WO2020079307A1 - 4-phenyl dihydropyridine derivatives for the treatment and/or prevention of an infection or disease caused by helicobacter - Google Patents

4-phenyl dihydropyridine derivatives for the treatment and/or prevention of an infection or disease caused by helicobacter Download PDF

Info

Publication number
WO2020079307A1
WO2020079307A1 PCT/ES2019/070710 ES2019070710W WO2020079307A1 WO 2020079307 A1 WO2020079307 A1 WO 2020079307A1 ES 2019070710 W ES2019070710 W ES 2019070710W WO 2020079307 A1 WO2020079307 A1 WO 2020079307A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
group
optionally substituted
alkyl
Prior art date
Application number
PCT/ES2019/070710
Other languages
Spanish (es)
French (fr)
Inventor
Andrés GONZÁLEZ RODRÍGUEZ
Ángel LANAS ARBELOA
Sandra SALILLAS BERGES
Adrián VELÁZQUEZ CAMPOY
Javier Sancho Sanz
Original Assignee
Fundacion Instituto De Investigacion Sanitaria Aragon
Universidad De Zaragoza
Fundación Agencia Aragonesa Para La Investigación Y El Desarrollo (Araid)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacion Instituto De Investigacion Sanitaria Aragon, Universidad De Zaragoza, Fundación Agencia Aragonesa Para La Investigación Y El Desarrollo (Araid) filed Critical Fundacion Instituto De Investigacion Sanitaria Aragon
Publication of WO2020079307A1 publication Critical patent/WO2020079307A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/80Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D211/84Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen directly attached to ring carbon atoms
    • C07D211/90Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/44221,4-Dihydropyridines, e.g. nifedipine, nicardipine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants

Definitions

  • the present invention relates to 4-phenyldihydropyridine derivatives of formula I or to pharmaceutical compositions thereof for use in the treatment and / or prevention of an infection or disease caused by said infection, where the infection is caused by bacteria of the genus Helicobacter, preferably by the species Helicobacter pylori.
  • Helicobacter pylori is considered the most prevalent pathogen in humans. A recent study suggests that more than half of the world's population is infected. The prevalence of infection usually varies according to socio-economic conditions, ranging from almost 20% in high-income countries like Switzerland or Sweden, to almost 90% of the infected population in countries like Nigeria. The prevalence of Helicobacter pylori infection in Spain is currently estimated at 54.9% of the population (Hooi JKY, et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology 2017; 153 ( 2): 420-429).
  • Helicobacter pylori is a microaerophilic Gram-negative bacterium of the Epsilonproteobacteria class, to which other pathogens of clinical relevance such as Campylobacter jejuni belong.
  • the transmission mechanism of Helicobacter pylori infection is not perfectly elucidated. It is possible that the bacteria is transmitted from person to person through saliva or via the faecal-oral route, after eating contaminated food or water.
  • the microorganism crosses the mucous layer that protects the stomach with the help of flagella and adheres to the gastric epithelial cells using adhesins.
  • the bacterium produces a variety of enzymes such as urease, which allow it to neutralize gastric acidity and create a neutral microenvironment around it.
  • Helicobacter pylori synthesizes large amounts of the urease enzyme that accumulates in the cytoplasm, periplasmic space and cell surface.
  • the enzyme catalyzes the hydrolysis of urea present in the stomach to ammonia and carbon dioxide.
  • Ammonium ions are capable of neutralizing heartburn, but they also cause damage to stomach epithelial cells causing necrosis and favoring various gastric pathologies.
  • Other enzymes and cytotoxins produced by Helicobacter pylori such as VacA and CagA are also associated with damage to the gastric mucosa and with the oncogenic potential of this microorganism (Kusters JG, et al. Pathogenesis of Helicobacter pylori Infection. Clin Microbiol Rev 2006; 19 (3) : 449-490).
  • the current eradicating treatment of Helicobacter pylori infection consists of the combination of at least two antibiotics, associated with a proton pump inhibitor (PPI).
  • PPI proton pump inhibitor
  • the most widely used regimen currently and accepted as "first line" by the American College of Gastroenterology and the latest Maastricht consensus is the administration of Amoxicillin (1 g every 12 hours) together with Clarithromycin (500 mg every 12 hours) and one PPI at standard dose every 12 hours, or substituting Amoxicillin for Metronidazole (400 mg every 12 hours).
  • This treatment is known as the "triple therapy” and usually requires 10 to 14 days, reaching eradication rates of 70-85%.
  • this first-line therapy has significantly decreased its eradication rates, down to levels as low as 50% of treated cases.
  • HsrA protein constitutes a response regulator that acts as an activator of transcription.
  • HsrA regulates the expression of a large number of genes and operons involved in a variety of essential physiological processes of the microorganism, synchronizing metabolic functions and virulence with the availability of nutrients, cell division, and redox homeostasis.
  • HsrA is an essential protein for the viability of Helicobacter pylori, gene deletion or inhibition of the biological activity of the protein imply cell death.
  • HsrA is a ⁇ 25 kDa protein, with two defined structural and functional domains: an N-terminal domain with regulatory function and a C-terminal DNA binding domain, both domains are connected by a short flexible amino acid sequence without secondary structure defined.
  • the protein dimerizes through its N-terminal domain forming a stable dimer both in vitro and in vivo.
  • the regulator recognizes and binds to the promoters of its target genes covering a region of about 30 bp close but not overlapping to element -10 of the promoter. The binding of the regulator to its target promoters could favor the contact of RNA polymerase with DNA and positively influence the recruitment of the enzyme, playing an activating role for transcription.
  • HsrA protein has been cloned and extensively characterized in the laboratory, its crystallographic structure is known and relatively simple tests are available to evaluate its biological activity and the inhibition of this activity by potential inhibitors.
  • HsrA is a typical protein of epsilonbacteria and there is no counterpart or protein of similar sequence in humans, which minimizes the risk of cross-reactivity and undesirable side effects of potential HsrA inhibitors on the normal microbiota or on human biomolecules (Delany I., et al. Growth phase-dependent regulation of target gene promoters for binding of the essential orphan response regulator HP1043. J Bacteriol 2002; 184 (17): 4800-4810; Schár J., et al.
  • the present invention relates to a compound of formula I for use in the treatment and / or prevention of an infection caused by a bacterium of the genus Helicobacter or for use in the treatment and / or prevention of a disease caused by an infection caused by a bacterium of the genus Helicobacter:
  • Ri is C 1-4 alkyl, -NH 2 or -CN, where C 1-4 alkyl is optionally substituted by a group -OCONH 2 , -OR 5 or -SR 5 ;
  • R 2 is C 1-4 alkyl optionally substituted by a group -OR 5 or -SR 5 ;
  • R 3 is C 1-4 alkyl or Cyi, where C 1-4 alkyl is optionally substituted by a group
  • A is a group of formula II, III, IV, V or VI:
  • R 4 is -N0 2 , halogen, or -OCF 3 ;
  • R 5 is C 1-4 alkyl optionally substituted by a group -NH 2 or -OR 6 ;
  • Re is C 1-4 alkyl optionally substituted by a group -NH 2 ;
  • R 7 is -OC 1-4 alkyl, -NR 8 Rg, Cy 2 , -COC 1-4 alkyl or C 2-4 alkenyl, where C 2-4 alkenyl is optionally substituted by a phenyl group;
  • Cyi is a 4-6 membered saturated heterocycle attached to the rest of the molecule through of an available C or N atom, containing 1 or 2 N heteroatoms, where Cyi is optionally substituted by a Ci -4 alkyl group, and where the Ci -4 alkyl group is optionally substituted by one or two phenyl groups;
  • Cy 2 is a phenyl or a saturated or aromatic 5- or 6-membered heterocycle containing from 1 to 3 heteroatoms selected from N and O, where Cy 2 is attached to the rest of the molecule through an N or C atom, when Cy 2 is a saturated heterocycle may optionally be fused to a piperidine ring forming a spiranic ring, and where Cy 2 is optionally substituted by one or more Ri 0 groups;
  • R 8 is Ci- 4 alkyl
  • R 9 is Ci- 4 alkyl optionally substituted by one or more phenyl groups, and where each phenyl group is optionally substituted by a halogen group;
  • each R i or independently is vinyl, phenyl or Cy 3 , where the phenyl group is substituted by an Rn group;
  • R1 1 is halogen
  • Cy 3 is a 5- or 6-membered saturated heterocycle, containing 1 or 2 N hetero atoms, that binds to the rest of the molecule through an available N or C atom and is optionally substituted by a Ci -4 group alkyl, where the Ci -4 alkyl group is optionally substituted by one or two phenyl groups.
  • the invention relates to the compound of formula I according to the use defined above, where the bacterium of the Helicobacter genus is of the Helicobacter pylori species.
  • the invention refers to the compound of formula I according to the use defined above, where Ri is methyl, isopropyl, -CH 2 OR 5 , -CH 2 SR 5 , -CH 2 OCONH 2 , -NH 2 O -CN.
  • the invention refers to the compound of formula I according to the use defined above, where Ri is methyl, isopropyl, -CH 2 OCH 2 CH 2 NH 2 , -CH 2 OCH 2 CH 2 OR 6 , -CH 2 SCH 2 CH 2 NH 2 , -CH 2 SCH 2 CH 2 0 Re, -CH 2 OCONH 2 , -NH 2 O -CN.
  • the invention refers to the compound of formula I according to the use defined above, where Ri is methyl, isopropyl, -CH 2 OCH 2 CH 2 NH 2 , -CH 2 OCH 2 CH 2 OCH 2 CH 2 NH 2 , - CH 2 SCH 2 CH 2 NH 2 , -CH 2 S CH 2 CH 2 O CH 2 CH 2 NH 2 , -CH 2 OCONH 2 , -NH 2 O -CN.
  • Ri is C 1-4 alkyl, and preferably where Ri is methyl.
  • the invention refers to the compound of formula I according to the use defined above, where R 2 is C 1-4 alkyl.
  • the invention refers to the compound of formula I according to the use defined above, where R 2 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl or tert-butyl, preferably where R 2 is methyl, ethyl or isopropyl, and more preferably where R 2 is methyl.
  • the invention refers to the compound of formula I according to the use defined above, where R 3 is Ci -4 alkyl optionally substituted by a group R 7 .
  • the invention relates to the compound of formula I according to the use defined above, where R 4 is -N0 2 , -Cl or -OCF 3 , and preferably -N0 2 or -Cl.
  • the invention refers to the compound of formula I according to the use defined above, where A is a group of formula II or III.
  • the invention refers to the compound of formula I according to the use defined above, where R 7 is -OC 1-4 alkyl, -NR 8 Rg, Cy 2 or -COC 1-4 alkyl.
  • the invention refers to the compound of formula I according to the use defined above, where R 3 is methyl.
  • the invention is related to the compound of formula I according to the use defined above, where R 9 is Ci -4 alkyl substituted by one or two phenyl groups, and where each phenyl group is optionally substituted by a halogen group.
  • the invention refers to the compound of formula I according to the use defined above, where Rg is -CH 2 Ph or -CH 2 CH 2 C (Ph) (4-F-Ph).
  • the invention refers to the compound of formula I according to the use defined above, where Cyi is a 4- to 6-membered, preferably 4- or 5-membered saturated heterocycle, linked to the rest of the molecule through an available C atom, containing 1 N heteroatom, where Cyi is optionally substituted by a Ci -4 alkyl group, and where the Ci -4 alkyl group is optionally substituted by one or two phenyl groups.
  • the invention refers to the compound of formula I according to the use defined above, where Cyi is a group of formula Vil or VIII:
  • the invention refers to the compound of formula I according to the use defined above, where Cy 2 is a phenyl optionally substituted by one or more R i o groups. In another embodiment the invention refers to the compound of formula I according to the use defined above, where Rn is F or Cl, and preferably Cl.
  • the invention refers to the compound of formula I according to the use defined above, where Cy 3 is 1-vinylpiperazine or pyrrolidine.
  • the invention refers to the compound of formula I according to the use defined above, where the compound of formula I is selected from:
  • Lemildipine Lemildipine, Lercanidipine, Levamlodipine,
  • the invention refers to the compound of formula I according to the use defined above, where the compound of formula I is selected from:
  • the invention refers to the compound of formula I according to the use defined above, where the compound of formula I is selected from:
  • the invention relates to the compound of formula I according to the use defined above, where the compound of formula I is selected from:
  • the invention is concerned with the compound of formula I according to the use defined above, where the disease caused by an infection is a gastrointestinal pathology, and preferably where the gastrointestinal pathology is selected from acute gastritis, chronic gastritis, duodenitis, functional dyspepsia, gastric ulcer, duodenal ulcer, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma (MALT lymphoma).
  • the present invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising at least one compound of the invention (or a pharmaceutically acceptable salt or solvate thereof) and one or more pharmaceutically acceptable excipients.
  • the excipients must be "acceptable” in the sense of being compatible with the other ingredients of the composition and not being harmful to whoever takes said composition.
  • another aspect of the present invention relates to a pharmaceutical composition.
  • a pharmaceutical composition comprising at least one compound of formula I defined above, for use in the treatment and / or prevention of an infection caused by a bacterium of the genus Helicobacter or for use in the treatment and / or prevention of a disease caused by an infection caused by a bacterium of the genus Helicobacter, and preferably where the bacterium of the genus Helicobacter is of the species Helicobacter pylori.
  • the invention relates to the pharmaceutical composition defined above, where the disease caused by an infection is a gastrointestinal pathology, and preferably where the gastrointestinal pathology is selected from acute gastritis, chronic gastritis, duodenitis, functional dyspepsia, gastric ulcer, ulcer duodenal, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma (MALT lymphoma).
  • gastrointestinal pathology is selected from acute gastritis, chronic gastritis, duodenitis, functional dyspepsia, gastric ulcer, ulcer duodenal, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma (MALT lymphoma).
  • Ci - 4 alkyl as a group or part of a group, means an alkyl group of straight or branched chain containing from 1 to 4 carbon atoms and includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert-butyl.
  • a halogen radical or its abbreviation halo means fluoro, chloro, bromo or iodo.
  • substituents can be the same or different and can be located on any available position.
  • treatment refers to eliminating, eradicating, totally eradicating, reducing or diminishing the cause or effects of a disease.
  • treatment includes, but is not limited to, alleviating, decreasing, or eliminating one or more symptoms of the disease; reduce the degree of disease, stabilize (that is, do not worsen) the state of the disease, delay or slow down the progression of the disease, alleviate or improve the state of the disease and remit (either total or partial). Examples include, but are not limited to, "eradicating infection,””total eradication of the microorganism” and "Decreased colonization of the microorganism”.
  • prevention refers to preventing the onset of the disease from occurring in a patient who is predisposed or has risk factors, but who does not yet have symptoms of the disease. Prevention also includes preventing the recurrence of a disease in a subject who has previously suffered from said disease.
  • the compounds of the present invention contain one or more basic nitrogens and could therefore form salts with acids, both organic and inorganic. Some compounds of the present invention could contain one or more acidic protons and therefore could also form salts with bases.
  • salts are understood as those salts which, in medical judgment, are suitable for use in contact with the tissues of humans or other mammals without causing undue toxicity, irritation, allergic response or the like. Pharmaceutically acceptable salts are widely known to any person skilled in the art.
