WO2020077588A1 - 一种轨道交通风源系统用无油涡旋压缩机控制方法 - Google Patents

一种轨道交通风源系统用无油涡旋压缩机控制方法 Download PDF

Info

Publication number
WO2020077588A1
WO2020077588A1 PCT/CN2018/110804 CN2018110804W WO2020077588A1 WO 2020077588 A1 WO2020077588 A1 WO 2020077588A1 CN 2018110804 W CN2018110804 W CN 2018110804W WO 2020077588 A1 WO2020077588 A1 WO 2020077588A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
radiator
temperature
oil
cooling fan
Prior art date
Application number
PCT/CN2018/110804
Other languages
English (en)
French (fr)
Inventor
许荣斌
杨俊�
刘元清
周其显
郭志刚
章萍
李逵
Original Assignee
南京中车浦镇海泰制动设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京中车浦镇海泰制动设备有限公司 filed Critical 南京中车浦镇海泰制动设备有限公司
Publication of WO2020077588A1 publication Critical patent/WO2020077588A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring

Definitions

  • the invention relates to the technical field of rail transportation, in particular to an oil-free scroll compressor control method for a rail transportation wind source system.
  • oil-free scroll compressors have advantages such as oil-free, less maintenance parts, low noise and low vibration. It has gradually become the development trend of rail transit wind source systems.
  • the oil-free vortex wind source system for rail transportation uses a fan to radiate the compressed air and the compressor at the same time.
  • This fan is installed on the compressor drive motor shaft and starts and stops together with the compressor.
  • the fan continues to radiate the compressed air, and the condensed water precipitated by the compressed air under low temperature conditions has the risk of freezing and blocking the pipeline; under high temperature conditions, the fan cannot continue to the compressor after the compressor is stopped.
  • the internal heat of the compressor cannot be dissipated in time, increasing the risk of high temperature shutdown.
  • the present invention provides an oil-free scroll compressor that can reliably operate in a rail transit wind source system, and also uses a rail transit wind source system with a wide temperature range and low energy consumption. Oil scroll compressor control method.
  • An oil-free scroll compressor control method for a rail transit wind source system the steps include:
  • the total wind pressure sensor monitors the total wind pressure and automatically controls the start and stop of the compressor
  • the compressor temperature sensor monitors the compressor temperature and dissipates heat to the compressor in time through the compressor cooling fan, including compressor shutdown heat dissipation and compressor operation heat dissipation, to ensure that the compressor operates at an allowable operating temperature;
  • the high-pressure gas temperature sensor at the radiator outlet monitors the high-pressure gas temperature at the radiator outlet, and controls the cooling fan operation of the radiator according to the high-pressure gas temperature at the radiator outlet.
  • the cooling fan does not operate at low temperature; when the radiator is poorly cooled, the compressor drives the motor stop working;
  • the control unit accepts the forced start signal and manually controls the start and stop of the compressor drive motor when the gas is urgently needed or the total air pressure sensor fails.
  • the ambient temperature sensor monitors the ambient temperature in the equipment to ensure that the heater works in time under low temperature conditions; after the ambient temperature in the equipment is higher than the set temperature, the heater stops working.
  • the condensate formed by the compressed air during the temperature change is regularly discharged from the pipeline.
  • the axial fan is a compressor cooling fan and a radiator outlet cooling fan.
  • the compressor cooling fan and radiator cooling fan are used to cool the compressor and the radiator.
  • the compressor is an oil-free scroll compressor for generating compressed air
  • the drive motor is used for driving an oil-free scroll compressor to operate.
  • the compressor temperature sensor measures the compressor temperature in real time.
  • the radiator is used to absorb the heat in the compressed air, and the radiator cooling fan performs forced air cooling on the radiator.
  • the condensed water is liquid water formed by compressed air during temperature changes.
  • the heater heats the pipeline and the pneumatic valve under characteristic working conditions.
  • the pipeline is a general pipeline for compressed air flow, and the pneumatic valve is used to control the flow of compressed air.
  • the advantages of the present invention are: in addition to ensuring the reliable operation of the oil-free scroll compressor in the rail transportation wind source system, it also has the advantages of wide operating temperature range and low energy consumption.
  • FIG. 1 is a flowchart of the present invention.
  • FIG. 2 is a schematic diagram of the control device of the present invention
  • An oil-free scroll compressor control method for a rail transit wind source system the steps include:
  • Two axial fans with different air volume are used to cool the radiator and the compressor respectively, and only the fixing fasteners for the axial fan need to be removed during maintenance;
  • the compressor drive motor can be manually controlled to start and stop;
  • the total running time of the compressor is counted so that the maintenance personnel can carry out targeted maintenance on the equipment according to the total running time.
