WO2020075690A1 - 端末装置、基地局装置、および、通信方法 - Google Patents

端末装置、基地局装置、および、通信方法 Download PDF

Info

Publication number
WO2020075690A1
WO2020075690A1 PCT/JP2019/039551 JP2019039551W WO2020075690A1 WO 2020075690 A1 WO2020075690 A1 WO 2020075690A1 JP 2019039551 W JP2019039551 W JP 2019039551W WO 2020075690 A1 WO2020075690 A1 WO 2020075690A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
terminal device
harq
ack
candidates
Prior art date
Application number
PCT/JP2019/039551
Other languages
English (en)
French (fr)
Inventor
李 泰雨
翔一 鈴木
渉 大内
友樹 吉村
智造 野上
会発 林
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2020075690A1 publication Critical patent/WO2020075690A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to a terminal device, a base station device, and a communication method.
  • the present application claims priority based on Japanese Patent Application No. 2018-191531 filed in Japan on October 10, 2018, the contents of which are incorporated herein by reference.
  • LTE Long Term Evolution
  • EUTRA Evolved Universal Terrestrial Radio Access
  • 3GPP Third Generation Partnership Project
  • NR New Radio
  • LTE Long Term Evolution
  • eNodeB evolved NodeB
  • gNodeB gNodeB
  • UE User Equipment
  • LTE and NR are cellular communication systems in which a plurality of areas covered by a base station device are arranged in a cell. A single base station device may manage a plurality of cells.
  • Non-Patent Document 3 The terminal device receives the PDCCH and PDSCH in the downlink BWP.
  • One aspect of the present invention provides a terminal device that performs efficient communication, a communication method used in the terminal device, a base station device that performs efficient communication, and a communication method used in the base station device.
  • a first aspect of the present invention is a terminal device, a processing unit that generates HARQ-ACK information corresponding to PDSCH, and a PDSCH reception candidate br, k related to an SPS PDSCH release in a certain slot. And a receiving unit that receives PDSCH with each of some or all of the PDSCH reception candidates excluding one or more PDSCH candidates of br and k having the same value.
  • a second aspect of the present invention is a base station apparatus, comprising: a transmitter that transmits PDSCH; and a receiver that receives HARQ-ACK information corresponding to the PDSCH, and the transmitter is ,
  • PDSCH is scheduled for some or all of PDSCH reception candidates except for one or more PDSCH candidates of br, k having the same value as br, k of PDSCH reception candidates related to SPS PDSCH release.
  • a third aspect of the present invention is a communication method used for a terminal device, wherein HARQ-ACK information corresponding to PDSCH is generated, and in a certain slot, br of PDSCH reception candidates related to SPS PDSCH release is br. , K having the same value as br, k, PDSCH is received by some or all of the PDSCH reception candidates excluding one or more PDSCH candidates of k.
  • a fourth aspect of the present invention is a communication method used in a base station apparatus, which transmits PDSCH, receives HARQ-ACK information corresponding to the PDSCH, and releases SPS PDSCH release in a certain slot.
  • the terminal device can efficiently communicate.
  • the base station device can efficiently perform communication.
  • FIG. 1 is a conceptual diagram of a wireless communication system according to an embodiment. It is a figure showing the schematic structure of the radio frame of this embodiment. It is a figure which shows schematic structure of the uplink slot in this embodiment. It is a schematic block diagram which shows the structure of the terminal device 1 of this embodiment.
  • FIG. 2 is a schematic block diagram illustrating a configuration of a base station device 3 according to the present embodiment. It is a figure which shows an example of default PDSCH time domain resource allocation in this embodiment. It is the figure which showed an example of the procedure which determines the set of MA and c occasions of the PDSCH reception candidate in this embodiment.
  • FIG. 1 is a conceptual diagram of a wireless communication system according to an embodiment. It is a figure showing the schematic structure of the radio frame of this embodiment. It is a figure which shows schematic structure of the uplink slot in this embodiment. It is a schematic block diagram which shows the structure of the terminal device 1 of this embodiment.
  • FIG. 2 is a schematic block diagram illustrating a configuration of a base
  • FIG. 6 is a diagram showing an example of a procedure in which the terminal device 1 determines HARQ-ACK information bits of a HARQ-ACK codebook transmitted by PUCCH in the present embodiment.
  • FIG. 6 is a diagram showing an example of determining a HARQ-ACK codebook size corresponding to PDSCH in the present embodiment.
  • FIG. 6 is a diagram showing an example of determining a HARQ-ACK codebook size corresponding to PDSCH and SPS PDSCH release in the present embodiment.
  • FIG. 1 is a conceptual diagram of the wireless communication system of this embodiment.
  • the wireless communication system includes terminal devices 1A to 1C and a base station device 3.
  • the terminal devices 1A to 1C are referred to as the terminal device 1.
  • the uplink physical channel is used for transmitting information output from an upper layer.
  • ⁇ PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access Channel
  • PUCCH is used for the terminal device 1 to transmit uplink control information (Uplink Control Information: UCI) to the base station device 3.
  • the terminal device 1 may perform PUCCH transmission in a primary cell and / or a secondary cell having a primary cell function, and / or a secondary cell capable of transmitting the PUCCH. That is, PUCCH may be transmitted in a specific serving cell.
  • the uplink control information includes downlink channel state information (Channel State Information: CSI), a scheduling request (Scheduling Request: SR) indicating a PUSCH resource request, and downlink data (Transport block, Medium Access Control Protocol Protocol Data Unit: MAC). Includes at least one of HARQ-ACK (Hybrid Automatic Repeat Request ACKnowledgement) for PDU, Downlink-Shared Channel: DL-SCH, Physical Downlink Shared Channel: PDSCH).
  • CSI Channel State Information
  • SR scheduling request
  • SR indicating a PUSCH resource request
  • downlink data Transport block, Medium Access Control Protocol Protocol Data Unit: MAC.
  • HARQ-ACK Hybrid Automatic Repeat Request ACKnowledgement
  • HARQ-ACK may include at least HARQ-ACK bits corresponding to at least one transport block.
  • the HARQ-ACK bit may indicate ACK (ACKnowledgement) or NACK (Negative-ACKnowledgement) corresponding to one or a plurality of transport blocks.
  • HARQ-ACK may include at least a HARQ-ACK codebook that includes one or more HARQ-ACK bits.
  • the HARQ-ACK bit corresponding to one or a plurality of transport blocks may be that the HARQ-ACK bit corresponds to a PDSCH including the one or a plurality of transport blocks.
  • HARQ-ACK may also be referred to as ACK / NACK, HARQ feedback, HARQ-ACK feedback, HARQ response, HARQ-ACK response, HARQ information, HARQ-ACK information, HARQ control information, and HARQ-ACK control information. .
  • HARQ-ACK bit may indicate ACK or NACK corresponding to one CBG (Code Block Group) included in the transport block.
  • the channel state information may include a channel quality index (CQI: Channel Quality Indicator) and a rank index (RI: Rank Indicator).
  • the channel quality index may include a precoder matrix index (PMI: Precoder Matrix Indicator) and a CSI-RS index (CRI: CSI-RS Resource indicator).
  • the channel state information may include a precoder matrix indicator.
  • CQI is an index related to channel quality (propagation strength)
  • PMI is an index indicating a precoder.
  • RI is an index indicating the transmission rank (or the number of transmission layers).
  • CSI may also be called a CSI report and CSI information.
  • the transmission layer may be referred to as a layer.
  • the CSI report may be divided into one or more.
  • the first divided CSI report may be CSI-Part1 and the second divided CSI report may be CSI-Part2.
  • the size of the CSI report may be the number of bits of some or all of the divided CSI.
  • the size of the CSI report may be the number of bits of CSI-Part1.
  • the size of the CSI report may be the number of bits of CSI-Part2.
  • the size of the CSI report may be the sum of the number of bits of a plurality of divided CSI reports. The sum total of the number of divided CSI bits is the number of bits of the CSI report before the division.
  • the CSI-Part 1 may include at least some or all of RI, CRI, CQI, and PMI.
  • the CSI-Part 2 may include some or all of PMI, CQI, RI, and CRI.
  • the size of the CSI report may be set so as not to exceed a predetermined threshold (a predetermined number of bits).
  • a scheduling request may be used at least to request a PUSCH resource for initial transmission.
  • the scheduling request bit may be used to indicate either a positive SR (Positive SR) or a negative SR (Negative SR).
  • the fact that the scheduling request bit indicates a positive SR is also referred to as “a positive SR is transmitted”.
  • a positive SR may indicate that the terminal device 1 requests PUSCH resources for initial transmission.
  • a positive SR may indicate that the scheduling request is triggered by higher layers.
  • the positive SR may be transmitted when instructed to transmit the scheduling request by the upper layer.
  • the fact that the scheduling request bit indicates a negative SR is also referred to as “a negative SR is transmitted”.
  • a negative SR may indicate that the PUSCH resource for initial transmission is not requested by the terminal device 1.
  • a negative SR may indicate that the scheduling request is not triggered by higher layers.
  • a negative SR may be sent if higher layers do not instruct to send a scheduling request.
  • the scheduling request bit may be used to indicate either a positive SR or a negative SR for any of one or more SR settings (SR configuration).
  • Each of the one or more SR settings may correspond to one or more logical channels.
  • a positive SR for an SR setting may be a positive SR for any or all of the one or more logical channels corresponding to the SR setting.
  • Negative SR may not correspond to a particular SR setting. Showing a negative SR may mean showing a negative SR for all SR settings.
  • the SR setting may be a scheduling request ID (Scheduling Request ID).
  • PUSCH may be used to transmit uplink data.
  • PUSCH may be used to send HARQ-ACK and / or channel state information with the uplink data.
  • the PUSCH may be used to transmit only channel state information, or HARQ-ACK and / or channel state information only. That is, the PUSCH may be used to transmit the uplink control information.
  • the terminal device 1 may transmit the PUSCH based on the detection of the PDCCH (Physical Downlink Control Channel) including the uplink grant (Uplink Grant).
  • the uplink data may include at least part or all of a transport block (Transport block), a medium access control protocol data unit (MAC PDU: Medium Access Protocol Data Unit), and a UL-SCH (UpLink-Shared CHannel). .
  • Transport block Transport block
  • MAC PDU Medium Access Protocol Data Unit
  • UL-SCH UpLink-Shared CHannel
  • PRACH is used to send a random access preamble (random access message 1).
  • the PRACH is an initial connection establishment procedure, a handover procedure, a connection re-establishment procedure, a synchronization (timing adjustment) for uplink data transmission, and a request for a PUSCH (UL-SCH) resource. It may be used to indicate at least a portion.
  • the following uplink physical signals may be used.
  • the uplink physical signal is used by the physical layer although it may not be used to transmit the information output from the upper layer.
  • -Uplink reference signal (UL RS: Uplink Reference Signal)
  • uplink reference signals At least the following two types of uplink reference signals may be used.
  • DMRS DeModulation Reference Signal
  • SRS Sounding Reference Signal
  • the DMRS relates to the transmission of PUSCH and / or PUCCH.
  • the DMRS may be multiplexed with PUSCH or PUCCH.
  • the base station device 3 uses DMRS to perform propagation path correction of PUSCH or PUCCH.
  • transmitting the PUSCH and the DMRS together is simply referred to as transmitting the PUSCH.
  • the DMRS may correspond to the PUSCH.
  • transmitting the PUCCH and the DMRS together is simply referred to as transmitting the PUCCH.
  • the DMRS may correspond to the PUCCH.
  • the SRS may not be related to PUSCH and / or PUCCH transmission.
  • the SRS may relate to the transmission of PUSCH and / or PUCCH.
  • the base station device 3 may use the SRS for measuring the channel state.
  • the SRS may be transmitted in the last one or more predetermined number of OFDM symbols in the uplink slot.
  • the downlink physical channel may be used by the physical layer to transmit information output from higher layers.
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the PBCH is used to broadcast a master information block (MIB: Master Information Block) commonly used in one or more terminal devices 1 in a serving cell, an active BWP (Bandwidth Part), or a carrier.
  • the PBCH may be transmitted based on a predetermined transmission interval. For example, PBCH may be transmitted at intervals of 80 ms. At least a part of the information included in the PBCH may be updated every 80 ms.
  • the PBCH may be configured with a predetermined number of subcarriers (for example, 288 subcarriers) in the frequency domain. Also, the PBCH may be configured to include 2, 3, or 4 OFDM symbols in the time domain.
  • the MIB may include information related to the identifier (index) of the synchronization signal.
  • the MIB may include information indicating at least part of a slot number, a subframe number, and a radio frame number in which the PBCH is transmitted.
  • the first setting information may be included in the MIB.
  • the first setting information may be setting information used at least for part or all of the random access message 2, the random access message 3, and the random access message 4.
  • the PDCCH is used to transmit downlink control information (DCI: Downlink Control Information).
  • DCI Downlink Control Information
  • the downlink control information is also called a DCI format.
  • the DCI format may also be configured to include one or more fields of downlink control information.
  • the downlink control information may include at least either an uplink grant or a downlink grant.
  • the uplink grant may be used for scheduling a single PUSCH in a single cell.
  • the uplink grant may be used for scheduling multiple PUSCHs in multiple slots in a single cell.
  • the uplink grant may be used for scheduling a single PUSCH in multiple slots in a single cell.
  • the downlink control information including the uplink grant may also be referred to as an uplink-related DCI format.
  • One downlink grant is used at least for scheduling one PDSCH in one serving cell.
  • the downlink grant is used at least for scheduling the PDSCH in the same slot as the slot in which the downlink grant is transmitted.
  • the downlink control information including the downlink grant may also be referred to as a downlink-related DCI format.
  • PDSCH is used to transmit downlink data (TB, MAC PDU, DL-SCH, PDSCH, CB, CBG).
  • PDSCH is used at least for transmitting a random access message 2 (random access response).
  • PDSCH is used at least for transmitting system information including parameters used for initial access.
  • the above-mentioned BCH, UL-SCH and DL-SCH are transport channels.
  • a channel used in a medium access control (MAC: Medium Access Control) layer is called a transport channel.
  • the transport channel unit used in the MAC layer is also called a transport block or MAC PDU.
  • HARQ Hybrid Automatic Repeat reQuest
  • the transport block is a unit of data delivered by the MAC layer to the physical layer. In the physical layer, transport blocks are mapped to codewords, and modulation processing is performed for each codeword.
  • the base station device 3 and the terminal device 1 may exchange (transmit / receive) signals in an upper layer (higher layer). For example, in the radio resource control (RRC: Radio Resource Control) layer, the base station apparatus 3 and the terminal apparatus 1 also perform RRC signaling (RRC message: Radio Resource message, RRC information: Radio Resource Control). You may. Further, the base station device 3 and the terminal device 1 may send and receive MAC CE (Medium Access Control Control Element) at the MAC layer.
  • RRC signaling and / or MAC CE are also referred to as higher layer signals.
  • the PUSCH and / or PDSCH is used at least for transmitting RRC signaling and MAC CE.
  • the RRC signaling transmitted from the base station device 3 on the PDSCH may be common RRC signaling for the plurality of terminal devices 1 in the cell.
  • RRC signaling common to a plurality of terminal devices 1 in a cell is also referred to as common RRC signaling.
  • the RRC signaling transmitted from the base station apparatus 3 on the PDSCH may be dedicated RRC signaling (also referred to as “dedicated signaling” or “UE specific signaling”) for a certain terminal apparatus 1.
  • the dedicated RRC signaling for the terminal device 1 is also referred to as dedicated RRC signaling.
  • the cell-specific parameter may be transmitted using common RRC signaling for a plurality of terminal devices 1 in the cell or dedicated RRC signaling for a certain terminal device 1.
  • the UE specific parameter may be transmitted to a certain terminal device 1 by using dedicated RRC signaling.
  • FIG. 2 is a diagram showing a schematic configuration of a wireless frame in this embodiment.
  • the horizontal axis is a time axis.
  • Each of the radio frames may be 10 ms long.
  • each of the radio frames may be composed of 10 slots.
  • Each of the slots may be 1 ms long.
  • FIG. 3 is a diagram showing a schematic configuration of an uplink slot in this embodiment.
  • FIG. 3 shows the configuration of the uplink slot in one cell.
  • the horizontal axis is a time axis
  • the vertical axis is a frequency axis.
  • the uplink slot may include NULsymb SC-FDMA symbols.
  • the uplink slot may include NULsymb OFDM symbols.
  • the present embodiment will be described using a case where the uplink slot includes an OFDM symbol, the present embodiment can also be applied to a case where the uplink slot includes an SC-FDMA symbol.
  • l is the OFDM symbol number / index and k is the subcarrier number / index.
  • the physical signal or channel transmitted in each of the slots is represented by a resource grid.
  • the resource grid is defined by multiple subcarriers and multiple OFDM symbols.
  • Each of the elements in the resource grid is called a resource element.
  • the resource element is represented by subcarrier number / index k and OFDM symbol number / index l.
  • NULsymb may be 7 or 14 with respect to a normal CP (normal Cyclic Prefix) in the uplink.
  • NULsymb may be 6 or 12.
