WO2020078283A1 - 光学元件及其监测系统和方法、主动发光模组、终端 - Google Patents

光学元件及其监测系统和方法、主动发光模组、终端 Download PDF

Info

Publication number
WO2020078283A1
WO2020078283A1 PCT/CN2019/110831 CN2019110831W WO2020078283A1 WO 2020078283 A1 WO2020078283 A1 WO 2020078283A1 CN 2019110831 W CN2019110831 W CN 2019110831W WO 2020078283 A1 WO2020078283 A1 WO 2020078283A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
detection line
microprocessor
laser
emitting module
Prior art date
Application number
PCT/CN2019/110831
Other languages
English (en)
French (fr)
Inventor
史斌
唐玮
宋小刚
杨兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19873016.0A priority Critical patent/EP3848850B1/en
Priority to US17/285,193 priority patent/US20210399517A1/en
Priority to BR112021007049-4A priority patent/BR112021007049A2/pt
Priority to JP2021546038A priority patent/JP7240516B2/ja
Priority to ES19873016T priority patent/ES2970082T3/es
Priority to KR1020217012511A priority patent/KR102516443B1/ko
Publication of WO2020078283A1 publication Critical patent/WO2020078283A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/041Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • G06V40/166Detection; Localisation; Normalisation using acquisition arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/19Sensors therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06825Protecting the laser, e.g. during switch-on/off, detection of malfunctioning or degradation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses

Definitions

  • the invention relates to the technical field of electronic terminal equipment, in particular to an optical element and its monitoring system and method, active light emitting module and terminal.
  • 3D sensing technology is a research hotspot in the field of electronic terminal devices (such as mobile phones).
  • 3D sensing technology is a depth sensing technology, which can further improve the face recognition or iris recognition function, enhance the face and object recognition function of the terminal camera, and is suitable for augmented reality, games, automatic driving and other functions.
  • This type of active light-emitting module usually includes a high-power laser, which is actively projected on the human face through the laser to realize face recognition. Since the laser emits laser light, a diffractive optical element (Diffractive Optical Element, DOE for short) or a diffuser (Diffuser) optical element such as Diffractive Optical Element (Diffuser) is set in the light exit direction of the laser to prevent the laser from directly hitting human eyes Damages the eyesight of human eyes.
  • the optical elements such as the diffractive optical component or the uniform light sheet are damaged or fall off, it may cause the laser light emitted by the high-power laser to leak out.
  • the invention provides an optical element, a monitoring system and method thereof, an active light-emitting module, and a terminal, which can monitor the abnormal state of damage and fall-off of optical elements such as diffractive optical components or uniform light sheets in the active light-emitting module in real time Turn off the laser when the component is damaged or falls off to avoid laser leakage.
  • the present invention adopts the following technical solutions:
  • a first aspect of the present invention provides an optical element including a base substrate and a detection line provided on one surface of the base substrate.
  • the detection line is configured to transmit electrical signals.
  • the optical element is applied to the active light-emitting module, and both ends of the detection line are respectively connected to the microprocessor of the active light-emitting module through wires, and the resistance value of the detection line or the two ends of the detection line are monitored in real time by the microprocessor Voltage value, when the resistance value of the detection line or the voltage value at both ends of the detection line changes abnormally, it means that the detection line is broken, or the connection between the detection line and the wire is open, so that the optical element attached to the detection line is broken or detached
  • the microprocessor is used to control the laser of the active light-emitting module to be turned off, thereby effectively avoiding the leakage of the laser emitted by the laser when the optical element is damaged or falling off, which may cause damage to the human eye.
  • the solution only needs to provide one layer of optical elements and detection lines (that is, only one conductive layer), the structure is simple, the manufacturing process is simple, and the cost is low.
  • the material of the detection line is a transparent conductive material to avoid blocking the light emitted by the laser.
  • the material of the detection line includes any one or more of indium tin oxide, indium zinc oxide, indium gallium zinc oxide, indium tin zinc oxide, and the like.
  • the surface of the base substrate where the detection line is located is equally divided into a plurality of areas, and each area is covered by at least one section of the detection line.
  • the detection line is covered as much as possible in each area of the optical element, ensuring that damage to all areas and even all areas of the optical element can be monitored, and the accuracy of monitoring is improved.
  • the coverage area of the detection line in each area is equal.
  • the width of the detection line in each area is equal.
  • the gap between adjacent parts of the detection line is equal. In this way, the accuracy and sensitivity of the monitoring can be further improved.
  • the detection line extends in a zigzag shape or a spiral shape, so that the detection line covers the various regions of the optical element as much as possible.
  • the optical element further includes a conductive pad disposed on the surface of the base substrate on the same side as the detection line, the conductive pad is located at the end of the detection line and is connected to the detection line The end of the is electrically connected. In this way, the wire can be electrically connected to the detection line through the conductive pad.
  • the materials of the conductive pad and the detection line are the same, so that the two are simultaneously formed in the same step, and the preparation steps are simplified.
  • the optical element further includes a protective layer covering the detection line, and the protective layer is provided with an opening to expose the conductive pad.
  • the protective layer can protect the detection line, and the opening is provided to facilitate the electrical connection between the end of the detection line or the conductive pad and the lead.
  • a second aspect of the present invention provides an active light emitting module.
  • the active light emitting module includes a module housing, a laser, a microprocessor, an optical element, and a wire.
  • the module housing includes a bottom substrate and a side wall.
  • the laser and microprocessor are mounted on the bottom substrate.
  • the optical element is mounted on the end of the side wall away from the bottom substrate, and the optical element is the optical element as described in any one of the above.
  • the wire is used to connect the two ends of the detection line of the optical element to the microprocessor.
  • the microprocessor is configured to monitor the resistance value of the detection line or the voltage value at both ends of the detection line in real time, determine whether the optical element is damaged or dropped according to the monitored resistance value or voltage value, and control the laser when determining that the optical element is damaged or dropped Closed, so as to effectively avoid the leakage of the laser light emitted by the laser when the optical element is damaged or falls off and may cause damage to the human eye.
  • the wire extends from the end of the detection line to the microprocessor inside the side wall.
  • the wire extends from the end of the detection wire to the microprocessor on the inner surface of the side wall.
  • the wire extends from the end of the detection wire to the microprocessor on the outer surface of the side wall. In this way, the connection between the detection line and the microprocessor is realized.
  • the active light-emitting module further includes a conductive electrode disposed at the junction of the end of the detection line and the lead, for electrically connecting the end of the detection line and the lead, thereby The electrical connection between the detection line and the wire is realized.
  • the material of the conductive electrode is conductive silver paste or solder, and the manufacturing process is simple and easy to implement.
  • a third aspect of the present invention provides a terminal including the active light emitting module as described in any one of the above.
  • the active light-emitting module can produce the same beneficial effects as the active light-emitting module provided in the second aspect of the present invention, which will not be repeated here.
  • a fourth aspect of the present invention provides a monitoring system for an optical element.
  • the monitoring system for the optical element includes a microprocessor, a power supply, and a laser connected in sequence.
  • the monitoring system of the optical element further includes the optical element as described in any one of the above, and both ends of the detection line of the optical element are respectively connected to the microprocessor.
  • the microprocessor is configured to monitor the resistance value of the detection line or the voltage value at both ends of the detection line in real time, determine whether the optical element is damaged or dropped according to the monitored resistance value or voltage value, and control the power supply to stop when the optical element is damaged or dropped
  • the laser is powered to turn off the laser, thereby effectively avoiding the leakage of the laser emitted by the laser when the optical element is damaged or falling off, which may cause injury to human eyes.
  • a fifth aspect of the present invention provides an optical element monitoring method.
  • the optical element monitoring method is applied to the optical element monitoring system described above.
  • the optical element monitoring method includes the following steps: microprocessor real-time monitoring detection The resistance value of the wire.
  • the microprocessor judges whether the monitored resistance value exceeds the set resistance threshold range: if it is, the microprocessor controls the power supply to stop supplying power to the laser; if not, it monitors the resistance value of the detection line at the next moment.
  • the resistance threshold range is set as a numerical range that fluctuates up and down around the detection line when the resistance value is not broken.
  • the microprocessor monitors the resistance value across the detection line in real time, including the following steps: the microprocessor monitors the voltage value across the detection line in real time. The microprocessor converts the monitored voltage value into a resistance value. In this way, a specific solution for monitoring the resistance value of the detection line in real time is provided.
  • a sixth aspect of the present invention provides an optical element monitoring method.
  • the optical element monitoring method is applied to the optical element monitoring system described above.
  • the optical element monitoring method includes the following steps: microprocessor real-time monitoring detection The voltage value across the line.
  • the microprocessor judges whether the monitored voltage value exceeds the set voltage threshold range: if it is, the microprocessor controls the power supply to stop supplying power to the laser; if not, it monitors the voltage value at both ends of the detection line at the next moment.
  • the set voltage threshold value range is a numerical range in which the voltage value around the detection line fluctuates up and down when not broken.
  • FIG. 1 is a schematic structural diagram of a terminal provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an application scenario of an optical element monitoring system provided by an embodiment of the present invention.
  • Figure 3 is a partial enlarged view of Figure 2;
  • 4a is a schematic diagram of a typical structure of an active light emitting module
  • 4b is a top view of the supporting structure in the active light emitting module
  • 5a is an architectural diagram of a monitoring system for optical elements provided by an embodiment of the present invention.
  • 5b is a circuit diagram of a monitoring system for optical elements provided by an embodiment of the present invention.
  • FIG. 6 is a first schematic diagram of the detection line in the optical element monitoring system provided by the embodiment of the present invention.
  • FIG. 8 is a second schematic diagram of the detection line in the optical element monitoring system provided by the embodiment of the present invention.
  • 9a-9c are three schematic structural views of an active light emitting module provided by an embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional structural diagram of an optical element provided by an embodiment of the present invention.
  • FIG. 11a to 11d are schematic top plan views of the film layers in the optical element provided by the embodiments of the present invention.
  • FIG. 13 is a second flowchart of the optical element monitoring method provided by the embodiment of the present invention.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more.
  • Embodiments of the present invention provide a monitoring system and monitoring method for optical components.
  • the monitoring system and monitoring method for optical components can be applied to mobile phones, wearable devices, AR (augmented reality) ⁇ VR (virtual reality) devices, tablet computers, Any terminal such as a notebook computer, UMPC (Super Mobile Personal Computer), netbook, PDA (Personal Digital Assistant), etc., the embodiments of the present invention do not make any limitation on this.
  • the terminal in the embodiment of the present invention may be a mobile phone 100.
  • the following uses the mobile phone 100 as an example to specifically describe the embodiment.
  • the mobile phone 100 may specifically include: a processor 101, a radio frequency (RF) circuit 102, a memory 103, a touch screen 104, a Bluetooth device 105, one or more sensors 106, a Wi-Fi device 107, a positioning device 108,
  • the audio circuit 109, the peripheral interface 110, and the power supply device 111 are components. These components can communicate through one or more communication buses or signal lines (not shown in FIG. 2).
  • RF radio frequency
  • the hardware structure shown in FIG. 2 does not constitute a limitation on the mobile phone, and the mobile phone 100 may include more or less components than those illustrated, or combine certain components, or have different component arrangements.
  • the processor 101 is the control center of the mobile phone 100, and uses various interfaces and lines to connect various parts of the mobile phone 100, by running or executing an application program (App for short) stored in the memory 103, and calling data stored in the memory 103, Perform various functions of the mobile phone 100 and process data.
  • the processor 101 may include one or more processing units.
  • the processor 101 may be a Kirin 960 chip manufactured by Huawei Technologies Co., Ltd.
  • the radio frequency circuit 102 can be used for receiving and sending wireless signals during the process of receiving and sending information or talking.
  • the radio frequency circuit 102 may receive the downlink data of the base station and process it to the processor 101.
  • uplink data is sent to the base station.
  • the radio frequency circuit includes but is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency circuit 102 can also communicate with other devices through wireless communication.
  • the wireless communication may use any communication standard or protocol, including but not limited to global mobile communication system, general packet radio service, code division multiple access, broadband code division multiple access, long-term evolution, e-mail, and short message service.
  • the memory 103 is used to store application programs and data, and the processor 101 executes various functions and data processing of the mobile phone 100 by running the application programs and data stored in the memory 103.
  • the memory 103 mainly includes a storage program area and a storage data area, where the storage program area may store an operating system and application programs required by at least one function (such as a sound playback function, an image playback function, etc.).
  • the storage data area may store data created according to the use of the mobile phone 100 (such as audio data, phone book, etc.).
  • the memory 103 may include a high-speed random access memory, and may also include a non-volatile memory, such as a magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the memory 103 may store various operating systems, such as the iOS operating system developed by Apple Inc. and the Android operating system developed by Google Inc., etc.
  • the touch screen 104 may include a touch panel 104-1 and a display screen 104-2.
  • the touchpad 104-1 can collect touch events on or near the user of the mobile phone 100 (for example, the user uses any suitable object such as a finger, a stylus, etc. on the touchpad 104-1 or on the touchpad 104 -1 near operation), and send the collected touch information to other devices such as the processor 101.
  • the user's touch event in the vicinity of the touchpad 104-1 can be called floating touch.
  • Floating touch can mean that the user does not need to directly touch the touchpad to select, move, or drag an object (such as an icon, etc.), but only needs the user to be near the terminal to perform the desired function.
  • the terms "touch”, “contact”, etc. do not imply direct contact with the touch screen, but near or close contact.
  • two capacitive sensors may be provided in the touch panel 104-1, namely, a mutual capacitance sensor and a self-capacitance sensor.
  • the two capacitive sensors may be alternately arranged in an array on the touch panel 104-1.
  • the mutual capacitance sensor is used to realize the normal traditional multi-touch, that is, detect the gesture of the user when touching the touch panel 104-1.
  • the self-capacitance sensor can generate a stronger signal than the mutual capacitance, thereby detecting the finger induction farther from the touchpad 104-1.
  • the signal generated by the self-capacitance sensor is larger than the signal generated by the mutual capacitance sensor, so that the mobile phone 100 can detect that it is above the screen, for example, above the touchpad 104-1
  • the user's gesture at 20mm the signal generated by the self-capacitance sensor is larger than the signal generated by the mutual capacitance sensor, so that the mobile phone 100 can detect that it is above the screen, for example, above the touchpad 104-1.
  • the touch panel 104-1 capable of floating touch can be implemented by capacitive, infrared light sensing, ultrasonic waves, and the like.
  • the touch panel 104-1 may be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the display screen 104-2 may be used to display information input by the user or provided to the user and various menus of the mobile phone 100.
  • the display screen 104-2 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the touchpad 104-1 can be overlaid on the display screen 104-2. When the touchpad 104-1 detects a touch event on or near it, it is transmitted to the processor 101 to determine the type of touch event, and then processed The device 101 may provide corresponding visual output on the display screen 104-2 according to the type of touch event.
  • the touchpad 104-1 and the display screen 104-2 are used as two independent components to realize the input and output functions of the mobile phone 100, in some embodiments, the touchpad 104- 1 Integrated with the display screen 104-2 to realize the input and output functions of the mobile phone 100.
  • the touch screen 104 is formed by stacking multiple layers of materials. Only the touch panel (layer) and the display screen (layer) are shown in the embodiment of the present invention, and other layers are not described in the embodiment of the present invention. .
  • the touchpad 104-1 may cover the display screen 104-2, and the size of the touchpad 104-1 is larger than the size of the display screen 104-2, so that the display screen 104 -2 is completely covered under the touchpad 104-1, or the above-mentioned touchpad 104-1 can be configured on the front of the mobile phone 100 in the form of a full board, that is, the user's touch on the front of the mobile phone 100 can be perceived by the mobile phone, In this way, you can achieve a full touch experience on the front of the phone.
  • the touchpad 104-1 is arranged on the front of the mobile phone 100 in the form of a full board
  • the display screen 104-2 may also be arranged on the front of the mobile phone 100 in the form of a full board, so that the front of the phone It can realize the structure without border.
  • the mobile phone 100 may also have a fingerprint recognition function.
  • the fingerprint reader 112 may be disposed on the back of the mobile phone 100 (for example, below the rear camera), or on the front of the mobile phone 100 (for example, below the touch screen 104).
  • the fingerprint collection device 112 may be configured in the touch screen 104 to implement the fingerprint recognition function, that is, the fingerprint collection device 112 may be integrated with the touch screen 104 to implement the fingerprint recognition function of the mobile phone 100.
  • the fingerprint collecting device 112 is configured in the touch screen 104, and may be a part of the touch screen 104, or may be configured in the touch screen 104 in other ways.
  • the fingerprint collection device 112 can also be implemented as a full-board fingerprint collection device. Therefore, the touch screen 104 can be regarded as a panel that can perform fingerprint recognition at any position.
  • the fingerprint collecting device 112 may send the collected fingerprint to the processor 101, so that the processor 101 processes the fingerprint (eg, fingerprint verification, etc.).
  • the main component of the fingerprint collecting device 112 in the embodiment of the present invention is a fingerprint sensor, which may use any type of sensing technology, including but not limited to optical, capacitive, piezoelectric, or ultrasonic sensing technology.
  • the mobile phone 100 may also include a Bluetooth device 105 for implementing data exchange between the mobile phone 100 and other short-range terminals (such as mobile phones, smart watches, etc.).
  • the Bluetooth device 105 in the embodiment of the present invention may be an integrated circuit or a Bluetooth chip.
  • the mobile phone 100 may also include at least one sensor 106, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display screen of the touch screen 104 according to the brightness of the ambient light, and the proximity sensor may close the display screen when the mobile phone 100 moves to the ear Power supply.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when at rest, and can be used to identify mobile phone gesture applications (such as horizontal and vertical screen switching, related Games, magnetometer posture calibration), vibration recognition related functions (such as pedometer, tap), etc.
  • the gyro, barometer, hygrometer, thermometer, infrared sensor and other sensors that can be configured on the mobile phone 100, they will not be repeated here.
  • the Wi-Fi device 107 is used to provide the mobile phone 100 with network access following Wi-Fi related standard protocols.
  • the mobile phone 100 can be connected to the Wi-Fi access point through the Wi-Fi device 107, thereby helping the user to send and receive emails, Browsing web pages and accessing streaming media, etc., it provides users with wireless broadband Internet access.
  • the Wi-Fi device 107 may also serve as a Wi-Fi wireless access point, and may provide Wi-Fi network access for other terminals.
  • the positioning device 108 is used to provide a geographic location for the mobile phone 100. It can be understood that the positioning device 108 may specifically be a receiver of a positioning system such as a global positioning system (GPS) or a Beidou satellite navigation system, a Russian GLONASS, or the like. After receiving the geographic location sent by the positioning system, the positioning device 108 sends the information to the processor 101 for processing, or to the memory 103 for storage. In some other embodiments, the positioning device 108 may also be a receiver of an assisted global satellite positioning system (AGPS). The AGPS system assists the positioning device 108 to complete ranging and positioning services by serving as an auxiliary server.
  • AGPS assisted global satellite positioning system
  • the auxiliary positioning server communicates with a positioning device 108 (ie, GPS receiver) of the terminal, such as the mobile phone 100, through a wireless communication network to provide positioning assistance.
  • the positioning device 108 may also be a positioning technology based on Wi-Fi access points. Since each Wi-Fi access point has a globally unique MAC address, the terminal can scan and collect broadcast signals from surrounding Wi-Fi access points when Wi-Fi is turned on, so Wi-Fi access points can be obtained The MAC address broadcast by the Fi access point.
