WO2020077757A1 - 核电厂非能动冷凝器 - Google Patents

核电厂非能动冷凝器 Download PDF

Info

Publication number
WO2020077757A1
WO2020077757A1 PCT/CN2018/118804 CN2018118804W WO2020077757A1 WO 2020077757 A1 WO2020077757 A1 WO 2020077757A1 CN 2018118804 W CN2018118804 W CN 2018118804W WO 2020077757 A1 WO2020077757 A1 WO 2020077757A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
exchange tube
inclined section
flange
power plant
Prior art date
Application number
PCT/CN2018/118804
Other languages
English (en)
French (fr)
Inventor
梁小龙
聂成磊
周鹏
欧国勇
李超联
李名扬
Original Assignee
中广核工程有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核工程有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核工程有限公司
Priority to EP18937409.3A priority Critical patent/EP3869134A4/en
Publication of WO2020077757A1 publication Critical patent/WO2020077757A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05325Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/004Pressure suppression
    • G21C9/012Pressure suppression by thermal accumulation or by steam condensation, e.g. ice condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0054Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for nuclear applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a nuclear power plant passive containment heat extraction system. More specifically, the present invention relates to a nuclear power plant passive condenser.
  • Passive containment heat export system including evaporator, condenser, cooling water tank, riser, downcomer and gas collector, where the condenser as the core equipment of the system function, plays a decisive role in the realization of the system function.
  • the existing passive condenser adopts a tube bundle-tube plate-spherical head structure.
  • This structure needs to weld and attach the heat exchange tube and the tube sheet one by one after drilling the tube sheet. After welding, the non-destructive inspection of the surface weld seam is performed one by one.
  • the spherical head is welded to the tube sheet for subsequent maintenance. Manholes are required on the head.
  • the thickness of the tube plate and spherical head is often larger under the condition of meeting the strength requirements, requiring 6 girth welds.
  • the tube plate and spherical head are processed by forging, which makes the processing technology of this structure more complicated and the manufacturing cost high .
  • the 100% radiographic inspection cannot be performed after the heat exchange tube and the tube sheet are welded, and the spherical head has a large opening, the flange seal is easy to leak, and the force is suddenly changed.
  • the purpose of the invention of the present invention is to overcome the shortcomings of the prior art and provide a passive condenser for a nuclear power plant that can make the opening of the containment vessel as small as possible, ensure the integrity of the containment vessel to the greatest extent, and can perform 100% radiation inspection.
  • the present invention provides a passive condenser for a nuclear power plant, including:
  • the upper collecting tube is provided with a plurality of heat exchange tube steam inlets, one end is an open structure and one end is a closed structure, and one end of the open structure is fixedly connected with a first joint;
  • the first flange has a first through hole, which is provided at the steam inlet of the heat exchange tube and is fixedly connected to the upper header, and the first through hole communicates with the steam inlet of the heat exchange tube;
  • the lower collecting tube is provided with a plurality of heat exchange tube condensate return ports, one end is an open structure and one end is a closed structure, and one end of the open structure is fixedly connected with a second joint;
  • the second flange has a second through hole, which is provided at the position of the condensate return port of the heat exchange tube and is fixedly connected to the lower header, and the second through hole communicates with the condensate return port of the heat exchange tube;
  • the heat exchange tube bundle includes a plurality of heat exchange tubes.
  • the heat exchange tube includes an upper inclined section, a middle connecting section and a lower inclined section.
  • the inclination directions of the upper inclined section and the lower inclined section are slightly downward along the direction of fluid flow.
  • the upper inclined section is fixedly connected to the first flange, and the lower inclined section is fixedly connected to the second flange.
  • the first flange is welded to the upper header by a riding method
  • the second flange is welded to the lower header by a riding method
  • the upper inclined section and the first flange are fixed by butt welding, and the lower inclined section and the second flange are fixed by butt welding.
  • both the upper header and the lower header are cylindrical structures.
  • the first joint and the second joint are large and small heads.
  • the heat exchange tube bundle is a C-type vertical heat exchange tube bundle.
  • the angle between the upper inclined section and the lower inclined section of the heat exchange tube and the horizontal plane is 3 ° to 15 °, respectively.
  • the passive condenser of the nuclear power plant of the present invention also includes a frame assembly for supporting and fixing the upper header and the lower header.
  • the frame assembly is welded with a tube bundle support assembly that respectively fixes and supports the upper inclined section and the lower inclined section of the heat exchange tube bundle.
  • the upper header and the lower header are arranged through the containment.
  • the closed structures of the upper header and the lower header are welded fixed hemispherical heads.
  • the middle connecting section is a vertical section.
  • the passive condenser of the nuclear power plant of the present invention has the following technical effects:
  • the collecting tube realizes the functions of tube plate and spherical head.
  • the collecting tube has a simple cylindrical structure with uniform stress, few girth welds, simple and reliable processing technology, and the original head and tube are eliminated Plate forgings reduce manufacturing costs;