  • the terminal device 1 receives an upper layer parameter UL-CyclicPrefixLength indicating the CP length in the uplink from the base station device 3.
  • the base station apparatus 3 may broadcast the system information including the upper layer parameter UL-CyclicPrefixLength corresponding to the cell in the cell.
  • NULRB is an uplink bandwidth setting for the serving cell and is expressed in multiples of NRBSC.
  • NRBSC is a (physical) resource block size in the frequency domain, expressed by the number of subcarriers.
  • the subcarrier spacing ⁇ f may be 15 kHz.
  • the NRBSC may be 12.
  • the (physical) resource block size in the frequency domain may be 180 kHz.
  • One physical resource block is defined by NULsymb consecutive OFDM symbols in the time domain and NRBSC consecutive subcarriers in the frequency domain. Therefore, one physical resource block is composed of (NULsymb ⁇ NRBSC) resource elements.
  • One physical resource block may correspond to one slot in the time domain. In the frequency domain, the physical resource blocks may be assigned numbers nPRB (0, 1, ..., NURB-1) in order from the lowest frequency.
  • the downlink slot in this embodiment includes a plurality of OFDM symbols.
  • the downlink slot configuration in this embodiment is basically the same as the uplink configuration, and thus the description of the downlink slot configuration is omitted.
  • FIG. 4 is a schematic block diagram showing the configuration of the terminal device 1 of this embodiment.
  • the terminal device 1 is configured to include a wireless transmission / reception unit 10 and an upper layer processing unit 14.
  • the wireless transmission / reception unit 10 includes an antenna unit 11, an RF (Radio Frequency) unit 12, and a baseband unit 13.
  • the upper layer processing unit 14 includes a medium access control layer processing unit 15 and a radio resource control layer processing unit 16.
  • the wireless transmission / reception unit 10 is also referred to as a transmission unit, a reception unit, an encoding unit, a decoding unit, or a physical layer processing unit.
  • the upper layer processing unit 14 outputs the uplink data (transport block) generated by the user's operation or the like to the wireless transmission / reception unit 10.
  • the upper layer processing unit 14 is a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio). Resource Control: RRC) layer processing.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Radio Radio Resource Control
  • the medium access control layer processing unit 15 included in the upper layer processing unit 14 processes the medium access control layer.
  • the medium access control layer processing unit 15 controls the random access procedure based on various setting information / parameters managed by the wireless resource control layer processing unit 16.
  • the wireless resource control layer processing unit 16 included in the upper layer processing unit 14 performs processing of the wireless resource control layer.
  • the radio resource control layer processing unit 16 manages various setting information / parameters of its own device.
  • the radio resource control layer processing unit 16 sets various setting information / parameters based on the upper layer signal received from the base station device 3. That is, the radio resource control layer processing unit 16 sets various setting information / parameters based on the information indicating various setting information / parameters received from the base station device 3.
  • the wireless transmission / reception unit 10 performs physical layer processing such as modulation, demodulation, encoding, and decoding.
  • the wireless transmission / reception unit 10 separates, demodulates, and decodes the signal (physical channel and / or physical signal) received from the base station device 3, and outputs the decoded information to the upper layer processing unit 14.
  • the wireless transmission / reception unit 10 generates a transmission signal (physical channel and / or physical signal) by modulating and encoding data, and transmits the transmission signal to the base station device 3.
  • the RF unit 12 converts a signal received via the antenna unit 11 into a baseband signal by quadrature demodulation (down conversion) and removes unnecessary frequency components.
  • the RF unit 12 outputs the processed analog signal to the baseband unit.
  • the baseband unit 13 converts the analog signal input from the RF unit 12 from an analog signal to a digital signal.
  • the baseband unit 13 removes a portion corresponding to CP (Cyclic Prefix) from the converted digital signal, performs a fast Fourier transform (FFT) on the signal from which the CP is removed, and outputs a signal in the frequency domain. Extract.
  • CP Cyclic Prefix
  • FFT fast Fourier transform
  • the baseband unit 13 performs an Inverse Fast Fourier Transform (IFFT) on the data to generate an SC-FDMA symbol, adds a CP to the generated SC-FDMA symbol, and outputs a baseband digital signal. Generate and convert baseband digital signals to analog signals. The baseband unit 13 outputs the converted analog signal to the RF unit 12.
  • IFFT Inverse Fast Fourier Transform
  • the RF unit 12 uses a low-pass filter to remove excess frequency components from the analog signal input from the baseband unit 13, up-converts the analog signal to a carrier frequency, and transmits it via the antenna unit 11. To do. Further, the RF unit 12 amplifies the power. Further, the RF unit 12 may have a function of controlling transmission power.
  • the RF unit 12 is also referred to as a transmission power control unit.
  • FIG. 5 is a schematic block diagram showing the configuration of the base station device 3 of this embodiment.
  • the base station device 3 is configured to include a wireless transmission / reception unit 30 and an upper layer processing unit 34.
  • the wireless transmission / reception unit 30 includes an antenna unit 31, an RF unit 32, and a baseband unit 33.
  • the upper layer processing unit 34 includes a medium access control layer processing unit 35 and a radio resource control layer processing unit 36.
  • the wireless transmission / reception unit 30 is also referred to as a transmission unit, a reception unit, an encoding unit, a decoding unit, or a physical layer processing unit.
  • the upper layer processing unit 34 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control (Radio). Resource Control: RRC) layer processing.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Radio Radio Resource Control
  • the medium access control layer processing unit 35 included in the upper layer processing unit 34 performs processing of the medium access control layer.
  • the medium access control layer processing unit 35 controls the random access procedure based on various setting information / parameters managed by the wireless resource control layer processing unit 36.
  • a wireless resource control layer processing unit 36 included in the upper layer processing unit 34 performs processing of a wireless resource control layer.
  • the radio resource control layer processing unit 36 generates downlink data (transport block), system information, RRC message, MAC CE, etc. arranged in the physical downlink shared channel, or acquires them from the upper node, and performs wireless transmission / reception. Output to the unit 30. Further, the radio resource control layer processing unit 36 manages various setting information / parameters of each terminal device 1.
  • the radio resource control layer processing unit 36 may set various setting information / parameters for each terminal device 1 via an upper layer signal. That is, the radio resource control layer processing unit 36 transmits / notifies information indicating various setting information / parameters.
  • the function of the wireless transmission / reception unit 30 is the same as that of the wireless transmission / reception unit 10, and thus description thereof is omitted.
  • Each of the units 10 to 16 provided in the terminal device 1 may be configured as a circuit.
  • Each of the units denoted by reference numerals 30 to 36 included in the base station device 3 may be configured as a circuit.
  • Each of the units denoted by reference numerals 10 to 16 included in the terminal device 1 may be configured as at least one processor and a memory connected to the at least one processor.
  • Each of the units denoted by reference numerals 30 to 36 included in the base station device 3 may be configured as at least one processor and a memory connected to the at least one processor.
  • the TDD (Time Division Duplex) and / or the FDD (Frequency Division Duplex) may be applied to the wireless communication system of the present embodiment.
  • the serving cell to which TDD is applied and the serving cell to which FDD is applied may be aggregated.
  • the upper layer signal may be any of RMSI (Remaining Minimum System Information), OSI (Other System Information), SIB (System Information Block), RRC message, and MAC CE. Further, the upper layer parameter (higher layer parameter) may mean a parameter or an information element included in the upper layer signal.
  • UCI transmitted on PUSCH may include HARQ-ACK and / or CSI.
  • the terminal device 1 corresponds to the slot indicated by the DCI format 1_0 corresponding to PDSCH reception, or the value of the PDSCH-to-HARQ feedback timing indicator field (PDSCH-to-HARQ_feedback timing indicator field) included in the DCI format 1_1.
  • the HARQ-ACK information to be transmitted may be reported to the base station apparatus 3 by using a HARQ-ACK codebook (codebook).
  • the terminal device 1 is instructed by the DCI format 1_0 corresponding to the SPS PDSCH release or the value of the PDSCH-to-HARQ feedback timing indicator field (PDSCH-to-HARQ_feedback timing indecorator field) included in the DCI format 1_1.
  • the HARQ-ACK information corresponding to the slot to be allocated may be reported to the base station apparatus 3 by using the HARQ-ACK codebook (codebook).
  • SPS Semi-Persistent Scheduling
  • PDSCH may be PDSCH that is semi-statically scheduled in the terminal device 1.
  • scheduling activation (scheduling activation) is performed.
  • the terminal device 1 validates the downlink SPS assignment PDCCH (DL SPS assignment PDCCH) or the uplink grant type 2 PDCCH (UL grant Type 2 PDCCH).
  • the scheduling activation may be performed based at least on the activation and the HARQ process number (HARQ process number) and the redundancy version (redundancy version) included in the DCI format.
  • the scheduling release includes at least the HARQ process number (HARQ process number), redundancy version (redundancy version), modulation and coding scheme (modulation and coding scheme), and resource block assignment (resource block) included in the activation and DCI format. It may be carried out based on.
  • HARQ-ACK information may include ACK or NACK.
  • the terminal device 1 when the terminal device 1 correctly receives the PDSCH, the terminal device 1 may set ACK in the HARQ-ACK information.
  • the terminal device 1 when the terminal device 1 fails to receive the PDSCH, the terminal device 1 may set NACK in the HARQ-ACK information. Failure to receive the PDSCH may mean that an error has occurred in the decoding process, or it may mean that the PDSCH physical signal could not be received.
  • the terminal device 1 uses the DCI format 1_0 or the HARQ-ACK information of the slot not specified by the value of the PDSCH-to-HARQ feedback timing indicator field (PDSCH-to-HARQ_feedback indicator field) included in the DCI format 1_1 as NACK. You may report to the base station apparatus 3.
  • NPDSCHrepeat When the upper layer parameter pdsch-AggregationFactor is given to the terminal device 1, NPDSCHrepeat may be the value of pdsch-AggregationFactor. If the upper layer parameter pdsch-AggregationFactor is not given to the terminal device 1, NPDSCHrepeat may be 1.
  • the terminal device 1 may report HARQ-ACK information for PDSCH reception from slot n-NPDSCH repeat + 1 to slot n using PUCCH transmission and / or PUSCH transmission in slot n + k.
  • k may be the number of slots designated by the PDSCH-to-HARQ_feedback timing indicator field included in the DCI format corresponding to the PDSCH reception. If the PDSCH-to-HARQ_feedback timing indicator field is not included in the DCI format, k may be given by the upper layer parameter dl-DataToUL-ACK.
  • the terminal device 1 When the terminal device 1 transmits the HARQ-ACK information of the PDSCH received in a certain slot in a slot other than n + k, the terminal device 1 may set the HARQ-ACK information corresponding to the PDSCH to NACK. That is, the terminal device 1 may set the value of the codebook corresponding to the HARQ-ACK information transmitted in slots other than n + k in the codebook transmitted in n + k slots to NACK.
  • the terminal device 1 sets the MA and c occasions of PDSCH reception candidates. May be determined.
  • the MA, c occasion may be the maximum number of bits of HARQ-ACK information transmitted on one PUCCH.
  • the terminal device 1 uses the downlink BWP given by the upper layer parameter firstActiveDownlinkBWP as the activated downlink BWP for determining the set of MA and c occasions of PDSCH reception candidates. You may use.
  • the determination of the MA and c occasion sets of PDSCH reception candidates is performed by determining the set of slot timing values K1 associated with the uplink BWP, default PDSCH time domain resource allocation, upper layer parameter PDSCH-TimeDomainResourceAllocationList, and upper layer parameter TDD.
  • -UL-DL-ConfigurationCommon and / or upper layer parameter TDD-UL-DL-ConfigDedicated is performed by determining the set of slot timing values K1 associated with the uplink BWP, default PDSCH time domain resource allocation, upper layer parameter PDSCH-TimeDomainResourceAllocationList, and upper layer parameter TDD.
  • the slot timing value K1 is (1, 2, 3, 4, 5, 6, 7, 8) may be part or all.
  • the slot timing value K1 may be given by the upper layer parameter dl-DataToUL-ACK.
  • FIG. 6 is a diagram showing an example of default PDSCH time domain resource allocation in the present embodiment.
  • the default PDSCH time domain resource allocation is given based on at least dmrs-TypeA-Position, PDSCH mapping type, number of slots K0 between PDCCH and PDSCH scheduled by the PDCCH, start OFDM symbol S of PDSCH, and OFDM symbol number L of PDSCH. May be.
  • the PDSCH time domain resource allocation configured by the upper layer parameter PDSCH-TimeDomainResourceAllocationList is the PDSCH mapping type, the number of slots K0 between the PDCCH and the PDSCH scheduled by the PDCCH, the start OFDM symbol of the PDSCH, and / or the number of OFDM symbols of the PDSCH. At least based on
  • the determination of the MA, c occasion set of PDSCH reception candidates is performed by determining the PDSCH time domain resource allocation configured by the upper layer parameter PDSCH-TimeDomainResourceAllocationList, the default PDSCH time domain resource allocation, or the PDSCH configured by the upper layer parameter PDSCH-TimeDomainResourceAllocationList. It may be based at least on a union of time domain resource allocation and default PDSCH time domain resource allocation.
  • PDSCH time domain resource allocation configured by the upper layer parameter PDSCH-TimeDomainResourceAllocationList is called a time domain resource allocation table.
  • the default PDSCH time domain resource allocation is referred to as a time domain resource allocation table.
  • the union set of the PDSCH time domain resource allocation configured by the upper layer parameter PDSCH-TimeDomainResourceAllocationList and the default PDSCH time domain resource allocation is referred to as a time domain resource allocation table.
  • FIG. 7 is a diagram showing an example of a procedure for determining a set of MA and c occasions of PDSCH reception candidates in this embodiment.
  • the number of bits of HARQ-ACK information transmitted by the terminal device 1 may be determined by this procedure.
  • the (700) PDSCH reception candidate and / or the occasion index j for the SPS PDSCH release is set to 0, and the process proceeds to 701.
  • (701) Set B, which stores PDSCH reception candidates, is set to an empty set, and the process proceeds to 702.
  • (702) Set MA, c to an empty set and proceed to 703.
  • (703) Set the number (Cardinality) of the slot timing value K1 included in the set of K1 to C (K1), and proceed to 704.
  • (704) Set the index k of the slot timing value K1 included in the set of K1 to 0, and proceed to 705.
  • the process proceeds to 706.
  • the index k of K1 is smaller than C (K1)
  • the process proceeds to 741.
  • (706) Set all rows in the time domain resource allocation table to R, and proceed to 707.
  • (707) The number of elements (Cardinality) of R is set to C (R), and the processing proceeds to 708.
  • (708) Set the index r of the row of R to 0, and proceed to 709.
  • the slot n is the same slot as or a slot after the slot that switches the activated downlink BWP or the activated uplink BWP in the serving cell c, and the slots n-K1 and k are the activated downlink. If the slot is before the slot for switching the link BWP or the activated uplink BWP, 710 is executed. When the condition of 709 is not satisfied, 710 is not executed and the process proceeds to 711.
  • the process proceeds to 712. (712) If the index r of R is smaller than C (R), the process proceeds to 713. If the index r of R is greater than or equal to C (R), proceed to 717. (713) The upper layer parameter TDD-UL-DL-ConfigurationCommon or TDD-UL-DL-ConfigDedicated is given to the terminal device 1, and the process is performed from the slot n-K1, k-NPDSCHrepeat to the slot n-K1, k. If at least one symbol of the PDSCH time domain resource derived by r is configured in the uplink, remove row r from (714) R and proceed to 715. If the condition of 713 is not satisfied, the process proceeds to 715.
  • the number of elements (Cardinality) of R is set to C (R), and the processing proceeds to 723.
  • (723) Set the smallest last OFDM symbol index among PDSCH reception candidates R to m, and proceed to 724.
  • the PDSCH reception candidate may be determined by the start and the length instruction value (SLIV) included in each row of R.
  • the SLIV may be determined based on at least the value of the Time Domain Resource assignment field included in the DCI.
  • R If R is not empty, proceed to 725. If R is empty, proceed to 738. (725) Set r to 0 and proceed to 726. (726) If the index r of R is smaller than C (R), the process proceeds to 727. If the index r of R is greater than or equal to C (R), proceed to 734. If the OFDM start symbol index S of the PDSCH reception candidate in (727) row r is smaller than m determined in (723), j is stored in (728) br, k, and row r is excluded from (729) R, (730) Store the union of B, br, and k in B, and proceed to 731.
  • br and k may be a set of occasion indexes j for PDSCH reception candidates r in K1 and k.
  • the conditional sentence of (731) 727 is ended, and the processing proceeds to 732.
  • (733) If the index r of R is smaller than C (R), the process proceeds to 727. If the index r of R is greater than or equal to C (R), proceed to 734.