  • the terminal sends these data (such as MAC address) that can mark the Wi-Fi access point to the location server through the wireless communication network, and the location server retrieves the geographic location of each Wi-Fi access point and combines it with Wi-Fi broadcasting The strength of the signal is calculated, and the geographic location of the terminal is calculated and sent to the positioning device 108 of the terminal.
  • data such as MAC address
  • the location server retrieves the geographic location of each Wi-Fi access point and combines it with Wi-Fi broadcasting
  • the strength of the signal is calculated, and the geographic location of the terminal is calculated and sent to the positioning device 108 of the terminal.
  • the audio circuit 109, the speaker 113, and the microphone 114 may provide an audio interface between the user and the mobile phone 100.
  • the audio circuit 109 may transmit the converted electrical signal of the received audio data to the speaker 113, where the speaker 113 converts it into a sound signal and outputs it.
  • the microphone 114 converts the collected sound signal into an electrical signal, which is received by the audio circuit 109 and then converted into audio data, and then outputs the audio data to the RF circuit 102 to be sent to, for example, another mobile phone, or outputs the audio data to Memory 103 for further processing.
  • the peripheral interface 110 is used to provide various interfaces for external input / output devices (such as a keyboard, a mouse, an external display, an external memory, a user identification module card, etc.). For example, it is connected to a mouse through a universal serial bus (USB) interface, and is connected to a user identification module card (SIM) card provided by a telecom operator through metal contacts on the card slot of the user identification module.
  • the peripheral interface 110 may be used to couple the above-mentioned external input / output peripheral devices to the processor 101 and the memory 103.
  • the mobile phone 100 may further include a power supply device 111 (such as a battery and a power management chip) that supplies power to various components.
  • a power supply device 111 such as a battery and a power management chip
  • the battery may be logically connected to the processor 101 through the power management chip, so that the power supply device 111 can manage charging, discharging, and power consumption management. And other functions.
  • the mobile phone 100 may further include a camera (front camera and / or rear camera), a flash, a micro-projection device, a near field communication (NFC) device, etc., which will not be repeated here.
  • a camera front camera and / or rear camera
  • a flash a flash
  • a micro-projection device a micro-projection device
  • NFC near field communication
  • a 3D sensing module may be integrated therein to enable the terminal to realize a 3D sensing function.
  • Ordinary digital cameras can only obtain flat color images without the depth information of the images. This means that when we see a photo, we only know how wide and high this person's face is, but we don't know the three-dimensional structure of his face, for example: the height of the nose bridge relative to the cheek, the depth of the eye socket relative to the cheek, etc.
  • the technologies to realize 3D sensing mainly include the following two types:
  • TOF Time of Flight
  • high-power lasers such as VCSEL (Vertical-Cavity, Surface-Emitting Laser, single-point vertical cavity surface emitting laser)
  • VCSEL Vertical-Cavity, Surface-Emitting Laser, single-point vertical cavity surface emitting laser
  • the infrared light image sensor can be used to measure the time of the reflected laser light at different depths on the surface of the object to calculate the object The distance (depth) of different positions on the surface.
  • Structured light technology using laser to produce different light patterns (lights with certain structural characteristics, called structured light), after the light pattern is projected on the surface of the object, it is reflected and reflected by the position of the object surface at different depths After the light pattern will appear distorted.
  • the laser struck a straight stripe of light onto the finger. Because the surface of the finger is a three-dimensional circular arc, the stripe reflected by the straight stripe after the curved finger surface becomes a circular arc stripe. After the arc-shaped stripes are captured by the infrared light image sensor, the terminal can reverse the three-dimensional structure of the finger according to the reflected arc-shaped stripes.
  • a TOF or structured light 3D sensing module may be provided on the top of the mobile phone 100, such as the “bangs” position of the mobile phone 100 (that is, the area AA shown in FIG. 2).
  • the structured light 3D sensing module 115 is arranged in the mobile phone 100 as follows: the structured light 3D sensing module 115 includes an infrared light camera 115 -1, floodlight illuminator 115-2, proximity sensor 115-3, infrared image sensor 115-4, dot matrix projector 115-5 and other modules.
  • the flood illuminator 115-2 includes a low-power laser (such as a VCSEL) and a uniform light sheet.
  • the dot matrix projector 115-5 includes a high-power laser (such as VCSEL) and diffractive optical components.
  • the face recognition process of the structured light 3D sensing module 115 described above is as follows:
  • the proximity sensor 115-3 senses that an object approaches the mobile phone 100, thereby
  • the processor 101 of 100 sends out a signal that an object is approaching.
  • the processor 101 receives the signal that an object is approaching, and controls the flood illuminator 115-2 to start.
  • the low-power laser in the flood illuminator 115-2 projects infrared laser light onto the surface of the object.
  • the surface of the object reflects the infrared laser light projected by the floodlight 115-2.
  • the infrared camera 115-1 captures the infrared laser light reflected by the surface of the object, thereby acquiring image information on the surface of the object, and then capturing the obtained image
  • the information is uploaded to the processor 101.
  • the processor 101 determines whether the object close to the mobile phone 100 is a human face according to the uploaded image information.
  • the dot matrix projector 115-5 is controlled to start.
  • the high-power laser in the dot matrix projector 115-5 emits infrared laser light.
  • These infrared lasers form many (such as about 30,000) structures through the action of the diffractive optical components in the dot matrix projector 115-5.
  • the spot of light is projected onto the surface of the human face.
  • the array formed by these structured light spots is reflected at different positions on the face surface, and the infrared light camera 115-1 captures the structured light spots reflected by the face surface, thereby obtaining depth information at different positions on the face surface, Then, the acquired depth information is uploaded to the processor 101.
  • the processor 101 compares and calculates the uploaded depth information with the user's facial feature data pre-stored in the mobile phone 100 to identify whether the face close to the mobile phone 100 is the user's face of the mobile phone 100, and if so, then The mobile phone 100 is controlled to be unlocked; if not, the mobile phone 100 is controlled to remain locked.
  • TOF or structured light 3D sensing modules include modules capable of emitting laser light, for example: TOF 3D sensing module includes a high-power laser module, structured light 3D sensing module 115 dot matrix projector 115-5 and floodlight illuminator 115-2, hereinafter referred to as such modules as active light-emitting modules.
  • the active light-emitting module 1 mainly includes: an optical element 11, a laser 12, a microprocessor (MCU, Microcontroller Unit) 13 and a module housing 14 .
  • the module housing 14 includes a bottom substrate 14-2, a side wall 14-1 and a supporting structure 14-3. Please refer to FIG. 4b.
  • the supporting structure 14-3 is a ring-shaped structure, and the ring is disposed on the side wall 14-1
  • a clear aperture GG is formed.
  • the laser 12 and the microprocessor 13 are installed on the bottom substrate 14-2.
  • the microprocessor 13 is connected to the processor integrated on the main board of the terminal.
  • the active light emitting module 1 is applied to the mobile phone 100, the active The microprocessor 13 of the light emitting module 1 is connected to the processor 101 of the mobile phone 100.
  • the edge of the optical element 11 is fixed to the surface of the supporting structure 14-3 facing away from the laser 12 by viscose 17.
  • the microprocessor 13 is connected to the laser 12 and controls the laser 12 to emit laser light, and the laser light is emitted out of the active light-emitting module 1 through the optical element 11 through the clear aperture GG.
  • the active light-emitting module 1 is installed in a terminal such as a mobile phone 100, and its laser 12 side (ie, light-emitting side) is close to the inside of the terminal, and the optical element 11 side (ie, light-emitting side) faces the outside of the terminal to project laser light outward.
  • a terminal such as a mobile phone 100
  • its laser 12 side ie, light-emitting side
  • the optical element 11 side ie, light-emitting side
  • the type of the laser 12 may specifically be VCSEL, DFB (Distributed Feedback, Laser, distributed feedback laser, edge emitting laser, etc.
  • the type of the optical element 11 may specifically be uniform light sheet, diffractive optical component, Fresnel Lens, etc.
  • the active light-emitting module 1 is a module including a high-power laser in the TOF 3D sensing module
  • the optical element 11 may specifically be a uniform light sheet.
  • the optical element 11 may specifically be a diffractive optical component (DOE).
  • DOE diffractive optical component
  • the active light emitting module 1 is a floodlight illuminator in the structured light 3D sensing module
  • the optical element 11 may Can be a uniform light film.
  • the active light-emitting module 1 in the terminal ages and the reliability is reduced.
  • the occurrence of such conditions as water ingress and corrosion may cause the active light-emitting module 1 to The optical element 11 is damaged or falls off.
  • the laser light emitted by the laser 12 in the active light emitting module 1 will directly hit the human eye and hurt the human eye. If the laser 12 in the active light-emitting module 1 emits high-power laser light, the damage to human eyes will be more serious.
  • the optical element monitoring system includes: an optical element 11, a laser 12, a microprocessor 13, and a power supply 2.
  • the microprocessor 13, the power supply 2 and the laser 12 are connected in sequence, and the power supply 2 supplies power to the laser 12 under the control of the microprocessor 13.
  • the "power source 2" may be the power source of the terminal, such as the power source device 111 in the mobile phone 100.
  • a conductive detection line 11-1 is provided on the surface of the optical element 11, and both ends of the detection line 11-1 are connected to the microprocessor 13 through the wire 15 respectively.
  • the microprocessor 13 monitors the resistance value or detection of the detection line 11-1 in real time
  • the voltage value across the line 11-1, the detection line 11-1, the wire 15 and the microprocessor 13 form a monitoring circuit.
  • the resistance value of the detection line 11-1 or the voltage value across the detection line 11-1 changes abnormally, for example, the resistance value of the detection line 11-1 exceeds the set resistance threshold range, or the voltage value across the detection line 11-1 Exceeding the set voltage threshold range, it means that the monitoring circuit formed by the detection line 11-1, the wire 15 and the microprocessor 13 is open, it may be that the detection line 11-1 is broken, or the connection between the detection line 11-1 and the wire 15 An open circuit occurred.
  • the cause of the breakage of the detection line 11-1 may be that the optical element 11 attached to the detection line 11-1 is damaged.
  • the cause of an open circuit at the connection between the detection line 11-1 and the lead 15 may be that the optical element 11 attached to the detection line 11-1 has fallen off.
  • the microprocessor 13 controls the power supply 2 to stop supplying power to the laser 12, and the laser 12 is turned off. Thereby, the laser light emitted by the laser 12 is directly directed to the human eye and is not harmful to the human eye. Moreover, the above solution only needs to provide a layer of optical element 11 and a detection line 11-1 (that is, only one conductive layer is required), which has a simple structure, a simple manufacturing process, and a low cost.
  • the optical element 11 when the optical element 11 is damaged or detached, it will cause the detection line 11-1 to break itself, or cause the connection between the detection line 11-1 and the lead 15 to be disconnected, so the microprocessor 13 monitors at this time
  • the resistance value of the detection line 11-1 will become extremely large, even to infinity ( ⁇ ), or the voltage value across the detection line 11-1 is close to or equal to the voltage value provided by the microprocessor 13 to the entire monitoring circuit.
  • the "set resistance threshold range” mentioned above can be set to a value range that fluctuates up and down around the detection line 11-1 when the resistance value R is not broken, for example, “set resistance threshold range” can be set to Greater than or equal to 80% R, less than or equal to 120% R.
  • the “set resistance threshold range” may be set to be greater than or equal to 8K ⁇ and less than or equal to 12K ⁇ .
  • the "set voltage threshold range” mentioned above can be set to a value range that fluctuates up and down around the voltage value U shared by the entire monitoring circuit when the detection line 11-1 is not broken, for example, “set voltage The "threshold range” can be set to be greater than or equal to 80% U and less than or equal to 120% U.
  • the “set voltage threshold range” may be set to be greater than or equal to 0.64V and less than or equal to 0.96V.
  • the material of the detection line 11-1 may be a transparent conductive material, for example: ITO, IZO (indium zinc oxide), IGZO (indium gallium zinc oxide ), ITZO (indium tin zinc oxide), etc., to avoid blocking the light emitted by the laser 12.
  • the material of the detection line 11-1 can also be a metal conductive material, for example: silver (Ag), copper (Cu), chromium (Cr), etc.
  • the width and thickness of the detection line 11-1 of the metal material can be set smaller to reduce the blocking area and improve the light transmittance of the optical element 11.
  • the detection line 11-1 can be covered as much as possible to the various areas of the optical element 11.
  • the optical element 11 is equally divided into a plurality of areas, so that the coverage area of the detection line 11-1 in each area is within the same setting range. Further, the coverage area of the detection line 11-1 in each area is equal to ensure that damage to each area of the optical element 11 can be detected. It is conceivable that the number of areas into which the optical element 11 is divided is increased, and the detection line 11-1 is arranged in accordance with the aforementioned detection line 11-1 arrangement principle, which can further improve the accuracy and sensitivity of monitoring.
  • the widths of the detection lines 11-1 in different areas of the optical element 11 may be equal or unequal. Further, the widths of the detection lines 11-1 in different areas of the optical element 11 are equal. Exemplarily, as shown in FIG. 6, the widths d 1 and d 2 of the detection lines 11-1 in different areas of the optical element 11 are equal.
  • the gap between adjacent portions of the detection line 11-1 may be equal or unequal. Further, the gap between adjacent portions of the detection line 11-1 is equal. Exemplarily, as shown in FIG. 6, the gaps h 1 and h 2 between adjacent portions of the detection line 11-1 are equal.
  • the width and arrangement of the detection line 11-1 in each area of the optical element 11 can be made The degree of density is consistent, which further improves the accuracy and sensitivity of monitoring.
  • the width of the detection line 11-1 should not be too wide, otherwise it may cause that when the optical element 11 is partially damaged, the detection line 11-1 at the corresponding position will not break, or only a part of it will be broken, and some parts will remain connected, resulting in unmonitoring
  • the resistance value of the detection line 11-1 changes significantly, which affects the accuracy of monitoring.
  • the width of the detection line 11-1 should not be too narrow, otherwise the detection line 11-1 will easily break, and there may be factors other than the damage and fall of the optical element 11 that cause the detection line 11-1 to break, such as electrostatic shock It may cause misjudgment of the optical element 11 being damaged or falling off.
  • the width of the detection line 11-1 ranges from 1 ⁇ m to 500 ⁇ m, for example, from 30 ⁇ m to 100 ⁇ m.
  • the gap between the adjacent parts of the detection line 11-1 should not be too wide, otherwise it may cause that when the optical element 11 is partially damaged, the corresponding position is not covered by the detection line 11-1, resulting in the failure to detect the damage here, affecting the monitoring Sensitivity.
  • the gap between the adjacent parts of the detection line 11-1 should not be too narrow, otherwise, when the detection line 11-1 is etched to form, conductive detection line material is likely to remain between the adjacent parts of the detection line 11-1, resulting in the detection line 11-1
  • the adjacent parts are connected, which affects the monitoring sensitivity.
  • the value of the gap between the detection lines 11-1 ranges from 1 ⁇ m to 500 ⁇ m, for example, from 30 ⁇ m to 100 ⁇ m.
  • the embodiment of the present invention does not limit the specific pattern of the detection line 11-1, and several specific pattern designs of the detection line 11-1 are given below.
  • the main part of the detection line 11-1 adopts a fold-line design.
  • the main part of the detection line 11-1 adopts a spiral design.
  • the line type of the detection line 11-1 is not limited to a straight line, and it may be designed as a continuous line type such as a wavy line or a broken line.
  • the resistance value monitored by the microprocessor 13 is the overall resistance of the detection line 11-1, or the voltage value monitored by the microprocessor 13 is the voltage across the detection line 11-1.
  • the detection line 11-1 is broken, or the connection between the detection line 11-1 and the wire 15 is disconnected, and the microprocessor 13 can detect that the resistance value becomes infinite, or The voltage value becomes close to or equal to the voltage value provided by the microprocessor 13 to the entire monitoring circuit, thereby determining that the optical element 11 is damaged or detached.
  • the number of detection lines 11-1 may be multiple, for example, two or more than two, and both ends of each detection line 11-1 are connected to the microprocessor 13, a plurality of detection lines 11-1 form a parallel relationship with each other.
  • the resistance value monitored by the microprocessor 13 is the parallel resistance after multiple detection lines 11-1 are connected in parallel, or the voltage value monitored by the microprocessor 13 is after the multiple detection lines 11-1 are connected in parallel
  • the voltage value of the parallel resistance of the entire monitoring circuit is divided.
  • the microprocessor 13 detects that the resistance value becomes larger.
  • the voltage value becomes larger, and it is determined that the optical element 11 is damaged.
  • the entire monitoring circuit is open, and the microprocessor 13 can detect that the resistance value becomes infinity, or the voltage value becomes close to or equal to the voltage value provided by the microprocessor 13 to the entire monitoring circuit, thereby determining the optical element 11 Shedding.
  • the detection line 11-1 may be provided on the surface of the optical element 11 facing away from the laser 12, which facilitates the connection with the wire 15 Make electrical connections.
  • the detection line 11-1 may also be provided on the surface of the optical element 11 facing the laser 12, which is not limited in the embodiment of the present invention.
  • the detection line 11-1 may be prepared using a photolithography process.
  • the specific process may include: first, a detection line material (such as ITO, IZO, IGZO, etc.) is used to form a detection on the base substrate of the optical element 11
  • the thin film of the wire material and the thin film forming the detection wire material can adopt CVD (Chemical Vapor Deposition, chemical vapor deposition), sputtering, coating, printing and other processes.
  • CVD Chemical Vapor Deposition, chemical vapor deposition
  • sputtering coating, printing and other processes.
  • a photoresist layer is coated on the formed thin film, and the photoresist layer is exposed and developed using a reticle having a pattern of the detection line 11-1 to form photolithography having the pattern of the detection line 11-1 Glue layer.
  • the thin film of the detection line material is etched to form the detection line 11-1 with the set pattern, and the thin film of the detection line material is etched Dry etching, laser etching and other processes can be used.
  • the detection line 11-1 may be prepared by a magnetron sputtering process.
  • the specific process may include: using a mask plate having a pattern of the detection line 11-1 to block the base substrate of the optical element 11, A detection line material is sputtered on the base substrate of the optical element 11 to form a detection line 11-1 having a set pattern.
  • the detection line 11-1 is prepared by a screen printing process, and the detection line 11-1 with a set pattern is directly printed on the base substrate of the optical element 11.
  • conductive pads (PAD) 11-2 and detection line 11 may be provided at both ends of the detection line 11-1 respectively Both ends of -1 are electrically connected to corresponding wires 15 through corresponding conductive pads 11-2, respectively.
  • the two conductive pads 11-2 may be disposed at the edges or corners of the optical element 11, respectively. Further, it can be disposed at the two corners of the optical element 11 on the same side, which facilitates the connection of the wire 15.
  • the material of the conductive pad 11-2 is the same as the material of the detection line 11-1, so that the two are simultaneously formed in the same step, simplifying the preparation steps.
  • the width of the conductive pad 11-2 is larger than the width of the detection line 11-1, so that the detection line 11-1 is electrically connected to the conductive wire 15.
  • the wire 15 extends inside the side wall 14-1 of the module housing 14 of the active light-emitting module 1.
  • One end of the lead 15 extends to the optical element 11 and is connected to the detection line 11-1 (one end of the lead 15 can be connected to the detection line 11-1 through the conductive pad 11-2), and the other end of the lead 15 extends to the mold
  • the bottom substrate 14-2 of the group case 14 is connected to the microprocessor 13.
  • an in-mold injection process may be used to integrally form the lead wire 15 and the module housing 14.
  • a channel may be formed in the side wall 14-1 of the module housing 14, and then a solution of wire material is poured into the channel to form the wire 15.
  • the wire 15 extends on the inner surface of the side wall 14-1 of the module housing 14 of the active light-emitting module 1.
  • One end of the lead 15 extends to the optical element 11 and is connected to the detection line 11-1 (one end of the lead 15 can be connected to the detection line 11-1 through the conductive pad 11-2), and the other end of the lead 15 extends to the mold
  • the bottom substrate 14-2 of the group case 14 is connected to the microprocessor 13.
  • the wire 15 extends on the outer surface of the side wall 14-1 of the module housing 14 of the active light-emitting module 1.
  • One end of the lead 15 extends to the optical element 11 and is connected to the detection line 11-1 (one end of the lead 15 can be connected to the detection line 11-1 through the conductive pad 11-2), and the other end of the lead 15 extends to the mold
