of controlling the imaging device, and an electronic device capable of reducing power consumption.
  • an imaging apparatus includes a conversion unit that converts an analog signal read from each pixel included in a two-dimensional lattice array in a pixel array into a digital signal, and a conversion unit. And a control unit for controlling the operation of the., The control unit sets a horizontal blanking period based on a horizontal synchronization signal indicating a read timing of lines in the array, and a timing for starting reading of pixels for one frame from the pixel array. During at least one of the vertical blanking period based on the trigger signal shown, the state of the conversion unit is shifted to the standby state in which no conversion is performed.
  • FIG. 7 is a time chart showing an example of an operation in a pixel, which is applicable to the embodiment. It is a figure which shows the example of a structure of the AD converter by existing technology. It is a figure which shows roughly the structure of an example of the solid-state image sensor by existing technology. 7 is a time chart showing an example of a pixel signal read process from each pixel according to a vertical synchronization signal and a horizontal synchronization signal according to an existing technique. It is a figure which shows roughly the structure of an example of the solid-state image sensor by existing technology.
  • FIG. 7 is a time chart showing an example of a process of reading a pixel signal from each pixel by external trigger control according to an existing technique. It is a block diagram which shows roughly the structural example of the solid-state image sensor as an imaging device which concerns on 1st Embodiment. 6 is a time chart showing an example of a process of reading a pixel signal from each pixel according to a vertical synchronization signal and a horizontal synchronization signal according to the first embodiment. It is a block diagram which shows roughly the structure of an example of the solid-state image sensor which inputs the external trigger signal based on 1st Embodiment.
  • FIG. 6 is a time chart showing an example of a process of reading a pixel signal from each pixel according to an external trigger signal and a horizontal synchronization signal according to the first embodiment. It is a figure which shows the structure of an example of the AD converter which concerns on 1st Embodiment.
  • FIG. 3 is a block diagram showing a configuration of an example of a control unit applicable to the first embodiment.
  • 6 is a time chart of an example for explaining an ADC stop control signal according to the first embodiment. 6 is a time chart showing an example of control in a vertical blanking period in a process of reading a pixel signal from each pixel according to a vertical synchronization signal and a horizontal synchronization signal according to the first embodiment.
  • FIG. 6 is a time chart showing an example of control in a vertical blanking period in a process of reading a pixel signal from each pixel by external trigger control according to the first embodiment. It is a block diagram which shows roughly the structural example of the solid-state image sensor which concerns on 2nd Embodiment.
  • 9 is a time chart showing an example of a process of reading a pixel signal from each pixel according to a vertical synchronization signal and a horizontal synchronization signal according to the second embodiment. It is a block diagram which shows roughly the structural example of the solid-state image sensor which concerns on 3rd Embodiment.
  • 9 is a time chart showing an example of a process of reading pixel signals from each pixel according to two external trigger signals and a horizontal synchronization signal according to the third embodiment. It is a block diagram which shows the structure of an example of the electronic device which concerns on 4th Embodiment. It is a figure which shows the usage example of the imaging device which concerns on this indication.
  • FIG. 1 is a block diagram showing a basic configuration example of a solid-state image sensor applicable to the embodiment.
  • the solid-state imaging device 10 includes a pixel array unit 11, a vertical scanning unit 12, an AD (Analog to Digital) conversion unit 13, a pixel signal line 16, a vertical signal line 17, and a control unit 19.
  • the signal processing unit 20 is included.
  • the pixel array unit 11 includes a plurality of pixels 110 each having a photoelectric conversion unit such as a photodiode, which performs photoelectric conversion on received light.
  • the plurality of pixels 110 are arranged in a two-dimensional grid pattern in the horizontal direction (row direction) and the vertical direction (column direction).
  • the arrangement of the pixels 110 in the row direction is called a line.
  • An image (image data) of one frame is formed by the pixel signals read from a predetermined number of lines in the pixel array unit 11. For example, when an image of one frame is formed with 3000 pixels ⁇ 2000 lines, the pixel array unit 11 includes at least 2000 lines including at least 3000 pixels 110.
  • the pixel signal line 16 is connected for each row, and the vertical signal line 17 is connected for each column.
  • the end of the pixel signal line 16 that is not connected to the pixel array section 11 is connected to the vertical scanning section 12.
  • the vertical scanning unit 12 transmits a control signal such as a drive pulse for reading a pixel signal from a pixel to the pixel array unit 11 via the pixel signal line 16 under the control of the control unit 19 described later.
  • An end portion of the vertical signal line 17 that is not connected to the pixel array unit 11 is connected to the AD conversion unit 13.
  • the pixel signal read from the pixel is transmitted to the AD conversion unit 13 via the vertical signal line 17.
  • the AD conversion unit 13 includes an AD converter 130 provided for each vertical signal line 17, a reference signal generation unit 14, and a horizontal scanning unit 15.
  • the AD converter 130 is a column AD converter that performs AD conversion processing on each column of the pixel array unit 11.
  • the AD converter 130 performs AD conversion processing on the pixel signal supplied from the pixel 110 via the vertical signal line 17 and performs 2 for correlation double sampling (CDS: Correlated Double Sampling) processing for noise reduction. Generate two digital values.
  • CDS Correlated Double Sampling
  • the AD converter 130 supplies the two generated digital values to the signal processing unit 20.
  • the signal processing unit 20 performs CDS processing based on the two digital values supplied from the AD converter 130, and generates a pixel signal (pixel data) by a digital signal.
  • the pixel signal based on the digital signal generated by the signal processing unit 20 is output to the outside of the solid-state image sensor 10.
  • the pixel signal based on the digital signal output from the signal processing unit 20 is sequentially stored outside the solid-state image sensor 10, for example, in a frame buffer.
  • the stored pixel signals are read out from the frame buffer as image data for one frame.
  • the reference signal generation unit 14 generates a ramp signal RAMP used by each AD converter 130 to convert a pixel signal into two digital values, based on the ADC control signal input from the control unit 19.
  • the ramp signal RAMP is a signal whose level (voltage value) decreases with a constant slope with respect to time, or a signal whose level decreases stepwise.
  • the reference signal generation unit 14 supplies the generated ramp signal RAMP to each AD converter 130.
  • the reference signal generation unit 14 is configured using, for example, a DA (Digital to Analog) conversion circuit or the like.
  • the horizontal scanning unit 15 performs a selective scan for selecting the AD converters 130 in a predetermined order, so that the digital values temporarily held by the AD converters 130 are detected.
  • the signals are sequentially output to the signal processing unit 20.
  • the horizontal scanning unit 15 is configured by using, for example, a shift register or an address decoder.
  • the control unit 19 controls the drive of the vertical scanning unit 12, the AD converting unit 13, the reference signal generating unit 14, the horizontal scanning unit 15, and the like.
  • the control unit 19 generates various drive signals serving as a reference for the operations of the vertical scanning unit 12, the AD converting unit 13, the reference signal generating unit 14, and the horizontal scanning unit 15.
  • the control unit 19 is, for example, a control signal for the vertical scanning unit 12 to supply each pixel 110 via the pixel signal line 16 based on a vertical synchronization signal or an external trigger signal supplied from the outside and a horizontal synchronization signal. To generate.
  • the control unit 19 supplies the generated control signal to the vertical scanning unit 12.
  • the vertical scanning unit 12 supplies various signals including a drive pulse to the pixel signal line 16 of the selected pixel row of the pixel array unit 11 based on the control signal supplied from the control unit 19 to each pixel 110 line by line. Then, the pixel signal is output from each pixel 110 to the vertical signal line 17.
  • the vertical scanning unit 12 is configured using, for example, a shift register or an address decoder.
  • the solid-state imaging device 10 thus configured is a column AD type CMOS (Complementary Metal Oxide Semiconductor) image sensor in which the AD converters 130 are arranged in each column.
  • CMOS Complementary Metal Oxide Semiconductor
  • FIG. 2 is a diagram showing a configuration of an example of a pixel 110 applicable to each embodiment.
  • the pixel 110 includes a photoelectric conversion element 111 formed of, for example, a PN junction photodiode, a trigger transistor 112, a reset transistor 114, an amplification transistor 115, and a selection transistor 116 which are N-type MOS (Metal Oxide Semiconductor) transistors, respectively. ,including.
  • the pixel signal line 16 connected to the pixel 110 supplies a reset pulse RST, a transfer pulse TRG, and a selection signal SEL, respectively.
  • the photoelectric conversion element 111 has a cathode connected to the ground and an anode connected to the drain of the trigger transistor 112.
  • the source of the trigger transistor 112 is connected to the floating diffusion layer 113.
  • the transfer pulse TRG is supplied to the gate of the trigger transistor 112.
  • the trigger transistor 112 is turned on (closed) when the transfer pulse TRG is in the high (High) state, and turned off (open) when the transfer pulse TRG is in the low (Low) state. With the trigger transistor 112 turned on, the electric charge output from the photoelectric conversion element 111 is supplied to the floating diffusion layer 113.
  • the floating diffusion layer 113 stores the electric charge supplied from the photoelectric conversion element 111.
  • the floating diffusion layer 113 generates a voltage according to the amount of accumulated charge.
  • the source of the reset transistor 114 is connected to the floating diffusion layer 113.
  • the power supply VDD for the pixel 110 is connected to the drain of the reset transistor 114.
  • the reset pulse RST is supplied to the gate of the reset transistor 114.
  • the reset transistor 114 is turned on when the reset pulse RST is high and turned off when the reset pulse RST is low.
  • the gate of the amplification transistor 115 is connected to the floating diffusion layer 113.
  • the power supply VDD is connected to the drain of the amplification transistor 115, and the drain of the selection transistor 116 is connected to the source.
  • the source of the selection transistor 116 is connected to the vertical signal line (VSL) 17.
  • the selection signal SEL is supplied to the gate of the selection transistor 116.
  • the selection transistor 116 is turned on when the selection signal SEL is high and turned off when the selection signal SEL is low.
  • FIG. 3 is a time chart showing an example of an operation in the pixel 110 shown in FIG. 2, which is applicable to the embodiment.
  • “SEL”, “RST”, and “TRG” indicate the selection signal SEL, the reset pulse RST, and the transfer pulse TRG, respectively.
  • “FD” indicates the amount of charges accumulated in the floating diffusion layer 113
  • “VSL” indicates the level (voltage) of the pixel signal output from the vertical signal line 17.
  • the selection signal SEL, the reset pulse RST, and the transfer pulse TRG are in a low state. Further, since the photoelectric conversion element 111 is exposed and the trigger transistor 112 is turned off by the low-state transfer pulse TRG, the electric charge generated by the exposure is accumulated in the photoelectric conversion element 111.
  • the selection signal SEL is set to the high state and the selection transistor 116 is turned on.
  • the reset pulse RST is set to the high state, and the charge of the floating diffusion layer 113 is discharged to the power supply VDD, so that the potential of the floating diffusion layer 113 is reset to the predetermined potential.
  • a reset pulse RST is returned to a low state at time t 102 after a predetermined time, the transfer pulse TRG is a high state, the charge accumulated in the photoelectric conversion element 111 by the exposure is supplied to the floating diffusion layer 113 is accumulated It A voltage corresponding to the charges accumulated in the floating diffusion layer 113 is generated, this voltage is amplified by the amplification transistor 115, and is output to the vertical signal line 17 as a pixel signal via the selection transistor 116.
  • the signal A is converted into a digital value by the AD converter 130, and is temporarily stored in, for example, a register included in the AD converter 130. This signal A is offset noise.
  • the reading of the signal A is called P-phase (Pre-Charge) reading, and the period in which the P-phase reading is performed is called the P-phase period.
  • the transfer pulse TRG from time t 102 which is a high state after treatment time, for example, for example, the state of the floating diffusion layer 113 is the signal level of the signal B output to the vertical signal line 17 at the time t 111 to stabilize, It is converted into a digital value by the AD converter 130 and is temporarily stored in, for example, a register or the like included in the AD converter 130.
  • the signal B is a signal including offset noise and a pixel signal.
  • the reading of the signal B is called D-phase (Data Phase) reading, and the period in which the D-phase reading is performed is called the D-phase period.
  • the AD converter 130 supplies the stored signals A and B to the signal processing unit 20.
  • the signal processing unit 20 obtains the difference between the signal A and the signal B. This makes it possible to obtain a pixel signal from which offset noise has been removed.
  • FIG. 4 is a diagram showing an example of the configuration of an AD converter 130a according to the existing technology as the column AD converter in FIG.
  • the AD converter 130a includes a current source 131, a DA (Digital to Analog) converter 132, a comparator 133, and a counter 134.
  • the DA converter 132, the comparator 133, and the counter 134 each operate by the power supplied from the power supply line Vp.
  • the pixel signal (signal A or signal B) read from the pixel 110 is drawn into the current source 131 from the vertical signal line 17, supplied to the AD converter 130 a, and input to one input terminal of the comparator 133. . More specifically, in the P-phase period, the reset level signal A read from the pixel 110 is input to one input terminal of the comparator 133. Further, in the D-phase period, the signal B including the offset noise and the pixel signal read from the pixel 110 is input to one input end of the comparator 133.
  • the ramp signal RAMP which is a reference signal generated as a digital signal in the reference signal generation unit 14, is input to the DA converter 132.
  • the DA converter 132 converts the ramp signal RAMP into an analog signal and inputs it to the other input end of the comparator 133 as a reference signal.
  • the reference signal generation unit 14 generates, as the ramp signal RAMP, the above-described digital signal whose value decreases stepwise with time (clock).
  • the DA converter 132 converts the ramp signal RAMP into an analog signal and inputs the analog signal into the other input terminal of the comparator 133. That is, to the other input terminal of the comparator 133, a signal whose voltage value changes stepwise (falls) in response to the clock is input as a reference signal.
  • the comparator 133 holds the pixel signal input to one input end, and compares the level of the held pixel signal with the level of the ramp signal RAMP input to the other input end.
  • the comparator 133 outputs the difference signal in the high state when the level of the ramp signal RAMP is higher than the level of the held pixel signal.
  • the comparator 133 inverts the output and outputs the difference signal in the low state.
  • the difference signal output from the comparator 133 is supplied to the counter 134.
  • the level of the ramp signal RAMP is reset to a predetermined value after the output of the comparator 133 is inverted.
  • the counter 134 counts based on the difference signal output from the comparator 133, for example, according to a clock common to the reference signal generation unit 14. More specifically, in the P-phase period of the pixel 110, the counter 134 responds to the difference signal input from the comparator 133, and the level of the ramp signal RAMP starts to drop, and then the pixel signal (signal A). The time (clock) until reaching the following level is down-counted, and the count value (digital value) by this count is output to the signal processing unit 20.
  • the counter 134 changes the level of the ramp signal RAMP to a level equal to or lower than the pixel signal (signal B) after the voltage drop starts according to the difference signal input from the comparator 133. The time until is counted up, and the count value (digital value) by this count is output to the signal processing unit 20.
  • the signal processing unit 20 performs CDS processing using the count value for the signal A and the count value for the signal B.
  • FIG. 5 is a diagram schematically showing an example of the configuration of an existing solid-state imaging device corresponding to FIG. 1, and shows how a vertical synchronizing signal is input to the control unit 19.
  • the control unit 19 generates a reset pulse RST, a transfer pulse TRG, and a selection signal SEL that are supplied to each pixel 110 via the pixel signal line 16 based on the vertical synchronization signal and the horizontal synchronization signal.
  • the horizontal synchronization signal is a signal indicating the read timing for each line.
  • the vertical synchronization signal is a signal indicating the cycle of one frame. For example, by starting reading lines from the beginning of the pixel array unit 11 according to the vertical synchronizing signal and sequentially reading each line according to the horizontal synchronizing signal, the pixel signals of the pixels 110 included in the pixel array unit 11 are converted into pixel signals. Based on this, image data for one frame can be obtained. By repeatedly performing this operation according to the vertical synchronization signal, for example, moving image data of a predetermined frame period can be obtained.
  • control unit 19 generates an ADC control signal for controlling the generation of the ramp signal RAMP in the reference signal generation unit 14 in synchronization with the horizontal synchronization signal, for example.
  • the reference signal generator 14 generates and outputs the ramp signal RAMP according to the ADC control signal.
  • Each AD converter 130a AD-converts the pixel signal supplied from each pixel 110 based on the ramp signal RAMP output from the reference signal generation unit 14 according to the ADC control signal.
  • FIG. 6 is a time chart showing an example of a process of reading a pixel signal from each pixel 110 according to a vertical synchronizing signal and a horizontal synchronizing signal according to the existing technology.
  • a chart showing timings of a vertical synchronizing signal, a horizontal synchronizing signal, a reading process, and an ADC (AD Converter) operation is shown from the top.
  • the vertical synchronizing signal and the horizontal synchronizing signal are represented as downward pulses formed from pairs of falling edges and rising edges, respectively. This is not limited to this example, and the direction of the edge forming the pulse may be opposite (upward pulse), or the pulse direction may be different between the vertical synchronizing signal and the horizontal synchronizing signal.
  • the vertical synchronizing signal is one vertical period (1V period) from the falling edge of one pulse to the falling edge of the next pulse, and one frame is read within this 1V period.
  • the horizontal synchronizing signal is one horizontal period (1H period) from the falling edge of one pulse to the falling edge of the next pulse, and one line is read during this 1H period.
  • reading of one frame is started at the timing of the falling edge of the vertical sync signal.
  • the period READ during which this one frame is read is referred to as a read period 30.
  • a period VBLANK from the end timing of the read period 30 to the next falling edge of the vertical synchronizing signal is a vertical blanking period 31 in which no line is read.
  • the leading timing of the vertical blanking period 31 can be known based on the timing of the falling edge of the vertical synchronizing signal.
  • the reading of the pixel signal from each pixel 110 on one line is started, and the AD conversion operation by the AD converter 130a is executed on the pixel signal of each pixel 110 on the read line.
  • a reset pulse RST, a transfer pulse TRG, and a selection signal SEL are supplied in parallel by the pixel signal line 16 to each pixel 110 included in one line. Therefore, the AD conversion processing by each AD converter 130a connected to each vertical signal line 17 is executed so as to be completed during the period of one line, that is, from the pulse of the horizontal synchronizing signal to the next pulse.
  • the pixel signals (the signal A in the P-phase period and the signal B in the D-phase period) by each AD converter 130a are output.
  • AD conversion processing is performed (shown as “AD” in FIG. 6).
  • a horizontal blanking period shown as “HBLK” in FIG. 6).
  • the control unit 19 terminates the end of the period 40, for example, in all the AD converters 130a included in the AD conversion unit 13, the conversion process in the D phase period of the pixel 110 is completed, the output of the comparator 133 is inverted, and the ramp signal is output. This can be known as the timing at which the RAMP level is reset to a predetermined level.
  • the period 40 in which the AD converter 130a performs the AD conversion process is referred to as an AD conversion period 40, and the period 41 is referred to as a horizontal blanking period 41.
  • the AD conversion process of the M + 1th line is performed by each AD converter 130a during the next 1H period.
  • a period in which the AD conversion process of the Mth line is not performed is a period in which each pixel 110 of the Mth line can be exposed.
  • the last line of one frame is the Nth line
  • the period from the 1H period shown as the (N + 1) th line in FIG. 6 to the pulse of the next vertical synchronizing signal is the vertical blanking period 31.
  • a process of reading a pixel signal from each pixel 110 according to an external trigger signal according to the existing technology will be described with reference to FIGS. 7 and 8.
  • the electronic device on which the solid-state imaging device 10 is mounted is a camera
  • a signal based on shutter timing and shutter speed can be applied as the external trigger signal.
  • FIG. 7 is a diagram schematically showing an example of the configuration of a solid-state image sensor according to the existing technology, which corresponds to FIG. 1, and shows how an external trigger signal is input to the control unit 19.
  • the external trigger signal is input to the control unit 19 instead of the vertical synchronization signal of FIG.
  • the control unit 19 generates a reset pulse RST, a transfer pulse TRG, and a selection signal SEL that are supplied to each pixel 110 via the pixel signal line 16 based on the external trigger signal and the horizontal synchronization signal.
  • FIG. 8 is a time chart showing an example of reading processing of pixel signals from each pixel 110 by external trigger control according to the existing technology.
  • a chart showing timings of the external trigger signal, the horizontal synchronizing signal, the reading process, and the ADC operation is shown from the top.
  • the falling edge of the external trigger signal indicates the exposure start timing, and the rising edge indicates the exposure end timing. Further, the reading of one frame in the pixel array unit 11 is started in response to the rising edge of the external trigger signal.
  • the control unit 19 controls the reading for each line in synchronization with the horizontal synchronizing signal based on the rising edge of the external trigger signal.
  • the operation of each AD converter 130a in each 1H period is the same as the example in which the 1V period is started in response to the vertical synchronization signal described with reference to FIG. 6, and thus the description thereof is omitted here.
  • each AD converter 130a performs the AD conversion process by the next falling edge of the horizontal synchronizing signal. It is a waiting period to wait for the start. Power is consumed in each AD converter 130a even during the standby period within this 1H period. Further, the vertical blanking period 31 in the 1V period is also a standby period in which the AD converters 130a do not perform AD conversion processing. Even during the standby time within this 1V period, power is similarly consumed in each AD converter 130a.
  • each AD converter 130a by supplying power to each AD converter 130a during the standby period (horizontal blanking period 41 and vertical blanking period 31) of the 1H period and the 1V period, each AD converter 130a is in the operating state. As described above, by operating each AD converter 130a during the standby period, electric charge such as hot carriers may be generated from the circuit forming the AD converter 130a. This charge may become a noise source and may be a factor of deteriorating the image quality of the image by the pixel signal read from each pixel 110.
  • the standby state is a standby state for AD conversion processing, the AD conversion operation in the AD converter 130 is stopped, and power consumption can be suppressed. As a result, the power consumption of the AD conversion unit 13 can be reduced.
  • FIG. 9 is a block diagram schematically showing a configuration example of a solid-state image pickup element as the image pickup apparatus according to the first embodiment.
  • the solid-state image sensor 10a shown in FIG. 9 has the ADC stop control signal supplied from the controller 19 to the AD converter 13 added to the solid-state image sensor 10 described with reference to FIG.
  • the ADC stop control signal is a signal for executing standby control for each AD converter 130 included in the AD conversion unit 13.
  • FIG. 10 is a time chart showing an example of a process of reading a pixel signal from each pixel 110 according to a vertical synchronization signal and a horizontal synchronization signal according to the first embodiment.
  • a chart showing the vertical synchronizing signal, the horizontal synchronizing signal, the reading process, and the ADC operation is shown from the top.
  • a chart showing details of the ADC operation in the 1H period is shown.
  • the horizontal synchronizing signal is represented as an upward pulse formed from a pair of a rising edge and a falling edge.
  • timing of each pulse of the vertical synchronizing signal and the horizontal synchronizing signal, and the timing of the reading period 30 and the vertical blanking period 31 in the 1V period are the same as the timings described with reference to FIG. 6, and thus the description thereof is omitted here. To do.
  • the horizontal blanking period 41 (see FIG. 6) after the AD conversion period 40 is restored after the circuit stop period 41a and the circuit blanking period 41a. It is divided into a period 41b.