  • the axial fan is a compressor cooling fan and radiator outlet cooling fan; the compressor cooling fan and radiator cooling fan are used to cool the compressor and radiator; the motor is used to drive oil-free vortex Rotary compressor operation; the compressor is an oil-free scroll compressor for generating compressed air; the compressor temperature sensor measures the compressor temperature in real time; the radiator absorbs heat in the compressed air; the heat dissipation The cooling fan of the heater performs forced air cooling on the radiator; the condensed water is liquid water formed by the compressed air during the temperature change; the total wind pressure sensor is used to monitor the total wind pressure of the wind source system; The pipeline and the pneumatic valve are heated under characteristic working conditions; the pipeline is a general pipeline for compressed air flow; and the pneumatic valve is used to control the circulation of compressed air.
  • the train is energized (S1000) and starts to measure the total wind pressure (S1100) and the ambient temperature (S1300), while monitoring whether the forced start signal (S1200).
  • the total wind pressure sensor measures the total wind pressure
  • the ambient temperature sensor measures the ambient temperature
  • the control unit monitors whether the forced start signal.
  • the control unit compares the acquired total wind pressure value with the set value P1 (700 kPa in this example) (S1110). If the above total wind pressure value is greater than the set value P1, the control unit obtains the temperature of the compressor temperature sensor and compares it with the set value TS1 (40 ° C in this example), determines whether to activate the compressor cooling fan (S1120), and then Measure the total wind pressure (S1100); if the above-mentioned total wind pressure is less than or equal to the set value P1, perform compressor high temperature alarm judgment (S1130).
  • the above compressor high temperature alarm judgment (S1130) is to obtain the compressor temperature through the control unit and compare it with the set value TS2 (105 ° C in this example). If the compressor temperature is greater than the set value TS2, the compressor drive motor stops running and starts the compressor cooling fan (S1132). The compressor cooling fan radiates heat to the compressor until the compressor temperature is less than or equal to TS3 (95 in this example) °C) to determine the radiator outlet temperature (S1140). If the compressor temperature is less than or equal to the set value TS2, a radiator outlet temperature determination is made (S1140).
  • the above radiator outlet temperature judgment obtains the radiator outlet temperature by the control unit and compares it with the set value TC1 (in this example, 10 ° C), if the radiator outlet temperature is less than or equal to the set value TC1, the compressor cooling fan is started (S1150); If the radiator outlet temperature is greater than the set value TC1, start the radiator cooling fan (S1142), ensure that the radiator outlet temperature is less than or equal to the set value TC2 (in this example, 65 °C), and perform compressor cooling Fan (S1150).
  • the compressor cooling fan is started (S1150)
  • the compressor drive motor is started (S1160).
  • the above total wind pressure judgment is to obtain the total wind pressure through the control unit and compare it with the set threshold P2 (in this case, 900kPa). If the total wind pressure is less than or equal to the set threshold P2 (in this case, 900kPa), the compressor is executed. High temperature alarm judgment (S1130); if the total wind pressure is greater than the set threshold P2, perform measurement of the total wind pressure (S1100).
  • control unit After the control unit obtains the forced start signal (S1200), it determines the total wind pressure (S1170).
  • the control unit acquires the ambient temperature (S1300), and determines whether to activate the heater according to the ambient temperature (S1310).
  • the control unit acquires the total wind pressure sensor, compressor temperature sensor, radiator outlet high-pressure gas temperature sensor and ambient temperature sensor transfer value and forced start signal.
  • the control unit performs relevant judgments to control the work of the execution components based on the received transfer values and signals.
  • the execution components include: compressor cooling fan, radiator cooling fan, compressor drive motor, solenoid valve, heater and timer.
  • each execution component outputs a high level to the fault feedback unit, and the fault feedback unit outputs correspondingly according to the input of each execution component Compressor cooling fan failure, radiator cooling fan failure, compressor drive motor failure, solenoid valve failure, heater failure.
  • the control unit performs high temperature alarm judgment according to the transfer value of the compressor temperature sensor (S1130). If the compressor temperature is greater than TS2, the control unit outputs a high level to the fault feedback unit, and the fault feedback unit outputs the compressor temperature to be high.
  • the control unit judges the radiator outlet temperature according to the radiator high-pressure gas temperature sensor (S1140). If the radiator outlet temperature is greater than TC2, the control unit outputs a high level to the fault feedback unit, and the fault feedback unit outputs the radiator outlet temperature is high.
  • the rail-free oil-free vortex wind source system has a wider use temperature range, lower energy consumption, and can also achieve the following functions:
  • the compressor operation can be automatically controlled according to the total wind pressure to ensure that the compressor operates at the specified pressure
  • the compressor can be controlled to start manually, but the total wind pressure is not allowed to exceed the set upper limit P2;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

