WO2020075338A1 - 風力発電システム - Google Patents

風力発電システム Download PDF

Info

Publication number
WO2020075338A1
WO2020075338A1 PCT/JP2019/021481 JP2019021481W WO2020075338A1 WO 2020075338 A1 WO2020075338 A1 WO 2020075338A1 JP 2019021481 W JP2019021481 W JP 2019021481W WO 2020075338 A1 WO2020075338 A1 WO 2020075338A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
wind turbine
wind power
type wind
power generation
Prior art date
Application number
PCT/JP2019/021481
Other languages
English (en)
French (fr)
Inventor
鈴木 政彦
Original Assignee
株式会社グローバルエナジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社グローバルエナジー filed Critical 株式会社グローバルエナジー
Publication of WO2020075338A1 publication Critical patent/WO2020075338A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a wind power generation system that enables efficient wind power generation by more effectively utilizing land with good wind conditions.
  • Patent Document 1 The arrangement of wind turbines in a collective manner in order to efficiently use the wind is described in Patent Document 1, for example. This is one in which a plurality of multistage impellers are supported in parallel on a wide support frame.
  • the support frame body is divided into a plurality of left and right front and rear portions, a vertical main shaft is supported in each division, and a vertical blade is vertically fixed to each vertical main shaft by a support arm. Even if the wind blows from any direction, the air flow hits each of the vertically long blades and rotates.
  • a plurality of small wind turbines are arranged in the shape of a wind trap dam around a pillar of a large-scale propeller-type wind turbine generator with a height of several tens of meters to generate an ascending air current.
  • the object is to provide a wind power generation system that makes the above effective.
  • the present invention takes the following technical means in order to solve the above problems.
  • Wind does not easily pass around the columns of the propeller-type wind turbine generator so that the upper end does not contact the blades of the propeller-type wind turbine generator and around the columns of the propeller-type wind turbine generator.
  • a small wind turbine is arranged in the shape of a wind turbine dam, and the ascending air current generated by hitting the small wind turbine is applied to the blade of the propeller-type wind power generator to improve the rotation efficiency, and the small wind turbine has a vertically long blade.
  • the small wind turbines arranged in the shape of the wind retaining dam are small propeller-type wind power generators, and the airflow interrupted by the rotation of the propellers is applied to the blades of a large propeller-type wind power generator to make a small propeller.
  • the blade of the propeller in the wind turbine of the small-sized propeller-type wind turbine generator has a forward curved portion that protrudes largely from the tip of the main portion in a side view, and the forward end surface of the forward curved portion is
  • the wind power generation system according to (3) wherein the wind power generation system is orthogonal to the axis of rotation, has a substantially fish-shaped front surface, and has a front edge and a rear edge on the same rotation arc.
  • the small wind turbine is arranged around each of the columns of the large-scale propeller-type wind turbine generator on each intersection of a rightward tilt line and a leftward tilt line that intersects the front-rear direction at 45 degrees around the pillar.
  • the small wind turbine one having a high height and the other having a low height are alternately arranged in the row direction, and the order is shifted by 1 in the front and rear row directions, any one of the above (1) to (4)
  • the wind power generation system according to Crab is arranged around each of the columns of the large-scale propeller-type wind turbine generator on each intersection of a rightward tilt line and a leftward tilt line that intersects the front-rear direction at 45 degrees around the pillar.
  • the upper end does not come into contact with the blades of the propeller-type wind turbine generator around the columns of the large-scale propeller-type wind turbine generator installed upright on the site, and the propeller-type wind turbine generator If multiple small wind turbines are installed around the pillars of the device in the shape of a wind trap dam that makes it difficult for wind to pass, the blocked air flow rises and hits the blades of a large propeller-type wind power generator. Separately from this, the airflow that hits the wind turbine below hits the propeller of the propeller-type wind turbine generator, so that the propeller-type wind turbine generator can be operated efficiently.
  • a plurality of vertical-axis wind turbine-type wind power generators are arranged at a predetermined interval in the shape of a wind retaining dam, so when the wind blows, the propeller-type wind power generator The blades of the device rotate to generate electricity. Since a vertical axis wind turbine type wind power generator is installed as a plurality of wind turbines around the propeller type wind power generator, this plays the role of a wind retention dam, and the air flow that hits this is an updraft. And moves upward, hits the blade of the propeller-type wind turbine generator, and efficiently rotates it. In addition, a plurality of vertical axis wind turbine type wind turbine generators themselves are also installed in a place with good wind conditions, and efficient use of wind force enables efficient wind power generation.