  • the circuit suspension period 41a is a period in which standby control is performed on each AD converter 130 included in the AD conversion unit 13a to set the operation state of the AD converter 130 to the standby state and stop the operation of each AD converter 130.
  • the return period 41b is a period from the release of the standby state of the AD converter 130 to the normal operation of the AD converter 130.
  • the AD conversion period 40 starts at the timing of the falling edge of the pulse 42 in the horizontal synchronization signal, and after the AD conversion period 40 ends, the control unit 19 controls the AD converters 130.
  • An ADC stop control signal for instructing execution of standby control is generated and supplied to the AD conversion unit 13a.
  • the operation state of the AD converter 130 becomes the standby state, and the operation of the AD converter 130 is stopped.
  • the control unit 19 After that, the control unit 19 generates an ADC stop control signal for instructing the start of power supply to each AD converter 130 at the timing of the rising edge of the pulse 42, and supplies it to the AD conversion unit 13a. As a result, the standby state of the AD converter 130 is released, and the operation of the AD converter 130 shifts to the operation of the restoration period 41b. The AD converter 130 shifts from the restoration operation to the AD conversion operation, assuming that the restoration period 41b ends at the next falling edge of the pulse 42.
  • the transition timing from the circuit stop period 41a to the return period 41b and the length of the return period 41b are determined by the width H p_time of the pulse 42.
  • the width H p_time of the pulse 42 is defined as the specification of the horizontal synchronizing signal according to the characteristics of the AD converter 130, and is set to the control unit 19 by the user, for example.
  • the control unit 19 further supplies an ADC stop control signal to the AD conversion unit 13a in the vertical blanking period 31 to set the operation state of the AD converter 130 to the standby state, and the AD conversion unit 130 is operated. The AD conversion operation is stopped. Also in this case, the control unit 19 supplies the ADC stop control signal to the AD conversion unit 13a at the timing of the falling edge of the horizontal synchronizing signal corresponding to the start timing of the vertical blanking period 31. The control unit 19 generates an ADC stop control signal for instructing each AD converter 130 to cancel the standby state at the timing of the rising edge of the vertical synchronization signal, and supplies the ADC stop control signal to the AD conversion unit 13a.
  • the period VC stop corresponding to the vertical blanking period 31 is a period during which the power supply to each AD converter 130 is stopped in units of 1V period.
  • a certain amount of time is required from the timing of the rising edge of the vertical synchronizing signal until the AD conversion operation is started in each AD converter 130.
  • the return operation of each AD converter 130 after the vertical blanking period 31 can be completed between the timing of the rising edge of the vertical synchronizing signal and the start of the AD conversion operation.
  • FIG. 11 is a block diagram schematically showing the configuration of an example of a solid-state image sensor to which an external trigger signal is input according to the first embodiment.
  • 11 is a diagram corresponding to FIG. 7 described above.
  • An external trigger signal is input to the control unit 19 and an ADC stop control signal is supplied from the control unit 19 to the AD conversion unit 13a.
  • FIG. 11 the configuration of the pixel array unit 11 is common to that in FIG. 1 described above, and therefore description thereof is omitted here.
  • FIG. 12 is a time chart showing an example of a process of reading a pixel signal from each pixel 110 according to an external trigger signal and a horizontal synchronization signal according to the first embodiment. 12, like FIG. 8 described above, a chart showing an external trigger signal, a horizontal synchronization signal, a read process, and an ADC operation is shown from the top, and the lower part shows the ADC in the 1H period as in FIG. A chart showing details of the operation is shown. Note that, similarly to FIG. 10 described above, in the example of FIG. 12 as well, for the sake of explanation, in the chart showing the timing of the horizontal synchronizing signal, the horizontal synchronizing signal is formed of a pair of a rising edge and a falling edge. It is represented as a pulse.
  • the exposure starts at the timing of the falling edge of the external trigger signal, and the exposure ends at the timing of the rising edge of the external trigger signal.
  • the control unit 19 controls the reading for each line in synchronization with the horizontal synchronizing signal based on the rising edge of the external trigger signal.
  • the timing of the rising edge of the external trigger signal is the start timing of the 1V period, and the reading of one frame is started.
  • the operation of each AD converter 130 in the 1V period and the 1H period is the same as the example in which the 1V period is started in response to the vertical synchronization signal described with reference to FIG.
  • the 1H period is divided into an AD conversion period 40, a circuit suspension period 41a, and a restoration period 41b.
  • the control unit 19 supplies an ADC stop control signal for performing standby control to each AD converter 130 at the end of the AD conversion period 40 to the AD conversion unit 13a, and the operation state of each AD converter 130 during the circuit stop period 41a. Is set to a standby state, and the AD conversion operation of each AD converter 130 is stopped.
  • the control unit 19 supplies an ADC stop control signal for canceling the standby state of each AD converter 130 to the AD conversion unit 13a at the next rising edge of the horizontal synchronization signal. As a result, each of the AD converters 130 included in the AD conversion unit 13a is released from the standby state and the operation shifts to the return operation.
  • the control unit 19 further performs the standby control in the vertical blanking period 31 and stops the operation of each AD converter 130, as in the example of FIG. 10. Then, the control unit 19 supplies the ADC stop control signal for canceling the standby state of each AD converter 130 to the AD conversion unit 13a at the timing of the next rising edge of the vertical synchronization signal, for example. The operation of 130 is transferred to the return operation.
  • FIG. 13 is a diagram showing a configuration of an example of the AD converter 130b according to the first embodiment.
  • the AD converter 130b shown in FIG. 13 can be applied as the AD converter 130 of FIG. Note that, in FIG. 13, portions common to those in FIG. 4 described above are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the AD converter 130b has switches 1300a, 1300b, and 1300c whose closed (on) and open (off) states are controlled by an ADC stop control signal in addition to the AD converter 130b shown in FIG. Has been done.
  • the switch 1300a switches on and off the power supply from the power supply line Vp to the DA converter 132.
  • the switch 1300b switches ON / OFF of power supply from the power supply line Vp to the comparator 133.
  • the switch 1300c switches ON / OFF of power supply from the power supply line Vp to the counter 134.
  • the current source 131 is controlled to turn on / off the current supply by the ADC stop control signal.
  • control unit 19 turns off the switches 1300a, 1300b, and 1300c, respectively, and supplies an ADC stop control signal for turning off the current supply by the current source 131 to each AD converter 130b.
  • the power supply to each AD converter 130b can be stopped.
  • FIG. 14 is a block diagram showing an example of the configuration of the control unit 19 applicable to the first embodiment.
  • the control unit 19 includes an ADC stop control signal generation unit 190 and an ADC control signal generation unit 191.
  • a horizontal sync signal is input to the ADC control signal generation unit 191.
  • the ADC control signal generation unit 191 generates an ADC control signal for executing the AD conversion operation by each AD converter 130b, for example, according to the falling edge of the input horizontal synchronization signal.
  • the ADC control signal is, for example, a signal for instructing the reference signal generation unit 14 to generate and output the ramp signal RAMP.
  • the ADC control signal is supplied to the reference signal generation unit 14 and the ADC stop control signal generation unit 190.
  • the ADC stop control signal generation unit 190 is supplied with the ADC control signal from the ADC control signal generation unit 191, and is also supplied with the vertical synchronization signal or the external trigger signal from the control unit 19.
  • both the vertical synchronization signal and the external trigger signal are trigger signals that trigger the start of reading of each pixel 110 included in the pixel array unit 11. Therefore, the vertical synchronization signal and the external trigger signal will be distinguished below. When there is no need, these are collectively called a trigger signal.
  • the ADC stop control signal generation unit 190 generates an ADC stop control signal based on the ADC control signal and the trigger signal.
  • FIG. 15 is an example time chart for explaining the ADC stop control signal according to the first embodiment. In FIG. 15, a chart showing the timing of the horizontal synchronizing signal, the ADC control, the ADC stop control signal, and the ADC operation is shown from the top.
  • the switches 1300a, 1300b, and 1300c in the AD converter 130b are turned off when the ADC stop control signal is in the high state and turned on when the ADC stop control signal is in the low state. Further, the current source 131 stops current supply when the ADC stop control signal is in a high state, and supplies power in a low state. That is, in each AD converter 130b, the power supply is stopped when the ADC stop control signal is high to stop the AD conversion operation, and the power is supplied when the ADC stop control signal is low to perform the AD conversion operation. It becomes feasible.
  • the ADC stop control signal generation unit 190 sets the ADC stop control signal to the low state according to the rising edge of the horizontal synchronization signal.
  • the switches 1300a, 1300b and 1300c are turned on in each AD converter 130b, and power is supplied to the DA converter 132, the comparator 133 and the counter 134 from the power supply line Vp. .
  • the current is supplied from the current source 131 in each AD converter 130b.
  • the operation of each AD converter 130b shifts to the operation in the return period 41b.
  • the ADC stop control signal generation unit 190 generates an ADC control signal for performing ADC control that causes an AD conversion operation in each AD converter 130b at a timing corresponding to the falling edge of the horizontal synchronization signal.
  • the operation of each AD converter 130 shifts to the operation of the AD conversion period 40, and the AD conversion operation is executed in each AD converter 130b.
  • This AD conversion operation includes a conversion operation in the P-phase period and a conversion operation in the D-phase period in the pixel 110.
  • the ADC control signal generation unit 191 generates an ADC control signal indicating the end of the AD conversion operation at the timing when the AD conversion operation by each AD converter 130b ends, and the generated ADC control signal is converted into each AD conversion signal.
  • the ADC stop control signal generation unit 190 generates an ADC control signal indicating the end of the AD conversion operation at the timing when the AD conversion operation by each AD converter 130b ends.
  • the ADC stop control signal generation unit 190 sets the ADC stop control signal to a high state according to the ADC control signal supplied from the ADC control signal generation unit 191 indicating the end of the AD conversion operation.
  • the switches 1300a, 1300b, and 1300c are turned off, and the power supply from the power supply line Vp to the DA converter 132, the comparator 133, and the counter 134 is stopped.
  • the supply of current from the current source 131 is stopped in each AD converter 130b. Therefore, the operation of each AD converter 130b shifts to the operation of the circuit stop period 41a.
  • the ADC control signal generation unit 191 In response to the next rising edge of the horizontal sync signal, the ADC control signal generation unit 191 generates an ADC control signal instructing the supply of electric power to each AD converter 130b, and generates the generated ADC control signal as an ADC stop control signal. It is supplied to the section 190.
  • the ADC stop control signal generation unit 190 shifts the ADC stop control signal from the high state to the low state according to the supplied ADC control signal.
  • the switches 1300a, 1300b and 1300c are turned on in each AD converter 130b, and the DA converter 132, the comparator 133 and the counter 134 are supplied with power from the power supply line Vp. It At the same time, the current is supplied from the current source 131 in each AD converter 130b. As a result, the operation of each AD converter 130b shifts to the operation in the return period 41b.
  • FIG. 16 and 17 are time charts showing an example of control in the vertical blanking period 31 according to the first embodiment.
  • FIG. 16 shows an example of control in the vertical blanking period 31 in the process of reading the pixel signal from each pixel 110 according to the vertical synchronization signal and the horizontal synchronization signal according to the first embodiment.
  • FIG. 17 shows an example of control in the vertical blanking period 31 in the process of reading the pixel signal from each pixel 110 by the external trigger control according to the first embodiment.
  • the control unit 19 generates an ADC stop control signal that is in a high state in the period VC stop including the vertical blanking period 31.
  • the control unit 19 omits the return period 41b (see FIG. 15) in the 1H period immediately before the vertical blanking period 31, and becomes the high state at the timing of the beginning of the circuit stop period 41a in the 1H period.
  • An ADC stop control signal that goes low at the end of the blanking period 31 is generated.
  • power supply is stopped for each AD converter 130b, the operation of the AD converter 130b is during the period VC stop, is stopped.
  • the control unit 19 generates the ADC stop control signal that is in the high state during the period VC stop including the vertical blanking period 31. That is, the control unit 19 outputs an ADC stop control signal that becomes a high state at the beginning timing of the circuit stop period 41a in the 1H period immediately before the vertical blanking period 31 and becomes a low state at the end timing of the vertical blanking period 31. To generate.
  • the ADC stop control signal during the period VC stop, power supply is stopped for each AD converter 130b, the operation of the AD converter 130b is during the period VC stop, is stopped.
  • the power supply to each AD converter 130b is stopped during the circuit stop period 41a within the 1H period and the vertical blanking period 31, but this is not limited to this example.
  • the power supply to each AD converter 130b may be stopped in at least one of the circuit stop period 41a and the vertical blanking period 31 within the 1H period. Also in this case, it is possible to reduce the power consumption in the AD conversion unit 13a.
  • the standby state of the AD converter 130b is realized by stopping the supply of power to each unit of the AD converter 130b, but this is not limited to this example.
  • the standby state may be achieved by stopping the power supply to at least one of the DA converter 132, the comparator 133, and the counter 134 included in the AD converter 130b. It is also possible to realize the standby state of the AD converter 130b by reducing the power supplied to each part of the AD converter 130b.
  • each pixel 110 included in the pixel array unit 11 is divided into a plurality of groups, and the AD conversion unit 13 is provided for each of the plurality of groups.
  • each pixel 110 included in the pixel array unit 11 is divided into two groups, and the AD conversion units 13 corresponding to the respective groups are arranged on both end sides of the pixel array unit 11.
  • FIG. 18 is a block diagram schematically showing a configuration example of the solid-state imaging device according to the second embodiment.
  • the solid-state imaging device 10b has AD conversion units 13up and 13lw arranged at both ends of each column in the pixel array unit 11a.
  • the control unit 19a supplies the ADC control signal up and the ADC stop control signal up (stop) to be supplied to the AD conversion unit 13up arranged on the upper side in FIG. 18 and the AD conversion unit 13lw arranged on the lower side.
  • an ADC stop control signal lw (stop) for generating the signal.
  • each vertical signal line 17 derived from the pixel array unit 11a is alternately connected to the upper AD conversion unit 13up and the lower AD conversion unit 13lw. More specifically, for example, when the pixel array unit 11a includes 2n (n is an integer of 1 or more) columns (vertical signal lines 17), a vertical signal connected to the upper AD conversion unit 13up.
  • the line 17 is an odd-numbered vertical signal line 17 which is VSL 1 , VSL 3 , ..., VSL 2n-1 , and the vertical signal line 17 connected to the lower AD converter 13lw is an even-numbered vertical signal line.
  • the lines 17 are VSL 2 , VSL 4 , ..., VSL 2n . As described above, in the example of FIG.
  • each pixel 110 included in the pixel array unit 11a includes a group of pixels connected to the odd-numbered vertical signal lines 17 and a pixel connected to the even-numbered vertical signal lines 17. It is divided into two groups.
  • the AD conversion unit 13up and the AD conversion unit 13lw each include n AD converters 130b, which is half the number of the 2n vertical signal lines 17 included in the pixel array unit 11a.
  • the signal processing unit 20a performs CDS processing based on the two digital values output from the AD conversion unit 13up, and generates a pixel signal (pixel data) by a digital signal. Similarly, the signal processing unit 20a performs CDS processing based on the two digital values output from the AD conversion unit 13lw, and generates a pixel signal by a digital signal.
  • the signal processing unit 20a alternately outputs, for example, a pixel signal based on the output of the AD conversion unit 13up and a pixel signal based on the output of the AD conversion unit 13lw in the order of the vertical signal lines 17.
  • the pixel signals output from the signal processing unit 20a are arranged and stored in a predetermined order in, for example, a frame buffer outside the solid-state imaging device 10b, and one image data is formed.
  • FIG. 19 is a time chart showing an example of a process of reading a pixel signal from each pixel 110 according to a vertical synchronization signal and a horizontal synchronization signal according to the second embodiment.
  • each chart of the vertical synchronizing signal, the horizontal synchronizing signal, and the reading process is common to the corresponding chart of FIG. 10 described above.
  • the number of lines to be AD-converted by each AD converter 13up and 13lw is the same as the number of lines to be AD-converted by the AD converter 13a according to the first embodiment. Therefore, the ADC operation by each AD converter 130b included in each AD converter 13up and 13lw will be described with reference to FIG. 10 as shown in the charts of the ADC operations “up” and “lw” in FIG. The same operation is performed.
  • control unit 19a generates ADC stop control signals up (stop) and lw (stop) that fall according to the rising edge of the horizontal synchronization signal and rise with the end of the ADC operation of each AD converter 130b (FIG. 15), and supplies to the AD conversion units 13up and 13lw, respectively.
  • ADC stop control signals up (stop) and lw (stop) and the ADC control signals up and lw for controlling the AD conversion operation in the AD converters 130b included in the AD converters 13up and 13lw, respectively.
  • the 1H period is divided into an AD conversion period 40, a circuit stop period 41a, and a return period 41b.
  • Each AD converter 130b included in each AD conversion unit 13up and 13lw executes AD conversion processing in these AD conversion periods 40, and power supply is stopped in the circuit stop period 41a. Further, the supply of electric power is restarted in the return period 41b.
  • the AD conversion period 40, the circuit stop period 41a, and the recovery period 41b are executed in each line in synchronization with the horizontal synchronization signal.
  • control unit 19a Similarly in the vertical blanking period 31, the control unit 19a generates the ADC stop control signals up (stop) and lw (stop) which are in the high state in the vertical blanking period 31, and the AD conversion units 13up and 13lw respectively. Supply. As a result, in the vertical blanking period 31, the power supply to the AD converters 130b included in the AD converters 13up and 13lw is stopped.
  • each AD converter 130b does not perform the AD conversion processing, and each AD converter 13up and The power consumption in 13 lw can be reduced.
  • the operation of each AD converter 130b is stopped during a period in which AD conversion processing is not performed, so that the AD converter 130b is in the operating state. It is possible to reduce noise caused by electric charges such as hot carriers, which are caused by the above.
  • the third embodiment is an example in which one solid-state image sensor includes a plurality of pixel array units, and a plurality of external trigger signals that specify different exposure times are input corresponding to the plurality of pixel array units. is there.
  • FIG. 20 is a block diagram schematically showing a configuration example of the solid-state imaging device according to the third embodiment.
  • the solid-state imaging device 10c includes a plurality (two in this example) of pixel array sections 11b 1 and 11b 2 .
  • the pixel array units 11b 1 and 11b 2 are also shown as the pixel array unit (1) and the pixel array unit (2).
  • the pixel array units 11b 1 and 11b 2 are assumed to have the same configuration as the pixel array unit 11 described with reference to FIG.
  • a horizontal synchronizing signal and a plurality of external trigger signals are input to the control unit 19b.
  • two external trigger signals of the external trigger signal (1) and the external trigger signal (2) are input to the control unit 19b.
  • the control unit 19b generates an ADC control signal (1) corresponding to the pixel array unit 11b 1 and an ADC stop control signal (1) based on the horizontal synchronization signal and the external trigger signal (1).
  • the control unit 19b generates an ADC control signal (2) corresponding to the pixel array unit 11b 2 and an ADC stop control signal (2) based on the horizontal synchronization signal and the external trigger signal (2).
  • the solid-state imaging device 10c further includes vertical scanning units 12a 1 and 12a 2 and AD conversion units 13b 1 and 13b 2 .
  • Each of the vertical scanning units 12a 1 and 12a 2 has the same function as the vertical scanning unit 12 described with reference to FIG. In FIG. 20, the vertical scanning units 12a 1 and 12a 2 are also shown as a vertical scanning unit (1) and a vertical scanning unit (2), respectively.
  • the vertical scanning unit 12a 1 receives the reset pulse RST, the transfer pulse TRG, and the reset pulse RST supplied to each pixel 110 included in the pixel array unit 11b 1 based on the external trigger signal (1) from the control unit 19b and the horizontal synchronizing signal.
  • the selection signal SEL is generated.
  • the vertical scanning unit 12a 2 transfers the reset pulse RST supplied to each pixel 110 included in the pixel array unit 11b 2 based on the external trigger signal (2) by the control unit 19b and the horizontal synchronization signal, and transfers the reset pulse RST.
  • the pulse TRG and the selection signal SEL are generated.
  • Each of the AD conversion units 13b 1 and 13b 2 has a function equivalent to that of the AD conversion unit 13a described with reference to FIG. 9, and includes a plurality of AD converters 130b.
  • the AD conversion unit 13b 1 includes the number of AD converters 130b corresponding to the number of columns (the number of columns) of the pixel array unit 11b 1 .
  • the AD converter 13b 2 includes the number of AD converters 130b corresponding to the number of columns of the pixel array unit 11b 2 .
  • the AD conversion units 13b 1 and 13b 2 are also shown as an AD conversion unit (1) and an AD conversion unit (2), respectively.
  • the ADC converter 13b 1 is supplied with the ADC control signal (1) and the ADC stop control signal (1) generated by the controller 19b in response to the external trigger signal (1).
  • the operation of each AD converter 130b included in the AD converter 13b 1 is controlled according to the ADC control signal (1) and the ADC stop control signal (1), and is supplied from each vertical signal line 17 of the pixel array unit 11b 1.
  • AD conversion processing is performed on the corresponding pixel signal.
  • the digital value obtained by subjecting the pixel signal to AD conversion by the AD converter 13b 1 is supplied to the signal processor 20b.
  • the AD converter 13b 2 is supplied with the ADC control signal (2) and the ADC stop control signal (2) generated by the controller 19b in response to the external trigger signal (2).
  • the operation of each AD converter 130b included in the AD converter 13b 2 is controlled according to the ADC control signal (2) and the ADC stop control signal (2), and is supplied from each vertical signal line 17 of the pixel array unit 11b 2.
  • AD conversion processing is performed on the corresponding pixel signal.
  • the digital value obtained by subjecting the pixel signal to AD conversion by the AD converter 13b 2 is supplied to the signal processor 20b.
  • the signal processing unit 20b performs a CDS process based on each digital value supplied from the AD conversion unit 13b 1 and outputs pixel data by a digital signal corresponding to the pixel array unit 11b 1 as a pixel output (1). Similarly, the signal processing unit 20b performs CDS processing based on each digital value supplied from the AD conversion unit 13b 2 and outputs pixel data corresponding to the pixel array unit 11b 2 by a digital signal as a pixel output (2). To do.
  • FIG. 21 is a time chart showing an example of pixel signal read processing from each pixel 110 according to the external trigger signals (1) and (2) and the horizontal synchronization signal according to the third embodiment.
  • the chart of the horizontal synchronizing signal, each chart of the external trigger signal (1) and the reading process (1) by the external trigger signal (1), the external trigger signal (2), and the external trigger signal are shown.
  • a chart showing the details of the ADC operation in the 1H period is shown in the lower stage.
  • the horizontal synchronizing signal is formed of a pair of a rising edge and a falling edge. It is represented as a pulse.
  • the external trigger signal (1) is a signal that falls at time t 20 and rises at time t 21
  • the external trigger signal (2) is time t 22 that is later than time t 20. It is a signal that falls at and rises at time t 21 .
  • different exposure times are designated by the external trigger signals (1) and (2).
  • the vertical scanning unit 12a 1 transmits a control signal based on the external trigger signal (1) to the pixel array unit 11b 1 .
  • the vertical scanning unit 12a 2 transmits a control signal based on the external trigger signal (2) to the pixel array unit 11b 2 .