一种轨道交通风源系统用无油涡旋压缩机的控制方法,步骤包括:采用两个不同风量轴流风扇分别对散热器及压缩机进行冷却;总风压力传感器监测总风压力,自动控制压缩机启动及停止;压缩机温度传感器监测压缩机温度,通过压缩机冷却风扇及时对压缩机进行散热;散热器出口高压气体温度传感器监测散热器出口高压气体温度,根据散热器出口高压气体温度控制散热器冷却风扇运行,在低温工况下冷却风扇不运行;在散热器散热不良时,压缩机驱动电机停止工作。保证无油涡旋压缩机在轨道交通风源系统中的可靠运行,以及使用温度范围广、能耗低。

Description

一种轨道交通风源系统用无油涡旋压缩机控制方法 技术领域
本发明涉及轨道交通技术领域,特别是一种轨道交通风源系统用无油涡旋压缩机控制方法。
背景技术
近年来,随着用户对轨道交通风源系统高用风品质及低维护成本的需求越来越高,无油涡旋压缩机以其无油、维护部件少、噪音低、振动小等优势,逐渐成为轨道交通风源系统的发展趋势。
目前,轨道交通用无油涡旋风源系统采用一个风扇同时对压缩空气及压缩机散热,此风扇安装于压缩机驱动电机轴上,与压缩机同启同停。压缩机运行过程中,风扇持续对压缩空气进行散热,在低温工况下压缩空气析出的冷凝水存在结冰堵塞管路的风险;在高温工况下,压缩机停机后风扇无法继续对压缩机进行散热,压缩机内部热量无法及时散出,增加高温停机的风险。当进行风扇维护时,需将电机与压缩机拆分,耗时长。
现有轨道交通风源系统用压缩机的控制方法,多数监控总风压力及压缩机温度,对压缩空气的温度不进行监控,存在压缩空气温度过高超出压缩空气处理设备使用温度的风险;存在压缩空气温度过低散热器及管路结冰堵塞的风险。
因轨道交通特殊的应用环境及无油涡旋压缩机散热需求,现有的轨道交通风源系统压缩机的布置及控制方法均无法满足无油涡旋压缩机的使用。
发明内容
针对现有技术中存在的问题,本发明提供了一种保证无油涡旋压缩机在轨道交通风源系统中可靠运行外,还使用温度范围广、能耗低的轨道交通风源系统用无油涡旋压缩机控制方法。
本发明的目的通过以下技术方案实现。
一种轨道交通风源系统用无油涡旋压缩机的控制方法,步骤包括:
采用两个不同风量轴流风扇分别对散热器及压缩机进行冷却;
总风压力传感器监测总风压力,自动控制压缩机启动及停止;
压缩机温度传感器监测压缩机温度,通过压缩机冷却风扇及时对压缩机进行散热,包括压缩机停机散热及压缩机运行散热,保证压缩机在允许工作温度下进行运行;
散热器出口高压气体温度传感器监测散热器出口高压气体温度,根据散热器出口高压气体温度控制散热器冷却风扇运行,在低温工况下冷却风扇不运行;在散热器散热不良时,压缩 机驱动电机停止工作;
控制单元接受强制启动信号,急需用气或总风压力传感器失效时,手动控制压缩机驱动电机启动及停止;
环境温度传感器监测设备内环境温度,确保低温工况下加热器及时工作;设备内环境温度高于设定温度后,加热器停止工作。
定时将压缩空气在温度变化过程中形成的冷凝水排出管路。
设置报警信号及时提醒维护人员对压缩机进行针对性维护。
所述的轴流风扇为压缩机冷却风扇及散热器出口冷却风扇,所述压缩机冷却风扇及散热器冷却风扇,用于对压缩机及散热器进行冷却。
所述压缩机为无油涡旋压缩机用于产生压缩空气,所述驱动电机用于驱动无油涡旋压缩机运行。
所述压缩机温度传感器实时测量压缩机温度。
所述散热器用于吸收压缩空气中的热量,所述散热器冷却风扇对散热器进行强制风冷。
所述的冷凝水为压缩空气在温度变化过程中形成的液态水。