  • the vertical axis wind turbine in the vertical axis wind turbine type wind turbine generator is configured such that a tip end portion of an inwardly curved inclined portion that protrudes from the upper and lower sides of a main portion of a vertically long blade in a vertical main axis direction is respectively lengthwise. Since it is fixed to the main shaft, it has excellent rigidity. Further, since the rotatability is excellent and the propeller of the propeller-type wind power generator does not rotate at low wind speed, the propeller-type wind power generator efficiently rotates to generate electricity, so that the wind force can be effectively used.
  • the small propeller-type wind turbine generator is arranged at regular intervals in the front, rear, left, and right around the columns of the large propeller-type wind turbine generator, the wind direction is reversed. Even if it becomes a wind blow dam, it can play an updraft efficiently against a large propeller-type wind power generator, and the position of the wind turbine of multiple small propeller-type wind power generators Even in, it is possible to generate electricity by rotating regardless of the wind direction.
  • the blade of the propeller in the wind turbine of the small propeller-type wind turbine generator is formed such that a forward bending portion is largely projected at the tip of the main portion in a side view, Since the front end surface of the bent portion is orthogonal to the axis of rotation, the inner end portion of the front end surface has the maximum thickness, and when the blade rotates, the part that is the rotary centrifugal portion is The resulting Coanda effect is maximized and the rotation efficiency is increased.
  • the front face of the forward tip surface is orthogonal to the axis of rotation, and bends significantly with respect to the main part to project in the front direction. The airflow that strikes the front face of the blade is generated by centrifugal force generated during rotation.
  • the small wind turbine is arranged at regular intervals in front, rear, left and right around the columns of the large propeller-type wind turbine generator, even if the wind direction is reversed.
  • the windmill can rotate and play the role of a wind retaining dam.
  • FIG. 2 is a schematic plan view showing the arrangement of power generators in the wind power generation system of the present invention. It is a front view of a vertical axis wind turbine type wind turbine generator of the wind turbine generator system of the present invention. It is a front view which shows the propeller of the windmill of a small-sized propeller type wind power generator. It is the VV sectional view taken on the line in FIG.
  • FIG. 1 shows a part of an arrangement situation of a propeller-type wind turbine generator 1 used in a wind turbine generator system of the present invention and a plurality of small wind turbines disposed around the propeller wind turbine generator 1 as wind trap dams.
  • FIG. 2 is a plan view showing the arrangement state, and small vertical axis wind turbine type wind turbine generators 2 and 3 are used as a small wind turbine.
  • two general high-performance propeller-type wind turbine generators 1 and 1 are arranged at a predetermined interval.
  • This arrangement interval is an interval at which interference of the air flow does not occur between the blades 1B and their neighbors when the blades 1B rotate, and the air flow generally passes between the columns 1A.
  • the present invention intends to effectively utilize this passing airflow, and as shown in FIG. 1, a large space is provided on the side of the column 1A of the large-sized propeller-type wind turbine generator 1 with an appropriate interval.
  • the vertical axis wind turbine type wind turbine generator 2 and the slightly smaller vertical axis wind turbine type wind turbine generator 3 are alternately arranged.
  • the vertical axis wind turbine type wind turbine generators 2 and 3 are separated from each other by about three times the rotating diameter of the vertical blade 4, but when the vertical blade 4 rotates about the vertical main shaft 7, the vertical blade 4 rotates.
  • the air in the locus is guided to the outside by centrifugal force, the inside of the vertical blade 4 becomes negative pressure, and the airflow entering from outside rises along the inner surface of the vertical blade 4 and merges with the natural wind.
  • the blade 1B of the propeller-type wind turbine generator 1 is hit and rotated with high efficiency.
  • the chord length of the main portion 4A of the vertical blade 4 is 45% to 55% of the turning radius of the main portion 4A, and the maximum thickness thereof is 20% to 35% of the maximum chord length.
  • the thickness and the chord length cannot be achieved. Since this thickness is large, the Coanda effect in the main portion 4A that occurs during rotation is high, and the rotation speed is high. In addition, since the chord length is long, there is an effect that the wind-receiving area in the rotary centrifugal unit becomes large and the rotation speed becomes large.
  • FIG. 2 is a plan view of the wind power generation system of the first premier, showing two propeller-type wind power generators 1 on the left and right on the front, back, left, and right, with appropriate intervals and a high vertical axis wind turbine type.
  • a plurality of wind power generators 2 and vertical wind turbine type wind power generators 3 having a low height are alternately arranged.
  • the vertical axis wind turbine type wind turbine generators 2 and 3 have a generator 6 fixed to an intermediate portion of a column 5 and rotatably fitted on a pipe column 5A above the column 6.