  • the bottom substrate 14-2 of the group case 14 is connected to the microprocessor 13.
  • the wire 15 may be formed on the inner or outer surface of the side wall 14-1 of the module case 14 by coating, printing, pasting, or the like.
  • a protective layer may be formed on the wire 15 to cover the wire 15 and prevent the wire 15 from being exposed and corroded.
  • the material of the protective layer can be an organic or inorganic material with water, oxygen and corrosion resistance.
  • the material of the wire 15 may be a metal conductive material such as silver (Ag), copper (Cu), chromium (Cr), or a semiconductor conductive material, or an oxide conductive material, etc., which have conductive properties.
  • a metal conductive material such as silver (Ag), copper (Cu), chromium (Cr), or a semiconductor conductive material, or an oxide conductive material, etc., which have conductive properties.
  • a conductive electrode may be attached to the junction of the detection wire 11-1 and the lead wire 15 to realize the connection of the detection wire 11-1 and the lead wire 15. Further, please refer to FIGS. 9a to 9c again.
  • the conductive electrode 16 can be attached to the phase of the conductive pad 11-2 and the lead 15 At the contact, the connection between the conductive pad 11-2 and the wire 15 is realized, and the connection between the detection wire 11-1 and the wire 15 is also achieved.
  • the material of the conductive electrode 16 may be conductive glue, and further, conductive silver glue may be used.
  • the conductive adhesive is dotted at the junction of the detection line 11-1 and the lead 15 or the junction of the conductive pad 11-2 and the lead 15 by dispensing.
  • the material of the conductive electrode 16 can also be solder.
  • an electric soldering iron may be used to solder the solder to the junction of the detection line 11-1 and the lead 15, or the junction of the conductive pad 11-2 and the lead 15.
  • an embodiment of the present invention also provides an optical element, as shown in FIGS. 10 and 11a, the optical element 11 includes: a base substrate 11-4 , And a detection line 11-1 provided on one side surface of the base substrate 11-4.
  • the connection relationship with other components, the material, the width, the gap between adjacent parts, the specific pattern, the number of layouts, the installation position, the preparation process, etc. please refer to the The description of the detection line 11-1 in the monitoring system of the provided optical element will not be repeated here.
  • the optical element 11 further includes a conductive pad 11-2.
  • the conductive pad 11-2 is arranged in the same layer as the detection line 11-1.
  • the connection relationship with other components, the material, the number of layouts, the installation position, the preparation process, etc. please refer to The description of the conductive pad 11-2 in the optical element monitoring system provided in the example will not be repeated here.
  • the optical element 11 further includes a first alignment mark 11-3.
  • the first alignment mark 11-3 is provided on the same layer as the detection line 11-1 and the conductive pad 11-2.
  • the first alignment mark 11-3 is used to mark the position of the optical element 11 so as to accurately fix the position of the optical element 11 in the active light-emitting module.
  • the material of the first alignment mark 11-3 may be the same as the material of the detection line 11-1 and the conductive pad 11-2, so that the three can be formed in the same step, simplifying the preparation process.
  • the number of the first alignment marks 11-3 is two, which are respectively located at two corner positions on the same side of the rectangular base substrate 11-4, for example, respectively located on the rectangular base substrate 11-4 The upper left corner and the upper right corner.
  • the optical element 11 further includes a microstructure layer 11-5.
  • the microstructure layer 11-5 is provided on the other side of the base substrate 11-4 opposite to the side where the detection line 11-1 is located. That is, the base substrate 11-4 includes opposite sides A and B, the detection line 11-1 is provided on the surface of the base substrate 11-4 on the A side, and the microstructure layer 11-5 is provided on the base substrate 11- 4 The surface on the B side.
  • the microstructure layer 11-5 is provided on the surface on the A side of the base substrate 11-4, and the detection line 11-1 is provided on the surface on the B side of the base substrate 11-4.
  • the microstructure layer 11-5 and the detection line 11-1 may also be provided on the surface on the same side of the base substrate 11-4, such as the surface on the A side or the surface on the B side. If the microstructure layer 11-5 and the detection line 11-1 are provided on the same surface of the base substrate 11-4, the detection line 11-1 may be provided on the microstructure layer 11-5 facing away from the base substrate 11-4 On one side, the detection line 11-1 may also be disposed between the microstructure layer 11-5 and the base substrate 11-4.
  • the microstructure layers 11-5 of different types of optical elements 11 include different microstructures.
  • the microstructure included in the microstructure layer 11-5 is a diffraction grating microstructure.
  • the microstructures included in the microstructure layer 11-5 are uniform light microstructures such as dots.
  • FIG. 11b Please refer to FIGS. 9a to 9c.
  • the edge of the optical element 11 is fixed to the bearing of the module housing 14 through the adhesive 17
  • the support structure 14-3 faces away from the laser 12
  • the microstructure layer 11-5 of the optical element 11 is located on the surface of the base substrate 11-4 facing the laser 12
  • the microstructure layer 11-5 is on the base substrate 11-4
  • the area of the orthographic projection on the surface is smaller than the area of the base substrate 11-4 to reserve the edge area of the surface of the base substrate 11-4 facing the laser 12, so that the adhesive 17 directly adheres the base substrate 11-4 toward the laser
  • the surface of 12 and the supporting structure 14-3 face away from the surface of the laser 12, and avoid contact with the microstructure layer 11-5, so that the bonding of the optical element 11 and the supporting structure 14-3 is more firm.
  • the optical element 11 further includes a second alignment mark 11-6, and the second alignment mark 11-6 is disposed on the detection line 11- of the base substrate 11-4
  • the second alignment mark 11-6 on the side where 1 is, and the second alignment mark 11-6 is formed after the detection line 11-1 is formed. That is, both the second alignment mark 11-6 and the detection line 11-1 are provided on the A side or the B side of the base substrate 11-4, and the second alignment mark 11-6 is formed after the detection line 11-1 is formed form.
  • the second alignment marks 11-6 are used to mark the position of the optical element 11 when assembling the optical element 11 in the active light-emitting module, so as to accurately fix the position of the optical element 11 in the active light-emitting module.
  • each film layer of the optical element 11 is not limited, and the second alignment marks 11-6 may be provided at any position in each film layer of the optical element 11, as long as it can play a role of marking the position of the optical element That's it.
  • the second alignment mark 11-6 is provided between the detection line 11-1 and the base substrate 11-4.
  • the second alignment mark 11-6 is provided between the microstructure layer 11-5 and the base substrate 11-4.
  • the second alignment mark 11-6 is provided on the side of the microstructure layer 11-5 facing away from the base substrate 11-4. and many more.
  • the number of second alignment marks 11-6 is not limited.
  • the position of the second alignment mark 11-6 in the optical element 11 may be located at the edge or corner of the optical element 1, that is, the orthographic projection of the second alignment mark 11-6 on the base substrate 11-4 The position may be at the edge or corner of the base substrate 11-4.
  • a second alignment mark 11-6 may be provided at each corner of the optical element 11.
  • the first alignment mark 11-3 and the second alignment mark 11-6 are provided in the optical element 11 at the same time, the first alignment mark 11- at the same position of the optical element 11 3 and the orthographic projection of the second alignment mark 11-6 on the base substrate 11-4 overlap.
  • the upper left corner (or upper right corner, or lower left corner, or lower right corner) of the rectangular optical element 11 is provided with both the first alignment mark 11-3 and the second alignment mark 11-6, then the upper left corner (or The orthographic projections of the first alignment mark 11-3 and the second alignment mark 11-6 on the base substrate 11-4 in the upper right corner, or the lower left corner, or the lower right corner) overlap.
  • the material of the second alignment mark 11-6 can be a material with low transmittance, such as metal, so that when the optical element 11 is assembled in the active light emitting module, the second alignment can be more clearly observed Mark 11-6.
  • the optical element 11 further includes a protective layer 11-7, which is disposed on the side of the detection line 11-1 of the base substrate 11-4, that is, The protective layer 11-7 and the detection line 11-1 are both provided on the A side or the B side of the base substrate 11-4. And the protective layer 11-7 covers the detection line 11-1.
  • the protective layer 11-7 covers the detection line 11-1 and functions to protect the detection line 11-1.
  • the material of the protective layer 11-7 can be selected from organic or inorganic materials with water, oxygen and corrosion resistance.
  • both the detection line 11-1 and the second alignment mark 11-6 are provided on the A side or the B side of the base substrate 11-4, the first The two alignment marks 11-6 are formed of a material that is susceptible to oxidation and corrosion, such as metal, then the protective layer 11-7 can cover the detection line 11-1 and the second alignment mark 11-6 to protect the detection line 11-1 and The second alignment mark is 11-6.
  • the protective layer 11-7 is provided with an opening 11-8 to expose the end of the detection line 11-1 or the conductive pad 11-2, which is convenient for the end of the detection line 11-1 or the conductive pad 11-2 is electrically connected to the lead 15.
  • the installation position of the opening 11-8 depends on the end of the detection line 11-1 or the position of the conductive pad 11-2.
  • an embodiment of the present invention also provides an active light emitting module, as shown in FIGS. 9a-9c, the active light emitting module 1 includes : Optical element 11, wire 15, laser 12, microprocessor 13, and module housing 14.
  • the module housing 14 at least includes a bottom substrate 14-2 and a side wall 14-1.
  • the optical element 11 is mounted on the end of the side wall 14-1 away from the base substrate 14-2.
  • the module housing 14 further includes a supporting structure 14-3, please refer to FIG.
  • the supporting structure 14-3 is a ring-shaped structure, and the ring is disposed on the inner surface of the side wall 14-1 to form a clear aperture GG
  • the edge of the optical element 11 is fixed on the surface of the supporting structure 14-3 facing away from the laser 12 through the glue 17.
  • the laser 12 and the microprocessor 13 are installed on the bottom substrate 14-2. The two are connected.
  • the microprocessor 13 controls the laser 12 to emit laser light. The laser light passes through the clear aperture GG and exits the active light emitting module 1 through the optical element 11.
  • the optical element 11 includes a detection line 11-1, and both ends of the detection line 11-1 are connected to the microprocessor 13 through the wire 15 respectively, and the microprocessor 13 monitors the resistance value of the detection line 11-1 or the detection line 11-1 in real time.
  • the voltage value of the terminal When the resistance value of the detection line 11-1 exceeds the set resistance threshold range, or when the voltage value across the detection line 11-1 exceeds the set voltage threshold range, it is determined that the optical element 11 is damaged or falls off.
  • the microprocessor 13 controls the power supply 2 to stop supplying power to the laser 12, and the laser 12 is turned off, thereby effectively avoiding the laser light emitted by the laser 12 directly hitting human eyes and causing damage to human eyes.
  • only one layer of optical element 11 and detection line 11-1 that is, only one layer of conductive layer
  • the structure is simple, the manufacturing process is simple, and the cost is low.
  • connection method of the detection wire 11-1 and the wire 15 and the arrangement method of the wire 15 on the side wall 14-1 of the module housing 14 can be referred to the optical element provided in the embodiment of the present invention
  • the description of the wire 15 in the monitoring system of the system will not be repeated here.
  • the active light-emitting module 1 is any module capable of emitting laser light, for example: TOF 3D sensing module includes a high-power laser module, structured light 3D sensing module 115 In the dot matrix projector 115-5 and floodlight illuminator 115-2.
  • an embodiment of the present invention also provides a terminal including the active light emitting module 1 provided by the embodiment of the present invention, which is used to provide a prescribed Laser light (for example, if the active light-emitting module 1 is a dot matrix projector 115-5, the prescribed light that the active light-emitting module 1 needs to provide is structured light) to assist the terminal to realize the 3D sensing function.
  • a prescribed Laser light for example, if the active light-emitting module 1 is a dot matrix projector 115-5, the prescribed light that the active light-emitting module 1 needs to provide is structured light
  • the active light emitting module 1 is installed in a terminal such as a mobile phone 100, its laser 12 side (and light emitting side) is close to the inside of the terminal, and the optical element 11 side (and light emitting side) faces the outside of the terminal to project the prescribed laser light outward Light.
  • the embodiments of the present invention also provide an optical element monitoring method, which is applied to the optical elements provided by the embodiments of the present invention
  • the monitoring method of the optical element includes the following steps:
  • S1 The microprocessor 13 monitors the resistance value of the detection line 11-1 in real time.
  • step S1 may specifically include the following steps:
  • the microprocessor 13 monitors the voltage value across the detection line 11-1 in real time. In this step, if the optical element 11 is not damaged or falls off, the monitored voltage value is close to or equal to the detection line 11-1 when it is not broken in the entire monitoring circuit (ie, the detection line 11-1, the wire 15 and the microprocessor 13 is the voltage value of the divided voltage in the monitoring circuit). If the optical element 11 is damaged or falls off and the monitoring circuit is open, the voltage value obtained by monitoring is close to or equal to the voltage value provided by the microprocessor 13 to the entire monitoring circuit.
  • the microprocessor 13 monitors the voltage value across the detection line 11-1 by applying a voltage to the detection line 11-1. Specifically, the microprocessor 13 provides a certain voltage to the entire monitoring circuit. The detection line 11-1 in is divided, so that the microprocessor 13 applies a voltage to the detection line 11-1.
  • the voltage provided by the microprocessor 13 to the entire monitoring circuit may be a continuous voltage signal or a discontinuous voltage signal, such as a pulse mode voltage signal to reduce power consumption and reduce the voltage signal to the detection line 11- 1 Corrosion caused by.
  • the voltage supplied by the microprocessor 13 to the entire monitoring circuit is supplied by the power supply of the terminal (for example, the power supply device 111 of the mobile phone 100).
  • the voltage value provided by the microprocessor 13 to the entire monitoring circuit is 2.85V
  • the resistance value when the detection line 11-1 is not broken is 10K ⁇ .
  • the detection line 11-1 points A voltage of 0.8V is obtained, that is, the voltage across the detection line 11-1 is 0.8V.
  • the microprocessor 13 converts the monitored voltage value into a resistance value.
  • the microprocessor 13 converts the voltage value obtained by real-time monitoring into a resistance value. If the monitored voltage value is close to or equal to the voltage value of the detection line 11-1 that is divided in the entire monitoring circuit when it is not broken, the converted resistance value should be close to or equal to the detection line 11-1 when it is not broken resistance. If the monitored voltage value is close to or equal to the voltage value provided by the microprocessor 13 to the entire monitoring circuit, the converted resistance value is infinite.
  • the microprocessor 13 judges whether the monitored resistance value exceeds the set resistance threshold range: if it is, the microprocessor 13 controls the power supply 2 to stop supplying power to the laser 12; if not, it returns to step S1.
  • the set resistance threshold range may be set to a value range that fluctuates up and down around the detection line 11-1 when the resistance value R is not broken, for example, the set resistance threshold range may be set to be greater than Or equal to 80% R, less than or equal to 120% R. If the resistance value obtained in step S1 exceeds the set resistance threshold range, it means that the monitoring circuit has an open circuit. It may be that the detection line 11-1 is broken, or the connection between the detection line 11-1 and the lead 15 is disconnected. This means that the optical element 11 is damaged or comes off.
  • the microprocessor 13 sends an interrupt signal to the power supply 2 to control the power supply 2 to stop supplying power to the laser 12, so that the laser 12 is turned off, so that when the optical element 11 is damaged or falls off, the laser light directly hits the human eye and damages the human eye. If the resistance value obtained in step S1 does not exceed the set resistance threshold range, it means that the monitoring circuit is working normally, the optical element 11 is normal, the power supply 2 can continue to supply power to the laser 12, and the microprocessor 13 can return to step S1 to proceed to the next step The resistance value of the detection line 11-1 is constantly monitored.
  • the resistance value of the detection line 11-1 when not broken is 10K ⁇
  • the set resistance threshold range is set to be greater than or equal to 8K ⁇ and less than or equal to 12K ⁇ .
  • the voltage value provided by the microprocessor 13 to the entire monitoring circuit is 2.85V. If there is no open circuit in the entire monitoring circuit, the detection line 11-1 gets a voltage of 0.8V.
  • the microprocessor 13 monitors that the voltage value U at both ends of the detection line 11-1 is 2.85V. According to the principle of resistance division, the resistance value R obtained by converting the voltage value U is infinite, and the converted resistance value is judged If R has exceeded the set resistance threshold range of 8K ⁇ to 12K ⁇ , it is determined that the optical element 11 is damaged or detached, and the microprocessor 13 controls the power supply 2 to stop supplying power to the laser 12.
  • the microprocessor 13 monitors that the voltage value U at both ends of the detection line 11-1 is 0.8V. According to the principle of resistance division, the voltage value U is converted into a resistance value of 10K ⁇ , and the converted resistance value R is judged Within the set resistance threshold range of 8K ⁇ to 12K ⁇ , it is determined that the optical element 11 is normal, and the power supply 2 can continue to supply power to the laser 12.
  • the voltage value across the detection line 11-1 can also be monitored in real time to determine whether the monitored voltage value exceeds the set voltage threshold to determine whether the optical element 11 is damaged or detached. Please refer to FIG. 14, and please refer to FIGS. 5 a and 5 b again.
  • the monitoring method of the optical element includes the following steps:
  • S1 ' The microprocessor 13 monitors the voltage value across the detection line 11-1 in real time.
  • step S1 ' For a detailed description of the above step S1 ', please refer to the description of step S11 above, and no more details will be given here.
  • step S2 ' The microprocessor 13 judges whether the monitored voltage value exceeds the set voltage threshold range: if it is, the microprocessor 13 controls the power supply 2 to stop supplying power to the laser 12; if not, it returns to step S1'.
  • the set voltage threshold range can be set to a value range that fluctuates up and down around the voltage value U shared by the entire monitoring circuit when the detection line 11-1 is not broken, for example, setting The voltage threshold range can be set to be greater than or equal to 80% U and less than or equal to 120% U. If the voltage value monitored in step S1 'exceeds the set voltage threshold range, it means that the monitoring circuit has an open circuit. It may be that the detection line 11-1 is broken, or the connection between the detection line 11-1 and the wire 15 may be broken This indicates that the optical element 11 is damaged or comes off.
  • the microprocessor 13 sends an interrupt signal to the power supply 2 to control the power supply 2 to stop supplying power to the laser 12, so that the laser 12 is turned off, so that when the optical element 11 is damaged or falls off, the laser light directly hits the human eye and damages the human eye. If the voltage value monitored in step S1 'does not exceed the set voltage threshold, it means that the monitoring circuit is working normally, the optical element 11 is normal, the power supply 2 can continue to supply power to the laser 12, and the microprocessor 13 can return to step S1 to proceed Monitoring the voltage value across the line 11-1 at a moment.
  • the voltage value provided by the microprocessor 13 to the entire monitoring circuit is 2.85V.
  • the detection line 11-1 gets a voltage of 0.8V, and the set voltage threshold range is set to be greater than Or equal to 0.64V, less than or equal to 0.96V.
  • the microprocessor 13 monitors that the voltage value U at both ends of the detection line 11-1 is 2.85V, and the voltage value U has exceeded the set voltage threshold range of 0.64V to 0.96V, it is determined that the optical element 11 is damaged or comes off , The microprocessor 13 controls the power supply 2 to stop supplying power to the laser 12.
  • the microprocessor 13 monitors that the voltage value U at both ends of the detection line 11-1 is 0.8V, and the voltage value U is within the set voltage threshold range 0.64V to 0.96V, the optical element 11 is determined to be normal , The power supply 2 can continue to supply power to the laser 12.
  • the above-mentioned terminal or the like includes a hardware structure and / or a software module corresponding to each function.
  • the embodiments of the present invention can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software driven hardware depends on the specific application and design constraints of the technical solution. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of the embodiments of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Multimedia (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Telephone Function (AREA)
  • Semiconductor Lasers (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Position Input By Displaying (AREA)
  • Light Receiving Elements (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种光学元件及其监测系统和方法、主动发光模组、终端,涉及电子终端设备技术领域,能够实时监测主动发光模组中衍射光学组件或匀光片等光学元件是否破损或脱落,并在光学元件发生破损或脱落时关闭激光器,避免激光漏出。其中光学元件的监测系统包括光学元件(11),及依次连接的微处理器(13)、电源(2)和激光器(12),光学元件(11)上设置有检测线(11-1),检测线(11-1)的两端分别与微处理器(13)相连。微处理器(13)配置为实时监测检测线(11-1)的电阻值或检测线(11-1)两端的电压值,根据监测得到的电阻值或电压值判断光学元件(11)是否破损或脱落,并在判定光学元件(11)破损或脱落时控制电源(2)停止向激光器(12)供电。