  • FIG. 1 is a schematic structural diagram of a passive condenser of a nuclear power plant of the present invention.
  • Fig. 2 is a left side view of Fig. 1.
  • FIG 3 is an enlarged schematic view of the first flange of the upper header of the passive condenser of the nuclear power plant of the present invention.
  • Containment-8 10-upper collecting tube; 100-heat exchange tube steam inlet; 102-first joint; 104-hemispherical head; 12-first flange; 120-first through hole; 20-lower collection Tube; 202-second joint; 204-hemispherical head; 30-heat exchange tube; 300-upper inclined section; 302-middle connecting section; 304-lower inclined section; 40-frame assembly; 400-bracket; 401- Curved pad; 402-bracket; 50, 60-tube bundle support assembly.
  • the passive condenser of the nuclear power plant of the present invention includes:
  • the upper collecting tube 10 is provided with a plurality of heat exchange tube steam inlets 100, one end is an open structure and one end is a closed structure, and one end of the open structure is fixedly connected with a first joint 102;
  • the first flange 12 has a first through hole 120, which is provided at the position of the heat exchange tube steam inlet 100 and is fixedly connected to the upper collecting tube 10, and the first through hole 120 communicates with the heat exchange tube steam inlet 100;
  • the lower collecting pipe 20 is provided with a plurality of heat exchange tube condensate return ports (not shown), one end is an open structure, and one end is a closed structure, and one end of the open structure is fixedly connected with a second joint 202;
  • the second flange 22 has a second through hole (not shown), is provided at the position of the condensate return port (not shown) of the heat exchange tube, and is fixedly connected to the lower collecting pipe 20.
  • the heat pipe condensate return port communicates;
  • the heat exchange tube bundle includes a plurality of heat exchange tubes 30.
  • the heat exchange tubes 30 include an upper inclined section 300, a middle connecting section 302, and a lower inclined section 304.
  • the inclined directions of the upper inclined section 300 and the lower inclined section 304 are along the fluid flow The direction of is slightly downward, the upper inclined section 300 is fixedly connected to the first flange 12, and the lower inclined section 304 is fixedly connected to the second flange 22.
  • the upper collecting pipe 10 is a steel tube with a cylindrical structure, which is fixed on the frame assembly 40, and a plurality of heat exchange tube steam inlets 100 are evenly arranged on the upper collecting pipe 10, and when installed, the upper collecting pipe 10 passes through an opening in the upper part of the containment 8
  • the opening in the upper part of the containment 8 matches the outer diameter of the upper header 10, and the outer diameter of the upper header 10 is adjusted according to different requirements.
  • the inlet end of the upper header 10 is welded and fixed with a first joint 102 used as a variable diameter, the first joint 102 is a large and small head, the outer diameter of the inlet end is smaller than the outer diameter of the connecting end with the upper header 10, by using the first joint 102 It can quickly connect and fix with adjacent equipment.
  • the other end of the upper header 10 has a closed structure.
  • the other end is welded with a hemispherical head 104 matching the outer diameter of the upper header 10 for closing.
  • the upper header 10, the first joint 102, and the hemispherical head 104 are fixed by welding.
  • the structure of the lower header 20 is basically the same as the structure of the upper header 10. It is a steel tube with a cylindrical structure. The outer diameter can be adjusted according to the requirements of the nuclear power plant. A number of heat exchange tube condensate return ports are evenly opened on it (not shown) Out), in order to facilitate the fixed connection of the heat exchange tube 30 with the upper header 10 and the lower header 20, the number and position of the heat exchange tube condensate return ports on the lower header 20 correspond to the heat exchanger tube steam inlet 100.
  • the lower collecting pipe 20 is disposed through the opening of the lower part of the containment shell 8, and the opening of the lower part of the containing shell 8 matches the outer diameter of the lower collecting pipe 20.
  • the outlet end of the lower collecting pipe 20 is welded and fixed with a second joint 202 used as a variable diameter.
  • the second joint 202 is a large and small head.
  • the outer diameter of the outlet end is smaller than the outer diameter of the connecting end with the lower collecting pipe 20. Quickly connect and fix with adjacent equipment.
  • the other end of the lower header 20 is a closed structure.
  • the other end is welded with a hemispherical head 204 matching the outer diameter of the lower header 20 for closing.
  • the upper header 10 and the lower header 20 are simple cylindrical structures with fewer girth welds, and the manufacturing process is simpler and more reliable, which greatly reduces the manufacturing cost.
  • the upper header 10 can effectively buffer large amounts of incoming steam and Evenly distributed, the lower collecting pipe 20 can effectively collect and buffer the condensate, and discharge the condensate from the outlet end, and because the upper collecting pipe 10 and the lower collecting pipe 20 are simple cylindrical structures, the safety shell 8 can be opened The holes are as small as possible, ensuring the integrity of the containment 8 to the greatest extent.
  • the first heat collecting tube steam inlet 100 of the upper collecting tube 10 is welded with the first Flange 12, the first flange 12 has a first through hole 120, and the first through hole 120 is consistent with the diameter of the heat exchange tube steam inlet 100, and communicates with the heat exchange tube steam inlet 100, the first flange 12 and the upper part
  • the collecting tube 10 is welded in a riding manner, and the first flange 12 is parallel to the upper inclined section 300 of the heat exchange tube 30 after welding.