  • the lower portion of the mounted vertical main shaft 7 is inserted into the pipe column 5A, and the lower end thereof is linked to the generator 6, and the rotation of the vertically long blade 4 causes the generator 6 to generate power.
  • the tips of the upper and lower inwardly curved inclined portions 4B and 4B of the substantially vertical main portion 4A of the vertically long blade 4 are fixed from three directions via a fixing piece 7A.
  • the blade 1B of the large propeller-type wind turbine generator 1 rotates, and at the same time, the vertical blades 4 of the small vertical axis wind turbine wind turbine generators 2 and 3 rotate, and the generator 6 generates electricity.
  • the airflow that has passed through the lower region of the blade 1B of the large-scale propeller-type wind turbine generator 1 is blocked by the vertical blades 4 of the vertical-axis wind turbine-type wind turbine generators 2 and 3 to rise,
  • the airflow is merged with the airflow that hits the blade 1B of the wind turbine generator 1, and the airflow can be effectively used.
  • a wind retaining weir is constructed with a structure instead of the vertical axis wind turbine type wind turbine generators 2 and 3, there is no other use cost, but a plurality of vertical axis wind turbine type wind turbine generators 2 and 3 are arranged. By installing it, the wind can be stopped like a dam and can be supplied to the large-scale propeller-type wind turbine generator 1. In addition, the wind in a place with good wind conditions can be supplied to the small vertical-axis wind turbine generator 2. 3 can be effectively used to generate extra power.
  • the size of the vertical blade 4 having a higher height or a lower height may be different. Further, although the number of the vertically long blades 4 is three in the figure, it can be two or four or more.
  • This vertically long blade 4 rotates regardless of the wind direction, regardless of the wind direction, that is, the direction of arrow A, the direction of arrow B, the direction of arrow C, or the direction of arrow D in FIG. Also rotates in the same way, and the effect remains the same.
  • FIG. 4 is a front view showing a propeller 8 of a wind turbine in a small propeller-type wind turbine generator.
  • a nacelle (not shown) is arranged on a pillar (not shown) so as to be horizontally rotatable, and a propeller 8 of a wind turbine is provided behind the rotary shaft protruding rearward from a generator (not shown) inside the nacelle. It is fixed.
  • the base portion 10A of the blade 10 is fixed to the peripheral surface of the hub 9 at equal intervals.
  • the leading edge 13 of the blade 10 is substantially straight up to the middle of the blade tip direction, and extends from the tip of the main portion 11 to the tip of the forward bending portion 12 in an arc bending shape toward the trailing edge 14. It is bent with almost the same string length.
  • the front bent portion 12 has a chord length of substantially the same width when viewed from the front, and has the same cross section as the inclined shape of the front end surface 16, and the main portion 11 of the base portion 10A.
  • the trailing edge portion deeply penetrates into the leading edge direction to form the bay entry portion 15, and the trailing edge of the portion is thickened almost the same as the leading edge portion to facilitate the passage of airflow.
  • the rear surface 18 of the main portion 11 is substantially vertical from the base portion 10A to the front curved portion 12, and the front surface 17 is inclined from the base portion 10A to the front curved portion 12 toward the rear surface 18 to form a front surface. It is formed so as to gradually decrease in thickness toward the bent portion 12.
  • the forward bending portion 12 is largely bent forward from the end portion of the main portion 12, and the front end surface 16 is protruded by the thickness of the base portion 10A, and the front end surface 16 has a rotation axis center line. As shown in FIG. 4, it is formed so as to be orthogonal to S and is substantially fish-shaped, and the leading edge end 13A and the trailing edge end 14A are set on the same rotation arc T. Further, as shown in FIG. 5, the front end surface 16 has the rear edge slightly inclined toward the rear surface 18 rather than the front edge.
  • the radius of curvature of the rear surface 12A of the forward bending portion 12 is larger than the radius of curvature of the front surface 12B, and the thickness of the thickest part line 12C portion parallel to the axial center line S passing through the inner end 16A of the front end surface 16 is formed.
  • this blade 10 has the maximum thickness. The thicker the leading edge portion of the blade 10 has, the higher the Coanda effect and the higher the rotation efficiency.
  • the Coanda effect that occurs on the surface of the blade 10 is maximum at the portion of the thickest part line 12C parallel to the axis S passing through the inner end 16A of the forward tip surface 16 near the blade tip.
  • this is a rotary centrifugal portion, the rotation speed thereof is high, and the airflow impinging on the front surface 17 of the blade 10 at the front surface 12B of the forward bending portion 12 is caused by the centrifugal force generated by the rotation.
  • the blade 10 is pushed out in the rotation direction to further improve the rotation efficiency and generate power efficiently.
  • the rotation efficiency of a large wind power generator can be improved, and the wind power not used in that area can be used by a small wind power generator to efficiently generate wind power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

