WO2020079735A1 - 内視鏡用光学装置、内視鏡、および内視鏡用光学装置の製造方法 - Google Patents
内視鏡用光学装置、内視鏡、および内視鏡用光学装置の製造方法 Download PDFInfo
- Publication number
- WO2020079735A1 WO2020079735A1 PCT/JP2018/038356 JP2018038356W WO2020079735A1 WO 2020079735 A1 WO2020079735 A1 WO 2020079735A1 JP 2018038356 W JP2018038356 W JP 2018038356W WO 2020079735 A1 WO2020079735 A1 WO 2020079735A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- convex portion
- main surface
- endoscope
- light receiving
- optical device
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims description 102
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 238000000034 method Methods 0.000 title claims description 13
- 239000006059 cover glass Substances 0.000 claims abstract description 68
- 229920005989 resin Polymers 0.000 claims description 48
- 239000011347 resin Substances 0.000 claims description 48
- 238000010030 laminating Methods 0.000 claims description 4
- 238000003384 imaging method Methods 0.000 abstract description 41
- 238000012986 modification Methods 0.000 description 17
- 230000004048 modification Effects 0.000 description 17
- 239000007788 liquid Substances 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 102220514960 Vacuolar protein sorting-associated protein 4B_A15D_mutation Human genes 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 102220030421 rs398124134 Human genes 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 101150102561 GPA1 gene Proteins 0.000 description 1
- 101150077323 GPA2 gene Proteins 0.000 description 1
- 101150015163 GPA3 gene Proteins 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 101150074899 gpa-10 gene Proteins 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
Definitions
- the present invention provides an endoscope optical device in which a first optical member and a second optical member are laminated, and an endoscope optical device in which a first optical member and a second optical member are laminated.
- the present invention relates to an endoscope including the same, and a method for manufacturing an endoscope optical device in which a first optical member and a second optical member are laminated.
- the optical device for an endoscope provided at the distal end of the insertion portion of the endoscope is preferably ultra-compact, for example, a dimension of several mm square in the direction orthogonal to the optical axis, in order to make it less invasive.
- ultra-compact for example, a dimension of several mm square in the direction orthogonal to the optical axis, in order to make it less invasive.
- An optical member such as a cover glass is adhered to the light receiving surface of the individualized image pickup device.
- a cover glass is bonded to an image sensor having a light-receiving surface of 2 mm ⁇ 3 mm and a light-receiving portion of 1.5 mm square
- positioning accuracy in the in-plane direction orthogonal to the optical axis is required to be 0.01 mm or less.
- the position of the cover glass may be displaced due to the shrinkage of the resin when the transparent resin is cured.
- a cover glass that protects the light receiving portion is accurately arranged in the in-plane directions (XY directions) in a state of covering the light receiving portion and not covering the external electrode. It's not easy.
- a convex portion is provided on the light receiving surface of the image pickup element, and the side surface and the bottom surface of the cover glass are brought into contact with the convex portion to facilitate the cover glass and the image pickup element.
- a positionable imaging device is disclosed.
- the cover glass is cut according to the size of the convex portion. Further, since the cover glass is smaller than the image pickup element having a small outer size, its handling is not easy. Further, the transparent resin between the cover glass and the light receiving surface may be peeled off due to curing shrinkage.
- the present embodiment provides a small-sized endoscope optical device that is easy to manufacture, an endoscope that includes a small-sized endoscope optical device that is easy to manufacture, and a small-sized endoscope optical device manufacturing method that is easy.
- the purpose is to provide.
- the endoscope optical device includes a first optical member having a first main surface and a second main surface facing the first main surface, a third main surface, and the third main surface.
- a second optical member having a fourth main surface facing the first main surface, and the fourth main surface facing the first main surface.
- the surface has a first convex portion
- the fourth main surface has a second convex portion arranged closer to the optical axis than the first convex portion
- one of the second protrusions contacts the facing main surface, and the first side face of the first protrusion and the second side face of the second protrusion contact each other. Touching.
- the endoscope of the embodiment includes an endoscope optical device.
- the endoscope optical device includes a first optical member having a first main surface and a second main surface facing the first main surface, a third main surface, and the third main surface.
- a second optical member having a fourth main surface facing the first main surface, the fourth main surface facing the first main surface, and the second main surface facing the first main surface.
- Has a first convex portion the fourth main surface has a second convex portion arranged closer to the optical axis than the first convex portion, and the first convex portion and the One of the second protrusions is in contact with the facing main surface, and the first side face of the first protrusion is in contact with the second side face of the second protrusion.
- the first main surface of the first optical member having a first main surface and a second main surface facing the first main surface is formed on the first main surface.
- Of the first convex portion and the second convex portion are in contact with the facing main surface of the first convex portion and the first side surface of the first convex portion.
- a compact endoscope optical device that is easy to manufacture, an endoscope that includes a compact endoscope optical device that is easy to manufacture, and an easy compact endoscope optical device. Can be provided.
- FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2 of the image pickup apparatus according to the first embodiment.
- 6 is a flowchart illustrating a method of manufacturing the image pickup apparatus according to the first embodiment. It is a perspective view of an image sensor of an image pick-up device of modification 1 of a 1st embodiment. It is a perspective view of the cover glass of the imaging device of the modification 1 of 1st Embodiment. It is a perspective view of an image sensor of an image pick-up device of modification 2 of a 1st embodiment.
- FIG. 9 is a cross-sectional view of the image pickup apparatus according to the second embodiment taken along line IX-IX in FIG. 8.
- FIG. 13 is a top transparent view of an image pickup apparatus of Modification 1 of the second embodiment. It is a top side transparent figure of the optical device of the modification 2 of 2nd Embodiment.
- FIG. 9 is a flowchart for explaining a method of manufacturing the image pickup apparatus according to the third embodiment.
- FIG. 11 is a cross-sectional view for describing the method for manufacturing the image pickup device according to the third embodiment.
- the endoscope 9 of the embodiment shown in FIG. 1 constitutes an endoscope system 6 with a processor 5A, a monitor 5B.
- the endoscope 9 includes an insertion portion 3, a grip portion 4 arranged at the proximal end portion of the insertion portion 3, a universal cord 4B extending from the grip portion 4, and a universal cord 4B at the proximal end portion.
- the connector 4C is provided.
- the insertion portion 3 includes a tip portion 3A, a bendable portion 3B extending from the tip portion 3A for changing the direction of the tip portion 3A, and a flexible portion 3C extended from the bending portion 3B.
- the grasping portion 4 is provided with a rotating angle knob 4A which is an operating portion for an operator to operate the bending portion 3B.
- the universal cord 4B is connected to the processor 5A by the connector 4C.
- the processor 5A controls the entire endoscope system 6 and performs signal processing on the image pickup signal and outputs it as an image signal.
- the monitor 5B displays the image signal output by the processor 5A as an endoscopic image.
- the endoscope 9 is a flexible endoscope, it may be a rigid endoscope.
- the endoscope 9 may be medical or industrial.
- the imaging device 1 which is an optical device for an endoscope is arranged.
- the image pickup apparatus 1 includes an image pickup element 10 and a cover glass 20.
- the imaging device 1 is small and easy to manufacture. Therefore, the endoscope 9 is minimally invasive and easy to manufacture.
- the endoscope optical device includes an image pickup device 10 that is a first optical member and a cover glass 20 that is a second optical member. Is.
- the image sensor 10 has a first main surface 10SA that is a light-receiving surface and a second main surface 10SB that faces the first main surface 10SA.
- the image sensor 10 is a CMOS (Complementary Metal Oxide Semiconductor) image sensor, a CCD (Charge Coupled Device), or the like.
- the light receiving portion 11 is formed on the first main surface 10SA of the image pickup device 10, and the image pickup device 10 picks up an image of a subject and outputs an image pickup signal.
- a plurality of external electrodes 12 connected to the light receiving unit 11 are arranged on the outer periphery of the light receiving unit 11.
- the cover glass 20 has a third main surface 20SA that is an incident surface and a fourth main surface 20SB that faces the third main surface 20SA.
- the fourth main surface 20SB of the cover glass 20 faces the first main surface 10SA of the image sensor 10.
- the cover glass 20 covers the entire light receiving portion 11 of the image sensor 10, but does not cover any of the external electrodes 12.
- a conductor wire for transmitting electric power or a control signal to the image sensor 10 or a conductor wire for transmitting an image signal output from the image sensor 10 is joined to each of the plurality of external electrodes 12.
- a frame-shaped first convex portion 15 that surrounds the light receiving portion 11 is provided on the first main surface 10SA of the image pickup device 10.
- a frame-shaped second convex portion 25 surrounding the light receiving portion 11 is provided on the fourth main surface 20SB of the cover glass 20. That is, the first convex portion 15 and the second convex portion 25 have a frame shape surrounding the light receiving unit 11.
- Both the first convex portion 15 and the second convex portion 25 have a rectangular outer shape in a cross section (XY plane) orthogonal to the optical axis O.
- the first protrusion 15 has inner dimensions (distance between the opposing outer surfaces 15SSB) of the cross section of W15X and W15Y, and a height of H15.
- the second convex portion 25 has an outer dimension of the cross section (interval between the opposing inner side surfaces 25SSA) of W25X and W25Y and a height of H25.