  • the compounds of the present invention can form complexes with solvents in which they are reacted or precipitated or crystallized. These complexes are known as solvates.
  • solvate refers to a complex variable stoichiometry consisting of a solute (a compound of formula I or a salt thereof) and a solvent.
  • solvents include pharmaceutically acceptable solvents such as water, ethanol, and the like.
  • a complex with water is known as a hydrate.
  • Solvates of the compounds of the invention (or their salts), including hydrates, are included within the scope of the invention.
  • the compounds of formula I can exist in different physical forms, that is to say in amorphous and crystalline forms. Also, the compounds of the present invention may have the ability to crystallize in more than one way, a characteristic that it is known as polymorphism. Polymorphs can be differentiated by various physical properties well known to those skilled in the art such as their X-ray diffractograms, melting points or solubility. All physical forms of the compounds of formula I, including all of their polymorphic forms (“polymorphs”), are included within the scope of the present invention.
  • Some compounds of the present invention could exist in the form of various diastereoisomers and / or various optical isomers.
  • Diastereoisomers can be separated by conventional techniques such as chromatography or fractional crystallization.
  • the optical isomers can be resolved by using conventional optical resolution techniques, to give the optically pure isomers. This resolution can be carried out on the synthetic intermediates that are chiral or on the products of formula I.
  • the optically pure isomers can also be obtained individually using enantiospecific syntheses.
  • the present invention covers both the individual isomers and their mixtures (for example racemic mixtures or mixtures of diastereoisomers), whether obtained by synthesis or by physically mixing them.
  • the compounds of the present invention can be administered in the form of any pharmaceutical formulation, the nature of which, as is well known, will depend on the nature of the active ingredient and its route of administration. In principle, any route of administration can be used, for example oral, parenteral, nasal, ocular, rectal, and topical.
  • any route of administration can be used, for example oral, parenteral, nasal, ocular, rectal, and topical.
  • the word "comprises” and its variants are not intended to exclude other technical characteristics, additives, components or steps.
  • other objects, advantages and characteristics of the invention will emerge in part from the description and in part from the practice of the invention.
  • the following figures and examples are provided by way of illustration, and are not intended to be limiting of the present invention.
  • Fig. 1 Inhibition of HsrA DNA binding activity by compounds of formula I.
  • the recombinant HsrA protein specifically recognizes and binds to DNA sequences of their target promoters. The binding of the protein to the target DNA determines the formation of a stable DNA-protein complex, with a molecular size greater than that of free DNA, experiencing a delay in electrophoretic mobility.
  • the specific binding of HsrA to its target promoter PporGDAB and the formation of a HsrA-DNA complex detectable by the EMSA technique is directly proportional to the concentration of the recombinant protein and cannot be inhibited by the presence of a non-specific competitor DNA fragment. .
  • FIG. 2 Study of the antimicrobial effect of Nimodipine and Nitrendipine in vivo against infection with Helicobacter pylori.
  • the genomic DNA of Helicobacter pylori strain 26695 was purified using the phenol-chloroform method.
  • the biomass obtained from 100 mL of Helicobacter pylori 26695 culture in brain heart infusion broth (BHI) supplemented with 4% fetal bovine serum (SFB) for 48 h under microaerobic conditions was resuspended in 400 pL of 10 mM Tris-buffer. CI (pH 8) and 1 mM EDTA.
  • CI 10 mM Tris-buffer.
  • CI 10 mM Tris-buffer.
  • CI 10 mM Tris-buffer.
  • CI 10 mM Tris-buffer.
  • CI 10 mM Tris-buffer.
  • CI 10 mM Tris-buffer.
  • CI 10 mM Tris-buffer.
  • CI 10 mM Tris-buffer.
  • CI 10 mM Tris-buffer
  • Genomic DNA was precipitated overnight at -20 e C with 2 volumes of cold absolute ethanol and 0.1 volume of 3M sodium acetate (pH 5.2), the precipitate was washed with 70% ethanol and finally resuspended in 10mM Tris-CI buffer (pH 8) and 1mM EDTA.
  • the entire sequence of the hsrA gene was amplified by PCR from genomic DNA purified from Helicobacter pylori strain 26695 (ATCC 700392) using the 5 ' -GGAATT CCAT AT GCGCGTT CT ACT GATT G-3 ' primers (SEQ ID NO: 1) and 5 ' - CCCAAGCTTTTACT CTT CACACGCCGG-3 ' (SEQ ID NO: 2) and the enzyme Pfu DNA polymerase high fidelity (Agilent).
  • the resulting PCR product was digested with the restriction enzymes Ndel and Hindlll and cloned between the same restriction sites of the expression vector pET-28a (Novagen). The final vector was partially sequenced to check the integrity of the gene.
  • Competent E. coli BL21 (DE3) cells were transformed with the vector pET-28a containing the Helicobacter pylori ATCC 700392 hsrA gene.
  • This vector allows the recombinant protein to be expressed as a fusion protein to a 6 residue peptide of histidines in its N-terminal end.
  • the transformed E. coli cells were cultured in Luria-Bertani (LB) medium supplemented with 50 pg / mL of kanamycin under conditions of vigorous shaking and 37 e C until reaching an optical density of 0.8 measured at a wavelength of 600 nm.
  • LB Luria-Bertani
  • HsrA protein Expression of the recombinant HsrA protein was induced by adding 1mM IPTG to the culture medium, after which the cells were allowed to grow under the same temperature and shaking conditions for 6 hours. After this time, the culture was centrifuged at 8,000 rpm for 10 min at 4 and C and the obtained cell biomass was washed with cold PBS pH 7.4.
  • Recombinant HsrA protein is expressed in soluble form in the E. coli BL21 cytoplasm (DE3).
  • E. coli BL21 cytoplasm E. coli BL21 cytoplasm
  • cells were resuspended in 50mM Tris-CI buffer (pH 8), with 500mM NaCI, 10mM imidazole and 1mM PMSF. Cell disruption was performed using 10 45-second ultrasonic cycles in an ice bath, with 30-second rests between each cycle. Cell debris was removed by centrifugation at 18,000 rpm for 20 min at 4 ° C.
  • the recombinant histidine-tailed protein contained in the supernatant was purified by immobilized metal affinity chromatography (IMAC) using the Chelating Sepharose Fast Flow (GE) matrix.
  • IMAC immobilized metal affinity chromatography
  • GE Chelating Sepharose Fast Flow
  • the HsrA protein is a response regulator with DNA binding activity, which acts as a transcriptional regulator.
  • the biological activity of this protein is determined by the electrophoretic change of mobility test (EMSA).
  • ESA electrophoretic change of mobility test
  • the transcriptional regulator is contacted with a DNA fragment corresponding to the promoter region of its target genes. If the protein is active, it will specifically bind to its target promoters and form a protein-DNA complex that will experience a delay in electrophoretic mobility relative to free DNA, given the larger molecular size of the complex.
  • a sequence of 288 bp corresponding to the promoter of the operon by GDAB was amplified by PCR from the genomic DNA of Helicobacter pylori ATCC 700392 using as primers 5 ' - CCCCACACTTGCCCCATACAGAC-3 ' (SEQ ID NO: 3) and 5 ' - GCAT GCCAT CT AATTT GAAACAT GG-3 ' (SEQ ID NO: 4).
  • the synthesized promoter was purified using the commercial ⁇ Ilustra TM GFX PCR DNA and Gel Band Purification kit (GE Healthcare) and its concentration was quantified using a NanoVue Plus spectrophotometer (GE Healthcare).
  • target promoter porGDAB
  • competitor DNA pkn22
  • the antibacterial activity of 6 inhibitory compounds of formula I of the present invention was tested against two different strains of Helicobacter pylori, the strain AT CC 700392 and the strain resistant to clarithromycin ATCC 700684. Both strains were grown on blood agar (base) N e 2 (OXOID) supplemented with 8% of defibrillated horse blood (OXOID) in a humid microaerobic atmosphere (85% N 2 , 10% C0 2 , 5% 0 2 ) at 37 ° C. The minimum inhibitory concentration (MIC) of each compound was determined by the microdilution method using flat bottom 96-well polystyrene plates.
  • the bacteria were subcultured in brain heart infusion broth (BHI) supplemented with 4% fetal bovine serum (SFB) for 48 h under microaerobic conditions. At the end of this time, the cultures were diluted with BHI + 4% SFB broth to an optical density of 0.01 measured at a wavelength of 600 nm.
  • BHI brain heart infusion broth
  • SFB fetal bovine serum
  • 100 pL of the Thus adjusted bacterial cultures were dispensed into each of the wells of the plate, except for the first column of the plate, which received 200 ⁇ l of bacterial suspension with 5 ml of the inhibitory compound of formula I, at a concentration of 10.24 mg / ml_ in 100% DMSO.
  • Each of the compounds of formula I tested was added to the first well of each row of the plate. Serial double dilutions of each compound were performed, evaluating the antibacterial activity of a concentration range between 256 and 0.125 pg / mL of each of the compounds. Positive and negative growth controls were incorporated in all plates with BHI + 4% SFB broth without the presence of inhibitors, inoculated and not inoculated with bacteria. Controls with DMSO and clarithromycin were also incorporated. All plates were incubated under microaerobic conditions at 37 e C and visually examined after 48 h of incubation. The MIC value of each compound was defined as the lowest concentration of the compound that completely inhibited the visible growth of the bacteria after 48 h.
  • the minimum bactericidal concentration (MBC) of each of the 6 compounds of formula I of the present invention was also determined. After completion of the MIC assay, 10 pL aliquots of two dilutions before and two after the MIC value were withdrawn and plated on N e 2 (OXOID) blood (base) agar supplemented with 8% defibrillated horse blood ( OXOID) in a humid microaerobic atmosphere (85% N 2 , 10% C0 2 , 5% 0 2 ). Agar plates were incubated at 37 ° C for 48 hr. The MBC value of each compound was defined as the minimum concentration of the compound that prevented the growth of 399.9% of the Helicobacter pylori cells subcultured on this inhibitor-free medium. Each experiment was performed in triplicate, twice, to confirm the results.
  • OXOID N e 2
  • OXOID defibrillated horse blood
  • ITC isothermal titration calorimetry
  • the binding experiments were carried out on the MicroCal Auto-iTC200 high sensitivity microcalorimeter (Malvern Instruments).
  • a solution of 20mM HsrA in 50mM Tris-CI buffer (pH 8), 150mM NaCI, 10% glycerol and 1% DMSO located in the Measurement cell was titrated with a 200 mM solution of the corresponding inhibitory compound dissolved in the same buffer as above, located in the injection syringe.
  • the antibacterial activity against Helicobacter pylori of 2 compounds of formula I of the present invention was tested in the mouse model C57BL / 6.
  • the study was carried out in facilities with biosafety level A2 for laboratory animals of the University of Bordeaux (France) and approved by a local Ethics Committee of the University of Bordeaux, in accordance with the Regulations of the French Ministry of Agriculture on the care laboratory animals and the French Genetic Engineering Committee.
  • Female C57BL / 6 mice (free of specific pathogens, SPF) 6 weeks old were kept in heated conditions and placed in polycarbonate boxes for one week before the start of the experiments. Two groups of 9 mice were fasted to facilitate bacterial colonization and then force fed with a dose of 10 8 CFU of Helicobacter pylori strain PMSS1 for 3 consecutive days.
  • Bacterial inocula were prepared fresh in Brucella broth medium from cultures grown for 48 h at 35 e C on Wilkins Chalgren agar plates enriched with 10% (v / v) human blood and supplemented with a mixture of antibiotics (10 pg / mL of vancomycin, 5 pg / mL of trimethoprim, 1 pg / mL of amphotericin B, and 2 pg / mL of cefsulodin) under microaerobiosis conditions (85% N 2 , 10% C0 2 , 5% 0 2 ).
  • mice in each group were orally treated with 100 mg / kg / day of Nimodipine or Nintrendipine (commercial formulation in oral tablets, STADA SL) in combination with omeprazole (140 mg / kg / day) , daily for 7 days. Since both drugs are highly sensitive to light, all manipulations were performed away from light. Two additional groups of 10 mice were used as controls, a control group of uninfected animals and another control group of untreated infected animals. Both control groups received 140 mg / kg / day of omeprazole during the 7 days of treatment.
  • CFUs Helicobacter pylori colony forming units
  • microaerobiosis 85% N 2 , 10% C0 2 , 5% 0 2 . Plates so seeded were incubated under microaerobiosis conditions (85% N 2 , 10% C0 2 , 5% 0 2 ) for at least 5 days.
  • the identity of the Helicobacter pylori colonies was confirmed according to the phenotypic and biochemical characteristics of the microorganism (morphology, urease test, oxidase test). Colony count was performed in two independent experiments and the results were expressed as CFU / mg stomach.
  • the efficacy of Nimodipine and Nitrendipine in eradicating Helicobacter pylori gastric colonization in the mouse model was also determined by quantitative PCR (qPCR). Previously homogenized stomach samples were treated with the Arrow system (Nordiag) for DNA extraction.
  • qPCR based on fluorescence resonance energy transfer was performed on the DNA sample extracted from the stomach biopsy, taking as a target the gene for the 23S ribosomal RNA (rRNA) of Helicobacter pylori (oligonucleotides: 5'- AGGTTAAGAGGAT GCGT CAGT C-3 '[HPY-S] (SEQ ID NO: 5) and 5'-
  • PCR SYBR® Premix Ex Taq TM Mix (Tli RNaseH Plus) (Takara) compatible with the CFX96 TM (Bio-Rad) thermal cycler available on the TBMCore real-time PCR platform from the University of Bordeaux was used, according to the instructions of the maker.
  • PCR started with a 3 min denaturation step at 95 ° C, followed by 40 cycles with 2 steps: denaturation at qd' ⁇ for 5 sec and hybridization of the oligonucleotides at 60 ° C for 30 sec. After each cycle, fluorescence was measured in order to quantify the newly synthesized DNA. A the end of the procedure , a melting curve was generated by slowly raising the temperature from 65 to 95 and C and continuous fluorescence measurement.
  • the generation of this melting curve allowed the verification of a specific peak at the expected melting temperature for each product, demonstrating the specificity of the PCR.
  • the final results were expressed as the ratio (ratio) bacteria / murine cells.
  • DNA extracted from the murine epithelial cell line m-ICcl2 available in the laboratory was used to express the results as a bacteria / murine cell ratio.
  • the detection limit of the method was approximately 0.001 bacteria / murine cell.
  • the compounds of formula I inhibit the biological function of the essential protein HsrA of Helicobacter pylori.
  • the HsrA protein is a response regulator with DNA binding activity. This protein acts as a transcriptional regulator in the cell, specifically binds to the promoter region of target genes and regulates the transcription of these genes.
  • the compounds of formula I are shown to inhibit the binding of HsrA to their target promoters, as demonstrated in Figure 1.
  • HsrA Antimicrobial activity of HsrA inhibitors on Helicobacter pylori
  • the use of HsrA as a therapeutic target may be effective for the treatment of infectious diseases caused by Helicobacter pylori and associated pathologies, given that inhibitors of the biological activity of this protein demonstrate a high bactericidal activity on strains of this pathogen.
  • the HsrA protein is essential for the viability of the microorganism, so the inhibition of its biological activity leads to the death of the pathogen and potentially to the eradication of the infection.
  • Table 1 describes the minimum bactericidal concentration (MBC) values of various compounds of formula I against two strains of Helicobacter pylori.
  • ITC Isothermal Titration Calorimetry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention relates to 4-phenyl dihydropyridine derivatives of formula I, and to pharmaceutical compositions of same, wherein the meaning of R1, R2, R3 and A is that indicated in the description, for the treatment and/or prevention of an infection or disease caused by said infection, the infection being caused by the bacteria Helicobacter.