本発明は、風況の良い立地に設置されている大型のプロペラ式風力発電装置における、ブレードよりも下域の空間に小型の縦軸風車式風力発電装置を風留堰状に配設し、上昇する気流でプロペラ式風力発電装置を効率良く稼働させるとともに、縦軸風車式風力発電装置においても発電させようとするものである。 立設されたプロペラ式風力発電装置1の支柱1Aの周囲に、上端がプロペ ラ式風力発電装置1のブレード1Bと接触しないように、かつプロペラ式風力発電装置1の支柱1Aの周囲を、風が通過しにくくなる風留ダム状に小型の風車2、3を配設し、小型の風車2、3に当って生じる上昇気流を、プロペラ式風力発電装置1のブレード1Bに当てて回転効率を高めるようにした。

Description

風力発電システム
 本発明は、風況の良い土地をより有効に利用して、効率の良い風力発電を行うことができるようにした風力発電システムに関する。
 風を効率良く利用するために、風車を集合させて配置することは、例えば特許文献1に記載されている。これは、幅の広い支持枠体に、多段式の羽根車を、複数並列して支持したものである。
特開2005-207355
 特許文献1に記載の発明においては、支持枠体を左右前後で複数に区画し、各区画ごとに縦主軸を支持し、その各縦主軸に、縦長ブレードを支持腕で垂直に固定したもので、いずれの方向から風が吹いても、各縦長ブレードに気流が当り、回転するものである。
 本発明は、高さ数10mにも及ぶ大型のプロペラ式風力発電装置の支柱の周囲に、小型の風車を複数、風留ダム状に配設して上昇気流を生じさせ、その気流をプロペラ式風力発電装置に利用して回転効率を高めるとともに、プロペラ式風力発電装置の支柱の間を通過する気流を利用して、小型の風車も、縦主軸風車式風力発電装置等を使用し、風力発電を効果的にする風力発電システムを提供することを目的としている。
 本発明は、前記課題を解決するために、次のような技術的手段を講じたものである。
 (1) 立設されたプロペラ式風力発電装置の支柱の周囲に、上端がプロペラ式風力発電機のブレードと接触しないように、かつプロペラ式風力発電装置の支柱の周囲を、風が通過しにくくなる風留ダム状に小型の風車を配設し、小型の風車に当たって生じる上昇気流を、プロペラ式風力発電装置のブレードに当てて、回転効率を高めるようにし、前記小型の風車は、縦長ブレードを備える縦軸風車式風力発電装置であり、縦長ブレードの回転により遮られる気流をプロペラ式風力発電装置のブレードに当て、縦軸風車式風力発電装置自身も風力発電するようにした風力発電システム。
 (2) 前記縦軸風車式風力発電装置は、縦長ブレードの主部の上下から縦主軸方向へ突出する内向曲傾部の先端部を、それぞれ縦主軸に固定するものである前記(1)に記載の風力発電システム。
 (3) 前記風留ダム状に配設する小型の風車は、小型のプロペラ式風力発電装置であり、プロペラの回転により遮られる気流を大型のプロペラ式風力発電機のブレードに当て、小型のプロペラ式風力発電装置自身も、風力発電するようにした前記(1)に記載の風力発電システム。
 (4)前記小型のプロペラ式風力発電装置の風車におけるプロペラのブレードは、側面視で、主部の先に前向曲成部が大きく突出形成され、前向曲成部の前向先端面は回転軸心線と直交状とし、かつその正面は略魚形とし、その前縁端と後縁端は、同一の回転円弧上にある前記(3)に記載の風力発電システム。
 (5) 前記大型のプロペラ式風力発電装置の支柱の周囲において、該支柱を中心として前後方向と45度で交差する、右傾線と左傾線との各交点上に、前記小型の風車を配置し、該小型の風車は、横列方向に、高さの高いものと低いものとを交互に配設し、前後の横列方向では、その順番を1ずつずらした前記(1)~(4)のいずれかに記載の風力発電システム。
 本発明によると、次のような効果が奏せられる。
 前記(1)に記載の発明においては、用地に立設された大型のプロペラ式風力発電装置の支柱の周囲に、上端がプロペラ式風力発電装置のブレードと接触しないように、かつプロペラ式風力発電装置の支柱の周囲を、風が通過しにくくなる風留ダム状に複数の小型の風車を配設すると、遮られた気流は上昇し、大型のプロペラ式風力発電装置のブレードに当るので、風流とは別に、下の風車に当たって上昇する気流も、プロペラ式風力発電装置のプロペラに当るため、効率良くプロペラ式風力発電装置を稼働させることができる。
 また大型のプロペラ式風力発電装置の周囲に、所定の間隔を開けて複数の縦軸風車式風力発電装置を、風留ダム状に配設してあるので、風が吹くと、プロペラ式風力発電装置のブレードが回転して発電される。
 このプロペラ式風力発電装置の支柱の周囲には、複数の風車として、縦軸風車式風力発電装置が配設されているので、これが風留ダム状の役割を果たし、これに当る気流は上昇気流となって上方に移動して、プロペラ式風力発電装置のブレードに当り、これを効率良く回転させる。
 また縦軸風車式風力発電装置自体も、風況の良い場所に複数配設されることとなり、風力を効果的に利用して、効率のよい風力発電をすることが出来る。
 前記(2)に記載の発明においては、前記縦軸風車式風力発電装置における縦軸風車は、縦長ブレードの主部の上下から縦主軸方向へ突出する内向曲傾部の先端部を、それぞれ縦主軸に固定したものであるので、剛性に優れている。また回転性に優れ、プロペラ式風力発電装置のプロペラが回転しない低風速の時においても、効率良く回転して発電するので、風力を有効に利用することができる。