- Inner dimensions W15X and W15Y of the first protrusion 15 are substantially the same as outer dimensions W25X and W25Y of the second protrusion 25.
- the fourth main surface 20SB of the cover glass 20 When the fourth main surface 20SB of the cover glass 20 is arranged on the first main surface 10SA of the image sensor 10, the four first side surfaces (inner side surfaces) 15SSA of the first projection 15 have the second projections.
- Four second side surfaces (outer surface) 25SSB of 25 abut.
- the second convex portion 25 is arranged at a position closer to the optical axis O than the first convex portion 15, and each of the four second side surfaces of the second convex portion 25 has the first Abuts on each of the four first side surfaces of the convex portion 15. That is, the second convex portion 25 on the fourth main surface 20SB of the cover glass 20 is fitted into the first convex portion 15 on the first main surface 10SA of the image pickup device 10 in a state of fitting closely. Therefore, it is temporarily fixed.
- the relative position of the image sensor 10 and the cover glass 20 in the direction orthogonal to the optical axis is defined. Further, the cover glass 20A is temporarily fixed. Therefore, there is no possibility that the cover glass 20A will move after the cover glass 20A is provided on the first main surface 10SA and before it is fixed by, for example, an ultraviolet curable resin.
- the height H15 of the first convex portion 15 is larger than the height H25 of the second convex portion 25. Therefore, the first convex portion 15 contacts the fourth main surface 20SB of the facing cover glass 20, while the second convex portion 25 contacts the first main surface 10SA of the facing image sensor 10. Does not abut. Therefore, the height H15 of the first convex portion 15 defines the relative position between the image pickup device 10 and the cover glass 20 in the optical axis direction.
- the first convex portion 15 and the second convex portion 25 are arranged on each wafer by the photolithography method, a highly accurate structure can be easily manufactured.
- the image pickup apparatus 1 is small, it can be easily manufactured because the image pickup element 10 and the cover glass 20 can be easily and accurately aligned with each other. Further, the cover glass 20 is easy to manufacture because it is not necessary to increase the outer dimension accuracy, and the outer dimension can be made larger than the outer dimension of the image sensor 10. In particular, when the optical system including a plurality of lenses that collects light on the image sensor 10 is larger than the image sensor 10, the size of the cover glass 20 is preferably about the same as the size of the optical system.
- the outer dimensions of the first protrusions 15 are substantially the same as the inner dimensions of the second protrusions 25, and the four outer surfaces 15SSB of the first protrusions 15 correspond to the four outer faces 15SSB of the second protrusions 25. You may contact
- the height H15 of the first convex portion 15 and the height H25 of the second convex portion 25 may be the same, and both may be in contact with the facing main surfaces.
- first convex portion 15 may be arranged closer to the optical axis O than the second convex portion 25.
- one of the first convex portion 15 and the second convex portion 25 is in contact with the first main surface 10SA or the fourth main surface 20SB, and the first side surface of the first convex portion 15 is in contact. If the (inner surface / outer surface) and the second side surface (outer surface / inner surface) of the second convex portion 25 are in contact with each other, the optical axis direction and the optical axis of the image sensor 10 and the cover glass 20 Relative positions in three orthogonal directions (X axis, Y axis, Z axis) are defined.
- the relative position of the image pickup device 10 and the cover glass 20 in the triaxial direction is defined by the first convex portion 15 and the second convex portion 25, and therefore the manufacturing is easy. is there.
- the image pickup device 10 is manufactured by a so-called wafer level method.
- a plurality of light receiving portions 11A and the like are arranged on a silicon wafer or the like by using a known semiconductor manufacturing technique.
- Peripheral circuits that perform primary processing on the output signal of the light receiving unit 11A and process drive control signals may be formed on the imaging device wafer including the plurality of light receiving units 11A.
- a plurality of external electrodes 12 connected to the light receiving portion 11A via wiring (not shown) are arranged around each light receiving portion 11A.
- a frame-shaped first convex portion 15 is provided so as to surround each of the plurality of light receiving portions 11A of the image pickup element wafer.
- the first convex portion 15 is, for example, a convex portion made of a polyimide resin and arranged using a photoresist.
- the first protrusion 15 may be a metal, for example, nickel or copper, which is arranged by using an electroplating method with a photoresist as a mask.
- the image pickup element wafer is diced into individual pieces of the image pickup element 10 having the first convex portions 15 on the first principal surface 10SA.
- the second convex portion 25 is made of polyimide resin, nickel or copper.
- the glass wafer is diced into individual pieces of the cover glass 20 on which the second convex portions 25 are arranged.
- the width of the first convex portion 15 is 10 ⁇ m to 100 ⁇ m.
- the height H15 of the first convex portion 15 is, for example, 5 ⁇ m to 20 ⁇ m.
- the width of the second convex portion 25 may be the same as or different from the width of the first convex portion 15.
- the height H25 of the second convex portion 25 is lower than the height H15 of the first convex portion 15 by 2 ⁇ m to 50 ⁇ m.
- the relative position of the image pickup device 10 and the cover glass 20 in the optical axis direction, that is, the elastic modulus E15 of the first convex portion 15 that defines the interval between the first main surface 10SA and the fourth main surface 20SB is It is preferable that the elastic modulus E25 of the second convex portion 25 is equal to or larger than the elastic modulus E25 of the second convex portion 25. Since the distance between the first principal surface 10SA and the fourth principal surface does not change even when the image sensor 10 and the cover glass 20 are pressed, the elastic modulus E15 of the first convex portion 15 is the second convex. It is particularly preferable that the elastic modulus E25 of the portion 25 is larger than that.
- Elastic modulus E (Young's modulus) is the tensile elastic modulus measured at 25 ° C based on the standard (ISO527-1, JISK7161).
- resin phenol resin (E: 3GPa-8GPa), urea resin (E: 1GPa-5GPa), melamine resin (E: 5GPa-15GPa) , Epoxy resin (E: 3 GPa-10 GPa), silicone resin (E: 0.5 GPa-2 GPa), polyester resin (E: 1 GPa-3 GPa), silicone rubber (E: 0.01 GPa-1 GPa), and acrylic resin (E : 0.01-1 GPa).
- the first convex portion 15 and the second convex portion 25 are selected from copper (E: 130 GPa), gold (E: 78 GPa), nickel (E: 200 GPa), which are metals, and an alloy containing them as a main component. To be done.
- step S10 and step S20 may be reversed.
- the first main surface 10SA of the image pickup device 10 and the fourth main surface 20SB of the cover glass 20 are arranged to face each other, and the fourth main surface 20SB to which the first convex portion 15 faces.
- the first side surface 15SSA of the first convex portion 15 and the second side surface 25SSB of the second convex portion 25 are brought into contact with each other.
- the relative positions of the image sensor 10 and the cover glass 20 in the optical axis direction and the optical axis orthogonal direction are defined by the first convex portion 15 and the second convex portion 25, and Since it is temporarily fixed, the small-sized imaging device 1 can be easily manufactured.
- first convex portion 15 and the second convex portion 25 are in a frame shape surrounding the light receiving portion 11 and both are inserted and temporarily fixed, the relative position does not change after positioning.
- the imaging devices 1A, 1B, 1C of Modifications 1, 2, and 3 of the first embodiment, or the endoscopes 9A, 9B, and 9C including the imaging devices 1A, 1B, and 1C are the same as the imaging device 1 or the endoscope 9. Since they are similar and have the same effect, the same components are denoted by the same reference numerals and the description thereof will be omitted.
- a frame-shaped first convex portion 15 surrounding the light receiving portion 11 is provided on the first main surface 10SA of the image pickup device 10A of the image pickup apparatus 1A.
- four prisms 25A are provided as second convex portions on the fourth main surface 20SB of the cover glass 20A of the imaging device 1A.
- the first convex portion 15 has inner dimensions (interval between the opposing inner side surfaces 15SSA) of the cross section in the direction orthogonal to the optical axis of W15X and W15Y, and a height of H15.
- the intervals between the outer surfaces 25ASS of the two second convex portions 25A facing each other are L25X and L25Y, and the height is H25.
- Inner dimensions W15X and W15Y of the first convex portion 15 are substantially the same as the intervals L25X and L25Y of the outer surface 25ASS of the second convex portion 25.
- the outer surfaces 25ASS of the four second convex portions 25 of the cover glass 20A have a frame-like shape of the image sensor 10A. It comes into contact with the four first side faces (inner side faces) 15SSA of the first convex portion 15. Therefore, the relative position of the image pickup device 10A and the cover glass 20A in the direction orthogonal to the optical axis is defined and temporarily fixed.
- the height H25 of the second convex portion 25A is lower than the height H15 of the first convex portion 15. Therefore, the height H15 of the first convex portion 15 defines the relative position between the image pickup device 10A and the cover glass 20A in the optical axis direction.
- the relative position of the image pickup device 10A and the cover glass 20A in the direction orthogonal to the optical axis can be defined only by disposing one second convex portion 25 on the cover glass 20A. That is, the two outer surfaces 25ASS of the prism 25A may be in contact with the two inner surfaces 15ASS of one corner of the frame-shaped first protrusion 15.
- the position in the direction orthogonal to the optical axis can be specified by only one second convex portion 25, but the position in the optical axis direction cannot be specified.