  • the end of the first flange 12 away from the upper header 10 is trimmed, that is, the outer diameter of the end of the first flange 12 away from the upper header 10 is smaller than the outer diameter of the welding end to the upper header 10.
  • the first flange 12 has a certain length, and the first flange 12 and the upper inclined section 300 of the heat exchange tube 30 are welded by butt welding.
  • the second header 20 is welded with a second flange at the position of the heat exchange tube condensate return port (not shown) 22, the second flange 22 has a second through hole, and the second through hole is consistent with the diameter of the heat exchange tube condensate return port (not shown), and communicates with the heat exchange tube condensate return port, the second convex
  • the flange 22 and the lower collecting pipe 20 are also welded in a riding manner. After welding, the second flange 22 is parallel to the lower inclined section 304 of the heat exchange tube 30.
  • the end of the second flange 22 away from the lower header 20 is trimmed, that is, the outer diameter of the end of the second flange 22 away from the lower header 20 is smaller than the outer diameter of the welding end with the lower header 20.
  • the second flange 22 has a certain length, and the second flange 22 and the lower inclined section 304 of the heat exchange tube 30 are welded by butt welding.
  • welding is performed in a seated manner, but the heat exchange tube 30 and the second flange 22 are butt-welded. All of these welds can be 100% radiographically inspected, which improves the safety performance of the equipment.
  • the first joint 102 and the second joint 202 are large and small at one end, and can be directly welded and fixed to the adjacent upper collecting pipe 10 and lower collecting pipe 20 by using existing standard parts.
  • the inner diameter of the inlet end of the first joint 102 Is smaller than the inner diameter of the upper header 10 and the inner diameter of the outlet end of the second joint 202 is smaller than the inner diameter of the lower header 20.
  • the two ends of the heat exchange tube bundle are welded and fixed to the upper header 10 and the lower header 20 respectively.
  • the inlet of the heat exchanger tube 30 communicates with the first through hole 120 and the steam inlet 100 of the heat exchanger tube.
  • the outlet of the heat exchanger tube 30 is The second through hole and the condensate return port of the heat exchange tube communicate with each other.
  • the heat exchange tube bundle is a C-shaped vertical heat exchange tube bundle, and each heat exchange tube 30 includes an upper inclined section 300, a middle connecting section 302, and a lower inclined section 304.
  • the upper inclined section 300 and the end of the first flange 12 are welded and fixed by butt welding
  • the lower inclined section 304 and the end of the second flange 22 are welded and fixed by butt welding.
  • the inclined directions of the upper inclined section 300 and the lower inclined section 304 are both slightly downward along the direction of fluid flow, that is, the upper inclined section 300 is slightly inclined downward from the upper header 10 to the central connecting section 302, and the lower inclined section 304 slopes slightly downward from the central connecting section 302 to the lower header 20; the inclined angles of the upper inclined section 300 and the lower inclined section 304 (that is, the angle between the heat exchange tube 30 and the horizontal plane) are all between 3 ° and 15 °;
  • the middle connecting section 302 is a vertical section.
  • the frame assembly 40 is formed by welding a series of section steel, which is mainly used to support and fix the C-type vertical heat exchange tube bundle.
  • the upper and lower ends of one side of the frame assembly 40 are welded and fixed to the upper collecting pipe 10 and the lower collecting pipe 20, respectively, and the bottom of the other side is fixed to a concrete support.
  • the frame assembly 40 further includes a bracket 400 for supporting and fixing the upper header 10 and a bracket 402 for supporting and fixing the lower header 20.
  • the bracket 400 is provided with two, respectively located at the open end and the closed end of the upper header 10, in order to For easy fixing, an arc-shaped backing plate 401 matching the outer diameter of the upper collecting pipe 10 is also provided between the upper collecting pipe 10 and the bracket 400, and then fixed by welding.
  • Two brackets 402 are provided, which are located at the open end and the closed end of the lower header 20 respectively.
  • an arc-shaped backing plate matching the outer diameter of the lower header 20 is also provided between the lower header 20 and the bracket 402 (Not shown), and then fixed by welding.
  • the frame assembly 40 is welded with a tube bundle support assembly 50, 60 that fixes and supports the C-type vertical heat exchange tube bundle, wherein the tube bundle support assembly 50 is welded to the upper portion of the frame assembly 40 to fix the upper inclined section 300 and Support, the tube bundle support assembly 60 is welded to the lower part of the frame assembly 40 for fixing and supporting the lower inclined section 304, the tube bundle support assembly 50, 60 is a plate with openings, the upper inclined section 300 of the heat exchange tube and the lower inclined Segments 304 are inserted through these openings and fixed to prevent large vibrations during operation.
  • the manufacturing process of the passive condenser of the nuclear power plant of the present invention is as follows:
  • Steps 3) and 4) After the corresponding requirements are met, packaging is carried out to complete the processing and manufacturing of the passive condenser of the nuclear power plant.
  • the passive condenser of the nuclear power plant of the present invention has the following technical effects:
  • the collecting tube realizes the functions of tube plate and spherical head.
  • the collecting tube has a simple cylindrical structure with uniform stress, few girth welds, simple and reliable processing technology, and the original head and tube are eliminated Plate forgings reduce manufacturing costs;