 前記(3)に記載の発明においては、前記小型のプロペラ式風力発電装置は、大型のプロペラ式風力発電装置の支柱周囲において、前後左右で定間隔に配設されているので、風向きが逆になった時においても、風留ダム状の役割を果たし、上昇気流を大型のプロペラ式風力発電装置に効率良く当てることが出来、かつ、複数の小型のプロペラ式風力発電装置の風車は、どの位置においても、風向きに関わりなく回転して、発電することができる。
 前記(4)に記載の発明においては、前記小型のプロペラ式風力発電装置の風車におけるプロペラのブレードは、側面視で、主部の先に前向曲成部が大きく突出して形成され、前向曲成部の前向先端面は回転軸心線と直交状としてあるので、前向先端面の内側端部分が最大厚さを有して、ブレードが回転すると、回転遠心部分であるその部分に生じるコアンダ効果が最大となり、回転効率を高める。
 前向先端面の正面は、回転軸心線に対して直交した状態であって、主部に対して大きく曲がって前方向に突出しており、ブレードの前面に当たる気流は、回転時に生じる遠心力により前向曲成部に当って遮られ、圧力を高めて前向曲成部を回転方向に強く押して通過し、回転効率を高める。通過した気流は、上昇して大型のプロペラ式発電装置のブレードに当り、風車を効率良く回転させる。
 前記(5)に記載の発明においては、前記小型の風車は、大型のプロペラ式風力発電装置の支柱の周囲において、前後左右で定間隔に配設されているので、風向きが逆になっても風車は回転し、かつ風留ダムの役割を果たすことが出来る。
本発明の風力発電システムにおける発電装置の配列一部正面図である。 本発明の風力発電システムにおける発電装置の配列略示的平面図である。 本発明の風力発電システムの縦軸風車式風力発電装置の正面図である。 小型プロペラ式風力発電装置の風車のプロペラを示す正面図である。 図4におけるVーV線断面図である。
 本発明の一実施形態を図面を参照して説明する。
 図1は、本発明の風力発電システムにおいて使用される、プロペラ式風力発電装置1と、その周囲に、風溜ダムとして配設する、複数の小型の風車の、配設状況の一部を示す正面図で、図2はその配置状態を示す平面図であり、小型の風車として、小型の縦軸風車式風力発電装置2、3が使用されている。
 図1において、一般的な高寸のプロペラ式風力発電装置1、1が2基、所定の間隔を開けて配設されている。この配置間隔は、各ブレード1Bが回転する時に気流の干渉が近隣との間で生じることのない間隔であり、この各支柱1Aの間は、一般には気流が素通りしている。
 本発明は、この素通りする気流を有効に利用しようとするもので、図1に示すように、大型のプロペラ式風力発電装置1の支柱1Aの側方に、適宜の間隔を開けて、高寸の縦軸風車式風力発電装置2と、やや低寸の縦軸風車式風力発電装置3とを、交互に複数配設してある。
 これによって、同じ高さの発電装置を配列した場合に比して、風が何れの方向から吹いても、風下にある縦軸風車式風力発電装置2、3に対して、気流が均等に当り易くなる。
 縦軸風車式風力発電装置2、3同士の間隔は、その縦長ブレード4の回転直径の約3倍以上離してあるが、縦長ブレード4が縦主軸7を中心として回転すると、縦長ブレード4の回転軌跡内の空気は、遠心力によって外側へ導かれて、縦長ブレード4の内側が負圧になり、外部から入り込む気流は、縦長ブレード4の内側面に沿って上昇し、自然風と合流して、プロペラ式風力発電装置1のブレード1Bに当って、これを高効率に回転させる。
 前記縦長ブレード4の主部4Aの弦長は、主部4Aの回転半径の45%~55%としてあり、その最大厚さは、最大弦長の20%~35%としてあり、従来には見ることの出来ない厚さと弦長としてある。
 この厚さが厚いため、回転時に生じる主部4Aにおけるコアンダ効果が高くなり、回転速度は高くなる。また弦長が長いため、回転遠心部における受風面積が大となり、回転速度が大となる効果がある。
 図2は、本初明の風力発電システムの平面図を示し、左右2基のプロペラ式風力発電装置1、1それぞれの前後左右に、適宜の間隔を開けて、高さの高い縦軸風車式風力発電装置2と、高さの低い縦軸風車式風力発電装置3とが、交互に複数配設されている。
 縦軸風車式風力発電装置2、3は、拡大正面図を図3に示すように、支柱5の中間部に発電機6が固定され、その上側における管柱5Aの上に、回転可能に嵌装された縦主軸7の下部は、管柱5A内に挿通されて、その下端は発電機6に連係されており、縦長ブレード4の回転により、発電機6が発電するようになっている。
 縦主軸7には、3方向から縦長ブレード4のほぼ垂直な主部4Aの上下の内向曲傾部4B、4Bの先端が、固定片7Aを介して固定されている。
 風が吹くと、大型のプロペラ式風力発電装置1のブレード1Bは回転し、同時に小型の縦軸風車式風力発電装置2、3の縦長ブレード4が回転して、発電機6は発電をする。
 この場合、縦軸風車式風力発電装置2、3の縦長ブレード4が回転すると、縦長ブレード4の回転円弧の内側の気流は、遠心力と圧力差によって外側へ導かれるため、回転円弧の内側の気圧は低下し、外側から入り込む気流は、更に外側へ導き出される中で、上部の内向曲傾部4Bの下面を回転方向へ押すので、縦長ブレード4は、風速による回転に加えて更に回転する。
 そのため、前方から当たる気流は、縦軸風車式風力発電装置2、3の回転している縦長ブレード4の中を通過することができずに遮られて、上方へ移動し、縦長ブレード4の回転円弧の内側から上昇する気流と合流して、大型のプロペラ式風力発電装置1のブレード1Bに効果的に当り、これを効率良く回転させる。
 すなわち、従来は、大型のプロペラ式風力発電装置1のブレード1Bの下域を通過していた気流が、縦軸風車式風力発電装置2、3の縦長ブレード4によって遮られて上昇し、プロペラ式風力発電装置1のブレード1Bに当る気流と合流して当るもので、気流を有効に利用することができる。
 縦軸風車式風力発電装置2、3の代わりに、構築物で風留堰状体を構築すると、それ以外に用途のない費用がかかるが、複数の縦軸風車式風力発電装置2、3を配設することによってダムのように風を留め、大型のプロペラ式風力発電装置1に供給することができ、加えて、風況の良い場所の風を、小型の縦軸風車式風力発電装置2、3で有効に利用して、余分に発電をすることができるものである。
 なお、縦軸風車式風力発電装置2、3において、高さの高い方か、又は低い方のいずれかの縦長ブレード4の寸法を、異なるものとすることができる。
 また縦長ブレード4の枚数は、図においては3枚が示されているが、2枚、もしくは4枚以上とすることができる。
 この縦長ブレード4は、図2におけるA矢示方向、B矢示方向、C矢示方向、D矢示方向の何れからの風でも、風向きの変化にかかわらず回転するので、風向きが変化しても、同じように回転し、その効果は変わらない。
 図4は、小型のプロペラ式風力発電装置における風車のプロペラ8を示す正面図である。
 小型のプロペラ式風力発電装置は、図示しない支柱上に、水平旋回可能に図示しないナセルが配設され、その内部の図示しない発電機から後部へ突出する回転軸の後部に、風車のプロペラ8が固定されている。
 プロペラ8は、ハブ9の周面に均等間隔でブレード10の基部10Aが固定されている。正面視においてブレード10の前縁13は、翼端方向の中間まで、ほぼ直線状で、主部11の先部分から前向曲成部12の先端へかけて、後縁14方向へ弧曲状にほぼ同じ弦長で曲がっている。
 ブレード10の後縁14部分は、正面視で前向曲成部12は、ほぼ同じ幅の弦長とし、前向先端面16の傾状と同じ断面としてあり、主部11は、基部10Aの近くで後縁部分が前縁方向へ深く湾入して湾入部15となり、その部分の後縁は前縁部分とほぼ同じように厚くなって、気流が通過しやすくなっている。
 図5は、図4におけるVーV線断面図である。主部11の後面18は、基部10Aから前向曲成部12に至るまでほぼ垂直であり、前面17は、基部10Aから前向曲成部12にかけて、後面18方向に傾斜して、前向曲成部12へかけて厚さが次第に薄くなるよう
に形成されている。
 前向曲成部12は、主部12の端部から前方へ大きく屈曲して、前向先端面16を、基部10Aの厚さほど突出させて、その前向先端面16は、回転軸心線Sと直交するように形成され、図4に示すように、略魚形であり、前縁端13Aと後縁端14Aは同一の回転円弧T上に設定されている。また図5に示すように、前向先端面16は前縁よりも後縁の方がやや後面18方向へ傾斜している。
 前向曲成部12の後面12Aの曲率半径は、前面12Bの曲率半径よりも大きく、前向先端面16の内側端16Aを通る軸心線Sと平行な最厚部線12C部分の厚さが、このブレード10において最大の厚さとなっている。ブレード10における前縁部分の厚さが厚いほど、コアンダ効果が高くて、回転効率があがる。
 図5において、X矢示方向から気流が当ると、ブレード10の前面17は、前縁13から後縁方向へ傾斜しているので、ブレード10は前縁13方向へ押されて回転する。
 また主部11の前面17は、基部10Aから先端方向へ傾斜しているので、この傾斜面を滑る気流は、前向曲成部12の前面12Bに移動し、この前面12Bに当たる気流と合流して囲いこまれ、ブレード10を回転方向に強く回転させる。
 ブレード10が回転すると、ブレード10の表面に生じるコアンダ効果は、翼端に近い前向先端面16の、前記内側端16Aを通る、軸心線Sと平行な最厚部線12Cの部分で最大となるが、ここは回転遠心部分であるため、その回転速度は大であり、回転に伴って生じる遠心力により、ブレード10の前面17に当る気流は、前向曲成部12の前面12Bでブレード10を回転方向に押し出し、更に回転効率を高め、効率のよい発電をする。
 ブレード10を回転させて抜けた気流は上昇し、普通に当る気流と合流して、大型のプロペラ式発電装置1のブレード1Bに当り、これを効率良く回転させる。
 風況の良い場所において、大型の風力発電装置の回転効率を高め、またその地において使用されなかった風力を、小型の風力発電装置で利用し、効率良く風力発電をすることができる。
1.プロペラ式風力発電装置
1A.支柱
1B.ブレード
2、3.縦軸風車式風力発電装置
4.縦長ブレード
4A.主部
4B.内向曲傾部
5.支柱
5A.管柱
6.発電機
7.縦主軸
7A.固定片
8.小型のプロペラ式風力発電装置の風車のプロペラ
9.ハブ
10.ブレード
10A.基部
11.主部
12.前向曲成部
12A.後面
12B.前面
12C.最厚部線
13.前縁
13A.前縁端
14.後縁
14A.後縁端
15.湾入部
16.前向先端面
17.前面
18.後面
A、B、C、D.風向
S.軸心線
T.回転円弧
X.気流