- the cover glass 20A since the cover glass 20A is not temporarily fixed after the fourth main surface 20SB of the cover glass 20A is arranged on the first main surface 10SA of the image pickup device 10A, the cover glass 20A may move. For this reason, it is preferable that the cover glass 20A has two or more second convex portions 25 at positions facing each other across the optical axis.
- the first convex portion of the prism is provided on the first main surface 10SA of the image sensor 10, and the frame-shaped second convex portion is provided on the fourth main surface 20SB of the cover glass 20A. Needless to say, the same effect as that of the image pickup apparatus 1A can be obtained if this is done.
- ⁇ Modification 2 of the first embodiment> As shown in FIG. 6A, four L-shaped first convex portions 15B (15B1, 15B2, 15B3, 15B4) surrounding the light receiving portion 11 are formed on the first main surface 10SA of the image pickup device 10B of the image pickup apparatus 1B. It is arranged.
- four cylinders 25B are provided as second protrusions on the fourth main surface 20SB of the cover glass 20B of the imaging device 1B.
- the intervals between the opposing inner side surfaces 15BSSA in the direction orthogonal to the optical axis are L15X and L15Y, and the height is H15.
- the intervals between the outer peripheral surfaces 25BSS of the two second convex portions 25B facing each other are L25X and L25Y, and the height is H25.
- the intervals L15X and L15Y between the first protrusions 15 are substantially the same as the intervals L25X and L25Y between the second protrusions 25.
- the outer peripheral surfaces 25BSS of the four second convex portions 25B of the cover glass 20B are L-shaped of the image sensor 10A.
- the first convex portion 15B comes into contact with the first side surface (inner side surface) 15BSSA. Therefore, the relative position between the image pickup device 10B and the cover glass 20B in the direction orthogonal to the optical axis is defined and temporarily fixed.
- the height H15 of the first convex portion 15B is larger than the height H25 of the second convex portion 25B. Therefore, the height H25 of the first convex portion 25B defines the relative position between the image pickup device 10B and the cover glass 20B in the optical axis direction.
- first convex portion 15 or the second convex portion 25 is a ridge arranged in parallel with each other, and the other convex portion is formed with two ridges.
- the width may be set so as to be fitted between the two. That is, if the first convex portion 15 and the second convex portion 25 can define the relative positions of the image pickup device 10B and the cover glass 20B in the three axial directions, and if they can be temporarily fixed, their configurations can be appropriately selected. .
- the first convex portion 15C provided on the first main surface 10SA of the image pickup device 10C of the image pickup apparatus 1C has a flat plate shape that covers the light receiving unit 11.
- a frame-shaped second convex portion 25C is provided on the fourth main surface 20SB of the cover glass 20C of the imaging device 1C.
- the first convex portion 15C has an interval between the opposing side surfaces 15 CSSB, that is, a width in the direction orthogonal to the optical axis is W15X and W15Y, and a height is H15.
- the intervals between the opposing inner side surfaces 25CSSA in the direction orthogonal to the optical axis are L25X and L25Y, and the height is H25.
- the four inner side surfaces 25CSSA of the second convex portion 25C of the cover glass 20C are the first inner surface of the image pickup element 10C. It comes into contact with the four side surfaces 15 CSSB of the convex portion 15C. Therefore, the relative position of the image pickup device 10C and the cover glass 20C in the direction orthogonal to the optical axis is defined and temporarily fixed.
- the imaging device 1D of the second embodiment or an endoscope 9D including the imaging device 1D is similar to the imaging device 1 or the endoscope 9 and has the same effect, and therefore, the same components are denoted by the same reference numerals. The description is omitted.
- the image pickup device 1D is provided between the first main surface 10SA and the fourth main surface 20SB, and further includes the transparent resin 30 covering the light receiving unit 11. To have.
- the imaging device 1D Since the image pickup device 1D has no space between the first main surface 10SA and the fourth main surface 20SB, there is no possibility that dew condensation will occur due to water that has entered the space. Therefore, the imaging device 1D has higher reliability than the imaging device 1 and the like.
- the transparent resin 30 is solidified by curing treatment after disposing an uncured liquid transparent resin between the first principal surface 10SA and the fourth principal surface 20SB.
- the liquid transparent resin has the fourth main surface 20SB of the cover glass 20C disposed on the first main surface 10SA of the image pickup device 10C, and the distance between the first main surface 10SA and the fourth main surface 20SB is predetermined.
- the distance between the first principal surface 10SA and the fourth principal surface 20SB spreads in the direction orthogonal to the optical axis.
- the first convex portion 15D and the second convex portion 25D are not frame-shaped but U-shaped with an opening. Therefore, when the air around the liquid resin is discharged from the opening, the liquid transparent resin spreads so as to cover the light receiving portion 11.
- first convex portion 15D and the second convex portion 25D include ridges A15D and A25D that are elongated convex portions arranged between the plurality of external electrodes 12 and the light receiving portion 11, and the ridges The ridges are not arranged in the regions B15D and B25D which are opposed to A15D and A25D with the light receiving unit 11 in between, and the regions are openings.
- any of the first convex portion 15D and the second convex portion 25D includes the ridges A15D and A25D arranged between the plurality of external electrodes 12 and the light receiving unit 11, and is located outside the ridges A15D and A25D. While the transparent resin 30 is not provided, the ridges are not provided in at least a part of each of the areas B15D and B25D that face the ridges A15D and A25D with the light receiving unit 11 in between. A transparent resin 30 is provided. That is, the air and the excessively disposed transparent resin 30 are discharged from the optical path boundary region to the outside through the ridge-free region.
- the second convex portion 25D is fitted to the first convex portion 15D, and only the first convex portion 15D having a high height comes into contact with the opposing fourth main surface 20SB, whereby the image pickup device 10D and The relative position with respect to the cover glass 20D is defined in the optical axis orthogonal direction and the optical axis direction.
- the imaging device 1E or the endoscope optical device 1F of the modified example of the second embodiment, or the endoscopes 9E and 9F including the imaging device 1E or the endoscope optical device 1F are the imaging device 1D or the endoscope. Since it is similar to 9D and has the same effect, the same reference numerals are given to the same components and the description thereof will be omitted.
- the imaging device 1E includes a first convex part 15E1 that is the same U-shape as the first convex part 15D of the imaging device 1D and a first convex part 15E2 that is a ridge.
- the second convex portion 25E includes four ridges 25E1, 25E2, 25E3, 25E4.
- the transparent resin 30 spreads around the light receiving unit 11 from two openings in a region where the plurality of external electrodes 12 and the light receiving unit 11 face each other.
- the first optical member 10D is not an imaging element, but is, for example, a hybrid lens element in which a resin lens is arranged on a glass substrate.
- first convex portion 15F includes four ridges 15F1 to 15F4, and the second convex portion 25F includes four ridges 25F1 to 25F4.
- the endoscope optical device of the present invention is not limited to an image pickup device including an image pickup element, and may be an optical device not including an image pickup element as long as a plurality of lens elements and the like are stacked.
- the imaging device 1G of the third embodiment or an endoscope 9G including the imaging device 1G is similar to the imaging device 1D or the endoscope 9D and has the same effect, and therefore, the same components are denoted by the same reference numerals. The description is omitted.
- the first convex portion 15G and the second convex portion 25G have the same height. However, the two have different elastic moduli.
- the liquid resin is preferably provided on the light receiving portion 11 of the first main surface 10SA on which the U-shaped first convex portion 15G is provided.
- liquid resin various UV-curable resins having a high refractive index and a predetermined refractive index, or UV-curable combined-use resins such as silicone resin or epoxy resin are used.
- the first main surface 10SA of the image sensor 10G and the fourth main surface 20SB of the cover glass 20G are arranged to face each other, and the height of the first convex portion is higher than that of the second convex portion 25G. Only 15G contacts the opposing fourth main surface 20SB, and also contacts the first side surface 15SSA of the first protrusion 15G and the second side surface 25SSB of the second protrusion 25G.
- the liquid resin spreads in a region where the ridges that face the plurality of external electrodes 12 and the light receiving unit 11 are not provided and which face each other. For this reason, there is no possibility that a bonding failure will occur when the conductor wire is bonded to the external electrode 12.
- the height H15 of the first convex portion 15G temporarily defines the relative position between the first major surface 10SA and the fourth major surface 20SB.
- the relative position between the first principal surface 10SA and the fourth principal surface 20SB is defined by the height H25 of the second convex portion 25G. Therefore, the height H15 of the first convex portion 15G is preferably 101% or more and 120% or less of the height H25 of the second convex portion 25G.
- the first convex portion 15G is made of a material having a smaller elastic modulus than the second convex portion 25G.
- the first protrusion 15G is made of resin and the second protrusion 25G is made of metal.
- the first convex portion 15 and the second convex portion 25G may be made of resins having different elastic moduli.
- Step S40> Curing Process The uncured liquid transparent resin is cured by ultraviolet irradiation or ultraviolet irradiation and heat application to become a solid transparent resin 30.
- the first convex portion 15G and the second convex portion 25G have different heights and a high height. Only the first convex portion 15G is in contact with the opposing fourth main surface 20SB, and after the curing step S40, the first convex portion 15G and the second convex portion 25G have the same height. Thus, both are in contact with the facing main surface.
- the height H15 of the first convex portion 15G and the height H25 of the second convex portion 25G are set in consideration of the curing shrinkage of the transparent resin 30 due to the curing reaction. Therefore, the transparent resin 30 is not likely to be peeled off from the first main surface 10SA or the fourth main surface 20SB.