  • Each pixel 110 included in the pixel array unit 11b 1 is exposed for the exposure time indicated by the time t 20 and the time t 21 in the external trigger signal (1).
  • each pixel 110 included in the pixel array unit 11b 2 is shorter than each pixel 110 included in the pixel array unit 11b 1 by the exposure time shown at the time points t 22 and t 21 in the external trigger signal (1). To be done. In this way, by exposing the two pixel array sections 11b 1 and 11b 2 included in one solid-state imaging device 10c with different exposure times, for example, the dynamic range of the obtained image data can be expanded.
  • the read process (1) and the ADC operation according to the external trigger signal (1) and the read process (2) and the ADC operation according to the external trigger signal (2) are the external trigger described with reference to FIG. 12, respectively. This is the same as the read processing and the ADC operation according to the signal. That is, in the pixel array section 11b 1 , the timing of the rising edge of the external trigger signal (1) is set to the start timing of the 1V period, and reading of one frame is started. Similarly, in the pixel array unit 11b 2, the timing of the rising edge of the external trigger signal (2) is the head timing of the 1V period, 1 frame readout is started.
  • the AD converter 130b included in the AD conversion section 13b operation within 1V period and in 1H period corresponding to the external trigger signal (1), and, each AD converter 130b included in the AD conversion unit 13b 2
  • the operation in the 1V period and the 1H period according to the external trigger signal (2) is the same as the example in which the 1V period is started according to the vertical synchronization signal described with reference to FIG. .
  • Control unit 19b is at the end of the AD conversion period 40, ADC stop control signal for stopping the supply of electric power to the AD converter 130b included in the AD conversion section 13b 1 a (1) is supplied to the AD converter 13b 1 The supply of power to each AD converter 130b is stopped in the circuit stop period 41a.
  • Control unit 19b is supplied at the rising edge of the next horizontal synchronizing signal, ADC stop control signal to resume supply of power to each AD converter 130 included in the AD conversion section 13b 1 (1) to the AD converter 13b 1 To do. As a result, power is supplied to each AD converter 130b included in the AD conversion unit 13b 1, and the operation of each AD converter 130b shifts to the return operation.
  • the operation of the AD conversion unit 13b 2 according to the external trigger signal (2) is also similar to the operation of the AD conversion unit 13b 1 described above, and therefore the description thereof is omitted here. Further, the process of stopping the power supply to each AD converter 130b in the vertical blanking period 31 is also similar to the example described with reference to FIG. 10, and thus the description thereof is omitted here.
  • the AD conversion units 13b are also provided.
  • the power supply is stopped during the period in which the AD converters 130b included in 1 and 13b 2 do not perform AD conversion processing, and the power consumption in the AD conversion units 13b 1 and 13b 2 can be reduced.
  • the operation of each AD converter 130b is stopped during the period in which AD conversion processing is not performed, so that the AD converter 130b is in the operating state. It is possible to reduce noise caused by electric charges such as hot carriers, which are caused by the above.
  • FIG. 22 is a block diagram showing the configuration of an example of the electronic device according to the fourth embodiment.
  • the electronic device 100 includes an optical system 1000, an image pickup apparatus 1001, a signal processing circuit 1002, a memory 1003, and a monitor 1004.
  • FIG. 22 shows an embodiment in which any one of the above-described solid-state imaging devices 10a, 10b, and 10c of the present disclosure is provided in the electronic device 100 as the imaging device 1001.
  • a digital still camera, a digital video camera, a mobile phone with an imaging function, a smartphone, or the like can be applied as the electronic device 100.
  • the optical system 1000 forms image light (incident light) from a subject on the image pickup surface of the image pickup apparatus 1001. As a result, the signal charges are accumulated in the imaging device 1001 for a certain period.
  • the signal processing circuit 1002 performs various kinds of signal processing on the signal output from the imaging device 1001.
  • the video signal subjected to the signal processing can be stored in a storage medium such as the memory 1003. Further, the video signal can be output to the monitor 1004.
  • FIG. 23 is a diagram showing a usage example of the solid-state image pickup elements 10a, 10b, and 10c as the image pickup apparatus according to the present disclosure described above.
  • the solid-state imaging devices 10a, 10b, and 10c described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-rays as described below.
  • -A device that captures images used for viewing, such as digital cameras and portable devices with a shooting function.
  • ⁇ In-vehicle sensors that take images of the front, rear, surroundings, and inside of the vehicle for safe driving such as automatic stop and recognition of the driver's condition, surveillance cameras for monitoring traveling vehicles and roads, inter-vehicle etc.
  • a device used for traffic such as a distance measurement sensor for distance measurement.
  • a device used for home appliances such as a TV, a refrigerator, and an air conditioner in order to photograph a user's gesture and operate a device according to the gesture.
  • -A device used for medical care or healthcare such as an endoscope or a device for taking an angiogram by receiving infrared light.
  • -A device used for security such as a security surveillance camera or a person authentication camera.
  • -A device used for beauty such as a skin measuring device that photographs the skin and a microscope that photographs the scalp.
  • -Devices used for sports such as action cameras and wearable cameras for sports purposes.
  • -A device used for agriculture such as a camera for monitoring the condition of fields and crops.
  • a conversion unit that converts an analog signal read from each pixel included in the pixel array in a two-dimensional lattice array into a digital signal
  • a control unit for controlling the operation of the conversion unit Equipped with The control unit is At least one of a horizontal blanking period based on a horizontal synchronizing signal indicating a read timing of lines in the array and a vertical blanking period based on a trigger signal indicating a timing to start reading pixels of one frame from the pixel array.
  • An imaging device that shifts the state of the conversion unit to a standby state in which the conversion is not performed within one period.
  • the conversion unit is The conversion is started in response to one of rising and falling of the horizontal synchronizing signal,
  • the control unit is The state of the conversion unit is shifted to the standby state according to the end timing of the conversion, and the standby state of the conversion unit is released according to the other of rising and falling of the horizontal synchronization signal.
  • the imaging device according to.
  • the trigger signal is The image pickup apparatus according to (1) or (2), which is a vertical synchronization signal indicating a period for reading the pixels of the one frame from the pixel array.
  • the trigger signal is a signal that designates the start and end of exposure in the pixel array, and the vertical blanking period is based on the timing (1) or () based on the timing when the end of the exposure is designated by the trigger signal.
  • the image pickup device 2).
  • the control unit is The imaging device according to any one of (1) to (4), wherein the state of the conversion unit is shifted to the standby state by stopping the supply of power to the conversion unit.
  • the control unit is A state control signal that shifts the state of the conversion unit to the standby state is generated based on a conversion control signal that controls the start and end of the conversion by the conversion unit, the trigger signal, and the horizontal synchronization signal.
  • the imaging device according to any one of (1) to (5) above.
  • the control unit is The imaging device according to (6), wherein the state control signal is generated corresponding to each of the plurality of conversion units.
  • the imaging device includes a plurality of the pixel arrays
  • the control unit is The imaging device according to (6), wherein the state control signal is generated corresponding to each of the plurality of pixel arrays.
  • a horizontal synchronization signal input step in which a horizontal synchronization signal indicating a read timing of a line in the array of pixels in which the pixels are included in a two-dimensional lattice array is input;
  • a trigger signal input step of inputting a trigger signal indicating a timing of starting reading of pixels for one frame from the pixel array;
  • a conversion step in which the conversion section performs conversion of the analog signal read from the pixel into a digital signal;
  • a conversion unit that converts an analog signal read from each pixel included in the pixel array in a two-dimensional lattice array into a digital signal
  • a control unit for controlling the operation of the conversion unit
  • a storage unit for storing the digital signal, Equipped with The control unit is At least one of a horizontal blanking period based on a horizontal synchronization signal indicating a read timing of a line in the array and a vertical blanking period based on a trigger signal indicating a timing to start reading pixels of one frame from the pixel array.
  • An electronic device that shifts the state of the conversion unit to a standby state in which the conversion is not performed in one period.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

An imaging device provided with: a conversion unit (130b) which performs conversion of an analog signal read from each of pixels (110) included in a pixel array (11) in a two-dimensional lattice arrangement into a digital signal; and a control unit (19) which controls the operation of the conversion unit. The control unit causes the state of the conversion unit to transition to a standby state in which no conversion is performed, in at least one of: a horizontal blanking period based on a horizontal synchronization signal indicating the timing of reading a line of the arrangement; and a vertical blanking period based on a trigger signal indicating the timing of starting pixel reading for one frame from the pixel array.

Description

撮像装置、撮像装置の制御方法および電子機器IMAGING DEVICE, IMAGING DEVICE CONTROL METHOD, AND ELECTRONIC DEVICE
 本発明は、撮像装置、撮像装置の制御方法および電子機器に関する。 The present invention relates to an imaging device, a method for controlling the imaging device, and an electronic device.
 CMOS(Complementary Metal Oxide Semiconductor)などを用いた固体撮像素子が知られている。このような固体撮像素子では、受光素子を含む画素がアレイ状に配列され、このアレイ状に配列された画素からの読み出しを行毎に制御して、列毎に画素からの信号を出力する。そして、列毎に設けられたAD(Analog to Digital)変換器により、画素から読み出された信号をディジタル信号による画素信号に変換して出力する。 Solid-state imaging devices using CMOS (Complementary Metal Oxide Semiconductor) etc. are known. In such a solid-state imaging device, pixels including light receiving elements are arranged in an array, and reading from the pixels arranged in the array is controlled for each row, and a signal from the pixel is output for each column. Then, an AD (Analog to Digital) converter provided for each column converts the signal read from the pixel into a pixel signal by a digital signal and outputs it.
特開2010-213011号公報JP, 2010-213011, A
 固体撮像素子において、画素数が増大する傾向にある一方で、消費電力の低減が求められている。 ▼ While the number of pixels in solid-state imaging devices tends to increase, there is a demand for reduced power consumption.
 本開示は、消費電力の低減が可能な撮像装置、撮像装置の制御方法および電子機器を提供することを目的とする。 The present disclosure aims to provide an imaging device, a method of controlling the imaging device, and an electronic device capable of reducing power consumption.
 上記目的を達成するために、本開示の撮像装置は、画素アレイに二次元格子状の配列で含まれる各画素から読み出されたアナログ信号のディジタル信号への変換を行う変換部と、変換部の動作を制御する制御部と、を備え、制御部は、配列におけるラインの読み出しタイミングを示す水平同期信号に基づく水平ブランキング期間と、画素アレイから1フレーム分の画素の読み出しを開始するタイミングを示すトリガ信号に基づく垂直ブランキング期間と、のうち少なくとも一方の期間内において、変換部の状態を変換を行わないスタンバイ状態に移行させる。 In order to achieve the above object, an imaging apparatus according to the present disclosure includes a conversion unit that converts an analog signal read from each pixel included in a two-dimensional lattice array in a pixel array into a digital signal, and a conversion unit. And a control unit for controlling the operation of the., The control unit sets a horizontal blanking period based on a horizontal synchronization signal indicating a read timing of lines in the array, and a timing for starting reading of pixels for one frame from the pixel array. During at least one of the vertical blanking period based on the trigger signal shown, the state of the conversion unit is shifted to the standby state in which no conversion is performed.
実施形態に適用可能な固体撮像素子の基本的な構成例を示すブロック図である。It is a block diagram which shows the basic structural example of the solid-state image sensor applicable to embodiment. 各実施形態に適用可能な画素の一例の構成を示す図である。It is a figure which shows the structure of an example of the pixel applicable to each embodiment. 実施形態に適用可能な、画素における動作の例を示すタイムチャートである。7 is a time chart showing an example of an operation in a pixel, which is applicable to the embodiment. 既存技術によるAD変換器の構成の例を示す図である。It is a figure which shows the example of a structure of the AD converter by existing technology. 既存技術による固体撮像素子の一例の構成を概略的に示す図である。It is a figure which shows roughly the structure of an example of the solid-state image sensor by existing technology. 既存技術による、垂直同期信号および水平同期信号に応じた各画素からの画素信号の読み出し処理の例を示すタイムチャートである。7 is a time chart showing an example of a pixel signal read process from each pixel according to a vertical synchronization signal and a horizontal synchronization signal according to an existing technique. 既存技術による固体撮像素子の一例の構成を概略的に示す図である。It is a figure which shows roughly the structure of an example of the solid-state image sensor by existing technology. 既存技術による、外部トリガ制御による各画素からの画素信号の読み出し処理の例を示すタイムチャートである。7 is a time chart showing an example of a process of reading a pixel signal from each pixel by external trigger control according to an existing technique. 第1の実施形態に係る撮像装置としての固体撮像素子の構成例を概略的に示すブロック図である。It is a block diagram which shows roughly the structural example of the solid-state image sensor as an imaging device which concerns on 1st Embodiment. 第1の実施形態に係る、垂直同期信号および水平同期信号に応じた各画素からの画素信号の読み出し処理の例を示すタイムチャートである。6 is a time chart showing an example of a process of reading a pixel signal from each pixel according to a vertical synchronization signal and a horizontal synchronization signal according to the first embodiment. 第1の実施形態に係る、外部トリガ信号が入力される固体撮像素子の一例の構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of an example of the solid-state image sensor which inputs the external trigger signal based on 1st Embodiment. 第1の実施形態に係る、外部トリガ信号および水平同期信号に応じた各画素からの画素信号の読み出し処理の例を示すタイムチャートである。6 is a time chart showing an example of a process of reading a pixel signal from each pixel according to an external trigger signal and a horizontal synchronization signal according to the first embodiment. 第1の実施形態に係るAD変換器の一例の構成を示す図である。It is a figure which shows the structure of an example of the AD converter which concerns on 1st Embodiment. 第1の実施形態に適用可能な制御部の一例の構成を示すブロック図である。FIG. 3 is a block diagram showing a configuration of an example of a control unit applicable to the first embodiment. 第1の実施形態に係るADC停止制御信号を説明するための一例のタイムチャートである。6 is a time chart of an example for explaining an ADC stop control signal according to the first embodiment. 第1の実施形態に係る、垂直同期信号および水平同期信号に応じた各画素からの画素信号の読み出し処理における垂直ブランキング期間での制御の例を示すタイムチャートである。6 is a time chart showing an example of control in a vertical blanking period in a process of reading a pixel signal from each pixel according to a vertical synchronization signal and a horizontal synchronization signal according to the first embodiment. 第1の実施形態に係る、外部トリガ制御による各画素からの画素信号の読み出し処理における垂直ブランキング期間での制御の例を示すタイムチャートである。6 is a time chart showing an example of control in a vertical blanking period in a process of reading a pixel signal from each pixel by external trigger control according to the first embodiment. 第2の実施形態に係る固体撮像素子の構成例を概略的に示すブロック図である。It is a block diagram which shows roughly the structural example of the solid-state image sensor which concerns on 2nd Embodiment. 第2の実施形態に係る、垂直同期信号および水平同期信号に応じた各画素からの画素信号の読み出し処理の例を示すタイムチャートである。9 is a time chart showing an example of a process of reading a pixel signal from each pixel according to a vertical synchronization signal and a horizontal synchronization signal according to the second embodiment. 第3の実施形態に係る固体撮像素子の構成例を概略的に示すブロック図である。It is a block diagram which shows roughly the structural example of the solid-state image sensor which concerns on 3rd Embodiment. 第3の実施形態に係る、2つの外部トリガ信号、ならびに、水平同期信号に応じた各画素からの画素信号の読み出し処理の例を示すタイムチャートである。9 is a time chart showing an example of a process of reading pixel signals from each pixel according to two external trigger signals and a horizontal synchronization signal according to the third embodiment. 第4の実施形態に係る電子機器の一例の構成を示すブロック図である。It is a block diagram which shows the structure of an example of the electronic device which concerns on 4th Embodiment. 本開示に係る撮像装置の使用例を示す図である。It is a figure which shows the usage example of the imaging device which concerns on this indication.
 以下、本開示の実施形態について、図面に基づいて詳細に説明する。なお、以下の実施形態において、同一の部位には同一の符号を付することにより、重複する説明を省略する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the following embodiments, the same parts will be denoted by the same reference numerals, and redundant description will be omitted.
[実施形態]
(各実施形態に適用可能な構成例)
 図1は、実施形態に適用可能な固体撮像素子の基本的な構成例を示すブロック図である。図1において、固体撮像素子10は、画素アレイ部11と、垂直走査部12と、AD(Analog to Digital)変換部13と、画素信号線16と、垂直信号線17と、制御部19と、信号処理部20と、を含む。
[Embodiment]
(Example of configuration applicable to each embodiment)
FIG. 1 is a block diagram showing a basic configuration example of a solid-state image sensor applicable to the embodiment. In FIG. 1, the solid-state imaging device 10 includes a pixel array unit 11, a vertical scanning unit 12, an AD (Analog to Digital) conversion unit 13, a pixel signal line 16, a vertical signal line 17, and a control unit 19. The signal processing unit 20 is included.
 画素アレイ部11は、それぞれ受光した光に対して光電変換を行う、例えばフォトダイオードによる光電変換部を有する複数の画素110を含む。画素アレイ部11において、複数の画素110は、が水平方向(行方向)および垂直方向(列方向)に二次元格子状に配列される。画素アレイ部11において、画素110の行方向の並びをラインと呼ぶ。この画素アレイ部11において所定数のラインから読み出された画素信号により、1フレームの画像(画像データ)が形成される。例えば、3000画素×2000ラインで1フレームの画像が形成される場合、画素アレイ部11は、少なくとも3000個の画素110が含まれるラインを、少なくとも2000ライン、含む。 The pixel array unit 11 includes a plurality of pixels 110 each having a photoelectric conversion unit such as a photodiode, which performs photoelectric conversion on received light. In the pixel array unit 11, the plurality of pixels 110 are arranged in a two-dimensional grid pattern in the horizontal direction (row direction) and the vertical direction (column direction). In the pixel array unit 11, the arrangement of the pixels 110 in the row direction is called a line. An image (image data) of one frame is formed by the pixel signals read from a predetermined number of lines in the pixel array unit 11. For example, when an image of one frame is formed with 3000 pixels × 2000 lines, the pixel array unit 11 includes at least 2000 lines including at least 3000 pixels 110.
 また、画素アレイ部11には、各画素110の行および列に対し、行毎に画素信号線16が接続され、列毎に垂直信号線17が接続される。 Further, in the pixel array section 11, for each row and column of each pixel 110, the pixel signal line 16 is connected for each row, and the vertical signal line 17 is connected for each column.
 画素信号線16の画素アレイ部11と接続されない端部は、垂直走査部12に接続される。垂直走査部12は、後述する制御部19の制御に従い、画素から画素信号を読み出す際の駆動パルスなどの制御信号を、画素信号線16を介して画素アレイ部11へ伝送する。垂直信号線17の画素アレイ部11と接続されない端部は、AD変換部13に接続される。画素から読み出された画素信号は、垂直信号線17を介してAD変換部13に伝送される。 The end of the pixel signal line 16 that is not connected to the pixel array section 11 is connected to the vertical scanning section 12. The vertical scanning unit 12 transmits a control signal such as a drive pulse for reading a pixel signal from a pixel to the pixel array unit 11 via the pixel signal line 16 under the control of the control unit 19 described later. An end portion of the vertical signal line 17 that is not connected to the pixel array unit 11 is connected to the AD conversion unit 13. The pixel signal read from the pixel is transmitted to the AD conversion unit 13 via the vertical signal line 17.
 AD変換部13は、垂直信号線17毎に設けられたAD変換器130と、参照信号生成部14と、水平走査部15と、を含む。AD変換器130は、画素アレイ部11の各列(カラム)に対してAD変換処理を行うカラムAD変換器である。AD変換器130は、垂直信号線17を介して画素110から供給された画素信号に対してAD変換処理を施し、ノイズ低減を行う相関二重サンプリング(CDS:Correlated Double Sampling)処理のための2つのディジタル値を生成する。AD変換器130の構成および処理の具体例については、後述する。 The AD conversion unit 13 includes an AD converter 130 provided for each vertical signal line 17, a reference signal generation unit 14, and a horizontal scanning unit 15. The AD converter 130 is a column AD converter that performs AD conversion processing on each column of the pixel array unit 11. The AD converter 130 performs AD conversion processing on the pixel signal supplied from the pixel 110 via the vertical signal line 17 and performs 2 for correlation double sampling (CDS: Correlated Double Sampling) processing for noise reduction. Generate two digital values. A specific example of the configuration and processing of the AD converter 130 will be described later.
 AD変換器130は、生成した2つのディジタル値を信号処理部20に供給する。信号処理部20は、AD変換器130から供給される2つのディジタル値に基づきCDS処理を行い、ディジタル信号による画素信号(画素データ)を生成する。信号処理部20により生成されたディジタル信号による画素信号は、固体撮像素子10の外部に出力される。 The AD converter 130 supplies the two generated digital values to the signal processing unit 20. The signal processing unit 20 performs CDS processing based on the two digital values supplied from the AD converter 130, and generates a pixel signal (pixel data) by a digital signal. The pixel signal based on the digital signal generated by the signal processing unit 20 is output to the outside of the solid-state image sensor 10.
 信号処理部20から出力されたディジタル信号による画素信号は、固体撮像素子10の外部において、例えばフレームバッファに順次記憶される。フレームバッファに1フレーム分の画素信号が記憶されると、記憶された画素信号が1フレームの画像データとしてフレームバッファから読み出される。 The pixel signal based on the digital signal output from the signal processing unit 20 is sequentially stored outside the solid-state image sensor 10, for example, in a frame buffer. When pixel signals for one frame are stored in the frame buffer, the stored pixel signals are read out from the frame buffer as image data for one frame.
 参照信号生成部14は、制御部19から入力されるADC制御信号に基づき、各AD変換器130が画素信号を2つのディジタル値に変換するために用いるランプ信号RAMPを生成する。ランプ信号RAMPは、レベル(電圧値)が時間に対して一定の傾きで低下する信号、または、レベルが階段状に低下する信号である。参照信号生成部14は、生成したランプ信号RAMPを、各AD変換器130に供給する。参照信号生成部14は、例えばDA(Digital to Analog)変換回路などを用いて構成される。 The reference signal generation unit 14 generates a ramp signal RAMP used by each AD converter 130 to convert a pixel signal into two digital values, based on the ADC control signal input from the control unit 19. The ramp signal RAMP is a signal whose level (voltage value) decreases with a constant slope with respect to time, or a signal whose level decreases stepwise. The reference signal generation unit 14 supplies the generated ramp signal RAMP to each AD converter 130. The reference signal generation unit 14 is configured using, for example, a DA (Digital to Analog) conversion circuit or the like.
 水平走査部15は、制御部19の制御の下、各AD変換器130を所定の順番で選択する選択走査を行うことによって、各AD変換器130が一時的に保持している各ディジタル値を信号処理部20へ順次出力させる。水平走査部15は、例えばシフトレジスタやアドレスデコーダなどを用いて構成される。 Under the control of the control unit 19, the horizontal scanning unit 15 performs a selective scan for selecting the AD converters 130 in a predetermined order, so that the digital values temporarily held by the AD converters 130 are detected. The signals are sequentially output to the signal processing unit 20. The horizontal scanning unit 15 is configured by using, for example, a shift register or an address decoder.