Description

光学元件及其监测系统和方法、主动发光模组、终端 技术领域
本发明涉及电子终端设备技术领域,尤其涉及一种光学元件及其监测系统和方法、主动发光模组、终端。
背景技术
目前,3D感测技术是电子终端设备(例如手机)领域的研究热点。3D感测技术是一种深度感测技术,可进一步完善脸部识别或虹膜识别功能,增强终端摄像头的面部和对象识别功能,适用于增强实境、游戏、自动驾驶等功能。
通过在终端中集成结构光、TOF(Time Of Flight,飞时测距)等主动发光模组,可以实现3D感测功能。这类主动发光模组中通常包括大功率的激光器,通过激光器主动发光投射在人脸上,从而实现人脸识别。由于激光器会发射激光,因此在激光器的出光方向会设置衍射光学组件(Diffractive Optical Element,简称DOE)或匀光片(Diffuser)等用于散光或匀光的光学元件,用以防止激光直射人眼损伤人眼视力。
然而,如果衍射光学组件或匀光片等光学元件出现破损、脱落等异常情况时,可能会导致大功率的激光器所发出的激光漏出。
发明内容
本发明提供一种光学元件及其监测系统和方法、主动发光模组、终端,能够实时监测主动发光模组中衍射光学组件或匀光片等光学元件的破损、脱落异常状态,并在这些光学元件发生破损或脱落时关闭激光器,避免激光漏出。
为达到上述目的,本发明采用如下技术方案:
本发明的第一方面提供一种光学元件,包括衬底基板,及设置于该衬底基板一侧表面上的检测线,检测线配置为传输电信号。
这样,将该光学元件应用于主动发光模组中,将检测线的两端分别通过导线与主动发光模组的微处理器相连,利用微处理器实时监测检测线的电阻值或检测线两端的电压值,当检测线的电阻值或检测线两端的电压值发生异常变化时,说明检测线断裂,或者检测线与导线的连接处发生开路,从而可判断检测线所附着的光学元件破损或脱落,此时利用微处理器控制主动发光模组的激光器关闭,从而有效地避免了在光学元件破损或脱落时激光器所发射的激光漏出而可能会对人眼造成的伤害。并且,该方案仅需设置一层光学元件及检测线(即仅需一层导电层),结构简单,制作工艺简单,成本较低。
结合第一方面,在一种可能的设计中,检测线的材料为透明导电材料,以避免对激光器所发射的光线造成遮挡。
可选的,检测线的材料包括铟锡氧化物、铟锌氧化物、铟镓锌氧化物和铟锡锌氧化物等中的任意一种或几种。
结合第一方面,在一种可能的设计中,检测线所在的衬底基板的表面等分为多个区域,每个区域均有检测线的至少一段覆盖。这样,使得检测线尽量布满光学元件的 各个区域,保证了光学元件的各个区域乃至全部区域发生破损均能够被监测到,提高监测的准确度。
可选的,每个区域内的检测线的覆盖面积相等。可选的,每个区域内的检测线的宽度相等。可选的,检测线的相邻部分之间的间隙相等。这样,可进一步提高监测的准确度和灵敏度。
结合第一方面,在一种可能的设计中,检测线呈折线形或者螺旋线形延伸,以使检测线尽量布满光学元件的各个区域。
结合第一方面,在一种可能的设计中,光学元件还包括设置于衬底基板的与检测线所在侧相同的一侧表面上的导电垫,导电垫位于检测线的端部且与检测线的端部电连接。这样,导线可通过导电垫实现与检测线的电连接。
可选的,导电垫与检测线的材料相同,以便于二者在相同的步骤下同时形成,简化制备步骤。
可选的,光学元件还包括覆盖在检测线上的保护层,该保护层上设有开口,以暴露出导电垫。这样,保护层能够起到保护检测线的作用,并且开口的设置便于检测线的端部或者导电垫与导线进行电连接。
本发明的第二方面提供一种主动发光模组,该主动发光模组包括模组外壳、激光器、微处理器、光学元件和导线。其中,模组外壳包括底部基板及侧壁。激光器和微处理器安装于底部基板上。光学元件安装于侧壁远离底部基板的一端,该光学元件为如上述任一项所述的光学元件。导线用于将光学元件的检测线两端分别与微处理器连接。微处理器配置为实时监测检测线的电阻值或检测线两端的电压值,根据监测得到的电阻值或电压值判断光学元件是否破损或脱落,并在判定所述光学元件破损或脱落时控制激光器关闭,从而有效地避免了在光学元件破损或脱落时激光器所发射的激光漏出而可能会对人眼造成的伤害。
结合第二方面,在一种可能的设计中,导线在侧壁的内部由检测线的端部延伸至微处理器。或者,导线在侧壁的内表面上由检测线的端部延伸至所述微处理器。或者,导线在侧壁的外表面上由检测线的端部延伸至微处理器。这样,实现了检测线与微处理器的连接。
结合第二方面,在一种可能的设计中,主动发光模组还包括设置于检测线的端部与导线的相接处的导电电极,用于将检测线的端部和导线电连接,从而实现了检测线与导线的电连接。
可选的,导电电极的材料为导电银浆或焊锡,制作工艺简单,易实现。
本发明的第三方面提供一种终端,该终端包括如以上任一项所述的主动发光模组。该主动发光模组能够产生与本发明的第二方面所提供的主动发光模组相同的有益效果,此处不再赘述。
本发明的第四方面提供一种光学元件的监测系统,该光学元件的监测系统包括依次连接的微处理器、电源和激光器。该光学元件的监测系统还包括如以上任一项所述的光学元件,该光学元件的检测线的两端分别与微处理器相连。微处理器配置为实时监测检测线的电阻值或检测线两端的电压值,根据监测得到的电阻值或电压值判断光学元件是否破损或脱落,并在判定光学元件破损或脱落时控制电源停止向激光器供电, 使激光器关闭,从而有效地避免了在光学元件破损或脱落时激光器所发射的激光漏出而可能会对人眼造成的伤害。
本发明的第五方面提供一种光学元件的监测方法,该光学元件的监测方法应用于如以上所述的光学元件的监测系统,该光学元件的监测方法包括如下步骤:微处理器实时监测检测线的电阻值。微处理器判断监测得到的电阻值是否超出设定电阻阈值范围:若是,则微处理器控制电源停止向激光器供电;若否,则进行下一时刻对检测线的电阻值的监测。其中,设定电阻阈值范围为围绕检测线在未断裂时的电阻值上下波动的数值范围。通过上述光学元件的监测方法,实现了对主动发光模组中光学元件的破损或脱落异常状态的实时监测,并且可在光学元件发生破损或脱落时关闭激光器,避免激光漏出。
结合第五方面,在一种可能的设计中,微处理器实时监测检测线两端的电阻值,包括如下步骤:微处理器实时监测检测线两端的电压值。微处理器将监测得到的电压值转换成电阻值。这样,提供了一种实时监测检测线的电阻值的具体方案。
本发明的第六方面提供一种光学元件的监测方法,该光学元件的监测方法应用于如以上所述的光学元件的监测系统,该光学元件的监测方法包括如下步骤:微处理器实时监测检测线两端的电压值。微处理器判断监测得到的电压值是否超出设定电压阈值范围:若是,则微处理器控制电源停止向激光器供电;若否,则进行下一时刻对检测线两端的电压值的监测。其中,设定电压阈值范围为围绕检测线在未断裂时两端的电压值上下波动的数值范围。通过上述光学元件的监测方法,实现了对主动发光模组中光学元件的破损或脱落异常状态的实时监测,并且可在光学元件发生破损或脱落时关闭激光器,避免激光漏出。
附图说明
图1为本发明实施例所提供的终端的结构示意图;
图2为本发明实施例所提供的光学元件的监测系统的应用场景的示意图;
图3为图2的局部放大图;
图4a为主动发光模组的典型结构示意图;
图4b为主动发光模组中承托结构的俯视图;
图5a为本发明实施例所提供的光学元件的监测系统的架构图;
图5b为本发明实施例所提供的光学元件的监测系统的电路图;
图6为本发明实施例所提供的光学元件的监测系统中检测线的第一种示意图;
图7a~图7c为本发明实施例所提供的光学元件的监测系统中检测线的三种图案设计图;
图8为本发明实施例所提供的光学元件的监测系统中检测线的第二种示意图;
图9a~图9c为本发明实施例所提供的主动发光模组的三种结构示意图;
图10为本发明实施例所提供的光学元件的截面结构示意图;
图11a~图11d为本发明实施例所提供的光学元件中各膜层的俯视结构示意图;
图12为本发明实施例所提供的光学元件的监测方法的第一种流程图;
图13为本发明实施例所提供的光学元件的监测方法的第二种流程图;
图14为本发明实施例所提供的光学元件的监测方法的第三种流程图。
具体实施方式
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本发明实施例提供一种光学元件的监测系统及监测方法,该光学元件的监测系统及监测方法可应用于手机、可穿戴设备、AR(增强现实)\VR(虚拟现实)设备、平板电脑、笔记本电脑、UMPC(超级移动个人计算机)、上网本、PDA(个人数字助理)等任意终端,本发明的实施例对此不作任何限制。
如图1和图2所示,本发明实施例中的终端可以为手机100。下面以手机100为例对实施例进行具体说明。
如图1所示,手机100具体可以包括:处理器101、射频(RF)电路102、存储器103、触摸屏104、蓝牙装置105、一个或多个传感器106、Wi-Fi装置107、定位装置108、音频电路109、外设接口110以及电源装置111等部件。这些部件可通过一根或多根通信总线或信号线(图2中未示出)进行通信。本领域技术人员可以理解,图2中示出的硬件结构并不构成对手机的限定,手机100可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图1对手机100的各个部件进行具体的介绍:
处理器101是手机100的控制中心,利用各种接口和线路连接手机100的各个部分,通过运行或执行存储在存储器103内的应用程序(简称App),以及调用存储在存储器103内的数据,执行手机100的各种功能和处理数据。在一些实施例中,处理器101可包括一个或多个处理单元。举例来说,处理器101可以是华为技术有限公司制造的麒麟960芯片。
射频电路102可用于在收发信息或通话过程中,无线信号的接收和发送。特别地,射频电路102可以将基站的下行数据接收后,给处理器101处理。另外,将涉及上行的数据发送给基站。通常,射频电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频电路102还可以通过无线通信和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统、通用分组无线服务、码分多址、宽带码分多址、长期演进、电子邮件、短消息服务等。
存储器103用于存储应用程序以及数据,处理器101通过运行存储在存储器103的应用程序以及数据,执行手机100的各种功能以及数据处理。存储器103主要包括存储程序区以及存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)。存储数据区可以存储根据使用手机100时所创建的数据(比如音频数据、电话本等)。此外,存储器103可以包括高速随机存取存储器,还可以包括非易失存储器,例如磁盘存储器件、闪存器件或其他易失性固态存储器件等。存储器103可以存储各种操作系统,例如,苹果公司所开发的iOS操作系统,谷歌公司所开发的Android操作系统等。
触摸屏104可以包括触控板104-1和显示屏104-2。其中,触控板104-1可采集 手机100的用户在其上或附近的触摸事件(比如用户使用手指、触控笔等任何适合的物体在触控板104-1上或在触控板104-1附近的操作),并将采集到的触摸信息发送给其他器件例如处理器101。
其中,用户在触控板104-1附近的触摸事件可以称之为悬浮触控。悬浮触控可以是指,用户无需为了选择、移动或拖动目标(例如图标等)而直接接触触控板,而只需用户位于终端附近以便执行所想要的功能。在悬浮触控的应用场景下,术语“触摸”、“接触”等不会暗示用于直接接触触摸屏,而是附近或接近的接触。
具体的,可以在触控板104-1内设置两种电容式传感器,即互电容传感器和自电容传感器,这两种电容传感器可以交替地阵列排布在触控板104-1上。其中,互电容传感器用于实现正常传统的多点触控,即检测用户接触触控板104-1时的手势。而自电容传感器能够产生比互电容更为强大的信号,从而检测到距离触控板104-1更远的手指感应。因此,当用户的手指在屏幕上悬停时,由于自电容传感器产生的信号要比互电容传感器产生的信号大,使得手机100可以检测到在屏幕上方,例如,距离触控板104-1上方20mm处用户的手势。
可选的,能够进行悬浮触控的触控板104-1可以采用电容式、红外光感以及超声波等实现。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型来实现触控板104-1。显示屏104-2可用于显示由用户输入的信息或提供给用户的信息以及手机100的各种菜单。可以采用液晶显示器、有机发光二极管等形式来配置显示屏104-2。触控板104-1可以覆盖在显示屏104-2之上,当触控板104-1检测到在其上或附近的触摸事件后,传送给处理器101以确定触摸事件的类型,随后处理器101可以根据触摸事件的类型在显示屏104-2上提供相应的视觉输出。
虽然在图1中,触控板104-1与显示屏104-2是作为两个独立的部件来实现手机100的输入和输出功能,但是在某些实施例中,可以将触控板104-1与显示屏104-2集成而实现手机100的输入和输出功能。
可以理解的是,触摸屏104是由多层的材料堆叠而成,本发明实施例中只展示出了触控板(层)和显示屏(层),其他层在本发明实施例中不予记载。另外,在本发明其他一些实施例中,触控板104-1可以覆盖在显示屏104-2之上,并且触控板104-1的尺寸大于显示屏104-2的尺寸,使得显示屏104-2全部覆盖在触控板104-1下面,或者,上述触控板104-1可以以全面板的形式配置在手机100的正面,也即用户在手机100正面的触摸均能被手机感知,这样就可以实现手机正面的全触控体验。在其他一些实施例中,触控板104-1以全面板的形式配置在手机100的正面,显示屏104-2也可以以全面板的形式配置在手机100的正面,这样在手机的正面就能够实现无边框的结构。
在本发明实施例中,手机100还可以具有指纹识别功能。例如,可以在手机100的背面(例如后置摄像头的下方)配置指纹识别器112,或者在手机100的正面(例如触摸屏104的下方)配置指纹识别器112。又例如,可以在触摸屏104中配置指纹采集器件112来实现指纹识别功能,即指纹采集器件112可以与触摸屏104集成在一起来实现手机100的指纹识别功能。在这种情况下,该指纹采集器件112配置在触摸屏104中,可以是触摸屏104的一部分,也可以以其他方式配置在触摸屏104中。另 外,该指纹采集器件112还可以被实现为全面板指纹采集器件。因此,可以把触摸屏104看成是任何位置都可以进行指纹识别的一个面板。该指纹采集器件112可以将采集到的指纹发送给处理器101,以便处理器101对该指纹进行处理(例如指纹验证等)。本发明实施例中的指纹采集器件112的主要部件是指纹传感器,该指纹传感器可以采用任何类型的感测技术,包括但不限于光学式、电容式、压电式或超声波传感技术等。
手机100还可以包括蓝牙装置105,用于实现手机100与其他短距离的终端(例如手机、智能手表等)之间的数据交换。本发明实施例中的蓝牙装置105可以是集成电路或者蓝牙芯片等。
手机100还可以包括至少一种传感器106,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节触摸屏104的显示屏的亮度,接近传感器可在手机100移动到耳边时,关闭显示屏的电源。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等。至于手机100还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
Wi-Fi装置107,用于为手机100提供遵循Wi-Fi相关标准协议的网络接入,手机100可以通过Wi-Fi装置107接入到Wi-Fi接入点,进而帮助用户收发电子邮件、浏览网页和访问流媒体等,它为用户提供了无线的宽带互联网访问。在其他一些实施例中,该Wi-Fi装置107也可以作为Wi-Fi无线接入点,可以为其他终端提供Wi-Fi网络接入。
定位装置108,用于为手机100提供地理位置。可以理解的是,该定位装置108具体可以是全球定位系统(GPS)或北斗卫星导航系统、俄罗斯GLONASS等定位系统的接收器。定位装置108在接收到上述定位系统发送的地理位置后,将该信息发送给处理器101进行处理,或者发送给存储器103进行保存。在另外的一些实施例中,该定位装置108还可以是辅助全球卫星定位系统(AGPS)的接收器,AGPS系统通过作为辅助服务器来协助定位装置108完成测距和定位服务,在这种情况下,辅助定位服务器通过无线通信网络与终端例如手机100的定位装置108(即GPS接收器)通信而提供定位协助。在另外的一些实施例中,该定位装置108也可以是基于Wi-Fi接入点的定位技术。由于每一个Wi-Fi接入点都有一个全球唯一的MAC地址,终端在开启Wi-Fi的情况下即可扫描并收集周围的Wi-Fi接入点的广播信号,因此可以获取到Wi-Fi接入点广播出来的MAC地址。终端将这些能够标示Wi-Fi接入点的数据(例如MAC地址)通过无线通信网络发送给位置服务器,由位置服务器检索出每一个Wi-Fi接入点的地理位置,并结合Wi-Fi广播信号的强弱程度,计算出该终端的地理位置并发送到该终端的定位装置108中。
音频电路109、扬声器113、麦克风114可提供用户与手机100之间的音频接口。音频电路109可将接收到的音频数据转换后的电信号,传输到扬声器113,由扬声器113转换为声音信号输出。另一方面,麦克风114将收集的声音信号转换为电信号,由音频电路109接收后转换为音频数据,再将音频数据输出至RF电路102以发送给比 如另一手机,或者将音频数据输出至存储器103以便进一步处理。
外设接口110,用于为外部的输入/输出设备(例如键盘、鼠标、外接显示器、外部存储器、用户识别模块卡等)提供各种接口。例如通过通用串行总线(USB)接口与鼠标连接,通过用户识别模块卡卡槽上的金属触点与电信运营商提供的用户识别模块卡(SIM)卡进行连接。外设接口110可以被用来将上述外部的输入/输出外围设备耦接到处理器101和存储器103。
手机100还可以包括给各个部件供电的电源装置111(比如电池和电源管理芯片),电池可以通过电源管理芯片与处理器101逻辑相连,从而通过电源装置111实现管理充电、放电、以及功耗管理等功能。
尽管图1未示出,手机100还可以包括摄像头(前置摄像头和/或后置摄像头)、闪光灯、微型投影装置、近场通信(NFC)装置等,在此不再赘述。
对于诸如上述手机100的终端,可在其中集成3D感测模块,以使终端实现3D感测功能。普通的数码相机只能取得平面彩色影像,而没有图像的深度资讯。这代表当我们看到一张照片,只知道这个人的脸部有多宽多高,却不知道他脸部的立体结构,例如:鼻梁相对脸颊的高度,眼窝相对脸颊的深度等。通过3D感测取得影像的深度资讯,以使终端实现脸部识别或手势控制,例如通过识别用户的脸部特征来解锁手机,或者当用户在手机前方做出挥动手势时,便可控制终端删除电子邮件等。
实现3D感测的技术主要包括以下两种:
(一)TOF(Time Of Flight,飞时测距)技术:利用高功率的激光器(如VCSEL(Vertical-Cavity Surface-Emitting Laser,单点垂直腔面发射激光器)发射出红外光激光照射到物体表面,激光经物体表面被反射,反射后的激光被红外光影像传感器捕捉。由于激光的光速已知,因此可以利用红外光影像传感器量测物体表面不同深度的位置反射回来激光的时间,计算出物体表面不同位置的距离(深度)。
(二)结构光(Structured Light)技术:利用激光器打出不同的光线图形(具有一定结构特征的光线,称为结构光),光线图形投射到物体表面后被物体表面不同深度的位置所反射,反射后的光线图形会出现扭曲。例如:激光器打出直线条纹的光线投射到手指上,由于手指的表面是立体圆弧形,因此直线条纹经过圆弧形的手指表面所反射回来的条纹变成了圆弧形条纹。圆弧形条纹被红外光影像传感器捕捉后,终端就可以根据反射的圆弧形条纹反推出手指的立体结构。