Abstract

一种核电厂非能动冷凝器,包括上部集合管(10),其上设置有多个换热管蒸汽入口(100),一端为开口结构,一端为封闭结构,开口结构的一端固定连接有第一接头(102);第一凸缘(12),具有第一通孔(120),设置在换热管蒸汽入口(100)位置,并与上部集合管(10)固定连接,第一通孔(120)与换热管蒸汽入口(100)连通;下部集合管(20),其上设置有多个换热管冷凝液回流口,一端为开口结构,一端为封闭结构,开口结构的一端固定连接有第二接头(202);第二凸缘(22),具有第二通孔,设置在换热管冷凝液回流口位置,并与下部集合管(20)固定连接,第二通孔与换热管冷凝液回流口连通;以及换热管束,包括多个换热管(30),换热管(30)包括上部倾斜段(300)、中部连接段(302)和下部倾斜段(304),上部倾斜段(300)与第一凸缘(12)固定连接,下部倾斜段(304)与第二凸缘(22)固定连接。

Description

核电厂非能动冷凝器 技术领域
本发明涉及核电厂非能动安全壳热量导出系统,更具体地说,本发明涉及一种核电厂非能动冷凝器。
背景技术
传统的能动型核电厂由于堆芯冷却、衰变余热和安全壳冷却均依赖外部电源,在核电厂全场断电时,无法将上述热量导出安全壳,因此可能导致严重的安全事故。福岛核事故发生后,非能动安全壳热量导出系统已得到广泛的研究和应用。
非能动安全壳热量导出系统,包括蒸发器、冷凝器、冷却水箱、上升管、下降管以及集气器,其中冷凝器作为该系统功能的核心设备,对系统的功能实现起着决定性的作用。
现有的非能动冷凝器采用管束-管板-球形封头的结构。这种结构需在管板上钻孔后将换热管与管板逐根焊接和贴胀,焊接后逐根进行表面焊缝无损检验,球形封头与管板焊接,为后续方便检修,球形封头上需开有人孔。管板和球形封头在满足强度要求的条件下厚度往往较大,需要6条环焊缝,管板及球形封头由锻件加工而成,使得这种结构的加工工艺更加复杂,制造成本高。换热管与管板焊接后无法进行100%射线检验,且球形封头存在大开孔,法兰密封容易泄漏,受力存在突变的情况。
有鉴于此,确有必要提供一种能使安全壳的开孔尽可能小、最大限度保证安全壳完整性且能进行100%射线检验的核电厂非能动冷凝器。
发明内容
本发明的发明目的在于:克服现有技术的不足,提供一种能使安全壳的开孔尽可能小、最大限度保证安全壳完整性且能进行100%射线检验的核电厂非 能动冷凝器。
为了实现上述发明目的,本发明提供了一种核电厂非能动冷凝器,包括:
上部集合管,其上设置有多个换热管蒸汽入口,一端为开口结构,一端为封闭结构,开口结构的一端固定连接有第一接头;
第一凸缘,具有第一通孔,设置在换热管蒸汽入口位置,并与上部集合管固定连接,第一通孔与换热管蒸汽入口连通;
下部集合管,其上设置有多个换热管冷凝液回流口,一端为开口结构,一端为封闭结构,开口结构的一端固定连接有第二接头;
第二凸缘,具有第二通孔,设置在换热管冷凝液回流口位置,并与下部集合管固定连接,第二通孔与换热管冷凝液回流口连通;以及
换热管束,包括多个换热管,换热管包括上部倾斜段、中部连接段和下部倾斜段,上部倾斜段和下部倾斜段的倾斜方向都是沿着流体流动的方向略向下倾斜,上部倾斜段与第一凸缘固定连接,下部倾斜段与第二凸缘固定连接。
作为本发明核电厂非能动冷凝器的一种改进,所述第一凸缘采用骑座式方式焊接在上部集合管上,所述第二凸缘采用骑座式方式焊接在下部集合管上。
作为本发明核电厂非能动冷凝器的一种改进,所述上部倾斜段与第一凸缘采用对接焊的方式进行固定,所述下部倾斜段与第二凸缘采用对接焊的方式进行固定。
作为本发明核电厂非能动冷凝器的一种改进,所述上部集合管和下部集合管均为圆筒结构。
作为本发明核电厂非能动冷凝器的一种改进,所述第一接头和第二接头为大小头。
作为本发明核电厂非能动冷凝器的一种改进,所述换热管束为C型立式换热管束。
作为本发明核电厂非能动冷凝器的一种改进,所述换热管的上部倾斜段和下部倾斜段与水平面的夹角分别为3°~15°。
作为本发明核电厂非能动冷凝器的一种改进,还包括用于支撑和固定上部 集合管和下部集合管的框架组件。
作为本发明核电厂非能动冷凝器的一种改进,所述框架组件上焊接有分别对换热管束的上部倾斜段和下部倾斜段进行固定和支撑的管束支撑组件。
作为本发明核电厂非能动冷凝器的一种改进,所述上部集合管和下部集合管穿过安全壳设置。
作为本发明核电厂非能动冷凝器的一种改进,所述上部集合管和下部集合管的封闭结构为焊接固定的半球形封头。
作为本发明核电厂非能动冷凝器的一种改进,所述中部连接段为竖直段。
相对于现有技术,本发明核电厂非能动冷凝器具有以下技术效果:
1)无需管板和球形封头,集合管实现管板和球形封头的功能,集合管为简单圆筒结构,受力均匀,环焊缝少,加工工艺简单可靠,取消了原封头、管板的锻件,降低了制造成本;
2)凸缘与集合管之间采用骑座式焊接方式,换热管与凸缘进行对接焊接,以上焊缝均可以进行100%射线检验,提高了设备的安全性能;