  • the union of MA, c and j is stored in MA, c, and the process proceeds to 735.
  • MA and c determined by the procedure shown in FIG. 7 may be the number of HARQ-ACK bits transmitted by the terminal device 1.
  • the terminal device 1 does not expect to receive two or more PDSCHs in the same slot. Good.
  • the PDSCH reception candidate may be a candidate that can receive PDSCH indicated by SLIV.
  • the number of PDSCHs actually received by the terminal device 1 in one slot may be the same as or smaller than the number of PDSCH reception candidates.
  • the terminal device 1 receives the SPS PDSCH, the SPS PDSCH release, or the PDSCH scheduled by the DCI format 1_0, and the terminal device 1 is configured as one serving cell, and MA and c are 1,
  • the terminal device 1 may generate HARQ-ACK information only for the transport block in the PDSCH or only for the SPS PDSCH release.
  • the terminal device 1 receives the SPS PDSCH, the SPS PDSCH release, or the PDSCH scheduled by the DCI format 1_0, and the terminal device 1 is configured into two or more serving cells, and MA and c are 2 or more.
  • the upper layer parameter PDSCH-CodeBlockGroupTransmission is given to the terminal device 1, the terminal device 1 transmits the transport block in the PDSCH or the HARQ-ACK information of the SPS PDSCH release to NHARQ-ACKCBG / TB, max. You may repeat this time.
  • NHARQ-ACKCBG / TB, max may be given by the upper layer parameter maxCodeBlockGroupsPerTransportBlock.
  • the terminal device 1 When the upper layer parameter dl-DataToUL-ACK is given to the terminal device 1, the terminal device 1 activates the serving cell corresponding to the slot timing value (1, 2, 3, 4, 5, 6, 7, 8). It is not necessary to expect to indicate in the DCI format 1_0 a slot timing value that does not belong to the product set of slot timing values given by the upper layer parameter dl-DataToUL-ACK for the downlink BWP. For example, when the value of dl-DataToUL-ACK is (1, 3, 5, 7), the terminal device 1 is instructed by the DCI format 1_0 to have any of the slot timing values (2, 4, 6, 8). You don't have to expect that.
  • the occasion of the PDSCH reception candidate corresponds to the PDCCH including the DCI format 1_1, and the upper layer parameter maxNrafCodeWordsScheduledByDCI instructs reception of two transport blocks, and the terminal device 1 receives the PDSCH including one transport block. If the upper layer parameter harq-ACK-SpatialBundlingPUCCH is not given to the terminal device 1, the HARQ-ACK information of the PDSCH is associated with the first transport block, and the terminal device 1 has the second NACKs may be generated for transport blocks.
  • the occasion of the PDSCH reception candidate corresponds to the PDCCH including the DCI format 1_1, and the upper layer parameter maxNrafCodeWordsScheduledByDCI instructs reception of two transport blocks, and the terminal device 1 receives the PDSCH including one transport block. If the upper layer parameter “harq-ACK-SpatialBundlingPUCCH” is given to the terminal device 1, the terminal device 1 regards the HARQ-ACK information for the second transport block as ACK and generates the HARQ-ACK information of the PDSCH. May be.
  • the terminal device 1 uses the HARQ-ACK codebooks o0ACK, o1ACK ,. . . ,
  • the HARQ-ACK information bits of the OACK bits of oOACK-1ACK may be determined based at least on the procedure shown in FIG. If the terminal device 1 cannot receive the transport block or the code block group (CBG) included in the PDSCH due to the non-detection of the DCI format 1_0 or the DCI format 1_1 for scheduling the PDSCH, the terminal device 1 determines the transport block or the CBG. And generates HARQ-ACK information for NACK as NACK.
  • CBG code block group
  • the number of elements (cardinality) of MA and c is defined as the total Mc of the PDSCH reception of the serving cell c corresponding to the HARQ-ACK information bit or the SPS PDSCH release occasion. That is, Mc may be the number of elements of MA and c. Further, Mc may be a codebook size of HARQ-ACK information.
  • FIG. 8 is a diagram showing an example of a procedure for determining the HARQ-ACK information bit of the HARQ-ACK codebook transmitted by the terminal device 1 on the PUCCH in the present embodiment.
  • the HARQ-ACK information bits corresponding to MA and c determined by the procedure of FIG. 7 may be determined.
  • (800) Set the serving cell index c to 0 and proceed to 801. (801) Set the index j of the HARQ-ACK information bit to 0, and proceed to 802. (802) Set the number of serving cells configured in the terminal device 1 to NcellsDL, and proceed to 803. (803) If c is smaller than NcellsDL, the process proceeds to 804. If c is greater than or equal to NcellsDL, terminate the procedure. (804) The PDSCH reception candidate or the occasion index m of the SPS PDSCH release is set to 0, and the process proceeds to 805.
  • index m is smaller than Mc, proceed to 806. If index m is greater than or equal to Mc, go to 831. (806) The upper layer parameter harq-ACK-SpatialBundlingPUCCH is not given to the terminal device 1, the upper layer parameter PDSCH-CodeBlockGroupTransmission is not given to the terminal device 1, and the terminal device 1 has activated the serving cell c.
  • the upper layer parameter “harq-ACK-SpatialBundlingPUCCH” is given to the terminal device 1, and the terminal device 1 instructs the upper layer parameter maxNrofCodeWordsScheduledByDCI to receive two transport blocks in the activated downlink BWP of the serving cell c.
  • (812) performs a binary AND operation on the HARQ-ACK information bits corresponding to the first transport block and the second transport block of the cell and outputs the result to ojACK. Save, increment (813) j by one, and proceed to 828. If the condition of 811 is not satisfied, the process proceeds to 814.
  • the result of the binary AND operation is 1 only when all the input bits of the binary AND operation are 1.
  • the result of a binary AND operation is 0 if the input bits of the binary AND operation are not all ones. For example, if the HARQ-ACK information bit corresponding to the first transport block is 1 and the HARQ-ACK information bit corresponding to the second transport block is 1, it corresponds to the first transport block.
  • the result of the binary AND operation of the HARQ-ACK information bits and the HARQ-ACK information bits corresponding to the second transport block is 1.
  • the upper layer parameter “harq-ACK-SpatialBundlingPUCCH” is given to the terminal device 1, and the terminal device 1 instructs the upper layer parameter maxNrofCodeWordsScheduledByDCI to receive two transport blocks in the activated downlink BWP of the serving cell c. And the terminal device 1 receives one transport block, (812) the HARQ-ACK information bit corresponding to the second transport block is set to ACK, and then the first Of the HARQ-ACK information bits corresponding to the second transport block and the second transport block are subjected to binary AND operation (binary AND operation), and the result is ojAC Save to, is incremented by one j, the process proceeds to 828. If the condition of 811 is not satisfied, the process proceeds to 814.
  • NHARQ-ACK, cCBG / TB, maxCBG are given by the upper layer parameter maxCodeBlockGroupsPerTransportBlock in the serving cell c
  • the process proceeds to 815. If the condition of 814 is not satisfied, the process proceeds to 825.
  • NHARQ-ACK, cCBG / TB, max may be the maximum CBG number in one transport block in the serving cell c.
  • the nCBG of the CBG index is set to 0, and the process proceeds to 816. (816) Set NHARQ-ACK, cCBG / TB, max to nmax, and proceed to 817.
  • nCBG is smaller than NHARQ-ACK, cCBG / TB, max, the process proceeds to 818. If nCBG is greater than or equal to NHARQ-ACK, cCBG / TB, max, proceed to 824. (818) The HARQ-ACK information bits corresponding to the nCBG CBGs of the first transport block are stored in oj + nCBGACK, and the process proceeds to 819. (819) When the terminal device 1 is configured to receive two transport blocks in the downlink BWP of the serving cell c with the upper layer parameter maxNrafCodeWordsScheduledByDCI, (820) corresponds to nCBG CBGs of the second transport.
  • the HARQ-ACK information bit is stored in oj + nCBG + nmaxACK, the conditional statement of (821) 819 is terminated, and the processing proceeds to 822. If the condition of 819 is not satisfied, the process proceeds to 822. (822) nCBG is incremented by 1, and the process proceeds to 823. (823) If nCBG is smaller than NHARQ-ACK, cCBG / TB, max, the process proceeds to 818. If nCBG is greater than or equal to NHARQ-ACK, cCBG / TB, max, proceed to 824.
  • index m is greater than or equal to Mc, go to 831.
  • (831) c is incremented by 1, and the process proceeds to 832. If (832) c is smaller than NcellsDL, the process proceeds to 804. If c is greater than or equal to NcellsDL, terminate the procedure.
  • the index j in FIG. 7 may be the same as the index m in FIG.
  • FIG. 9 is a diagram showing an example of determining the HARQ-ACK codebook size corresponding to the PDSCH in this embodiment.
  • the PDSCH 900, PDSCH 901, PDSCH 902, PDSCH 903, PDSCH 904, PDSCH 905, PDSCH 906 and PDSCH 907 may be PDSCH reception candidates.
  • the PDSCH reception may be performed by one or more PDSCH reception candidates.
  • C (R) in the slots n ⁇ K1 and k is 8, the loop of 726 is executed 8 times. In the loop of slot 726 in slot n ⁇ K1, k in FIG.
  • the fourth, fifth, and sixth loops are based on the last OFDM symbol of PDSCH 903, and therefore PDSCH 903, and / or Alternatively, PDSCH 904 and / or PDSCH 905 may have the same value of j.
  • Mc may be 3 in the slots n-K1 and k in FIG.
  • FIG. 10 is a diagram showing an example of determining the HARQ-ACK codebook size corresponding to the PDSCH and SPS PDSCH releases in this embodiment.
  • the terminal device 1 receives the PDCCH including the SPS PDSCH release in a certain slot, the terminal device 1 includes at least HARQ-ACK information corresponding to the SPS PDSCH release in the Time Domain Resource assignment included in the DCI format including the SPS PDSCH release.
  • the SLIV derived based on this may be replaced with HARQ-ACK of the PDSCH reception candidate that is instructed and transmitted. For example, in FIG.
  • the SPS is performed using the HARQ-ACK corresponding to the PDSCH 905.
  • HARQ-ACK information of PDSCH Release 1008 may be transmitted.
  • the ojACK corresponding to the PDSCH 905 includes the SPS PDSCH release 1008.
  • HARQ-ACK information bits may be stored.
  • the PDSCH reception candidate designated by the SLIV may be included in the slot in which the SPS PDSCH release is received, or may be included in a different slot. That is, the slot of the PDSCH reception candidate indicated by the SLIV may be given based at least on the Time Domain Resource assignment included in the DCI format including the SPS PDSCH release.
  • M in FIGS. 9 and 10 may be the last OFDM symbol index shown at 723 and / or 736.
  • the SLIV derived based at least on the Time Domain Resource assignment included in the DCI format including the SPS PDSCH release is also referred to as SPS SLIV.
  • the terminal device 1 does not have to expect to receive the PDSCH in the PDSCH reception candidate having the same br and k values as the PDSCH reception candidate indicated by the SPS SLIV.
  • the terminal device 1 does not expect to receive PDSCH 903, PDSCH 904, and PDSCH 905 with the same br and k values as PDSCH 905. Good.
  • the terminal device 1 does not have to expect to receive the PDSCH in the PDSCH reception candidate having the same br and k values as the PDSCH reception candidate indicated by the SPS PDSCH release.
  • the terminal device 1 when the SPS PDSCH release 1008 indicates the PDSCH reception candidate PDSCH 905 in FIG. 10, the terminal device 1 expects to receive PDSCH 903, PDSCH 904, and PDSCH 905 having the same br and k values as the PDSCH 905. You don't have to.
  • the terminal device 1 does not have to expect to select a PDSCH reception candidate whose SPS SLIV has the same br and k values as the PDSCH reception candidate for the PDSCH reception candidate that receives the PDSCH. For example, in FIG. 10, when the PDSCH is received by the PDSCH 902 which is the PDSCH reception candidate, the terminal device 1 indicates that the SPS SLIV indicates the PDSCH 900, PDSCH 901 and / or PDSCH 902 having the same br and k values as the PDSCH 902. You don't have to expect that.
  • the terminal device 1 receives the PDCCH including the SPS PDSCH release in a certain slot, and one or more PDSCH reception candidates in the slot given at least based on the Time Domain Resource assignment included in the DCI format including the SPS PDSCH release. If there is, the start and / or the last OFDM symbol corresponding to the PDSCH reception candidate, the number of OFDM symbols corresponding to the PDSCH reception candidate, the table index corresponding to the PDSCH reception candidate, based on at least the one or more Of the PDSCH reception candidates, PDSCH reception candidates corresponding to the SPS PDCCH release may be given.
  • the terminal device 1 starts HARQ-ACK information corresponding to the SPS PDSCH release, and the PDSCH reception candidate with the latest OFDM symbol is the slowest.
  • the corresponding HARQ-ACK may be replaced and transmitted.
  • the HARQ-ACK information bit of SPS PDSCH release is stored in ojACK corresponding to the PDSCH reception candidate whose start OFDM symbol is the latest. You may.
  • the terminal device 1 receives the HARQ-corresponding to the SPS PDSCH release.
  • the ACK information may be replaced with the HARQ-ACK of the PDSCH reception candidate having the smallest number of OFDM symbols and transmitted. For example, if there are multiple PDSCH reception candidates with the slowest start OFDM symbol in the slot given based on at least Time Domain Resource assignment included in the DCI format including SPS PDSCH release, PDSCH reception candidates with the smallest number of OFDM symbols
  • the HARQ-ACK information bit of the SPS PDSCH release may be stored in the corresponding ojACK.
  • the terminal device 1 may replace the HARQ-ACK information corresponding to the SPS PDSCH release with the HARQ-ACK of the PDSCH reception candidate having the smallest index in the table defining the PDSCH reception candidates.
  • the HARQ-ACK information bit of the SPS PDSCH release may be stored in the ojACK corresponding to the PDSCH reception candidate having the smallest index in the table defining the PDSCH reception candidates.
  • a first aspect of the present embodiment is a terminal device, a processing unit that generates HARQ-ACK information corresponding to PDSCH, and a PDSCH reception candidate br related to an SPS PDSCH release in a certain slot, and a receiving unit that receives PDSCH with some or all of PDSCH reception candidates excluding one or a plurality of PDSCH candidates of k having the same value as k.
  • a second aspect of the present embodiment is a base station apparatus, comprising: a transmitter that transmits PDSCH; and a receiver that receives HARQ-ACK information corresponding to the PDSCH, and the transmitter.
  • the terminal device 1 and the base station device 3 can efficiently communicate with each other.
  • the program operating in the base station device 3 and the terminal device 1 according to the embodiment of the present invention includes a CPU (Central Processing Unit) and the like so as to realize the functions of the above-described embodiment according to the embodiment of the present invention. It may be a control program (a program that causes a computer to function).
  • the information handled by these devices is temporarily stored in RAM (Random Access Memory) during processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). If necessary, the CPU reads, corrects and writes.
  • RAM Random Access Memory
  • ROMs Read Only Memory
  • HDD Hard Disk Drive
  • the terminal device 1 and a part of the base station device 3 in the above-described embodiment may be realized by a computer.
  • a program for realizing this control function may be recorded on a computer-readable recording medium, and the program recorded on this recording medium may be read by a computer system and executed.
  • the “computer system” mentioned here is a computer system built in the terminal device 1 or the base station device 3, and includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, and a CD-ROM, and a storage device such as a hard disk built in a computer system.
  • the "computer-readable recording medium” means a program that dynamically holds a program for a short time, such as a communication line when transmitting the program through a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory inside the computer system that serves as a server or a client in which the program is held for a certain period of time may be included.
  • the above-mentioned program may be for realizing a part of the above-mentioned functions, and may be one for realizing the above-mentioned functions in combination with a program already recorded in the computer system.
  • the base station device 3 in the above-described embodiment can be realized as an aggregate (device group) composed of a plurality of devices.
  • Each of the devices constituting the device group may include a part or all of each function or each function block of the base station device 3 according to the above-described embodiment. It is only necessary that the device group has each function or each function block of the base station device 3.
  • the terminal device 1 according to the above-described embodiment can also communicate with the base station device as an aggregate.
  • the base station device 3 in the above-described embodiment may be EUTRAN (Evolved Universal Terrestrial Radio Access Network). Further, the base station device 3 in the above-described embodiment may have some or all of the functions of the upper node for the eNodeB.
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • part or all of the terminal device 1 and the base station device 3 in the above-described embodiments may be realized as an LSI which is typically an integrated circuit, or may be realized as a chip set.
  • Each functional block of the terminal device 1 and the base station device 3 may be individually formed into a chip, or a part or all may be integrated and formed into a chip.
  • the method of circuit integration is not limited to an LSI, and may be realized by a dedicated circuit or a general-purpose processor. Further, in the case where a technology for forming an integrated circuit that replaces the LSI appears due to the advance of the semiconductor technology, an integrated circuit based on the technology can be used.
  • the terminal device is described as an example of the communication device, but the present invention is not limited to this, a stationary type electronic device installed indoors or outdoors, or a non-movable electronic device, For example, it can be applied to terminal devices or communication devices such as AV equipment, kitchen equipment, cleaning / laundry equipment, air conditioning equipment, office equipment, vending machines, and other household appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