如图2所示,以手机100为例,TOF或结构光的3D感测模块可设置于手机100的顶端,如手机100的“刘海”位置(即图2中所示出的区域AA)。
如图3所示,以手机100中集成有结构光3D感测模块115为例,结构光3D感测模块115在手机100中的布置形式为:结构光3D感测模块115包括红外光相机115-1、泛光照明器115-2、近距离传感器115-3、红外影像传感器115-4及点阵投射器115-5等模组。其中,泛光照明器115-2包括低功率的激光器(如VCSEL)及匀光片等。点阵投射器115-5包括高功率的激光器(如VCSEL)及衍射光学组件等。
示例性的,上述结构光3D感测模块115进行人脸识别的过程为:当有物体(如人脸)靠近手机100时,近距离传感器115-3感应到有物体靠近手机100,从而向手机100的处理器101发出有物体靠近的讯号。处理器101接收该有物体靠近的讯号,控 制泛光照明器115-2启动,泛光照明器115-2中的低功率的激光器向物体表面投射红外光激光。物体表面反射泛光照明器115-2所投射的红外光激光,红外光相机115-1捕捉到物体表面所反射的红外光激光,从而获取到物体表面的影像资讯,然后将所获取到的影像资讯上传给处理器101。处理器101根据所上传的影像资讯判断接近手机100的物体是否为人脸。
当处理器101判断接近手机100的物体为人脸时,控制点阵投射器115-5启动。点阵投射器115-5中的高功率的激光器发射红外光激光,这些红外光激光经由点阵投射器115-5中的衍射光学组件等结构的作用,形成许多(如大约3万个)结构光的光点投射到人脸表面。这些结构光的光点所形成的阵列被人脸表面不同位置反射,红外光相机115-1捕捉到被人脸表面反射的结构光的光点,从而获取到人脸表面不同位置的深度资讯,然后将所获取到的深度资讯上传给处理器101。处理器101将所上传的深度资讯与预先存储在手机100中的用户脸部特征数据进行比对和计算,辨识该接近手机100的人脸是否为手机100的用户的脸部,如果是,则控制手机100解锁;如果否,控制手机100继续保持锁定状态。
TOF或结构光的3D感测模块中,均包括能够发射激光的模组,例如:TOF 3D感测模块中包括高功率的激光器的模组,结构光3D感测模块115中的点阵投射器115-5及泛光照明器115-2,以下称这类模组为主动发光模组。
如图4a所示,示出了主动发光模组1的一种典型结构,主动发光模组1主要包括:光学元件11、激光器12、微处理器(MCU,Microcontroller Unit)13及模组外壳14。其中,模组外壳14包括底部基板14-2、侧壁14-1及承托结构14-3,请参见图4b,承托结构14-3为环状结构,环设于侧壁14-1的内表面上,形成通光孔径GG。激光器12和微处理器13安装于底部基板14-2上,微处理器13与终端的主板上所集成的处理器相连,示例性的,若主动发光模组1应用于手机100中,则主动发光模组1的微处理器13与手机100的处理器101相连。光学元件11的边缘通过粘胶17固定于承托结构14-3背向激光器12的表面上。微处理器13与激光器12相连,控制激光器12发射激光,激光光线通过通光孔径GG经光学元件11射出主动发光模组1外部。主动发光模组1安装于诸如手机100的终端内,其激光器12侧(即发光侧)靠近终端内部,光学元件11侧(即出光侧)朝向终端外部,以向外投射出激光光线。
主动发光模组1中,激光器12的类型具体可为VCSEL、DFB(Distributed Feedback Laser,分布式反馈激光器、边发射激光器等。光学元件11的类型具体可为匀光片、衍射光学组件、菲涅尔透镜等。示例性的,若主动发光模组1为TOF 3D感测模块中包括高功率的激光器的模组,则光学元件11具体可为匀光片。若主动发光模组1为结构光3D感测模块中的点阵投射器,则光学元件11具体可为衍射光学组件(DOE)。若主动发光模组1为结构光3D感测模块中的泛光照明器,则光学元件11具体可为匀光片。
在终端的实际使用过程中,随着使用时间的延长,终端中的主动发光模组1发生老化而可靠性下降,诸如进水、腐蚀等情况的发生,可能会引起主动发光模组1中的光学元件11破损或脱落,此时主动发光模组1中的激光器12所发射的激光会直射人眼而伤害人眼。倘若主动发光模组1中的激光器12所发射的为高功率的激光,则对人眼造成的伤害会更加严重。
针对上述问题,本发明的实施例提供了一种光学元件的监测系统,如图5a所示,该光学元件的监测系统包括:光学元件11、激光器12、微处理器13及电源2。其中,微处理器13、电源2和激光器12依次连接,电源2在微处理器13的控制下为激光器12供电。需要说明的是,本发明实施例所提供的上述光学元件的监测系统中,“电源2”可为终端的电源,例如手机100中的电源装置111。
在光学元件11的表面上设置导电的检测线11-1,检测线11-1的两端分别通过导线15连接微处理器13,微处理器13实时监测检测线11-1的电阻值或检测线11-1两端的电压值,检测线11-1、导线15和微处理器13形成监测电路。
当检测线11-1的电阻值或检测线11-1两端的电压值发生异常变化时,例如检测线11-1的电阻值超出设定电阻阈值范围,或者检测线11-1两端的电压值超出设定电压阈值范围,则说明检测线11-1、导线15和微处理器13所形成的监测电路发生开路,可能是检测线11-1断裂,或者检测线11-1与导线15的连接处发生开路。而引起检测线11-1断裂的原因可能是检测线11-1所附着的光学元件11发生破损。引起检测线11-1与导线15的连接处发生开路的原因可能是检测线11-1所附着的光学元件11发生脱落。当判断光学元件11发生破损或脱落时,此时微处理器13控制电源2停止向激光器12供电,激光器12关闭。从而有效地避免了激光器12所发射的激光直射人眼而对人眼造成伤害。并且,上述方案仅需设置一层光学元件11及检测线11-1(即仅需一层导电层),结构简单,制作工艺简单,成本较低。
需要说明的是,由于光学元件11发生破损或脱落时,会引起检测线11-1自身断裂,或者引起检测线11-1与导线15的连接处断开,因此此时微处理器13监测得到的检测线11-1的电阻值会变得极大,甚至为无穷大(∞),或者检测线11-1两端的电压值接近或等于微处理器13提供给整个监测电路的电压值。上面所提到的“设定电阻阈值范围”可设定为围绕检测线11-1在未断裂时的电阻值R上下波动的一个数值范围,例如,“设定电阻阈值范围”可设定为大于或等于80%R,小于或等于120%R。示例性的,若检测线11-1在未断裂时的电阻值R为10KΩ,则“设定电阻阈值范围”可设定为大于或等于8KΩ,小于或等于12KΩ。上面所提到的“设定电压阈值范围”可设定为围绕检测线11-1在未断裂时在整个监测电路中所分担的电压值U上下波动的一个数值范围,例如,“设定电压阈值范围”可设定为大于或等于80%U,小于或等于120%U。示例性的,若检测线11-1在未断裂时在整个监测电路中所分担的电压值U为0.8V,则“设定电压阈值范围”可设定为大于或等于0.64V,小于或等于0.96V。
基于本发明的实施例所提供的上述技术方案,在一些实施例中,检测线11-1的材料可选用透明导电材料,例如:ITO、IZO(铟锌氧化物)、IGZO(铟镓锌氧化物)、ITZO(铟锡锌氧化物)等,以避免对激光器12所发射的光线造成遮挡。检测线11-1的材料也可选用金属导电材料,例如:银(Ag)、铜(Cu)、铬(Cr)等,在一些实施例中,为避免金属材料的检测线11-1对光线造成遮挡,可将金属材料的检测线11-1的宽度和厚度设置的较小,以减小其遮挡面积,提升光学元件11的光线透过率。
在一些实施例中,为了保证光学元件11的各个区域乃至全部区域发生破损均能够被监测到,提高监测的准确度,可使检测线11-1尽量布满光学元件11的各个区域。作为一种可能的设计,将光学元件11等分为多个区域,使每个区域内检测线11-1的 覆盖面积均在同一设定范围内。进一步的,使每个区域内检测线11-1的覆盖面积均相等,以保证光学元件11的每个区域发生破损均能够被监测到。可以设想,将光学元件11划分成的区域数量增多,依照前面所述的检测线11-1布置原则来布置检测线11-1,能够进一步提高监测的准确度和灵敏度。
在一些实施例中,光学元件11不同区域的检测线11-1的宽度可以相等,也可以不相等,进一步的,光学元件11不同区域的检测线11-1的宽度相等。示例性的,如图6所示,光学元件11不同区域的检测线11-1的宽度d 1和d 2相等。另外,检测线11-1相邻部分之间的间隙可以相等,也可以不相等,进一步的,检测线11-1相邻部分之间的间隙相等。示例性的,如图6所示,检测线11-1相邻部分之间的间隙h 1和h 2相等。通过使光学元件11不同区域的检测线11-1的宽度相等,且检测线11-1相邻部分之间的间隙相等,能够使得检测线11-1在光学元件11的各个区域的宽度及布置的疏密程度一致,从而进一步提高监测的准确度和灵敏度。
检测线11-1的宽度不宜过宽,否则可能会造成当光学元件11局部破损时,相应位置处的检测线11-1不会断裂,或者仅破损一部分,仍有一部分保持连通,造成无法监测到检测线11-1的电阻值发生明显变化,影响监测的准确度。检测线11-1的宽度也不宜过窄,否则检测线11-1会极易发生断裂,可能存在除光学元件11破损和脱落以外的因素引起检测线11-1断裂的情况发生,例如静电击穿,造成对光学元件11破损或脱落的误判。
在一些实施例中,检测线11-1的宽度的取值范围为1μm~500μm,例如在30μm~100μm的范围内。
检测线11-1相邻部分之间的间隙不宜过宽,否则可能会造成当光学元件11局部破损时,相应位置处无检测线11-1覆盖,造成无法监测到此处破损,影响监测的灵敏度。检测线11-1相邻部分之间的间隙也不宜过窄,否则刻蚀形成检测线11-1时,检测线11-1相邻部分之间容易有导电的检测线材料残留,导致检测线11-1相邻部分连通,影响监测的灵敏度。
在一些实施例中,检测线11-1之间的间隙的取值范围为1μm~500μm,例如在30μm~100μm的范围内。
本发明的实施例对检测线11-1的具体图案并不限定,下面给出几种检测线11-1的具体图案设计。(1)如图7a、7b所示,检测线11-1的主体部分采用折线形设计。(2)如图7c所示,检测线11-1的主体部分采用螺旋线设计。此外,检测线11-1的线型并不限定为直线,还可设计为波浪线、折线等连续的线型。
作为一种可能的设计,请参见图5a、5b、6、7a~7c,检测线11-1的数量可以仅为一条。这种设计下,微处理器13监测得到的电阻值为该条检测线11-1的整体电阻,或者微处理器13监测得到的电压值为该条检测线11-1的两端的电压。当光学元件11受损或脱落时,该条检测线11-1断裂,或者该条检测线11-1与导线15的连接处断开,微处理器13能够监测到电阻值变为无穷大,或者电压值变为接近或等于微处理器13提供给整个监测电路的电压值,从而判定光学元件11受损或脱落。
作为另一种可能的设计,请参见图8,检测线11-1的数量可以为多条,例如两条或者多于两条,每条检测线11-1的两端均连接至微处理器13,从而多条检测线11-1 之间构成相互并联的关系。这种设计下,微处理器13监测得到的电阻值为多条检测线11-1相互并联后的并联电阻,或者微处理器13监测得到的电压值为多条检测线11-1相互并联后的并联电阻在整个监测电路分压的电压值,当光学元件11受损时,其中一条或多条检测线11-1断裂,导致并联电阻变大,微处理器13监测到电阻值变大,或者电压值变大,从而判定光学元件11受损。当光学元件11脱落时,整个监测电路开路,微处理器13能够监测到电阻值变为无穷大,或者电压值变为接近或等于微处理器13提供给整个监测电路的电压值,从而判定光学元件11脱落。
对于检测线11-1的设置位置,请再次参见图5a,作为一种可能的设计,检测线11-1可设置于光学元件11背向激光器12的一侧的表面上,这样便于与导线15进行电连接。当然,检测线11-1也可设置于光学元件11朝向激光器12的一侧的表面上,本发明的实施例对此并不设限。
在一些实施例中,检测线11-1的制备可采用光刻工艺,具体过程可包括:首先,采用检测线材料(如ITO、IZO、IGZO等)在光学元件11的衬底基板上形成检测线材料的薄膜,形成检测线材料的薄膜可采用CVD(Chemical Vapor Deposition,化学气相淀积)、溅射、涂覆、印刷等工艺。然后,在所形成的薄膜上涂覆光刻胶层,采用具有检测线11-1的图案的掩膜版对光刻胶层进行曝光和显影,形成具有检测线11-1的图案的光刻胶层。之后,以该具有检测线11-1的图案的光刻胶层为掩膜,对检测线材料的薄膜进行刻蚀,形成具有设定图案的检测线11-1,刻蚀检测线材料的薄膜可采用干法刻蚀、激光刻蚀等工艺。
在另一些实施例中,检测线11-1的制备可采用磁控溅射工艺,具体过程可包括:采用具有检测线11-1的图案的掩膜版遮挡光学元件11的衬底基板,在光学元件11的衬底基板上溅射检测线材料,形成具有设定图案的检测线11-1。
在再一些实施例中,检测线11-1的制备可丝网印刷工艺,直接在光学元件11的衬底基板上印刷形成具有设定图案的检测线11-1。
请再次参见图5a、6、7a~7c,为了方便检测线11-1与导线15实现电连接,可在检测线11-1的两端分别设置导电垫(PAD)11-2,检测线11-1的两端分别通过相应的导电垫11-2与相应的导线15电连接。
可选的,两个导电垫11-2可分别设置于光学元件11的边缘或角落位置。进一步的,可设置于光学元件11的处于同一侧的两个角落的位置,这样便于连接导线15。
在一些实施例中,导电垫11-2的材料与检测线11-1的材料相同,以便于二者在相同的步骤下同时形成,简化制备步骤。
另外,作为一种可能的设计,导电垫11-2的宽度大于检测线11-1的宽度,以便于检测线11-1与导线15进行电连接。
对于导线15的设置方式,如图9a所示,在一些实施例中,导线15在主动发光模组1的模组外壳14的侧壁14-1内部延伸。导线15的一端延伸至光学元件11上,并与检测线11-1连接(导线15的一端可通过导电垫11-2实现与检测线11-1的连接),导线15的另一端延伸至模组外壳14的底部基板14-2上,并与微处理器13连接。通过将导线15设置于侧壁14-1的内部,可以在实现检测线11-1与微处理器13连接的基础上,避免导线15受到外部环境中的水汽、氧气等因素腐蚀,起到保护导线15的 作用。
在如图9a所示的上述设计中,可采用模内注塑工艺(Insert Molding)将导线15与模组外壳14一体成型制作。或者,可在模组外壳14的侧壁14-1形成通道,然后将导线材料的溶液灌注入该通道内,形成导线15。
如图9b所示,在另一些实施例中,导线15在主动发光模组1的模组外壳14的侧壁14-1内表面上延伸。导线15的一端延伸至光学元件11上,并与检测线11-1连接(导线15的一端可通过导电垫11-2实现与检测线11-1的连接),导线15的另一端延伸至模组外壳14的底部基板14-2上,并与微处理器13连接。
如图9c所示,在再一些实施例中,导线15在主动发光模组1的模组外壳14的侧壁14-1外表面上延伸。导线15的一端延伸至光学元件11上,并与检测线11-1连接(导线15的一端可通过导电垫11-2实现与检测线11-1的连接),导线15的另一端延伸至模组外壳14的底部基板14-2上,并与微处理器13连接。
在如图9b和9c所示的上述设计中,可在模组外壳14的侧壁14-1的内表面或外表面通过涂覆、印刷、粘贴等方式形成导线15。
另外,在如图9b和9c所示的上述设计中,进一步的,可在导线15上形成保护层,以遮盖导线15,避免导线15裸露而被腐蚀。保护层的材料可选用具有隔绝水氧、抗腐蚀性能的有机或无机材料。
导线15的材料可选用银(Ag)、铜(Cu)、铬(Cr)等金属导电材料,或者半导体导电材料,或者氧化物导电材料,等等具有导电性能的材料。
对于检测线11-1与导线15的连接方式,可使用导电电极附着在检测线11-1与导线15的相接处,从而实现检测线11-1与导线15的连接。进一步的,请再次参见图9a~9c,对于检测线11-1与导线15之间通过导电垫11-2进行连接的结构,可使用导电电极16附着在导电垫11-2与导线15的相接处,从而实现导电垫11-2与导线15的连接,也就实现了检测线11-1与导线15的连接。
在一些实施例中,导电电极16的材料可选用导电胶,进一步的,可选用导电银胶。在制备时,通过点胶的方式将导电胶点在检测线11-1与导线15的相接处,或者导电垫11-2与导线15的相接处。导电电极16的材料也可选用焊锡。在制备时,可使用电烙铁将焊锡焊接在检测线11-1与导线15的相接处,或者导电垫11-2与导线15的相接处。
基于上面对本发明实施例所提供的光学元件的监测系统的描述,本发明的实施例还提供了一种光学元件,如图10、11a所示,该光学元件11包括:衬底基板11-4,及设置于该衬底基板11-4的一侧表面上的检测线11-1。
检测线11-1的作用、与其它部件的连接关系、材料、宽度、相邻部分之间的间隙、具体图案、布置数量、设置位置、制备工艺等方面的设计,可参见本发明实施例所提供的光学元件的监测系统中关于检测线11-1的描述,此处不再赘述。
作为一种可能的设计,该光学元件11还包括导电垫11-2。导电垫11-2与检测线11-1同层设置,导电垫11-2的作用、与其它部件的连接关系、材料、布置数量、设置位置、制备工艺等方面的设计,可参见本发明实施例所提供的光学元件的监测系统中关于导电垫11-2的描述,此处不再赘述。
可选的,该光学元件11还包括第一对位标记11-3。第一对位标记11-3与检测线11-1及导电垫11-2同层设置。在将光学元件11组装于主动发光模组中时,第一对位标记11-3用于标记光学元件11的位置,以便于精确固定光学元件11在主动发光模组中的位置。第一对位标记11-3的材料可与检测线11-1及导电垫11-2的材料相同,以便于三者在同一步骤下形成,简化制备工艺。示例性的,第一对位标记11-3的数量为两个,分别位于矩形的衬底基板11-4的同一侧的两个角落位置处,例如分别位于矩形的衬底基板11-4的左上角和右上角。
如图10、11b所示,在一些实施例中,该光学元件11还包括微结构层11-5。微结构层11-5设置于衬底基板11-4的与检测线11-1所在侧相背对的另一侧。也即,衬底基板11-4包括相对的A侧和B侧,检测线11-1设置于衬底基板11-4的A侧的表面,微结构层11-5设置于衬底基板11-4的B侧的表面。
作为一种可能的设计,微结构层11-5设置于衬底基板11-4的A侧的表面,检测线11-1设置于衬底基板11-4的B侧的表面。当然,微结构层11-5和检测线11-1也可以设置于衬底基板11-4的同一侧的表面,如A侧的表面,或B侧的表面。若微结构层11-5和检测线11-1设置于衬底基板11-4的同一侧的表面,检测线11-1可设置于微结构层11-5背向衬底基板11-4的一侧,检测线11-1也可设置于微结构层11-5与衬底基板11-4之间。
不同类型的光学元件11的微结构层11-5所包括的微结构不同。示例性的,若光学元件11为衍射光学组件,则微结构层11-5所包括的微结构为衍射光栅微结构。若光学元件11为匀光片,则微结构层11-5所包括的微结构为诸如网点等匀光微结构。
作为一种可能的设计,请再次参见图11b,并参见图9a~9c,当光学元件11安装于主动发光模组中时,光学元件11的边缘通过粘胶17固定于模组外壳14的承托结构14-3背向激光器12的表面上,光学元件11的微结构层11-5位于衬底基板11-4朝向激光器12的表面上,微结构层11-5在衬底基板11-4上的正投影的面积小于衬底基板11-4的面积,以预留出衬底基板11-4朝向激光器12的表面的边缘区域,这样粘胶17直接粘接衬底基板11-4朝向激光器12的表面和承托结构14-3背向激光器12的表面,避免与微结构层11-5接触,使得光学元件11与承托结构14-3的粘接更加牢固。