Description

Figure imgf000002_0001
Figure imgf000002_0001
Derivados de 4-fenildihidropiridina para el tratamiento v/o prevención de una infección o enfermedad causada por Helicobacter 4-Phenyldihydropyridine derivatives for the treatment v / or prevention of an infection or disease caused by Helicobacter
La presente invención se refiere a derivados de 4-fenildihidropiridina de fórmula I o a composiciones farmacéuticas de los mismos para su uso en el tratamiento y/o prevención de una infección o una enfermedad causada por dicha infección, donde la infección está causada por bacterias del género Helicobacter, preferiblemente por la especie Helicobacter pylori. The present invention relates to 4-phenyldihydropyridine derivatives of formula I or to pharmaceutical compositions thereof for use in the treatment and / or prevention of an infection or disease caused by said infection, where the infection is caused by bacteria of the genus Helicobacter, preferably by the species Helicobacter pylori.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Helicobacter pylori está considerado como el patógeno de mayor prevalencia en humanos. Un estudio reciente sugiere que más de la mitad de la población mundial se encuentra infectada. La prevalencia de la infección varía usualmente según las condiciones socio-económicas, oscilando desde casi un 20% en países de elevados ingresos como Suiza o Suecia, hasta casi el 90% de la población infectada en países como Nigeria. La prevalencia de la infección por Helicobacter pylori en España se estima en la actualidad en el 54,9% de la población (Hooi J.K.Y., et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology 2017; 153 (2): 420-429). Helicobacter pylori is considered the most prevalent pathogen in humans. A recent study suggests that more than half of the world's population is infected. The prevalence of infection usually varies according to socio-economic conditions, ranging from almost 20% in high-income countries like Switzerland or Sweden, to almost 90% of the infected population in countries like Nigeria. The prevalence of Helicobacter pylori infection in Spain is currently estimated at 54.9% of the population (Hooi JKY, et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology 2017; 153 ( 2): 420-429).
Helicobacter pylori es una bacteria Gram-negativa microaerofílica de la clase Epsilonproteobacteria, a la cual pertenecen otros patógenos de relevancia clínica como Campylobacter jejuni. El mecanismo de transmisión de la infección por Helicobacter pylori no está perfectamente dilucidado. Es posible que la bacteria se transmita de persona a persona a través de la saliva o por vía fecal-oral, tras la ingesta de agua o alimentos contaminados. El microorganismo atraviesa la capa mucosa que protege al estómago con la ayuda de flagelos y se adhiere a las células epiteliales gástricas mediante adhesinas. La bacteria produce una variedad de enzimas como la ureasa, que le permiten neutralizar la acidez gástrica y crear un microambiente neutro a su alrededor. Helicobacter pylori sintetiza grandes cantidades de enzima ureasa que acumula en el citoplasma, espacio periplasmático y superficie celular. La enzima cataliza la hidrólisis de la urea presente en el estómago hasta amoníaco y dióxido de carbono. Los iones amonio son capaces de neutralizar la acidez estomacal, pero además generan daño en las células epiteliales estomacales produciendo necrosis y favoreciendo patologías gástricas diversas. Otras enzimas y citotoxinas producidas por Helicobacter pylori como VacA y CagA están igualmente asociadas al daño de la mucosa gástrica y al potencial oncogénico de este microorganismo (Kusters J.G., et al. Pathogenesis of Helicobacter pylori Infection. Clin Microbiol Rev 2006; 19 (3): 449-490). Helicobacter pylori is a microaerophilic Gram-negative bacterium of the Epsilonproteobacteria class, to which other pathogens of clinical relevance such as Campylobacter jejuni belong. The transmission mechanism of Helicobacter pylori infection is not perfectly elucidated. It is possible that the bacteria is transmitted from person to person through saliva or via the faecal-oral route, after eating contaminated food or water. The microorganism crosses the mucous layer that protects the stomach with the help of flagella and adheres to the gastric epithelial cells using adhesins. The bacterium produces a variety of enzymes such as urease, which allow it to neutralize gastric acidity and create a neutral microenvironment around it. Helicobacter pylori synthesizes large amounts of the urease enzyme that accumulates in the cytoplasm, periplasmic space and cell surface. The enzyme catalyzes the hydrolysis of urea present in the stomach to ammonia and carbon dioxide. Ammonium ions are capable of neutralizing heartburn, but they also cause damage to stomach epithelial cells causing necrosis and favoring various gastric pathologies. Other enzymes and cytotoxins produced by Helicobacter pylori such as VacA and CagA are also associated with damage to the gastric mucosa and with the oncogenic potential of this microorganism (Kusters JG, et al. Pathogenesis of Helicobacter pylori Infection. Clin Microbiol Rev 2006; 19 (3) : 449-490).
El tratamiento erradicador actual de la infección por Helicobacter pylori consiste en la combinación de al menos dos antibióticos, asociados a un inhibidor de la bomba de protones (IBP). La pauta más utilizada actualmente y la aceptada como de“primera línea” por el Colegio Americano de Gastroenterología y el último consenso de Maastricht consiste en la administración de Amoxicilina (1 g cada 12 horas) junto a Claritromicina (500 mg cada 12 horas) y un IBP a dosis estándar cada 12 horas, o sustituyendo Amoxicilina por Metronidazol (400 mg cada 12 horas). Este tratamiento se conoce como la“triple terapia” y requiere habitualmente de 10 a 14 días, alcanzando tasas de erradicación de un 70-85%. Sin embargo, en los últimos años esta terapia de primera línea ha disminuido significativamente sus tasas de erradicación, hasta niveles tan bajos como el 50% de los casos tratados. La causa fundamental de esta pérdida de eficacia radica en el creciente desarrollo de resistencia antimicrobiana por parte del microorganismo (Yang J.C., et al. Treatment of Helicobacter pylori infection: current status and future concepts. World J Gastroenterol 2014; 20 (18): 5283-5293; y Safavi M., et al. Treatment of Helicobacter pylori infection: current and future insights. World J Clin Cases 2016; 4 (1 ): 5-19). The current eradicating treatment of Helicobacter pylori infection consists of the combination of at least two antibiotics, associated with a proton pump inhibitor (PPI). The most widely used regimen currently and accepted as "first line" by the American College of Gastroenterology and the latest Maastricht consensus is the administration of Amoxicillin (1 g every 12 hours) together with Clarithromycin (500 mg every 12 hours) and one PPI at standard dose every 12 hours, or substituting Amoxicillin for Metronidazole (400 mg every 12 hours). This treatment is known as the "triple therapy" and usually requires 10 to 14 days, reaching eradication rates of 70-85%. However, in recent years this first-line therapy has significantly decreased its eradication rates, down to levels as low as 50% of treated cases. The root cause of this loss of efficacy lies in the increasing development of antimicrobial resistance by the microorganism (Yang JC, et al. Treatment of Helicobacter pylori infection: current status and future concepts. World J Gastroenterol 2014; 20 (18): 5283 -5293; and Safavi M., et al. Treatment of Helicobacter pylori infection: current and future insights. World J Clin Cases 2016; 4 (1): 5-19).
En Helicobacter pylori, la proteína HsrA constituye un regulador de respuesta que actúa como activador de la transcripción. HsrA regula la expresión de un gran número de genes y operones implicados en una variedad de procesos fisiológicos esenciales del microorganismo, sincronizando las funciones metabólicas y la virulencia con la disponibilidad de nutrientes, la división celular y la homeostasis redox. HsrA es una proteína esencial para la viabilidad de Helicobacter pylori, la deleción génica o la inhibición de la actividad biológica de la proteína implican la muerte celular. HsrA es una proteína de ~25 kDa, con dos dominios estructurales y funcionales definidos: un dominio N-terminal con función regulatoria y un dominio C-terminal de unión al DNA, ambos dominios están conectados por una corta secuencia de aminoácidos flexible sin estructura secundaria definida. La proteína dimeriza a través de su dominio N-terminal formando un dímero estable tanto in vitro como in vivo. El regulador reconoce y se une a los promotores de sus genes diana cubriendo una región de unos 30 pb cercana pero no solapante al elemento -10 del promotor. La unión del regulador a sus promotores diana pudiera favorecer el contacto de la RNA polimerasa con el DNA e influir positivamente en el reclutamiento de la enzima, ejerciendo un papel activador de la transcripción. La proteína HsrA ha sido clonada y caracterizada extensivamente en el laboratorio, se conoce su estructura cristalográfica y se cuenta con ensayos relativamente sencillos para evaluar su actividad biológica y la inhibición de esta actividad por potenciales inhibidores. HsrA es una proteína típica de las epsilonbacterias y no existe contraparte o proteína de secuencia similar en humanos, lo cual minimiza el riesgo de reactividad cruzada y efectos colaterales indeseables de potenciales inhibidores de HsrA sobre la microbiota normal o sobre biomoléculas humanas (Delany I., et al. Growth phase-dependent regulation of target gene promoters for binding of the essential orphan response regulator HP1043. J Bacteriol 2002; 184 (17): 4800-4810; Schár J., et al. Phosphorylation-independent activity of atypical response regulators of Helicobacter pylori. J Bacteriol 2005; 187 (9): 3100-3109; Hong E., et al. Structure of an atypical orphan response regulator protein supports a new phosphorylation-independent regulatory mechanism. J Biol Chem 2007; 282 (28): 20667- 20675; Olekhnovich I.N., et al. Mutations to essential orphan response regulator HP1043 of Helicobacter pylori result in growth-stage regulatory defects. Infect Immun 2013; 81 (5): 1439-49; y Olekhnovich I.N., et al. Response to metronidazole and oxidative stress is mediated through homeostatic regulator HsrA (HP1043) in Helicobacter pylori. J Bacteriol 2014; 196 (4):729-39). In Helicobacter pylori, the HsrA protein constitutes a response regulator that acts as an activator of transcription. HsrA regulates the expression of a large number of genes and operons involved in a variety of essential physiological processes of the microorganism, synchronizing metabolic functions and virulence with the availability of nutrients, cell division, and redox homeostasis. HsrA is an essential protein for the viability of Helicobacter pylori, gene deletion or inhibition of the biological activity of the protein imply cell death. HsrA is a ~ 25 kDa protein, with two defined structural and functional domains: an N-terminal domain with regulatory function and a C-terminal DNA binding domain, both domains are connected by a short flexible amino acid sequence without secondary structure defined. The protein dimerizes through its N-terminal domain forming a stable dimer both in vitro and in vivo. The regulator recognizes and binds to the promoters of its target genes covering a region of about 30 bp close but not overlapping to element -10 of the promoter. The binding of the regulator to its target promoters could favor the contact of RNA polymerase with DNA and positively influence the recruitment of the enzyme, playing an activating role for transcription. The HsrA protein has been cloned and extensively characterized in the laboratory, its crystallographic structure is known and relatively simple tests are available to evaluate its biological activity and the inhibition of this activity by potential inhibitors. HsrA is a typical protein of epsilonbacteria and there is no counterpart or protein of similar sequence in humans, which minimizes the risk of cross-reactivity and undesirable side effects of potential HsrA inhibitors on the normal microbiota or on human biomolecules (Delany I., et al. Growth phase-dependent regulation of target gene promoters for binding of the essential orphan response regulator HP1043. J Bacteriol 2002; 184 (17): 4800-4810; Schár J., et al. Phosphorylation-independent activity of atypical response regulators of Helicobacter pylori. J Bacteriol 2005; 187 (9): 3100-3109; Hong E., et al. Structure of an atypical orphan response regulator protein supports a new phosphorylation-independent regulatory mechanism. J Biol Chem 2007; 282 (28) : 20667-20675; Olekhnovich IN, et al. Mutations to essential orphan response regulator HP1043 of Helicobacter pylori result in growth-stage regulatory defects. Infect Immun 2013; 81 (5): 1439-49; and Olekhno vich IN, et al. Response to metronidazole and oxidative stress is mediated through homeostatic regulator HsrA (HP1043) in Helicobacter pylori. J Bacteriol 2014; 196 (4): 729-39).
Por tanto, sería deseable disponer de nuevos fármacos inhibitorios frente al regulador transcripcional HsrA de Helicobacter pylori. Therefore, it would be desirable to have new inhibitory drugs against the transcriptional regulator HsrA of Helicobacter pylori.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
En un primer aspecto, la presente invención se refiere a un compuesto de fórmula I para su uso en el tratamiento y/o prevención de una infección causada por una bacteria del género Helicobacter o para su uso en el tratamiento y/o prevención de una enfermedad causada por una infección causada por una bacteria del género Helicobacter:
Figure imgf000005_0001
In a first aspect, the present invention relates to a compound of formula I for use in the treatment and / or prevention of an infection caused by a bacterium of the genus Helicobacter or for use in the treatment and / or prevention of a disease caused by an infection caused by a bacterium of the genus Helicobacter:
Figure imgf000005_0001
I  I
donde: where:
Ri es C1-4 alquilo, -NH2 o -CN, donde C1-4 alquilo está opcionalmente sustituido por un grupo -OCONH2, -OR5 o -SR5; Ri is C 1-4 alkyl, -NH 2 or -CN, where C 1-4 alkyl is optionally substituted by a group -OCONH 2 , -OR 5 or -SR 5 ;
R2 es C1-4 alquilo opcionalmente sustituido por un grupo -OR5 o -SR5; R 2 is C 1-4 alkyl optionally substituted by a group -OR 5 or -SR 5 ;
R3 es C1-4 alquilo o Cyi, donde C1-4 alquilo está opcionalmente sustituido por un grupoR 3 is C 1-4 alkyl or Cyi, where C 1-4 alkyl is optionally substituted by a group
R7; R 7 ;
A es un grupo de fórmula II, III, IV, V o VI:  A is a group of formula II, III, IV, V or VI:
Figure imgf000005_0002
Figure imgf000005_0002
V VI  V VI
R4 es -N02, halógeno o -OCF3; R 4 is -N0 2 , halogen, or -OCF 3 ;
R5 es C1-4 alquilo opcionalmente sustituido por un grupo -NH2 o -OR6; R 5 is C 1-4 alkyl optionally substituted by a group -NH 2 or -OR 6 ;
Re es C1-4 alquilo opcionalmente sustituido por un grupo -NH2; Re is C 1-4 alkyl optionally substituted by a group -NH 2 ;
R7 es -OC1-4 alquilo, -NR8Rg, Cy2, -COC1-4 alquilo o C2-4 alquenilo, donde C2-4 alquenilo está opcionalmente sustituido por un grupo fenilo; R 7 is -OC 1-4 alkyl, -NR 8 Rg, Cy 2 , -COC 1-4 alkyl or C 2-4 alkenyl, where C 2-4 alkenyl is optionally substituted by a phenyl group;
Cyi es un heterociclo saturado de 4 a 6 miembros unido al resto de la molécula a través de un átomo de C o N disponible, que contiene 1 o 2 heteroátomos de N, donde Cyi está opcionalmente sustituido por un grupo Ci-4 alquilo, y donde el grupo Ci-4 alquilo está opcionalmente sustituido por uno o dos grupos fenilo; Cyi is a 4-6 membered saturated heterocycle attached to the rest of the molecule through of an available C or N atom, containing 1 or 2 N heteroatoms, where Cyi is optionally substituted by a Ci -4 alkyl group, and where the Ci -4 alkyl group is optionally substituted by one or two phenyl groups;
Cy2 es un fenilo o un heterociclo saturado o aromático de 5 o 6 miembros que contiene de 1 a 3 heteroátomos seleccionados de N y O, donde Cy2 se une al resto de la molécula a través de un átomo de N o C, cuando Cy2 es un heterociclo saturado puede estar opcionalmente fusionado a un anillo de piperidina formando un anillo espiránico, y donde Cy2 está opcionalmente sustituido por uno o más grupos Ri0; Cy 2 is a phenyl or a saturated or aromatic 5- or 6-membered heterocycle containing from 1 to 3 heteroatoms selected from N and O, where Cy 2 is attached to the rest of the molecule through an N or C atom, when Cy 2 is a saturated heterocycle may optionally be fused to a piperidine ring forming a spiranic ring, and where Cy 2 is optionally substituted by one or more Ri 0 groups;
R8 es Ci-4 alquilo; R 8 is Ci- 4 alkyl;
R9 es Ci-4 alquilo opcionalmente sustituido por uno o más grupos fenilo, y donde cada grupo fenilo está opcionalmente sustituido por un grupo halógeno; R 9 is Ci- 4 alkyl optionally substituted by one or more phenyl groups, and where each phenyl group is optionally substituted by a halogen group;
cada Río independientemente es vinilo, fenilo o Cy3, donde el grupo fenilo está sustituido por un grupo Rn ; each R i or independently is vinyl, phenyl or Cy 3 , where the phenyl group is substituted by an Rn group;
R1 1 es halógeno; y  R1 1 is halogen; and