- the height H15 of the first convex portion 15G and the height H25 of the second convex portion 25G are designed in consideration of shrinkage of the transparent resin 30 in the height direction (optical axis direction). Since the shrinkage of the transparent resin 30 is 1% or more and 20% or less, the height H15 of the first convex portion 15G is 101% or more and 120% of the height H25 of the second convex portion 25G.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Power Engineering (AREA)
- Surgery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Electromagnetism (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Endoscopes (AREA)
Abstract
撮像装置1は、第1の主面10SAと第2の主面10SBとを有する撮像素子10と、第3の主面20SA第4の主面20SBとを有し、第4の主面20SBが第1の主面10SAと対向しているカバーガラス20と、を具備し、第1の主面10SAに第1の凸部15があり、第4の主面20SBに第2の凸部25があり、第1の凸部15および第2の凸部25のいずれかが対向している主面と当接し、かつ、第1の凸部15の第1の側面15SSと第2の凸部25の第2の側面25SSとが当接している。
Description
本発明は、第1の光学部材と第2の光学部材とが積層された内視鏡用光学装置、第1の光学部材と第2の光学部材とが積層された内視鏡用光学装置を含む内視鏡、および、第1の光学部材と第2の光学部材とが積層された内視鏡用光学装置の製造方法に関する。
内視鏡の挿入部の先端部に配設される内視鏡用光学装置は、低侵襲化のため、例えば光軸に直交する方向の寸法が数mm角と超小型であることが好ましい。例えば、半導体ウエハに多数の受光部等を形成し、切断することによって多数の超小型の撮像素子を一括して作製できる。個片化された撮像素子の受光面には、カバーガラス等の光学部材が接着される。しかし、超小型の撮像素子の場合には、光学部材を正確に位置決めしてから接着することは容易ではない。
例えば、受光面が2mm×3mmであり、受光部が1.5mm角の撮像素子に、カバーガラスを接着する場合、光軸に直交する面内方向の位置決め精度は0.01mm以下が要求される。さらにカバーガラスと受光面との間に透明樹脂を配設する場合には、透明樹脂を硬化処理するときに樹脂の収縮によってカバーガラスの位置がずれるおそれがある。
特に、受光面に外部電極が配設されている撮像素子では、受光部を覆い外部電極を覆わない状態に、受光部を保護するカバーガラスを、正確に面内方向(XY方向)に配置することは容易ではない。
日本国特開2017-120900号公報には、撮像素子の受光面に、凸部を配設し、カバーガラスの側面および底面を凸部と当接することによって、カバーガラスと撮像素子とを容易に位置合わせできる撮像デバイスが開示されている。
しかし、上記撮像デバイスでは、カバーガラスを凸部の寸法にあわせて切断する必要がある。また、カバーガラスは、外寸が小さな撮像素子よりも更に小さくなるため、その取り扱いは容易ではなかった。さらに、カバーガラスと受光面との間の透明樹脂に硬化収縮によって剥離が生じるおそれがあった。
本実施形態は、製造が容易な小型の内視鏡用光学装置、製造が容易な小型の内視鏡用光学装置を含む内視鏡、容易な小型の内視鏡用光学装置の製造方法を提供することを目的とする。
実施形態の内視鏡用光学装置は、第1の主面と前記第1の主面と対向する第2の主面とを有する第1の光学部材と、第3の主面と前記第3の主面と対向する第4の主面とを有し、前記第4の主面が前記第1の主面と対向している第2の光学部材と、を具備し、前記第1の主面には第1の凸部があり、前記第4の主面には前記第1の凸部よりも光軸に近い位置に配置された第2の凸部があり、前記第1の凸部および前記第2の凸部のいずれかが、対向している主面と当接し、かつ、前記第1の凸部の第1の側面と前記第2の凸部の第2の側面とが当接している。
実施形態の内視鏡は、内視鏡用光学装置を含み。前記内視鏡用光学装置は、第1の主面と前記第1の主面と対向する第2の主面とを有する第1の光学部材と、第3の主面と前記第3の主面と対向する第4の主面とを有し、前記第4の主面が前記第1の主面と対向している第2の光学部材と、を具備し、前記第1の主面には第1の凸部があり、前記第4の主面には前記第1の凸部よりも光軸に近い位置に配置された第2の凸部があり、前記第1の凸部および前記第2の凸部のいずれかが、対向している主面と当接し、かつ、前記第1の凸部の第1の側面と前記第2の凸部の第2の側面とが当接している。
実施形態の内視鏡用光学装置の製造方法は、第1の主面と前記第1の主面と対向する第2の主面とを有する第1の光学部材の前記第1の主面に、第1の凸部を配設する第1の凸部配設工程と、第3の主面と前記第3の主面と対向する第4の主面とを有する第2の光学部材の前記第4の主面に、第2の凸部を配設する第2の凸部配設工程と、前記第1の光学部材の前記第1の主面と前記第2の光学部材の前記第4の主面とを対向配置し、前記第1の凸部および前記第2の凸部のいずれかを、対向している主面と当接するとともに、前記第1の凸部の第1の側面と前記第2の凸部の第2の側面とを当接する積層工程と、を具備する。
本発明の実施形態によれば、製造が容易な小型の内視鏡用光学装置、製造が容易な小型の内視鏡用光学装置を含む内視鏡、容易な小型の内視鏡用光学装置の製造方法を提供できる。
<内視鏡>
図1に示す実施形態の内視鏡9は、プロセッサ5Aおよびモニタ5Bと内視鏡システム6を構成している。
図1に示す実施形態の内視鏡9は、プロセッサ5Aおよびモニタ5Bと内視鏡システム6を構成している。
内視鏡9は、挿入部3と、挿入部3の基端部に配設された把持部4と、把持部4から延設されたユニバーサルコード4Bと、ユニバーサルコード4Bの基端部に配設されたコネクタ4Cと、を具備する。挿入部3は、先端部3Aと、先端部3Aから延設された湾曲自在であり先端部3Aの方向を変えるための湾曲部3Bと、湾曲部3Bから延設された軟性部3Cとを含む。把持部4には術者が湾曲部3Bを操作するための操作部である回動するアングルノブ4Aが配設されている。
ユニバーサルコード4Bは、コネクタ4Cによってプロセッサ5Aに接続される。プロセッサ5Aは内視鏡システム6の全体を制御するとともに、撮像信号に信号処理を行い画像信号として出力する。モニタ5Bは、プロセッサ5Aが出力する画像信号を内視鏡画像として表示する。なお、内視鏡9は軟性鏡であるが、硬性鏡でもよい。また、内視鏡9は、医療用でも工業用でもよい。
内視鏡9の先端部3Aには、内視鏡用光学装置である撮像装置1が配設されている。撮像装置1は、撮像素子10とカバーガラス20とを含む。
後述するように、撮像装置1は小型であり製造が容易である。このため、内視鏡9は低侵襲であり、かつ、製造が容易である。
<第1実施形態>
図2および図3に示すように第1実施形態の内視鏡用光学装置は、第1の光学部材である撮像素子10と第2の光学部材であるカバーガラス20とを具備する撮像装置1である。
図2および図3に示すように第1実施形態の内視鏡用光学装置は、第1の光学部材である撮像素子10と第2の光学部材であるカバーガラス20とを具備する撮像装置1である。
なお、図面の記載において、同一部分には同一の符号を付している。また、図面は、模式的なものであり、各部材の厚みと幅との関係、各部材の比率等は、現実と異なることに留意する必要がある。また、図面の相互間においても、互いの寸法や比率が異なる部分が含まれている。また、一部の構成要素の図示、または、符号の図示を省略することがある。また、被写体の方向(図2等において、Z軸の値が増加する方向)を「上」という。
撮像素子10は、受光面である第1の主面10SAと第1の主面10SAと対向する第2の主面10SBとを有する。撮像素子10は、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ、または、CCD(Charge Coupled Device)等である。撮像素子10の第1の主面10SAには受光部11が形成されており、撮像素子10は被写体を撮像し撮像信号を出力する。受光部11の外周には受光部11と接続されている複数の外部電極12が配設されている。
カバーガラス20は入射面である第3の主面20SAと第3の主面20SAと対向する第4の主面20SBとを有する。カバーガラス20は第4の主面20SBが撮像素子10の第1の主面10SAと対向している。カバーガラス20は、撮像素子10の受光部11の全体を覆っているが、いずれの外部電極12も覆っていない。図示しないが、複数の外部電極12には、それぞれ、撮像素子10に電力または制御信号を伝送する導線また撮像素子10が出力する撮像信号を伝送する導線が接合されている。
撮像素子10の第1の主面10SAには、受光部11を囲む額縁状の第1の凸部15が配設されている。カバーガラス20の第4の主面20SBには、受光部11を囲む額縁状の第2の凸部25が配設されている。すなわち、第1の凸部15および第2の凸部25は、受光部11を囲む額縁状である。
第1の凸部15および第2の凸部25は、ともに光軸Oに直交する断面(XY面)の外形が矩形である。第1の凸部15は、前記断面の内寸(対向する外側面15SSBの間隔)がW15X、W15Yであり、高さがH15である。一方、第2の凸部25は、前記断面の外寸(対向する内側面25SSAの間隔)がW25X、W25Yであり、高さがH25である。第1の凸部15の内寸W15X、W15Yは、第2の凸部25の外寸W25X、W25Yと略同じである。