効率的に通信を行うことができる。端末装置は、PDSCH(Physical Downlink Shared Channel)に対応するHARQ-ACK(Hybrid Automatic Repeat reQuest)情報を生成する処理部と、あるスロットにおいて、SPS PDSCHリリースが関連するPDSCH受信候補のbr、kと同じ値のbr、kの1つまたは複数のPDSCH候補を除くPDSCH受信候補の一部または全部のそれぞれでPDSCHを受信する受信部と、を備える。

Description

端末装置、基地局装置、および、通信方法
 本発明は、端末装置、基地局装置、および、通信方法に関する。本願は、2018年10月10日に日本に出願された特願2018-191531号に基づき優先権を主張し、その内容をここに援用する。
 セルラー移動通信の無線アクセス方式および無線ネットワーク(以下、「Long Term Evolution (LTE:登録商標)」、または、「Evolved Universal Terrestrial Radio Access : EUTRA」と称する。)が、第三世代パートナーシッププロジェクト(3rd Generation Partnership Project: 3GPP)において検討されている。また、3GPPにおいて、新たな無線アクセス方式(以下、「New Radio(NR)」と称する。)が検討されている(非特許文献1、2、3、4)。LTEでは、基地局装置をeNodeB(evolved NodeB)とも称する。NRでは、基地局装置をgNodeBとも称する。LTE、および、NRでは、端末装置をUE(User Equipment)とも称する。LTE、および、NRは、基地局装置がカバーするエリアをセル状に複数配置するセルラー通信システムである。単一の基地局装置は複数のセルを管理してもよい。
 NRにおいて、1つのサービングセルに対して下りリンクBWP(bandwidth part)と上りリンクBWPのセットが設定される(非特許文献3)。端末装置は、下りリンクBWPにおいてPDCCHとPDSCHを受信する。
 本発明の一態様は、効率的に通信を行う端末装置、該端末装置に用いられる通信方法、効率的に通信を行う基地局装置、該基地局装置に用いられる通信方法を提供する。
 (1)本発明の第1の態様は、端末装置であって、PDSCHに対応するHARQ-ACK情報を生成する処理部と、あるスロットにおいて、SPS PDSCHリリースが関連するPDSCH受信候補のbr、kと同じ値のbr、kの1つまたは複数のPDSCH候補を除くPDSCH受信候補の一部または全部のそれぞれでPDSCHを受信する受信部と、を備える。
 (2)本発明の第2の態様は、基地局装置であって、PDSCHを送信する送信部と、前記PDSCHに対応するHARQ-ACK情報を受信する受信部と、を備え、前記送信部は、あるスロットにおいて、SPS PDSCHリリースが関連するPDSCH受信候補のbr、kと同じ値のbr、kの1つまたは複数のPDSCH候補を除くPDSCH受信候補の一部または全部にPDSCHをスケジュールする。
 (3)本発明の第3の態様は、端末装置に用いられる通信方法であって、PDSCHに対応するHARQ-ACK情報を生成し、あるスロットにおいて、SPS PDSCHリリースが関連するPDSCH受信候補のbr、kと同じ値のbr、kの1つまたは複数のPDSCH候補を除くPDSCH受信候補の一部または全部のそれぞれでPDSCHを受信する。
 (4)本発明の第4の態様は、基地局装置に用いられる通信方法であって、PDSCHを送信し、前記PDSCHに対応するHARQ-ACK情報を受信し、あるスロットにおいて、SPS PDSCHリリースが関連するPDSCH受信候補のbr、kと同じ値のbr、kの1つまたは複数のPDSCH候補を除くPDSCH受信候補の一部または全部にPDSCHをスケジュールする。
 この発明の一態様によれば、端末装置は効率的に通信を行うことができる。また、基地局装置は効率的に通信を行うことができる。
本実施形態の無線通信システムの概念図である。 本実施形態の無線フレームの概略構成を示す図である。 本実施形態における上りリンクスロットの概略構成を示す図である。 本実施形態の端末装置1の構成を示す概略ブロック図である。 本実施形態の基地局装置3の構成を示す概略ブロック図である。 本実施形態におけるデフォルトPDSCH時間領域リソース割当の一例を示す図である。 本実施形態におけるPDSCH受信候補のMA,cオケージョンのセットを決定するプロシージャの一例を示した図である。 本実施形態において端末装置1がPUCCHで送信されるHARQ-ACKコードブックのHARQ-ACK情報ビットを決定する一例のプロシージャを示した図である。 本実施形態におけるPDSCHに対応するHARQ-ACKコードブックサイズを決定する一例を示した図である。 本実施形態におけるPDSCHおよびSPS PDSCHリリースに対応するHARQ-ACKコードブックサイズを決定する一例を示した図である。
 以下、本発明の実施形態について説明する。
 図1は、本実施形態の無線通信システムの概念図である。図1において、無線通信システムは、端末装置1A~1C、および基地局装置3を具備する。以下、端末装置1A~1Cを端末装置1という。
 本実施形態の物理チャネルおよび物理シグナルについて説明する。
 端末装置1から基地局装置3への上りリンクの無線通信では、以下の上りリンク物理チャネルが用いられる。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PUCCH(Physical Uplink Control Channel)
・PUSCH(Physical Uplink Shared Channel)
・PRACH(Physical Random Access Channel)
 PUCCHは、端末装置1が上りリンク制御情報(Uplink Control Information: UCI)を基地局装置3へ送信するために用いられる。なお、本実施形態において、端末装置1は、プライマリセル、および/または、プライマリセルの機能を有するセカンダリセル、および/または、PUCCHの送信が可能なセカンダリセルにおいてPUCCHの送信を行ってもよい。つまり、PUCCHは、特定のサービングセルにおいて送信されてもよい。
 上りリンク制御情報は、下りリンクのチャネル状態情報(Channel State Information: CSI)、PUSCHリソースの要求を示すスケジューリング要求(Scheduling Request: SR)、下りリンクデータ(Transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH, Physical Downlink Shared Channel: PDSCH)に対するHARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)のうち、少なくとも1つを含む。
 下りリンクデータが成功裏に復号された場合、該下りリンクデータに対するACKが生成される。下りリンクデータが成功裏に復号されなかった場合、該下りリンクデータに対するNACKが生成される。DTX(discontinuous transmission)は、下りリンクデータを検出しなかったことを意味してもよい。DTXは、HARQ-ACK応答を送信するべきデータを検出しなかったことを意味してもよい。HARQ-ACKは、1つのトランスポートブロックに少なくとも対応するHARQ-ACKビットを少なくとも含んでもよい。HARQ-ACKビットは、1つ、または、複数のトランスポートブロックに対応するACK(ACKnowledgement)または、NACK(Negative-ACKnowledgement)を示してもよい。HARQ-ACKは、1つまたは複数のHARQ-ACKビットを含むHARQ-ACKコードブックを少なくとも含んでもよい。HARQ-ACKビットが1つ、または、複数のトランスポートブロックに対応することは、HARQ-ACKビットが該1または複数のトランスポートブロックを含むPDSCHに対応することであってもよい。
 HARQ-ACKを、ACK/NACK、HARQフィードバック、HARQ-ACKフィードバック、HARQ応答、HARQ-ACK応答、HARQ情報、HARQ-ACK情報、HARQ制御情報、および、HARQ-ACK制御情報とも呼称されてもよい。
 HARQ-ACKビットは、トランスポートブロックに含まれる1つのCBG(Code Block Group)に対応するACKまたはNACKを示してもよい。
 チャネル状態情報(CSI:Channel State Information)は、チャネル品質指標(CQI:Channel Quality Indicator)とランク指標(RI:Rank Indicator)を含んでもよい。チャネル品質指標は、プレコーダ行列指標(PMI:Precoder Matrix Indicator)、CSI-RS指標(CRI:CSI-RS Resource indicator)を含んでもよい。チャネル状態情報はプレコーダ行列指標を含んでもよい。CQIは、チャネル品質(伝搬強度)に関連する指標であり、PMIは、プレコーダを指示する指標である。RIは、送信ランク(または、送信レイヤー数)を指示する指標である。CSIはCSIレポート、CSI情報とも呼称されてもよい。送信レイヤーをレイヤーと呼称してもよい。
 CSIレポートは1つまたは複数に分割されてもよい。例えば、CSIレポートが2つに分割される場合、分割された第1のCSIレポートはCSI―Part1、分割された第2のCSIレポートはCSI―Part2であってもよい。CSIレポートのサイズは分割されたCSIのうちの一部または全部のビット数であってもよい。CSIレポートのサイズはCSI―Part1のビット数であってもよい。CSIレポートのサイズはCSI―Part2のビット数であってもよい。CSIレポートのサイズは分割された複数のCSIレポートのビット数の総和であってもよい。分割された複数のCSIのビット数の総和は、分割される前のCSIレポートのビット数である。CSI-Part1は少なくともRI、CRI、CQI、PMIの何れかの一部または全部を含んでもよい。CSI-Part2はPMI、CQI、RI、CRIの何れかの一部または全部を含んでもよい。CSIレポートのサイズは、所定の閾値(所定のビット数)を超えないように設定されてもよい。
 スケジューリングリクエスト(SR:Scheduling Request)は、初期送信のためのPUSCHのリソースを要求するために少なくとも用いられてもよい。スケジューリングリクエストビットは、正のSR(positive SR)または、負のSR(negative SR)のいずれかを示すために用いられてもよい。スケジューリングリクエストビットが正のSRを示すことは、“正のSRが送信される”とも呼称される。正のSRは、端末装置1によって初期送信のためのPUSCHのリソースが要求されることを示してもよい。正のSRは、上位層によりスケジューリングリクエストがトリガーされることを示してもよい。正のSRは、上位層によりスケジューリングリクエストを送信することが指示された場合に、送信されてもよい。スケジューリングリクエストビットが負のSRを示すことは、“負のSRが送信される”とも呼称される。負のSRは、端末装置1によって初期送信のためのPUSCHのリソースが要求されないことを示してもよい。負のSRは、上位層によりスケジューリングリクエストがトリガーされないことを示してもよい。負のSRは、上位層によりスケジューリングリクエストを送信することが指示されない場合に、送信されてもよい。
 スケジューリングリクエストビットは、1つまたは複数のSR設定(SR configuration)のいずれかに対する正のSR、または、負のSRのいずれかを示すために用いられてもよい。該1つまたは複数のSR設定のそれぞれは、1つまたは複数のロジカルチャネルに対応してもよい。あるSR設定に対する正のSRは、該あるSR設定に対応する1または複数のロジカルチャネルのいずれかまたは全部に対する正のSRであってもよい。負のSRは、特定のSR設定に対応しなくてもよい。負のSRが示されることは、全てのSR設定に対して負のSRが示されることであってもよい。
 SR設定は、スケジューリングリクエストID(Scheduling Request ID)であってもよい。
 PUSCHは、上りリンクデータを送信するために用いられてもよい。PUSCHは、上りリンクデータと共にHARQ-ACKおよび/またはチャネル状態情報を送信するために用いられてもよい。また、PUSCHはチャネル状態情報のみ、または、HARQ-ACK、および/または、チャネル状態情報のみを送信するために用いられてもよい。つまり、PUSCHは、上りリンク制御情報を送信するために用いられてもよい。端末装置1は、上りリンクグラント(Uplink Grant)を含むPDCCH(Physical Downlink Control CHannel)の検出に基づいてPUSCHを送信してもよい。上りリンクデータは、トランスポートブロック(Transport block)、媒体アクセス制御プロトコルデータユニット(MAC PDU:Medium Access Control Protocol Data Unit)、UL-SCH(UpLink-Shared CHannel)の一部または全部を少なくとも含んでもよい。
 PRACHは、ランダムアクセスプリアンブル(ランダムアクセスメッセージ1)を送信するために用いられる。PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャ、上りリンクデータの送信に対する同期(タイミング調整)、およびPUSCH(UL-SCH)リソースの要求の少なくとも一部を示すために用いられてもよい。
 端末装置1から基地局装置3への上りリンクの無線通信では、以下の上りリンク物理シグナルが用いられてもよい。上りリンク物理シグナルは、上位層から出力された情報を送信するために使用されなくてもよいが、物理層によって使用される。
・上りリンク参照信号(UL RS:Uplink Reference Signal)
 本実施形態において、少なくとも以下の2つのタイプの上りリンク参照信号が少なくとも用いられてもよい。
・DMRS(DeModulation Reference Signal)
・SRS(Sounding Reference Signal)
 DMRSは、PUSCH、および/または、PUCCHの送信に関連する。DMRSは、PUSCHまたはPUCCHと多重されてもよい。基地局装置3は、PUSCHまたはPUCCHの伝搬路補正を行なうためにDMRSを使用する。以下、PUSCHとDMRSを共に送信することを、単にPUSCHを送信すると称する。該DMRSは該PUSCHに対応してもよい。以下、PUCCHとDMRSを共に送信することを、単にPUCCHを送信すると称する。該DMRSは該PUCCHに対応してもよい。
 SRSは、PUSCH、および/または、PUCCHの送信に関連しなくてもよい。SRSは、PUSCH、および/または、PUCCHの送信に関連してもよい。基地局装置3は、チャネル状態の測定のためにSRSを用いてもよい。SRSは、上りリンクスロットにおける最後から1つまたは複数の所定数のOFDMシンボルにおいて送信されてもよい。
 基地局装置3から端末装置1への下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられてもよい。下りリンク物理チャネルは、上位層から出力された情報を送信するために、物理層によって使用されてもよい。
・PBCH(Physical Broadcast CHannel)
・PDCCH(Physical Downlink Control CHannel)
・PDSCH(Physical Downlink Shared CHannel)
 PBCHは、サービングセル内またはアクティブBWP(Bandwidth Part)内またはキャリア内の、1つまたは複数の端末装置1において共通に用いられるマスターインフォメーションブロック(MIB:Master Information Block)を報知するために用いられる。PBCHは、所定の送信間隔に基づき送信されてもよい。例えば、PBCHは、80msの間隔で送信されてもよい。PBCHに含まれる情報の少なくとも一部は、80msごとに更新されてもよい。PBCHは、周波数領域において、所定のサブキャリア数(例えば、288サブキャリア)により構成されてもよい。また、PBCHは、時間領域において、2、3、または、4OFDMシンボルを含んで構成されてもよい。MIBは、同期信号の識別子(インデックス)に関連する情報を含んでもよい。MIBは、PBCHが送信されるスロットの番号、サブフレームの番号、および、無線フレームの番号の少なくとも一部を指示する情報を含んでもよい。第1の設定情報はMIBに含まれてもよい。該第1の設定情報は、ランダムアクセスメッセージ2、ランダムアクセスメッセージ3、ランダムアクセスメッセージ4の一部または全部に少なくとも用いられる設定情報であってもよい。
 PDCCHは、下りリンク制御情報(DCI:Downlink Control Information)を送信するために用いられる。下りリンク制御情報を、DCIフォーマットとも称する。なお、DCIフォーマットは、1つまたは複数の下りリンク制御情報のフィルドを含んでも構成されてもよい。下りリンク制御情報は、上りリンクグラント(uplink grant)または下りリンクグラント(downlink grant)のいずれかを少なくとも含んでもよい。