如图10、11c所示,在一些实施例中,该光学元件11还包括第二对位标记11-6,第二对位标记11-6设置于衬底基板11-4的检测线11-1所在侧的第二对位标记11-6,且第二对位标记11-6在检测线11-1形成之后形成。也即,第二对位标记11-6和检测线11-1均设置于衬底基板11-4的A侧或B侧,且第二对位标记11-6在检测线11-1形成之后形成。第二对位标记11-6用于在将光学元件11组装于主动发光模组中时,标记光学元件11的位置,以便于精确固定光学元件11在主动发光模组中的位置。
需要说明的是,以上仅仅是对第二对位标记11-6在光学元件11的各膜层中的设置位置的示例性说明,本发明的实施例对第二对位标记11-6在光学元件11的各膜层中的设置位置并不设限,第二对位标记11-6可以设置在光学元件11的各膜层中的任意位置,只要能够起到标记光学元件11的位置的作用即可。例如,第二对位标记11-6设置于检测线11-1与衬底基板11-4之间。或者,第二对位标记11-6设置于微结构层11-5与衬底基板11-4之间。或者,第二对位标记11-6设置于微结构层11-5背向衬 底基板11-4的一侧。等等。
本发明的实施例对第二对位标记11-6的数量并不设限。另外,第二对位标记11-6在光学元件11中的设置位置可位于光学元件1的边缘或角落位置,即第二对位标记11-6在衬底基板11-4上的正投影的位置可位于衬底基板11-4的边缘或角落位置。示例性的,对于矩形的光学元件11,可在光学元件11的四角位置各设置一个第二对位标记11-6。
在其它一些可能的设计中,若光学元件11中同时设有第一对位标记11-3和第二对位标记11-6,则处于光学元件11同一位置处的第一对位标记11-3和第二对位标记11-6在衬底基板11-4上的正投影重叠。例如矩形的光学元件11的左上角(或右上角,或左下角,或右下角)既设有第一对位标记11-3又设有第二对位标记11-6,则左上角(或右上角,或左下角,或右下角)的第一对位标记11-3和第二对位标记11-6在衬底基板11-4上的正投影重叠。
第二对位标记11-6的材料可选用诸如金属等透过率较低的材料,以便于在将光学元件11组装于主动发光模组中时,能够更加明显地观察到该第二对位标记11-6。
如图10、11d所示,在一些实施例中,该光学元件11还包括保护层11-7,保护层11-7设置于衬底基板11-4的检测线11-1所在侧,也即,保护层11-7和检测线11-1均设置于衬底基板11-4的A侧或B侧。且保护层11-7覆盖在检测线11-1上。保护层11-7覆盖在检测线11-1上,起到保护检测线11-1的作用。保护层11-7的材料可选用具有隔绝水氧、抗腐蚀性能的有机或无机材料。
需要说明的是,作为一种可能的设计,请再次参见图10,若检测线11-1和第二对位标记11-6均设置于衬底基板11-4的A侧或B侧,第二对位标记11-6采用诸如金属等易被氧化腐蚀的材料形成,则保护层11-7可覆盖检测线11-1和第二对位标记11-6,以保护检测线11-1和第二对位标记11-6。
作为一种可能的设计,保护层11-7上设有开口11-8,以暴露出检测线11-1的端部或者导电垫11-2,便于检测线11-1的端部或者导电垫11-2与导线15进行电连接。开口11-8的设置位置依检测线11-1的端部或者导电垫11-2的位置而定。
基于上面对本发明实施例所提供的光学元件的监测系统及光学元件的描述,本发明的实施例还提供了一种主动发光模组,如图9a~9c所示,该主动发光模组1包括:光学元件11、导线15、激光器12、微处理器13及模组外壳14。其中,模组外壳14至少包括底部基板14-2及侧壁14-1。光学元件11安装于侧壁14-1远离底部基板14-2的一端。进一步的,模组外壳14还包括承托结构14-3,请参见图4b,承托结构14-3为环状结构,环设于侧壁14-1的内表面上,形成通光孔径GG,光学元件11的边缘通过粘胶17固定于承托结构14-3背向激光器12的表面上。激光器12和微处理器13安装于底部基板14-2上,二者相连,微处理器13控制激光器12发射激光,激光光线穿过通光孔径GG经光学元件11射出主动发光模组1外部。
光学元件11包括检测线11-1,检测线11-1的两端分别通过导线15与微处理器13相连,微处理器13实时监测检测线11-1的电阻值或检测线11-1两端的电压值。当检测线11-1的电阻值超出设定电阻阈值范围时,或者当检测线11-1两端的电压值超出设定电压阈值范围时,判断光学元件11发生破损或脱落。此时微处理器13控制 电源2停止向激光器12供电,激光器12关闭,从而有效地避免了激光器12所发射的激光直射人眼而对人眼造成伤害。并且,该主动发光模组1中仅需设置一层光学元件11及检测线11-1(即仅需一层导电层),结构简单,制作工艺简单,成本较低。
在上述主动发光模组1中,检测线11-1与导线15的连接方式,及导线15在模组外壳14的侧壁14-1的设置方式,可参见本发明实施例所提供的光学元件的监测系统中关于导线15的描述,此处不再赘述。
需要说明的是,本发明实施例所提供的主动发光模组1为任何能够发射激光的模组,例如:TOF 3D感测模块中包括高功率的激光器的模组,结构光3D感测模块115中的点阵投射器115-5及泛光照明器115-2等。
基于上面对本发明实施例所提供的主动发光模组1的描述,本发明的实施例还提供了一种终端,该终端包括本发明实施例所提供的主动发光模组1,用于提供规定的激光光线(例如,若主动发光模组1为点阵投射器115-5,则该主动发光模组1需要提供的规定的光线为结构光的光线),以辅助终端实现3D感测功能。当该主动发光模组1安装于诸如手机100的终端内,其激光器12侧(及发光侧)靠近终端内部,光学元件11侧(及出光侧)朝向终端外部,以向外投射出规定的激光光线。
基于上面对本发明实施例所提供的光学元件的监测系统的描述,本发明的实施例还提供了一种光学元件的监测方法,该光学元件的监测方法应用于本发明实施例所提供的光学元件的监测系统中,如图12所示,并请再次参见图5a、5b,该光学元件的监测方法包括如下步骤:
S1:微处理器13实时监测检测线11-1的电阻值。
作为一种可能的实现方式,如图13所示,步骤S1具体可包括如下步骤:
S11:微处理器13实时监测检测线11-1两端的电压值。在本步骤中,若光学元件11没有破损或脱落,则监测得到的电压值接近或等于检测线11-1在未断裂时在整个监测电路(即检测线11-1、导线15及微处理器13所构成的监测电路)中分压的电压值。若光学元件11破损或脱落,监测电路开路,则监测得到的电压值接近或等于微处理器13提供给整个监测电路的电压值。
需要说明的是,微处理器13通过向检测线11-1施加电压的方式来监测检测线11-1两端的电压值,具体的,微处理器13向整个监测电路提供一定的电压,监测电路中的检测线11-1分压,从而实现了微处理器13向检测线11-1施加电压。微处理器13向整个监测电路所提供的电压可为一连续电压信号,也可为一非连续电压信号,例如为脉冲模式的电压信号,以降低功耗,及降低电压信号对检测线11-1所造成的腐蚀。微处理器13向整个监测电路所提供的电压由终端的电源(例如手机100的电源装置111)供给。示例性的,微处理器13提供给整个监测电路的电压值为2.85V,检测线11-1无断裂时的电阻值为10KΩ,在整个监测电路无开路的情况下,检测线11-1分得0.8V电压,即检测线11-1两端的电压值为0.8V。
S12:微处理器13将监测得到的电压值转换成电阻值。
在本步骤中,微处理器13将实时监测得到的电压值换算成电阻值。若监测得到的电压值接近或等于检测线11-1在未断裂时在整个监测电路中分压的电压值,则换算得到的电阻值应为接近或等于检测线11-1在未断裂时的电阻值。若监测得到的电压值接 近或等于微处理器13提供给整个监测电路的电压值,则换算得到的电阻值为无穷大。
S2:微处理器13判断监测得到的电阻值是否超出设定电阻阈值范围:若是,则微处理器13控制电源2停止向激光器12供电;若否,则返回步骤S1。
在上述步骤S2中,设定电阻阈值范围可设定为围绕检测线11-1在未断裂时的电阻值R上下波动的一个数值范围,示例性的,设定电阻阈值范围可设定为大于或等于80%R,小于或等于120%R。若步骤S1中得到的电阻值超出该设定电阻阈值范围,则说明监测电路发生开路,可能是检测线11-1断裂,也可能是检测线11-1与导线15的连接处断开,这说明光学元件11破损或脱落。此时微处理器13向电源2发出中断信号,控制电源2停止向激光器12供电,从而激光器12关闭,避免了在光学元件11破损或脱落时,激光光线直射人眼而对损伤人眼。若步骤S1中得到的电阻值并未超出设定电阻阈值范围,则说明监测电路正常工作,光学元件11正常,电源2可继续向激光器12供电,微处理器13可返回步骤S1,进行下一时刻检测线11-1的电阻值的监测。
示例性的,检测线11-1在未断裂时的电阻值为10KΩ,设定电阻阈值范围设定为大于或等于8KΩ,小于或等于12KΩ。微处理器13提供给整个监测电路的电压值为2.85V,在整个监测电路无开路的情况下,检测线11-1分得0.8V电压。
在t1时刻,微处理器13监测得到检测线11-1两端的电压值U为2.85V,根据电阻分压原理,将该电压值U转换得到的电阻值R为无穷大,判断转换得到的电阻值R已经超出设定电阻阈值范围8KΩ~12KΩ,则判定光学元件11破损或脱落,微处理器13控制电源2停止向激光器12供电。
在t2时刻,微处理器13监测得到检测线11-1两端的电压值U为0.8V,根据电阻分压原理,将该电压值U转换得到的电阻值为10KΩ,判断转换得到的电阻值R在设定电阻阈值范围8KΩ~12KΩ之内,则判定光学元件11正常,电源2可继续向激光器12供电。
在一些实施例中,还可通过实时监测检测线11-1两端的电压值,判断监测得到的电压值是否超出设定电压阈值,来对光学元件11是否破损或脱落进行判断。请参见图14,并请再次参见图5a、5b,所述光学元件的监测方法包括如下步骤:
S1':微处理器13实时监测检测线11-1两端的电压值。
关于上述步骤S1'的详细说明,可参见上面对步骤S11的描述,此处不再赘述。
S2':微处理器13判断监测得到的电压值是否超出设定电压阈值范围:若是,则微处理器13控制电源2停止向激光器12供电;若否,则返回步骤S1'。
在上述步骤S2'中,设定电压阈值范围可设定为围绕检测线11-1在未断裂时在整个监测电路中所分担的电压值U上下波动的一个数值范围,示例性的,设定电压阈值范围可设定为大于或等于80%U,小于或等于120%U。若步骤S1'中监测得到的电压值超出该设定电压阈值范围,则说明监测电路发生开路,可能是检测线11-1断裂,也可能是检测线11-1与导线15的连接处断开,这说明光学元件11破损或脱落。此时微处理器13向电源2发出中断信号,控制电源2停止向激光器12供电,从而激光器12关闭,避免了在光学元件11破损或脱落时,激光光线直射人眼而对损伤人眼。若步骤S1'中监测得到的电压值并未超出设定电压阈值,则说明监测电路正常工作,光学元件11正常,电源2可继续向激光器12供电,微处理器13可返回步骤S1,进行下一 时刻检测线11-1两端的电压值的监测。
示例性的,微处理器13提供给整个监测电路的电压值为2.85V,在整个监测电路无开路的情况下,检测线11-1分得0.8V电压,设定电压阈值范围设定为大于或等于0.64V,小于或等于0.96V。
在t1'时刻,微处理器13监测得到检测线11-1两端的电压值U为2.85V,该电压值U已经超出设定电压阈值范围0.64V~0.96V,则判定光学元件11破损或脱落,微处理器13控制电源2停止向激光器12供电。
在t2'时刻,微处理器13监测得到检测线11-1两端的电压值U为0.8V,该电压值U并在设定电压阈值范围0.64V~0.96V之内,则判定光学元件11正常,电源2可继续向激光器12供电。
可以理解的是,上述终端等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的范围。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何在本发明揭露的技术范围内的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种光学元件,包括衬底基板,其特征在于,所述光学元件还包括设置于所述衬底基板一侧表面上的检测线,所述检测线配置为传输电信号。
  2. 根据权利要求1所述的光学元件,其特征在于,检测线的材料为透明导电材料。
  3. 根据权利要求2所述的光学元件,其特征在于,所述检测线的材料包括铟锡氧化物、铟锌氧化物、铟镓锌氧化物和铟锡锌氧化物中的任意一种或几种。
  4. 根据权利要求1所述的光学元件,其特征在于,所述检测线所在的衬底基板的表面等分为多个区域,每个所述区域均有所述检测线的至少一段覆盖。
  5. 根据权利要求4所述的光学元件,其特征在于,每个所述区域内的检测线的覆盖面积相等。
  6. 根据权利要求4所述的光学元件,其特征在于,每个所述区域内的检测线的宽度相等。
  7. 根据权利要求4所述的光学元件,其特征在于,所述检测线的相邻部分之间的间隙相等。
  8. 根据权利要求1所述的光学元件,其特征在于,所述检测线呈折线形或者螺旋线形延伸。
  9. 根据权利要求1所述的光学元件,其特征在于,所述光学元件还包括设置于衬底基板的与检测线所在侧相同的一侧表面上的导电垫,所述导电垫位于所述检测线的端部且与所述检测线的端部电连接。
  10. 根据权利要求9所述的光学元件,其特征在于,所述导电垫与所述检测线的材料相同。
  11. 根据权利要求9所述的光学元件,其特征在于,所述光学元件还包括覆盖在所述检测线上的保护层,所述保护层上设有开口,以暴露出所述导电垫。
  12. 一种主动发光模组,包括模组外壳,所述模组外壳包括底部基板及侧壁,其特征在于,所述主动发光模组还包括:
    安装于所述底部基板上的激光器和微处理器;
    安装于所述侧壁远离所述底部基板的一端的光学元件,所述光学元件为如权利要求1~11任一项所述的光学元件;
    用于将所述光学元件的检测线两端分别与所述微处理器连接的导线;
    所述微处理器配置为实时监测所述检测线的电阻值或所述检测线两端的电压值,根据监测得到的电阻值或电压值判断所述光学元件是否破损或脱落,并在判定所述光学元件破损或脱落时控制所述激光器关闭。
  13. 根据权利要求12所述的主动发光模组,其特征在于,所述导线在所述侧壁的 内部由所述检测线的端部延伸至所述微处理器;或者,
    所述导线在所述侧壁的内表面上由所述检测线的端部延伸至所述微处理器;或者,
    所述导线在所述侧壁的外表面上由所述检测线的端部延伸至所述微处理器。
  14. 根据权利要求12所述的主动发光模组,其特征在于,所述主动发光模组还包括设置于所述检测线的端部与所述导线的相接处的导电电极,用于将所述检测线的端部和所述导线电连接。
  15. 根据权利要求13所述的主动发光模组,其特征在于,所述导电电极的材料为导电银浆或焊锡。
  16. 一种终端,其特征在于,所述终端包括如权利要求12~15任一项所述的主动发光模组。
  17. 一种光学元件的监测系统,其特征在于,所述光学元件的监测系统包括:
    依次连接的微处理器、电源和激光器;
    如权利要求1~11任一项所述的光学元件,所述光学元件的检测线的两端分别与所述微处理器相连;
    所述微处理器配置为实时监测所述检测线的电阻值或所述检测线两端的电压值,根据监测得到的电阻值或电压值判断所述光学元件是否破损或脱落,并在判定所述光学元件破损或脱落时控制所述电源停止向所述激光器供电。
  18. 一种光学元件的监测方法,其特征在于,应用于如权利要求17所述的光学元件的监测系统,所述光学元件的监测方法包括:
    微处理器实时监测检测线的电阻值;
    微处理器判断监测得到的电阻值是否超出设定电阻阈值范围:若是,则微处理器控制电源停止向激光器供电;若否,则进行下一时刻对检测线的电阻值的监测;
    其中,所述设定电阻阈值范围为围绕检测线在未断裂时的电阻值上下波动的数值范围。
  19. 根据权利要求18所述的光学元件的监测方法,其特征在于,所述微处理器实时监测检测线两端的电阻值的步骤包括:
    微处理器实时监测检测线两端的电压值;
    微处理器将监测得到的电压值转换成电阻值。
  20. 一种光学元件的监测方法,其特征在于,应用于如权利要求17所述的光学元件的监测系统,所述光学元件的监测方法包括:
    微处理器实时监测检测线两端的电压值;
    微处理器判断监测得到的电压值是否超出设定电压阈值范围:若是,则微处理器控制电源停止向激光器供电;若否,则进行下一时刻对检测线两端的电压值的监测;
    其中,所述设定电压阈值范围为围绕检测线在未断裂时两端的电压值上下波动的数值范围。
PCT/CN2019/110831 2018-10-15 2019-10-12 光学元件及其监测系统和方法、主动发光模组、终端 WO2020078283A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19873016.0A EP3848850B1 (en) 2018-10-15 2019-10-12 Optical element and monitoring system and method therefor, active light emitting module, and terminal
US17/285,193 US20210399517A1 (en) 2018-10-15 2019-10-12 Optical Element, Optical Element Monitoring System and Method, Active Light Emitting Module, and Terminal
BR112021007049-4A BR112021007049A2 (pt) 2018-10-15 2019-10-12 elemento ótico, sistema e método de monitoramento de elemento ótico, módulo de emissão de luz ativo, e terminal
JP2021546038A JP7240516B2 (ja) 2018-10-15 2019-10-12 光学素子、光学素子監視システム及び方法、アクティブ発光モジュール、並びに端末
ES19873016T ES2970082T3 (es) 2018-10-15 2019-10-12 Elemento óptico y sistema de monitorización y método para el mismo, módulo emisor de luz activo y terminal
KR1020217012511A KR102516443B1 (ko) 2018-10-15 2019-10-12 광학 소자, 광학 소자 모니터링 시스템 및 방법, 능동 발광 모듈 및 단말기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811198406.XA CN109543515B (zh) 2018-10-15 2018-10-15 光学元件及其监测系统和方法、主动发光模组、终端
CN201811198406.X 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020078283A1 true WO2020078283A1 (zh) 2020-04-23