 制御部19は、垂直走査部12、AD変換部13、参照信号生成部14および水平走査部15などの駆動制御を行う。制御部19は、垂直走査部12、AD変換部13、参照信号生成部14および水平走査部15の動作の基準となる各種の駆動信号を生成する。制御部19は、例えば、外部から供給される垂直同期信号または外部トリガ信号と、水平同期信号とに基づき、垂直走査部12が画素信号線16を介して各画素110に供給するための制御信号を生成する。制御部19は、生成した制御信号を垂直走査部12に供給する。 The control unit 19 controls the drive of the vertical scanning unit 12, the AD converting unit 13, the reference signal generating unit 14, the horizontal scanning unit 15, and the like. The control unit 19 generates various drive signals serving as a reference for the operations of the vertical scanning unit 12, the AD converting unit 13, the reference signal generating unit 14, and the horizontal scanning unit 15. The control unit 19 is, for example, a control signal for the vertical scanning unit 12 to supply each pixel 110 via the pixel signal line 16 based on a vertical synchronization signal or an external trigger signal supplied from the outside and a horizontal synchronization signal. To generate. The control unit 19 supplies the generated control signal to the vertical scanning unit 12.
 垂直走査部12は、制御部19から供給される制御信号に基づき、画素アレイ部11の選択された画素行の画素信号線16に駆動パルスを含む各種信号を、ライン毎に各画素110に供給し、各画素110から、画素信号を垂直信号線17に出力させる。垂直走査部12は、例えばシフトレジスタやアドレスデコーダなどを用いて構成される。 The vertical scanning unit 12 supplies various signals including a drive pulse to the pixel signal line 16 of the selected pixel row of the pixel array unit 11 based on the control signal supplied from the control unit 19 to each pixel 110 line by line. Then, the pixel signal is output from each pixel 110 to the vertical signal line 17. The vertical scanning unit 12 is configured using, for example, a shift register or an address decoder.
 このように構成された固体撮像素子10は、AD変換器130が列毎に配置されたカラムAD方式のCMOS(Complementary Metal Oxide Semiconductor)イメージセンサである。 The solid-state imaging device 10 thus configured is a column AD type CMOS (Complementary Metal Oxide Semiconductor) image sensor in which the AD converters 130 are arranged in each column.
 図2は、各実施形態に適用可能な画素110の一例の構成を示す図である。図2において、画素110は、例えばPN接合のフォトダイオードからなる光電変換素子111と、それぞれN型MOS(Metal Oxide Semiconductor)トランジスタであるトリガトランジスタ112、リセットトランジスタ114、増幅トランジスタ115および選択トランジスタ116と、を含む。また、画素110に対して接続される画素信号線16は、リセットパルスRSTと、転送パルスTRGと、選択信号SELとをそれぞれ供給する。 FIG. 2 is a diagram showing a configuration of an example of a pixel 110 applicable to each embodiment. In FIG. 2, the pixel 110 includes a photoelectric conversion element 111 formed of, for example, a PN junction photodiode, a trigger transistor 112, a reset transistor 114, an amplification transistor 115, and a selection transistor 116 which are N-type MOS (Metal Oxide Semiconductor) transistors, respectively. ,including. The pixel signal line 16 connected to the pixel 110 supplies a reset pulse RST, a transfer pulse TRG, and a selection signal SEL, respectively.
 画素110において、光電変換素子111は、カソードが接地接続され、アノードがトリガトランジスタ112のドレインに接続される。トリガトランジスタ112のソースは、浮遊拡散層113に接続される。トリガトランジスタ112のゲートには、転送パルスTRGが供給される。トリガトランジスタ112は、転送パルスTRGがハイ(High)状態でオン(閉)となり、転送パルスTRGがロー(Low)状態でオフ(開)となる。トリガトランジスタ112がオンの状態で、光電変換素子111から出力される電荷が浮遊拡散層113に供給される。 In the pixel 110, the photoelectric conversion element 111 has a cathode connected to the ground and an anode connected to the drain of the trigger transistor 112. The source of the trigger transistor 112 is connected to the floating diffusion layer 113. The transfer pulse TRG is supplied to the gate of the trigger transistor 112. The trigger transistor 112 is turned on (closed) when the transfer pulse TRG is in the high (High) state, and turned off (open) when the transfer pulse TRG is in the low (Low) state. With the trigger transistor 112 turned on, the electric charge output from the photoelectric conversion element 111 is supplied to the floating diffusion layer 113.
 浮遊拡散層113は、光電変換素子111から供給された電荷を蓄積する。浮遊拡散層113は、蓄積した電荷の量に応じた電圧を生成する。 The floating diffusion layer 113 stores the electric charge supplied from the photoelectric conversion element 111. The floating diffusion layer 113 generates a voltage according to the amount of accumulated charge.
 リセットトランジスタ114のソースが浮遊拡散層113に接続される。リセットトランジスタ114のドレインに対して、画素110に対する電源VDDが接続される。リセットトランジスタ114のゲートには、リセットパルスRSTが供給される。リセットトランジスタ114は、リセットパルスRSTがハイ状態でオンとなり、リセットパルスRSTがロー状態でオフとなる。 The source of the reset transistor 114 is connected to the floating diffusion layer 113. The power supply VDD for the pixel 110 is connected to the drain of the reset transistor 114. The reset pulse RST is supplied to the gate of the reset transistor 114. The reset transistor 114 is turned on when the reset pulse RST is high and turned off when the reset pulse RST is low.
 増幅トランジスタ115のゲートが浮遊拡散層113に接続される。増幅トランジスタ115のドレインに電源VDDが接続され、ソースに選択トランジスタ116のドレインが接続される。選択トランジスタ116のソースは、垂直信号線(VSL)17に接続される。選択トランジスタ116のゲートには、選択信号SELが供給される。選択トランジスタ116は、選択信号SELがハイ状態でオンとなり、ロー状態でオフとなる。 The gate of the amplification transistor 115 is connected to the floating diffusion layer 113. The power supply VDD is connected to the drain of the amplification transistor 115, and the drain of the selection transistor 116 is connected to the source. The source of the selection transistor 116 is connected to the vertical signal line (VSL) 17. The selection signal SEL is supplied to the gate of the selection transistor 116. The selection transistor 116 is turned on when the selection signal SEL is high and turned off when the selection signal SEL is low.
 図3は、実施形態に適用可能な、図2に示した画素110における動作の例を示すタイムチャートである。図3において、「SEL」、「RST」および「TRG」は、それぞれ選択信号SEL、リセットパルスRSTおよび転送パルスTRGを示す。また、「FD」は、浮遊拡散層113に蓄積される電荷量を示し、「VSL」は、垂直信号線17から出力される画素信号のレベル(電圧)を示している。 FIG. 3 is a time chart showing an example of an operation in the pixel 110 shown in FIG. 2, which is applicable to the embodiment. In FIG. 3, “SEL”, “RST”, and “TRG” indicate the selection signal SEL, the reset pulse RST, and the transfer pulse TRG, respectively. Further, “FD” indicates the amount of charges accumulated in the floating diffusion layer 113, and “VSL” indicates the level (voltage) of the pixel signal output from the vertical signal line 17.
 図3のタイムチャートにおいて、初期状態では、選択信号SEL、リセットパルスRSTおよび転送パルスTRGがそれぞれロー状態とされる。また、光電変換素子111が露光され、ロー状態転送パルスTRGによりトリガトランジスタ112がオフとなっているため、露光により生成された電荷が光電変換素子111に蓄積される。 In the time chart of FIG. 3, in the initial state, the selection signal SEL, the reset pulse RST, and the transfer pulse TRG are in a low state. Further, since the photoelectric conversion element 111 is exposed and the trigger transistor 112 is turned off by the low-state transfer pulse TRG, the electric charge generated by the exposure is accumulated in the photoelectric conversion element 111.
 時点t100において、選択信号SELがハイ状態とされて、選択トランジスタ116がオンとされる。時点t101でリセットパルスRSTがハイ状態とされ、浮遊拡散層113の電荷が電源VDDに排出されることにより、浮遊拡散層113の電位が所定電位にリセットされる。リセットパルスRSTがロー状態に戻されて所定時間後の時点t102で、転送パルスTRGがハイ状態とされ、露光により光電変換素子111に蓄積された電荷が浮遊拡散層113に供給され、蓄積される。浮遊拡散層113に蓄積された電荷に応じた電圧が生成され、この電圧が増幅トランジスタ115により増幅され、選択トランジスタ116を介して画素信号として垂直信号線17に出力される。 At time t 100 , the selection signal SEL is set to the high state and the selection transistor 116 is turned on. At time t 101 , the reset pulse RST is set to the high state, and the charge of the floating diffusion layer 113 is discharged to the power supply VDD, so that the potential of the floating diffusion layer 113 is reset to the predetermined potential. A reset pulse RST is returned to a low state at time t 102 after a predetermined time, the transfer pulse TRG is a high state, the charge accumulated in the photoelectric conversion element 111 by the exposure is supplied to the floating diffusion layer 113 is accumulated It A voltage corresponding to the charges accumulated in the floating diffusion layer 113 is generated, this voltage is amplified by the amplification transistor 115, and is output to the vertical signal line 17 as a pixel signal via the selection transistor 116.
 ここで、リセットパルスRSTがハイ状態とされた時点t101から所定時間後の、例えば浮遊拡散層113の状態が安定する時点t110において垂直信号線17に出力されたリセットレベル(黒レベル)の信号Aが、AD変換器130によりディジタル値に変換され、例えばAD変換器130が持つレジスタなどに一時的に記憶される。この信号Aは、オフセット性のノイズである。この信号Aの読み出しを、P相(Pre-Charge)読み出しと呼び、P相読み出しを行う期間をP相期間と呼ぶ。 Here, the reset level (black level) output to the vertical signal line 17 at a time t 110 when the state of the floating diffusion layer 113 stabilizes after a predetermined time from the time t 101 when the reset pulse RST is set to the high state. The signal A is converted into a digital value by the AD converter 130, and is temporarily stored in, for example, a register included in the AD converter 130. This signal A is offset noise. The reading of the signal A is called P-phase (Pre-Charge) reading, and the period in which the P-phase reading is performed is called the P-phase period.
 さらに、転送パルスTRGがハイ状態とされた時点t102から処置時間後の、例えば例えば浮遊拡散層113の状態が安定する時点t111において垂直信号線17に出力された信号レベルの信号Bが、AD変換器130によりディジタル値に変換され、例えばAD変換器130が持つレジスタなどに一時的に記憶される。この信号Bは、オフセット性のノイズと画素信号とを含む信号である。この信号Bの読み出しを、D相(Data Phase)読み出しと呼び、D相読み出しを行う期間をD相期間と呼ぶ。 Furthermore, the transfer pulse TRG from time t 102, which is a high state after treatment time, for example, for example, the state of the floating diffusion layer 113 is the signal level of the signal B output to the vertical signal line 17 at the time t 111 to stabilize, It is converted into a digital value by the AD converter 130 and is temporarily stored in, for example, a register or the like included in the AD converter 130. The signal B is a signal including offset noise and a pixel signal. The reading of the signal B is called D-phase (Data Phase) reading, and the period in which the D-phase reading is performed is called the D-phase period.
 AD変換器130は、記憶した信号AおよびBを信号処理部20に供給する。信号処理部20は、信号Aと信号Bとの差分を求める。これにより、オフセット性のノイズが除去された画素信号を得ることができる。 The AD converter 130 supplies the stored signals A and B to the signal processing unit 20. The signal processing unit 20 obtains the difference between the signal A and the signal B. This makes it possible to obtain a pixel signal from which offset noise has been removed.
(既存技術による、画素信号のAD変換処理)
 実施形態に係るAD変換器130aの動作の説明に先立って、理解を容易とするために、カラムAD変換器による既存技術によるAD変換処理について説明する。図4は、図1におけるカラムAD変換器としての、既存技術によるAD変換器130aの構成の例を示す図である。図4において、AD変換器130aは、電流源131と、DA(Digital to Analog)変換器132と、コンパレータ133と、カウンタ134と、を含む。DA変換器132、コンパレータ133およびカウンタ134は、それぞれ、電源線Vpから供給される電力により動作する。
(AD conversion processing of pixel signals by existing technology)
Prior to description of the operation of the AD converter 130a according to the embodiment, in order to facilitate understanding, an AD conversion process by the existing technology by the column AD converter will be described. FIG. 4 is a diagram showing an example of the configuration of an AD converter 130a according to the existing technology as the column AD converter in FIG. In FIG. 4, the AD converter 130a includes a current source 131, a DA (Digital to Analog) converter 132, a comparator 133, and a counter 134. The DA converter 132, the comparator 133, and the counter 134 each operate by the power supplied from the power supply line Vp.
 画素110から読み出された画素信号(信号Aまたは信号B)は、垂直信号線17から、電流源131に引き込まれてAD変換器130aに供給され、コンパレータ133の一方の入力端に入力される。より詳細には、P相期間には、画素110から読み出されたリセットレベルの信号Aが、コンパレータ133の一方の入力端に入力される。また、D相期間には、画素110から読み出された、オフセット性のノイズと画素信号とを含む信号Bが、コンパレータ133の一方の入力端に入力される。 The pixel signal (signal A or signal B) read from the pixel 110 is drawn into the current source 131 from the vertical signal line 17, supplied to the AD converter 130 a, and input to one input terminal of the comparator 133. . More specifically, in the P-phase period, the reset level signal A read from the pixel 110 is input to one input terminal of the comparator 133. Further, in the D-phase period, the signal B including the offset noise and the pixel signal read from the pixel 110 is input to one input end of the comparator 133.
 DA変換器132は、参照信号生成部14においてディジタル信号として生成された参照信号であるランプ信号RAMPが入力される。DA変換器132は、このランプ信号RAMPをアナログ信号に変換して、参照信号としてコンパレータ133の他方の入力端に入力する。 The ramp signal RAMP, which is a reference signal generated as a digital signal in the reference signal generation unit 14, is input to the DA converter 132. The DA converter 132 converts the ramp signal RAMP into an analog signal and inputs it to the other input end of the comparator 133 as a reference signal.
 例えば、参照信号生成部14は、ランプ信号RAMPとして、上述した、時間(クロック)に伴い値が階段状に減少するディジタル信号を生成する。DA変換器132は、このランプ信号RAMPをアナログ信号に変換して、コンパレータ133の他方の入力端に入力する。すなわち、コンパレータ133の他方の入力端には、クロックに応じて電圧値が階段状に変化(下降)する信号が、参照信号として入力される。 For example, the reference signal generation unit 14 generates, as the ramp signal RAMP, the above-described digital signal whose value decreases stepwise with time (clock). The DA converter 132 converts the ramp signal RAMP into an analog signal and inputs the analog signal into the other input terminal of the comparator 133. That is, to the other input terminal of the comparator 133, a signal whose voltage value changes stepwise (falls) in response to the clock is input as a reference signal.
 コンパレータ133は、一方の入力端に入力された画素信号を保持し、保持した画素信号のレベルと、他方の入力端に入力されたランプ信号RAMPのレベルとを比較する。コンパレータ133は、ランプ信号RAMPのレベルが、保持した画素信号のレベルより大である場合、ハイ状態の差信号を出力する。一方、コンパレータ133は、ランプ信号RAMPのレベルが、保持した画素信号のレベル以下となった場合、出力を反転させて、ロー状態の差信号を出力する。コンパレータ133から出力された差信号は、カウンタ134に供給される。なお、ランプ信号RAMPのレベルは、コンパレータ133の出力が反転された後、所定値にリセットされる。 The comparator 133 holds the pixel signal input to one input end, and compares the level of the held pixel signal with the level of the ramp signal RAMP input to the other input end. The comparator 133 outputs the difference signal in the high state when the level of the ramp signal RAMP is higher than the level of the held pixel signal. On the other hand, when the level of the ramp signal RAMP becomes equal to or lower than the level of the held pixel signal, the comparator 133 inverts the output and outputs the difference signal in the low state. The difference signal output from the comparator 133 is supplied to the counter 134. The level of the ramp signal RAMP is reset to a predetermined value after the output of the comparator 133 is inverted.
 カウンタ134は、コンパレータ133から出力された差信号に基づき、例えば参照信号生成部14と共通のクロックに従いカウントを行う。より具体的には、カウンタ134は、画素110のP相期間において、コンパレータ133から入力された差信号に応じて、ランプ信号RAMPのレベルが、電圧降下を開始してから画素信号(信号A)以下のレベルになるまでの時間(クロック)をダウンカウントし、このカウントによるカウント値(ディジタル値)を信号処理部20に出力する。また、カウンタ134は、画素110のD相期間において、コンパレータ133から入力された差信号に応じて、ランプ信号RAMPのレベルが、電圧降下を開始してから画素信号(信号B)以下のレベルになるまでの時間をアップカウントし、このカウントによるカウント値(ディジタル値)を信号処理部20に出力する。 The counter 134 counts based on the difference signal output from the comparator 133, for example, according to a clock common to the reference signal generation unit 14. More specifically, in the P-phase period of the pixel 110, the counter 134 responds to the difference signal input from the comparator 133, and the level of the ramp signal RAMP starts to drop, and then the pixel signal (signal A). The time (clock) until reaching the following level is down-counted, and the count value (digital value) by this count is output to the signal processing unit 20. In addition, in the D-phase period of the pixel 110, the counter 134 changes the level of the ramp signal RAMP to a level equal to or lower than the pixel signal (signal B) after the voltage drop starts according to the difference signal input from the comparator 133. The time until is counted up, and the count value (digital value) by this count is output to the signal processing unit 20.
 信号処理部20は、この信号Aに対するカウント値と、信号Bに対するカウント値と、を用いてCDS処理を行う。 The signal processing unit 20 performs CDS processing using the count value for the signal A and the count value for the signal B.
 図5および図6を用いて、既存技術による、垂直同期信号に応じて各画素110から画素信号を読み出す処理について説明する。図5は、図1に対応する、既存技術による固体撮像素子の一例の構成を概略的に示す図であって、制御部19に対して垂直同期信号が入力される様子を示している。制御部19は、この垂直同期信号と、水平同期信号と、に基づき、画素信号線16を介して各画素110に供給されるリセットパルスRST、転送パルスTRGおよび選択信号SELを生成する。 A process of reading a pixel signal from each pixel 110 according to a vertical synchronization signal according to the existing technology will be described with reference to FIGS. 5 and 6. FIG. 5 is a diagram schematically showing an example of the configuration of an existing solid-state imaging device corresponding to FIG. 1, and shows how a vertical synchronizing signal is input to the control unit 19. The control unit 19 generates a reset pulse RST, a transfer pulse TRG, and a selection signal SEL that are supplied to each pixel 110 via the pixel signal line 16 based on the vertical synchronization signal and the horizontal synchronization signal.
 ここで、水平同期信号は、ライン毎の読み出しタイミングを示す信号である。また、垂直同期信号は、1フレームの周期を示す信号である。例えば、垂直同期信号に応じて画素アレイ部11の先頭からラインの読み出しを開始し、水平同期信号に応じて各ラインを順次読み出すことで、画素アレイ部11に含まれる各画素110の画素信号に基づく1フレーム分の画像データを得ることができる。この動作を垂直同期信号に従い繰り返し実行することで、例えば、所定フレーム周期の動画像データを得ることができる。 Here, the horizontal synchronization signal is a signal indicating the read timing for each line. The vertical synchronization signal is a signal indicating the cycle of one frame. For example, by starting reading lines from the beginning of the pixel array unit 11 according to the vertical synchronizing signal and sequentially reading each line according to the horizontal synchronizing signal, the pixel signals of the pixels 110 included in the pixel array unit 11 are converted into pixel signals. Based on this, image data for one frame can be obtained. By repeatedly performing this operation according to the vertical synchronization signal, for example, moving image data of a predetermined frame period can be obtained.
 さらに、制御部19は、例えば、水平同期信号に同期して、参照信号生成部14におけるランプ信号RAMPの生成を制御するADC制御信号を生成する。参照信号生成部14は、このADC制御信号に応じて、ランプ信号RAMPを生成し出力する。各AD変換器130aは、各画素110から供給された画素信号を、参照信号生成部14からADC制御信号に応じて出力されたランプ信号RAMPに基づきAD変換する。 Further, the control unit 19 generates an ADC control signal for controlling the generation of the ramp signal RAMP in the reference signal generation unit 14 in synchronization with the horizontal synchronization signal, for example. The reference signal generator 14 generates and outputs the ramp signal RAMP according to the ADC control signal. Each AD converter 130a AD-converts the pixel signal supplied from each pixel 110 based on the ramp signal RAMP output from the reference signal generation unit 14 according to the ADC control signal.
 図6は、既存技術による、垂直同期信号および水平同期信号に応じた各画素110からの画素信号の読み出し処理の例を示すタイムチャートである。図6において、上から、垂直同期信号、水平同期信号、読み出し処理およびADC(AD Converter)動作のタイミングを示すチャートがそれぞれ示されている。 FIG. 6 is a time chart showing an example of a process of reading a pixel signal from each pixel 110 according to a vertical synchronizing signal and a horizontal synchronizing signal according to the existing technology. In FIG. 6, a chart showing timings of a vertical synchronizing signal, a horizontal synchronizing signal, a reading process, and an ADC (AD Converter) operation is shown from the top.
 図6の例では、垂直同期信号および水平同期信号は、それぞれ、立ち下がりエッジと立ち上がりエッジの組から形成される、下向きのパルスとして表されている。これはこの例に限定されず、パルスを形成するエッジの向きが逆(上向きのパルス)であってもよいし、垂直同期信号と水平同期信号とでパルスの向きが異なっていてもよい。 In the example of FIG. 6, the vertical synchronizing signal and the horizontal synchronizing signal are represented as downward pulses formed from pairs of falling edges and rising edges, respectively. This is not limited to this example, and the direction of the edge forming the pulse may be opposite (upward pulse), or the pulse direction may be different between the vertical synchronizing signal and the horizontal synchronizing signal.
 垂直同期信号は、パルスの立ち下がりエッジから、次のパルスの立ち下がりエッジまでが1垂直期間(1V期間)とされ、この1V期間内で、1フレーム分の読み出しが行われる。水平同期信号は、パルスの立ち下がりエッジから、次のパルスの立ち下がりエッジまでが1水平期間(1H期間)とされ、この1H期間内で、1ラインの読み出しが行われる。 The vertical synchronizing signal is one vertical period (1V period) from the falling edge of one pulse to the falling edge of the next pulse, and one frame is read within this 1V period. The horizontal synchronizing signal is one horizontal period (1H period) from the falling edge of one pulse to the falling edge of the next pulse, and one line is read during this 1H period.
 図6の例では、垂直同期信号の立ち下がりエッジのタイミングで、1フレームの読み出しが開始される。この1フレームの読み出しが行われる期間READを、読み出し期間30とする。読み出し期間30の終了タイミングから次の垂直同期信号の立ち下がりエッジまでの期間VBLANKは、ラインの読み出しが行われない垂直ブランキング期間31である。垂直ブランキング期間31の先頭タイミングは、垂直同期信号の立ち下がりエッジのタイミングに基づき知ることができる。 In the example of FIG. 6, reading of one frame is started at the timing of the falling edge of the vertical sync signal. The period READ during which this one frame is read is referred to as a read period 30. A period VBLANK from the end timing of the read period 30 to the next falling edge of the vertical synchronizing signal is a vertical blanking period 31 in which no line is read. The leading timing of the vertical blanking period 31 can be known based on the timing of the falling edge of the vertical synchronizing signal.