Cy3 es un heterociclo saturado de 5 o 6 miembros, que contiene 1 o 2 heterátomos de N, que se une al resto de la molécula a través de un átomo de N o C disponible y que está opcionalmente sustituido por un grupo Ci-4 alquilo, donde el grupo Ci-4 alquilo está opcionalmente sustituido por uno o dos grupos fenilo. Cy 3 is a 5- or 6-membered saturated heterocycle, containing 1 or 2 N hetero atoms, that binds to the rest of the molecule through an available N or C atom and is optionally substituted by a Ci -4 group alkyl, where the Ci -4 alkyl group is optionally substituted by one or two phenyl groups.
En otra realización la invención se refiere al compuesto de fórmula I según el uso definido anteriormente, donde la bacteria del género Helicobacter es de la especie Helicobacter pylori. In another embodiment the invention relates to the compound of formula I according to the use defined above, where the bacterium of the Helicobacter genus is of the Helicobacter pylori species.
En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde Ri es metilo, isopropilo, -CH2OR5, -CH2SR5, -CH2OCONH2, -NH2 O -CN. In another embodiment the invention refers to the compound of formula I according to the use defined above, where Ri is methyl, isopropyl, -CH 2 OR 5 , -CH 2 SR 5 , -CH 2 OCONH 2 , -NH 2 O -CN.
En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde Ri es metilo, isopropilo, -CH2OCH2CH2NH2, -CH2OCH2CH2OR6, -CH2SCH2CH2NH2, -CH2SCH2CH20 Re, -CH2OCONH2, -NH2 O -CN. In another embodiment the invention refers to the compound of formula I according to the use defined above, where Ri is methyl, isopropyl, -CH 2 OCH 2 CH 2 NH 2 , -CH 2 OCH 2 CH 2 OR 6 , -CH 2 SCH 2 CH 2 NH 2 , -CH 2 SCH 2 CH 2 0 Re, -CH 2 OCONH 2 , -NH 2 O -CN.
En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde Ri es metilo, isopropilo, -CH2OCH2CH2NH2, -CH2OCH2CH2OCH2CH2NH2, -CH2SCH2CH2NH2, -CH2S CH2CH2O CH2CH2N H2, -CH2OCONH2, -NH2 O -CN. En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde Ri es C1-4 alquilo, y preferiblemente donde Ri es metilo. En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde R2 es C1-4 alquilo. In another embodiment the invention refers to the compound of formula I according to the use defined above, where Ri is methyl, isopropyl, -CH 2 OCH 2 CH 2 NH 2 , -CH 2 OCH 2 CH 2 OCH 2 CH 2 NH 2 , - CH 2 SCH 2 CH 2 NH 2 , -CH 2 S CH 2 CH 2 O CH 2 CH 2 NH 2 , -CH 2 OCONH 2 , -NH 2 O -CN. In another embodiment the invention refers to the compound of formula I according to the use defined above, where Ri is C 1-4 alkyl, and preferably where Ri is methyl. In another embodiment the invention refers to the compound of formula I according to the use defined above, where R 2 is C 1-4 alkyl.
En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde R2 es metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec- butilo o tert-butilo, preferiblemente donde R2 es metilo, etilo o isopropilo, y más preferiblemente donde R2 es metilo. In another embodiment the invention refers to the compound of formula I according to the use defined above, where R 2 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl or tert-butyl, preferably where R 2 is methyl, ethyl or isopropyl, and more preferably where R 2 is methyl.
En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde R3 es Ci-4 alquilo opcionalmente sustituido por un grupo R7. In another embodiment the invention refers to the compound of formula I according to the use defined above, where R 3 is Ci -4 alkyl optionally substituted by a group R 7 .
En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde R4 es -N02, -Cl o -OCF3, y preferiblemente -N02 o -Cl. En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde A es un grupo de fórmula II o III. In another embodiment the invention relates to the compound of formula I according to the use defined above, where R 4 is -N0 2 , -Cl or -OCF 3 , and preferably -N0 2 or -Cl. In another embodiment the invention refers to the compound of formula I according to the use defined above, where A is a group of formula II or III.
En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde R7 es -OC1-4 alquilo, -NR8Rg, Cy2 o -COC1-4 alquilo. In another embodiment the invention refers to the compound of formula I according to the use defined above, where R 7 is -OC 1-4 alkyl, -NR 8 Rg, Cy 2 or -COC 1-4 alkyl.
En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde R3 es metilo. In another embodiment the invention refers to the compound of formula I according to the use defined above, where R 3 is methyl.
En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde R9 es Ci-4 alquilo sustituido por uno o dos grupos fenilo, y donde cada grupo fenilo está opcionalmente sustituido por un grupo halógeno. In another embodiment the invention is related to the compound of formula I according to the use defined above, where R 9 is Ci -4 alkyl substituted by one or two phenyl groups, and where each phenyl group is optionally substituted by a halogen group.
En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde Rg es -CH2Ph o -CH2CH2C(Ph)(4-F-Ph). In another embodiment the invention refers to the compound of formula I according to the use defined above, where Rg is -CH 2 Ph or -CH 2 CH 2 C (Ph) (4-F-Ph).
En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde Cyi es un heterociclo saturado de 4 a 6 miembros, preferiblemente de 4 o 5 miembros, unido al resto de la molécula a través de un átomo de C disponible, que contiene 1 heteroátomo de N, donde Cyi está opcionalmente sustituido por un grupo Ci-4 alquilo, y donde el grupo Ci-4 alquilo está opcionalmente sustituido por uno o dos grupos fenilo. In another embodiment the invention refers to the compound of formula I according to the use defined above, where Cyi is a 4- to 6-membered, preferably 4- or 5-membered saturated heterocycle, linked to the rest of the molecule through an available C atom, containing 1 N heteroatom, where Cyi is optionally substituted by a Ci -4 alkyl group, and where the Ci -4 alkyl group is optionally substituted by one or two phenyl groups.
En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde Cyi es un grupo de fórmula Vil o VIII: In another embodiment the invention refers to the compound of formula I according to the use defined above, where Cyi is a group of formula Vil or VIII:
Figure imgf000008_0001
Figure imgf000008_0001
Vil VIII  Vil VIII
En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde Cy2 es un fenilo opcionalmente sustituido por uno o más grupos Río. En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde Rn es F o Cl, y preferiblemente Cl. In another embodiment the invention refers to the compound of formula I according to the use defined above, where Cy 2 is a phenyl optionally substituted by one or more R i o groups. In another embodiment the invention refers to the compound of formula I according to the use defined above, where Rn is F or Cl, and preferably Cl.
En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde Cy3 es 1 -vinilpiperazina o pirrolidina. In another embodiment the invention refers to the compound of formula I according to the use defined above, where Cy 3 is 1-vinylpiperazine or pyrrolidine.
En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde el compuesto de fórmula I se selecciona de:
Figure imgf000009_0001
In another embodiment the invention refers to the compound of formula I according to the use defined above, where the compound of formula I is selected from:
Figure imgf000009_0001
Amlodipino, Arandipino, Azelnidipino,
Figure imgf000009_0002
Amlodipine, Arandipine, Azelnidipine,
Figure imgf000009_0002
Barnidipino, Benidipino, Cilnidipino,
Figure imgf000009_0003
Barnidipine, Benidipine, Cilnidipine,
Figure imgf000009_0003
Clevidipino, Cronidipino, Darodipino,
Figure imgf000009_0004
Clevidipine, Cronidipine, Darodipine,
Figure imgf000009_0004
Dexniguldipino, Elnadipino, Felodipino,
Figure imgf000009_0005
Dexniguldipine, Elnadipine, Felodipine,
Figure imgf000009_0005
Furnidipino, Iganidipino, Isradipino,
Figure imgf000010_0001
Furnidipino, Iganidipino, Isradipino,
Figure imgf000010_0001
Lemildipino, Lercanidipino, Levamlodipino,
Figure imgf000010_0002
Lemildipine, Lercanidipine, Levamlodipine,
Figure imgf000010_0002
Levniguldipino, Manidipino, Nicardipino,
Figure imgf000010_0003
Levniguldipine, Manidipine, Nicardipine,
Figure imgf000010_0003
Nifedipino, Niguldipino, Niludipino,
Figure imgf000010_0004
Nifedipine, Niguldipine, Niludipine,
Figure imgf000010_0004
Nilvadipino, Nimodipino, Nisoldipino,
Figure imgf000010_0005
Nilvadipine, Nimodipine, Nisoldipine,
Figure imgf000010_0005
Nitrendipino, Olradipino, Palonidipino,
Figure imgf000011_0001
Nitrendipine, Olradipine, Palonidipine,
Figure imgf000011_0001
Pranidipino, Sornidipino, Teludipino,
Figure imgf000011_0002
Pranidipine, Sornidipine, Teludipine,
Figure imgf000011_0002
Tiamdipino, Trombodipino, y Vatanidipino.  Tiamdipine, Thrombodipine, and Vatanidipine.
En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde el compuesto de fórmula I se selecciona de: In another embodiment the invention refers to the compound of formula I according to the use defined above, where the compound of formula I is selected from:
Figure imgf000011_0003
Figure imgf000011_0003
Nicardipino, Nisoldipino, Nimodipino,
Figure imgf000011_0004
Nicardipine, Nisoldipine, Nimodipine,
Figure imgf000011_0004
Felodipino, Nitrendipino, Lercanidipino,
Figure imgf000011_0005
Felodipine, Nitrendipine, Lercanidipine,
Figure imgf000011_0005
Amlodipino, y Nifedipino. En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde el compuesto de fórmula I se selecciona de:
Figure imgf000012_0001
Amlodipine, and Nifedipine. In another embodiment the invention refers to the compound of formula I according to the use defined above, where the compound of formula I is selected from:
Figure imgf000012_0001
Nicardipino, Nisoldipino, Nimodipino,
Figure imgf000012_0002
Nicardipine, Nisoldipine, Nimodipine,
Figure imgf000012_0002
Nitrendipino, Lercanidipino, y Nifedipino.  Nitrendipine, Lercanidipine, and Nifedipine.
En otra realización la invención se refiere al compuesto de fórmula I según el uso definido anteriormente, donde el compuesto de fórmula I se selecciona de: In another embodiment the invention relates to the compound of formula I according to the use defined above, where the compound of formula I is selected from:
Figure imgf000012_0003
Figure imgf000012_0003
Nimodipino, y Nitrendipino. En otra realización la invención ser refiere al compuesto de fórmula I según el uso definido anteriormente, donde la enfermedad causada por una infección es una patología gastrointestinal, y preferiblemente donde la patología gastrointestinal se selecciona de gastritis aguda, gastritis crónica, duodenitis, dispepsia funcional, úlcera gástrica, úlcera duodenal, adenocarcinoma gástrico y linfoma de tejido linfoide asociado a mucosa (linfoma MALT).  Nimodipine, and Nitrendipine. In another embodiment the invention is concerned with the compound of formula I according to the use defined above, where the disease caused by an infection is a gastrointestinal pathology, and preferably where the gastrointestinal pathology is selected from acute gastritis, chronic gastritis, duodenitis, functional dyspepsia, gastric ulcer, duodenal ulcer, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma (MALT lymphoma).
La presente invención también se refiere a una composición farmacéutica que comprende al menos un compuesto de la invención (o una sal o solvato farmacéuticamente aceptable del mismo) y uno o más excipientes farmacéuticamente aceptables. Los excipientes deben ser“aceptables” en el sentido de ser compatibles con los demás ingredientes de la composición y de no ser perjudiciales para quién tome dicha composición. The present invention also relates to a pharmaceutical composition comprising at least one compound of the invention (or a pharmaceutically acceptable salt or solvate thereof) and one or more pharmaceutically acceptable excipients. The excipients must be "acceptable" in the sense of being compatible with the other ingredients of the composition and not being harmful to whoever takes said composition.
Así, otro aspecto de la presente invención se refiere a una composición farmacéutica que comprende al menos un compuesto de fórmula I definido anteriormente, para su uso en el tratamiento y/o prevención de una infección causada por una bacteria del género Helicobacter o para su uso en el tratamiento y/o prevención de una enfermedad causada por una infección causada por una bacteria del género Helicobacter, y preferiblemente donde la bacteria del género Helicobacter es de la especie Helicobacter pylori. Thus, another aspect of the present invention relates to a pharmaceutical composition. comprising at least one compound of formula I defined above, for use in the treatment and / or prevention of an infection caused by a bacterium of the genus Helicobacter or for use in the treatment and / or prevention of a disease caused by an infection caused by a bacterium of the genus Helicobacter, and preferably where the bacterium of the genus Helicobacter is of the species Helicobacter pylori.
En otra realización la invención se refiere a la composición farmacéutica definida anteriormente, donde la enfermedad causada por una infección es una patología gastrointestinal, y preferiblemente donde la patología gastrointestinal se selecciona de gastritis aguda, gastritis crónica, duodenitis, dispepsia funcional, úlcera gástrica, úlcera duodenal, adenocarcinoma gástrico y linfoma de tejido linfoide asociado a mucosa (linfoma MALT). En las definiciones anteriores, el término Ci-4 alquilo, como grupo o parte de un grupo, significa un grupo alquilo de cadena lineal o ramificada que contiene de 1 a 4 átomos de C e incluye los grupos metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo y tert-butilo. Un radical halógeno o su abreviatura halo significa fluoro, cloro, bromo o yodo. In another embodiment the invention relates to the pharmaceutical composition defined above, where the disease caused by an infection is a gastrointestinal pathology, and preferably where the gastrointestinal pathology is selected from acute gastritis, chronic gastritis, duodenitis, functional dyspepsia, gastric ulcer, ulcer duodenal, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma (MALT lymphoma). In the above definitions, the term Ci - 4 alkyl as a group or part of a group, means an alkyl group of straight or branched chain containing from 1 to 4 carbon atoms and includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert-butyl. A halogen radical or its abbreviation halo means fluoro, chloro, bromo or iodo.
La expresión "opcionalmente sustituido por uno o más" significa la posibilidad de un grupo de estar sustituido por uno o más, preferiblemente por 1 , 2, 3 ó 4 sustituyentes, más preferiblemente por 1 , 2 ó 3 sustituyentes y aún más preferiblemente por 1 ó 2 sustituyentes, siempre que dicho grupo disponga de suficientes posiciones disponibles susceptibles de ser sustituidas. Si están presentes, dichos sustituyentes pueden ser iguales o diferentes y pueden estar situados sobre cualquier posición disponible. The term "optionally substituted by one or more" means the possibility of a group to be substituted by one or more, preferably by 1, 2, 3 or 4 substituents, more preferably by 1, 2 or 3 substituents and even more preferably by 1 or 2 substituents, provided that said group has enough available positions that can be substituted. If present, said substituents can be the same or different and can be located on any available position.
A lo largo de la presente descripción, el término“tratamiento” se refiere a eliminar, erradicar, erradicar totalmente, reducir o disminuir la causa o efectos de una enfermedad. Para los propósitos de esta invención, tratamiento incluye, aunque sin quedar limitados a los mismos, aliviar, disminuir o eliminar uno o más síntomas de la enfermedad; reducir del grado de enfermedad, estabilizar (es decir, no empeorar) el estado de la enfermedad, retrasar o ralentizar la progresión de la enfermedad, aliviar o mejorar el estado de la enfermedad y remitir (ya sea total o parcial). Ejemplos incluyen entre otros, “erradicar la infección”, “erradicación total del microorganismo” y “disminución de la colonización del microorganismo”. Throughout the present description, the term "treatment" refers to eliminating, eradicating, totally eradicating, reducing or diminishing the cause or effects of a disease. For the purposes of this invention, treatment includes, but is not limited to, alleviating, decreasing, or eliminating one or more symptoms of the disease; reduce the degree of disease, stabilize (that is, do not worsen) the state of the disease, delay or slow down the progression of the disease, alleviate or improve the state of the disease and remit (either total or partial). Examples include, but are not limited to, "eradicating infection,""total eradication of the microorganism" and "Decreased colonization of the microorganism".
Tal como se utiliza en la presente invención, el término“prevención” se refiere a prevenir la aparición de la enfermedad que se presente en un paciente que está predispuesto o tiene factores de riesgo, pero que todavía no presenta síntomas de la enfermedad. Prevención también incluye prevenir la reaparición de una enfermedad en un sujeto que previamente ha padecido dicha enfermedad. As used in the present invention, the term "prevention" refers to preventing the onset of the disease from occurring in a patient who is predisposed or has risk factors, but who does not yet have symptoms of the disease. Prevention also includes preventing the recurrence of a disease in a subject who has previously suffered from said disease.
Los compuestos de la presente invención contienen uno o más nitrógenos básicos y podrían por tanto formar sales con ácidos, tanto orgánicos como inorgánicos. Algunos compuestos de la presente invención podrían contener uno o más protones ácidos y por tanto podrían formar también sales con bases. The compounds of the present invention contain one or more basic nitrogens and could therefore form salts with acids, both organic and inorganic. Some compounds of the present invention could contain one or more acidic protons and therefore could also form salts with bases.
No hay limitación en el tipo de sal que se puede utilizar, con la condición de que cuando se usen con fines terapéuticos sean farmacéuticamente aceptables. Se entiende por sales farmacéuticamente aceptables aquellas sales que, a criterio médico, son adecuadas para el uso en contacto con los tejidos de seres humanos u otros mamíferos sin provocar una toxicidad indebida, irritación, respuesta alérgica o similar. Las sales farmacéuticamente aceptables son ampliamente conocidas por cualquier experto en la materia. There is no limitation on the type of salt that can be used, provided that when used for therapeutic purposes they are pharmaceutically acceptable. Pharmaceutically acceptable salts are understood as those salts which, in medical judgment, are suitable for use in contact with the tissues of humans or other mammals without causing undue toxicity, irritation, allergic response or the like. Pharmaceutically acceptable salts are widely known to any person skilled in the art.
Los compuestos de fórmula I y sus sales pueden diferir en ciertas propiedades físicas, pero son equivalentes a efectos de la invención. Todas las sales de los compuestos de fórmula I quedan incluidas dentro del ámbito de la invención. The compounds of formula I and their salts may differ in certain physical properties, but are equivalent for the purposes of the invention. All salts of the compounds of formula I are included within the scope of the invention.
Los compuestos de la presente invención pueden formar complejos con disolventes en los que se hacen reaccionar o desde los que se hacen precipitar o cristalizar. Estos complejos se conocen como solvatos. Tal como se utiliza aquí, el término solvato se refiere a un complejo de estequiometría variable formado por un soluto (un compuesto de fórmula I o una sal del mismo) y un disolvente. Ejemplos de disolventes incluyen los disolventes farmacéuticamente aceptables como agua, etanol y similares. Un complejo con agua se conoce como hidrato. Los solvatos de los compuestos de la invención (o sus sales), incluyendo hidratos, quedan incluidos dentro del ámbito de la invención.The compounds of the present invention can form complexes with solvents in which they are reacted or precipitated or crystallized. These complexes are known as solvates. As used herein, the term solvate refers to a complex variable stoichiometry consisting of a solute (a compound of formula I or a salt thereof) and a solvent. Examples of solvents include pharmaceutically acceptable solvents such as water, ethanol, and the like. A complex with water is known as a hydrate. Solvates of the compounds of the invention (or their salts), including hydrates, are included within the scope of the invention.
Los compuestos de fórmula I pueden existir en diferentes formas físicas, es decir en forma amorfa y formas cristalinas. Asimismo, los compuestos de la presente invención pueden tener la capacidad de cristalizar de más de una forma, una característica que se conoce como polimorfismo. Los polimorfos se pueden diferenciar por varias propiedades físicas bien conocidas por los entendidos en la materia como por ejemplo sus difractogramas de rayos X, puntos de fusión o solubilidad. Todas las formas físicas de los compuestos de fórmula I, incluyendo todas sus formas polimórficas (“polimorfos”), quedan incluidas dentro del ámbito de la presente invención. The compounds of formula I can exist in different physical forms, that is to say in amorphous and crystalline forms. Also, the compounds of the present invention may have the ability to crystallize in more than one way, a characteristic that it is known as polymorphism. Polymorphs can be differentiated by various physical properties well known to those skilled in the art such as their X-ray diffractograms, melting points or solubility. All physical forms of the compounds of formula I, including all of their polymorphic forms ("polymorphs"), are included within the scope of the present invention.
Algunos compuestos de la presente invención podrían existir en forma de varios diastereoisómeros y/o varios isómeros ópticos. Los diastereoisómeros pueden separarse mediante técnicas convencionales como la cromatografía o la cristalización fraccionada. Los isómeros ópticos pueden ser resueltos mediante el uso de técnicas convencionales de resolución óptica, para dar los isómeros ópticamente puros. Esta resolución puede realizarse sobre los intermedios de síntesis que sean quirales o bien sobre los productos de fórmula I. Los isómeros ópticamente puros también pueden ser obtenidos individualmente empleando síntesis enantioespecíficas. La presente invención cubre tanto los isómeros individuales como sus mezclas (por ejemplo mezclas racémicas o mezclas de diastereoisómeros), tanto si se obtienen por síntesis como mezclándolos físicamente. Some compounds of the present invention could exist in the form of various diastereoisomers and / or various optical isomers. Diastereoisomers can be separated by conventional techniques such as chromatography or fractional crystallization. The optical isomers can be resolved by using conventional optical resolution techniques, to give the optically pure isomers. This resolution can be carried out on the synthetic intermediates that are chiral or on the products of formula I. The optically pure isomers can also be obtained individually using enantiospecific syntheses. The present invention covers both the individual isomers and their mixtures (for example racemic mixtures or mixtures of diastereoisomers), whether obtained by synthesis or by physically mixing them.
Los compuestos de la presente invención pueden ser administrados en forma de cualquier formulación farmacéutica, la naturaleza de la cual, como es bien sabido, dependerá de la naturaleza del principio activo y de su vía de administración. En principio se puede utilizar cualquier vía de administración, por ejemplo oral, parenteral, nasal, ocular, rectal, y tópica. A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Las siguientes figuras y ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. The compounds of the present invention can be administered in the form of any pharmaceutical formulation, the nature of which, as is well known, will depend on the nature of the active ingredient and its route of administration. In principle, any route of administration can be used, for example oral, parenteral, nasal, ocular, rectal, and topical. Throughout the description and claims, the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and characteristics of the invention will emerge in part from the description and in part from the practice of the invention. The following figures and examples are provided by way of illustration, and are not intended to be limiting of the present invention.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
Fig. 1. Inhibición de la actividad de unión al ADN de HsrA por compuestos de fórmula I. (A) Bajo condiciones in vitro apropiadas, según se ha descrito en el procedimiento, la proteína HsrA recombinante reconoce y se une específicamente a las secuencias de ADN de sus promotores diana. La unión de la proteína al ADN diana determina la formación de un complejo ADN-proteína estable, con un tamaño molecular superior al del ADN libre, experimentando un retardo en la movilidad electroforética. La unión específica del HsrA a su promotor diana PporGDAB y la formación de un complejo HsrA-ADN detectable por la técnica de EMSA es directamente proporcional a la concentración de la proteína recombinante y no logra ser inhibido por la presencia de un fragmento de ADN competidor inespecífico. El ADN diana libre va desapareciendo en presencia de concentraciones crecientes de la proteína recombinante para formar un complejo estable ADN-proteína de mayor peso molecular. Sin embargo, la concentración de ADN competidor se mantiene inalterable, dado que la proteína no reconoce ni se une a esta secuencia inespecífica. (B) Compuestos de fórmula I inhiben la unión de la proteína HsrA recombinante a sus promotores diana, evitando la formación de complejos HsrA-ADN. La capacidad de inhibición de los compuestos de fórmula I sobre la actividad de HsrA es directamente proporcional a la concentración del inhibidor. Según se aprecia en la figura 1 B, compuestos de fórmula I logran inhibir totalmente la actividad de la proteína HsrA recombinante. Fig. 1. Inhibition of HsrA DNA binding activity by compounds of formula I. (A) Under appropriate in vitro conditions, as described in the procedure, the recombinant HsrA protein specifically recognizes and binds to DNA sequences of their target promoters. The binding of the protein to the target DNA determines the formation of a stable DNA-protein complex, with a molecular size greater than that of free DNA, experiencing a delay in electrophoretic mobility. The specific binding of HsrA to its target promoter PporGDAB and the formation of a HsrA-DNA complex detectable by the EMSA technique is directly proportional to the concentration of the recombinant protein and cannot be inhibited by the presence of a non-specific competitor DNA fragment. . Free target DNA disappears in the presence of increasing concentrations of the recombinant protein to form a stable DNA-protein complex of higher molecular weight. However, the concentration of competitor DNA remains unchanged, since the protein does not recognize or bind to this non-specific sequence. (B) Compounds of formula I inhibit the binding of the recombinant HsrA protein to its target promoters, preventing the formation of HsrA-DNA complexes. The inhibition capacity of the compounds of formula I on the activity of HsrA is directly proportional to the concentration of the inhibitor. As seen in Figure 1B, compounds of formula I completely inhibit the activity of the recombinant HsrA protein.
Fig. 2. Estudio del efecto antimicrobiano de Nimodipino y Nitrendipino in vivo frente a la infección con Helicobacter pylori. A. Datos cuantitativos de conteos bacterianos expresados en UFC/mg de estómago. B. Resultados de PCR cuantitativa presentados como relación Helicobacter/10,000 células murinas. Los resultados son presentados en diagramas de cajas. Cada caja representa el 50% de los valores alrededor de la mediana (línea horizontal divisoria de las cajas). Las líneas que se extienden verticalmente desde la caja (bigotes) representan el mínimo y el máximo de todos los datos. * P<0,05 o ** P<0,01 entre animales infectados no tratados (Hp + Om) y animales infectados y tratados (Hp + Nimodipino/Nitrendipino + Om). Fig. 2. Study of the antimicrobial effect of Nimodipine and Nitrendipine in vivo against infection with Helicobacter pylori. A. Quantitative data of bacterial counts expressed in CFU / mg of stomach. B. Quantitative PCR results presented as Helicobacter / 10,000 murine cells ratio. The results are presented in box diagrams. Each box represents 50% of the values around the median (horizontal dividing line of the boxes). The lines extending vertically from the box (whiskers) represent the minimum and maximum of all data. * P <0.05 or ** P <0.01 between infected untreated animals (Hp + Om) and infected and treated animals (Hp + Nimodipine / Nitrendipine + Om).
EJEMPLOS EXAMPLES
A continuación, se ilustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la efectividad del producto de la invención. Next, the invention will be illustrated by tests carried out by the inventors, which shows the effectiveness of the product of the invention.
Procedimiento Process
Clonaje del gen del regulador de respuesta HsrA Cloning of the HsrA response regulator gene
El ADN genómico de Helicobacter pylori cepa 26695 (ATCC 700392) se purificó mediante el método de fenol-cloroformo. La biomasa obtenida a partir de 100 mL de cultivo de Helicobacter pylori 26695 en caldo infusión cerebro corazón (BHI) suplementado con 4% de suero fetal bovino (SFB) durante 48 h en condiciones microaeróbicas fue resuspendida en 400 pL de tampón 10 mM Tris-CI (pH 8) y 1 mM EDTA. A esta suspensión celular se adicionó 1 % SDS y 10 pL de proteinasa K (10 mg/mL) y se incubó durante 1 h a 55eC. Al cabo de este tiempo, la muestra se lavó con 1 volumen (mismo volumen de la muestra) de fenol, luego con 1 volumen de fenol- cloroformo (1 :1 ) y finalmente se realizaron dos lavados con 1 volumen de cloroformo. El DNA genómico se precipitó toda la noche a -20eC con 2 volúmenes de etanol absoluto frió y 0,1 volumen de 3M acetato de sodio (pH 5,2), el precipitado se lavó con etanol 70% y finalmente se resuspendió en tampón 10 mM Tris-CI (pH 8) y 1 mM EDTA. The genomic DNA of Helicobacter pylori strain 26695 (ATCC 700392) was purified using the phenol-chloroform method. The biomass obtained from 100 mL of Helicobacter pylori 26695 culture in brain heart infusion broth (BHI) supplemented with 4% fetal bovine serum (SFB) for 48 h under microaerobic conditions was resuspended in 400 pL of 10 mM Tris-buffer. CI (pH 8) and 1 mM EDTA. To this cell suspension, 1% SDS and 10 pL of proteinase K (10 mg / mL) were added and incubated for 1 h at 55 e C. After this time, the sample was washed with 1 volume (same volume of the sample). ) of phenol, then with 1 volume of phenol-chloroform (1: 1) and finally two washes with 1 volume of chloroform were performed. Genomic DNA was precipitated overnight at -20 e C with 2 volumes of cold absolute ethanol and 0.1 volume of 3M sodium acetate (pH 5.2), the precipitate was washed with 70% ethanol and finally resuspended in 10mM Tris-CI buffer (pH 8) and 1mM EDTA.
La secuencia completa del gen hsrA (hp1043) se amplificó por PCR a partir del ADN genómico purificado de la cepa 26695 (ATCC 700392) de Helicobacter pylori empleando los cebadores 5'-GGAATT CCAT AT GCGCGTT CT ACT GATT G-3' (SEQ ID NO: 1 ) y 5'- CCCAAGCTTTTACT CTT CACACGCCGG-3' (SEQ ID NO: 2) y la enzima Pfu DNA polimerasa de alta fidelidad (Agilent). El producto de PCR resultante fue digerido con las enzimas de restricción Ndel y Hindlll y clonado entre los mismos sitios de restricción del vector de expresión pET-28a (Novagen). El vector final fue parcialmente secuenciado para comprobar la integridad del gen. The entire sequence of the hsrA gene (hp1043) was amplified by PCR from genomic DNA purified from Helicobacter pylori strain 26695 (ATCC 700392) using the 5 ' -GGAATT CCAT AT GCGCGTT CT ACT GATT G-3 ' primers (SEQ ID NO: 1) and 5 ' - CCCAAGCTTTTACT CTT CACACGCCGG-3 ' (SEQ ID NO: 2) and the enzyme Pfu DNA polymerase high fidelity (Agilent). The resulting PCR product was digested with the restriction enzymes Ndel and Hindlll and cloned between the same restriction sites of the expression vector pET-28a (Novagen). The final vector was partially sequenced to check the integrity of the gene.
Expresión y purificación de HsrA recombinante Recombinant HsrA expression and purification
Se transformaron células competentes de E. coli BL21 (DE3) con el vector pET-28a conteniendo el gen hsrA de Helicobacter pylori ATCC 700392. Este vector permite expresar la proteína recombinante como una proteína de fusión a un péptido de 6 residuos de histidinas en su extremo N-terminal. Las células de E. coli transformadas fueron cultivadas en medio Luria-Bertani (LB) suplementado con 50 pg/mL de kanamicina bajo condiciones de agitación vigorosa y 37eC hasta alcanzar una densidad óptica de 0,8 medida a una longitud de onda de 600 nm. La expresión de la proteína HsrA recombinante se indujo mediante la adición al medio de cultivo de 1 mM de IPTG, tras lo cual las células se dejaron crecer bajo las mismas condiciones de temperatura y agitación durante 6 horas. Transcurrido este tiempo, el cultivo se centrifugó a 8,000 rpm durante 10 min a 4eC y la biomasa celular obtenida fue lavada con PBS pH 7,4 frió. Competent E. coli BL21 (DE3) cells were transformed with the vector pET-28a containing the Helicobacter pylori ATCC 700392 hsrA gene. This vector allows the recombinant protein to be expressed as a fusion protein to a 6 residue peptide of histidines in its N-terminal end. The transformed E. coli cells were cultured in Luria-Bertani (LB) medium supplemented with 50 pg / mL of kanamycin under conditions of vigorous shaking and 37 e C until reaching an optical density of 0.8 measured at a wavelength of 600 nm. Expression of the recombinant HsrA protein was induced by adding 1mM IPTG to the culture medium, after which the cells were allowed to grow under the same temperature and shaking conditions for 6 hours. After this time, the culture was centrifuged at 8,000 rpm for 10 min at 4 and C and the obtained cell biomass was washed with cold PBS pH 7.4.