Claims (5)

  1.  立設されたプロペラ式風力発電装置の支柱の周囲に、上端がプロペラ式風力発電機のブレードと接触しないように、かつプロペラ式風力発電装置の支柱の周囲を、風が通過しにくくなる風留ダム状に小型の風車を配設し、小型の風車に当たって生じる上昇気流を、プロペラ式風力発電装置のブレードに当てて、回転効率を高めるようにし、
     前記小型の風車は、縦長ブレードを備える縦軸風車式風力発電装置であり、縦長ブレードの回転により遮られる気流をプロペラ式風力発電装置のブレードに当て、縦軸風車式風力発電装置自身も風力発電するようにしたことを特徴とする風力発電システム。
  2.  前記縦軸風車式風力発電装置は、縦長ブレードの主部の上下から縦主軸方向へ突出する内向曲傾部の先端部を、それぞれ縦主軸に固定するものであることを特徴とする請求項1に記載の風力発電システム。
  3.  前記風留ダム状に配設する小型の風車は、小型のプロペラ式風力発電装置であり、プロペラの回転により遮られる気流を大型のプロペラ式風力発電機のブレードに当て、小型のプロペラ式風力発電装置自身も、風力発電するようにしたことを特徴とする請求項1に記載の風力発電システム。
  4.  前記小型のプロペラ式風力発電装置の風車におけるプロペラのブレードは、側面視で、主部の先に前向曲成部が大きく突出形成され、前向曲成部の前向先端面は回転軸心線と直交状とし、かつその正面は略魚形とし、その前縁端と後縁端は、同一の回転円弧上にあることを特徴とする請求項3に記載の風力発電システム。
  5.  前記大型のプロペラ式風力発電装置の支柱の周囲において、該支柱を中心として前後方向と45度で交差する、右傾線と左傾線との各交点上に、前記小型の風車を配置し、該小型の風車は、横列方向に、高さの高いものと低いものとを交互に配設し、前後の横列方向では、その順番を1ずつずらしたことを特徴とする請求項1~4のいずれかに記載の風力発電システム。
PCT/JP2019/021481 2018-10-11 2019-05-30 風力発電システム WO2020075338A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-192603 2018-10-11
JP2018192603A JP6469303B1 (ja) 2018-10-11 2018-10-11 風力発電システム