3)与外部设备连接的接口小,减小了设备在安全壳的安装孔,最大限度保证了安全壳的完整性。
附图说明
下面结合附图和具体实施方式,对本发明核电厂非能动冷凝器进行详细说明,其中:
图1为本发明核电厂非能动冷凝器的结构示意图。
图2为图1的左视图。
图3为本发明核电厂非能动冷凝器的上部集合管的第一凸缘的放大示意图。
附图标记:
安全壳-8;10-上部集合管;100-换热管蒸汽入口;102-第一接头;104-半球形封头;12-第一凸缘;120-第一通孔;20-下部集合管;202-第二接头;204- 半球形封头;30-换热管;300-上部倾斜段;302-中部连接段;304-下部倾斜段;40-框架组件;400-支架;401-弧形垫板;402-支架;50、60-管束支撑组件。
具体实施方式
为了使本发明的发明目的、技术方案及其技术效果更加清晰,以下结合附图和具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并非为了限定本发明。
请参阅图1至图3所示,本发明核电厂非能动冷凝器,包括:
上部集合管10,其上设置有多个换热管蒸汽入口100,一端为开口结构,一端为封闭结构,开口结构的一端固定连接有第一接头102;
第一凸缘12,具有第一通孔120,设置在换热管蒸汽入口100位置,并与上部集合管10固定连接,第一通孔120与换热管蒸汽入口100连通;
下部集合管20,其上设置有多个换热管冷凝液回流口(图未示出),一端为开口结构,一端为封闭结构,开口结构的一端固定连接有第二接头202;
第二凸缘22,具有第二通孔(图未示出),设置在换热管冷凝液回流口(图未示出)位置,并与下部集合管20固定连接,第二通孔与换热管冷凝液回流口连通;以及
换热管束,包括多个换热管30,换热管30包括上部倾斜段300、中部连接段302和下部倾斜段304,上部倾斜段300和下部倾斜段304的倾斜方向都是沿着流体流动的方向略向下倾斜,上部倾斜段300与第一凸缘12固定连接,下部倾斜段304与第二凸缘22固定连接。
上部集合管10为圆筒结构的钢管,固定在框架组件40上,其上均匀开设有多个换热管蒸汽入口100,在设置时,上部集合管10穿过安全壳8上部的开孔设置,安全壳8上部的开孔与上部集合管10的外径匹配,上部集合管10的外径根据不同要求进行调整。上部集合管10的入口端焊接固定有作为变径使用的第一接头102,第一接头102为大小头,入口端外径小于与上部集合管10连接端的外径,通过使用第一接头102,可以快速与相邻的设备进行连接固定。
上部集合管10的另一端为封闭结构,在图示实施方式中,另一端焊接有与上部集合管10外径匹配的半球形封头104进行封闭。通过将上部集合管10和第一接头102以及半球形封头104进行焊接固定。
下部集合管20的结构与上部集合管10的结构基本相同,为圆筒结构的钢管,可根据核电厂要求调整外径,其上均匀开设有多个换热管冷凝液回流口(图未示出),为了便于将换热管30与上部集合管10和下部集合管20固定连接,下部集合管20上的换热管冷凝液回流口的个数和位置与换热管蒸汽入口100对应。
下部集合管20穿过安全壳8下部的开孔设置,安全壳8下部的开孔与下部集合管20的外径匹配。下部集合管20出口端焊接固定有作为变径使用的第二接头202,第二接头202为大小头,出口端的外径小于与下部集合管20连接端的外径,通过使用第二接头202,可以快速与相邻的设备进行连接固定。
下部集合管20的另一端为封闭结构,在图示实施方式中,另一端焊接有与下部集合管20外径匹配的半球形封头204进行封闭。
本发明中上部集合管10和下部集合管20为简单的圆筒结构,环焊缝少,加工工艺更加简单可靠,大大降低了制造成本,上部集合管10可以有效对大量流入的蒸汽进行缓冲和均匀分配,下部集合管20可有效对冷凝液进行收集和缓冲,将冷凝液从出口端排出,并由于上部集合管10和下部集合管20为简单的圆筒结构,能够实现安全壳8的开孔尽可能的小,最大限度地保证了安全壳8的完整性。
请参阅图2和图3所示,为了保证上部集合管10和换热管30的连接强度,并保证能够进行100%射线检验,上部集合管10的换热管蒸汽入口100位置焊接有第一凸缘12,第一凸缘12具有第一通孔120,且第一通孔120与换热管蒸汽入口100的孔径一致,并与换热管蒸汽入口100连通,第一凸缘12与上部集合管10采用骑座式方式进行焊接,焊接后第一凸缘12与换热管30的上部倾斜段300平行。第一凸缘12远离上部集合管10的一端进行了削边处理,即第一 凸缘12远离上部集合管10的一端的外径小于与上部集合管10焊接端的外径。为了便于与换热管束进行焊接,第一凸缘12具有一定的长度,且第一凸缘12与换热管30的上部倾斜段300采用对接焊的方式进行焊接。
为了保证下部集合管20和换热管30的连接强度,并保证能够进行100%射线检验,下部集合管20上的换热管冷凝液回流口(图未示出)位置焊接有第二凸缘22,第二凸缘22具有第二通孔,且第二通孔与换热管冷凝液回流口(图未示出)的孔径一致,并与换热管冷凝液回流口连通,第二凸缘22与下部集合管20也采用骑座式方式进行焊接,焊接后第二凸缘22与换热管30的下部倾斜段304平行。第二凸缘22远离下部集合管20的一端进行了削边处理,即第二凸缘22远离下部集合管20的一端的外径小于与下部集合管20焊接端的外径。为了便于与换热管束进行焊接,第二凸缘22具有一定的长度,且第二凸缘22与换热管30下部倾斜段304采用对接焊的方式进行焊接。
因为第一凸缘12与上部集合管10之间采用骑座式方式进行焊接,换热管30与第一凸缘12进行对接焊,以及第二凸缘22与下部集合管20之间采用骑座式方式进行焊接,换热管30与第二凸缘22进行对接焊,以上这些焊缝均可以进行100%射线检验,提高了设备的安全性能。
第一接头102和第二接头202为一端大一端小的大小头,可直接选用现有的标准件与相邻的上部集合管10和下部集合管20焊接固定,第一接头102的入口端的内径小于上部集合管10的内径,第二接头202出口端的内径小于下部集合管20的内径,通过选用第一接头102和第二接头202代替现有技术中的球形封头,能够实现安全壳8的开孔尽可能的小,最大限度保证了安全壳8的完整性。
换热管束的两端分别与上部集合管10和下部集合管20焊接固定连接,换热管30的入口与第一通孔120、换热管蒸汽入口100相互连通,换热管30的出口与第二通孔、换热管冷凝液回流口相互连通。具体地,换热管束为C型立式换热管束,每一根换热管30都包括上部倾斜段300、中部连接段302和下部 倾斜段304。上部倾斜段300与第一凸缘12的端部采用对接焊的方式进行焊接固定,下部倾斜段304与第二凸缘22的端部采用对接焊的方式进行焊接固定。
其中,上部倾斜段300和下部倾斜段304的倾斜方向都是沿着流体流动的方向略向下倾斜,即上部倾斜段300自上部集合管10略向下倾斜至中部连接段302,下部倾斜段304自中部连接段302略向下倾斜至下部集合管20;上部倾斜段300和下部倾斜段304的倾斜角度(即换热管30与水平面的夹角)都在3°~15°之间;中部连接段302为竖直段。
框架组件40是由一系列型钢焊接而成,其主要用于支撑和固定C型立式换热管束。框架组件40一侧的上下端分别与上部集合管10和下部集合管20进行焊接固定,另一侧的底部固定在混凝土支座上。
框架组件40还包括用于支撑和固定上部集合管10的支架400以及支撑和固定下部集合管20的支架402,支架400设置有两个,分别位于上部集合管10的开口端和封闭端,为了便于固定,在上部集合管10和支架400之间还设置有与上部集合管10外径匹配的弧形垫板401,然后通过焊接进行固定。支架402设置有两个,分别位于下部集合管20的开口端和封闭端,为了便于固定,在下部集合管20和支架402之间还设置有与下部集合管20外径匹配的弧形垫板(图未示出),然后通过焊接进行固定。
框架组件40上焊接有对C型立式换热管束进行固定和支撑的管束支撑组件50、60,其中,管束支撑组件50焊接于框架组件40的上部,用于对上部倾斜段300进行固定和支撑,管束支撑组件60焊接于框架组件40的下部,用于对下部倾斜段304进行固定和支撑,管束支撑组件50、60为具有开孔的板,换热管的上部倾斜段300和下部倾斜段304分别穿过这些开孔并进行固定,防止在工作中发生大幅度振动。
本发明核电厂非能动冷凝器的制造过程如下:
1)按照零件图尺寸加工制造零件
2)零部件组装
a)组焊上部集合管10、第一接头102、球形封头104;阻焊下部集合管20、第二接头202和球形封头204;
b)组焊上部集合管10和第一凸缘12,阻焊下部集合管20和第二凸缘22;
c)组焊框架组件40;
d)将上部集合管10和下部集合管20与框架组件40进行装配和组焊;
e)将C型换热管束与第一凸缘12和第二凸缘22逐根装配并焊接;
f)将管束支撑组件50,60与C型换热管束进行装配;
3)对组装过程的焊缝进行无损检测;
4)对换热器管侧进行水压试验;
5)步骤3)、4)满足相应要求后,进行包装,即完成核电厂非能动冷凝器的加工制造。
相对于现有技术,本发明核电厂非能动冷凝器具有以下技术效果:
1)无需管板和球形封头,集合管实现管板和球形封头的功能,集合管为简单圆筒结构,受力均匀,环焊缝少,加工工艺简单可靠,取消了原封头、管板的锻件,降低了制造成本;
2)凸缘与集合管之间采用骑座式焊接方式,换热管与凸缘进行对接焊接,以上焊缝均可以进行100%射线检验,提高了设备的安全性能;
3)与外部设备连接的接口小,减小了设备在安全壳的安装孔,最大限度保证了安全壳的完整性。
根据上述原理,本发明还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (10)