撮像素子10の第1の主面10SAにカバーガラス20の第4の主面20SBを配設すると、第1の凸部15の4つの第1の側面(内側面)15SSAに第2の凸部25の4つの第2の側面(外側面)25SSBが当接する。言い替えれば、第2の凸部25は、第1の凸部15よりも光軸Oに近い位置に配置されており、第2の凸部25の4つの第2の側面のそれぞれが、第1の凸部15の4つの第1の側面のそれぞれと当接している。すなわち、カバーガラス20の第4の主面20SBにある第2の凸部25は、撮像素子10の第1の主面10SAにある第1の凸部15に、ぴったりと合う状態に入れ込まれているため、仮固定されている。
このため、撮像素子10とカバーガラス20との光軸直交方向の相対位置が規定される。また、カバーガラス20Aは仮固定されている。このため、第1の主面10SAにカバーガラス20Aを配設した後、例えば紫外線硬化型樹脂によって固定される前にカバーガラス20Aが移動するおそれがない。
第1の凸部15の高さH15は、第2の凸部25の高さH25よりも大きい。このため、第1の凸部15は対向しているカバーガラス20の第4の主面20SBと当接するが、第2の凸部25は対向している撮像素子10の第1の主面10SAと当接しない。このため、第1の凸部15の高さH15によって、撮像素子10とカバーガラス20との光軸方向の相対位置が規定される。
後述するように、第1の凸部15および第2の凸部25は、それぞれのウエハにフォトリソグラフィ法を用いて配設されるため、精度の高い構造を容易に作製できる。
撮像装置1は、小型であるが、撮像素子10とカバーガラス20とを容易に精度良く位置合わせできるため、製造が容易である。また、カバーガラス20は、外寸の寸法精度を高くする必要が無いため作製が容易であり、かつ、外寸を撮像素子10の外寸よりも大きくできる。特に、撮像素子10に光を集光する複数のレンズを含む光学系が撮像素子10よりも大きい場合には、カバーガラス20の大きさは、光学系の大きさと同じ程度であることが好ましい。
なお、第1の凸部15の外寸が、第2の凸部25の内寸と略同じであり、第1の凸部15の4つの外側面15SSBが第2の凸部25の4つの内側面25SSAと当接してもよい。また、第2の凸部25の高さH25が、第1の凸部15の高さH15よりも大きく、第2の凸部25が対向している撮像素子10の第1の主面10SAと当接するが、第1の凸部15は対向しているカバーガラス20の第4の主面20SBと当接しなくてもよい。
第1の凸部15の高さH15と第2の凸部25の高さH25が同じであり、両者が対向している主面とそれぞれ当接していてもよい。
さらに、第1の凸部15が、第2の凸部25よりも、光軸Oに近い位置に配置されていてもよい。
すなわち、第1の凸部15および第2の凸部25のいずれかが、第1の主面10SAまたは第4の主面20SBと当接し、かつ、第1の凸部15の第1の側面(内側面/外側面)と第2の凸部25の第2の側面(外側面/内側面)とが当接していれば、撮像素子10とカバーガラス20との、光軸方向および光軸直交方向の3軸方向(X軸、Y軸、Z軸)の相対位置は規定される。
撮像装置1は、小型であるが、撮像素子10とカバーガラス20との3軸方向の相対位置が、第1の凸部15および第2の凸部25によって規定されるため、製造が容易である。
<撮像装置の製造方法>
図4のフローチャートに沿って撮像装置1の製造方法を説明する。
図4のフローチャートに沿って撮像装置1の製造方法を説明する。
<ステップS10>第1の凸部配設工程
撮像素子10は、いわゆるウエハレベル法によって作製される。シリコンウエハ等に公知の半導体製造技術を用いて、複数の受光部11A等が配設される。複数の受光部11Aを含む撮像素子ウエハには、受光部11Aの出力信号を1次処理したり、駆動制御信号を処理したりする周辺回路が形成されていてもよい。それぞれの受光部11Aの周囲に、受光部11Aと配線(不図示)を経由して接続されている複数の外部電極12が配設される。
撮像素子10は、いわゆるウエハレベル法によって作製される。シリコンウエハ等に公知の半導体製造技術を用いて、複数の受光部11A等が配設される。複数の受光部11Aを含む撮像素子ウエハには、受光部11Aの出力信号を1次処理したり、駆動制御信号を処理したりする周辺回路が形成されていてもよい。それぞれの受光部11Aの周囲に、受光部11Aと配線(不図示)を経由して接続されている複数の外部電極12が配設される。
撮像素子ウエハの複数の受光部11Aのそれぞれを囲む状態に、額縁状の第1の凸部15が配設される。第1の凸部15は、例えば、フォトレジストを用いて配設されたポリイミド樹脂からなる凸部である。第1の凸部15は、フォトレジストをマスクとして電気めっき法を用いて配設された金属、例えば、ニッケルまたは銅であってもよい。
撮像素子ウエハは、ダイシングされることによって、第1の主面10SAに第1の凸部15のある撮像素子10に個片化される。
<ステップS20>第2の凸部配設工程
ガラスウエハの第4の主面20SBに複数の第2の凸部25が配設される。第2の凸部25は、ポリイミド樹脂、ニッケルまたは銅からなる。ガラスウエハは、ダイシングされることによって第2の凸部25が配設されたカバーガラス20に個片化される。
ガラスウエハの第4の主面20SBに複数の第2の凸部25が配設される。第2の凸部25は、ポリイミド樹脂、ニッケルまたは銅からなる。ガラスウエハは、ダイシングされることによって第2の凸部25が配設されたカバーガラス20に個片化される。
例えば、第1の凸部15の幅は10μm~100μmである。第1の凸部15の高さH15は、例えば、5μm~20μmである。第2の凸部25の幅は、第1の凸部15の幅と同じでもよいし異なっていてもよい。また第2の凸部25の高さH25は、第1の凸部15の高さH15よりも、2μm~50μm低い。
撮像素子10とカバーガラス20との、光軸方向の相対位置、すなわち、第1の主面10SAと第4の主面20SBとの間隔を規定する第1の凸部15の弾性率E15は、第2の凸部25の弾性率E25と同じ、または、第2の凸部25の弾性率E25よりも大きいことが好ましい。なお、撮像素子10とカバーガラス20とを押圧しても第1の主面10SAと第4の主面との間隔が変化しないため、第1の凸部15の弾性率E15は第2の凸部25の弾性率E25よりも大きいことが特に好ましい。
弾性率E(ヤング率)は、規格(ISO 527-1、JIS K 7161)に基づいて、25℃において測定された引っ張り弾性率である。第1の凸部15および第2の凸部25が樹脂からなる場合には、フェノール樹脂(E:3GPa-8GPa)、尿素樹脂(E:1GPa-5GPa)、メラミン樹脂(E:5GPa-15GPa)、エポキシ樹脂(E:3GPa-10GPa)、シリコーン樹脂(E:0.5GPa-2GPa)、ポリエステル樹脂(E:1GPa-3GPa)、シリコーンゴム(E:0.01GPa-1GPa)、およびアクリル樹脂(E:0.01-1GPa)から選択される。第1の凸部15および第2の凸部25は、金属である銅(E:130GPa)、金(E:78GPa)、ニッケル(E:200GPa)、および、それらを主成分とする合金から選択される。
例えば、第1の凸部15は銅(E=130GPa)からなり、第2の凸部25はエポキシ樹脂(E=5GPa)からなる。すなわち、撮像素子10とカバーガラス20との間隔を規定する第1の凸部15は、凸形状のパンプである外部電極12と同時に、配設される金属であってもよい。
なお、ステップS10とステップS20との順序が逆であってもよいことは言うまでも無い。
<ステップS30>積層工程
撮像素子10の第1の主面10SAとカバーガラス20の第4の主面20SBとを対向配置し、第1の凸部15が対向している第4の主面20SBと当接するとともに、第1の凸部15の第1の側面15SSAと第2の凸部25の第2の側面25SSBとを当接する。
撮像素子10の第1の主面10SAとカバーガラス20の第4の主面20SBとを対向配置し、第1の凸部15が対向している第4の主面20SBと当接するとともに、第1の凸部15の第1の側面15SSAと第2の凸部25の第2の側面25SSBとを当接する。
本実施形態の製造方法よれば、撮像素子10とカバーガラス20との光軸方向および光軸直交方向の相対位置は、第1の凸部15および第2の凸部25によって規定され、かつ、仮固定されるため、小型の撮像装置1を容易に製造できる。
また、第1の凸部15および第2の凸部25が、受光部11を囲む額縁状であり、両者が入れ込まれ仮固定されているため、位置決め後に相対位置が変化することがない。
<第1実施形態の変形例>
第1実施形態の変形例1、2、3の撮像装置1A、1B、1C、または撮像装置1A、1B、1Cを含む内視鏡9A、9B、9Cは、撮像装置1または内視鏡9と類似し、同じ効果を有しているので、同じ構成要素には同じ符号を付し説明は省略する。
第1実施形態の変形例1、2、3の撮像装置1A、1B、1C、または撮像装置1A、1B、1Cを含む内視鏡9A、9B、9Cは、撮像装置1または内視鏡9と類似し、同じ効果を有しているので、同じ構成要素には同じ符号を付し説明は省略する。
<第1実施形態の変形例1>
図5Aに示すように、撮像装置1Aの撮像素子10Aの第1の主面10SAには、受光部11を囲む額縁状の第1の凸部15が配設されている。
図5Aに示すように、撮像装置1Aの撮像素子10Aの第1の主面10SAには、受光部11を囲む額縁状の第1の凸部15が配設されている。
図5Bに示すように、撮像装置1Aのカバーガラス20Aの第4の主面20SBには、第2の凸部として4本の角柱25A(25A1~25A4)が配設されている。
第1の凸部15は光軸直交方向の断面の内寸(対向する内側面15SSAの間隔)がW15X、W15Yであり、高さがH15である。一方、対向する2本の第2の凸部25Aの外側面25ASSの間隔はL25X、L25Yであり、高さがH25である。第1の凸部15の内寸W15X、W15Yは、第2の凸部25の外側面25ASSの間隔L25X、L25Yと略同じである。