Publications (1)

Publication Number Publication Date
WO2020075338A1 true WO2020075338A1 (ja) 2020-04-16

Family

ID=65356131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021481 WO2020075338A1 (ja) 2018-10-11 2019-05-30 風力発電システム

Country Status (3)

Country Link
JP (1) JP6469303B1 (ja)
TW (1) TWI697618B (ja)
WO (1) WO2020075338A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101372A1 (ja) * 2022-11-10 2024-05-16 好高 河野 風力発電装置用プロペラ及びこれを用いた風力発電装置。

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3106660A1 (de) * 2015-06-15 2016-12-21 Senvion GmbH Verfahren und computerprogrammprodukt zur überprüfung der ausrichtung von windenergieanlagen, sowie anordnung aus wenigstens zwei windenergieanlagen
WO2017110298A1 (ja) * 2015-12-25 2017-06-29 株式会社日立製作所 風車システムまたはウィンドファーム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014223640A1 (de) * 2014-11-19 2016-05-19 Wobben Properties Gmbh Auslegung einer Windenergieanlage
JP6762170B2 (ja) * 2016-08-30 2020-09-30 株式会社日立製作所 ウィンドファームまたはウィンドファームの制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3106660A1 (de) * 2015-06-15 2016-12-21 Senvion GmbH Verfahren und computerprogrammprodukt zur überprüfung der ausrichtung von windenergieanlagen, sowie anordnung aus wenigstens zwei windenergieanlagen
WO2017110298A1 (ja) * 2015-12-25 2017-06-29 株式会社日立製作所 風車システムまたはウィンドファーム

Also Published As

Publication number Publication date
TWI697618B (zh) 2020-07-01
JP6469303B1 (ja) 2019-02-13
JP2020060145A (ja) 2020-04-16
TW202014598A (zh) 2020-04-16

Similar Documents

Publication Publication Date Title
ES2601216T3 (es) Turbina de viento con góndolas múltiples
JP5785181B2 (ja) タービン
EP3029315A1 (en) Wind power generation tower provided with gyromill type wind turbine
JP2011007147A (ja) 排気流発電装置
KR101817229B1 (ko) 다중 풍력발전장치
WO2020075338A1 (ja) 風力発電システム
KR102026980B1 (ko) 풍력터빈발전기 바람 모음 장치
ES2769853T3 (es) Torre de generación de energía eólica
JP4892716B1 (ja) 風力発電装置
JP4728008B2 (ja) 横軸風車
CN112272736B (zh) 水平轴转子
KR101566501B1 (ko) 휘어진 블레이드 팁을 갖는 다운윈드 풍력 발전 장치
KR101503358B1 (ko) 수평형 풍력발전기
KR101810872B1 (ko) 다중 풍력발전장치
JP6904766B2 (ja) 垂直軸風車および風力発電装置
JP2005016479A (ja) 回転車の羽根並びに回転車
JP6948094B1 (ja) ロータブレード
KR20120051508A (ko) 풍력발전 장치
KR102545919B1 (ko) 풍력 터빈 장치
JP6997580B2 (ja) 縦長ブレード及び縦軸ロータ
CN102459871A (zh) 风力涡轮机装置
JP6944743B1 (ja) 排気利用発電装置及びロータ
JP2019044732A (ja) 水力発電装置
JP2013519018A (ja) ブースター翼とブースター翼付き垂直軸風力発電機用風車
KR20100039752A (ko) 로터 블레이드 조립체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870208

Country of ref document: EP

Kind code of ref document: A1