La proteína HsrA recombinante es expresada en forma soluble en el citoplasma de E. coli BL21 (DE3). Para la purificación proteica, las células fueron resuspendidas en tampón 50 mM Tris-CI (pH 8), con 500 mM NaCI, 10 mM imidazol y 1 mM PMSF. La ruptura celular se realizó mediante 10 ciclos ultrasónicos de 45 segundos en baño de hielo, con descansos de 30 segundos entre cada ciclo. Los detritos celulares se eliminaron mediante centrifugación a 18,000 rpm durante 20 min a 4eC. La proteína recombinante con cola de histidinas contenida en el sobrenadante fue purificada mediante cromatografía de afinidad a metales inmovilizados (IMAC) empleando la matriz Chelating Sepharose Fast Flow (GE Flealthcare) cargada con iones Ni2+, previamente equilibrada con el tampón empleado en la lisis celular. La proteína recombinante unida a la matriz fue eluida empleando un gradiente de imidazol (0,01 a 1 M) y dializada frente al tampón 50 mM T ris-HCI (pH 8), 300 mM NaCI y 10% glicerol. La concentración de proteína fue determinada mediante el kit comercial BCA™ Protein Assay (Thermo Fisher Scientific). La cola de poli-histidinas fue eliminada del extremo N- terminal de HsrA recombinante mediante tratamiento con trombina (GE Flealthcare), empleando 10 U de enzima por cada miligramo de proteína recombinante. Tras la restricción enzimática, la proteína HsrA recombinante fue obtenida en el volumen muerto de un segundo paso de purificación mediante IMAC-Ni2+. La proteína así purificada fue conservada a -20eC. Recombinant HsrA protein is expressed in soluble form in the E. coli BL21 cytoplasm (DE3). For protein purification, cells were resuspended in 50mM Tris-CI buffer (pH 8), with 500mM NaCI, 10mM imidazole and 1mM PMSF. Cell disruption was performed using 10 45-second ultrasonic cycles in an ice bath, with 30-second rests between each cycle. Cell debris was removed by centrifugation at 18,000 rpm for 20 min at 4 ° C. The recombinant histidine-tailed protein contained in the supernatant was purified by immobilized metal affinity chromatography (IMAC) using the Chelating Sepharose Fast Flow (GE) matrix. Flealthcare) loaded with Ni 2+ ions, previously balanced with the buffer used in cell lysis. Recombinant matrix bound protein was eluted using an imidazole gradient (0.01 to 1M) and dialyzed against 50mM T ris-HCI buffer (pH 8), 300mM NaCI and 10% glycerol. Protein concentration was determined using the commercial BCA ™ Protein Assay kit (Thermo Fisher Scientific). The poly-histidine tail was removed from the N-terminus of recombinant HsrA by treatment with thrombin (GE Flealthcare), using 10 U of enzyme for each milligram of recombinant protein. After enzymatic restriction, the recombinant HsrA protein was obtained in the dead volume from a second purification step by IMAC-Ni 2+ . The thus purified protein was stored at -20 e C.
Actividad biológica y ensayos de inhibición Biological activity and inhibition assays
La proteína HsrA es un regulador de respuesta con actividad de unión al ADN, que actúa como regulador transcripcional. La actividad biológica de esta proteína se determina mediante el ensayo del cambio de movilidad electroforética (EMSA). En este ensayo, el regulador transcripcional se pone en contacto con un fragmento de ADN correspondiente a la región promotora de sus genes diana. Si la proteína es activa, se unirá de forma específica a sus promotores diana y formará un complejo proteína-ADN que experimentará un retardo en la movilidad electroforética respecto al DNA libre, dado el mayor tamaño molecular del complejo. Como región promotora diana de HsrA se amplificó por PCR una secuencia de 288 pb correspondiente al promotor del operón porGDAB a partir del ADN genómico de Helicobacter pylori ATCC 700392 empleando como cebadores 5'- CCCCACACTTGCCCCATACAGAC-3' (SEQ ID NO: 3) y 5'- GCAT GCCAT CT AATTT GAAACAT GG-3' (SEQ ID NO: 4). El promotor sintetizado fue purificado mediante el kit comercial ¡Ilustra™ GFX PCR DNA and Gel Band Purification kit (GE Healthcare) y su concentración fue cuantificada mediante espectrofotómetro NanoVue Plus (GE Healthcare). Para los ensayos de actividad biológica de la proteína HsrA recombinante recién purificada, se mezclaron concentraciones crecientes de la proteína, desde 2 hasta 7 mM, con 120 ng de ADN en tampón 10 mM bis-Tris (pH 7,5), 40 mM KCI, 100 pg/mL BSA, 1 mM DTT y 5% (v/v) de glicerol, en un volumen final de mezcla de reacción de 20 mI_. Como ADN competidor inespecífico se adicionó a todas las mezclas 120 ng de un fragmento de 121 pb correspondiente a una porción de la secuencia codificadora del gen pkn22 (alr2502) de la cianobacteria Anabaena sp. PCC 7120. La mezcla de proteína y ADN se incuba a 25eC durante 30 minutos y posteriormente se separa mediante electroforesis no desnaturalizante en gel de poliacrilamida 6% empleando el tampón 25 mM Tris y 190 mM glicina para la cámara electroforética. Los geles de poliacrilamida fueron teñidos con el colorante SYBR® Safe DNA gel stain (Invitrogen) y procesados con Gel Doc 2000 Image Analyzer (Bio-Rad). The HsrA protein is a response regulator with DNA binding activity, which acts as a transcriptional regulator. The biological activity of this protein is determined by the electrophoretic change of mobility test (EMSA). In this assay, the transcriptional regulator is contacted with a DNA fragment corresponding to the promoter region of its target genes. If the protein is active, it will specifically bind to its target promoters and form a protein-DNA complex that will experience a delay in electrophoretic mobility relative to free DNA, given the larger molecular size of the complex. As a target promoter region of HsrA, a sequence of 288 bp corresponding to the promoter of the operon by GDAB was amplified by PCR from the genomic DNA of Helicobacter pylori ATCC 700392 using as primers 5 ' - CCCCACACTTGCCCCATACAGAC-3 ' (SEQ ID NO: 3) and 5 ' - GCAT GCCAT CT AATTT GAAACAT GG-3 ' (SEQ ID NO: 4). The synthesized promoter was purified using the commercial ¡Ilustra ™ GFX PCR DNA and Gel Band Purification kit (GE Healthcare) and its concentration was quantified using a NanoVue Plus spectrophotometer (GE Healthcare). For assays of biological activity of freshly purified recombinant HsrA protein, increasing concentrations of the protein, from 2 to 7 mM, were mixed with 120 ng of DNA in 10 mM bis-Tris buffer (pH 7.5), 40 mM KCI, 100 pg / mL BSA, 1 mM DTT and 5% (v / v) glycerol, in a final volume of reaction mixture of 20 mI_. As nonspecific competitor DNA, 120 ng of a 121 bp fragment corresponding to a portion of the coding sequence of the pkn22 (alr2502) gene of the cyanobacterium Anabaena sp. Was added to all the mixtures. PCC 7120. The mixture of protein and DNA and incubated at 25 C for 30 minutes and subsequently separated by nondenaturing polyacrylamide gel electrophoresis using 6% Tris buffer 25 mM and 190 mM glycine for electrophoretic chamber. Polyacrylamide gels were stained with SYBR® Safe DNA gel stain (Invitrogen) and processed with Gel Doc 2000 Image Analyzer (Bio-Rad).
Para los ensayos de inhibición de la actividad biológica, 6 mM de la proteína HsrA recombinante se mezclaron con 2; 1 ; 0,5 y 0,1 mM del compuesto de fórmula I descrito en la presente invención. Dado que los compuestos analizados se encontraban disueltos al 100% en DMSO, se incluyó como control negativo de inhibición la proteína en presencia de la misma cantidad de DMSO, en sustitución de los compuestos. La mezcla de proteína e inhibidor en tampón 10 mM bis-Tris (pH 7,5), 40 mM KCI, 100 pg/mL BSA, 1 mM DTT y 5% (v/v) de glicerol se incubó durante 10 min a 25°C. Transcurrido este tiempo se adicionó a cada mezcla 120 ng de promotor diana (porGDAB) y 120 ng de ADN competidor (pkn22). El resto del procedimiento se llevó a cabo en las mismas condiciones del ensayo de actividad anteriormente descrito. Cada ensayo se realizó por triplicado y se analizó la actividad inhibitoria de al menos 6 compuestos diferentes con fórmula I descrita en la presente invención. For assays of inhibition of biological activity, 6 mM of the recombinant HsrA protein were mixed with 2; one ; 0.5 and 0.1 mM of the compound of formula I described in the present invention. Since the analyzed compounds were 100% dissolved in DMSO, the protein in the presence of the same amount of DMSO was included as a negative inhibition control, replacing the compounds. The protein and inhibitor mixture in 10 mM bis-Tris buffer (pH 7.5), 40 mM KCI, 100 pg / mL BSA, 1 mM DTT and 5% (v / v) glycerol was incubated for 10 min at 25 ° C. After this time, 120 ng of target promoter (porGDAB) and 120 ng of competitor DNA (pkn22) were added to each mixture. The rest of the procedure was carried out under the same conditions of the activity assay described above. Each test was performed in triplicate and the inhibitory activity of at least 6 different compounds with formula I described in the present invention was analyzed.
Actividad antibacteriana frente a Helicobacter pylori de inhibidores de HsrA Antibacterial activity against Helicobacter pylori of HsrA inhibitors
La actividad antibacteriana de 6 compuestos inhibitorios de fórmula I de la presente invención fue testada frente a dos cepas diferentes de Helicobacter pylori, la cepa AT CC 700392 y la cepa resistente a claritromicina ATCC 700684. Ambas cepas fueron cultivadas en agar sangre (base) Ne 2 (OXOID) suplementado con 8% de sangre de caballo desfribinada (OXOID) en atmósfera microaeróbica húmeda (85% N2, 10% C02, 5% 02) a 37 °C. Se determinó la concentración mínima inhibitoria (MIC) de cada compuesto mediante el método de microdilución empleando placas de poliestireno de 96 pocilios con fondo plano. Para los ensayos, las bacterias fueron subcultivadas en caldo infusión cerebro corazón (BHI) suplementado con 4% de suero fetal bovino (SFB) durante 48 h en condiciones microaeróbicas. Al cabo de este tiempo, los cultivos fueron diluidos con caldo BHI + 4% SFB hasta una densidad óptica de 0,01 medida a una longitud de onda de 600 nm. Para el ensayo de microdilución en placas, 100 pL de los cultivos bacterianos así ajustados fueron dispensados en cada uno de los pocilios de la placa, excepto la primera columna de la placa, que recibió 200 pl_ de suspensión bacteriana con 5 mI_ del compuesto inhibitorio de fórmula I, a una concentración de 10,24 mg/ml_ en 100% DMSO. Cada uno de los compuestos de fórmula I ensayados fue adicionado al primer pocilio de cada fila de la placa. Se realizaron diluciones dobles seriadas de cada compuesto, evaluando la actividad antibacteriana de un rango de concentraciones entre 256 y 0,125 pg/mL de cada uno de los compuestos. En todas las placas se incorporaron controles de crecimiento positivo y negativo con caldo BHI + 4% SFB sin la presencia de inhibidores, inoculado y no inoculado con las bacterias. Se incorporaron además controles con DMSO y claritromicina. Todas las placas fueron incubadas bajo condiciones microaeróbicas a 37eC y examinadas visualmente tras 48 h de incubación. El valor MIC de cada compuesto se definió como la mínima concentración del compuesto que inhibió completamente el crecimiento visible de la bacteria tras 48 h. The antibacterial activity of 6 inhibitory compounds of formula I of the present invention was tested against two different strains of Helicobacter pylori, the strain AT CC 700392 and the strain resistant to clarithromycin ATCC 700684. Both strains were grown on blood agar (base) N e 2 (OXOID) supplemented with 8% of defibrillated horse blood (OXOID) in a humid microaerobic atmosphere (85% N 2 , 10% C0 2 , 5% 0 2 ) at 37 ° C. The minimum inhibitory concentration (MIC) of each compound was determined by the microdilution method using flat bottom 96-well polystyrene plates. For the tests, the bacteria were subcultured in brain heart infusion broth (BHI) supplemented with 4% fetal bovine serum (SFB) for 48 h under microaerobic conditions. At the end of this time, the cultures were diluted with BHI + 4% SFB broth to an optical density of 0.01 measured at a wavelength of 600 nm. For the microdilution test on plates, 100 pL of the Thus adjusted bacterial cultures were dispensed into each of the wells of the plate, except for the first column of the plate, which received 200 µl of bacterial suspension with 5 ml of the inhibitory compound of formula I, at a concentration of 10.24 mg / ml_ in 100% DMSO. Each of the compounds of formula I tested was added to the first well of each row of the plate. Serial double dilutions of each compound were performed, evaluating the antibacterial activity of a concentration range between 256 and 0.125 pg / mL of each of the compounds. Positive and negative growth controls were incorporated in all plates with BHI + 4% SFB broth without the presence of inhibitors, inoculated and not inoculated with bacteria. Controls with DMSO and clarithromycin were also incorporated. All plates were incubated under microaerobic conditions at 37 e C and visually examined after 48 h of incubation. The MIC value of each compound was defined as the lowest concentration of the compound that completely inhibited the visible growth of the bacteria after 48 h.
Se determinó además la concentración mínima bactericida (MBC) de cada uno de los 6 compuestos de fórmula I de la presente invención. Una vez culminado en el ensayo de MIC, se extrajeron alícuotas de 10 pL de dos diluciones anteriores y dos posteriores al valor MIC y se sembraron en agar sangre (base) Ne 2 (OXOID) suplementado con 8% de sangre de caballo desfribinada (OXOID) en atmósfera microaeróbica húmeda (85% N2, 10% C02, 5% 02). Las placas de agar se incubaron a 37°C durante 48 h. El valor MBC de cada compuesto se definió como la mínima concentración del compuesto que impidió el crecimiento de ³99,9% de las células de Helicobacter pylori subcultivadas sobre este medio libre de inhibidores. Cada experimento se realizó por triplicado, dos veces, para confirmar los resultados. The minimum bactericidal concentration (MBC) of each of the 6 compounds of formula I of the present invention was also determined. After completion of the MIC assay, 10 pL aliquots of two dilutions before and two after the MIC value were withdrawn and plated on N e 2 (OXOID) blood (base) agar supplemented with 8% defibrillated horse blood ( OXOID) in a humid microaerobic atmosphere (85% N 2 , 10% C0 2 , 5% 0 2 ). Agar plates were incubated at 37 ° C for 48 hr. The MBC value of each compound was defined as the minimum concentration of the compound that prevented the growth of ³99.9% of the Helicobacter pylori cells subcultured on this inhibitor-free medium. Each experiment was performed in triplicate, twice, to confirm the results.
Energética de unión de los inhibidores a HsrA Energetic binding of inhibitors to HsrA
La unión específica de 6 compuestos inhibitorios de fórmula I de la presente invención al regulador de respuesta esencial HsrA de Helicobacter pylori fue confirmada mediante calorimetría de titulación isoterma (ITC). Esta técnica no sólo mide la afinidad de cada compuesto por la proteína diana, sino que determina la contribución de las componentes entálpica y entrópica, así como la estequiometría de la unión.  The specific binding of 6 inhibitory compounds of formula I of the present invention to the essential response regulator HsrA of Helicobacter pylori was confirmed by isothermal titration calorimetry (ITC). This technique not only measures the affinity of each compound for the target protein, but also determines the contribution of the enthalpic and entropic components, as well as the stoichiometry of the binding.
Los experimentos de unión se llevaron a cabo en el microcalorímetro de alta sensibilidad MicroCal Auto-iTC200 (Malvern Instruments). Una solución de 20 mM de HsrA en tampón 50 mM Tris-CI (pH 8), 150 mM NaCI, 10% glicerol y 1 % DMSO ubicada en la celda de medida, fue titulada con una solución de 200 mM del correspondiente compuesto inhibitorio disuelto en el mismo tampón anterior, ubicado en la jeringa de inyección. The binding experiments were carried out on the MicroCal Auto-iTC200 high sensitivity microcalorimeter (Malvern Instruments). A solution of 20mM HsrA in 50mM Tris-CI buffer (pH 8), 150mM NaCI, 10% glycerol and 1% DMSO located in the Measurement cell was titrated with a 200 mM solution of the corresponding inhibitory compound dissolved in the same buffer as above, located in the injection syringe.
Actividad antimicrobiana in vivo de compuestos de fórmula I frente a la infección por Helicobacter pylori en ratones. In vivo antimicrobial activity of compounds of formula I against Helicobacter pylori infection in mice.