撮像素子10Aの第1の主面10SAにカバーガラス20Aの第4の主面20SBを配設すると、カバーガラス20Aの4つの第2の凸部25の外側面25ASSが、撮像素子10Aの額縁状の第1の凸部15の4つの第1の側面(内側面)15SSAと当接する。このため、撮像素子10Aとカバーガラス20Aとの光軸直交方向の相対位置が規定され、仮固定される。
例えば、第2の凸部25Aの高さH25は、第1の凸部15の高さH15よりも低い。このため、第1の凸部15の高さH15によって、撮像素子10Aとカバーガラス20Aとの光軸方向の相対位置が規定される。
なお、カバーガラス20Aに、1つの第2の凸部25を配設するだけでも、撮像素子10Aとカバーガラス20Aとの光軸直交方向の相対位置を規定できる。すなわち、角柱25Aの2つの外側面25ASSが、額縁状の第1の凸部15の1つの角部の2つの内側面15ASSと当接していればよい。
ただし、1つの第2の凸部25だけでは光軸直交方向の位置は規定できるが、光軸方向の位置は規定できない。さらに、撮像素子10Aの第1の主面10SAにカバーガラス20Aの第4の主面20SBを配設した後に、カバーガラス20Aが仮固定されていないために、移動するおそれがある。このため、カバーガラス20Aには、光軸をはさんで対向する位置に2つ以上の第2の凸部25を有することが好ましい。
なお、撮像素子10の第1の主面10SAに、角柱の第1の凸部が配設されており、カバーガラス20Aの第4の主面20SBに額縁状の第2の凸部が配設されていれば、撮像装置1Aと同じ効果を有することは言うまでも無い。
<第1実施形態の変形例2>
図6Aに示すように、撮像装置1Bの撮像素子10Bの第1の主面10SAには、受光部11を囲むL字形の4つの第1の凸部15B(15B1、15B2、15B3、15B4)が配設されている。
図6Aに示すように、撮像装置1Bの撮像素子10Bの第1の主面10SAには、受光部11を囲むL字形の4つの第1の凸部15B(15B1、15B2、15B3、15B4)が配設されている。
図6Bに示すように、撮像装置1Bのカバーガラス20Bの第4の主面20SBには、第2の凸部として4本の円柱25Bが配設されている。
隣り合う第1の凸部15Bは、光軸直交方向の対向する内側面15BSSAの間隔がL15X、L15Yであり、高さがH15である。一方、対向する2本の第2の凸部25Bの外周面25BSSの間隔はL25X、L25Yであり、高さがH25である。第1の凸部15の間隔L15X、L15Yは、第2の凸部25の間隔L25X、L25Yと略同じである。
撮像素子10Bの第1の主面10SAにカバーガラス20Bの第4の主面20SBを配設すると、カバーガラス20Bの4つの第2の凸部25Bの外周面25BSSが、撮像素子10AのL字形の第1の凸部15Bの第1の側面(内側面)15BSSAと当接する。このため、撮像素子10Bとカバーガラス20Bとの光軸直交方向の相対位置が規定され、仮固定される。
なお、第1の凸部15Bの高さH15は、第2の凸部25Bの高さH25よりも大きい。このため、第1の凸部25Bの高さH25によって、撮像素子10Bとカバーガラス20Bとの光軸方向の相対位置が規定される。
また、図示しないが、第1の凸部15または第2の凸部25のいずれかが、2本の平行に配置されている畝(ridge)であり、他方の凸部が、2本の畝の間に嵌合する状態に幅が設定されていてもよい。すなわち、第1の凸部15および第2の凸部25は、撮像素子10Bとカバーガラス20Bとの3軸方向の相対位置が規定でき、さらに、仮固定できれば、その構成は適宜選択可能である。
<第1実施形態の変形例3>
図7Aに示すように、撮像装置1Cの撮像素子10Cの第1の主面10SAに配設されている第1の凸部15Cは、受光部11を覆っている平板状である。
図7Aに示すように、撮像装置1Cの撮像素子10Cの第1の主面10SAに配設されている第1の凸部15Cは、受光部11を覆っている平板状である。
図7Bに示すように、撮像装置1Cのカバーガラス20Cの第4の主面20SBには、額縁状の第2の凸部25Cが配設されている。
第1の凸部15Cは、対向する側面15CSSBの間隔、すなわち、光軸直交方向の幅がW15X、W15Yであり、高さがH15である。一方、額縁状の第2の凸部25Cは、光軸直交方向の対向する内側面25CSSAの間隔がL25X、L25Yであり、高さがH25である。
撮像素子10Cの第1の主面10SAにカバーガラス20Cの第4の主面20SBを配設すると、カバーガラス20Cの第2の凸部25Cの4つの内側面25CSSAが、撮像素子10Cの第1の凸部15Cの4つの側面15CSSBと当接する。このため、撮像素子10Cとカバーガラス20Cとの光軸直交方向の相対位置が規定され仮固定される。
<第2実施形態>
第2実施形態の撮像装置1D、または撮像装置1Dを含む内視鏡9Dは、撮像装置1または内視鏡9と類似し、同じ効果を有しているため、同じ構成要素には同じ符号を付し説明は省略する。
第2実施形態の撮像装置1D、または撮像装置1Dを含む内視鏡9Dは、撮像装置1または内視鏡9と類似し、同じ効果を有しているため、同じ構成要素には同じ符号を付し説明は省略する。
図8および図9に示すように、撮像装置1Dは、第1の主面10SAと第4の主面20SBとの間に配設されており、受光部11を覆っている透明樹脂30を更に具備する。
撮像装置1Dは第1の主面10SAと第4の主面20SBとの間に空間がないため、空間に浸入した水分によって結露が発生するおそれが無い。このため、撮像装置1Dは撮像装置1等よりも信頼性が高い。
後述するように、透明樹脂30は未硬化の液体の透明樹脂を第1の主面10SAと第4の主面20SBとの間に配設してから硬化処理によって固体化する。液体の透明樹脂は、撮像素子10Cの第1の主面10SAにカバーガラス20Cの第4の主面20SBを配設され、第1の主面10SAと第4の主面20SBとの間隔が所定値に規定されると、第1の主面10SAと第4の主面20SBとの間を光軸直交方向に広がる。
撮像装置1Dでは、第1の凸部15Dおよび第2の凸部25Dが、額縁状ではなく、開口のあるU字形である。このため、液体樹脂の周囲の空気が開口から排出されることによって、液体の透明樹脂は受光部11を覆うように広がる。
さらに、第1の凸部15Dおよび第2の凸部25Dは、複数の外部電極12と受光部11との間に配置されている細長い凸部である畝(ridge)A15D、A25Dを含み、畝A15D、A25Dと受光部11をはさんで対向している領域B15D、B25Dには畝が配置されておらず、開口となっている。
液体樹脂は、領域B15D、B25Dに広がるため、複数の外部電極12を覆うことがない。このため、外部電極12に導線を接合するときに接合不良が発生するおそれがない。
第1の凸部15Dおよび第2の凸部25Dのいずれかが、複数の外部電極12と受光部11との間に配置されている畝A15D、A25Dを含み、畝A15D、A25Dよりも外周には透明樹脂30が配設されていない一方で、畝A15D、A25Dと受光部11をはさんで対向している領域B15D、B25Dの、それぞれの少なくとも一部には畝が配設されておらず透明樹脂30が配設されている。すなわち、畝のない領域を経由して、空気および過剰に配設された透明樹脂30が光路境域から外側に放出される。
なお、第2の凸部25Dが第1の凸部15Dと嵌合し、高さが高い第1の凸部15Dだけが対向する第4の主面20SBと当接することによって、撮像素子10Dとカバーガラス20Dとは、光軸直交方向および光軸方向の相対位置が規定されている。
<第2実施形態の変形例>
第2実施形態の変形例の撮像装置1Eもしくは内視鏡用光学装置1F、または、撮像装置1Eもしくは内視鏡用光学装置1Fを含む内視鏡9E、9Fは、撮像装置1Dまたは内視鏡9Dと類似し、同じ効果を有しているので、同じ構成要素には同じ符号を付し説明は省略する。
第2実施形態の変形例の撮像装置1Eもしくは内視鏡用光学装置1F、または、撮像装置1Eもしくは内視鏡用光学装置1Fを含む内視鏡9E、9Fは、撮像装置1Dまたは内視鏡9Dと類似し、同じ効果を有しているので、同じ構成要素には同じ符号を付し説明は省略する。
<第2実施形態の変形例1>
図10に示すように、撮像装置1Eでは、撮像装置1Dの第1の凸部15Dと同じU字形である第1の凸部15E1と、畝であるある第1の凸部15E2とを含む。一方、第2の凸部25Eは、4本の畝25E1、25E2、25E3、25E4を含む。
図10に示すように、撮像装置1Eでは、撮像装置1Dの第1の凸部15Dと同じU字形である第1の凸部15E1と、畝であるある第1の凸部15E2とを含む。一方、第2の凸部25Eは、4本の畝25E1、25E2、25E3、25E4を含む。
撮像装置1Eでは、透明樹脂30は複数の外部電極12と受光部11をはさんで対向している領域の2箇所の開口から、受光部11の周囲に広がっている。
<第2実施形態の変形例2>
図11に示すように、内視鏡用光学装置1Fは、第1の光学部材10Dが撮像素子ではなく、例えば、ガラス基板に樹脂レンズが配設されたハイブリッドレンズ素子である。
図11に示すように、内視鏡用光学装置1Fは、第1の光学部材10Dが撮像素子ではなく、例えば、ガラス基板に樹脂レンズが配設されたハイブリッドレンズ素子である。
また、第1の凸部15Fが、4本の畝15F1~15F4を含み、第2の凸部25Fが、4本の畝25F1~25F4を含む。
すなわち、本発明の内視鏡用光学装置は、撮像素子を含む撮像装置に限られるものではなく、複数のレンズ素子等が積層されていれば撮像素子を含まない光学装置であってもよい。
<第3実施形態>
第3実施形態の撮像装置1G、または撮像装置1Gを含む内視鏡9Gは、撮像装置1Dまたは内視鏡9Dと類似し、同じ効果を有しているため、同じ構成要素には同じ符号を付し説明は省略する。
第3実施形態の撮像装置1G、または撮像装置1Gを含む内視鏡9Gは、撮像装置1Dまたは内視鏡9Dと類似し、同じ効果を有しているため、同じ構成要素には同じ符号を付し説明は省略する。
図12に示すように、撮像装置1Gでは、第1の凸部15Gと第2の凸部25Gとは、高さが同じである。しかし、両者は弾性率が異なる。