所述加热器对管路及气动阀在特点工况下进行加热,所述管路为压缩空气流通用管道,所述气动阀用于控制压缩空气流通。
相比于现有技术,本发明的优点在于:除保证无油涡旋压缩机在轨道交通风源系统中可靠运行外,还具使用温度范围广、能耗低等优势。
附图说明
图1为本发明的流程图。
图2为本发明的控制装置简图
具体实施方式
下面结合说明书附图和具体的实施例,对本发明作详细描述。
一种轨道交通风源系统用无油涡旋压缩机的控制方法,步骤包括:
采用两个不同风量轴流风扇分别对散热器及压缩机进行冷却,维护时仅需拆卸轴流风扇固定紧固件;
监测总风压力,自动控制压缩机启动及停止;
接受强制启动信号,急需用气或总风压力传感器失效时,可手动控制压缩机驱动电机启动及停止;
监测压缩机温度,通过压缩机冷却风扇及时对压缩机进行散热(压缩机停机散热及压缩 机运行散热),保证压缩机在允许工作温度下进行运行;
监测散热器出口高压气体温度,根据散热器出口高压气体温度控制散热器冷却风扇运行,在低温工况下冷却风扇不运行,可节约能耗,同时避免冷凝水低温结冰堵塞散热器;在散热器散热不良时,压缩机驱动电机必须停止工作,避免散热器后端的压缩空气处理设备在超出允许使用温度的工况下工作;
监测设备内环境温度,确保低温工况下加热器及时工作,避免管路及气动阀内部结冰;设备内环境温度高于设定温度后,加热器停止工作,可节约能耗;
统计压缩机总运行时长,便于维护人员根据总运行时长对设备进行针对性的维护保养。
定时将压缩空气在温度变化过程中形成的冷凝水排出管路;
设置报警信号及时提醒维护人员对压缩机进行针对性维护。
所述的轴流风扇为压缩机冷却风扇及散热器出口冷却风扇;所述压缩机冷却风扇及散热器冷却风扇,用于对压缩机及散热器进行冷却;所述电机用于驱动无油涡旋压缩机运行;所述压缩机为无油涡旋压缩机用于产生压缩空气;所述压缩机温度传感器为实时测量压缩机温度;所述散热器为吸收压缩空气中的热量;所述散热器冷却风扇对散热器进行强制风冷;所述的冷凝水为压缩空气在温度变化过程中形成的液态水;所述总风压力传感器用于监测风源系统总风压力;所述加热器对管路及气动阀在特点工况下进行加热;所述管路为压缩空气流通用管道;所述气动阀用于控制压缩空气流通。
如图1所示,列车通电(S1000)开始测量总风压力(S1100)及环境温度(S1300),同时监控是否强制启动信号(S1200)。总风压力传感器测量总风压力,环境温度传感器测量环境温度,控制单元监控是否强制启动信号。
控制单元将获取的总风压力值与设定值P1(本例为700kPa)进行比较(S1110)。如果上述总风压力值大于设定值P1,则控制单元获取压缩机温度传感器的温度与设定值TS1(本例为40℃)进行比较,确定是否启动压缩机冷却风扇(S1120),然后再次测量总风压力(S1100);如果上述总风压力小于等于设定值P1,执行压缩机高温报警判断(S1130)。
上述压缩机高温报警判断(S1130)是通过控制单元获取压缩机温度与设定值TS2(本例为105℃)进行比较。如果上述压缩机温度大于设定值TS2,则压缩机驱动电机停止运行并启动压缩机冷却风扇(S1132),压缩机冷却风扇对压缩机进行散热,直至压缩机温度小于等于TS3(本例为95℃)才可进行散热器出口温度判断(S1140)。如果上述压缩机温度小于等于设定值TS2,进行散热器出口温度判断(S1140)。