 上りリンクグラントは、単一のセル内の単一のPUSCHのスケジューリングに用いられてもよい。上りリンクグラントは、単一のセル内の複数のスロットにおける複数のPUSCHのスケジューリングに用いられてもよい。上りリンクグラントは、単一のセル内の複数のスロットにおける単一のPUSCHのスケジューリングに用いられてもよい。上りリンクグラントを含む下りリンク制御情報は、上りリンクに関連するDCIフォーマットとも称されてもよい。
 1つの下りリンクグラントは、1つのサービングセル内の1つのPDSCHのスケジューリングのために少なくとも用いられる。下りリンクグラントは、該下りリンクグラントが送信されたスロットと同じスロット内のPDSCHのスケジューリングのために少なくとも用いられる。下りリンクグラントを含む下りリンク制御情報は、下りリンクに関連するDCIフォーマットとも称されてもよい。
 PDSCHは、下りリンクデータ(TB、MAC PDU、DL-SCH、PDSCH、CB、CBG)を送信するために用いられる。PDSCHは、ランダムアクセスメッセージ2(ランダムアクセスレスポンス)を送信するために少なくとも用いられる。PDSCHは、初期アクセスのために用いられるパラメータを含むシステムインフォーメーションを送信するために少なくとも用いられる。
 上述したBCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。媒体アクセス制御(MAC:Medium Access Control)層で用いられるチャネルはトランスポートチャネルと呼称される。MAC層で用いられるトランスポートチャネルの単位は、トランスポートブロックまたはMAC PDUとも呼称される。MAC層においてトランスポートブロック毎にHARQ(Hybrid Automatic Repeat reQuest)の制御が行なわれる。トランスポートブロックは、MAC層が物理層に渡す(deliver)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に変調処理が行なわれる。
 基地局装置3と端末装置1は、上位層(higher layer)において信号をやり取り(送受信)してもよい。例えば、基地局装置3と端末装置1は、無線リソース制御(RRC: Radio Resource Control)層において、RRCシグナリング(RRC message: Radio Resource Control message、RRC information: Radio Resource Control informationとも称される)を送受信してもよい。また、基地局装置3と端末装置1は、MAC層において、MAC CE(Medium Access Control Control Element)を送受信してもよい。ここで、RRCシグナリング、および/または、MAC CEを、上位層信号(higher layer signaling)とも称する。
 PUSCH、および/または、PDSCHは、RRCシグナリング、および、MAC CEを送信するために少なくとも用いられる。ここで、基地局装置3からPDSCHで送信されるRRCシグナリングは、セル内における複数の端末装置1に対して共通のRRCシグナリングであってもよい。セル内における複数の端末装置1に対して共通のRRCシグナリングは、共通RRCシグナリングとも呼称される。基地局装置3からPDSCHで送信されるRRCシグナリングは、ある端末装置1に対して専用のRRCシグナリング(dedicated signalingまたはUE specific signalingとも呼称される)であってもよい。端末装置1に対して専用のRRCシグナリングは、専用RRCシグナリングとも呼称される。セルスペシフィックパラメータは、セル内における複数の端末装置1に対して共通のRRCシグナリング、または、ある端末装置1に対して専用のRRCシグナリングを用いて送信されてもよい。UEスペシフィックパラメータは、ある端末装置1に対して専用のRRCシグナリングを用いて送信されてもよい。
 以下、本実施形態の無線フレーム(radio frame)の構成について説明する。
 図2は、本実施形態における無線フレームの概略構成を示す図である。図2において、横軸は時間軸である。無線フレームのそれぞれは、10ms長であってもよい。また、無線フレームのそれぞれは10のスロットから構成されてもよい。スロットのそれぞれは、1ms長であってもよい。
 以下、本実施形態のスロットの構成の一例について説明する。図3は、本実施形態における上りリンクスロットの概略構成を示す図である。図3において、1つのセルにおける上りリンクスロットの構成を示す。図3において、横軸は時間軸であり、縦軸は周波数軸である。上りリンクスロットはNULsymb個のSC-FDMAシンボルを含んでもよい。上りリンクスロットはNULsymb個のOFDMシンボルを含んでもよい。以下、本実施形態では、上りリンクスロットがOFDMシンボルを含む場合を用いて説明をするが、上りリンクスロットがSC-FDMAシンボルを含む場合にも本実施形態を適用することはできる。
 図3において、lはOFDMシンボル番号/インデックスであり、kはサブキャリア番号/インデックスである。スロットのそれぞれにおいて送信される物理シグナルまたは物理チャネルは、リソースグリッドによって表現される。上りリンクにおいて、リソースグリッドは複数のサブキャリアと複数のOFDMシンボルによって定義される。リソースグリッド内のエレメントのそれぞれをリソースエレメントと称する。リソースエレメントは、サブキャリア番号/インデックスk、および、OFDMシンボル番号/インデックスlによって表される。
 上りリンクスロットは、時間領域において、複数のOFDMシンボルl(l=0,1,・・・,NULsymb-1)を含んでもよい。1つの上りリンクスロットにおいて、上りリンクにおけるノーマルCP(normal Cyclic Prefix)に対して、NULsymbは7または14であってもよい。上りリンクにおける拡張CP(extended Cyclic Prefix)に対して、NULsymbは6または12であってもよい。
 端末装置1は、上りリンクにおけるCP長を示す上位層パラメータUL-CyclicPrefixLengthを基地局装置3から受信する。基地局装置3は、セルに対応する該上位層パラメータUL-CyclicPrefixLengthを含むシステムインフォーメーションを、該セルにおいて報知してもよい。
 上りリンクスロットは、周波数領域において、複数のサブキャリアk(k=0,1,・・・,NULRB・NRBSC-1)を含んでもよい。NULRBは、サービングセルに対する上りリンク帯域幅設定であり、NRBSCの倍数によって表現される。NRBSCは、サブキャリアの数によって表現される、周波数領域における(物理)リソースブロックサイズである。サブキャリア間隔Δfは15kHzであってもよい。NRBSCは12であってもよい。周波数領域における(物理)リソースブロックサイズは180kHzであってもよい。
 1つの物理リソースブロックは、時間領域においてNULsymbの連続するOFDMシンボルと周波数領域においてNRBSCの連続するサブキャリアとから定義される。ゆえに、1つの物理リソースブロックは(NULsymb・NRBSC)のリソースエレメントから構成される。1つの物理リソースブロックは、時間領域において1つのスロットに対応してもよい。物理リソースブロックは周波数領域において、周波数の低いほうから順に番号nPRB(0,1,…, NULRB-1)が付けられてもよい。
 本実施形態における下りリンクのスロットは、複数のOFDMシンボルを含む。本実施形態における下りリンクのスロットの構成は上りリンクと基本的に同じであるため、下りリンクのスロットの構成の説明は省略する。
 以下、本実施形態における装置の構成について説明する。
 図4は、本実施形態の端末装置1の構成を示す概略ブロック図である。図示するように、端末装置1は、無線送受信部10、および、上位層処理部14を含んで構成される。無線送受信部10は、アンテナ部11、RF(Radio Frequency)部12、および、ベースバンド部13を含んで構成される。上位層処理部14は、媒体アクセス制御層処理部15、および、無線リソース制御層処理部16を含んで構成される。無線送受信部10を送信部、受信部、符号化部、復号部、または、物理層処理部とも称する。
 上位層処理部14は、ユーザの操作等により生成された上りリンクデータ(トランスポートブロック)を、無線送受信部10に出力する。上位層処理部14は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。
 上位層処理部14が備える媒体アクセス制御層処理部15は、媒体アクセス制御層の処理を行う。媒体アクセス制御層処理部15は、無線リソース制御層処理部16によって管理されている各種設定情報/パラメータに基づいて、ランダムアクセス手順の制御を行う。
 上位層処理部14が備える無線リソース制御層処理部16は、無線リソース制御層の処理を行う。無線リソース制御層処理部16は、自装置の各種設定情報/パラメータの管理をする。無線リソース制御層処理部16は、基地局装置3から受信した上位層信号に基づいて各種設定情報/パラメータをセットする。すなわち、無線リソース制御層処理部16は、基地局装置3から受信した各種設定情報/パラメータを示す情報に基づいて各種設定情報/パラメータをセットする。
 無線送受信部10は、変調、復調、符号化、復号化などの物理層の処理を行う。無線送受信部10は、基地局装置3から受信した信号(物理チャネルおよび/または物理シグナル)を、分離、復調、復号し、復号した情報を上位層処理部14に出力する。無線送受信部10は、データを変調、符号化することによって送信信号(物理チャネルおよび/または物理シグナル)を生成し、基地局装置3に送信する。
 RF部12は、アンテナ部11を介して受信した信号を、直交復調によりベースバンド信号に変換し(ダウンコンバート: down convert)、不要な周波数成分を除去する。RF部12は、処理をしたアナログ信号をベースバンド部に出力する。
 ベースバンド部13は、RF部12から入力されたアナログ信号を、アナログ信号からディジタル信号に変換する。ベースバンド部13は、変換したディジタル信号からCP(Cyclic Prefix)に相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出する。
 ベースバンド部13は、データを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、SC-FDMAシンボルを生成し、生成されたSC-FDMAシンボルにCPを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換する。ベースバンド部13は、変換したアナログ信号をRF部12に出力する。
 RF部12は、ローパスフィルタを用いてベースバンド部13から入力されたアナログ信号から余分な周波数成分を除去し、アナログ信号を搬送波周波数にアップコンバート(up convert)し、アンテナ部11を介して送信する。また、RF部12は、電力を増幅する。また、RF部12は送信電力を制御する機能を備えてもよい。RF部12を送信電力制御部とも称する。
 図5は、本実施形態の基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、無線送受信部30、および、上位層処理部34を含んで構成される。無線送受信部30は、アンテナ部31、RF部32、および、ベースバンド部33を含んで構成される。上位層処理部34は、媒体アクセス制御層処理部35、および、無線リソース制御層処理部36を含んで構成される。無線送受信部30を送信部、受信部、符号化部、復号部、または、物理層処理部とも称する。
 上位層処理部34は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。
 上位層処理部34が備える媒体アクセス制御層処理部35は、媒体アクセス制御層の処理を行う。媒体アクセス制御層処理部35は、無線リソース制御層処理部36によって管理されている各種設定情報/パラメータに基づいて、ランダムアクセス手順の制御を行う。
 上位層処理部34が備える無線リソース制御層処理部36は、無線リソース制御層の処理を行う。無線リソース制御層処理部36は、物理下りリンク共用チャネルに配置される下りリンクデータ(トランスポートブロック)、システムインフォーメーション、RRCメッセージ、MAC CEなどを生成し、又は上位ノードから取得し、無線送受信部30に出力する。また、無線リソース制御層処理部36は、端末装置1各々の各種設定情報/パラメータの管理をする。無線リソース制御層処理部36は、上位層信号を介して端末装置1各々に対して各種設定情報/パラメータをセットしてもよい。すなわち、無線リソース制御層処理部36は、各種設定情報/パラメータを示す情報を送信/報知する。
 無線送受信部30の機能は、無線送受信部10と同様であるため説明を省略する。
 端末装置1が備える符号10から符号16が付された部のそれぞれは、回路として構成されてもよい。基地局装置3が備える符号30から符号36が付された部のそれぞれは、回路として構成されてもよい。端末装置1が備える符号10から符号16が付された部のそれぞれは、少なくとも1つのプロセッサと前記少なくとも1つのプロセッサと連結されるメモリとして構成されてもよい。基地局装置3が備える符号30から符号36が付された部のそれぞれは、少なくとも1つのプロセッサと前記少なくとも1つのプロセッサと連結されるメモリとして構成されてもよい。
 本実施形態の無線通信システムは、TDD(Time Division Duplex)および/またはFDD(Frequency Division Duplex)が適用されてもよい。セルアグリゲーションの場合には、TDDが適用されるサービングセルとFDDが適用されるサービングセルが集約されてもよい。
 なお、上位層信号は、RMSI(Remaining Minimum System Information)、OSI(Other System Information)、SIB(System Information Block)、RRCメッセージ、MAC CEのいずれかであってもよい。また、上位層パラメータ(higher layer parameter)は上位層信号に含まれるパラメータや情報要素を意味してもよい。
 PUSCHで送信されるUCIはHARQ-ACK、および/または、CSIを含んでもよい。
 端末装置1は、PDSCH受信に対応するDCIフォーマット1_0、または、DCIフォーマット1_1に含まれるPDSCH―to―HARQフィードバックタイミングインジケーターフィールド(PDSCH-to-HARQ_feedback timing indecator field)の値によって指示されるスロットに対応するHARQ-ACK情報を、HARQ-ACKコードブック(codebook)を用いて基地局装置3に報告してもよい。
 端末装置1は、SPS PDSCHリリース(release)に対応するDCIフォーマット1_0、または、DCIフォーマット1_1に含まれるPDSCH―to―HARQフィードバックタイミングインジケーターフィールド(PDSCH-to-HARQ_feedback timing indecator field)の値によって指示されるスロットに対応するHARQ-ACK情報を、HARQ-ACKコードブック(codebook)を用いて基地局装置3に報告してもよい。
 SPS(Semi-Persistent Scheduling) PDSCHは、端末装置1に準静的にスケジューリングされるPDSCHであってもよい。
 DCIフォーマットのCRCが上位層パラメータcs-RNTIによって与えられるCS-RNTIでスクランブルされ、且つ、トランスポートブロックの新データインジケータ(new data indicator)フィルドが0にセットされる場合、スケジューリング活性化(scheduling activation)またはスケジューリングリリース(scheduling release)のために、端末装置1は下りリンクSPSアサインメントPDCCH(DL SPS assignment PDCCH)または上りリンクグラントタイプ2PDCCH(UL grant Type2 PDCCH)を有効化(validate)する。スケジューリング活性化は該有効化とDCIフォーマットに含まれるHARQプロセス番号(HARQ process number)、リダンダンシーバージョン(redundancy version)に少なくとも基づいて行われてもよい。スケジューリングリリースは該有効化とDCIフォーマットに含まれるHARQプロセス番号(HARQ process number)、リダンダンシーバージョン(redundancy version)、変調とコーディングスキーム(modulation and coding scheme)、リソースブロックアサインメント(resource block assignment)に少なくとも基づいて行われてもよい。
 HARQ-ACK情報は、ACKまたはNACKを含んでもよい。例えば、端末装置1がPDSCHを正しく受信した場合、端末装置1はHARQ-ACK情報にACKを設定してもよい。また、端末装置1がPDSCHの受信に失敗した場合、端末装置1はHARQ-ACK情報にNACKを設定してもよい。PDSCHの受信に失敗することは、復号処理に誤りが発生したことを意味してもよいし、PDSCHの物理信号を受信できなかったことを意味してもよい。
 端末装置1は、DCIフォーマット1_0、または、DCIフォーマット1_1に含まれるPDSCH―to―HARQフィードバックタイミングインジケーターフィールド(PDSCH-to-HARQ_feedback timing indicator field)の値によって指示されないスロットのHARQ-ACK情報をNACKとして基地局装置3に報告してもよい。