La actividad antibacteriana frente a Helicobacter pylori de 2 compuestos de fórmula I de la presente invención fue testada en el modelo de ratón C57BL/6. El estudio fue realizado en instalaciones con nivel de bioseguridad A2 para animales de laboratorio de la Universidad de Burdeos (Francia) y aprobado por un Comité de Ética local de la Universidad de Burdeos, conforme a las Normativas del Ministerio de Agricultura de Francia sobre el cuidado de los animales de laboratorio y del Comité francés de Ingeniería Genética. Ratones C57BL/6 hembras (libres de organismos patógenos específicos, SPF) de 6 semanas de nacidos fueron mantenidos en condiciones climatizadas y dispuestos en cajas de policarbonato durante una semana antes del inicio de los experimentos. Dos grupos de 9 ratones fueron mantenidos en ayunas para facilitar la colonización bacteriana y luego alimentados a la fuerza con una dosis de 108 UFC de Helicobacter pylori cepa PMSS1 durante 3 días consecutivos. Los inóculos bacterianos fueron preparados frescos en medio caldo Brucella a partir de cultivos crecidos durante 48 h a 35eC en placas de agar Wilkins Chalgren enriquecido con 10% (v/v) de sangre humana y suplementado con una mezcla de antibióticos (10 pg/mL de vancomicina, 5 pg/mL de trimetoprima, 1 pg/mL de anfotericina B y 2 pg/mL de cefsulodina) bajo condiciones de microaerobiosis (85% N2, 10% C02, 5% 02). Tras 4 semanas de la inoculación, los ratones de cada grupo fueron tratados por vía oral con 100 mg/kg/día de Nimodipino o Nintrendipino (formulación comercial en tabletas orales, STADA S.L.) en combinación con omeprazol (140 mg/kg/día), diariamente durante 7 días. Como ambas drogas son altamente sensibles a la luz, todas las manipulaciones se realizaron alejadas de la luz. Dos grupos adicionales de 10 ratones se emplearon como controles, un grupo control de animales no infectados y otro grupo control de animales infectados no tratados. Ambos grupos controles recibieron 140 mg/kg/día de omeprazol durante los 7 días de tratamiento. The antibacterial activity against Helicobacter pylori of 2 compounds of formula I of the present invention was tested in the mouse model C57BL / 6. The study was carried out in facilities with biosafety level A2 for laboratory animals of the University of Bordeaux (France) and approved by a local Ethics Committee of the University of Bordeaux, in accordance with the Regulations of the French Ministry of Agriculture on the care laboratory animals and the French Genetic Engineering Committee. Female C57BL / 6 mice (free of specific pathogens, SPF) 6 weeks old were kept in heated conditions and placed in polycarbonate boxes for one week before the start of the experiments. Two groups of 9 mice were fasted to facilitate bacterial colonization and then force fed with a dose of 10 8 CFU of Helicobacter pylori strain PMSS1 for 3 consecutive days. Bacterial inocula were prepared fresh in Brucella broth medium from cultures grown for 48 h at 35 e C on Wilkins Chalgren agar plates enriched with 10% (v / v) human blood and supplemented with a mixture of antibiotics (10 pg / mL of vancomycin, 5 pg / mL of trimethoprim, 1 pg / mL of amphotericin B, and 2 pg / mL of cefsulodin) under microaerobiosis conditions (85% N 2 , 10% C0 2 , 5% 0 2 ). After 4 weeks of inoculation, the mice in each group were orally treated with 100 mg / kg / day of Nimodipine or Nintrendipine (commercial formulation in oral tablets, STADA SL) in combination with omeprazole (140 mg / kg / day) , daily for 7 days. Since both drugs are highly sensitive to light, all manipulations were performed away from light. Two additional groups of 10 mice were used as controls, a control group of uninfected animals and another control group of untreated infected animals. Both control groups received 140 mg / kg / day of omeprazole during the 7 days of treatment.
Transcurrido un mes de finalizado el tratamiento, todos los animales fueron sacrificados por dislocación cervical y sus estómagos fueron convenientemente aislados (corte en esófago y duodeno) y lavados con solución salina estéril. Los órganos fueron primeramente cortados a lo largo del eje de la curvatura mayor y luego a lo largo del eje de la curvatura menor. Seguidamente, la mitad derecha del estómago, una vez liberado del cardias, se cortó en dos fragmentos iguales. Uno de estos fragmentos fue tomado para cultivos bacteriológicos y estudios moleculares, mientras el segundo fragmento se conservó a -80eC para experimentos complementarios. Los fragmentos destinados a estudios bacteriológicos y moleculares fueron pesados, triturados usando un mortero estéril y resuspendidos en 200 pL de tampón fosfato salino estéril. Para el conteo de las unidades formadoras de colonias (UFC) de Helicobacter pylori que se encontraban colonizando el estómago de los animales de cada grupo de estudio, se realizaron diluciones seriadas de la suspensión celular de estómago y se sembraron en placas de agar Wilkins Chalgren enriquecido con 10% (v/v) de sangre humana y suplementado con una mezcla de antibióticos (10 pg/mL de vancomicina, 5 pg/mL de trimetoprima, 1 pg/mL de anfotericina B y 2 pg/mL de cefsulodina) bajo condiciones de microaerobiosis (85% N2, 10% C02, 5% 02). Las placas así sembradas fueron incubadas bajo condiciones de microaerobiosis (85% N2, 10% C02, 5% 02) durante al menos 5 días. La identidad de las colonias de Helicobacter pylori fue confirmada según las características fenotípicas y bioquímicas del microrganismo (morfología, test de ureasa, test de oxidasa). El conteo de colonias se realizó en dos experimentos independientes y los resultados fueron expresados como UFC/mg de estómago. La eficacia del Nimodipino y del Nitrendipino en la erradicación de la colonización gástrica de Helicobacter pylori en el modelo ratón fue determinada además mediante PCR cuantitativa (qPCR). Las muestras de estómago previamente homogenizado fueron tratadas con el sistema Arrow (Nordiag) para la extracción de DNA. Sobre la muestra de DNA extraído de la biopsia estomacal se realizó una qPCR basada en la transferencia de energía por resonancia de fluorescencia (FRET), tomando como dianas el gen para el RNA ribosomal (rRNA) 23S de Helicobacter pylori (oligonucleótidos: 5'- AGGTTAAGAGGAT GCGT CAGT C-3' [HPY-S] (SEQ ID NO: 5) y 5'-One month after the end of the treatment, all the animals were sacrificed by cervical dislocation and their stomachs were conveniently isolated (cut in the esophagus and duodenum) and washed with sterile saline. The organs were first cut along the axis of the greater curvature and then along the axis minor curvature. Next, the right half of the stomach, once freed from the cardia, was cut into two equal fragments. One of these fragments was taken for bacteriological cultures and molecular studies, while the second fragment was kept at -80 e C for complementary experiments. The fragments for bacteriological and molecular studies were weighed, crushed using a sterile mortar and resuspended in 200 pL of sterile phosphate buffered saline. For the count of Helicobacter pylori colony forming units (CFUs) that were colonizing the stomach of the animals of each study group, serial dilutions of the stomach cell suspension were performed and plated on enriched Wilkins Chalgren agar. with 10% (v / v) of human blood and supplemented with a mixture of antibiotics (10 pg / mL of vancomycin, 5 pg / mL of trimethoprim, 1 pg / mL of amphotericin B and 2 pg / mL of cefsulodin) under conditions microaerobiosis (85% N 2 , 10% C0 2 , 5% 0 2 ). Plates so seeded were incubated under microaerobiosis conditions (85% N 2 , 10% C0 2 , 5% 0 2 ) for at least 5 days. The identity of the Helicobacter pylori colonies was confirmed according to the phenotypic and biochemical characteristics of the microorganism (morphology, urease test, oxidase test). Colony count was performed in two independent experiments and the results were expressed as CFU / mg stomach. The efficacy of Nimodipine and Nitrendipine in eradicating Helicobacter pylori gastric colonization in the mouse model was also determined by quantitative PCR (qPCR). Previously homogenized stomach samples were treated with the Arrow system (Nordiag) for DNA extraction. A qPCR based on fluorescence resonance energy transfer (FRET) was performed on the DNA sample extracted from the stomach biopsy, taking as a target the gene for the 23S ribosomal RNA (rRNA) of Helicobacter pylori (oligonucleotides: 5'- AGGTTAAGAGGAT GCGT CAGT C-3 '[HPY-S] (SEQ ID NO: 5) and 5'-
CGCAT GAT ATT CCCATT AGCAGT -3' [HPY-A] (SEQ ID NO: 6)) y el gen para la enzima gliceraldehido-3P deshidrogenasa (oligonucleótidos: 5'- CT GCAGGTT CT CCACACCT ATG-3 ' [mGapdh1 -F] (SEQ ID NO: 7) y 5'-CGCAT GAT ATT CCCATT AGCAGT -3 '[HPY-A] (SEQ ID NO: 6)) and the gene for the enzyme glyceraldehyde-3P dehydrogenase (oligonucleotides: 5 ' - CT GCAGGTT CT CCACACCT ATG-3 ' [mGapdh1 -F] (SEQ ID NO: 7) and 5 ' -
GAATTT GCCGT GAGT GGAGT C-3' [mGapdh1 -R] (SEQ ID NO: 8)). Cada diana fue testada por duplicado en todas las muestras. Se preparó una curva patrón empleando diluciones seriadas de DNA extraído de suspensiones bacterianas calibradas de Helicobacter pylori SS1 con valores de UFC/mL conocidos. Para las amplificaciones se empleó LightCycler® 480 SYBR® Green I Master Mix (Roche Diagnostics), compatible con el termociclador LightCycler® 480 (Roche Diagnostics), siguiendo las instrucciones del fabricante. Asimismo, se empleó SYBR® Premix Ex Taq™ Mix (Tli RNaseH Plus) (Takara) compatible con el termociclador CFX96™ (Bio-Rad) disponible en la plataforma de real-time PCR TBMCore de la Universidad de Burdeos, según las instrucciones del fabricante. La PCR comenzó con un paso de desnaturalización de 3 min a 95 °C, seguida de 40 ciclos con 2 pasos: desnaturalización a qd'Ό durante 5 seg e hibridación de los oligonucleótidos a 60 °C durante 30 seg. Tras cada ciclo, la fluorescencia fue medida con el objetivo de cuantificar el DNA recién sintetizado. Al final del procedimiento se generó una curva de fusión mediante la elevación lenta de la temperatura de 65 a 95eC y la medición continua de la fluorescencia. La generación de esta curva de fusión permitió la verificación de un pico específico a la temperatura de fusión esperada para cada producto, demostrando la especificidad de la PCR. Los resultados finales fueron expresados como la relación (ratio) bacterias/células murinas. DNA extraído de la línea celular epitelial murina m-ICcl2 disponible en el laboratorio fue empleado para expresar los resultados como relación bacterias/células murinas. El límite de detección del método fue de aproximadamente 0,001 bacteria/célula murina. GAATTT GCCGT GAGT GGAGT C-3 ' [mGapdh1 -R] (SEQ ID NO: 8)). Each target was tested in duplicate on all samples. A standard curve was prepared using serial dilutions of DNA extracted from calibrated Helicobacter pylori SS1 bacterial suspensions with known CFU / mL values. For the amplifications, LightCycler ® 480 SYBR ® Green I Master Mix (Roche Diagnostics), compatible with the LightCycler ® 480 thermal cycler (Roche Diagnostics), was used, following the instructions manufacturer. In addition, SYBR® Premix Ex Taq ™ Mix (Tli RNaseH Plus) (Takara) compatible with the CFX96 ™ (Bio-Rad) thermal cycler available on the TBMCore real-time PCR platform from the University of Bordeaux was used, according to the instructions of the maker. PCR started with a 3 min denaturation step at 95 ° C, followed by 40 cycles with 2 steps: denaturation at qd'Ό for 5 sec and hybridization of the oligonucleotides at 60 ° C for 30 sec. After each cycle, fluorescence was measured in order to quantify the newly synthesized DNA. A the end of the procedure , a melting curve was generated by slowly raising the temperature from 65 to 95 and C and continuous fluorescence measurement. The generation of this melting curve allowed the verification of a specific peak at the expected melting temperature for each product, demonstrating the specificity of the PCR. The final results were expressed as the ratio (ratio) bacteria / murine cells. DNA extracted from the murine epithelial cell line m-ICcl2 available in the laboratory was used to express the results as a bacteria / murine cell ratio. The detection limit of the method was approximately 0.001 bacteria / murine cell.
Los resultados obtenidos por ambos métodos de cuantificación (UFC/mg de estómago y qPCR) en los grupos de ratones tratados fueron comparados con aquellos obtenidos en el grupo de ratones infectados no tratados. Se realizó un análisis estadístico de los mismos mediante el test no paramétrico Mann-Whitney. Las diferencias entre las muestras fueron consideradas significativas para un valor p < 0,05. El análisis estadístico se realizó empleando GraphPad Prism 6.0 (GraphPad Software, Inc.). The results obtained by both quantification methods (CFU / mg of stomach and qPCR) in the groups of treated mice were compared with those obtained in the group of untreated infected mice. Statistical analysis was performed using the non-parametric Mann-Whitney test. The differences between the samples were considered significant for a p value <0.05. Statistical analysis was performed using GraphPad Prism 6.0 (GraphPad Software, Inc.).
Resultados a) Inhibición de la actividad de HsrA Results a) Inhibition of HsrA activity
Los compuestos de fórmula I inhiben la función biológica de la proteína esencial HsrA de Helicobacter pylori. La proteína HsrA es un regulador de respuesta con actividad de unión al ADN. Esta proteína actúa en la célula como regulador transcripcional, se une específicamente a la región promotora de genes diana y regula la transcripción de estos genes. Se demuestra que los compuestos de fórmula I inhiben la unión de HsrA a sus promotores diana, según se demuestra en la figura 1 . b) Actividad antimicrobiana de inhibidores de HsrA sobre Helicobacter pylori El empleo de HsrA como diana terapéutica puede resultar efectivo para el tratamiento de enfermedades infecciosas causadas por Helicobacter pylori y patologías asociadas, dado que inhibidores de la actividad biológica de esta proteína demuestran una elevada actividad bactericida sobre cepas de este patógeno. La proteína HsrA es esencial para la viabilidad del microorganismo, por lo que la inhibición de su actividad biológica conlleva a la muerte del patógeno y potencialmente a la erradicación de la infección. En la tabla 1 se describen los valores de concentración mínima bactericida (MBC) de varios compuestos de fórmula I frente a dos cepas de Helicobacter pylori. The compounds of formula I inhibit the biological function of the essential protein HsrA of Helicobacter pylori. The HsrA protein is a response regulator with DNA binding activity. This protein acts as a transcriptional regulator in the cell, specifically binds to the promoter region of target genes and regulates the transcription of these genes. The compounds of formula I are shown to inhibit the binding of HsrA to their target promoters, as demonstrated in Figure 1. b) Antimicrobial activity of HsrA inhibitors on Helicobacter pylori The use of HsrA as a therapeutic target may be effective for the treatment of infectious diseases caused by Helicobacter pylori and associated pathologies, given that inhibitors of the biological activity of this protein demonstrate a high bactericidal activity on strains of this pathogen. The HsrA protein is essential for the viability of the microorganism, so the inhibition of its biological activity leads to the death of the pathogen and potentially to the eradication of the infection. Table 1 describes the minimum bactericidal concentration (MBC) values of various compounds of formula I against two strains of Helicobacter pylori.
Tabla 1. Actividad bactericida de compuestos de fórmula I sobre Helicobacter pylori Table 1. Bactericidal activity of compounds of formula I on Helicobacter pylori
Figure imgf000024_0001
Figure imgf000024_0001
c) Afinidad y estequiometría de unión entre compuestos de fórmula I y HsrAc) Affinity and stoichiometry of binding between compounds of formula I and HsrA
La unión específica de los compuestos de fórmula I a la proteína HsrA fue confirmada mediante Calorimetría de Titulación Isotérmica (ITC). Como se aprecia en la tabla 2, todos los compuestos ensayados se unen a la proteína con una afinidad en el orden micromolar. En todos los casos, la estequiometría de unión fue de 1 :1 ; es decir, una molécula de inhibidor por cada molécula de proteína monomérica. The specific binding of the compounds of formula I to the HsrA protein was confirmed by Isothermal Titration Calorimetry (ITC). As can be seen in Table 2, all the compounds tested bind to the protein with an affinity in the micromolar order. In all cases, the binding stoichiometry was 1: 1; that is, one molecule of inhibitor for each molecule of monomeric protein.
Tabla 2. Afinidad de unión HsrA/inhibidores Table 2. HsrA / Inhibitor Binding Affinity
Figure imgf000024_0002
Figure imgf000025_0001
d) Evaluación in vivo de la actividad anti-Helicobacter pylori de compuestos de fórmula I en ratones. Los compuestos de formula I de la presente invención testados en estudios de eficacia preclínica en el modelo ratón demostraron una significativa actividad antimicrobiana in vivo frente a Helicobacter pylori. Tanto la terapia con Nimodipino + omeprazol como la terapia con Nitrendipino + omeprazol determinaron una disminución significativa de la colonización por Helicobacter pylori de la mucosa gástrica del modelo animal, en comparación con los animales infectados no tratados, a los cuales se les suministró solo omeprazol (figura 2). La disminución de la carga bacteriana en las biopsias de estómago de los animales tratados con los compuestos de fórmula I se apreció tanto en los estudios de conteo de UFC/mg de estómago, como en los análisis de qPCR (células de Helicobacter/10,000 células murinas).
Figure imgf000024_0002
Figure imgf000025_0001
d) In vivo evaluation of the anti-Helicobacter pylori activity of compounds of formula I in mice. The compounds of formula I of the present invention tested in preclinical efficacy studies in the mouse model demonstrated significant antimicrobial activity in vivo against Helicobacter pylori. Both Nimodipine + omeprazole therapy and Nitrendipine + omeprazole therapy resulted in a significant decrease in colonization by Helicobacter pylori of the gastric mucosa of the animal model, compared to untreated infected animals, who were given only omeprazole ( figure 2). The decrease in bacterial load in the stomach biopsies of the animals treated with the compounds of formula I was observed both in the studies of the count of CFU / mg of the stomach, and in the qPCR analyzes (Helicobacter cells / 10,000 murine cells). ).