 水平同期信号の立ち下がりエッジのタイミングで1ラインの各画素110における画素信号の読み出しが開始され、読み出されたラインの各画素110の画素信号に対するAD変換器130aによるAD変換動作が実行される。1ラインに含まれる各画素110には、画素信号線16により、リセットパルスRST、転送パルスTRGおよび選択信号SELが並列的に供給される。そのため、各垂直信号線17にそれぞれ接続される各AD変換器130aによるAD変換処理は、1ラインの期間、すなわち、水平同期信号のパルスから次のパルスの間に完了するように実行される。 At the timing of the falling edge of the horizontal synchronization signal, the reading of the pixel signal from each pixel 110 on one line is started, and the AD conversion operation by the AD converter 130a is executed on the pixel signal of each pixel 110 on the read line. . A reset pulse RST, a transfer pulse TRG, and a selection signal SEL are supplied in parallel by the pixel signal line 16 to each pixel 110 included in one line. Therefore, the AD conversion processing by each AD converter 130a connected to each vertical signal line 17 is executed so as to be completed during the period of one line, that is, from the pulse of the horizontal synchronizing signal to the next pulse.
 より詳細には、図6にADC動作として示されるように、1H期間内における期間40に、各AD変換器130aによる画素信号(P相期間における信号A、および、D相期間における信号B)のAD変換処理が行われる(図6では「AD」として示している)。1H期間において、期間40でのAD変換処理が終了してから次の1H期間が開始するまでの期間41は、水平ブランキング期間と呼ばれる(図6では「HBLK」として示している)。制御部19は、期間40の終端を、例えば、AD変換部13に含まれる全てのAD変換器130aにおいて、画素110のD相期間における変換処理が完了しコンパレータ133の出力が反転され、ランプ信号RAMPのレベルが所定のレベルにリセットされるタイミングとして知ることができる。 More specifically, as shown as the ADC operation in FIG. 6, during the period 40 in the 1H period, the pixel signals (the signal A in the P-phase period and the signal B in the D-phase period) by each AD converter 130a are output. AD conversion processing is performed (shown as "AD" in FIG. 6). In the 1H period, a period 41 from the end of the AD conversion processing in the period 40 to the start of the next 1H period is called a horizontal blanking period (shown as “HBLK” in FIG. 6). The control unit 19 terminates the end of the period 40, for example, in all the AD converters 130a included in the AD conversion unit 13, the conversion process in the D phase period of the pixel 110 is completed, the output of the comparator 133 is inverted, and the ramp signal is output. This can be known as the timing at which the RAMP level is reset to a predetermined level.
 以下、特に記載の無い限り、AD変換器130aがAD変換処理を行う期間40をAD変換期間40とし、期間41を水平ブランキング期間41として説明を行う。 Hereinafter, unless otherwise specified, the period 40 in which the AD converter 130a performs the AD conversion process is referred to as an AD conversion period 40, and the period 41 is referred to as a horizontal blanking period 41.
 なお、1H期間において、各AD変換器130aにより第MラインのAD変換処理が行われると、次の1H期間において、各AD変換器130aにより第M+1ラインのAD変換処理が行われる。1V期間において、例えば第MラインのAD変換処理が行われてない期間(AD変換期間40以外の期間)は、当該第Mラインの各画素110による露光が可能な期間となる。また、1フレームの最終ラインを第Nラインとすると、図6において第N+1ラインとして示される1H期間から次の垂直同期信号のパルスまでの期間が垂直ブランキング期間31となる。 Note that, during the 1H period, when the AD conversion process of the Mth line is performed by each AD converter 130a, the AD conversion process of the M + 1th line is performed by each AD converter 130a during the next 1H period. In the 1V period, for example, a period in which the AD conversion process of the Mth line is not performed (a period other than the AD conversion period 40) is a period in which each pixel 110 of the Mth line can be exposed. Further, when the last line of one frame is the Nth line, the period from the 1H period shown as the (N + 1) th line in FIG. 6 to the pulse of the next vertical synchronizing signal is the vertical blanking period 31.
 図7および図8を用いて、既存技術による、外部トリガ信号に応じて各画素110から画素信号を読み出す処理について説明する。例えば、当該固体撮像素子10が搭載される電子機器がカメラである場合、外部トリガ信号は、シャッタタイミングおよびシャッタ速度に基づく信号を適用できる。 A process of reading a pixel signal from each pixel 110 according to an external trigger signal according to the existing technology will be described with reference to FIGS. 7 and 8. For example, when the electronic device on which the solid-state imaging device 10 is mounted is a camera, a signal based on shutter timing and shutter speed can be applied as the external trigger signal.
 図7は、図1に対応する、既存技術による固体撮像素子の一例の構成を概略的に示す図であって、制御部19に対して、外部トリガ信号が入力される様子を示している。このように、外部トリガ信号は、図5の垂直同期信号の代わりに、制御部19に入力される。制御部19は、この外部トリガ信号と、水平同期信号と、に基づき、画素信号線16を介して各画素110に供給されるリセットパルスRST、転送パルスTRGおよび選択信号SELを生成する。 FIG. 7 is a diagram schematically showing an example of the configuration of a solid-state image sensor according to the existing technology, which corresponds to FIG. 1, and shows how an external trigger signal is input to the control unit 19. As described above, the external trigger signal is input to the control unit 19 instead of the vertical synchronization signal of FIG. The control unit 19 generates a reset pulse RST, a transfer pulse TRG, and a selection signal SEL that are supplied to each pixel 110 via the pixel signal line 16 based on the external trigger signal and the horizontal synchronization signal.
 図8は、既存技術による、外部トリガ制御による各画素110からの画素信号の読み出し処理の例を示すタイムチャートである。図8において、上から、外部トリガ信号、水平同期信号、読み出し処理およびADC動作のタイミングを示すチャートがそれぞれ示されている。 FIG. 8 is a time chart showing an example of reading processing of pixel signals from each pixel 110 by external trigger control according to the existing technology. In FIG. 8, a chart showing timings of the external trigger signal, the horizontal synchronizing signal, the reading process, and the ADC operation is shown from the top.
 図8の例では、外部トリガ信号は、立ち下がりエッジが露光の開始タイミングを示し、立ち上がりエッジが露光の終了タイミングを示す。また、外部トリガ信号の立ち上がりエッジに応じて、画素アレイ部11における1フレームの読み出しが開始される。制御部19は、ライン毎の読み出しを、外部トリガ信号の立ち上がりエッジに基づき、水平同期信号に同期して制御する。各1H期間における各AD変換器130aの動作は、図6を用いて説明した、垂直同期信号に応じて1V期間が開始される例と同様であるので、ここでの説明を省略する。 In the example of FIG. 8, the falling edge of the external trigger signal indicates the exposure start timing, and the rising edge indicates the exposure end timing. Further, the reading of one frame in the pixel array unit 11 is started in response to the rising edge of the external trigger signal. The control unit 19 controls the reading for each line in synchronization with the horizontal synchronizing signal based on the rising edge of the external trigger signal. The operation of each AD converter 130a in each 1H period is the same as the example in which the 1V period is started in response to the vertical synchronization signal described with reference to FIG. 6, and thus the description thereof is omitted here.
 既存技術によれば、図6および図8に示される、1H期間におけるAD変換期間40後の水平ブランキング期間41は、各AD変換器130aが次の水平同期信号の立ち下がりエッジによるAD変換処理開始を待機する待機期間となる。この1H期間内の待機期間においても、各AD変換器130aでは、電力が消費されている。また、1V期間における垂直ブランキング期間31も、各AD変換器130aがAD変換処理を行わない待機期間となる。この1V期間内の待機時間においても、同様に、各AD変換器130aでは、電力が消費されている。 According to the existing technology, in the horizontal blanking period 41 after the AD conversion period 40 in the 1H period shown in FIGS. 6 and 8, each AD converter 130a performs the AD conversion process by the next falling edge of the horizontal synchronizing signal. It is a waiting period to wait for the start. Power is consumed in each AD converter 130a even during the standby period within this 1H period. Further, the vertical blanking period 31 in the 1V period is also a standby period in which the AD converters 130a do not perform AD conversion processing. Even during the standby time within this 1V period, power is similarly consumed in each AD converter 130a.
 また、1H期間および1V期間の待機期間(水平ブランキング期間41および垂直ブランキング期間31)において各AD変換器130aに電力を供給することで、各AD変換器130aが動作状態となっている。このように、待機期間に各AD変換器130aを動作状態することで、AD変換器130aを構成する回路からホットキャリアなどの電荷が発生する可能性がある。この電荷は、ノイズ源となって各画素110から読み出された画素信号による画像の画質を劣化させる要因となるおそれがある。 Further, by supplying power to each AD converter 130a during the standby period (horizontal blanking period 41 and vertical blanking period 31) of the 1H period and the 1V period, each AD converter 130a is in the operating state. As described above, by operating each AD converter 130a during the standby period, electric charge such as hot carriers may be generated from the circuit forming the AD converter 130a. This charge may become a noise source and may be a factor of deteriorating the image quality of the image by the pixel signal read from each pixel 110.
[第1の実施形態]
 次に、本開示の第1の実施形態に係るAD変換器130の動作について説明する。第1の実施形態では、上述した垂直ブランキング期間31および水平ブランキング期間41において、AD変換器130に対してスタンバイ制御を行い、AD変換器130をスタンバイ状態に制御する。スタンバイ状態は、AD変換処理の待機状態であって、AD変換器130におけるAD変換動作が停止され、消費電力を抑制できる。これにより、AD変換部13における消費電力の削減が可能となる。
[First Embodiment]
Next, the operation of the AD converter 130 according to the first embodiment of the present disclosure will be described. In the first embodiment, during the above-described vertical blanking period 31 and horizontal blanking period 41, standby control is performed on the AD converter 130, and the AD converter 130 is controlled to the standby state. The standby state is a standby state for AD conversion processing, the AD conversion operation in the AD converter 130 is stopped, and power consumption can be suppressed. As a result, the power consumption of the AD conversion unit 13 can be reduced.
 図9および図10を用いて、第1の実施形態に係る、垂直同期信号に応じて各画素110から画素信号を読み出す処理について説明する。図9は、第1の実施形態に係る撮像装置としての固体撮像素子の構成例を概略的に示すブロック図である。図9に示される固体撮像素子10aは、図5を用いて説明した固体撮像素子10に対して、制御部19からAD変換部13に供給されるADC停止制御信号が追加されている。ADC停止制御信号は、AD変換部13に含まれる各AD変換器130に対するスタンバイ制御を実行するための信号である。 A process of reading a pixel signal from each pixel 110 according to the vertical synchronization signal according to the first embodiment will be described with reference to FIGS. 9 and 10. FIG. 9 is a block diagram schematically showing a configuration example of a solid-state image pickup element as the image pickup apparatus according to the first embodiment. The solid-state image sensor 10a shown in FIG. 9 has the ADC stop control signal supplied from the controller 19 to the AD converter 13 added to the solid-state image sensor 10 described with reference to FIG. The ADC stop control signal is a signal for executing standby control for each AD converter 130 included in the AD conversion unit 13.
 なお、図9において、画素アレイ部11の構成は、上述した図1と共通であるので、ここでの説明を省略する。 Note that, in FIG. 9, the configuration of the pixel array unit 11 is common to that of FIG.
 図10は、第1の実施形態に係る、垂直同期信号および水平同期信号に応じた各画素110からの画素信号の読み出し処理の例を示すタイムチャートである。図10において、上述した図6と同様に、上から、垂直同期信号、水平同期信号、読み出し処理およびADC動作を示すチャートがそれぞれ示されている。さらに、図10の下段には、1H期間におけるADC動作の詳細を示すチャートが示されている。なお、図10の例では、説明のため、水平同期信号のタイミングを示すチャートにおいて、水平同期信号が立ち上がりエッジと立ち下がりエッジとの組から形成される、上向きのパルスとして表されている。 FIG. 10 is a time chart showing an example of a process of reading a pixel signal from each pixel 110 according to a vertical synchronization signal and a horizontal synchronization signal according to the first embodiment. In FIG. 10, as in the case of FIG. 6 described above, a chart showing the vertical synchronizing signal, the horizontal synchronizing signal, the reading process, and the ADC operation is shown from the top. Further, in the lower part of FIG. 10, a chart showing details of the ADC operation in the 1H period is shown. In the example of FIG. 10, for the sake of explanation, in the chart showing the timing of the horizontal synchronizing signal, the horizontal synchronizing signal is represented as an upward pulse formed from a pair of a rising edge and a falling edge.
 垂直同期信号および水平同期信号の各パルスのタイミング、ならびに、1V期間における読み出し期間30および垂直ブランキング期間31のタイミングは、図6を用いて説明した各タイミングと同様なので、ここでの説明を省略する。 The timing of each pulse of the vertical synchronizing signal and the horizontal synchronizing signal, and the timing of the reading period 30 and the vertical blanking period 31 in the 1V period are the same as the timings described with reference to FIG. 6, and thus the description thereof is omitted here. To do.
 第1の実施形態では、図10のADC動作のチャートに示されるように、1H期間において、AD変換期間40の後の水平ブランキング期間41(図6参照)が、回路停止期間41aと、復帰期間41bと、に分割されている。回路停止期間41aは、AD変換部13aに含まれる各AD変換器130に対してスタンバイ制御を行いAD変換器130の動作状態をスタンバイ状態として、各AD変換器130の動作を停止させる期間である。復帰期間41bは、AD変換器130のスタンバイ状態を解除した後、当該AD変換器130が正常動作可能となるまでの期間である。 In the first embodiment, as shown in the ADC operation chart of FIG. 10, in the 1H period, the horizontal blanking period 41 (see FIG. 6) after the AD conversion period 40 is restored after the circuit stop period 41a and the circuit blanking period 41a. It is divided into a period 41b. The circuit suspension period 41a is a period in which standby control is performed on each AD converter 130 included in the AD conversion unit 13a to set the operation state of the AD converter 130 to the standby state and stop the operation of each AD converter 130. . The return period 41b is a period from the release of the standby state of the AD converter 130 to the normal operation of the AD converter 130.
 図10の下段に示されるように、水平同期信号におけるパルス42の立ち下がりエッジのタイミングでAD変換期間40が開始され、AD変換期間40の終了後、制御部19は、各AD変換器130に対するスタンバイ制御の実施を指示するADC停止制御信号を生成し、AD変換部13aに供給する。これにより、回路停止期間41aにおいてAD変換器130の動作状態がスタンバイ状態となり、AD変換器130の動作が停止される。 As shown in the lower part of FIG. 10, the AD conversion period 40 starts at the timing of the falling edge of the pulse 42 in the horizontal synchronization signal, and after the AD conversion period 40 ends, the control unit 19 controls the AD converters 130. An ADC stop control signal for instructing execution of standby control is generated and supplied to the AD conversion unit 13a. As a result, during the circuit stop period 41a, the operation state of the AD converter 130 becomes the standby state, and the operation of the AD converter 130 is stopped.
 制御部19は、その後、パルス42の立ち上がりエッジのタイミングで、各AD変換器130に対する電力の供給開始を指示するADC停止制御信号を生成し、AD変換部13aに供給する。これにより、AD変換器130のスタンバイ状態が解除され、AD変換器130の動作が復帰期間41bの動作に移行される。AD変換器130は、パルス42の次の立ち下がりエッジで復帰期間41bが終了したとして、復帰動作からAD変換動作に移行される。 After that, the control unit 19 generates an ADC stop control signal for instructing the start of power supply to each AD converter 130 at the timing of the rising edge of the pulse 42, and supplies it to the AD conversion unit 13a. As a result, the standby state of the AD converter 130 is released, and the operation of the AD converter 130 shifts to the operation of the restoration period 41b. The AD converter 130 shifts from the restoration operation to the AD conversion operation, assuming that the restoration period 41b ends at the next falling edge of the pulse 42.
 この、回路停止期間41aから復帰期間41bへの移行タイミング、および、復帰期間41bの長さは、パルス42の幅Hp_timeにより決定される。パルス42の幅Hp_timeは、AD変換器130の特性に応じた水平同期信号の仕様として規定し、例えばユーザにより制御部19に対して設定される。 The transition timing from the circuit stop period 41a to the return period 41b and the length of the return period 41b are determined by the width H p_time of the pulse 42. The width H p_time of the pulse 42 is defined as the specification of the horizontal synchronizing signal according to the characteristics of the AD converter 130, and is set to the control unit 19 by the user, for example.
 第1の実施形態では、制御部19は、さらに、垂直ブランキング期間31においてADC停止制御信号をAD変換部13aに供給してAD変換器130の動作状態をスタンバイ状態とし、AD変換器130におけるAD変換動作を停止させる。この場合も、制御部19は、垂直ブランキング期間31の開始タイミングに対応する水平同期信号の立ち下がりエッジのタイミングで、当該ADC停止制御信号をAD変換部13aに供給する。制御部19は、例えば垂直同期信号の立ち上がりエッジのタイミングで、各AD変換器130に対するスタンバイ状態の解除を指示するADC停止制御信号を生成し、AD変換部13aに供給する。垂直ブランキング期間31に対応する期間VCstopが、1V期間単位での各AD変換器130への電力供給停止期間となる。 In the first embodiment, the control unit 19 further supplies an ADC stop control signal to the AD conversion unit 13a in the vertical blanking period 31 to set the operation state of the AD converter 130 to the standby state, and the AD conversion unit 130 is operated. The AD conversion operation is stopped. Also in this case, the control unit 19 supplies the ADC stop control signal to the AD conversion unit 13a at the timing of the falling edge of the horizontal synchronizing signal corresponding to the start timing of the vertical blanking period 31. The control unit 19 generates an ADC stop control signal for instructing each AD converter 130 to cancel the standby state at the timing of the rising edge of the vertical synchronization signal, and supplies the ADC stop control signal to the AD conversion unit 13a. The period VC stop corresponding to the vertical blanking period 31 is a period during which the power supply to each AD converter 130 is stopped in units of 1V period.
 垂直同期信号の立ち上がりエッジのタイミングから、各AD変換器130においてAD変換動作が開始されるまで、一定の時間がかかる。垂直ブランキング期間31後の各AD変換器130の復帰動作は、この垂直同期信号の立ち上がりエッジのタイミングからAD変換動作の開始までの間に完了できる。 A certain amount of time is required from the timing of the rising edge of the vertical synchronizing signal until the AD conversion operation is started in each AD converter 130. The return operation of each AD converter 130 after the vertical blanking period 31 can be completed between the timing of the rising edge of the vertical synchronizing signal and the start of the AD conversion operation.
 なお、垂直ブランキング期間31は、当該期間の先頭からAD変換器130の動作が停止されている。そのため、垂直ブランキング期間31の直前の1H期間における復帰期間41bは、省略することができる。 Note that in the vertical blanking period 31, the operation of the AD converter 130 is stopped from the beginning of the period. Therefore, the return period 41b in the 1H period immediately before the vertical blanking period 31 can be omitted.
 図11および図12を用いて、第1の実施形態に係る、外部トリガ信号に応じて各画素110から画素信号を読み出す処理について説明する。図11は、第1の実施形態に係る、外部トリガ信号が入力される固体撮像素子の一例の構成を概略的に示すブロック図である。この図11は、上述した図7に対応する図であって、制御部19に対して外部トリガ信号が入力されると共に、制御部19からAD変換部13aに対してADC停止制御信号が供給される。 A process of reading a pixel signal from each pixel 110 according to an external trigger signal according to the first embodiment will be described with reference to FIGS. 11 and 12. FIG. 11 is a block diagram schematically showing the configuration of an example of a solid-state image sensor to which an external trigger signal is input according to the first embodiment. 11 is a diagram corresponding to FIG. 7 described above. An external trigger signal is input to the control unit 19 and an ADC stop control signal is supplied from the control unit 19 to the AD conversion unit 13a. It
 なお、図11において、画素アレイ部11の構成は、上述した図1と共通であるので、ここでの説明を省略する。 Note that, in FIG. 11, the configuration of the pixel array unit 11 is common to that in FIG. 1 described above, and therefore description thereof is omitted here.
 図12は、第1の実施形態に係る、外部トリガ信号および水平同期信号に応じた各画素110からの画素信号の読み出し処理の例を示すタイムチャートである。図12において、上述した図8と同様に、上から、外部トリガ信号、水平同期信号、読み出し処理およびADC動作を示すチャートがそれぞれ示され、下段には、図10と同様に、1H期間におけるADC動作の詳細を示すチャートが示されている。なお、図12の例も、上述した図10と同様に、説明のため、水平同期信号のタイミングを示すチャートにおいて、水平同期信号が立ち上がりエッジと立ち下がりエッジとの組から形成される、上向きのパルスとして表されている。 FIG. 12 is a time chart showing an example of a process of reading a pixel signal from each pixel 110 according to an external trigger signal and a horizontal synchronization signal according to the first embodiment. 12, like FIG. 8 described above, a chart showing an external trigger signal, a horizontal synchronization signal, a read process, and an ADC operation is shown from the top, and the lower part shows the ADC in the 1H period as in FIG. A chart showing details of the operation is shown. Note that, similarly to FIG. 10 described above, in the example of FIG. 12 as well, for the sake of explanation, in the chart showing the timing of the horizontal synchronizing signal, the horizontal synchronizing signal is formed of a pair of a rising edge and a falling edge. It is represented as a pulse.
 図12の例では、上述した図8の例と同様に、外部トリガ信号の立ち下がりエッジのタイミングで露光が開始され、外部トリガ信号の立ち上がりエッジのタイミングで露光が終了される。制御部19は、ライン毎の読み出しを、外部トリガ信号の立ち上がりエッジに基づき、水平同期信号に同期して制御する。外部トリガ信号の立ち上がりエッジのタイミングが1V期間の先頭タイミングとされ、1フレームの読み出しが開始される。1V期間内および1H期間内での各AD変換器130の動作は、図10を用いて説明した、垂直同期信号に応じて1V期間が開始される例と同様である。 In the example of FIG. 12, similarly to the example of FIG. 8 described above, the exposure starts at the timing of the falling edge of the external trigger signal, and the exposure ends at the timing of the rising edge of the external trigger signal. The control unit 19 controls the reading for each line in synchronization with the horizontal synchronizing signal based on the rising edge of the external trigger signal. The timing of the rising edge of the external trigger signal is the start timing of the 1V period, and the reading of one frame is started. The operation of each AD converter 130 in the 1V period and the 1H period is the same as the example in which the 1V period is started in response to the vertical synchronization signal described with reference to FIG.