Family

ID=65843897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110831 WO2020078283A1 (zh) 2018-10-15 2019-10-12 光学元件及其监测系统和方法、主动发光模组、终端

Country Status (8)

Country Link
US (1) US20210399517A1 (zh)
EP (1) EP3848850B1 (zh)
JP (1) JP7240516B2 (zh)
KR (1) KR102516443B1 (zh)
CN (3) CN109543515B (zh)
BR (1) BR112021007049A2 (zh)
ES (1) ES2970082T3 (zh)
WO (1) WO2020078283A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115224468A (zh) * 2022-09-20 2022-10-21 珠海翔翼航空技术有限公司 一种机翼共形透明微带天线、制备方法及航天器
JP7438858B2 (ja) 2020-06-15 2024-02-27 新光電気工業株式会社 発光装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109543515B (zh) * 2018-10-15 2022-06-24 华为技术有限公司 光学元件及其监测系统和方法、主动发光模组、终端
WO2020130937A1 (en) * 2018-12-21 2020-06-25 Ams Sensors Singapore Pte. Ltd. Light emitting modules with irregular and/or aperiodic conductive traces
EP3723138A1 (en) * 2019-04-10 2020-10-14 ams International AG Optoelectronic device, photonic detector and method of producing an optoelectronic device
CN109994921B (zh) * 2019-04-29 2020-09-11 维沃移动通信有限公司 激光投射模组及终端设备
US20210055421A1 (en) * 2019-08-22 2021-02-25 Continental Automotive Systems, Inc. Electrical circuit across optical element to detect damage
US11573485B2 (en) * 2019-09-03 2023-02-07 Himax Technologies Limited Projector, 3D sensing module and method for fabricating the projector
CN111157132A (zh) * 2020-01-02 2020-05-15 西北工业大学 一种基于微加工工艺的无源柔性温度传感器的制作方法
EP4113192A4 (en) * 2020-03-31 2023-04-19 Huawei Technologies Co., Ltd. DEVICE FOR DETECTING THE SHIFT OF A DIFFUSION FILM AND HEAD-UP DISPLAY
KR20210128179A (ko) * 2020-04-16 2021-10-26 주식회사 만도 라이다 장치
US20210336402A1 (en) * 2020-04-23 2021-10-28 Analog Devices International Unlimited Company Laser system
CN115144842B (zh) * 2022-09-02 2023-03-14 深圳阜时科技有限公司 发射模组、光电检测装置、电子设备及三维信息检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258746A (ja) * 2005-03-18 2006-09-28 Fujitsu Hitachi Plasma Display Ltd ガラス基板の破損検出方法
CN107636508A (zh) * 2015-06-03 2018-01-26 苹果公司 具有增强的可靠性和完整性的集成光学模块
CN107870273A (zh) * 2017-10-11 2018-04-03 深圳奥比中光科技有限公司 衍射光学元件监测控制装置及方法
CN107870186A (zh) * 2017-12-18 2018-04-03 深圳奥比中光科技有限公司 一种含安全监测功能的光学模组
CN109543515A (zh) * 2018-10-15 2019-03-29 华为技术有限公司 光学元件及其监测系统和方法、主动发光模组、终端

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772756B2 (en) * 2003-08-01 2010-08-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device including a dual emission panel
JP2007035009A (ja) * 2005-06-03 2007-02-08 Taisei Laminator Co Ltd 異常検出装置
WO2006138626A2 (en) * 2005-06-17 2006-12-28 The Regents Of The University Of California (AI,Ga,In)N AND ZnO DIRECT WAFER BONDED STRUCTURE FOR OPTOELECTRONIC APPLICATION AND ITS FABRICATION METHOD
JP2010287126A (ja) * 2009-06-12 2010-12-24 Toyota Industries Corp 窓ガラス破損センサ、窓ガラス破損センサ用フィルム、及び窓ガラス破損センサ用フィルムの製造方法
WO2016006298A1 (ja) * 2014-07-07 2016-01-14 ソニー株式会社 半導体光デバイス
JP6133521B2 (ja) * 2014-10-21 2017-05-24 フィリップス ライティング ホールディング ビー ヴィ 光源組立体、及び前記光源組立体を製造するための方法
US9246311B1 (en) * 2014-11-06 2016-01-26 Soraa Laser Diode, Inc. Method of manufacture for an ultraviolet laser diode
US10330527B2 (en) 2015-04-01 2019-06-25 Osram Gmbh Device and method for light conversion device monitoring
US10302585B2 (en) * 2016-01-07 2019-05-28 Apple Inc. Capacitive DOE integrity monitor
CN106249503A (zh) * 2016-09-19 2016-12-21 广州奥翼电子科技股份有限公司 用于显示装置的光学元件及电泳显示器
CN107860558A (zh) * 2017-10-11 2018-03-30 深圳奥比中光科技有限公司 衍射光学元件监测装置及方法
CN107608167A (zh) * 2017-10-11 2018-01-19 深圳奥比中光科技有限公司 激光投影装置及其安全控制方法
CN108121133A (zh) 2017-11-06 2018-06-05 深圳奥比中光科技有限公司 光学投影装置及其控制方法
CN107991836A (zh) * 2017-12-18 2018-05-04 深圳奥比中光科技有限公司 一种含安全监测功能的光学投影模组
CN108319034B (zh) * 2018-02-27 2020-08-14 Oppo广东移动通信有限公司 激光投射模组、深度相机和电子装置
CN108388064A (zh) * 2018-02-27 2018-08-10 广东欧珀移动通信有限公司 激光投射模组及其破裂的检测方法、深度相机和电子装置
CN108598849A (zh) * 2018-03-20 2018-09-28 维沃移动通信有限公司 一种扩散片、激光器及移动设备
CN108548498A (zh) * 2018-05-25 2018-09-18 Oppo广东移动通信有限公司 激光投射模组、深度相机和电子装置
CN108445644A (zh) * 2018-06-27 2018-08-24 Oppo广东移动通信有限公司 激光投射模组、深度相机和电子装置
TW202111969A (zh) * 2019-07-17 2021-03-16 新加坡商Ams傳感器亞洲私人有限公司 包括增強的安全特徵的發光模組

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258746A (ja) * 2005-03-18 2006-09-28 Fujitsu Hitachi Plasma Display Ltd ガラス基板の破損検出方法
CN107636508A (zh) * 2015-06-03 2018-01-26 苹果公司 具有增强的可靠性和完整性的集成光学模块
CN107870273A (zh) * 2017-10-11 2018-04-03 深圳奥比中光科技有限公司 衍射光学元件监测控制装置及方法
CN107870186A (zh) * 2017-12-18 2018-04-03 深圳奥比中光科技有限公司 一种含安全监测功能的光学模组
CN109543515A (zh) * 2018-10-15 2019-03-29 华为技术有限公司 光学元件及其监测系统和方法、主动发光模组、终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3848850A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7438858B2 (ja) 2020-06-15 2024-02-27 新光電気工業株式会社 発光装置
CN115224468A (zh) * 2022-09-20 2022-10-21 珠海翔翼航空技术有限公司 一种机翼共形透明微带天线、制备方法及航天器

Also Published As

Publication number Publication date
BR112021007049A2 (pt) 2021-07-20
EP3848850B1 (en) 2023-12-06
JP2022513361A (ja) 2022-02-07
CN110175499A (zh) 2019-08-27
EP3848850A1 (en) 2021-07-14
CN115144437A (zh) 2022-10-04
ES2970082T3 (es) 2024-05-24
JP7240516B2 (ja) 2023-03-15
EP3848850A4 (en) 2021-10-27
CN109543515A (zh) 2019-03-29
KR20210062691A (ko) 2021-05-31
CN109543515B (zh) 2022-06-24
US20210399517A1 (en) 2021-12-23
KR102516443B1 (ko) 2023-03-30

Similar Documents

Publication Publication Date Title
WO2020078283A1 (zh) 光学元件及其监测系统和方法、主动发光模组、终端
US11982859B2 (en) Lens, active light emitting module, and terminal
US10802596B2 (en) Display device, self-luminous display panel and gesture recognition method
US11868604B2 (en) Display processing method and apparatus
TW201930998A (zh) 電子裝置及切換相機模組之方法
KR20210141116A (ko) 도래각 측정을 위한 안테나를 포함하는 전자 장치
WO2020078277A1 (zh) 一种结构光支架及终端设备
US20230224392A1 (en) Handheld electronic device
RU2788435C2 (ru) Оптический элемент, система и способ мониторинга оптического элемента, активный светоизлучающий модуль и оконечное устройство
CN208723943U (zh) 电子设备
CN109151102B (zh) 电子设备
CN113641024B (zh) 显示面板及其制备方法
US20230224388A1 (en) Handheld electronic device
US20230221802A1 (en) Handheld electronic device
US20230224393A1 (en) Handheld electronic device
US20230224391A1 (en) Handheld electronic device
US20230239558A1 (en) Handheld electronic device
CN210721498U (zh) 摄像组件、指纹识别模组及电子设备
CN114967172A (zh) 显示装置及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546038

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019873016

Country of ref document: EP

Effective date: 20210408

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217012511

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021007049

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112021007049

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210414