  1. 一种核电厂非能动冷凝器,其特征在于,包括:
    上部集合管,其上设置有多个换热管蒸汽入口,一端为开口结构,一端为封闭结构,开口结构的一端固定连接有第一接头;
    第一凸缘,具有第一通孔,设置在换热管蒸汽入口位置,并与上部集合管固定连接,第一通孔与换热管蒸汽入口连通;
    下部集合管,其上设置有多个换热管冷凝液回流口,一端为开口结构,一端为封闭结构,开口结构的一端固定连接有第二接头;
    第二凸缘,具有第二通孔,设置在换热管冷凝液回流口位置,并与下部集合管固定连接,第二通孔与换热管冷凝液回流口连通;以及
    换热管束,包括多个换热管,换热管包括上部倾斜段、中部连接段和下部倾斜段,上部倾斜段和下部倾斜段的倾斜方向都是沿着流体流动的方向略向下倾斜,上部倾斜段与第一凸缘固定连接,下部倾斜段与第二凸缘固定连接。
  2. 根据权利要求1所述的核电厂非能动冷凝器,其特征在于,所述第一凸缘采用骑座式方式焊接在上部集合管上,所述第二凸缘采用骑座式方式焊接在下部集合管上。
  3. 根据权利要求2所述的核电厂非能动冷凝器,其特征在于,所述上部倾斜段与第一凸缘采用对接焊的方式进行固定,所述下部倾斜段与第二凸缘采用对接焊的方式进行固定。
  4. 根据权利要求1所述的核电厂非能动冷凝器,其特征在于,所述上部集合管和下部集合管均为圆筒结构。
  5. 根据权利要求1所述的核电厂非能动冷凝器,其特征在于,所述第一接头和第二接头为大小头。
  6. 根据权利要求1所述的核电厂非能动冷凝器,其特征在于,所述换热管束为C型立式换热管束。
  7. 根据权利要求1所述的核电厂非能动冷凝器,其特征在于,所述换热管 的上部倾斜段和下部倾斜段与水平面的夹角分别为3°~15°。
  8. 根据权利要求1所述的核电厂非能动冷凝器,其特征在于,还包括用于支撑和固定上部集合管和下部集合管的框架组件。
  9. 根据权利要求8所述的核电厂非能动冷凝器,其特征在于,所述框架组件上焊接有分别对换热管束的上部倾斜段和下部倾斜段进行固定和支撑的管束支撑组件。
  10. 根据权利要求1所述的核电厂非能动冷凝器,其特征在于,所述上部集合管和下部集合管穿过安全壳设置。
PCT/CN2018/118804 2018-10-17 2018-12-02 核电厂非能动冷凝器 WO2020077757A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18937409.3A EP3869134A4 (en) 2018-10-17 2018-12-02 PASSIVE CAPACITOR FOR A NUCLEAR POWER PLANT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811212384.8A CN109387089B (zh) 2018-10-17 2018-10-17 核电厂非能动冷凝器
CN201811212384.8 2018-10-17