上述散热器出口温度判断(S1140)通过控制单元获取散热器出口温度与设定值TC1(本 例为10℃)进行比较,如果散热器出口温度小于等于设定值TC1,执行启动压缩机冷却风扇(S1150);如果散热器出口温度大于设定值TC1,则启动散热器冷却风扇(S1142),确保散热器出口温度小于等于设定值TC2(本例为65℃),并执行启动压缩机冷却风扇(S1150)。
执行启动压缩机冷却风扇(S1150)后,执行启动压缩机驱动电机(S1160)。
执行启动压缩机驱动电机(S1160)后,进行总风压力判断(S1170),同时执行计时器计时。
上述总风压力判断(S1170)是通过控制单元获取总风压力与设定阈值P2(本例为900kPa)进行比较,如果总风压力小于等于设定阈值P2(本例为900kPa),执行压缩机高温报警判断(S1130);如果总风压力大于设定阈值P2,执行测量总风压力(S1100)。
执行计时器计时后,根据计时器计时确定是否开启电磁阀(S1190)。
控制单元获得强制启动信号后(S1200),进行总风压力判断(S1170)。
控制单元获取环境温度(S1300),根据环境温度判断是否启动加热器(S1310)。
如图2所示,控制单元获取总风压力传感器、压缩机温度传感器、散热器出口高压气体温度传感器及环境温度传感器传递值和强制启动信号。控制单元根据接受的传递值及信号执行相关判断控制执行部件工作,执行部件包括:压缩机冷却风扇、散热器冷却风扇、压缩机驱动电机、电磁阀、加热器及计时器。当执行部件中压缩机冷却风扇、散热器冷却风扇、压缩机驱动电机、电磁阀及加热器无法动作时,各执行部件输出高电平至故障反馈单元,故障反馈单元根据各执行部件输入对应输出压缩机冷却风扇故障、散热器冷却风扇故障、压缩机驱动电机故障、电磁阀故障、加热器故障。
控制单元根据压缩机温度传感器的传递值进行高温报警判断(S1130),如果压缩机温度大于TS2,控制单元输出高电平至故障反馈单元,故障反馈单元输出压缩机温度高。
控制单元根据散热器出口高压气体温度传感器进行散热器出口温度判断(S1140),如果散热器出口温度大于TC2,控制单元输出高电平至故障反馈单元,故障反馈单元输出散热器出口温度高。
如上所述,根据本发明实施例,使轨道交通无油涡旋风源系统具有更广的使用温度范围,更低的能耗,同时还可可以实现以下功能:
1)可根据总风压力自动控制压缩机运行,确保压缩机在规定的压力下运行;
2)可手动控制压缩机启动,但总风压力不允许超过设定上限P2;
3)未进行强制启动操作且总风压力未下降至设定值P1时,压缩机驱动电机未启动,当压缩机温度超过设定上限TS1时,压缩机冷却风扇运行,对压缩机进行散热,可降低压缩机 高温风险,提高压缩机工作效率。
4)压缩机温度超过设定上限TS2时,压缩机停止运行,保证压缩机在允许工作温度下运行;同时压缩机冷却风扇运行,对压缩机散热,保证压缩机温度在较短的时间内恢复至压缩机再次启动温度TS3;
5)散热器出口温度小于等于设定限值TC1时,散热器冷却风扇不运行,避免高压气体析出的冷凝水结冰堵塞散热器及管路,同时降低能耗;
6)散热器出口温度高于设定限值TC2时,压缩机停止运行,保证散热器后端压缩空气处理设备在允许工作温度下工作;
7)在设备内环境温度小于等于T1时,加热器对管路及气动阀进行加热,避免管路及气动阀结冰堵塞;
8)定时将压缩空气在温度变化过程中形成的冷凝水排出管路;
9)统计压缩机总运行时长;
10)设置报警信号及时提醒维护人员对压缩机进行针对性维护。

Claims (9)

  1. 一种轨道交通风源系统用无油涡旋压缩机的控制方法,其特征在于步骤包括:
    采用两个不同风量轴流风扇分别对散热器及压缩机进行冷却;
    总风压力传感器监测总风压力,自动控制压缩机启动及停止;
    压缩机温度传感器监测压缩机温度,通过压缩机冷却风扇及时对压缩机进行散热,包括压缩机停机散热及压缩机运行散热,保证压缩机在允许工作温度下进行运行;
    散热器出口高压气体温度传感器监测散热器出口高压气体温度,根据散热器出口高压气体温度控制散热器冷却风扇运行,在低温工况下冷却风扇不运行;在散热器散热不良时,压缩机驱动电机停止工作;
    控制单元接受强制启动信号,急需用气或总风压力传感器失效时,手动控制压缩机驱动电机启动及停止;
    环境温度传感器监测设备内环境温度,确保低温工况下加热器及时工作;设备内环境温度高于设定温度后,加热器停止工作。
  2. 根据权利要求1所述的一种轨道交通风源系统用无油涡旋压缩机的控制方法,其特征在于步骤包括:定时将压缩空气在温度变化过程中形成的冷凝水排出管路。
  3. 根据权利要求1所述的一种轨道交通风源系统用无油涡旋压缩机的控制方法,其特征在于步骤包括:设置报警信号及时提醒维护人员对压缩机进行针对性维护。
  4. 根据权利要求1所述的一种轨道交通风源系统用无油涡旋压缩机的控制方法,其特征在于所述的轴流风扇为压缩机冷却风扇及散热器出口冷却风扇,所述压缩机冷却风扇及散热器冷却风扇,用于对压缩机及散热器进行冷却。
  5. 根据权利要求1所述的一种轨道交通风源系统用无油涡旋压缩机的控制方法,其特征在于所述压缩机为无油涡旋压缩机用于产生压缩空气,所述驱动电机用于驱动无油涡旋压缩机运行。
  6. 根据权利要求1所述的一种轨道交通风源系统用无油涡旋压缩机的控制方法,其特征在于所述压缩机温度传感器实时测量压缩机温度。
  7. 根据权利要求1所述的一种轨道交通风源系统用无油涡旋压缩机的控制方法,其特征在于所述散热器用于吸收压缩空气中的热量,所述散热器冷却风扇对散热器进行强制风冷。
  8. 根据权利要求2所述的一种轨道交通风源系统用无油涡旋压缩机的控制方法,其特征在于所述的冷凝水为压缩空气在温度变化过程中形成的液态水。
  9. 根据权利要求1所述的一种轨道交通风源系统用无油涡旋压缩机的控制方法,其特征在于所述加热器对管路及气动阀在特点工况下进行加热,所述管路为压缩空气流通用管道,所述 气动阀用于控制压缩空气流通。
PCT/CN2018/110804 2018-10-15 2018-10-18 一种轨道交通风源系统用无油涡旋压缩机控制方法 WO2020077588A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811200931.0 2018-10-15
CN201811200931.0A CN109236659B (zh) 2018-10-15 2018-10-15 一种轨道交通风源系统用无油涡旋压缩机控制方法

Publications (1)

Publication Number Publication Date
WO2020077588A1 true WO2020077588A1 (zh) 2020-04-23

Family

ID=65053543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110804 WO2020077588A1 (zh) 2018-10-15 2018-10-18 一种轨道交通风源系统用无油涡旋压缩机控制方法

Country Status (2)

Country Link
CN (1) CN109236659B (zh)
WO (1) WO2020077588A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110318983B (zh) * 2019-07-05 2021-07-27 南京中车浦镇海泰制动设备有限公司 一种轨道交通用空气压缩机防冰堵运行控制系统及其方法
CN112721978A (zh) * 2021-01-15 2021-04-30 中车青岛四方机车车辆股份有限公司 一种主供风单元控制方法及其相关设备
CN114909276B (zh) * 2021-07-07 2023-08-22 克诺尔车辆设备(苏州)有限公司 轨道车辆供风单元
CN114922799B (zh) * 2021-07-07 2023-08-22 克诺尔车辆设备(苏州)有限公司 轨道车辆供风单元及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102677440A (zh) * 2012-04-27 2012-09-19 海尔集团公司 干衣机的温控方法及装置和干衣机
CN105240251A (zh) * 2014-07-03 2016-01-13 纳博特斯克有限公司 空气压缩装置
CN105934584A (zh) * 2013-12-05 2016-09-07 克诺尔轨道车辆系统有限公司 压缩机系统和根据轨道车辆的当前工况运行压缩机系统的方法
CN205744433U (zh) * 2016-06-29 2016-11-30 东莞市金达机电有限公司 一种涡旋式空压机
US20170218966A1 (en) * 2014-05-19 2017-08-03 Edwards Limited Vacuum system
CN206929040U (zh) * 2017-03-02 2018-01-26 南京奥福瑞压缩机有限公司 一种散热型空气压缩机
CN108344067A (zh) * 2017-12-29 2018-07-31 青岛海尔空调器有限总公司 一种空调压缩机散热系统及其控制方法
CN108407649A (zh) * 2018-03-29 2018-08-17 安徽江淮汽车集团股份有限公司 一种燃料电池汽车控制系统及其控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1013865A3 (nl) * 2000-12-06 2002-10-01 Atlas Copco Airpower Nv Werkwijze voor het regelen van een compressorinstallatie.
JP2009167874A (ja) * 2008-01-15 2009-07-30 Kobe Steel Ltd 水潤滑圧縮機の水抜き方法
WO2014106063A1 (en) * 2012-12-28 2014-07-03 Thermo King Corporation Method and system for controlling operation of condenser and evaporator fans
DE102013113557A1 (de) * 2013-12-05 2015-06-11 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Kompressorsystem für ein Schienenfahrzeugs und Verfahren zum Betrieb des Kompressorsystems mit einem sicheren Notlaufbetrieb
KR101534724B1 (ko) * 2013-12-18 2015-07-08 현대자동차 주식회사 차량용 에어컨 시스템 제어방법
JP6771552B2 (ja) * 2016-06-03 2020-10-21 株式会社日立産機システム 空気圧縮機の運転方法
WO2018033827A1 (en) * 2016-08-18 2018-02-22 Atlas Copco Airpower, Naamloze Vennootschap A method for controlling the outlet temperature of an oil injected compressor or vacuum pump and oil injected compressor or vacuum pump implementing such method
CN106194701B (zh) * 2016-10-08 2018-11-13 河南柴油机重工有限责任公司 一种v型压缩机监控系统及方法
CN108413539B (zh) * 2018-06-05 2023-07-21 河北工业大学 应用于地铁环控系统的智能通风空调系统及其运行方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102677440A (zh) * 2012-04-27 2012-09-19 海尔集团公司 干衣机的温控方法及装置和干衣机
CN105934584A (zh) * 2013-12-05 2016-09-07 克诺尔轨道车辆系统有限公司 压缩机系统和根据轨道车辆的当前工况运行压缩机系统的方法
US20170218966A1 (en) * 2014-05-19 2017-08-03 Edwards Limited Vacuum system
CN105240251A (zh) * 2014-07-03 2016-01-13 纳博特斯克有限公司 空气压缩装置
CN205744433U (zh) * 2016-06-29 2016-11-30 东莞市金达机电有限公司 一种涡旋式空压机
CN206929040U (zh) * 2017-03-02 2018-01-26 南京奥福瑞压缩机有限公司 一种散热型空气压缩机
CN108344067A (zh) * 2017-12-29 2018-07-31 青岛海尔空调器有限总公司 一种空调压缩机散热系统及其控制方法
CN108407649A (zh) * 2018-03-29 2018-08-17 安徽江淮汽车集团股份有限公司 一种燃料电池汽车控制系统及其控制方法

Also Published As

Publication number Publication date
CN109236659B (zh) 2020-02-07
CN109236659A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2020077588A1 (zh) 一种轨道交通风源系统用无油涡旋压缩机控制方法
US20090092501A1 (en) Compressor protection system and method
KR101630178B1 (ko) 제어장치
US8622716B2 (en) Oil-cooled air compressor
JP5667239B2 (ja) 制御システム、遠心コンプレッサに安定制御を提供する方法、蒸気圧縮システム
US11614084B2 (en) Gas compressor
US10962262B2 (en) Method for controlling a vapour compression system during gas bypass valve malfunction
US20170343245A1 (en) A method for controlling a valve arrangement in a vapour compression system
CN112018471B (zh) 电池包液冷的控制方法及装置
US8425198B2 (en) Air compressor
CN109654762B (zh) 离心式制冷机
CN103407578B (zh) 一种变频飞机地面空调车
CN106352635A (zh) 空调系统压缩机的运行控制方法及装置
WO2018072601A1 (zh) 空调器及其控制方法
US20180283754A1 (en) A method for controlling a vapour compression system in ejector mode for a prolonged time
CN110440409A (zh) 冷水机组的控制方法及冷水机组
EP3545242B1 (en) A method for controlling a vapour compression system during gas bypass valve malfunction
US9291409B1 (en) Compressor inter-stage temperature control
US9784508B2 (en) Method of monitoring a heat exchanger arrangement and ram air fan in an aircraft to prevent stall conditions
US11820519B2 (en) Air-driven vapor cycle refrigeration system
CN113739558B (zh) 一种热泵机组及其控制方法
CN110398100B (zh) 冷凝机组及其变频风机运行控制方法、装置、空调器
CN108167942A (zh) 空调器、运行控制方法和运行控制装置
TWM502746U (zh) 節能式車用空氣壓縮機裝置
TWM527078U (zh) 用於空調系統冰熱水供應系統的節能控制系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936880

Country of ref document: EP

Kind code of ref document: A1