 端末装置1に上位層パラメータpdsch-AggregationFactorが与えられた場合、NPDSCHrepeatはpdsch-AggregationFactorの値であってもよい。端末装置1に上位層パラメータpdsch-AggregationFactorが与えられなかった場合、NPDSCHrepeatは1であってもよい。端末装置1はスロットn-NPDSCHrepeat+1からスロットnまでのPDSCH受信のためのHARQ-ACK情報をスロットn+kにおけるPUCCH送信、および/または、PUSCH送信を用いて報告してもよい。ここで、kは該PDSCH受信に対応するDCIフォーマットに含まれるPDSCH-to-HARQ_feedback timing indicator fieldによって指示されたスロットの数であってもよい。また、PDSCH-to-HARQ_feedback timing indicator fieldがDCIフォーマットに含まれない場合、kは上位層パラメータdl-DataToUL-ACKによって与えられてもよい。
 端末装置1があるスロットで受信したPDSCHのHARQ-ACK情報をn+k以外のスロットで送信する場合、端末装置1は該PDSCHに対応するHARQ-ACK情報をNACKに設定してもよい。つまり、端末装置1は、n+kスロットで送信されるコードブックにおいてn+k以外のスロットで送信されるHARQ-ACK情報に対応するコードブックの値をNACKに設定してもよい。
 サービングセルcにおける活性化された下りリンクBWP(DL BWP:Downlink Bandwidth Part)、および/または、上りリンクBWP(UL BWP:Uplink Bandwidth Part)において、端末装置1はPDSCH受信候補のMA,cオケージョンのセットを決定してもよい。MA,cオケージョンは1つのPUCCHにおいて送信されるHARQ-ACK情報の最大のビット数であってもよい。
 サービングセルcが非活性化された場合、端末装置1は、上位層パラメータfirstActiveDownlinkBWPによって与えられる下りリンクBWPを、PDSCH受信候補のMA,cオケージョンのセットの決定のための活性化された下りリンクBWPとして用いてもよい。
 PDSCH受信候補のMA,cオケージョンのセットの決定は、上りリンクBWPに紐付けられた(associated)スロットタイミング値K1のセット、デフォルトPDSCH時間領域リソース割当、上位層パラメータPDSCH-TimeDomainResourceAllocationList、上位層パラメータTDD-UL-DL-ConfigurationCommon、および/または、上位層パラメータTDD-UL-DL-ConfigDedicatedに少なくとも基づいてもよい。
 端末装置1がDCIフォーマット1_0を含むPDCCHをモニタリングするように構成され、且つ、DCIフォーマット1_1を含むPDCCHをモニタリングしないように構成される場合、スロットタイミング値K1は(1、2、3、4、5、6、7、8)の一部または全部であってもよい。端末装置1がDCIフォーマット1_1を含むPDCCHをモニタリングするように構成される場合、該スロットタイミング値K1は上位層パラメータdl-DataToUL-ACKによって与えられてもよい。
 図6は本実施形態におけるデフォルトPDSCH時間領域リソース割当の一例を示す図である。デフォルトPDSCH時間領域リソース割当はdmrs-TypeA-Position、PDSCHマッピングタイプ、PDCCHと該PDCCHがスケジューリングするPDSCH間のスロット数K0、PDSCHのスタートOFDMシンボルS、PDSCHのOFDMシンボル数Lに少なくとも基づいて与えられてもよい。
 上位層パラメータPDSCH-TimeDomainResourceAllocationListによって構成されるPDSCH時間領域リソース割当は、PDSCHマッピングタイプ、PDCCHと該PDCCHがスケジューリングするPDSCH間のスロット数K0、PDSCHのスタートOFDMシンボル、および/または、PDSCHのOFDMシンボル数に少なくとも基づいて与えられてもよい。
 PDSCH受信候補のMA,cオケージョンのセットの決定は、上位層パラメータPDSCH-TimeDomainResourceAllocationListによって構成されるPDSCH時間領域リソース割当、デフォルトPDSCH時間領域リソース割当、または、上位層パラメータPDSCH-TimeDomainResourceAllocationListによって構成されるPDSCH時間領域リソース割当とデフォルトPDSCH時間領域リソース割当の和集合に少なくとも基づいてもよい。
 上位層パラメータPDSCH-TimeDomainResourceAllocationListによって構成されるPDSCH時間領域リソース割当を時間領域リソース割当テーブルと称する。または、デフォルトPDSCH時間領域リソース割当を時間領域リソース割当テーブルと称する。または、上位層パラメータPDSCH-TimeDomainResourceAllocationListによって構成されるPDSCH時間領域リソース割当とデフォルトPDSCH時間領域リソース割当の和集合を時間領域リソース割当テーブルと称する。
 図7は本実施形態におけるPDSCH受信候補のMA,cオケージョンのセットを決定するプロシージャの一例を示した図である。このプロシージャにより端末装置1が送信するHARQ-ACK情報のビット数が決定されてもよい。
 (700)PDSCH受信候補、および/または、SPS PDSCHリリースに対するオケージョンのインデックスjを0に設定し、701へ進む。
 (701)PDSCH受信候補を格納する集合Bを空集合に設定し、702へ進む。
 (702)MA,cを空集合に設定し、703へ進む。
 (703)K1のセットに含まれるスロットタイミング値K1の数(Cardinality)をC(K1)に設定し、704へ進む。
 (704)K1のセットに含まれるスロットタイミング値K1のインデックスkを0に設定し、705へ進む。ここでK1の値はサービングセルごとで降順に整列されてもよい。例えばK1のセットが(5、6、7)である場合、k=0が指示するK1の値は5であってもよい。
 (705)K1のインデックスkがC(K1)より小さい場合、706へ進む。K1のインデックスkがC(K1)より大きい、または、同じである場合、741へ進む。
 (706)時間領域リソース割当テーブルの全ての行をRに設定し、707へ進む。
 (707)Rの要素数(Cardinality)をC(R)に設定し、708へ進む。
 (708)Rの行のインデックスrを0に設定し、709へ進む。
 (709)スロットnがサービングセルcにおける活性化された下りリンクBWPまたは活性化された上りリンクBWPを切り替えるスロットと同じまたは後のスロットであり、且つ、スロットn-K1、kが活性化された下りリンクBWPまたは活性化された上りリンクBWPを切り替えるスロットより前のスロットである場合、710を実行する。709の条件を満たさない場合は710を実行せずに711へ進む。
 (711)709の条件を満たさない場合、712へ進む。
 (712)RのインデックスrがC(R)より小さい場合、713へ進む。RのインデックスrがC(R)より大きい、または、同じである場合、717へ進む。
 (713)端末装置1に上位層パラメータTDD-UL-DL-ConfigurationCommon、または、TDD-UL-DL-ConfigDedicatedが与えられ、且つ、スロットn-K1、k-NPDSCHrepeatからスロットn-K1、kにおいて行rによって導出されるPDSCH時間領域リソースの少なくとも1つのシンボルが上りリンクで構成される場合、(714)Rから行rを除き、715へ進む。713の条件を満たさない場合、715へ進む。
 (715)713の条件文を終了し、716へ進む。
 (716)rを1つインクリメントし、717へ進む。
 (717)RのインデックスrがC(R)より小さい場合、713へ進む。RのインデックスrがC(R)より大きい、または、同じである場合、718へ進む。
 (718)端末装置1が1つのスロットに2つ以上のPDSCHを受信する能力(Capability)を通知しない、且つ、Rが空ではない場合、(719)端末装置1はMA,cとK1のインデックスkの和集合をMA,cに保存し、738へ進む。また、端末装置1が1つのスロットに2つ以上のPDSCHを受信する能力(Capability)を通知しない、且つ、Rが空ではない場合、(720)端末装置1は1つのスロットにおいてPDSCHとSPS PDSCHリリースを同時に受信することを期待しなくてもよい。
 (721)718の条件を満たさない場合、722へ進む。
 (722)Rの要素数(Cardinality)をC(R)にセットし、723へ進む。
 (723)PDSCH受信候補Rの中から最も小さい最後のOFDMシンボルインデックスをmに設定し、724へ進む。ここでPDSCH受信候補は、Rの各行に含まれる開始と長さ指示値(SLIV:start and length indicator value)によって決まってもよい。また、端末装置1がDCIによってPDSCHを受信するようにスケジューリングされた場合、該DCIに含まれるTime Domain Resource assignmentフィルドの値に少なくとも基づいてSLIVを決定してもよい。
 (724)Rが空ではない場合、725へ進む。Rが空である場合、738へ進む。
 (725)rを0に設定し、726へ進む。
 (726)RのインデックスrがC(R)より小さい場合、727へ進む。RのインデックスrがC(R)より大きい、または、同じである場合、734へ進む。
 (727)行rにおけるPDSCH受信候補のOFDM開始シンボルインデックスSが(723)で決めたmより小さい場合、(728)br、kにjを保存し、(729)Rから行rを除外し、(730)BにBとbr、kの和集合を保存し、731へ進む。ここでbr、kはK1、kにおけるPDSCH受信候補rに対するオケージョンインデックスjの集合であってもよい。
 (731)727の条件文を終了し、732へ進む。
 (732)rを1つインクリメントし、733へ進む。
 (733)RのインデックスrがC(R)より小さい場合、727へ進む。RのインデックスrがC(R)より大きい、または、同じである場合、734へ進む。
 (734)MA,cにMA,cとjの和集合を保存し、735へ進む。
 (735)jを1つインクリメントし、736へ進む。
 (736)PDSCH受信候補Rの中から最も小さい最後のOFDMシンボルインデックスをmに設定し、737へ進む。
 (737)Rが空ではない場合、725へ進む。Rが空である場合、738へ進む。
 (738)718および/または721の条件文を終了し、739へ進む。
 (739)kを1つインクリメントし、740へ進む。
 (740)709および/または711の条件文を終了し、741へ進む。
 (741)K1のインデックスkがC(K1)より小さい場合、706へ進む。K1のインデックスkがC(K1)より大きい、または、同じである場合、プロシージャを終了する。
 図7で示すプロシージャで決まるMA,cは、端末装置1が送信するHARQ-ACKビット数であってもよい。
 Bに含まれるbr、kが同じ値であるRの1つまたは複数の行に対応するPDSCH受信候補オケージョンにおいて、端末装置1は同じスロットにおいて2つ以上のPDSCHを受信することを期待しなくてもよい。
 PDSCH受信候補はSLIVによって示されるPDSCH受信が可能な候補であってもよい。1つのスロットにおいて端末装置1が実際に受信するPDSCHの数は、PDSCH受信候補の数と同じ、または、小さい値であってもよい。
 端末装置1がSPS PDSCH、または、SPS PDSCHリリース、または、DCIフォーマット1_0によってスケジューリングされたPDSCHを受信し、且つ、端末装置1が1つのサービングセルに構成され、且つ、MA,cが1であり、且つ、端末装置1に上位層パラメータPDSCH-CodeBlockGroupTransmissionが与えられる場合、端末装置1は該PDSCHにおけるトランスポートブロックのみ、または、該SPS PDSCHリリースのみのHARQ-ACK情報を生成してもよい。
 端末装置1がSPS PDSCH、または、SPS PDSCHリリース、または、DCIフォーマット1_0によってスケジューリングされたPDSCHを受信し、且つ、端末装置1が2つ以上のサービングセルに構成され、且つ、MA,cが2以上であり、且つ、端末装置1に上位層パラメータPDSCH-CodeBlockGroupTransmissionが与えられる場合、端末装置1は該PDSCHにおけるトランスポートブロック、または、該SPS PDSCHリリースのHARQ-ACK情報をNHARQ-ACKCBG/TB,max回繰り返してもよい。ここでNHARQ-ACKCBG/TB,maxは上位層パラメータmaxCodeBlockGroupsPerTransportBlockによって与えられてもよい。
 端末装置1に上位層パラメータdl-DataToUL-ACKが与えられる場合、端末装置1はスロットタイミング値(1、2、3、4、5、6、7、8)と対応するサービングセルの活性化された下りリンクBWPのために上位層パラメータdl-DataToUL-ACKによって与えられるスロットタイミング値の積集合に属しないスロットタイミング値をDCIフォーマット1_0で指示することを期待しなくてもよい。例えば、dl-DataToUL-ACKの値が(1、3、5、7)である場合、端末装置1はDCIフォーマット1_0によってスロットタイミング値(2、4、6、8)の何れかを指示されることを期待しなくてもよい。
 PDSCH受信候補のオケージョンがDCIフォーマット1_1を含むPDCCHに対応し、且つ、上位層パラメータmaxNrofCodeWordsScheduledByDCIが2つのトランスポートブロックの受信を指示し、且つ、端末装置1が1つのトランスポートブロックを含むPDSCHを受信し、且つ、端末装置1に上位層パラメータharq-ACK-SpatialBundlingPUCCHが与えられない場合、該PDSCHのHARQ-ACK情報は第1のトランスポートブロックに紐付けられ、且つ、端末装置1は第2のトランスポートブロックに関してNACKを生成してもよい。
 PDSCH受信候補のオケージョンがDCIフォーマット1_1を含むPDCCHに対応し、且つ、上位層パラメータmaxNrofCodeWordsScheduledByDCIが2つのトランスポートブロックの受信を指示し、且つ、端末装置1が1つのトランスポートブロックを含むPDSCHを受信し、且つ、端末装置1に上位層パラメータharq-ACK-SpatialBundlingPUCCHが与えられる場合、端末装置1は第2のトランスポートブロックに対するHARQ-ACK情報をACKとみなし該PDSCHのHARQ-ACK情報を生成してもよい。
 端末装置1はPUCCHで送信されるHARQ-ACKコードブックのo0ACK、o1ACK、...、oOACK-1ACKのOACKビットのHARQ-ACK情報ビットを図8に示すプロシージャに少なくとも基づいて決定してもよい。PDSCHをスケジューリングするDCIフォーマット1_0またはDCIフォーマット1_1の未検出によって、端末装置1が該PDSCHに含まれるトランスポートブロックまたはコードブロックグループ(CBG)を受信できない場合、端末装置1は該トランスポートブロックまたはCBGに対するHARQ-ACK情報をNACKと生成する。
 MA,cの要素数(cardinality)はHARQ-ACK情報ビットに対応するサービングセルcのPDSCH受信、または、SPS PDSCHリリースのオケージョンの総数Mcに定義される。即ち、McはMA,cの要素数であってもよい。また、McはHARQ-ACK情報のコードブックサイズであってもよい。
 図8は本実施形態において端末装置1がPUCCHで送信されるHARQ-ACKコードブックのHARQ-ACK情報ビットを決定する一例のプロシージャを示した図である。このプロシージャにより図7のプロシージャで決まるMA,cに対応するHARQ-ACK情報ビットが決定されてもよい。
 (800)サービングセルインデックスcを0に設定し、801へ進む。
 (801)HARQ-ACK情報ビットのインデックスjを0に設定し、802へ進む。
 (802)端末装置1に構成されたサービングセルの数をNcellsDLと設定し、803へ進む。
 (803)cがNcellsDLより小さい場合、804へ進む。cがNcellsDLより大きい、または、同じである場合、プロシージャを終了する。
 (804)PDSCH受信候補、または、SPS PDSCHリリースのオケージョンインデックスmを0に設定し、805へ進む。
 (805)インデックスmがMcより小さい場合、806へ進む。インデックスmがMcより大きい、または、同じである場合、831へ進む。
 (806)上位層パラメータharq-ACK-SpatialBundlingPUCCHが端末装置1に与えられない、且つ、上位層パラメータPDSCH-CodeBlockGroupTransmissionが端末装置1に与えられない、且つ、端末装置1がサービングセルcの活性化された下りリンクBWPにおいて2つのトランスポートブロックの受信を指示する上位層パラメータmaxNrofCodeWordsScheduledByDCIに構成される場合、(807)ojACKに該セルの第1のトランスポートブロックに対応するHARQ-ACK情報ビットを保存し、(808)jを1つインクリメントした後、(809)ojACKに該セルの第2のトランスポートブロックに対応するHARQ-ACK情報ビットを保存し、(810)jを1つインクリメントし、828へ進む。806の条件を満たさない場合、811へ進む。
 (811)上位層パラメータharq-ACK-SpatialBundlingPUCCHが端末装置1に与えられ、且つ、端末装置1がサービングセルcの活性化された下りリンクBWPにおいて2つのトランスポートブロックの受信を指示する上位層パラメータmaxNrofCodeWordsScheduledByDCIに構成される場合、(812)該セルの第1のトランスポートブロックと第2のトランスポートブロックに対応するHARQ-ACK情報ビットをバイナリAND演算(binary AND operation)を行い、その結果をojACKに保存し、(813)jを1つインクリメントし、828へ進む。811の条件を満たさない場合、814へ進む。ここで、バイナリAND演算の複数の入力ビットが全て1である場合のみ、バイナリAND演算の結果が1である。バイナリAND演算の複数の入力ビットが全て1ではない場合、バイナリAND演算の結果は0である。例えば、第1のトランスポートブロックに対応するHARQ-ACK情報ビットが1であり、第2のトランスポートブロックに対応するHARQ-ACK情報ビットが1である場合、第1のトランスポートブロックに対応するHARQ-ACK情報ビットと第2のトランスポートブロックに対応するHARQ-ACK情報ビットのバイナリAND演算の結果は1である。
 (811)上位層パラメータharq-ACK-SpatialBundlingPUCCHが端末装置1に与えられ、且つ、端末装置1がサービングセルcの活性化された下りリンクBWPにおいて2つのトランスポートブロックの受信を指示する上位層パラメータmaxNrofCodeWordsScheduledByDCIに構成され、且つ、端末装置1が1つのトランスポートブロックを受信する場合、(812)第2のトランスポートブロックに対応するHARQ-ACK情報ビットをACKと設定してから、該セルの第1のトランスポートブロックと第2のトランスポートブロックに対応するHARQ-ACK情報ビットをバイナリAND演算(binary AND operation)を行い、その結果をojACKに保存し、jを1つインクリメントし、828へ進む。811の条件を満たさない場合、814へ進む。
 (814)上位層パラメータPDSCH-CodeBlockGroupTransmissionが端末装置1に与えられ、且つ、NHARQ-ACK、cCBG/TB,maxCBGがサービングセルcにおいて上位層パラメータmaxCodeBlockGroupsPerTransportBlockによって与えられる場合、815へ進む。814の条件を満たさない場合、825へ進む。ここでNHARQ-ACK、cCBG/TB,maxはサービングセルcにおいて1つのトランスポートブロックにおける最大のCBG数であってもよい。
 (815)CBGインデックスのnCBGを0に設定し、816へ進む。
 (816)NHARQ-ACK、cCBG/TB,maxをnmaxに設定し、817へ進む。
 (817)nCBGがNHARQ-ACK、cCBG/TB,maxより小さい場合、818へ進む。nCBGがNHARQ-ACK、cCBG/TB,maxより大きい、または、同じである場合、824へ進む。
 (818)第1のトランスポートブロックのnCBG個のCBGに対応するHARQ-ACK情報ビットをoj+nCBGACKに保存し、819へ進む。
 (819)端末装置1が上位層パラメータmaxNrofCodeWordsScheduledByDCIによりサービングセルcの下りリンクBWPにおいて2つのトランスポートブロックを受信するように構成される場合、(820)第2のトランスポートのnCBG個のCBGに対応するHARQ-ACK情報ビットをoj+nCBG+nmaxACKに保存し、(821)819の条件文を終了し、822へ進む。819の条件を満たさない場合、822へ進む。
 (822)nCBGを1つインクリメントし、823へ進む。
 (823)nCBGがNHARQ-ACK、cCBG/TB,maxより小さい場合、818へ進む。nCBGがNHARQ-ACK、cCBG/TB,maxより大きい、または、同じである場合、824へ進む。
 (824)jにj+NTB,cDL・NHARQ-ACK、cCBG/TB,maxを保存し、828へ進む。
 (825)806、811、および/または、814の条件を満たさない場合、826へ進む。
 (826)ojACKにサービングセルcにおけるHARQ-ACK情報ビットを保存し、827へ進む。
 (827)jを1つインクリメントし、828へ進む。
 (828)806、811、814、および/または、825の条件文を終了し、829へ進む。
 (829)mを1つインクリメントし、830へ進む。
 (830)インデックスmがMcより小さい場合、806へ進む。インデックスmがMcより大きい、または、同じである場合、831へ進む。
 (831)cを1つインクリメントし、832へ進む。
 (832)cがNcellsDLより小さい場合、804へ進む。cがNcellsDLより大きい、または、同じである場合、プロシージャを終了する。
 図7におけるインデックスjは図8におけるインデックスmと同じであってもよい。
 図9は本実施形態におけるPDSCHに対応するHARQ-ACKコードブックサイズを決定する一例を示した図である。PDSCH900、PDSCH901、PDSCH902、PDSCH903、PDSCH904、PDSCH905、PDSCH906およびPDSCH907はPDSCH受信候補であってもよい。PDSCHの受信は1つまたは複数のPDSCH受信候補の何れかで行われてもよい。図9において、スロットn-K1、kにおけるC(R)が8であるため、726のループは8回実行される。図9におけるスロットn-K1、kの726のループにおいて、第1回目、第2回目、および、第3回目のループは、PDSCH900の最後のOFDMシンボルを基準とするため、PDSCH900、および/または、PDSCH901、および/または、PDSCH902はjの値が同じであってもよい。即ち、b0、k=0、b1、k=0、b2、k=0であってもよい。また、図9におけるスロットn-K1、kの726のループにおいて、第4回目、第5回目、および、第6回目のループは、PDSCH903の最後のOFDMシンボルを基準とするため、PDSCH903、および/または、PDSCH904、および/または、PDSCH905はjの値が同じであってもよい。即ち、b3、k=1、b4、k=1、b5、k=1であってもよい。また、図9におけるスロットn-K1、kの726のループにおいて、第7回目、および、第8回目のループは、PDSCH906の最後のOFDMシンボルを基準とするため、PDSCH906、および/または、PDSCH907はjの値が同じであってもよい。即ち、b6、k=2、b7、k=2であってもよい。図9におけるスロットn-K1、kにおいて、Mcは3であってもよい。
 図10は本実施形態におけるPDSCHおよびSPS PDSCHリリースに対応するHARQ-ACKコードブックサイズを決定する一例を示した図である。あるスロットにおいて端末装置1がSPS PDSCHリリースを含むPDCCHを受信した場合、端末装置1はSPS PDSCHリリースに対応するHARQ-ACK情報を、SPS PDSCHリリースを含むDCIフォーマットに含まれるTime Domain Resource assignmentに少なくとも基づいて導出されるSLIVが指示する(indicate)PDSCH受信候補のHARQ-ACKに置き換えて送信してもよい。例えば、図10においてSPS PDSCHリリース1008を含むDCIフォーマットに含まれるTime Domain Resource assignmentに少なくとも基づいて導出されるSLIVがPDSCH受信候補のPDSCH905を指示する場合、PDSCH905に対応するHARQ-ACKを用いてSPS PDSCHリリース1008のHARQ-ACK情報を送信してもよい。例えば、図10においてSPS PDSCHリリース1008を含むDCIフォーマットに含まれるTime Domain Resource assignmentに少なくとも基づいて導出されるSLIVがPDSCH受信候補のPDSCH905を指示する場合、PDSCH905に対応するojACKにSPS PDSCHリリース1008のHARQ-ACK情報ビットを保存してもよい。該SLIVが指示するPDSCH受信候補は該SPS PDSCHリリースを受信したスロットに含まれてもよいし、異なるスロットに含まれてもよい。つまり、該SLIVが示すPDSCH受信候補のスロットは、該SPS PDSCHリリースを含むDCIフォーマットに含まれるTime Domain Resource assignmentに少なくとも基づいて与えられてもよい。
 図9および図10におけるmは、723、および/または、736に示す最後のOFDMシンボルインデックスであってもよい。
 SPS PDSCHリリースを含むDCIフォーマットに含まれるTime Domain Resource assignmentに少なくとも基づいて導出されるSLIVをSPS SLIVとも称する。端末装置1は、SPS SLIVが示すPDSCH受信候補と同じbr、kの値を持つPDSCH受信候補においてPDSCHを受信することを期待しなくてもよい。例えば、図10においてSPS SLIVがPDSCH受信候補のPDSCH905を示す場合、端末装置1は、該PDSCH905とbr、kの値が同じであるPDSCH903、PDSCH904、および、PDSCH905におけるPDSCHの受信を期待しなくてもよい。
 端末装置1は、SPS PDSCHリリースが示すPDSCH受信候補と同じbr、kの値を持つPDSCH受信候補においてPDSCHを受信することを期待しなくてもよい。例えば、図10においてSPS PDSCHリリース1008がPDSCH受信候補のPDSCH905を示す場合、端末装置1は、該PDSCH905とbr、kの値が同じであるPDSCH903、PDSCH904、および、PDSCH905におけるPDSCHの受信を期待しなくてもよい。
 端末装置1は、PDSCHを受信するPDSCHの受信候補において、SPS SLIVが該PDSCH受信候補と同じbr、kの値を持つPDSCH受信候補の選択を期待しなくてもよい。例えば、図10においてPDSCHの受信がPDSCH受信候補のPDSCH902において行われる場合、端末装置1は、SPS SLIVが該PDSCH902とbr、kの値が同じであるPDSCH900、PDSCH901、および/または、PDSCH902を示すことを期待しなくてもよい。
 あるスロットにおいて端末装置1がSPS PDSCHリリースを含むPDCCHを受信し、且つ、該SPS PDSCHリリースを含むDCIフォーマットに含まれるTime Domain Resource assignmentに少なくとも基づいて与えられるスロットにおいて、1または複数のPDSCH受信候補があった場合、PDSCH受信候補に対応するスタート、および/または、最後のOFDMシンボル、PDSCH受信候補に対応するOFDMシンボル数、PDSCH受信候補に対応するテーブルインデックスに少なくとも基づいて、該1または複数のPDSCH受信候補のうち、SPS PDCCHリリースに対応するPDSCH受信候補が与えられてもよい。
 例えば、SPS PDSCHリリースを含むDCIフォーマットに含まれるTime Domain Resource assignmentに少なくとも基づいて与えられるスロットにおいて、端末装置1はSPS PDSCHリリースに対応するHARQ-ACK情報をスタートOFDMシンボルが最も遅いPDSCH受信候補が対応するHARQ-ACKに置き換えて送信してもよい。例えば、SPS PDSCHリリースを含むDCIフォーマットに含まれるTime Domain Resource assignmentに少なくとも基づいて与えられるスロットにおいて、スタートOFDMシンボルが最も遅いPDSCH受信候補が対応するojACKにSPS PDSCHリリースのHARQ-ACK情報ビットを保存してもよい。
 SPS PDSCHリリースを含むDCIフォーマットに含まれるTime Domain Resource assignmentに少なくとも基づいて与えられるスロットにおいて、スタートOFDMシンボルが最も遅いPDSCH受信候補が複数存在する場合、端末装置1はSPS PDSCHリリースに対応するHARQ-ACK情報をOFDMシンボルの数が最も少ないPDSCH受信候補のHARQ-ACKに置き換えて送信してもよい。例えば、SPS PDSCHリリースを含むDCIフォーマットに含まれるTime Domain Resource assignmentに少なくとも基づいて与えられるスロットにおいて、スタートOFDMシンボルが最も遅いPDSCH受信候補が複数存在する場合、OFDMシンボルの数が最も少ないPDSCH受信候補が対応するojACKにSPS PDSCHリリースのHARQ-ACK情報ビットを保存してもよい。
 SPS PDSCHリリースを含むDCIフォーマットに含まれるTime Domain Resource assignmentに少なくとも基づいて与えられるスロットにおいて、スタートOFDMシンボルが最も遅く、且つ、OFDMシンボルの長さが同じであるPDSCH受信候補が複数存在する場合、端末装置1はSPS PDSCHリリースに対応するHARQ-ACK情報を、PDSCH受信候補を定義(define)するテーブルのインデックスが最も小さいPDSCH受信候補のHARQ-ACKに置き換えて送信してもよい。例えば、SPS PDSCHリリースを含むDCIフォーマットに含まれるTime Domain Resource assignmentに少なくとも基づいて与えられるスロットにおいて、スタートOFDMシンボルが最も遅く、且つ、OFDMシンボルの長さが同じであるPDSCH受信候補が複数存在する場合、PDSCH受信候補を定義(define)するテーブルのインデックスが最も小さいPDSCH受信候補が対応するojACKにSPS PDSCHリリースのHARQ-ACK情報ビットを保存してもよい。
 以下、本実施形態における、端末装置1および基地局装置3の種々の態様について説明する。
 (1)本実施形態の第1の態様は、端末装置であって、PDSCHに対応するHARQ-ACK情報を生成する処理部と、あるスロットにおいて、SPS PDSCHリリースが関連するPDSCH受信候補のbr、kと同じ値のbr、kの1つまたは複数のPDSCH候補を除くPDSCH受信候補の一部または全部のそれぞれでPDSCHを受信する受信部と、を備える。
 (2)本実施形態の第2の態様は、基地局装置であって、PDSCHを送信する送信部と、前記PDSCHに対応するHARQ-ACK情報を受信する受信部と、を備え、前記送信部は、あるスロットにおいて、SPS PDSCHリリースが関連するPDSCH受信候補のbr、kと同じ値のbr、kの1つまたは複数のPDSCH候補を除くPDSCH受信候補の一部または全部にPDSCHをスケジュールする。
 これにより、端末装置1と基地局装置3は効率的に通信を行うことができる。
 本発明の一実施形態に関わる基地局装置3、および端末装置1で動作するプログラムは、本発明の一実施形態に関わる上記実施形態の機能を実現するように、CPU(Central Processing Unit)等を制御するプログラム(コンピュータを機能させるプログラム)であってもよい。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAM(Random Access Memory)に蓄積され、その後、Flash ROM(Read Only Memory)などの各種ROMやHDD(Hard Disk Drive)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行われる。
 尚、上述した実施形態における端末装置1、基地局装置3の一部、をコンピュータで実現するようにしてもよい。その場合、この制御機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。
 尚、ここでいう「コンピュータシステム」とは、端末装置1、又は基地局装置3に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
 また、上述した実施形態における基地局装置3は、複数の装置から構成される集合体(装置グループ)として実現することもできる。装置グループを構成する装置の各々は、上述した実施形態に関わる基地局装置3の各機能または各機能ブロックの一部、または、全部を備えてもよい。装置グループとして、基地局装置3の一通りの各機能または各機能ブロックを有していればよい。また、上述した実施形態に関わる端末装置1は、集合体としての基地局装置と通信することも可能である。
 また、上述した実施形態における基地局装置3は、EUTRAN(Evolved Universal Terrestrial Radio Access Network)であってもよい。また、上述した実施形態における基地局装置3は、eNodeBに対する上位ノードの機能の一部または全部を有してもよい。
 また、上述した実施形態における端末装置1、基地局装置3の一部、又は全部を典型的には集積回路であるLSIとして実現してもよいし、チップセットとして実現してもよい。端末装置1、基地局装置3の各機能ブロックは個別にチップ化してもよいし、一部、又は全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 また、上述した実施形態では、通信装置の一例として端末装置を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置にも適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。

Claims (4)

  1.  PDSCHに対応するHARQ-ACK情報を生成する処理部と、
     あるスロットにおいて、SPS PDSCHリリースが関連するPDSCH受信候補のbr、kと同じ値のbr、kの1つまたは複数のPDSCH候補を除くPDSCH受信候補の一部または全部のそれぞれでPDSCHを受信する受信部と、を備える
     端末装置。
  2.  PDSCHを送信する送信部と、
     前記PDSCHに対応するHARQ-ACK情報を受信する受信部と、を備え、
     前記送信部は、あるスロットにおいて、SPS PDSCHリリースが関連するPDSCH受信候補のbr、kと同じ値のbr、kの1つまたは複数のPDSCH候補を除くPDSCH受信候補の一部または全部にPDSCHをスケジュールする
     基地局装置。
  3.  端末装置に用いられる通信方法であって、
     PDSCHに対応するHARQ-ACK情報を生成し、
     あるスロットにおいて、SPS PDSCHリリースが関連するPDSCH受信候補のbr、kと同じ値のbr、kの1つまたは複数のPDSCH候補を除くPDSCH受信候補の一部または全部のそれぞれでPDSCHを受信する
     通信方法。
  4.  基地局装置に用いられる通信方法であって、
     PDSCHを送信し、
     前記PDSCHに対応するHARQ-ACK情報を受信し、
     あるスロットにおいて、SPS PDSCHリリースが関連するPDSCH受信候補のbr、kと同じ値のbr、kの1つまたは複数のPDSCH候補を除くPDSCH受信候補の一部または全部にPDSCHをスケジュールする
     通信方法。
PCT/JP2019/039551 2018-10-10 2019-10-07 端末装置、基地局装置、および、通信方法 WO2020075690A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-191531 2018-10-10
JP2018191531A JP2020061650A (ja) 2018-10-10 2018-10-10 端末装置、基地局装置、および、通信方法

Publications (1)

Publication Number Publication Date
WO2020075690A1 true WO2020075690A1 (ja) 2020-04-16

Family

ID=70164045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039551 WO2020075690A1 (ja) 2018-10-10 2019-10-07 端末装置、基地局装置、および、通信方法

Country Status (2)

Country Link
JP (1) JP2020061650A (ja)
WO (1) WO2020075690A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022026650A1 (en) * 2020-07-31 2022-02-03 Qualcomm Incorporated Release of semi-persistent scheduling (sps) configurations of downlink transmission occasions
CN114070491A (zh) * 2020-08-07 2022-02-18 大唐移动通信设备有限公司 一种半静态反馈码本的确定方法、装置及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Summary for Rel-15 DL/UL data scheduling and HARQ procedure", 3GPP TSG RAN WG1 #94B R1-1811891, 9 October 2018 (2018-10-09), XP051519214, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_94b/Docs/R1-1811891.zip> [retrieved on 20191023] *
FUJITSU: "Corrections on HARQ-ACK transmission", 3GPP TSG RAN WG1 #94B R1-1810481, 28 September 2018 (2018-09-28), pages 5, 6, XP051517889, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_94b/Docs/R1_1810481.zip> [retrieved on 20191023] *
SHARP: "Remaining issues on HARQ-ACK of SPS PDSCH release", 3GPP TSG RAN WG1 #95 R1-1813202, 3 November 2018 (2018-11-03), pages 1 - 3, XP051479487, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_95/Docs/R1-1813202.zip> [retrieved on 20191023] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022026650A1 (en) * 2020-07-31 2022-02-03 Qualcomm Incorporated Release of semi-persistent scheduling (sps) configurations of downlink transmission occasions
CN114070491A (zh) * 2020-08-07 2022-02-18 大唐移动通信设备有限公司 一种半静态反馈码本的确定方法、装置及存储介质
CN114070491B (zh) * 2020-08-07 2023-01-20 大唐移动通信设备有限公司 一种半静态反馈码本的确定方法、装置及存储介质

Also Published As

Publication number Publication date
JP2020061650A (ja) 2020-04-16

Similar Documents

Publication Publication Date Title
JP6652505B2 (ja) 端末装置、基地局装置、通信方法および集積回路
US10090990B2 (en) User equipment, base station apparatus, integrated circuit, and communication method
WO2016121428A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2016121457A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JP6788579B2 (ja) 端末装置、基地局装置、および通信方法
WO2016121440A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
CN107534965B (zh) 终端装置、基站装置、通信方法及集成电路
JP7075805B2 (ja) 端末装置、基地局装置、および、通信方法
JP6959918B2 (ja) 端末装置、基地局装置、および、通信方法
US10321469B2 (en) Terminal device, integrated circuit, and radio communication method
JPWO2017187810A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2016121863A1 (ja) 端末装置、基地局装置、集積回路、および、通信方法
JP2019122021A (ja) 端末装置、基地局装置、および、通信方法
CN107710807B (zh) 终端装置、基站装置、通信方法以及集成电路
KR20200139247A (ko) 단말기 장치, 기지국 장치 및 통신 방법
JP2019087799A (ja) 端末装置、基地局装置、および、通信方法
WO2018186137A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2016163186A1 (ja) 端末装置、基地局装置、集積回路、および、通信方法
WO2020075690A1 (ja) 端末装置、基地局装置、および、通信方法
JP2018042001A (ja) 端末装置、基地局装置、通信方法、および、集積回路
JP7344713B2 (ja) 端末装置および通信方法
WO2020129592A1 (ja) 端末装置、基地局装置、および、通信方法
WO2016121850A1 (ja) 端末装置、基地局装置、集積回路、および、通信方法
WO2020162299A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020166627A1 (ja) 端末装置、基地局装置、および、通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872013

Country of ref document: EP

Kind code of ref document: A1