 すなわち、1H期間が、AD変換期間40と、回路停止期間41aと、復帰期間41bとに分割される。制御部19は、AD変換期間40の終了時に各AD変換器130に対してスタンバイ制御を行うADC停止制御信号をAD変換部13aに供給し、回路停止期間41aにおける各AD変換器130の動作状態をスタンバイ状態とし、各AD変換器130のAD変換動作を停止させる。制御部19は、次の水平同期信号の立ち上がりエッジにおいて、各AD変換器130のスタンバイ状態を解除するADC停止制御信号をAD変換部13aに供給する。これにより、AD変換部13aに含まれる各AD変換器130は、スタンバイ状態が解除され動作が復帰動作に移行する。 That is, the 1H period is divided into an AD conversion period 40, a circuit suspension period 41a, and a restoration period 41b. The control unit 19 supplies an ADC stop control signal for performing standby control to each AD converter 130 at the end of the AD conversion period 40 to the AD conversion unit 13a, and the operation state of each AD converter 130 during the circuit stop period 41a. Is set to a standby state, and the AD conversion operation of each AD converter 130 is stopped. The control unit 19 supplies an ADC stop control signal for canceling the standby state of each AD converter 130 to the AD conversion unit 13a at the next rising edge of the horizontal synchronization signal. As a result, each of the AD converters 130 included in the AD conversion unit 13a is released from the standby state and the operation shifts to the return operation.
 制御部19は、さらに、図10の例と同様にして、垂直ブランキング期間31においてスタンバイ制御を行い、各AD変換器130の動作を停止させる。そして、制御部19は、例えば次の垂直同期信号の立ち上がりエッジのタイミングで、各AD変換器130のスタンバイ状態を解除するためのADC停止制御信号をAD変換部13aに供給し、各AD変換器130の動作を復帰動作に移行させる。 The control unit 19 further performs the standby control in the vertical blanking period 31 and stops the operation of each AD converter 130, as in the example of FIG. 10. Then, the control unit 19 supplies the ADC stop control signal for canceling the standby state of each AD converter 130 to the AD conversion unit 13a at the timing of the next rising edge of the vertical synchronization signal, for example. The operation of 130 is transferred to the return operation.
 なお、この図12の例においても、垂直ブランキング期間31は、当該期間の先頭からAD変換器130の動作が停止されている。そのため、垂直ブランキング期間31の直前の1H期間における復帰期間41bは、省略することができる。 Note that, also in the example of FIG. 12, in the vertical blanking period 31, the operation of the AD converter 130 is stopped from the beginning of the period. Therefore, the return period 41b in the 1H period immediately before the vertical blanking period 31 can be omitted.
(第1の実施形態に係る構成の具体例)
 次に、第1の実施形態に係るより具体的な構成例について説明する。第1の実施形態では、スタンバイ制御の例として、AD変換器130に対する電力の供給を停止させる制御を行う。図13は、第1の実施形態に係るAD変換器130bの一例の構成を示す図である。図13に示されるAD変換器130bは、図1のAD変換器130として適用することができる。なお、図13において、上述した図4と共通する部分には同一の符号を付して、詳細な説明を省略する。
(Specific example of the configuration according to the first embodiment)
Next, a more specific configuration example according to the first embodiment will be described. In the first embodiment, as an example of standby control, control for stopping the power supply to the AD converter 130 is performed. FIG. 13 is a diagram showing a configuration of an example of the AD converter 130b according to the first embodiment. The AD converter 130b shown in FIG. 13 can be applied as the AD converter 130 of FIG. Note that, in FIG. 13, portions common to those in FIG. 4 described above are denoted by the same reference numerals, and detailed description thereof will be omitted.
 図13において、AD変換器130bは、図4に示したAD変換器130bに対して、ADC停止制御信号により閉(オン)および開(オフ)状態を制御されるスイッチ1300a、1300bおよび1300cが追加されている。スイッチ1300aは、電源線VpからDA変換器132への電力供給のオン、オフを切り替える。スイッチ1300bは、電源線Vpからコンパレータ133への電力供給のオン、オフを切り替える。また、スイッチ1300cは、電源線Vpからカウンタ134への電力供給のオン、オフを切り替える。また、電流源131は、ADC停止制御信号により電流供給のオン、オフが制御される。 13, the AD converter 130b has switches 1300a, 1300b, and 1300c whose closed (on) and open (off) states are controlled by an ADC stop control signal in addition to the AD converter 130b shown in FIG. Has been done. The switch 1300a switches on and off the power supply from the power supply line Vp to the DA converter 132. The switch 1300b switches ON / OFF of power supply from the power supply line Vp to the comparator 133. Further, the switch 1300c switches ON / OFF of power supply from the power supply line Vp to the counter 134. Further, the current source 131 is controlled to turn on / off the current supply by the ADC stop control signal.
 このような構成において、制御部19は、スイッチ1300a、1300bおよび1300cをそれぞれオフ状態とすると共に、電流源131による電流供給をオフ状態とするADC停止制御信号を各AD変換器130bに供給することで、各AD変換器130bに対する電力の供給を停止することができる。 In such a configuration, the control unit 19 turns off the switches 1300a, 1300b, and 1300c, respectively, and supplies an ADC stop control signal for turning off the current supply by the current source 131 to each AD converter 130b. Thus, the power supply to each AD converter 130b can be stopped.
 図14は、第1の実施形態に適用可能な制御部19の一例の構成を示すブロック図である。図14において、制御部19は、ADC停止制御信号生成部190と、ADC制御信号生成部191と、を含む。 FIG. 14 is a block diagram showing an example of the configuration of the control unit 19 applicable to the first embodiment. In FIG. 14, the control unit 19 includes an ADC stop control signal generation unit 190 and an ADC control signal generation unit 191.
 ADC制御信号生成部191は、水平同期信号が入力される。ADC制御信号生成部191は、例えば、入力された水平同期信号の立ち下がりエッジに応じて、各AD変換器130bによるAD変換動作を実行させるためのADC制御信号を生成する。ADC制御信号は、例えば、参照信号生成部14に対してランプ信号RAMPの生成および出力を指示するための信号である。ADC制御信号は、参照信号生成部14に供給されると共に、ADC停止制御信号生成部190に供給される。 A horizontal sync signal is input to the ADC control signal generation unit 191. The ADC control signal generation unit 191 generates an ADC control signal for executing the AD conversion operation by each AD converter 130b, for example, according to the falling edge of the input horizontal synchronization signal. The ADC control signal is, for example, a signal for instructing the reference signal generation unit 14 to generate and output the ramp signal RAMP. The ADC control signal is supplied to the reference signal generation unit 14 and the ADC stop control signal generation unit 190.
 ADC停止制御信号生成部190は、ADC制御信号生成部191からADC制御信号が供給されると共に、制御部19から垂直同期信号または外部トリガ信号が供給される。ここで、垂直同期信号および外部トリガ信号は、共に、画素アレイ部11に含まれる各画素110の読み出し開始のトリガとなるトリガ信号であるので、以下では、垂直同期信号および外部トリガ信号を区別する必要が無い場合には、これらを纏めてトリガ信号と呼ぶ。 The ADC stop control signal generation unit 190 is supplied with the ADC control signal from the ADC control signal generation unit 191, and is also supplied with the vertical synchronization signal or the external trigger signal from the control unit 19. Here, both the vertical synchronization signal and the external trigger signal are trigger signals that trigger the start of reading of each pixel 110 included in the pixel array unit 11. Therefore, the vertical synchronization signal and the external trigger signal will be distinguished below. When there is no need, these are collectively called a trigger signal.
 ADC停止制御信号生成部190は、ADC制御信号と、トリガ信号と、に基づきADC停止制御信号を生成する。図15は、第1の実施形態に係るADC停止制御信号を説明するための一例のタイムチャートである。図15において、上から、水平同期信号、ADC制御、ADC停止制御信号およびADC動作のタイミングを示すチャートがそれぞれ示されている。 The ADC stop control signal generation unit 190 generates an ADC stop control signal based on the ADC control signal and the trigger signal. FIG. 15 is an example time chart for explaining the ADC stop control signal according to the first embodiment. In FIG. 15, a chart showing the timing of the horizontal synchronizing signal, the ADC control, the ADC stop control signal, and the ADC operation is shown from the top.
 なお、AD変換器130bにおける各スイッチ1300a、1300bおよび1300cは、ADC停止制御信号がハイ状態でオフとなり、ロー状態でオンとなる。また、電流源131は、ADC停止制御信号がハイ状態で電流供給が停止され、ロー状態で電源供給が行われる。すなわち、各AD変換器130bは、ADC停止制御信号がハイ状態で電力の供給が停止されてAD変換動作が停止され、ADC停止制御信号がロー状態で電力の供給が行われ、AD変換動作が実行可能となる。 The switches 1300a, 1300b, and 1300c in the AD converter 130b are turned off when the ADC stop control signal is in the high state and turned on when the ADC stop control signal is in the low state. Further, the current source 131 stops current supply when the ADC stop control signal is in a high state, and supplies power in a low state. That is, in each AD converter 130b, the power supply is stopped when the ADC stop control signal is high to stop the AD conversion operation, and the power is supplied when the ADC stop control signal is low to perform the AD conversion operation. It becomes feasible.
 図15の先頭において、ADC停止制御信号生成部190は、水平同期信号の立ち上がりエッジに応じて、ADC停止制御信号をロー状態としている。ADC停止制御信号をロー状態とすることで、各AD変換器130bにおいて、スイッチ1300a、1300bおよび1300cがオンとされ、DA変換器132、コンパレータ133およびカウンタ134に電源線Vpから電力が供給される。それと共に、各AD変換器130bにおいて、電流源131による電流の供給が行われる。これにより、各AD変換器130bの動作が復帰期間41bにおける動作に移行する。 At the beginning of FIG. 15, the ADC stop control signal generation unit 190 sets the ADC stop control signal to the low state according to the rising edge of the horizontal synchronization signal. By setting the ADC stop control signal to the low state, the switches 1300a, 1300b and 1300c are turned on in each AD converter 130b, and power is supplied to the DA converter 132, the comparator 133 and the counter 134 from the power supply line Vp. . At the same time, the current is supplied from the current source 131 in each AD converter 130b. As a result, the operation of each AD converter 130b shifts to the operation in the return period 41b.
 ADC停止制御信号生成部190は、水平同期信号の立ち下がりエッジに対応するタイミングで、各AD変換器130bにおいてAD変換動作を実行させるADC制御を行うADC制御信号を生成する。このADC制御信号に応じて、各AD変換器130の動作がAD変換期間40の動作に移行し、各AD変換器130bにおいてAD変換動作が実行される。このAD変換動作は、画素110におけるP相期間における変換動作と、D相期間における変換動作とを含む。 The ADC stop control signal generation unit 190 generates an ADC control signal for performing ADC control that causes an AD conversion operation in each AD converter 130b at a timing corresponding to the falling edge of the horizontal synchronization signal. In response to the ADC control signal, the operation of each AD converter 130 shifts to the operation of the AD conversion period 40, and the AD conversion operation is executed in each AD converter 130b. This AD conversion operation includes a conversion operation in the P-phase period and a conversion operation in the D-phase period in the pixel 110.
 例えば、ADC制御信号生成部191は、各AD変換器130bによるAD変換動作が終了するタイミングで、AD変換動作の終了を示すADC制御信号を生成し、生成したこのADC制御信号を、各AD変換器130bと、ADC停止制御信号生成部190とに供給する。 For example, the ADC control signal generation unit 191 generates an ADC control signal indicating the end of the AD conversion operation at the timing when the AD conversion operation by each AD converter 130b ends, and the generated ADC control signal is converted into each AD conversion signal. And the ADC stop control signal generation unit 190.
 ADC停止制御信号生成部190は、ADC制御信号生成部191から供給されたAD変換動作の終了を示すADC制御信号に応じて、ADC停止制御信号をハイ状態とする。これにより、各AD変換器130bにおいて、スイッチ1300a、1300bおよび1300cがオフとされ、DA変換器132、コンパレータ133およびカウンタ134に対する電源線Vpからの電力供給が停止される。それと共に、各AD変換器130bにおいて、電流源131による電流の供給が停止される。したがって、各AD変換器130bの動作が回路停止期間41aの動作に移行する。 The ADC stop control signal generation unit 190 sets the ADC stop control signal to a high state according to the ADC control signal supplied from the ADC control signal generation unit 191 indicating the end of the AD conversion operation. As a result, in each AD converter 130b, the switches 1300a, 1300b, and 1300c are turned off, and the power supply from the power supply line Vp to the DA converter 132, the comparator 133, and the counter 134 is stopped. At the same time, the supply of current from the current source 131 is stopped in each AD converter 130b. Therefore, the operation of each AD converter 130b shifts to the operation of the circuit stop period 41a.
 水平同期信号の次の立ち上がりエッジに応じて、ADC制御信号生成部191は、各AD変換器130bに対する電力の供給を指示するADC制御信号を生成し、生成したADC制御信号をADC停止制御信号生成部190に供給する。ADC停止制御信号生成部190は、供給されたこのADC制御信号に応じてADC停止制御信号をハイ状態からロー状態へと移行させる。ADC停止制御信号がロー状態に移行されると、各AD変換器130bにおいて、スイッチ1300a、1300bおよび1300cがオンとされ、DA変換器132、コンパレータ133およびカウンタ134に電源線Vpから電力が供給される。それと共に、各AD変換器130bにおいて、電流源131による電流の供給が行われる。これにより、各AD変換器130bの動作が復帰期間41bにおける動作に移行する。 In response to the next rising edge of the horizontal sync signal, the ADC control signal generation unit 191 generates an ADC control signal instructing the supply of electric power to each AD converter 130b, and generates the generated ADC control signal as an ADC stop control signal. It is supplied to the section 190. The ADC stop control signal generation unit 190 shifts the ADC stop control signal from the high state to the low state according to the supplied ADC control signal. When the ADC stop control signal is shifted to the low state, the switches 1300a, 1300b and 1300c are turned on in each AD converter 130b, and the DA converter 132, the comparator 133 and the counter 134 are supplied with power from the power supply line Vp. It At the same time, the current is supplied from the current source 131 in each AD converter 130b. As a result, the operation of each AD converter 130b shifts to the operation in the return period 41b.
 以上の動作を例えば1H期間毎に実行することで、各ラインの読み出し時において、水平ブランキング期間41に各AD変換器130bに対する電力の供給を停止することができ、AD変換部13bにおける消費電力を削減することができる。 By performing the above operation, for example, every 1H period, it is possible to stop the power supply to each AD converter 130b during the horizontal blanking period 41 at the time of reading each line, and the power consumption in the AD conversion unit 13b. Can be reduced.
 図16および図17は、第1の実施形態に係る、垂直ブランキング期間31における制御の例を示すタイムチャートである。図16は、第1の実施形態に係る、垂直同期信号および水平同期信号に応じた各画素110からの画素信号の読み出し処理における垂直ブランキング期間31での制御の例を示す。また、図17は、第1の実施形態に係る、外部トリガ制御による各画素110からの画素信号の読み出し処理における垂直ブランキング期間31での制御の例を示す。 16 and 17 are time charts showing an example of control in the vertical blanking period 31 according to the first embodiment. FIG. 16 shows an example of control in the vertical blanking period 31 in the process of reading the pixel signal from each pixel 110 according to the vertical synchronization signal and the horizontal synchronization signal according to the first embodiment. Further, FIG. 17 shows an example of control in the vertical blanking period 31 in the process of reading the pixel signal from each pixel 110 by the external trigger control according to the first embodiment.
 図16において、制御部19は、垂直ブランキング期間31を含む期間VCstopにおいてハイ状態となるADC停止制御信号を生成する。この例では、制御部19は、垂直ブランキング期間31の直前の1H期間における復帰期間41b(図15参照)を省略し、当該1H期間における回路停止期間41aの先頭のタイミングでハイ状態となり、垂直ブランキング期間31の末尾のタイミングでロー状態となるADC停止制御信号を生成する。このADC停止制御信号に応じて、期間VCstopの間、各AD変換器130bに対する電力供給が停止され、各AD変換器130bの動作が期間VCstopの間、停止される。 In FIG. 16, the control unit 19 generates an ADC stop control signal that is in a high state in the period VC stop including the vertical blanking period 31. In this example, the control unit 19 omits the return period 41b (see FIG. 15) in the 1H period immediately before the vertical blanking period 31, and becomes the high state at the timing of the beginning of the circuit stop period 41a in the 1H period. An ADC stop control signal that goes low at the end of the blanking period 31 is generated. In response to the ADC stop control signal, during the period VC stop, power supply is stopped for each AD converter 130b, the operation of the AD converter 130b is during the period VC stop, is stopped.
 図17の例においても、上述した図16の場合と同様に、制御部19は、垂直ブランキング期間31を含む期間VCstopにおいてハイ状態となるADC停止制御信号を生成する。すなわち、制御部19は、垂直ブランキング期間31の直前の1H期間における回路停止期間41aの先頭のタイミングでハイ状態となり、垂直ブランキング期間31の末尾のタイミングでロー状態となるADC停止制御信号を生成する。このADC停止制御信号に応じて、期間VCstopの間、各AD変換器130bに対する電力供給が停止され、各AD変換器130bの動作が期間VCstopの間、停止される。 In the example of FIG. 17 as well, as in the case of FIG. 16 described above, the control unit 19 generates the ADC stop control signal that is in the high state during the period VC stop including the vertical blanking period 31. That is, the control unit 19 outputs an ADC stop control signal that becomes a high state at the beginning timing of the circuit stop period 41a in the 1H period immediately before the vertical blanking period 31 and becomes a low state at the end timing of the vertical blanking period 31. To generate. In response to the ADC stop control signal, during the period VC stop, power supply is stopped for each AD converter 130b, the operation of the AD converter 130b is during the period VC stop, is stopped.
 なお、上述では、1H期間内の回路停止期間41aと、垂直ブランキング期間31とにおいて、各AD変換器130bに対する電力の供給を停止しているが、これはこの例に限定されない。例えば、1H期間内の回路停止期間41aと、垂直ブランキング期間31とのうち、少なくとも一方において、各AD変換器130bに対する電力の供給を停止するようにしてもよい。この場合においても、AD変換部13aにおける消費電力を削減することが可能である。 In the above description, the power supply to each AD converter 130b is stopped during the circuit stop period 41a within the 1H period and the vertical blanking period 31, but this is not limited to this example. For example, the power supply to each AD converter 130b may be stopped in at least one of the circuit stop period 41a and the vertical blanking period 31 within the 1H period. Also in this case, it is possible to reduce the power consumption in the AD conversion unit 13a.
 また、上述では、AD変換器130bの各部に対する電力の供給を停止することで、AD変換器130bのスタンバイ状態を実現しているが、これはこの例に限定されない。例えば、AD変換器130bに含まれるDA変換器132、コンパレータ133およびカウンタ134のうち少なくとも1つに電力の供給を停止することで、スタンバイ状態としてもよい。また、AD変換器130bの各部に対して供給される電力を減少させることで、AD変換器130bのスタンバイ状態を実現することも考えられる。 Further, in the above description, the standby state of the AD converter 130b is realized by stopping the supply of power to each unit of the AD converter 130b, but this is not limited to this example. For example, the standby state may be achieved by stopping the power supply to at least one of the DA converter 132, the comparator 133, and the counter 134 included in the AD converter 130b. It is also possible to realize the standby state of the AD converter 130b by reducing the power supplied to each part of the AD converter 130b.
[第2の実施形態]
 次に、本開示の第2の実施形態について説明する。第2の実施形態は、画素アレイ部11に含まれる各画素110を複数のグループに分け、当該複数グループそれぞれに対してAD変換部13を設けた例である。ここでは、画素アレイ部11に含まれる各画素110を2つのグループに分け、各グループにそれぞれ対応するAD変換部13を、画素アレイ部11の両端側に配置する。
[Second Embodiment]
Next, a second embodiment of the present disclosure will be described. The second embodiment is an example in which each pixel 110 included in the pixel array unit 11 is divided into a plurality of groups, and the AD conversion unit 13 is provided for each of the plurality of groups. Here, each pixel 110 included in the pixel array unit 11 is divided into two groups, and the AD conversion units 13 corresponding to the respective groups are arranged on both end sides of the pixel array unit 11.
 図18は、第2の実施形態に係る固体撮像素子の構成例を概略的に示すブロックである。図18において、固体撮像素子10bは、画素アレイ部11aにおける各列の両端側に、AD変換部13upおよび13lwが配されている。制御部19aは、図18において上側に配されるAD変換部13upに供給するためのADC制御信号upおよびADC停止制御信号up(stop)と、下側に配されるAD変換部13lwに供給するためのADC制御信号lwおよびADC停止制御信号lw(stop)と、をそれぞれ生成する。 FIG. 18 is a block diagram schematically showing a configuration example of the solid-state imaging device according to the second embodiment. In FIG. 18, the solid-state imaging device 10b has AD conversion units 13up and 13lw arranged at both ends of each column in the pixel array unit 11a. The control unit 19a supplies the ADC control signal up and the ADC stop control signal up (stop) to be supplied to the AD conversion unit 13up arranged on the upper side in FIG. 18 and the AD conversion unit 13lw arranged on the lower side. And an ADC stop control signal lw (stop) for generating the signal.
 図18の例では、画素アレイ部11aから導出される各垂直信号線17は、1本毎に交互に上側のAD変換部13upと、下側のAD変換部13lwに接続される。より具体的には、例えば、画素アレイ部11aが2n(nは1以上の整数)本のカラム(垂直信号線17)を含むものとした場合、上側のAD変換部13upに接続される垂直信号線17は、奇数番目の垂直信号線17であるVSL1、VSL3、…、VSL2n-1であり、下側のAD変換部13lwに接続される垂直信号線17は、偶数番目の垂直信号線17であるVSL2、VSL4、…、VSL2nである。このように、図18の例では、画素アレイ部11aに含まれる各画素110は、奇数番目の垂直信号線17に接続される画素のグループと、偶数番目の垂直信号線17に接続される画素のグループと、に分けられている。AD変換部13upおよびAD変換部13lwは、それぞれ、画素アレイ部11aが含む2n本の垂直信号線17の半数のn個のAD変換器130bを含む。 In the example of FIG. 18, each vertical signal line 17 derived from the pixel array unit 11a is alternately connected to the upper AD conversion unit 13up and the lower AD conversion unit 13lw. More specifically, for example, when the pixel array unit 11a includes 2n (n is an integer of 1 or more) columns (vertical signal lines 17), a vertical signal connected to the upper AD conversion unit 13up. The line 17 is an odd-numbered vertical signal line 17 which is VSL 1 , VSL 3 , ..., VSL 2n-1 , and the vertical signal line 17 connected to the lower AD converter 13lw is an even-numbered vertical signal line. The lines 17 are VSL 2 , VSL 4 , ..., VSL 2n . As described above, in the example of FIG. 18, each pixel 110 included in the pixel array unit 11a includes a group of pixels connected to the odd-numbered vertical signal lines 17 and a pixel connected to the even-numbered vertical signal lines 17. It is divided into two groups. The AD conversion unit 13up and the AD conversion unit 13lw each include n AD converters 130b, which is half the number of the 2n vertical signal lines 17 included in the pixel array unit 11a.
 AD変換部13upおよび13lwに含まれる各AD変換器130bの構成は、図13を用いて説明した構成と同一の構成を適用できる。 The same configuration as the configuration described with reference to FIG. 13 can be applied to the configuration of each AD converter 130b included in the AD conversion units 13up and 13lw.