図13のフローチャートに示すように、撮像装置1Gの製造方法では、図4に示した撮像装置1の製造方法と比較すると、積層工程S30の前に行われる樹脂配設工程S25と、積層工程S30の後に行われる硬化工程S40と、を更に具備する。
<ステップS25>樹脂配設工程
未硬化の液体の透明樹脂が第1の主面10SAと第4の主面20SBとの間に配設される。液体樹脂は、U字形の第1の凸部15Gが配設された第1の主面10SAの受光部11の上に配設されることが好ましい。
未硬化の液体の透明樹脂が第1の主面10SAと第4の主面20SBとの間に配設される。液体樹脂は、U字形の第1の凸部15Gが配設された第1の主面10SAの受光部11の上に配設されることが好ましい。
液体樹脂としては、光透過性の高い所定の屈折率の各種の紫外線硬化型樹脂、または、紫外線熱硬化併用型樹脂、例えば、シリコーン樹脂、またはエポキシ樹脂を用いる。
<ステップS30>積層工程
撮像素子10Gの第1の主面10SAとカバーガラス20Gの第4の主面20SBとを対向配置し、高さが第2の凸部25Gよりも高い第1の凸部15Gだけが対向している第4の主面20SBと当接するとともに、第1の凸部15Gの第1の側面15SSAと第2の凸部25Gの第2の側面25SSBとを当接する。
撮像素子10Gの第1の主面10SAとカバーガラス20Gの第4の主面20SBとを対向配置し、高さが第2の凸部25Gよりも高い第1の凸部15Gだけが対向している第4の主面20SBと当接するとともに、第1の凸部15Gの第1の側面15SSAと第2の凸部25Gの第2の側面25SSBとを当接する。
このとき、液体樹脂は、複数の外部電極12と受光部11を挾んで対向している畝が配設されていない領域に広がる。このため、外部電極12に導線を接合するときに接合不良が発生するおそれがない。
後述するように、第1の凸部15Gの高さH15は、第1の主面10SAと第4の主面20SBとの相対位置を一時的に規定する。しかし、完成品においては、第1の主面10SAと第4の主面20SBとの相対位置は第2の凸部25Gの高さH25によって規定される。このため、第1の凸部15Gの高さH15は、第2の凸部25Gの高さH25の、101%以上120%以下であることが好ましい。
また、第1の凸部15Gは第2の凸部25Gよりも弾性率が小さい材料からなる。例えば、第1の凸部15Gは樹脂からなり、第2の凸部25Gは金属からなる。第1の凸部15および第2の凸部25Gが弾性率の異なる樹脂によって構成されていてもよい。
<ステップS40>硬化工程
未硬化の液体の透明樹脂が、紫外線照射、または、紫外線照射および熱印加、によって硬化され、固体の透明樹脂30となる。
未硬化の液体の透明樹脂が、紫外線照射、または、紫外線照射および熱印加、によって硬化され、固体の透明樹脂30となる。
液体樹脂が硬化反応によって、固体の透明樹脂30となるときに、体積が収縮する。第4の主面20SBと当接していた第1の凸部15Gは、弾性率が小さいため、透明樹脂30の収縮によって第1の主面10SAと第4の主面20SBとの間で押圧されて高さが低くなる。一方、第1の主面10SAと当接していなかった第2の凸部25Gは、透明樹脂30の収縮によって第1の主面10SAと当接する。なお、透明樹脂30が更に収縮しても、第2の凸部25Gは弾性率が大きいため、高さH25は変化しない。すなわち、第1の主面10SAと第4の主面20SBとの間隔は、最終的には、第2の凸部25Gの高さH25によって規定される。
以上の説明のように、本実施形態の撮像装置1Gは、硬化工程S40の前においては、第1の凸部15Gと第2の凸部25Gとは、高さが異なり、高さが高い第1の凸部15Gだけが、対向している第4の主面20SBと当接しており、硬化工程S40の後には、第1の凸部15Gと第2の凸部25Gとは高さが同じで、いずれも対向している主面と当接している。
撮像装置1Gは、硬化反応による透明樹脂30の硬化収縮を考慮して第1の凸部15Gの高さH15および第2の凸部25Gの高さH25が設定されている。このため、透明樹脂30が、第1の主面10SAまたは第4の主面20SBから剥離するおそれがない。
なお、第1の凸部15Gの高さH15と第2の凸部25Gの高さH25とは、透明樹脂30の高さ方向(光軸方向)の収縮を考慮して設計される。透明樹脂30の収縮は、1%以上20%以下であるため、第1の凸部15Gの高さH15は第2の凸部25Gの高さH25の101%以上120%とされる。
本発明は、上述した実施形態および変形例に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。
1、1A~1E、1G…撮像装置
1F…内視鏡用光学装置
9、9A~9G…内視鏡
10…撮像素子
10SA…第1の主面
10SB…第2の主面
11…受光部
12…外部電極
15…第1の凸部
20…カバーガラス
20SA…第3の主面
20SB…第4の主面
25…第2の凸部
30…透明樹脂
1F…内視鏡用光学装置
9、9A~9G…内視鏡
10…撮像素子
10SA…第1の主面
10SB…第2の主面
11…受光部
12…外部電極
15…第1の凸部
20…カバーガラス
20SA…第3の主面
20SB…第4の主面
25…第2の凸部
30…透明樹脂
Claims (13)
- 第1の主面と前記第1の主面と対向する第2の主面とを有する第1の光学部材と、
第3の主面と前記第3の主面と対向する第4の主面とを有し、前記第4の主面が前記第1の主面と対向している第2の光学部材と、を具備し、
前記第1の主面には、第1の凸部があり、
前記第4の主面には、前記第1の凸部よりも光軸に近い位置に配置された第2の凸部があり、
前記第1の凸部および前記第2の凸部のいずれかが、対向している主面と当接し、かつ、前記第1の凸部の第1の側面と前記第2の凸部の第2の側面とが当接していることを特徴とする内視鏡用光学装置。 - 前記第1の光学部材が、前記第1の主面に受光部が形成されている撮像素子であり、
前記第2の光学部材が、カバーガラスであることを特徴とする請求項1に記載の内視鏡用光学装置。 - 前記第1の凸部および前記第2の凸部のいずれかが、前記受光部を囲む額縁状であることを特徴とする請求項2に記載の内視鏡用光学装置。
- 前記第1の凸部が、前記受光部を覆っている平板状であることを特徴とする請求項2に記載の内視鏡用光学装置。
- 前記第1の主面と前記第4の主面との間に配設されており、前記受光部を覆っている透明樹脂を更に具備することを特徴とする請求項2に記載の内視鏡用光学装置。
- 前記撮像素子の前記受光部の外周に、複数の外部電極が配設されており、
前記第1の凸部および前記第2の凸部のいずれかが、前記複数の外部電極と前記受光部との間に配置されている畝を含み、前記畝よりも外周には前記透明樹脂が配設されていない一方で、前記畝と前記受光部をはさんで対向している領域の少なくとも一部には畝が配設されておらず前記透明樹脂が配設されていることを特徴とする請求項5に記載の内視鏡用光学装置。 - 前記第1の凸部と前記第2の凸部とは、高さが異なり、高さが高い凸部だけが、対向している主面と当接しており、
前記高さが高い凸部の弾性率が、高さが低い凸部の弾性率よりも大きいことを特徴とする請求項1から請求項6のいずれか1項に記載の内視鏡用光学装置。 - 前記第1の凸部と前記第2の凸部とは、高さが同じであり、弾性率が異なることを特徴とする請求項5または請求項6に記載の内視鏡用光学装置。
- 請求項1から請求項8のいずれか1項に記載の内視鏡用光学装置を含むことを特徴とする内視鏡。
- 第1の主面と前記第1の主面と対向する第2の主面とを有する第1の光学部材の前記第1の主面に、第1の凸部を配設する第1の凸部配設工程と、
第3の主面と前記第3の主面と対向する第4の主面とを有する第2の光学部材の前記第4の主面に、第2の凸部を配設する第2の凸部配設工程と、
前記第1の光学部材の前記第1の主面と前記第2の光学部材の前記第4の主面とを対向配置し、前記第1の凸部および前記第2の凸部のいずれかを、対向している主面と当接するとともに、前記第1の凸部の第1の側面と前記第2の凸部の第2の側面とを当接する積層工程と、を具備することを特徴とする内視鏡用光学装置の製造方法。 - 前記積層工程の前に行われる前記第1の主面と前記第4の主面との間に未硬化の透明樹脂を配設する樹脂配設工程と、
前記積層工程の後に行われる前記未硬化の透明樹脂を硬化処理する硬化工程と、を更に具備し、
前記硬化工程の前においては、前記第1の凸部と前記第2の凸部とは、高さが異なり、高さが高い凸部だけが、対向している主面と当接しており、
前記硬化工程の後には、前記第1の凸部と前記第2の凸部とは高さが同じであり、いずれも対向している主面と当接しており、
高さが高い凸部の弾性率が、高さが低い凸部の弾性率よりも小さいことを特徴とする請求項10に記載の内視鏡用光学装置の製造方法。 - 前記第1の光学部材が、前記第1の主面に受光部が形成されている撮像素子であり、
前記第2の光学部材がカバーガラスであり、
前記第1の主面には、受光部が形成されており、前記受光部の外周に複数の外部電極が配設されていることを特徴とする請求項11に記載の内視鏡用光学装置の製造方法。 - 前記第1の凸部および前記第2の凸部のいずれかが、前記複数の外部電極と前記受光部との間に配置されている畝を含み、
前記樹脂配設工程において、前記畝と前記受光部をはさんで対向している領域であって畝が配設されていない領域にも、前記透明樹脂が配設されることを特徴とする請求項12に記載の内視鏡用光学装置の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/038356 WO2020079735A1 (ja) | 2018-10-15 | 2018-10-15 | 内視鏡用光学装置、内視鏡、および内視鏡用光学装置の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/038356 WO2020079735A1 (ja) | 2018-10-15 | 2018-10-15 | 内視鏡用光学装置、内視鏡、および内視鏡用光学装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020079735A1 true WO2020079735A1 (ja) | 2020-04-23 |