Publications (1)

Publication Number Publication Date
WO2020077757A1 true WO2020077757A1 (zh) 2020-04-23

Family

ID=65427542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118804 WO2020077757A1 (zh) 2018-10-17 2018-12-02 核电厂非能动冷凝器

Country Status (3)

Country Link
EP (1) EP3869134A4 (zh)
CN (1) CN109387089B (zh)
WO (1) WO2020077757A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187997A (ja) * 1990-11-22 1992-07-06 Toshiba Corp 復水器チューブリーク箇所検出方法
CN1884953A (zh) * 2006-06-30 2006-12-27 华南理工大学 多相流非饱和管内蒸发直接冷却装置
CN101256043A (zh) * 2007-12-14 2008-09-03 华南理工大学 板壳式非饱和蒸发冷凝设备
CN201335611Y (zh) * 2008-10-21 2009-10-28 重庆大学 一种适用于加热高压气(汽)体的带螺旋折流板的冷凝器
CN202948740U (zh) * 2012-12-21 2013-05-22 华北电力大学 一种ap1000核电厂非能动余热排出热交换器
CN203024614U (zh) * 2012-12-10 2013-06-26 中国核动力研究设计院 一种翅片管热交换器
CN203550643U (zh) * 2013-06-06 2014-04-16 中广核工程有限公司 核反应堆非能动冷凝器
CN206037737U (zh) * 2016-07-06 2017-03-22 大连九信精细化工有限公司 应用于氟化反应的高压冷凝器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237696A (ja) * 1985-08-08 1987-02-18 Toshiba Corp 伝熱管固定装置
JP5203064B2 (ja) * 2008-06-24 2013-06-05 バブコック日立株式会社 管寄せとニッケル基合金からなる伝熱管の溶接構造
CN103267423A (zh) * 2013-05-10 2013-08-28 中国核电工程有限公司 核电站安全壳内的热交换器
CN203385319U (zh) * 2013-05-13 2014-01-08 洛阳隆华传热节能股份有限公司 一种高压换热盘管
RU2595639C2 (ru) * 2014-12-04 2016-08-27 Акционерное общество "Научно-исследовательский и проектно-конструкторский институт энергетических технологий "АТОМПРОЕКТ" ("АО "АТОМПРОЕКТ") Система пассивного отвода тепла из внутреннего объема защитной оболочки
JP6533750B2 (ja) * 2016-01-26 2019-06-19 日立Geニュークリア・エナジー株式会社 原子炉格納容器の冷却設備

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187997A (ja) * 1990-11-22 1992-07-06 Toshiba Corp 復水器チューブリーク箇所検出方法
CN1884953A (zh) * 2006-06-30 2006-12-27 华南理工大学 多相流非饱和管内蒸发直接冷却装置
CN101256043A (zh) * 2007-12-14 2008-09-03 华南理工大学 板壳式非饱和蒸发冷凝设备
CN201335611Y (zh) * 2008-10-21 2009-10-28 重庆大学 一种适用于加热高压气(汽)体的带螺旋折流板的冷凝器
CN203024614U (zh) * 2012-12-10 2013-06-26 中国核动力研究设计院 一种翅片管热交换器
CN202948740U (zh) * 2012-12-21 2013-05-22 华北电力大学 一种ap1000核电厂非能动余热排出热交换器
CN203550643U (zh) * 2013-06-06 2014-04-16 中广核工程有限公司 核反应堆非能动冷凝器
CN206037737U (zh) * 2016-07-06 2017-03-22 大连九信精细化工有限公司 应用于氟化反应的高压冷凝器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3869134A4 *

Also Published As

Publication number Publication date
EP3869134A4 (en) 2022-07-20
EP3869134A1 (en) 2021-08-25
CN109387089A (zh) 2019-02-26
CN109387089B (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
CN201599786U (zh) 加热炉对流段余热锅炉受热面的模块式结构
US8479392B2 (en) Anti-vibration bar clamping tool and method
CN104040282A (zh) 模块化板壳式热交换器
CN203550643U (zh) 核反应堆非能动冷凝器
WO2020077757A1 (zh) 核电厂非能动冷凝器
US4093513A (en) Water moderated reactor
CN108871035A (zh) 便于试压的管束结构
JPS60101408A (ja) 蒸気分離過熱装置及びその組立方法
JPH05223980A (ja) 管式熱交換器
US3240266A (en) Heat exchangers
JP2019525108A (ja) 熱交換器および熱交換器を組み立てるためのシステムおよび方法
WO2012150733A1 (ko) 공랭식 증기응축 설비용 src 전열관 블레이징 장치
US5995574A (en) Integral forged shroud flange for a boiling water reactor
CN106531241A (zh) 液态金属反应堆双壁管换热设备、破管检测和维护方法
CN208331531U (zh) 带有旁通阀的蒸汽管道
US11187471B2 (en) Heat exchanger for severe service conditions
CN107610580B (zh) 一种多功能核电厂蒸汽发生器模拟体
CN206253803U (zh) 一种扩散焊设备
CN209109142U (zh) 一种具有独立冷管束的水管型反应装置
US4147208A (en) Heat exchanger
CN105180686B (zh) 高抗震、高耐腐的肋片式核级换热器
CN201715893U (zh) 管板式冷管束
CN116026170B (zh) 一种高压翅片式换热装置及制造方法
US4631167A (en) Method for the production of a nuclear reactor assembly and assembly obtained by this method
JP2547278B2 (ja) 反応器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018937409

Country of ref document: EP

Effective date: 20210517