Claims

REIVINDICACIONES
1 Compuesto de fórmula I para su uso en el tratamiento y/o prevención de una infección causada por una bacteria del género Helicobacter o para su uso en el tratamiento y/o prevención de una enfermedad causada por una infección causada por una bacteria del género Helicobacter: 1 Compound of formula I for use in the treatment and / or prevention of an infection caused by a bacterium of the genus Helicobacter or for use in the treatment and / or prevention of a disease caused by an infection caused by a bacterium of the genus Helicobacter :
Figure imgf000026_0001
Figure imgf000026_0001
I  I
donde: where:
Ri es Ci-4 alquilo, -NH2 o -CN, donde Ci-4 alquilo está opcionalmente sustituido por un grupo -OCONH2, -OR5 o -SR5; Ri is Ci- 4 alkyl, -NH 2 or -CN, where Ci -4 alkyl is optionally substituted by a group -OCONH2, -OR 5 or -SR 5 ;
R2 es C1-4 alquilo opcionalmente sustituido por un grupo -OR5 o -SR5; R 2 is C 1-4 alkyl optionally substituted by a group -OR 5 or -SR 5 ;
R3 es C1-4 alquilo o Cyi, donde C1-4 alquilo está opcionalmente sustituido por un grupoR 3 is C1-4alkyl or Cyi, where C1-4alkyl is optionally substituted by a group
R7; R 7 ;
A es un grupo de fórmula II, III, IV, V o VI: A is a group of formula II, III, IV, V or VI:
Figure imgf000027_0001
Figure imgf000027_0001
V VI  V VI
R4 es -NO2, halógeno o -OCF3; R 4 is -NO2, halogen, or -OCF 3 ;
R5 es C1 -4 alquilo opcionalmente sustituido por un grupo -NH2 o -OR6; R 5 is C1 -4 alkyl optionally substituted by a group -NH 2 or -OR 6 ;
Re es C1 -4 alquilo opcionalmente sustituido por un grupo -NH2; Re is C1-4alkyl optionally substituted by a group -NH 2 ;
R7 es -OC1 -4 alquilo, -NR8Rg, Cy2, -COC1 -4 alquilo o C2-4 alquenilo, donde C2-4 alquenilo está opcionalmente sustituido por un grupo fenilo; R 7 is -OC1 -4 alkyl, -NR 8 R g , Cy 2 , -COC1 -4 alkyl or C 2-4 alkenyl, where C 2-4 alkenyl is optionally substituted by a phenyl group;
Cyi es un heterociclo saturado de 4 a 6 miembros unido al resto de la molécula a través de un átomo de C o N disponible, que contiene 1 o 2 heteroátomos de N, donde Cyi está opcionalmente sustituido por un grupo C1 -4 alquilo, y donde el grupo C1 -4 alquilo está opcionalmente sustituido por uno o dos grupos fenilo;  Cyi is a 4-6 membered saturated heterocycle attached to the rest of the molecule through an available C or N atom, containing 1 or 2 N heteroatoms, where Cyi is optionally substituted by a C1-4alkyl group, and where the C1-4alkyl group is optionally substituted by one or two phenyl groups;
Cy2 es un fenilo o un heterociclo saturado o aromático de 5 o 6 miembros que contiene de 1 a 3 heteroátomos seleccionados de N y O, donde Cy2 se une al resto de la molécula a través de un átomo de N o C, cuando Cy2 es un heterociclo saturado puede estar opcionalmente fusionado a un anillo de piperidina formando un anillo espiránico, y donde Cy2 está opcionalmente sustituido por uno o más grupos R10; Cy 2 is a phenyl or a saturated or aromatic 5- or 6-membered heterocycle containing from 1 to 3 heteroatoms selected from N and O, where Cy 2 is attached to the rest of the molecule through an N or C atom, when Cy 2 is a saturated heterocycle may optionally be fused to a piperidine ring forming a spiranic ring, and where Cy 2 is optionally substituted by one or more R10 groups;
R8 es C1 -4 alquilo; R 8 is C1 -4 alkyl;
R9 es C1 -4 alquilo opcionalmente sustituido por uno o más grupos fenilo, y donde cada grupo fenilo está opcionalmente sustituido por un grupo halógeno; R 9 is C1-4alkyl optionally substituted by one or more phenyl groups, and where each phenyl group is optionally substituted by a halogen group;
cada R10 independientemente es vinilo, fenilo o Cy3, donde el grupo fenilo está sustituido por un grupo Rn ; each R10 independently is vinyl, phenyl or Cy 3 , where the phenyl group is substituted by an Rn group;
R1 1 es halógeno; y Cy3 es un heterociclo saturado de 5 o 6 miembros, que contiene 1 o 2 heterátomos de N, que se une al resto de la molécula a través de un átomo de N o C disponible y que está opcionalmente sustituido por un grupo Ci-4 alquilo, donde el grupo Ci-4 alquilo está opcionalmente sustituido por uno o dos grupos fenilo. R1 1 is halogen; and Cy 3 is a 5- or 6-membered saturated heterocycle, containing 1 or 2 N hetero atoms, that binds to the rest of the molecule through an available N or C atom and is optionally substituted by a Ci -4 group alkyl, where the Ci -4 alkyl group is optionally substituted by one or two phenyl groups.
2.- El compuesto de fórmula I según el uso de la reivindicación 1 , donde la bacteria del género Helicobacter es de la especie Helicobacter pylori. 2. The compound of formula I according to the use of claim 1, wherein the bacterium of the genus Helicobacter is of the species Helicobacter pylori.
3.- El compuesto de fórmula I según el uso de cualquiera de las reivindicaciones 1 o 2, donde Ri es metilo, isopropilo, -CH2OR5, -CH2SR5, -CH2OCONH2, -NH2 o -CN. 3. The compound of formula I according to the use of any of claims 1 or 2, where Ri is methyl, isopropyl, -CH 2 OR 5 , -CH 2 SR 5 , -CH 2 OCONH 2 , -NH 2 or - CN.
4.- El compuesto de fórmula I según el uso de cualquiera de las reivindicaciones 1 a 3, donde R2 es Ci-4 alquilo, y preferiblemente donde R2 es metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo o tert-butilo, preferiblemente donde R2 es metilo, etilo o isopropilo, y más preferiblemente donde R2 es metilo. 4. The compound of formula I according to the use of any of claims 1 to 3, where R 2 is Ci -4 alkyl, and preferably where R 2 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl or tert-butyl, preferably where R 2 is methyl, ethyl or isopropyl, and more preferably where R 2 is methyl.
5.- El compuesto de fórmula I según el uso de cualquiera de las reivindicaciones 1 a 4, donde R3 es Ci-4 alquilo opcionalmente sustituido por un grupo R7. 5. The compound of formula I according to the use of any of claims 1 to 4, wherein R 3 is Ci -4 alkyl optionally substituted by a group R 7 .
6.- El compuesto de fórmula I según el uso de cualquiera de las reivindicaciones 1 a 5, donde R4 es -N02, -Cl o -OCF3, y preferiblemente -N02 o -Cl. 6. The compound of formula I according to the use of any of claims 1 to 5, where R 4 is -N0 2 , -Cl or -OCF 3 , and preferably -N0 2 or -Cl.
7.- El compuesto de fórmula I según el uso de cualquiera de las reivindicaciones 1 a 6, donde A es un grupo de fórmula II o III. 7.- The compound of formula I according to the use of any of claims 1 to 6, where A is a group of formula II or III.
8.- El compuesto de fórmula I según el uso de cualquiera de las reivindicaciones 1 a 7, donde R8 es metilo. 8. The compound of formula I according to the use of any of claims 1 to 7, where R 8 is methyl.
9.- El compuesto de fórmula I según el uso de cualquiera de las reivindicaciones 1 a 8, donde R9 es Ci-4 alquilo sustituido por uno o dos grupos fenilo, y donde cada grupo fenilo está opcionalmente sustituido por un grupo halógeno. 9. The compound of formula I according to the use of any of claims 1 to 8, where R 9 is Ci -4 alkyl substituted by one or two phenyl groups, and where each phenyl group is optionally substituted by a halogen group.
10.- El compuesto de fórmula I según el uso de cualquiera de las reivindicaciones 1 a 9, donde Cyi es un grupo de fórmula Vil o VIII: 10. The compound of formula I according to the use of any of claims 1 to 9, wherein Cyi is a group of formula Vil or VIII:
Figure imgf000029_0001
Figure imgf000029_0001
Vil VIII  Vil VIII
1 1 .- El compuesto de fórmula I según el uso de cualquiera de las reivindicaciones 1 a 10, donde Cy2 es un fenilo opcionalmente sustituido por uno o más grupos Río. January 1 .- The compound of formula I according to the use of any of claims 1 to 10, wherein Cy 2 is phenyl optionally substituted by one or more groups R Y.
12.- El compuesto de fórmula I según el uso de la reivindicación 1 , donde el compuesto de fórmula I se selecciona de: 12. The compound of formula I according to the use of claim 1, wherein the compound of formula I is selected from:
Figure imgf000029_0002
Figure imgf000029_0002
Nicardipino, Nisoldipino, Nimodipino,
Figure imgf000029_0003
Nicardipine, Nisoldipine, Nimodipine,
Figure imgf000029_0003
Nitrendipino, Lercanidipino, y Nifedipino.  Nitrendipine, Lercanidipine, and Nifedipine.
13.- El compuesto de fórmula I según el uso de la reivindicación 12, donde el compuesto de fórmula I se selecciona de:
Figure imgf000030_0001
13. The compound of formula I according to the use of claim 12, wherein the compound of formula I is selected from:
Figure imgf000030_0001
Nimodipino, y Nitrendipino.  Nimodipine, and Nitrendipine.
14.- El compuesto de fórmula I según el uso de cualquiera de las reivindicaciones 1 a 13, donde la enfermedad causada por una infección es una patología gastrointestinal. 14. The compound of formula I according to the use of any of claims 1 to 13, wherein the disease caused by an infection is a gastrointestinal pathology.
15.- El compuesto de fórmula I según el uso de la reivindicación 14, donde la patología gastrointestinal se selecciona de gastritis aguda, gastritis crónica, duodenitis, dispepsia funcional, úlcera gástrica, úlcera duodenal, adenocarcinoma gástrico y linfoma de tejido linfoide asociado a mucosa (linfoma MALT). 15. The compound of formula I according to the use of claim 14, wherein the gastrointestinal pathology is selected from acute gastritis, chronic gastritis, duodenitis, functional dyspepsia, gastric ulcer, duodenal ulcer, gastric adenocarcinoma and lymphoid tissue lymphoma associated with mucosa (MALT lymphoma).
16.- Composición farmacéutica que comprende al menos un compuesto de fórmula I según cualquiera de las reivindicaciones 1 a 13, para su uso en el tratamiento y/o prevención de una infección causada por una bacteria del género Helicobacter o para su uso en el tratamiento y/o prevención de una enfermedad causada por una infección causada por una bacteria del género Helicobacter. 16.- Pharmaceutical composition comprising at least one compound of formula I according to any of claims 1 to 13, for use in the treatment and / or prevention of an infection caused by a bacterium of the genus Helicobacter or for use in treatment and / or prevention of a disease caused by an infection caused by a bacterium of the Helicobacter genus.
PCT/ES2019/070710 2018-10-19 2019-10-18 4-phenyl dihydropyridine derivatives for the treatment and/or prevention of an infection or disease caused by helicobacter WO2020079307A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201831019A ES2754900A1 (en) 2018-10-19 2018-10-19 4-Phenyldihydropyridine derivatives for the treatment and/or prevention of an infection or disease caused by Helicobacter (Machine-translation by Google Translate, not legally binding)
ESP201831019 2018-10-19

Publications (1)

Publication Number Publication Date
WO2020079307A1 true WO2020079307A1 (en) 2020-04-23

Family

ID=70273829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070710 WO2020079307A1 (en) 2018-10-19 2019-10-18 4-phenyl dihydropyridine derivatives for the treatment and/or prevention of an infection or disease caused by helicobacter

Country Status (2)

Country Link
ES (1) ES2754900A1 (en)
WO (1) WO2020079307A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152415A1 (en) * 2022-02-10 2023-08-17 Fundación Instituto de Investigación Sanitaria Aragón Compounds for the treatment and/or prevention of an infection or disease caused by helicobacter or campylobacter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
K MAZUMDAR ET AL.: "Potential role of the cardiovascular non-antibiotic amlodipine in the treatment of microbial infections", INTERNATIONAL JOURNAL ANTIMICROBIAL AGENTS, vol. 36, 2010, pages 295 - 302, XP027230486 *
KA KUMAR ET AL.: "Amlodipine: a cardiovascular drug with powerful antimicrobial property", ACTA MICROBIO. POLONIA, vol. 52, 2003, pages 285 - 292, XP032548172, Retrieved from the Internet <URL:https://www.ncbi.nlm.nih.gov/pubmed/14743981> [retrieved on 20190605] *
P B YAZBEK ET AL.: "Challenges to the treatment and new perspectives for the erradication of Helicobacter pylori", DIGESTIVE DISEASES AND SCIENCES, vol. 60, 2015, pages 2901 - 2912, XP035547886, ISSN: 1573--2568, [retrieved on 20190605] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152415A1 (en) * 2022-02-10 2023-08-17 Fundación Instituto de Investigación Sanitaria Aragón Compounds for the treatment and/or prevention of an infection or disease caused by helicobacter or campylobacter

Also Published As

Publication number Publication date
ES2754900A1 (en) 2020-04-20

Similar Documents

Publication Publication Date Title
EA021424B1 (en) Thiazolopyridine sirtuin modulating compounds
Wang et al. Phosphoglycerate kinase enhanced immunity of the whole cell of Streptococcus agalactiae in tilapia, Oreochromis niloticus
CN110678208B (en) Membrane fusion lipid nanoparticles and methods of manufacture and use for producing therapeutic proteins and for therapy
US9540389B2 (en) Antimicrobial potentiators
US11357770B2 (en) Method of treating immunoglobulin light chain amyloidosis
US20220280630A1 (en) Vaccine compositions and methods of selecting antigens
KR20190084097A (en) Attenuation of bacterial virulence by weakening bacterial folate transport
ES2620529T3 (en) Microcin S. bacterially formed, a new antimicrobial peptide, effective against pathogenic microorganisms, for example, enterohemorrhagic Escherichia Coli (EHEC)
AU2018348796B2 (en) Zinc ionophores and uses thereof
JP2022191325A (en) Novel compounds
WO2020079307A1 (en) 4-phenyl dihydropyridine derivatives for the treatment and/or prevention of an infection or disease caused by helicobacter
HUT77048A (en) Hemoglobin receptors from neisseriae
Jones et al. Who's winning the war? Molecular mechanisms of antibiotic resistance in Helicobacter pylori
KR20050016334A (en) Attenuated gram negative bacteria
WO2019079759A1 (en) Broad spectrum antivirulence, anti-persistence compounds
US11896584B2 (en) Oxazolidinone for treatment of infections with Mycobacterium tuberculosis
BR112016012580B1 (en) ANTIGEN CHIMERA, ANTIGEN COMPOSITION, VACCINE, METHOD OF PREPARATION OF THE SAME AND CASSETTE OF THE SAME
JP2014523910A (en) Inhibitors of bacterial type III secretion apparatus
CN110548021A (en) Application of long-chain unsaturated fatty acid in preparation of composition for preventing Edwardsiella
CN117425475A (en) Methods of treating cancer
ES2948122A1 (en) Compounds for the treatment and/or prevention of an infection or disease caused by Helicobacter or Campylobacter (Machine-translation by Google Translate, not legally binding)
US10251869B2 (en) Compositions and methods of inhibiting metallo-β-lactamases
US9988341B2 (en) Bacterial topoisomerase inhibitors and use thereof
KR102701302B1 (en) Novel use of compound having anti-virulence activity and anti-biofilm formation activity
JP7395642B2 (en) Monoamidine and diamidine endo-exonuclease inhibitors and methods of inhibiting endo-exonuclease activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874550

Country of ref document: EP

Kind code of ref document: A1