 信号処理部20aは、AD変換部13upから出力された2つのディジタル値に基づきCDS処理を行い、ディジタル信号による画素信号(画素データ)を生成する。同様に、信号処理部20aは、AD変換部13lwから出力された2つのディジタル値に基づきCDS処理を行い、ディジタル信号による画素信号を生成する。信号処理部20aは、例えば、AD変換部13upの出力に基づく画素信号と、AD変換部13lwの出力に基づく画素信号とを、垂直信号線17の順序に従い、交互に出力する。 The signal processing unit 20a performs CDS processing based on the two digital values output from the AD conversion unit 13up, and generates a pixel signal (pixel data) by a digital signal. Similarly, the signal processing unit 20a performs CDS processing based on the two digital values output from the AD conversion unit 13lw, and generates a pixel signal by a digital signal. The signal processing unit 20a alternately outputs, for example, a pixel signal based on the output of the AD conversion unit 13up and a pixel signal based on the output of the AD conversion unit 13lw in the order of the vertical signal lines 17.
 信号処理部20aから出力された画素信号は、例えば固体撮像素子10bの外部のフレームバッファにおいて所定の順序に並べられて記憶され、1枚の画像データが形成される。 The pixel signals output from the signal processing unit 20a are arranged and stored in a predetermined order in, for example, a frame buffer outside the solid-state imaging device 10b, and one image data is formed.
 図19は、第2の実施形態に係る、垂直同期信号および水平同期信号に応じた各画素110からの画素信号の読み出し処理の例を示すタイムチャートである。図19において、垂直同期信号、水平同期信号および読み出し処理の各チャートは、上述した図10の対応する各チャートと共通である。 FIG. 19 is a time chart showing an example of a process of reading a pixel signal from each pixel 110 according to a vertical synchronization signal and a horizontal synchronization signal according to the second embodiment. In FIG. 19, each chart of the vertical synchronizing signal, the horizontal synchronizing signal, and the reading process is common to the corresponding chart of FIG. 10 described above.
 第2の実施形態では、各AD変換部13upおよび13lwがAD変換対象とするライン数は、第1の実施形態に係るAD変換部13aがAD変換対象とするライン数と同一である。したがって、各AD変換部13upおよび13lwに含まれる各AD変換器130bによるADC動作は、図19のADC動作「up」および「lw」の各チャートに示されるように、それぞれ図10を用いて説明した動作と同様となる。 In the second embodiment, the number of lines to be AD-converted by each AD converter 13up and 13lw is the same as the number of lines to be AD-converted by the AD converter 13a according to the first embodiment. Therefore, the ADC operation by each AD converter 130b included in each AD converter 13up and 13lw will be described with reference to FIG. 10 as shown in the charts of the ADC operations “up” and “lw” in FIG. The same operation is performed.
 すなわち、制御部19aは、水平同期信号の立ち上がりエッジに応じて立ち下がり、各AD変換器130bのADC動作の終了に伴い立ち上がるADC停止制御信号up(stop)およびlw(stop)を生成し(図15参照)、それぞれAD変換部13upおよび13lwに供給する。このADC停止制御信号up(stop)およびlw(stop)と、各AD変換部13upおよび13lwにそれぞれ含まれる各AD変換器130bにおけるAD変換動作を制御するためのADC制御信号upおよびlwとに基づき、1H期間がAD変換期間40と、回路停止期間41aと、復帰期間41bとに分割される。 That is, the control unit 19a generates ADC stop control signals up (stop) and lw (stop) that fall according to the rising edge of the horizontal synchronization signal and rise with the end of the ADC operation of each AD converter 130b (FIG. 15), and supplies to the AD conversion units 13up and 13lw, respectively. Based on the ADC stop control signals up (stop) and lw (stop) and the ADC control signals up and lw for controlling the AD conversion operation in the AD converters 130b included in the AD converters 13up and 13lw, respectively. The 1H period is divided into an AD conversion period 40, a circuit stop period 41a, and a return period 41b.
 各AD変換部13upおよび13lwにそれぞれ含まれる各AD変換器130bは、これらAD変換期間40においてAD変換処理を実行し、回路停止期間41aにおいて電力の供給が停止される。さらに、復帰期間41bにおいて電力の供給が再開される。このAD変換期間40と、回路停止期間41aと、復帰期間41bとが、水平同期信号に同期して各ラインにおいて実行される。 Each AD converter 130b included in each AD conversion unit 13up and 13lw executes AD conversion processing in these AD conversion periods 40, and power supply is stopped in the circuit stop period 41a. Further, the supply of electric power is restarted in the return period 41b. The AD conversion period 40, the circuit stop period 41a, and the recovery period 41b are executed in each line in synchronization with the horizontal synchronization signal.
 垂直ブランキング期間31についても同様に、制御部19aは、垂直ブランキング期間31においてハイ状態となるADC停止制御信号up(stop)およびlw(stop)を生成し、AD変換部13upおよび13lwにそれぞれ供給する。これにより、垂直ブランキング期間31において、各AD変換部13upおよび13lwそれぞれに含まれる各AD変換器130bに対する電力の供給が停止される。 Similarly in the vertical blanking period 31, the control unit 19a generates the ADC stop control signals up (stop) and lw (stop) which are in the high state in the vertical blanking period 31, and the AD conversion units 13up and 13lw respectively. Supply. As a result, in the vertical blanking period 31, the power supply to the AD converters 130b included in the AD converters 13up and 13lw is stopped.
 このように、第2の実施形態においても、上述した第1の実施形態と同様に、各AD変換器130bがAD変換処理を行わない期間に電力の供給が停止され、各AD変換部13upおよび13lwにおける電力の消費を削減できる。また、第2の実施形態においても、上述した第1の実施形態と同様に、各AD変換器130bの動作を、AD変換処理を行わない期間において停止させることで、AD変換器130bが動作状態にあることで発生する、ホットキャリアなどの電荷に起因するノイズを低減することが可能である。 As described above, also in the second embodiment, similarly to the above-described first embodiment, the power supply is stopped during the period in which each AD converter 130b does not perform the AD conversion processing, and each AD converter 13up and The power consumption in 13 lw can be reduced. Also in the second embodiment, as in the above-described first embodiment, the operation of each AD converter 130b is stopped during a period in which AD conversion processing is not performed, so that the AD converter 130b is in the operating state. It is possible to reduce noise caused by electric charges such as hot carriers, which are caused by the above.
[第3の実施形態]
 次に、本開示の第3の実施形態について説明する。第3の実施形態は、1つの固体撮像素子が複数の画素アレイ部を含み、これら複数の画素アレイ部に対応して、それぞれ異なる露光時間を指定する複数の外部トリガ信号が入力される例である。
[Third Embodiment]
Next, a third embodiment of the present disclosure will be described. The third embodiment is an example in which one solid-state image sensor includes a plurality of pixel array units, and a plurality of external trigger signals that specify different exposure times are input corresponding to the plurality of pixel array units. is there.
 図20は、第3の実施形態に係る固体撮像素子の構成例を概略的に示すブロック図である。図20において、固体撮像素子10cは、複数(この例では2つ)の画素アレイ部11b1および11b2を含む。なお、図20では、画素アレイ部11b1および11b2を、画素アレイ部(1)および画素アレイ部(2)としても示している。画素アレイ部11b1および11b2は、それぞれ、図1を用いて説明した画素アレイ部11と同等の構成を有しているものとする。 FIG. 20 is a block diagram schematically showing a configuration example of the solid-state imaging device according to the third embodiment. In FIG. 20, the solid-state imaging device 10c includes a plurality (two in this example) of pixel array sections 11b 1 and 11b 2 . Note that in FIG. 20, the pixel array units 11b 1 and 11b 2 are also shown as the pixel array unit (1) and the pixel array unit (2). The pixel array units 11b 1 and 11b 2 are assumed to have the same configuration as the pixel array unit 11 described with reference to FIG.
 制御部19bに対して、水平同期信号と、複数の外部トリガ信号とが入力される。図20では、制御部19bに、外部トリガ信号(1)および外部トリガ信号(2)の2本の外部トリガ信号が入力されている。制御部19bは、水平同期信号および外部トリガ信号(1)に基づき、画素アレイ部11b1に対応するADC制御信号(1)と、ADC停止制御信号(1)と、を生成する。同様に、制御部19bは、水平同期信号および外部トリガ信号(2)に基づき、画素アレイ部11b2に対応するADC制御信号(2)と、ADC停止制御信号(2)と、を生成する。 A horizontal synchronizing signal and a plurality of external trigger signals are input to the control unit 19b. In FIG. 20, two external trigger signals of the external trigger signal (1) and the external trigger signal (2) are input to the control unit 19b. The control unit 19b generates an ADC control signal (1) corresponding to the pixel array unit 11b 1 and an ADC stop control signal (1) based on the horizontal synchronization signal and the external trigger signal (1). Similarly, the control unit 19b generates an ADC control signal (2) corresponding to the pixel array unit 11b 2 and an ADC stop control signal (2) based on the horizontal synchronization signal and the external trigger signal (2).
 固体撮像素子10cは、さらに、垂直走査部12a1および12a2と、AD変換部13b1および13b2と、を含む。垂直走査部12a1および12a2は、それぞれ、図1を用いて説明した垂直走査部12と同等の機能を有する。図20では、垂直走査部12a1および12a2は、それぞれ、垂直走査部(1)、垂直走査部(2)としても示されている。 The solid-state imaging device 10c further includes vertical scanning units 12a 1 and 12a 2 and AD conversion units 13b 1 and 13b 2 . Each of the vertical scanning units 12a 1 and 12a 2 has the same function as the vertical scanning unit 12 described with reference to FIG. In FIG. 20, the vertical scanning units 12a 1 and 12a 2 are also shown as a vertical scanning unit (1) and a vertical scanning unit (2), respectively.
 垂直走査部12a1は、制御部19bによる外部トリガ信号(1)と、水平同期信号と、に基づき、画素アレイ部11b1に含まれる各画素110に供給されるリセットパルスRST、転送パルスTRGおよび選択信号SELを生成する。同様に、垂直走査部12a2は、制御部19bによる外部トリガ信号(2)と、水平同期信号と、に基づき、画素アレイ部11b2に含まれる各画素110に供給されるリセットパルスRST、転送パルスTRGおよび選択信号SELを生成する。 The vertical scanning unit 12a 1 receives the reset pulse RST, the transfer pulse TRG, and the reset pulse RST supplied to each pixel 110 included in the pixel array unit 11b 1 based on the external trigger signal (1) from the control unit 19b and the horizontal synchronizing signal. The selection signal SEL is generated. Similarly, the vertical scanning unit 12a 2 transfers the reset pulse RST supplied to each pixel 110 included in the pixel array unit 11b 2 based on the external trigger signal (2) by the control unit 19b and the horizontal synchronization signal, and transfers the reset pulse RST. The pulse TRG and the selection signal SEL are generated.
 AD変換部13b1および13b2は、それぞれ図9を用いて説明したAD変換部13a同等の機能を有し、複数のAD変換器130bを含む。この例では、AD変換部13b1は、画素アレイ部11b1の列数(カラム数)に対応した数のAD変換器130bを含む。同様に、AD変換部13b2は、画素アレイ部11b2の列数に対応した数のAD変換器130bを含む。図20では、AD変換部13b1および13b2は、それぞれ、AD変換部(1)、AD変換部(2)としても示されている。 Each of the AD conversion units 13b 1 and 13b 2 has a function equivalent to that of the AD conversion unit 13a described with reference to FIG. 9, and includes a plurality of AD converters 130b. In this example, the AD conversion unit 13b 1 includes the number of AD converters 130b corresponding to the number of columns (the number of columns) of the pixel array unit 11b 1 . Similarly, the AD converter 13b 2 includes the number of AD converters 130b corresponding to the number of columns of the pixel array unit 11b 2 . In FIG. 20, the AD conversion units 13b 1 and 13b 2 are also shown as an AD conversion unit (1) and an AD conversion unit (2), respectively.
 AD変換部13b1は、外部トリガ信号(1)に対応して制御部19bにより生成されたADC制御信号(1)およびADC停止制御信号(1)が供給される。AD変換部13b1に含まれる各AD変換器130bは、これらADC制御信号(1)およびADC停止制御信号(1)に従い動作を制御され、画素アレイ部11b1の各垂直信号線17から供給される画素信号に対するAD変換処理を実行する。AD変換部13b1により画素信号がAD変換処理されたディジタル値は、信号処理部20bに供給される。 The ADC converter 13b 1 is supplied with the ADC control signal (1) and the ADC stop control signal (1) generated by the controller 19b in response to the external trigger signal (1). The operation of each AD converter 130b included in the AD converter 13b 1 is controlled according to the ADC control signal (1) and the ADC stop control signal (1), and is supplied from each vertical signal line 17 of the pixel array unit 11b 1. AD conversion processing is performed on the corresponding pixel signal. The digital value obtained by subjecting the pixel signal to AD conversion by the AD converter 13b 1 is supplied to the signal processor 20b.
 同様に、AD変換部13b2は、外部トリガ信号(2)に対応して制御部19bにより生成されたADC制御信号(2)およびADC停止制御信号(2)が供給される。AD変換部13b2に含まれる各AD変換器130bは、これらADC制御信号(2)およびADC停止制御信号(2)に従い動作を制御され、画素アレイ部11b2の各垂直信号線17から供給される画素信号に対するAD変換処理を実行する。AD変換部13b2により画素信号がAD変換処理されたディジタル値は、信号処理部20bに供給される。 Similarly, the AD converter 13b 2 is supplied with the ADC control signal (2) and the ADC stop control signal (2) generated by the controller 19b in response to the external trigger signal (2). The operation of each AD converter 130b included in the AD converter 13b 2 is controlled according to the ADC control signal (2) and the ADC stop control signal (2), and is supplied from each vertical signal line 17 of the pixel array unit 11b 2. AD conversion processing is performed on the corresponding pixel signal. The digital value obtained by subjecting the pixel signal to AD conversion by the AD converter 13b 2 is supplied to the signal processor 20b.
 信号処理部20bは、AD変換部13b1から供給された各ディジタル値に基づきCDS処理を行い、画素アレイ部11b1に対応する、ディジタル信号による画素データを画素出力(1)として出力する。同様に、信号処理部20bは、AD変換部13b2から供給された各ディジタル値に基づきCDS処理を行い、画素アレイ部11b2に対応する、ディジタル信号による画素データを画素出力(2)として出力する。 The signal processing unit 20b performs a CDS process based on each digital value supplied from the AD conversion unit 13b 1 and outputs pixel data by a digital signal corresponding to the pixel array unit 11b 1 as a pixel output (1). Similarly, the signal processing unit 20b performs CDS processing based on each digital value supplied from the AD conversion unit 13b 2 and outputs pixel data corresponding to the pixel array unit 11b 2 by a digital signal as a pixel output (2). To do.
 図21は、第3の実施形態に係る、外部トリガ信号(1)および(2)、ならびに、水平同期信号に応じた各画素110からの画素信号の読み出し処理の例を示すタイムチャートである。図21において、上から、水平同期信号のチャートと、外部トリガ信号(1)および当該外部トリガ信号(1)による読み出し処理(1)の各チャートと、外部トリガ信号(2)および当該外部トリガ信号(2)による読み出し処理(2)の各チャートと、各読み出し処理(1)および(2)に対応するADC動作を示すチャートと、がそれぞれ示される。下段には、1H期間におけるADC動作の詳細を示すチャートが示されている。 FIG. 21 is a time chart showing an example of pixel signal read processing from each pixel 110 according to the external trigger signals (1) and (2) and the horizontal synchronization signal according to the third embodiment. In FIG. 21, from the top, the chart of the horizontal synchronizing signal, each chart of the external trigger signal (1) and the reading process (1) by the external trigger signal (1), the external trigger signal (2), and the external trigger signal. Each chart of the reading process (2) by (2) and the chart showing the ADC operation corresponding to each of the reading processes (1) and (2) are shown. A chart showing the details of the ADC operation in the 1H period is shown in the lower stage.
 なお、図12の例も、上述した図10と同様に、説明のため、水平同期信号のタイミングを示すチャートにおいて、水平同期信号が立ち上がりエッジと立ち下がりエッジとの組から形成される、上向きのパルスとして表されている。 Note that, similarly to FIG. 10 described above, in the example of FIG. 12 as well, for the sake of explanation, in the chart showing the timing of the horizontal synchronizing signal, the horizontal synchronizing signal is formed of a pair of a rising edge and a falling edge. It is represented as a pulse.
 図21において、外部トリガ信号(1)が時点t20で立ち下がり時点t21で立ち上がる信号であるのに対して、外部トリガ信号(2)は、時点t20より時間的に後の時点t22で立ち下がり、時点t21で立ち上がる信号となっている。このように、図21の例では、外部トリガ信号(1)および(2)により、異なる露光時間が指定される。 In FIG. 21, the external trigger signal (1) is a signal that falls at time t 20 and rises at time t 21 , while the external trigger signal (2) is time t 22 that is later than time t 20. It is a signal that falls at and rises at time t 21 . As described above, in the example of FIG. 21, different exposure times are designated by the external trigger signals (1) and (2).
 垂直走査部12a1は、外部トリガ信号(1)に基づく制御信号を、画素アレイ部11b1に伝送する。また、垂直走査部12a2は、外部トリガ信号(2)に基づく制御信号を、画素アレイ部11b2に伝送する。画素アレイ部11b1に含まれる各画素110は、外部トリガ信号(1)において時点t20および時点t21で示される露光時間で露光される。一方、画素アレイ部11b2に含まれる各画素110は、画素アレイ部11b1に含まれる各画素110より短い、外部トリガ信号(1)において時点t22および時点t21で示される露光時間で露光される。このように、1つの固体撮像素子10cに含まれる2つの画素アレイ部11b1および11b2を異なる露光時間で露光することで、例えば、得られる画像データのダイナミックレンジを拡大することができる。 The vertical scanning unit 12a 1 transmits a control signal based on the external trigger signal (1) to the pixel array unit 11b 1 . In addition, the vertical scanning unit 12a 2 transmits a control signal based on the external trigger signal (2) to the pixel array unit 11b 2 . Each pixel 110 included in the pixel array unit 11b 1 is exposed for the exposure time indicated by the time t 20 and the time t 21 in the external trigger signal (1). On the other hand, each pixel 110 included in the pixel array unit 11b 2 is shorter than each pixel 110 included in the pixel array unit 11b 1 by the exposure time shown at the time points t 22 and t 21 in the external trigger signal (1). To be done. In this way, by exposing the two pixel array sections 11b 1 and 11b 2 included in one solid-state imaging device 10c with different exposure times, for example, the dynamic range of the obtained image data can be expanded.
 外部トリガ信号(1)に応じた読み出し処理(1)およびADC動作、および、外部トリガ信号(2)に応じた読み出し処理(2)およびADC動作は、それぞれ、図12を用いて説明した外部トリガ信号に応じた読み出し処理およびADC動作と同様である。すなわち、画素アレイ部11b1において、外部トリガ信号(1)の立ち上がりエッジのタイミングが1V期間の先頭タイミングとされ、1フレームの読み出しが開始される。同様に、画素アレイ部11b2において、外部トリガ信号(2)の立ち上がりエッジのタイミングが1V期間の先頭タイミングとされ、1フレームの読み出しが開始される。 The read process (1) and the ADC operation according to the external trigger signal (1) and the read process (2) and the ADC operation according to the external trigger signal (2) are the external trigger described with reference to FIG. 12, respectively. This is the same as the read processing and the ADC operation according to the signal. That is, in the pixel array section 11b 1 , the timing of the rising edge of the external trigger signal (1) is set to the start timing of the 1V period, and reading of one frame is started. Similarly, in the pixel array unit 11b 2, the timing of the rising edge of the external trigger signal (2) is the head timing of the 1V period, 1 frame readout is started.
 AD変換部13b1に含まれる各AD変換器130bによる、外部トリガ信号(1)に応じた1V期間内および1H期間内での動作、および、AD変換部13b2に含まれる各AD変換器130bによる、外部トリガ信号(2)に応じた1V期間内および1H期間内での動作は、それぞれ、図10を用いて説明した、垂直同期信号に応じて1V期間が開始される例と同様である。 According to the AD converter 130b included in the AD conversion section 13b 1, operation within 1V period and in 1H period corresponding to the external trigger signal (1), and, each AD converter 130b included in the AD conversion unit 13b 2 The operation in the 1V period and the 1H period according to the external trigger signal (2) is the same as the example in which the 1V period is started according to the vertical synchronization signal described with reference to FIG. .
 すなわち、1H期間が、AD変換期間40と、回路停止期間41aと、復帰期間41bとに分割される。制御部19bは、AD変換期間40の終了時に、AD変換部13b1に含まれる各AD変換器130bに対する電力の供給を停止させるADC停止制御信号(1)を、AD変換部13b1に供給し、回路停止期間41aにおいて各AD変換器130bに対する電力の供給を停止させる。制御部19bは、次の水平同期信号の立ち上がりエッジにおいて、AD変換部13b1に含まれる各AD変換器130に対する電力の供給を再開させるADC停止制御信号(1)をAD変換部13b1に供給する。これにより、AD変換部13b1に含まれる各AD変換器130bに対して電力が供給され、各AD変換器130bの動作が復帰動作に移行する。 That is, the 1H period is divided into the AD conversion period 40, the circuit stop period 41a, and the return period 41b. Control unit 19b is at the end of the AD conversion period 40, ADC stop control signal for stopping the supply of electric power to the AD converter 130b included in the AD conversion section 13b 1 a (1) is supplied to the AD converter 13b 1 The supply of power to each AD converter 130b is stopped in the circuit stop period 41a. Control unit 19b is supplied at the rising edge of the next horizontal synchronizing signal, ADC stop control signal to resume supply of power to each AD converter 130 included in the AD conversion section 13b 1 (1) to the AD converter 13b 1 To do. As a result, power is supplied to each AD converter 130b included in the AD conversion unit 13b 1, and the operation of each AD converter 130b shifts to the return operation.
 外部トリガ信号(2)に応じたAD変換部13b2における動作も、上述のAD変換部13b1における動作と同様であるので、ここでの説明を省略する。また、垂直ブランキング期間31における各AD変換器130bに対する電力の供給停止処理も、図10を用いて説明した例と同様であるので、ここでの説明を省略する。 The operation of the AD conversion unit 13b 2 according to the external trigger signal (2) is also similar to the operation of the AD conversion unit 13b 1 described above, and therefore the description thereof is omitted here. Further, the process of stopping the power supply to each AD converter 130b in the vertical blanking period 31 is also similar to the example described with reference to FIG. 10, and thus the description thereof is omitted here.
 このように、固体撮像素子11cが含む2つの画素アレイ部11b1および11b2にそれぞれ異なる露光時間を指定する外部トリガ信号(1)および(2)が供給される場合でも、各AD変換部13b1および13b2に含まれる各AD変換器130bがAD変換処理を行わない期間に電力の供給が停止され、各AD変換部13b1および13b2における電力の消費を削減できる。また、第3の実施形態においても、上述した第1の実施形態と同様に、各AD変換器130bの動作を、AD変換処理を行わない期間において停止させることで、AD変換器130bが動作状態にあることで発生する、ホットキャリアなどの電荷に起因するノイズを低減することが可能である。 As described above, even when the external trigger signals (1) and (2) designating different exposure times are supplied to the two pixel array units 11b 1 and 11b 2 included in the solid-state imaging device 11c, the AD conversion units 13b are also provided. The power supply is stopped during the period in which the AD converters 130b included in 1 and 13b 2 do not perform AD conversion processing, and the power consumption in the AD conversion units 13b 1 and 13b 2 can be reduced. Also in the third embodiment, as in the above-described first embodiment, the operation of each AD converter 130b is stopped during the period in which AD conversion processing is not performed, so that the AD converter 130b is in the operating state. It is possible to reduce noise caused by electric charges such as hot carriers, which are caused by the above.
[第4の実施形態]
 次に、本開示の第4の実施形態について説明する。第4の実施形態は、上述した第1~第3の実施形態に係る技術を適用した電子機器の構成例について説明する。図22は、第4の実施形態に係る電子機器の一例の構成を示すブロック図である。
[Fourth Embodiment]
Next, a fourth embodiment of the present disclosure will be described. The fourth embodiment will describe a configuration example of an electronic device to which the techniques according to the above-described first to third embodiments are applied. FIG. 22 is a block diagram showing the configuration of an example of the electronic device according to the fourth embodiment.
 図22において、電子機器100は、光学系1000と、撮像装置1001と、信号処理回路1002と、メモリ1003と、モニタ1004と、を備えている。図22においては、撮像装置1001として、上述した本開示の固体撮像素子10a、10bおよび10cの何れかを、電子機器100に設けた場合の実施形態を示す。ここで、電子機器100としては、デジタルスチルカメラ、デジタルビデオカメラ、撮像機能付きの携帯電話やスマートフォンなどを適用することができる。 22, the electronic device 100 includes an optical system 1000, an image pickup apparatus 1001, a signal processing circuit 1002, a memory 1003, and a monitor 1004. FIG. 22 shows an embodiment in which any one of the above-described solid- state imaging devices 10a, 10b, and 10c of the present disclosure is provided in the electronic device 100 as the imaging device 1001. Here, as the electronic device 100, a digital still camera, a digital video camera, a mobile phone with an imaging function, a smartphone, or the like can be applied.
 光学系1000は、被写体からの像光(入射光)を撮像装置1001の撮像面上に結像させる。これにより、信号電荷が一定期間、撮像装置1001内に蓄積される。信号処理回路1002は、撮像装置1001から出力された信号に対して各種の信号処理を行う。信号処理が行われた映像信号は、メモリ1003などの記憶媒体に記憶させることができる。また、当該映像信号を、モニタ1004に出力することもできる。 The optical system 1000 forms image light (incident light) from a subject on the image pickup surface of the image pickup apparatus 1001. As a result, the signal charges are accumulated in the imaging device 1001 for a certain period. The signal processing circuit 1002 performs various kinds of signal processing on the signal output from the imaging device 1001. The video signal subjected to the signal processing can be stored in a storage medium such as the memory 1003. Further, the video signal can be output to the monitor 1004.
[第5の実施形態]
 次に、本開示に係る技術を適用した撮像装置の使用例について説明する。図23は、上述した本開示に係る、撮像装置としての固体撮像素子10a、10bおよび10cの使用例を示す図である。
[Fifth Embodiment]
Next, a usage example of the imaging device to which the technology according to the present disclosure is applied will be described. FIG. 23 is a diagram showing a usage example of the solid-state image pickup elements 10a, 10b, and 10c as the image pickup apparatus according to the present disclosure described above.
 上述した固体撮像素子10a、10bおよび10cは、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。 The solid- state imaging devices 10a, 10b, and 10c described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-rays as described below.
・デジタルカメラや、撮影機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置。
・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置。
・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置。
・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置。
・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置。
・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置。
・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置。
・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置。
-A device that captures images used for viewing, such as digital cameras and portable devices with a shooting function.
・ In-vehicle sensors that take images of the front, rear, surroundings, and inside of the vehicle for safe driving such as automatic stop and recognition of the driver's condition, surveillance cameras for monitoring traveling vehicles and roads, inter-vehicle etc. A device used for traffic, such as a distance measurement sensor for distance measurement.
A device used for home appliances such as a TV, a refrigerator, and an air conditioner in order to photograph a user's gesture and operate a device according to the gesture.
-A device used for medical care or healthcare, such as an endoscope or a device for taking an angiogram by receiving infrared light.
-A device used for security, such as a security surveillance camera or a person authentication camera.
-A device used for beauty, such as a skin measuring device that photographs the skin and a microscope that photographs the scalp.
-Devices used for sports such as action cameras and wearable cameras for sports purposes.
-A device used for agriculture, such as a camera for monitoring the condition of fields and crops.
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。 It should be noted that the effects described in this specification are merely examples and are not limited, and there may be other effects.
 なお、本技術は以下のような構成も取ることができる。
(1)
 画素アレイに二次元格子状の配列で含まれる各画素から読み出されたアナログ信号のディジタル信号への変換を行う変換部と、
 前記変換部の動作を制御する制御部と、
を備え、
 前記制御部は、
 前記配列におけるラインの読み出しタイミングを示す水平同期信号に基づく水平ブランキング期間と、前記画素アレイから1フレーム分の画素の読み出しを開始するタイミングを示すトリガ信号に基づく垂直ブランキング期間と、のうち少なくとも一方の期間内において、前記変換部の状態を前記変換を行わないスタンバイ状態に移行させる
撮像装置。
(2)
 前記変換部は、
 前記水平同期信号の立ち上がりおよび立ち下がりのうち一方に応じて前記変換を開始し、
 前記制御部は、
 前記変換の終了タイミングに応じて前記変換部の状態を前記スタンバイ状態に移行させ、前記水平同期信号の立ち上がりおよび立ち下がりのうち他方に応じて該変換部の該スタンバイ状態を解除する
前記(1)に記載の撮像装置。
(3)
 前記トリガ信号は、
 前記画素アレイから前記1フレーム分の画素の読み出しを行う周期を示す垂直同期信号である
前記(1)または(2)に記載の撮像装置。
(4)
 前記トリガ信号は、前記画素アレイにおける露光の開始および終了を指定する信号であって、前記垂直ブランキング期間は、該トリガ信号により該露光の終了が指定されたタイミングに基づく
前記(1)または(2)に記載の撮像装置。
(5)
 前記制御部は、
 前記変換部への電力の供給を停止することで、該変換部の状態を前記スタンバイ状態に移行させる
前記(1)乃至(4)のいずれかに記載の撮像装置。
(6)
 前記制御部は、
 前記変換部による前記変換の開始および終了を制御する変換制御信号と、前記トリガ信号と、前記水平同期信号と、に基づき、前記変換部の状態を前記スタンバイ状態に移行させる状態制御信号を生成する
前記(1)乃至(5)のいずれかに記載の撮像装置。
(7)
 複数の前記画素をそれぞれ含む複数のグループに対応する複数の前記変換部を備え、
 前記制御部は、
 複数の前記変換部それぞれに対応して前記状態制御信号を生成する
前記(6)に記載の撮像装置。
(8)
 当該撮像装置は、複数の前記画素アレイを含み、
 前記制御部は、
 複数の前記画素アレイのそれぞれに対応して前記状態制御信号を生成する
前記(6)に記載の撮像装置。
(9)
 画素が二次元格子状の配列で含まれる画素アレイの該配列におけるラインの読み出しタイミングを示す水平同期信号が入力される水平同期信号入力ステップと、
 前記画素アレイから1フレーム分の画素の読み出しを開始するタイミングを示すトリガ信号が入力されるトリガ信号入力ステップと、
 前記画素から読み出された前記アナログ信号のディジタル信号への変換を変換部が行う変換ステップと、
 前記水平同期信号に基づく水平部ランキング期間と、前記トリガ信号に基づく垂直ブランキング期間と、のうち少なくとも一方の期間内において、前記変換部の状態を前記変換を行わないスタンバイ状態に移行させる制御ステップと、
を有する
撮像装置の制御方法。
(10)
 画素アレイに二次元格子状の配列で含まれる各画素から読み出されたアナログ信号のディジタル信号への変換を行う変換部と、
 前記変換部の動作を制御する制御部と、
 前記ディジタル信号を記憶する記憶部と、
を備え、
 前記制御部は、
 前記配列におけるラインの読み出しタイミングを示す水平同期信号に基づく水平ブランキング期間と、前記画素アレイから1フレーム分の画素の読み出しを開始するタイミングを示すトリガ信号に基づく垂直ブランキング期間と、のうち少なくとも一方の期間内において、前記変換部の状態を前記変換を行わないスタンバイ状態に移行させる
電子機器。
Note that the present technology may also be configured as below.
(1)
A conversion unit that converts an analog signal read from each pixel included in the pixel array in a two-dimensional lattice array into a digital signal,
A control unit for controlling the operation of the conversion unit,
Equipped with
The control unit is
At least one of a horizontal blanking period based on a horizontal synchronizing signal indicating a read timing of lines in the array and a vertical blanking period based on a trigger signal indicating a timing to start reading pixels of one frame from the pixel array. An imaging device that shifts the state of the conversion unit to a standby state in which the conversion is not performed within one period.
(2)
The conversion unit is
The conversion is started in response to one of rising and falling of the horizontal synchronizing signal,
The control unit is
The state of the conversion unit is shifted to the standby state according to the end timing of the conversion, and the standby state of the conversion unit is released according to the other of rising and falling of the horizontal synchronization signal. The imaging device according to.
(3)
The trigger signal is
The image pickup apparatus according to (1) or (2), which is a vertical synchronization signal indicating a period for reading the pixels of the one frame from the pixel array.
(4)
The trigger signal is a signal that designates the start and end of exposure in the pixel array, and the vertical blanking period is based on the timing (1) or () based on the timing when the end of the exposure is designated by the trigger signal. The image pickup device according to 2).
(5)
The control unit is
The imaging device according to any one of (1) to (4), wherein the state of the conversion unit is shifted to the standby state by stopping the supply of power to the conversion unit.
(6)
The control unit is
A state control signal that shifts the state of the conversion unit to the standby state is generated based on a conversion control signal that controls the start and end of the conversion by the conversion unit, the trigger signal, and the horizontal synchronization signal. The imaging device according to any one of (1) to (5) above.
(7)
A plurality of conversion units corresponding to a plurality of groups each including the plurality of pixels,
The control unit is
The imaging device according to (6), wherein the state control signal is generated corresponding to each of the plurality of conversion units.
(8)
The imaging device includes a plurality of the pixel arrays,
The control unit is
The imaging device according to (6), wherein the state control signal is generated corresponding to each of the plurality of pixel arrays.
(9)
A horizontal synchronization signal input step in which a horizontal synchronization signal indicating a read timing of a line in the array of pixels in which the pixels are included in a two-dimensional lattice array is input;
A trigger signal input step of inputting a trigger signal indicating a timing of starting reading of pixels for one frame from the pixel array;
A conversion step in which the conversion section performs conversion of the analog signal read from the pixel into a digital signal;
A control step of shifting the state of the conversion unit to a standby state in which the conversion is not performed in at least one of a horizontal section ranking period based on the horizontal synchronization signal and a vertical blanking period based on the trigger signal. When,
And a method for controlling an image pickup apparatus.
(10)
A conversion unit that converts an analog signal read from each pixel included in the pixel array in a two-dimensional lattice array into a digital signal,
A control unit for controlling the operation of the conversion unit,
A storage unit for storing the digital signal,
Equipped with
The control unit is
At least one of a horizontal blanking period based on a horizontal synchronization signal indicating a read timing of a line in the array and a vertical blanking period based on a trigger signal indicating a timing to start reading pixels of one frame from the pixel array. An electronic device that shifts the state of the conversion unit to a standby state in which the conversion is not performed in one period.
10,10a,10b,10c 固体撮像素子
11,11a,11b1,11b2 画素アレイ部
12,12a1,12a2 垂直走査部
13,13a,13b1,13b2 13up,13lw AD変換部
14 参照信号生成部
16 画素信号線
17 垂直信号線
19,19a,19b 制御部
20,20a,20b 信号処理部
30 読み出し期間
31 垂直ブランキング期間
40 AD変換期間
41a 回路停止期間
41b 復帰期間
100 電子機器
110 画素
130,130a,130b AD変換器
131 電流源
132 DA変換器
133 コンパレータ
134 カウンタ
190 ADC停止制御信号生成部
191 ADC制御信号生成部
1300a,1300b,1300c スイッチ
10, 10a, 10b, 10c Solid- state imaging device 11, 11a, 11b 1 , 11b 2 Pixel array section 12, 12a 1 , 12a 2 Vertical scanning section 13, 13a, 13b 1 , 13b 2 13up, 13lw AD conversion section 14 Reference signal Generation unit 16 Pixel signal line 17 Vertical signal lines 19, 19a, 19b Control unit 20, 20a, 20b Signal processing unit 30 Reading period 31 Vertical blanking period 40 AD conversion period 41a Circuit stop period 41b Recovery period 100 Electronic device 110 Pixel 130 , 130a, 130b AD converter 131 current source 132 DA converter 133 comparator 134 counter 190 ADC stop control signal generation unit 191 ADC control signal generation unit 1300a, 1300b, 1300c switch

Claims (10)

  1.  画素アレイに二次元格子状の配列で含まれる各画素から読み出されたアナログ信号のディジタル信号への変換を行う変換部と、
     前記変換部の動作を制御する制御部と、
    を備え、
     前記制御部は、
     前記配列におけるラインの読み出しタイミングを示す水平同期信号に基づく水平ブランキング期間と、前記画素アレイから1フレーム分の画素の読み出しを開始するタイミングを示すトリガ信号に基づく垂直ブランキング期間と、のうち少なくとも一方の期間内において、前記変換部の状態を前記変換を行わないスタンバイ状態に移行させる
    撮像装置。
    A conversion unit that converts an analog signal read from each pixel included in the pixel array in a two-dimensional lattice array into a digital signal,
    A control unit for controlling the operation of the conversion unit,
    Equipped with
    The control unit is
    At least one of a horizontal blanking period based on a horizontal synchronizing signal indicating a read timing of lines in the array and a vertical blanking period based on a trigger signal indicating a timing to start reading pixels of one frame from the pixel array. An imaging device that shifts the state of the conversion unit to a standby state in which the conversion is not performed within one period.
  2.  前記変換部は、
     前記水平同期信号の立ち上がりおよび立ち下がりのうち一方に応じて前記変換を開始し、
     前記制御部は、
     前記変換の終了タイミングに応じて前記変換部の状態を前記スタンバイ状態に移行させ、前記水平同期信号の立ち上がりおよび立ち下がりのうち他方に応じて該変換部の該スタンバイ状態を解除する
    請求項1に記載の撮像装置。
    The conversion unit is
    The conversion is started in response to one of rising and falling of the horizontal synchronizing signal,
    The control unit is
    2. The state of the conversion unit is shifted to the standby state according to the end timing of the conversion, and the standby state of the conversion unit is released according to the other of rising and falling of the horizontal synchronization signal. The imaging device described.
  3.  前記トリガ信号は、
     前記画素アレイから前記1フレーム分の画素の読み出しを行う周期を示す垂直同期信号である
    請求項1に記載の撮像装置。
    The trigger signal is
    The image pickup apparatus according to claim 1, wherein the image pickup apparatus is a vertical synchronization signal indicating a cycle of reading the pixels of the one frame from the pixel array.
  4.  前記トリガ信号は、前記画素アレイにおける露光の開始および終了を指定する信号であって、前記垂直ブランキング期間は、該トリガ信号により該露光の終了が指定されたタイミングに基づく
    請求項1に記載の撮像装置。
    The said trigger signal is a signal which designates the start and end of exposure in the said pixel array, The said vertical blanking period is based on the timing with which the end of this exposure was designated by the said trigger signal. Imaging device.
  5.  前記制御部は、
     前記変換部への電力の供給を停止することで、該変換部の状態を前記スタンバイ状態に移行させる
    請求項1に記載の撮像装置。
    The control unit is
    The imaging device according to claim 1, wherein the state of the conversion unit is shifted to the standby state by stopping the supply of electric power to the conversion unit.
  6.  前記制御部は、
     前記変換部による前記変換の開始および終了を制御する変換制御信号と、前記トリガ信号と、前記水平同期信号と、に基づき、前記変換部の状態を前記スタンバイ状態に移行させる状態制御信号を生成する
    請求項1に記載の撮像装置。
    The control unit is
    A state control signal that shifts the state of the conversion unit to the standby state is generated based on a conversion control signal that controls the start and end of the conversion by the conversion unit, the trigger signal, and the horizontal synchronization signal. The image pickup apparatus according to claim 1.
  7.  複数の前記画素をそれぞれ含む複数のグループに対応する複数の前記変換部を備え、
     前記制御部は、
     複数の前記変換部それぞれに対応して前記状態制御信号を生成する
    請求項6に記載の撮像装置。
    A plurality of conversion units corresponding to a plurality of groups each including the plurality of pixels,
    The control unit is
    The imaging device according to claim 6, wherein the state control signal is generated corresponding to each of the plurality of conversion units.
  8.  当該撮像装置は、複数の前記画素アレイを含み、
     前記制御部は、
     複数の前記画素アレイのそれぞれに対応して前記状態制御信号を生成する
    請求項6に記載の撮像装置。
    The imaging device includes a plurality of the pixel arrays,
    The control unit is
    The imaging device according to claim 6, wherein the state control signal is generated corresponding to each of the plurality of pixel arrays.
  9.  画素が二次元格子状の配列で含まれる画素アレイの該配列におけるラインの読み出しタイミングを示す水平同期信号が入力される水平同期信号入力ステップと、
     前記画素アレイから1フレーム分の画素の読み出しを開始するタイミングを示すトリガ信号が入力されるトリガ信号入力ステップと、
     前記画素から読み出されたアナログ信号のディジタル信号への変換を変換部が行う変換ステップと、
     前記水平同期信号に基づく水平部ランキング期間と、前記トリガ信号に基づく垂直ブランキング期間と、のうち少なくとも一方の期間内において、前記変換部の状態を前記変換を行わないスタンバイ状態に移行させる制御ステップと、
    を有する
    撮像装置の制御方法。
    A horizontal synchronization signal input step in which a horizontal synchronization signal indicating a read timing of a line in the array of pixels in which the pixels are included in a two-dimensional lattice array is input;
    A trigger signal input step of inputting a trigger signal indicating a timing of starting reading of pixels for one frame from the pixel array;
    A conversion step in which the conversion unit performs conversion of the analog signal read from the pixel into a digital signal,
    A control step of shifting the state of the conversion unit to a standby state in which the conversion is not performed in at least one of a horizontal section ranking period based on the horizontal synchronization signal and a vertical blanking period based on the trigger signal. When,
    And a method for controlling an image pickup apparatus.
  10.  画素アレイに二次元格子状の配列で含まれる各画素から読み出されたアナログ信号のディジタル信号への変換を行う変換部と、
     前記変換部の動作を制御する制御部と、
     前記ディジタル信号を記憶する記憶部と、
    を備え、
     前記制御部は、
     前記配列におけるラインの読み出しタイミングを示す水平同期信号に基づく水平ブランキング期間と、前記画素アレイから1フレーム分の画素の読み出しを開始するタイミングを示すトリガ信号に基づく垂直ブランキング期間と、のうち少なくとも一方の期間内において、前記変換部の状態を前記変換を行わないスタンバイ状態に移行させる
    電子機器。
    A conversion unit that converts an analog signal read from each pixel included in the pixel array in a two-dimensional lattice array into a digital signal,
    A control unit for controlling the operation of the conversion unit,
    A storage unit for storing the digital signal,
    Equipped with
    The control unit is
    At least one of a horizontal blanking period based on a horizontal synchronizing signal indicating a read timing of lines in the array and a vertical blanking period based on a trigger signal indicating a timing to start reading pixels of one frame from the pixel array. An electronic device that shifts the state of the conversion unit to a standby state in which the conversion is not performed in one period.
PCT/JP2019/036308 2018-10-16 2019-09-17 Imaging device, method of controlling imaging device, and electronic apparatus WO2020080013A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-195443 2018-10-16
JP2018195443A JP2020065146A (en) 2018-10-16 2018-10-16 Imaging apparatus, imaging apparatus control method, and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2020080013A1 true WO2020080013A1 (en) 2020-04-23

Family

ID=70283886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036308 WO2020080013A1 (en) 2018-10-16 2019-09-17 Imaging device, method of controlling imaging device, and electronic apparatus

Country Status (2)

Country Link
JP (1) JP2020065146A (en)
WO (1) WO2020080013A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7474342B2 (en) 2020-09-09 2024-04-24 富士フイルム株式会社 Imaging device, power control method, and power control program
JP2022157423A (en) * 2021-03-31 2022-10-14 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element and solid-state imaging device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049452A (en) * 2005-08-10 2007-02-22 Shimadzu Corp Imaging sensor and imaging apparatus using same
JP2008289136A (en) * 2007-04-17 2008-11-27 Panasonic Corp Video signal processing device, integrated circuit, and imaging apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049452A (en) * 2005-08-10 2007-02-22 Shimadzu Corp Imaging sensor and imaging apparatus using same
JP2008289136A (en) * 2007-04-17 2008-11-27 Panasonic Corp Video signal processing device, integrated circuit, and imaging apparatus

Also Published As

Publication number Publication date
JP2020065146A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
US11050955B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
US8411157B2 (en) Solid-state image pickup device and image pickup device
JP6694605B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and electronic device
US8300109B2 (en) Image sensing apparatus
WO2016129408A1 (en) Image sensor, readout control method, and electronic device
JP6099904B2 (en) Imaging device
US8878117B2 (en) Image sensor and image capture apparatus
JP7473041B2 (en) Image pickup element and image pickup device
JP6872956B2 (en) Imaging system and control method of imaging system
US10645320B2 (en) Image pickup apparatus, control method for image pickup apparatus, and computer-readable non-transitory recording medium in which control program for image pickup apparatus is recorded
JP2017175345A (en) Solid-state imaging device, method of driving the same, and electronic equipment
US20150358566A1 (en) Image capturing apparatus and method for controlling the same
WO2020080013A1 (en) Imaging device, method of controlling imaging device, and electronic apparatus
WO2018025658A1 (en) Image capture element, drive method, and electronic device
WO2016190116A1 (en) Solid state imaging device, drive method for solid state imaging device, and electronic device
JP6574653B2 (en) Imaging apparatus and imaging system
JP2016058877A (en) Imaging apparatus and control method thereof
JP2012004819A (en) Reading control device, reading control method, imaging device, solid state imaging device, and program
JPWO2017169821A1 (en) Solid-state imaging device, signal processing method, and electronic apparatus
JP2007036425A (en) Analog equipment drive system and imaging apparatus
US20200029045A1 (en) Solid-state imaging device and electronic apparatus
JP7271131B2 (en) IMAGING DEVICE AND METHOD OF CONTROLLING IMAGING DEVICE
WO2024084930A1 (en) Solid-state imaging device, method for driving same, and electronic equipment
JP2018078370A (en) Solid state imaging device and control method, and electronic apparatus
JP2012085013A (en) Solid state image pickup device and imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873630

Country of ref document: EP

Kind code of ref document: A1