Family
ID=70283395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/038356 WO2020079735A1 (ja) | 2018-10-15 | 2018-10-15 | 内視鏡用光学装置、内視鏡、および内視鏡用光学装置の製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020079735A1 (ja) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07202152A (ja) * | 1993-12-28 | 1995-08-04 | Olympus Optical Co Ltd | 固体撮像装置 |
JP2003031782A (ja) * | 2001-07-11 | 2003-01-31 | Fuji Film Microdevices Co Ltd | 固体撮像装置およびその製造方法 |
JP2004207461A (ja) * | 2002-12-25 | 2004-07-22 | Olympus Corp | 固体撮像装置及びその製造方法 |
JP2004266340A (ja) * | 2003-02-03 | 2004-09-24 | Konica Minolta Holdings Inc | 撮像装置及び携帯端末 |
JP2005109092A (ja) * | 2003-09-30 | 2005-04-21 | Konica Minolta Opto Inc | 固体撮像装置及び該固体撮像装置を備えた撮像装置 |
JP2008219262A (ja) * | 2007-03-01 | 2008-09-18 | Olympus Corp | 撮像モジュール |
JP2009295885A (ja) * | 2008-06-06 | 2009-12-17 | Sharp Corp | 半導体装置、光学装置用モジュール、及び、半導体装置の製造方法 |
JP2012084601A (ja) * | 2010-10-07 | 2012-04-26 | Panasonic Corp | 光学デバイス及びその製造方法 |
JP2012182319A (ja) * | 2011-03-01 | 2012-09-20 | Olympus Corp | 半導体装置および半導体装置の製造方法 |
JP2013225705A (ja) * | 2013-07-22 | 2013-10-31 | Canon Inc | 固体撮像装置の製造方法及び固体撮像装置 |
JP2017103347A (ja) * | 2015-12-02 | 2017-06-08 | セイコーエプソン株式会社 | 基板同士の組立方法 |
-
2018
- 2018-10-15 WO PCT/JP2018/038356 patent/WO2020079735A1/ja active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07202152A (ja) * | 1993-12-28 | 1995-08-04 | Olympus Optical Co Ltd | 固体撮像装置 |
JP2003031782A (ja) * | 2001-07-11 | 2003-01-31 | Fuji Film Microdevices Co Ltd | 固体撮像装置およびその製造方法 |
JP2004207461A (ja) * | 2002-12-25 | 2004-07-22 | Olympus Corp | 固体撮像装置及びその製造方法 |
JP2004266340A (ja) * | 2003-02-03 | 2004-09-24 | Konica Minolta Holdings Inc | 撮像装置及び携帯端末 |
JP2005109092A (ja) * | 2003-09-30 | 2005-04-21 | Konica Minolta Opto Inc | 固体撮像装置及び該固体撮像装置を備えた撮像装置 |
JP2008219262A (ja) * | 2007-03-01 | 2008-09-18 | Olympus Corp | 撮像モジュール |
JP2009295885A (ja) * | 2008-06-06 | 2009-12-17 | Sharp Corp | 半導体装置、光学装置用モジュール、及び、半導体装置の製造方法 |
JP2012084601A (ja) * | 2010-10-07 | 2012-04-26 | Panasonic Corp | 光学デバイス及びその製造方法 |
JP2012182319A (ja) * | 2011-03-01 | 2012-09-20 | Olympus Corp | 半導体装置および半導体装置の製造方法 |
JP2013225705A (ja) * | 2013-07-22 | 2013-10-31 | Canon Inc | 固体撮像装置の製造方法及び固体撮像装置 |
JP2017103347A (ja) * | 2015-12-02 | 2017-06-08 | セイコーエプソン株式会社 | 基板同士の組立方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11109749B2 (en) | Endoscope | |
US10660511B2 (en) | Image pickup module and endoscope | |
JP6640341B2 (ja) | 内視鏡用光学ユニットの製造方法、内視鏡用光学ユニット、および内視鏡 | |
US20180070799A1 (en) | Imaging device, endoscope system, and method of manufacturing imaging device | |
US10924640B2 (en) | Image pickup module and endoscope including image pickup module in which bonding junction between image pickup portion and signal cable is resin-sealed by curable resin | |
US12015045B2 (en) | Manufacturing method of image pickup apparatus for endoscope, image pickup apparatus for endoscope, and endoscope | |
JP2010263020A (ja) | 光学デバイスモジュール | |
US20180217361A1 (en) | Lens attached substrate, layered lens structure, manufacturing method thereof, and electronic device | |
US20210141210A9 (en) | Image pickup module, fabrication method for image pickup module, and endoscope | |
EP1883111A2 (en) | Image pickup device and method of manufacturing the same | |
WO2020079735A1 (ja) | 内視鏡用光学装置、内視鏡、および内視鏡用光学装置の製造方法 | |
CN112041721B (zh) | 摄像装置、内窥镜和摄像装置的制造方法 | |
US20210250473A1 (en) | Image pickup apparatus, endoscope and method for manufacturing image pickup apparatus | |
EP3369359A1 (en) | Imaging device and endoscope | |
WO2022224301A1 (ja) | 撮像ユニット、内視鏡、および、撮像ユニットの製造方法 | |
WO2021176704A1 (ja) | 光学ユニット、光学ユニットの製造方法、および、内視鏡 | |
US11287641B2 (en) | Image pickup apparatus, endoscope, and method for manufacturing image pickup apparatus | |
WO2017056226A1 (ja) | 内視鏡、撮像モジュール、および撮像モジュールの製造方法 | |
US20240113141A1 (en) | Electronic component and method of manufacturing the same | |
WO2020115813A1 (ja) | 半導体装置、内視鏡、および、半導体装置の製造方法 | |
JP7516724B2 (ja) | 撮像ユニット、および、内視鏡 | |
WO2022269901A1 (ja) | 撮像ユニット、内視鏡、および、撮像ユニットの製造方法 | |
US20210137372A1 (en) | Image pickup apparatus for endoscope and endoscope | |
WO2021059455A1 (ja) | 撮像モジュール、および、内視鏡 | |
JPWO2017056225A1 (ja) | 内視鏡、撮像モジュール、および撮像モジュールの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18936885 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18936885 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |