WO2020073836A1 - 打印数据处理方法、设备及存储介质 - Google Patents

打印数据处理方法、设备及存储介质 Download PDF

Info

Publication number
WO2020073836A1
WO2020073836A1 PCT/CN2019/108800 CN2019108800W WO2020073836A1 WO 2020073836 A1 WO2020073836 A1 WO 2020073836A1 CN 2019108800 W CN2019108800 W CN 2019108800W WO 2020073836 A1 WO2020073836 A1 WO 2020073836A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
print data
data matrix
printing
mask template
Prior art date
Application number
PCT/CN2019/108800
Other languages
English (en)
French (fr)
Inventor
任建平
陈艳
黄中琨
Original Assignee
深圳市汉森软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811192763.5A external-priority patent/CN109272471B/zh
Priority claimed from CN201811192753.1A external-priority patent/CN109254742B/zh
Application filed by 深圳市汉森软件有限公司 filed Critical 深圳市汉森软件有限公司
Publication of WO2020073836A1 publication Critical patent/WO2020073836A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet

Definitions

  • the invention relates to the technical field of inkjet printing, in particular to a printing data processing method, device and storage medium.
  • Inkjet printing technology refers to the technology of ejecting ink droplets onto the printing medium through nozzles on the nozzle to obtain images or text, mainly including reciprocating scanning printing, one-time scanning printing, multi-nozzle side-by-side scanning printing, etc., reciprocating scanning printing It is also called multi-pass scanning printing.
  • Multi-pass scanning printing means that each unit of the image to be printed must be interpolated multiple times to complete the printing. Each unit is composed of multiple pixels, such as 2pass scanning printing.
  • the unit is composed of 2 pixels, and 3pass scanning and printing each unit is composed of 3 pixels; one-time scanning printing is also called single pass scanning printing, single pass scanning printing means that each unit of the image to be printed only needs to be once Scanning can complete printing; multi-nozzle side-by-side scanning printing is also called Onepass scanning printing. Onepass scanning printing means that the image to be printed is printed once.
  • Embodiments of the present invention provide a printing data processing method, device, and storage medium, to solve the technical problem of poor print image quality due to the printing accuracy and drive motor error of the inkjet printing device in the prior art.
  • an embodiment of the present invention provides a method for processing print data.
  • the method includes:
  • the first mask template and the second mask template are subjected to data processing on the first print data matrix to obtain a second print data matrix.
  • an embodiment of the present invention provides a print data processing device, the device including: at least one processor, at least one memory, and computer program instructions stored in the memory, when the computer program instructions are When the processor executes, the print data processing method is implemented, and the print data processing method includes:
  • the first mask template and the second mask template are subjected to data processing on the first print data matrix to obtain a second print data matrix.
  • an embodiment of the present invention provides a storage medium on which computer program instructions are stored, and when the computer program instructions are executed by a processor, the method according to the first aspect of the foregoing embodiment is implemented.
  • a printing data processing method, device and storage medium provided by an embodiment of the present invention, the method obtains data by processing the first printing data matrix according to the feather length, the first mask template and the second mask template
  • the second printing data matrix used for printing makes the errors due to the printing accuracy and the driving motor spread as the data of the first printing data matrix is dispersed, so that the overlap or blank of the printed image disappears, ensuring The printed image will not be seriously distorted, which improves the quality and quality of the printed image.
  • FIG. 1 is an effect diagram of printing data processing without prior art.
  • FIG. 2 is a first flowchart of the print data processing method of the preferred embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a nozzle in a printing data processing method according to an embodiment of the invention.
  • FIG. 5 is a schematic diagram of printing a unit area of an image to be printed in the printing data processing method of the preferred embodiment of the present invention.
  • FIG. 6 is a schematic diagram of print data splitting processing of the print data processing method of the preferred embodiment of the present invention.
  • FIG. 7 is a third flowchart of the print data processing method of the preferred embodiment of the present invention.
  • FIG. 8 is a mask template diagram of the first application scenario of the print data processing method of the preferred embodiment of the present invention.
  • FIG. 9 is a mask template diagram of a second application scenario of the print data processing method according to the preferred embodiment of the present invention.
  • FIG. 10 is a mask template diagram of a third application scenario of a print data processing method according to the preferred embodiment of the present invention.
  • FIG. 11 is a mask template diagram of a fourth application scenario of the print data processing method according to the preferred embodiment of the present invention.
  • FIG. 12 is a mask template diagram of a fifth application scenario of the print data processing method of the preferred embodiment of the present invention.
  • FIG. 13 is a mask template diagram of a sixth application scenario of the print data processing method of the preferred embodiment of the present invention.
  • FIG. 14 is a first data processing schematic diagram of a print data processing method according to a preferred embodiment of the present invention.
  • 15 is a fourth flowchart of the print data processing method of the preferred embodiment of the present invention.
  • 16 is a fifth flowchart of the print data processing method of the preferred embodiment of the present invention.
  • 17 is a second data processing schematic diagram of the print data processing method of the preferred embodiment of the present invention.
  • FIG. 18 is a schematic diagram of the position of the print head and the printing area in the print data processing method of the preferred embodiment of the present invention.
  • 19 is a schematic diagram of the inkjet printing method according to the first embodiment of the present invention.
  • FIG. 20 is a printing effect diagram processed by a printing data processing method according to an embodiment of the present invention.
  • 21 is a schematic diagram of the structure of a print data processing apparatus according to a second embodiment of the present invention.
  • FIG. 22 is a schematic diagram of the structure of a print data processing apparatus of a third embodiment of the present invention.
  • An embodiment of the present invention provides a printing data processing method, which performs mask processing on the first printing data matrix according to the feather length, the first mask template, and the second mask template to obtain a print
  • the second printing data matrix makes the errors due to the printing accuracy and the drive motor spread with the data dispersion of the first printing data matrix, so that the overlap or blank of the printed image disappears, ensuring the printed image No serious distortion, improve the quality and quality of printed images.
  • the number of rows of the data matrix described in the present invention is the height of the matrix, the number of columns is the width of the matrix, and one row is a unit height and one column is a unit width.
  • Each element in the data matrix represents a printing device. The ink out of the nozzle.
  • the elements in the data matrix include only 0 and 1, 0 means that the nozzle does not emit ink, and 1 means that the nozzle emits ink.
  • the elements in the data matrix can also be represented by other values, which is not specifically limited here. .
  • the method includes the following steps:
  • the nozzle 100 has a plurality of nozzles 101, and the nozzles 101 are distributed at a uniform interval along the second scanning direction L2, and the nozzle 100 is arranged along the first scanning direction L1 Scan back and forth to form an image; in this embodiment, the height of the print data matrix corresponding to one scan of the nozzle 100 along the first scanning direction L1 is equal to the number of nozzles 101 on the nozzle 100, which is perpendicular to the first scanning direction
  • the direction L2 is the second scanning direction of the spray head 100. If the number of nozzles 101 on the spray head 100 is m, and m is an integer greater than or equal to 1, then the first print data matrix is:
  • n is the width of the first printing data matrix
  • n is an integer greater than or equal to 1
  • the width of the first printing data matrix is determined by the printing width and printing accuracy
  • the beginning of the first printing data matrix The position is a 11 and the end position is a mn .
  • the first print data matrix is obtained through the following steps:
  • the number of original printing coverage in the unit area is 4, when printing the first unit area Z 1 and the last unit area Zn, the coverage needs to be repeated 4 times , So there are some cases where the print head is outside the image to be printed.
  • it is necessary to fill the zero data matrix with a data height of 3/4 of the print head height before and after the image data corresponding to the image to be printed, and then overwrite according to the original print The number of times to split the data matrix to be printed with the filled data matrix into 4 intermediate data matrices, and split each intermediate data matrix into several first print data matrices according to the height of the print head, please refer to FIG. 6 for details.
  • the height of the nozzle is 4 nozzles high
  • the data matrix A to be printed which is composed of the filling data matrix is composed of the numbers 1, 2, 3, 4, and all 1s in the data to be printed A are extracted when the data is split Come out to form the intermediate data matrix A1, all 2 are extracted to form intermediate data A2, all 3 are extracted to form intermediate data A3, and all 4 are extracted to form intermediate numbers A4, the intermediate data matrix A1 is split into multiple first printing data matrices A11, A12, A13 ...
  • a first mask template with a height equal to the feathering length is acquired; an identity matrix with the same number of elements in the first mask template is acquired; generated according to the identity matrix and the first mask template The second mask template.
  • the height of the first mask template is equal to the feathering length
  • the second mask template is equal to the identity matrix minus the first mask template
  • the first mask template is the first mask Mode matrix
  • the second mask template is the second mask matrix.
  • the width of the first mask matrix is equal to the width of the first print data matrix
  • the width of the second mask matrix is equal to the width of the first print data matrix.
  • the width of the first mask matrix is not equal to the width of the first print data matrix, please refer to FIG. 7, the first mask template and the second mask template
  • the acquisition method includes the following steps:
  • the preset mask template is determined according to different printing requirements and different printing scenarios, as shown in FIG. 8, the preset mask template gradually and uniformly transitions from 0 to 100% with a density of 0 from top to bottom.
  • the place corresponds to the edge of the printer nozzle, and the place with a density of 100% corresponds to the data that has not been masked.
  • the preset mask template is suitable for most scenes.
  • the density gradient of the preset mask template in the lateral direction is uneven, and the lateral direction is a cyclically changing density band. This cyclically changing density band helps to eliminate the yin and yang roads generated by the printer during printing back and forth.
  • the vertical and horizontal density distribution of the preset mask template is not uniform and there are filaments in the middle.
  • the preset mask template can not only eliminate the yin and yang channels, but also eliminate the lateral direction generated by the printhead printing back and forth Joints.
  • the preset mask template is obtained by combining the upper and lower layers of data.
  • the preset mask template can not only eliminate the Yin and Yang tracts, but also eliminate the phenomenon of excessive longitudinal unevenness. As shown in FIG. 12, the preset mask template combines the two templates of FIG. 9 and FIG. 10, which can further offset some defects that may be generated by a certain template. As shown in FIG. 13, the preset mask template can solve the problem that the printing effect is not good due to unheated or the print carrier does not absorb ink well.
  • the dither method or iterative method can also be used to process the grayscale image to obtain the bitmap image matrix.
  • the error diffusion algorithm, the dithering method, and the iterative method are commonly used processing methods in image processing, and the specific content will not be repeated here. Comparing the widths of the first print data matrix and the bitmap image matrix to determine the first mask template and the second mask template, so that the width of the first mask template and the width of the first print data matrix Equal, specific methods include:
  • the width of the first print data matrix is greater than the width of the bitmap image matrix
  • a plurality of the bitmap image matrixes are spliced to form the first mask template, and the first mask template passes the following formula get:
  • B j represents the first mask template
  • a mn represents the bitmap image matrix
  • j represents the number of the bitmap image matrix A mn and is a positive integer
  • c represents the first print data matrix Is a positive integer
  • m represents the height of the bitmap image matrix A mn and is a positive integer
  • n represents the width of the bitmap image matrix A mn and is a positive integer.
  • the bitmap image matrix is directly used as the first mask template.
  • the bitmap image matrix When the width of the first print data matrix is smaller than the width of the bitmap image matrix, divide the bitmap image matrix into several sub-bitmap image matrices, and select one sub-bitmap image matrix as the first mask Template, the height and width of the sub-bitmap image matrix are equal to the height and width of the first print data matrix respectively, the bitmap image matrix is A mn , and the sub-image matrix H mr is obtained by:
  • n the height of the bitmap image matrix A mn and is a positive integer
  • n the width of the bitmap image matrix A mn and is a positive integer
  • r the width of the sub bitmap image matrix H mr It is a positive integer and at the same time r ⁇ n, the height of the sub bitmap image matrix H mr is equal to the height of the bitmap image matrix A mn as m.
  • the first mask template and the first print data matrix are calculated from the starting position with a height equal to the feathering length to obtain an intermediate print data matrix; the second mask template is used A second print data matrix is obtained by performing an operation on data in the first intermediate print data matrix whose reverse height is equal to the feather length from the end position. If the matrix X is:
  • the starting position is x 11
  • the ending position is x 33
  • the height includes 2 elements from the starting position: x 11 , x 12 , x 13 , x 21 , x 22 , x 23 , starting from the end position
  • the elements included in the height of 2 are: x 21 , x 22 , x 23 , x 31 , x 32 , x 33 .
  • the feathering length is greater than half the height of the first print data matrix.
  • the feathering length is greater than half the height of the first print data matrix, all data in the first print data matrix will be feathered, and some overlap feathers will occur, in this case printing
  • the data processing procedure is as follows: suppose the nozzle 100 has 5 nozzles 101, the width of the nozzle 100 scanned once in the first scanning direction is 5 points, and the feathering length is 3 points, then the nozzle 100 follows the first scan
  • the first printing data matrix B corresponding to the image I scanned once in the direction is:
  • the fifth processed data matrix corresponds to The image is I 2
  • the fifth processing print data matrix B 2 is:
  • the second mask template C 2 is:
  • the specific process of performing a phase-and-calculation operation on the first mask template and the data in the first printing data matrix whose height is equal to the feathering length in the second scanning direction is as follows:
  • the specific process of performing the AND operation on the data of the second mask template and the first print data matrix starting in the opposite direction to the second scanning direction and having the height equal to the feathering length is:
  • the original print data matrix D 1 is:
  • the third mask template performs an AND operation with the original print data matrix to filter out data corresponding to the non-inked dot data in the original print data matrix in the third mask template.
  • the fourth mask template and the second print data matrix are subjected to the phase-or operation with the data that has undergone the phase-and-operation operation twice, and the second printing that has undergone the phase-or operation is used in actual printing.
  • the data matrix and the fourth printing data matrix mentioned in the present invention are used for printing, so that the ink output data of the feathering overlap area in FIG. 15 is increased, thereby making up for the ink output data of the feathering overlap area made by two phase-and-operation operations. Reduce and cause local unevenness in the printed image.
  • the feathering length is less than or equal to half the height of the first print data matrix.
  • the step S3 specifically includes:
  • the nozzle 100 has six nozzles 101.
  • the width of the nozzle 100 scanned once in the first scanning direction is 6 points, and the feathering length is 2 points
  • the nozzle 100 An image T scanned once in the first scanning direction corresponds to the first print data matrix, and the image T is divided into three parts according to the feather height, namely T1, T2, and T3, and the image T1 corresponds to the first processed print data matrix, and the image T2 corresponds to The second processing print data matrix, the image T3 corresponds to the third processing print data matrix, and the specific allocation rules of the first print data matrix are as follows:
  • E represents the first printing data matrix
  • E1 represents the first processing printing data matrix
  • E2 represents the second processing printing data matrix
  • E3 represents the third processing printing data matrix
  • S312 Perform the AND operation of the first mask template and the first processed print data matrix to obtain a first print sub-print data matrix, and perform the second mask template and the third processed print data matrix
  • the second printing sub-printing data matrix is obtained by the AND operation; in this embodiment, the second processing printing data matrix is not processed.
  • S313 Combine the first print sub-print data matrix, the second processed print data matrix, and the second print sub-print data matrix in sequence to generate a second print data matrix.
  • the first printing data matrix includes a filling data matrix and an image data matrix corresponding to the image to be printed, and the image to be printed is processed by a halftone algorithm to obtain the image data matrix, and one filling data is One element and one image data are one element in the data matrix, and each element in the filling data matrix is zero.
  • the nozzle 100 enters or leaves the printing area 201 on the printing medium 200
  • the nozzle 100 that is not in the printing area 201 when the nozzle 100 scans once in the first scanning direction does not have a corresponding image data matrix.
  • Part of the nozzles 101 in the printing area are filled with data 0 to fill the data matrix, so that the entire nozzle 100 corresponds to data.
  • the data 0 indicates that no ink can be discharged; when the nozzle 100 fully enters the printing area 201 At this time, when all the nozzles 101 are in the printing area 201 when the nozzle is scanned once in the first scanning direction, the first printing data matrix corresponding to the nozzle 100 is all the image data matrix.
  • the second printing data matrix is stored in the memory of the inkjet printer according to the actual number of print coverage, and the second printing is performed according to the actual number of print coverage when printing Extracting the printing data matrix and then printing.
  • the method for extracting the second printing data matrix includes:
  • the paper feed point f is obtained by the following formula:
  • d is the nozzle height
  • r is the feathering length
  • pass is the number of original print coverage per unit area
  • f, d, r and pass are all positive integers.
  • the number of nozzle holes on the printer head unit is 360 dots
  • the precision of the image to be printed is 720 ⁇ 720 dpi, 4pass printing, when the feathering point is 180 dpi, the paper feed point is 45 dots; At 100 dpi, the paper feed points are 65 dots.
  • h is the actual number of print overlays
  • h is a positive integer greater than or equal to 2
  • f is the distance that the nozzle moves in the second scanning direction after scanning once in the first scanning direction
  • d is the height of the nozzle.
  • the present invention also discloses an inkjet printing method.
  • the area F to be printed at the nth scan is formed by the nozzles J1 and J2 on the nozzle 100 according to the printing data.
  • the printing medium moves along the second scanning direction L2 by distance G, then the area to be printed F is ejected by the J3 nozzle and J4 nozzle on the nozzle 100 according to the print data to form an image
  • the printing medium moves along the second scanning direction L2 and then moves a distance G, then the area to be printed F is ejected by the J5 nozzle and J6 nozzle on the nozzle 100 according to the print data to form an image
  • the printing medium moves along the second scanning direction L2 and then moves a distance G, then the area to be printed F is ejected by the J7 nozzle and J8 nozzle on the nozzle 100 according to the print data to form an image
  • the images formed by the four scans are combined in a specific order of dots to form the image of the area F to be printed.
  • the print data matrix corresponding to the J1 nozzle and the J2 nozzle is the first print data matrix corresponding to the scan of the nozzle 100 in the above-mentioned print data processing method in the first scanning direction L1 (n-th scan in this embodiment)
  • the data matrix corresponding to the first mask template processing, the print data matrix corresponding to the J7 nozzle and J8 nozzle is the first scan of the print head 100 in the above print data processing method along the first scanning direction L1 (in this embodiment, the nth +3 scans)
  • the data matrix after processing with the second mask template in the corresponding first print data matrix, since the second mask template is the identity matrix minus the first mask template, the first mask is generated
  • the template is complementary to the second mask template, so the data matrix after the first mask template and the original print data are combined with the data
  • the above print data processing method processes the print data for the print data corresponding to a certain scan of the print head 100 And, according to the above inkjet printing method, the print data corresponding to each scan of the nozzle 100 is processed in the same way, then the print data corresponding to each print area is also processed in the same way, and the print data processing of a certain area does not occur The phenomenon is not the same, so the density of the entire image is uniform, ensuring the quality of the product.
  • FIG. 20 is an effect diagram of inkjet printing using the print data processed by the print data processing method of the present invention. Compared with the effect diagram of FIG. There is no obvious pass path with uniform density, so the printing data processing method of the present invention can be used to process the printing data to ensure the quality of the printed product.
  • an embodiment of the present invention provides a print data processing device, and the device includes:
  • the printing data matrix obtaining module 10 is used to obtain the matrix composed of the printing data corresponding to one scan of the nozzle in the first scanning direction as the first printing data matrix and the feathering length;
  • the mask template acquisition module 20 is configured to acquire a first mask template and generate a second mask template according to the first mask template;
  • the print data matrix processing module 30 is configured to perform data processing on the first print data matrix according to the feather length, the first mask template, and the second mask template to obtain a second print data matrix.
  • print data processing method of the embodiment of the present invention described in conjunction with FIG. 2 may be implemented by a print data processing device.
  • 22 shows a schematic diagram of the hardware structure of a print data processing device provided by an embodiment of the present invention.
  • the print data processing device may include a processor 401 and a memory 402 storing computer program instructions.
  • the processor 401 may include a central processing unit (CPU), or an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured as one or more integrated circuits implementing the embodiments of the present invention.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • the memory 402 may include a large-capacity memory for data or instructions.
  • the memory 402 may include a hard disk drive (Hard Disk Drive, HDD), floppy disk drive, flash memory, optical disk, magneto-optical disk, magnetic tape, or Universal Serial Bus (USB) drive or two or more A combination of multiple of these.
  • the memory 402 may include removable or non-removable (or fixed) media.
  • the memory 402 may be internal or external to the data processing device.
  • the memory 402 is a non-volatile solid-state memory.
  • the memory 402 includes read-only memory (ROM).
  • the ROM may be mask programmed ROM, programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), electrically erasable ROM (EAROM) or flash memory or A combination of two or more of these.
  • the processor 401 reads and executes computer program instructions stored in the memory 402 to implement any one of the print data processing methods in the above embodiments.
  • the print data processing apparatus may further include a communication interface 403 and a bus 410.
  • the processor 401, the memory 402, and the communication interface 403 are connected through the bus 410 and complete communication with each other.
  • the communication interface 403 is mainly used to implement communication between modules, devices, units, and / or devices in the embodiments of the present invention.
  • the bus 410 includes hardware, software, or both, and couples the components of the print data processing device to each other.
  • the bus may include an accelerated graphics port (AGP) or other graphics bus, an enhanced industry standard architecture (EISA) bus, a front side bus (FSB), a super transport (HT) interconnect, an industry standard architecture (ISA) Bus, unlimited bandwidth interconnect, low pin count (LPC) bus, memory bus, micro channel architecture (MCA) bus, peripheral component interconnect (PCI) bus, PCI-Express (PCI-X) bus, serial advanced technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus or other suitable bus, or a combination of two or more of these.
  • the bus 410 may include one or more buses. Although embodiments of the present invention describe and illustrate a particular bus, the present invention contemplates any suitable bus or interconnect.
  • embodiments of the present invention may provide a computer-readable storage medium for implementation.
  • Computer program instructions are stored on the computer-readable storage medium; when the computer program instructions are executed by the processor, any one of the printing data processing methods in the foregoing embodiments is implemented.
  • the printing data processing method, device and storage medium provided by the embodiments of the present invention, the method according to the feather length, the first mask template and the second mask template to the first A print data matrix performs data processing to obtain a second print data matrix, so that errors due to printing accuracy and drive motors spread out as the data of the first print data matrix scatters, and as a result, the printed images overlap or The blank disappears, which ensures that the printed image will not be seriously distorted, and improves the quality and quality of the printed image.

Landscapes

  • Ink Jet (AREA)

Abstract

一种打印数据处理方法、设备及存储介质,所述方法通过获取喷头沿第一扫描方向扫描一次所对应的打印数据组成的矩阵记作第一打印数据矩阵及羽化长度(S1);获取第一掩模模板,依据所述第一掩模模板获取第二掩模模板(S2);依据所述羽化长度、所述第一掩模模板和所述第二掩模模板对所述第一打印数据矩阵进行数据处理得到第二打印数据矩阵(S3)。采用该方法保证了打印图像不会严重失真,提高了打印图像的质量及品质。

Description

打印数据处理方法、设备及存储介质 技术领域
本发明涉及喷墨打印技术领域,尤其涉及一种打印数据处理方法、设备及存储介质。
背景技术
喷墨打印技术是指通过喷头上的喷嘴将墨滴喷射到打印介质上以得到图像或文字的技术,主要包括往复式扫描打印、一次性扫描打印、多喷头并排扫描打印等,往复式扫描打印也称作多pass扫描打印,多pass扫描打印是指待打印图像的每个单元都要进行多次插补才能打印完成,每个单元都由多个像素点组成,如2pass扫描打印则每个单元由2个像素点组成,3pass扫描打印则每个单元由3个像素点组成;一次性扫描打印也称作单pass扫描打印,单pass扫描打印是指待打印图像的每个单元只需要一次扫描就可以打印完成;多喷头并排扫描打印也称作Onepass扫描打印,Onepass扫描打印是指待打印图像一次打印完成。
技术问题
如图1所示,当采用多pass扫描打印时,由于喷墨打印装置的打印精度和驱动电机误差的原因,都很难保证打印机工作时每次进纸的距离完全相等,从而导致喷头来回打印的过程中,由于两次进纸的距离存在误差导致打印出的图像存在重叠或空白间隔,进而导致打印图像失真严重,打印图像质量差品质得不到保证。因此,如何寻找一种打印质量好的打印数据处理方法,已成为本领域亟待解决的技术问题。
技术解决方案
本发明实施例提供了打印数据处理方法、设备及存储介质,用以解决现有技术中由于喷墨打印装置的打印精度和驱动电机误差导致打印图像质量差的技术问题。
第一方面,本发明实施例提供了一种打印数据处理方法,所述方法包括:
获取喷头沿第一扫描方向扫描一次所对应的打印数据组成的矩阵记作第一打印数据矩阵及羽化长度;
获取第一掩模模板,依据所述第一掩模模板生成第二掩模模板;
依据所述羽化长度、将所述第一掩模模板和所述第二掩模模板对所述第一打印数据矩阵进行数据处理得到第二打印数据矩阵。
第二方面,本发明实施例提供了一种打印数据处理设备,所述设备包括:至少一个处理器、至少一个存储器以及存储在所述存储器中的计算机程序指令,当所述计算机程序指令被所述处理器执行时实现打印数据处理方法,所述打印数据处理方法包括:
获取喷头沿第一扫描方向扫描一次所对应的打印数据组成的矩阵记作第一打印数据矩阵及羽化长度;
获取第一掩模模板,依据所述第一掩模模板生成第二掩模模板;
依据所述羽化长度、将所述第一掩模模板和所述第二掩模模板对所述第一打印数据矩阵进行数据处理得到第二打印数据矩阵。
第三方面,本发明实施例提供了一种存储介质,其上存储有计算机程序指令,当计算机程序指令被处理器执行时实现如上述实施方式中第一方面的方法。
有益效果
本发明实施例提供的打印数据处理方法、设备及存储介质,所述方法依据羽化长度、所述第一掩模模板和所述第二掩模模板对所述第一打印数据矩阵进行数据处理得到用于打印的第二打印数据矩阵,使得由于打印精度及驱动电机造成的误差随着第一打印数据矩阵的数据分散而将误差扩散开来,尽而使得打印图像存在的重叠或空白消失,保证了打印图像不会严重失真,提高了打印图像的质量及品质。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造 性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中未经过打印数据处理的效果图。
图2是本发明最佳实施例的打印数据处理方法的第一流程图。
图3是本发明实施例的打印数据处理方法中的喷头示意图。
图4是本发明最佳实施例的打印数据处理方法的第二流程图。
图5是本发明最佳实施例的打印数据处理方法的待打印图像单位区域打印示意图。
图6是本发明最佳实施例的打印数据处理方法的打印数据拆分处理示意图。
图7是本发明最佳实施例的打印数据处理方法的第三流程图。
图8是本发明最佳实施例的打印数据处理方法的第一应用场景的掩模模板图。
图9是本发明最佳实施例的打印数据处理方法第二应用场景的掩模模板图。
图10是本发明最佳实施例的打印数据处理方法第三应用场景的掩模模板图。
图11是本发明最佳实施例的打印数据处理方法第四应用场景的掩模模板图。
图12是本发明最佳实施例的打印数据处理方法第五应用场景的掩模模板图。
图13是本发明最佳实施例的打印数据处理方法第六应用场景的掩模模板图。
图14是本发明最佳实施例的打印数据处理方法的第一数据处理示意图。
图15是本发明最佳实施例的打印数据处理方法的第四流程图。
图16是本发明最佳实施例的打印数据处理方法的第五流程图。
图17是本发明最佳实施例的打印数据处理方法的第二数据处理示意图。
图18是本发明最佳实施例的打印数据处理方法中的喷头与打印区域位置示意图。
图19是本发明第一实施例的喷墨打印方法示意图。
图20是本发明实施例的经打印数据处理方法处理后的打印效果图。
图21是本发明第二实施例的打印数据处理装置的结构示意图。
图22是本发明第三实施例的打印数据处理设备的结构示意图。
本发明最佳的实施方式
下面将详细描述本发明的各个方面的特征和示例性实施例,为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本发明,并不被配置为限定本发明。对于本领域技术人员来说,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本发明的示例来提供对本发明更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本发明实施例提供了一种打印数据处理方法,该方法依据羽化长度、所述第一掩模模板和所述第二掩模模板对所述第一打印数据矩阵进行掩模处理得到用于打印的第二打印数据矩阵,使得由于打印精度及驱动电机造成的误差随着第一打印数据矩阵的数据分散而将误差扩散开来,尽而使得打印图像存在的重叠或空白消失,保证了打印图像不会严重失真,提高了打印图像的质量及品质。其中,本发明中所描述的数据矩阵的行数为矩阵的高度,列数为矩阵的宽度,且一行是一个单位高度,一列是一个单位宽度,数据矩阵中的每一元素都代表打印设备中喷嘴的出墨情况。如在一个实施例中,数据矩阵中的元素只包括0和1,0代表喷嘴不出墨,1代表喷嘴出墨,其中数据矩阵中的元素也可以采用 其他数值表示,在此不做具体限定。
请参见图2,所述方法包括如下步骤:
S1、获取喷头沿第一扫描方向扫描一次所对应的打印数据组成的矩阵记作第一打印数据矩阵及羽化长度;这里,沿着第一扫描方向扫描一次所对应的打印数据是依次排列组成矩阵,打印数据有多个,每个打印数据对应作为矩阵中的一个元素。
请参阅图3,在本实施例中,所述喷头100上有若干个喷嘴101,若干个所述喷嘴101沿第二扫描方向L2以均匀的间距分布,所述喷头100沿第一扫描方向L1来回扫描以形成图像;在本实施例中,所述喷头100沿第一扫描方向L1扫描一次所对应的打印数据矩阵的高度等于所述喷头100上喷嘴101的个数,与第一扫描方向垂直的方向L2就是喷头100的第二扫描方向,设所述喷头100上喷嘴101的个数为m,m为大于等于1的整数,则所述第一打印数据矩阵为:
Figure PCTCN2019108800-appb-000001
其中,n是所述第一打印数据矩阵的宽度,n为大于等于1的整数,所述第一打印数据矩阵的宽度由打印幅宽和打印精度决定,所述第一打印数据矩阵的起始位置为a 11,结束位置为a mn
请参阅图4,所述第一打印数据矩阵具体通过如下步骤获取:
S11、获取单位区域内的原始打印覆盖次数及当前打印所用打印机的喷头单元在所述第二扫描方向上的高度记作喷头高度;
S12、依据所述原始打印覆盖次数和所述喷头高度获取拼接在由待打印图像光栅化处理得到的图像数据前后的填充数据;
S13、依据所述原始打印覆盖次数和所述喷头高度将由所述图像数据和所述填充数据拼接的打印数据矩阵拆分成若干份所述第一打印数据矩阵,所述第一打印数据矩阵与所述喷头高度相等。
具体的,请参阅图5,在本实施例中,单位区域内的原始打印覆盖次数为4,则在对第一单位区域Z 1和最后一个单位区域Zn进行打印时,由于需要重复覆盖4次,所以存在部分喷头在待打印图像外的情况,为了便于数据处理需要在待打印图像对应的图像数据前后分别填充数据高度为喷头高度的3/4的零数据矩阵,然后依据所述原始打印覆盖次数将拼接了填充数据矩阵的待打印数据矩阵拆分成4份中间数据矩阵,将每份中间数据矩阵按照喷头高度拆分成若干份第一打印数据矩阵,具体请参阅图6,在本实施例中,所述喷头高度为4个喷嘴高,拼接了填充数据矩阵的待打印数据矩阵A由数字1、2、3、4组成,进行数据拆分时将待打印数据A中的所有1提取出来组成中间数据矩阵A1、所有2提取出来组成中间数据A2、所有3提取出来组成中间数据A3、所有4提取出来组成中间数据A4,依据喷头高度4个喷嘴高将中间数据矩阵A1拆分成多个第一打印数据矩阵A11、A12、A13……,其他中间数据A2、A3、A4按照A1的拆分方法进行拆分,其中,以上数据都是为了便于说明数据的拆分原理而给的假设数据,实际打印过程中的数据量远大于本实施例中的数据量。
S2、获取第一掩模模板,依据所述第一掩模模板生成第二掩模模板;
优选地,获取高度与所述羽化长度相等的第一掩模模板;获取与所述第一掩模模板中的元素数量相同的单位矩阵;依据所述单位矩阵和所述第一掩模模板生成所述第二掩模模板。具体的,所述第一掩模模板的高度与所述羽化长度相等,所述第二掩模模板等于单位矩阵减去所述第一掩模模板,所述第一掩模模板即第一掩模矩阵,所述第二掩模模板即第二掩模矩阵。在本实施例中,所述第一掩模矩阵的宽度等于所述第一打印数据矩阵的宽度,所述第二掩模矩阵的宽度等于所述第一打印数据矩阵的宽度。
在另一实施例中,所述第一掩模矩阵的宽度不等于所述第一打印数据矩阵的宽度,则请参阅图7,所述第一掩模模板和所述第二掩模模板的获取方法包括如下步骤:
S21、根据所述羽化长度获取预设掩模模板;
S22、根据所述预设掩模模板选取灰度图;
S23、依据所述灰度图得到所述位图图像矩阵;
S24、获取所述第一打印数据矩阵与所述位图图像矩阵的宽度;
S25、依据所述第一打印数据矩阵与所述位图图像矩阵的宽度处理所述位图图像矩阵得到所述第一掩模模板,使得所述第一掩模模板的宽度与所述第一打印数据矩阵的宽度相等;
S26、用单位矩阵减去所述第一掩模模板得到所述第二掩模模板。
具体的,根据不同的打印要求及不同的打印场景确定所述预设掩模模板,如图8,该预设掩模模板从上到下浓度从0逐渐均匀过渡到100%,浓度为0的地方对应打印机喷头的边缘部分,浓度100%的地方对应衔接未进行掩模处理的数据,该预设掩模模板适用于大多数场景。如图9,该预设掩模模板横向的浓度渐变不均匀,横向为循环变化的浓度带,这种循环变化的浓度带有助于消除打印机在来回打印时所述产生的阴阳道,所述阴阳道是打印机在运动的过程中由于重力及惯性的影响,使得墨水落点参差不齐,从而导致喷头在来回打印的过程中喷打的点分布不规律,进而导致打印出来的图像墨水浓度不均匀的现象。如图10,该预设掩模模板纵向及横向的浓度分布都不均匀且中间有细丝状部分,该预设掩模模板不仅能消除所述阴阳道,且能消除喷头来回打印产生的横向接痕。如图11,该预设掩模模板是通过将上下两层数据相与而得到的,该预设掩模模板不仅能消除阴阳道,且能消除纵向过度不均匀的现象。如图12,该预设掩模模板融合了图9及图10两种模板,可进一步抵消某一种模板可能产生的一些缺陷。如图13,该预设掩模模板能够解决未加热或者打印载体吸收墨水能力不强而导致打印效果不好的问题。
根据预设掩模模板选取对应的灰度图,通过将相应的灰度图通过半色调算法中的误差扩散算法处理得到位图图像矩阵,所述位图图像矩阵的高度与所述羽化长度相等,其中也可以通过抖动法或迭代法处理灰度图得到位图图像矩阵,误差扩散算法、抖动法、迭代法都是图像处理中常用的处理方法,具体内容在此不再赘述。比较所述第一打印数据矩阵与所述位图图像矩阵的宽度确定第一掩模模板和第二掩模模板,使得所述第一掩模模板的宽度与所述第一打印数据 矩阵的宽度相等,具体方法包括:
当所述第一打印数据矩阵的宽度大于所述位图图像矩阵的宽度时,将若干个所述位图图像矩阵拼接形成所述第一掩模模板,所述第一掩模模板通过以下公式得到:
Figure PCTCN2019108800-appb-000002
Figure PCTCN2019108800-appb-000003
其中,B j表示所述第一掩模模板,A mn表示所述位图图像矩阵,j表示所述位图图像矩阵A mn的个数且为正整数,c表示所述第一打印数据矩阵的宽度且为正整数,
Figure PCTCN2019108800-appb-000004
为向上取整符号,m表示所述位图图像矩阵A mn的高度且为正整数,n表示所述位图图像矩阵A mn的宽度且为正整数。
当所述第一打印数据矩阵的宽度等于所述位图图像矩阵的宽度时,直接将所述位图图像矩阵作为所述第一掩模模板。
当所述第一打印数据矩阵的宽度小于所述位图图像矩阵的宽度时,将所述位图图像矩阵分成若干份子位图图像矩阵,选取其中一份子位图图像矩阵作为所述第一掩模模板,所述子位图图像矩阵的高度及宽度分别等于所述第一打印数据矩阵的高度及宽度,所述位图图像矩阵为A mn,所述子图像矩阵H mr通过以下方式获得:
Figure PCTCN2019108800-appb-000005
其中,m表示所述位图图像矩阵A mn的高度且为正整数,n表示所述位图图像矩阵A mn的宽度且为正整数,r表示所述子位图图像矩阵H mr的宽度且为正整数,同时r<n,所述子位图图像矩阵H mr的高度于所述位图图像矩阵A mn的高度相等同 为m。
S3、依据所述羽化长度、将所述第一掩模模板和所述第二掩模模板对所述第一打印数据矩阵进行数据处理得到第二打印数据矩阵。
具体的,将所述第一掩模模板与所述第一打印数据矩阵中从起始位置开始高度与所述羽化长度相等的数据进行运算得到中间打印数据矩阵;将所述第二掩模模板与所述第一中间打印数据矩阵中从结束位置开始反向高度与所述羽化长度相等的数据进行运算得到第二打印数据矩阵。如矩阵X为:
Figure PCTCN2019108800-appb-000006
则起始位置为x 11,结束位置为x 33,从起始位置开始高度为2包括的元素为:x 11、x 12、x 13、x 21、x 22、x 23,从结束位置开始反向高度为2包括的元素为:x 21、x 22、x 23、x 31、x 32、x 33
优选地,所述羽化长度大于所述第一打印数据矩阵高度的一半。请参阅图14,当所述羽化长度大于所述第一打印数据矩阵高度的一半时,所述第一打印数据矩阵中的数据将都进行羽化处理,且有部分出现重叠羽化,此情况下打印数据的处理过程为:设喷头100上有5个喷嘴101,所述喷头100沿第一扫描方向扫描一次的宽度为5个点,所述羽化长度为3个点,则喷头100沿第一扫描方向扫描一次的图像I对应的所述第一打印数据矩阵B为:
Figure PCTCN2019108800-appb-000007
从所述第一打印数据矩阵中沿第二扫描方向开始截取高度与所述羽化长度相等的数据作为第四处理打印数据矩阵,如图14,所述第四处理打印数据矩阵对应的图像为I 1,所述第四处理打印数据矩阵B 1为:
Figure PCTCN2019108800-appb-000008
从所述第一打印数据矩阵中沿与第二扫描方向相反的方向开始截取高度与所述羽化长度相等的数据作为第五处理打印数据矩阵,如图14,所述第五处理数据矩阵对应的图像为I 2,所述第五处理打印数据矩阵B 2为:
Figure PCTCN2019108800-appb-000009
设所述第一掩模模板C 1为:
Figure PCTCN2019108800-appb-000010
所述第二掩模模板C 2为:
Figure PCTCN2019108800-appb-000011
在本实施例中所述第一掩模模板与所述第一打印数据矩阵中沿第二扫描方向开始高度与所述羽化长度相等的数据进行相与运算的具体过程为:
Figure PCTCN2019108800-appb-000012
在本实施例中所述第二掩模模板与所述第一打印数据矩阵中沿与第二扫描方向相反的方向开始高度与所述羽化长度相等的数据进行相与运算的具体过程为:
Figure PCTCN2019108800-appb-000013
从所述第四处理打印数据矩阵B 1和所述第五处点阵理数据B 2可以明确看出两个打印数据矩阵有部分重叠,而在与掩模模板进行相与运算时重叠部分的数据被处理了两次,这样使得重叠打印数据矩阵中的出墨数据减少,这样可能导致打印出来的图像出现局部不均匀,为了解决可能的不均匀,请参阅图15,可以进一步采用以下步骤:
S4、从所述第一打印数据矩阵中获取所述第二打印数据矩阵中进行了两次相与运算的打印数据矩阵的原始打印数据矩阵,所述原始打印数据矩阵D 1为:
D 1=[b 31 b 32 b 33 b 34 b 35]
S5、获取与所述原始打印数据矩阵高度相等的第三掩模模板,将所述第三掩模模板与所述原始打印数据矩阵进行相与运算得到第四掩模模板;
S6、将所述第四掩模模板与所述第二打印数据矩阵中进行了两次相与运算的数据进行相或运算,将经过相或运算的所述第二打印数据矩阵记作第四打印数据矩阵。其中,所述第三掩模模板、第四掩模模板中的元素与所述原始打印数据矩阵中的元素一一对应。
在本实施例中,所述第三掩模模板与所述原始打印数据矩阵进行相与运算将第三掩模模板中与所述原始打印数据矩阵中的非出墨点数据对应的数据过滤掉了,然后将所述第四掩模模板与所述第二打印数据矩阵中进行了两次相与运算的数据进行相或运算,实际打印时将采用进行了相或运算的所述第二打印数据矩阵及本发明中提到的所述第四打印数据矩阵进行打印,这样使得图15中的羽化重叠区域的出墨数据增多,从而弥补了两次相与运算使得羽化重叠区域的出墨数据减少而导致打印出来的图像出现局部不均匀的问题。
优选地,所述羽化长度小于等于所述第一打印数据矩阵高度的一半。
请参阅图16,当所述羽化长度小于等于所述第一打印数据矩阵高度的一半 时,所述步骤S3具体包括:
S311、依据所述羽化长度将所述第一打印数据矩阵沿第二扫描方向依次分成三份分别为第一处理打印数据矩阵、第二处理打印数据矩阵、第三处理打印数据矩阵,所述第一处理打印数据矩阵与所述第三处理打印数据矩阵的高度相等且等于所述羽化长度,所述第一处理打印数据矩阵、所述第二处理打印数据矩阵与所述第三处理打印数据矩阵的高度和等于所述第一打印数据矩阵的高度;
具体来说,请参阅图17,设喷头100上有6个喷嘴101,所述喷头100沿第一扫描方向扫描1次的宽度为6个点,所述羽化长度为2个点,则喷头100沿第一扫描方向扫描1次的图像T对应所述第一打印数据矩阵,图像T依据羽化高度被分成三份分别为T1、T2和T3,图像T1对应第一处理打印数据矩阵,图像T2对应第二处理打印数据矩阵,图像T3对应第三处理打印数据矩阵,所述第一打印数据矩阵的具体分配规则如下:
Figure PCTCN2019108800-appb-000014
其中,E表示第一打印数据矩阵,E1表示第一处理打印数据矩阵,E2表示第二处理打印数据矩阵,E3表示第三处理打印数据矩阵。
S312、将所述第一掩模模板与所述第一处理打印数据矩阵进行相与运算得到第一打印子打印数据矩阵,将所述第二掩模模板与所述第三处理打印数据矩阵进行相与运算得到第二打印子打印数据矩阵;在本实施例中,所述第二处理打印数据矩阵不做处理。
S313、依次将所述第一打印子打印数据矩阵、第二处理打印数据矩阵、第二打印子打印数据矩阵合并生成第二打印数据矩阵。
请参阅图18,所述第一打印数据矩阵包括填充数据矩阵和待打印图像对应 的图像数据矩阵,将待打印图像进行半色调算法处理得到所述图像数据矩阵,一个填充数据为数据矩阵中的一个元素,一个图像数据为数据矩阵中的一个元素,所述填充数据矩阵中的各个元素都为零。如当喷头100进入或离开打印介质200上的打印区域201时,喷头100沿第一扫描方向扫描1次时未处于打印区域201的部分喷嘴101没有对应的图像数据矩阵,此时需要将未处于打印区域的部分喷嘴101对应填入数据0即填充数据矩阵,从而使得整个喷头100都对应有数据,在本实施例中所述数据0表示不出墨;而当喷头100完全进入打印区域201时,此时喷头沿第一扫描方向扫描1次时所有喷嘴101都在打印区域201内,则所述喷头100所对应的第一打印数据矩阵都是图像数据矩阵。
优选地,当获得所述第二打印数据矩阵之后,将所述第二打印数据矩阵根据实际打印覆盖次数存入喷墨打印机的内存中,当打印时则根据实际打印覆盖次数进行所述第二打印数据矩阵的提取,然后打印,所述第二打印数据矩阵的提取方法包括:
依据羽化长度及原始打印覆盖次数获取所述喷头沿第一扫描方向扫描一次后在第二扫描方向移动的距离记作走纸点数;
依据所述走纸点数及喷头高度获取单位区域内的实际打印覆盖次数;
依据所述实际打印覆盖次数提取所述第二打印数据矩阵。
具体的,所述走纸点数f通过以下公式获得:
Figure PCTCN2019108800-appb-000015
其中,d为喷头高度,r为羽化长度,pass为单位区域的原始打印覆盖次数,f、d、r及pass都为正整数。在本实施例中,打印机喷头单元上喷孔的个数为360dot,待打印图像的精度为720×720dpi,4pass打印,当羽化点数为180dpi时,所述走纸点数为45dot;当羽化点数为100dpi时,所述走纸点数为65dot。
所述实际打印覆盖次数通过以下公式获得:
Figure PCTCN2019108800-appb-000016
其中,h为所述实际打印覆盖次数,h为大于等于2的正整数,f为所述喷头沿第一扫描方向扫描一次后在第二扫描方向移动的距离,d为喷头高度。
本发明的实施方式
实施例1
请参阅图19,本发明还公开了一种喷墨打印方法,对于某一待打印区域F,第n次扫描时待打印区域F由喷头100上的J1喷嘴和J2喷嘴依据打印数据出墨形成图像
Figure PCTCN2019108800-appb-000017
第n+1次扫描时打印介质沿第二扫描方向L2移动距离G,则待打印区域F由喷头100上的J3喷嘴和J4喷嘴依据打印数据出墨形成图像
Figure PCTCN2019108800-appb-000018
第n+2次扫描时打印介质沿第二扫描方向L2再移动距离G,则待打印区域F由喷头100上的J5喷嘴和J6喷嘴依据打印数据出墨形成图像
Figure PCTCN2019108800-appb-000019
第n+3次扫描时打印介质沿第二扫描方向L2再移动距离G,则待打印区域F由喷头100上的J7喷嘴和J8喷嘴依据打印数据出墨形成图像
Figure PCTCN2019108800-appb-000020
四次扫描形成的图像按照特定点位顺序组合就形成了待打印区域F的图像。从图中可以看出J1喷嘴和J2喷嘴第n次扫描形成的图像
Figure PCTCN2019108800-appb-000021
覆盖上J7喷嘴和J8喷嘴第n+3次扫描形成的图像
Figure PCTCN2019108800-appb-000022
后就可以呈现出图像
Figure PCTCN2019108800-appb-000023
而J1喷嘴和J2喷嘴对应的打印数据矩阵就是上述打印数据处理方法中的喷头100沿第一扫描方向L1扫描1次(在本实施例中为第n次扫描)对应的第一打印数据矩阵中与第一掩模模板处理后的数据矩阵,J7喷嘴和J8喷嘴对应的打印数据矩阵就是上述打印数据处理方法中的喷头100沿第一扫描方向L1扫描1次(在本实施例中为第n+3次扫描)对应的第一打印数据矩阵中与第二掩模模板处理后的数据矩阵,由于所述第二掩模模板是单位矩阵减去第一掩模模板而生成的即第一掩模模板与第二掩模模板互补,所以第一掩模模板与原始打印数据相与运算后的数据矩阵和第二掩模模板与原始打印数据相与运算后得到的数据矩阵是互补的,即第一掩模模板使原始打印数据矩阵变稀疏尽而使得由于电机或步进误差造成的打印图像密度不均匀的误差扩散,然后再用第二掩模模板将原始打印数据补充完整使得图像密度均匀。尽管待打印区域F的第n次打印数据是在第n+3次补偿完成的,而上述打印数据处理方法中对打印数据的处理是针对喷头100的某一次扫描所对应的打印数据进行的处理,且 依据上述喷墨打印方法,对喷头100每扫描一次对应的打印数据都做同样的处理,则每一打印区域对应的打印数据也做了同样的处理,不会出现某一区域打印数据处理不相同的现象,所以整个图像的密度均匀,保证了产品的质量。
请参阅图20是采用本发明的打印数据处理方法处理后的打印数据进行喷墨打印的效果图,相比于图1中未经本发明实施例的打印数据处理的效果图而言,该图密度均匀没有明显的pass道,所以采用本发明的打印数据处理方法处理打印数据可以保证打印产品的质量。
实施例2
请参阅图21,本发明实施例提供了一种打印数据处理装置,所述装置包括:
打印数据矩阵获取模块10,用于获取喷头沿第一扫描方向扫描一次所对应的打印数据组成的矩阵记作第一打印数据矩阵及羽化长度;
掩模模板获取模块20,用于获取第一掩模模板,依据所述第一掩模模板生成第二掩模模板;
打印数据矩阵处理模块30,用于依据所述羽化长度、所述第一掩模模板和所述第二掩模模板对所述第一打印数据矩阵进行数据处理得到第二打印数据矩阵。
实施例3
另外,结合图2描述的本发明实施例的打印数据处理方法可以由打印数据处理设备来实现。图22示出了本发明实施例提供的打印数据处理设备的硬件结构示意图。
打印数据处理设备可以包括处理器401以及存储有计算机程序指令的存储器402。
具体地,上述处理器401可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本发明实施例的一个或多个集成电路。
存储器402可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器402可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器402可包括可移除或 不可移除(或固定)的介质。在合适的情况下,存储器402可在数据处理装置的内部或外部。在特定实施例中,存储器402是非易失性固态存储器。在特定实施例中,存储器402包括只读存储器(ROM)。在合适的情况下,该ROM可以是掩模编程的ROM、可编程ROM(PROM)、可擦除PROM(EPROM)、电可擦除PROM(EEPROM)、电可改写ROM(EAROM)或闪存或者两个或更多个以上这些的组合。
处理器401通过读取并执行存储器402中存储的计算机程序指令,以实现上述实施例中的任意一种打印数据处理方法。
在一个示例中,打印数据处理设备还可包括通信接口403和总线410。其中,如图22所示,处理器401、存储器402、通信接口403通过总线410连接并完成相互间的通信。
通信接口403,主要用于实现本发明实施例中各模块、装置、单元和/或设备之间的通信。
总线410包括硬件、软件或两者,将打印数据处理设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(AGP)或其他图形总线、增强工业标准架构(EISA)总线、前端总线(FSB)、超传输(HT)互连、工业标准架构(ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线410可包括一个或多个总线。尽管本发明实施例描述和示出了特定的总线,但本发明考虑任何合适的总线或互连。
实施例3
另外,结合上述实施例中的打印数据处理方法,本发明实施例可提供一种计算机可读存储介质来实现。该计算机可读存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现上述各个实施例中的任意一种打印数据处理方法。
工业实用性
综上所述,本发明实施例提供的打印数据处理方法、设备及存储介质,所 述方法依据所述羽化长度、将所述第一掩模模板和所述第二掩模模板对所述第一打印数据矩阵进行数据处理得到第二打印数据矩阵,使得由于打印精度及驱动电机造成的误差随着第一打印数据矩阵的数据分散而将误差扩散开来,尽而使得打印图像存在的重叠或空白消失,保证了打印图像不会严重失真,提高了打印图像的质量及品质。
以上所述,仅为本发明的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。

Claims (20)

  1. 一种打印数据处理方法,其特征在于,所述方法包括:
    获取喷头沿第一扫描方向扫描一次所对应的打印数据组成的矩阵记作第一打印数据矩阵及羽化长度;
    获取第一掩模模板,依据所述第一掩模模板生成第二掩模模板;
    依据所述羽化长度、所述第一掩模模板和所述第二掩模模板对所述第一打印数据矩阵进行数据处理得到第二打印数据矩阵。
  2. 根据权利要求1所述的打印数据处理方法,其特征在于,所述依据所述羽化长度、所述第一掩模模板和所述第二掩模模板对所述第一打印数据矩阵进行数据处理得到第二打印数据矩阵包括:
    将所述第一掩模模板与所述第一打印数据矩阵中从起始位置开始高度与所述羽化长度相等的数据进行运算得到中间打印数据矩阵;
    将所述第二掩模模板与所述第一中间打印数据矩阵中从结束位置开始反向高度与所述羽化长度相等的数据进行运算得到第二打印数据矩阵。
  3. 根据权利要求2所述的打印数据处理方法,其特征在于,所述第一打印数据矩阵包括填充数据矩阵和待打印图像对应的图像数据矩阵,所述填充数据矩阵中的各个元素都为零。
  4. 根据权利要求2所述的打印数据处理方法,其特征在于,所述羽化长度大于所述第一打印数据矩阵高度的一半。
  5. 根据权利要求4所述的打印数据处理方法,其特征在于,所述依据所述羽化长度、所述第一掩模模板和所述第二掩模模板对所述第一打印数据矩阵进行数据处理得到第二打印数据矩阵后,所述方法还包括:
    从所述第一打印数据矩阵中获取所述第二打印数据矩阵中进行了两次掩模运算的数据的原始打印数据矩阵;
    获取与所述原始打印数据矩阵高度相等的第三掩模模板,将所述第三掩模模板与所述原始打印数据矩阵进行相与运算得到第四掩模模板;
    将所述第四掩模模板与所述第二打印数据矩阵中进行了两次相与运算的数 据进行相或运算,将经过相或运算的所述第二打印数据矩阵记作第四打印数据矩阵。
  6. 根据权利要求2所述的打印数据处理方法,其特征在于,所述羽化长度小于等于所述第一打印数据矩阵高度的一半。
  7. 根据权利要求6所述的打印数据处理方法,其特征在于,所述依据所述羽化长度、所述第一掩模模板和所述第二掩模模板对所述第一打印数据矩阵进行数据处理得到第二打印数据矩阵包括:
    依据所述羽化长度将所述第一打印数据矩阵沿所述第二扫描方向依次分为第一处理打印数据矩阵、第二处理打印数据矩阵、第三处理打印数据矩阵,所述第一处理打印数据矩阵与所述第三处理打印数据矩阵的高度相等且等于所述羽化长度,所述第一处理打印数据矩阵、所述第二处理打印数据矩阵与所述第三处理打印数据矩阵的高度之和等于所述第一打印数据矩阵的高度;
    将所述第一掩模模板与所述第一处理打印数据矩阵进行相与运算得到第一打印子打印数据矩阵,将所述第二掩模模板与所述第三处理打印数据矩阵进行相与运算得到第二打印子打印数据矩阵;
    依次将所述第一打印子打印数据矩阵、第二处理打印数据矩阵、第二打印子打印数据矩阵合并生成第二打印数据矩阵。
  8. 根据权利要求1所述的打印数据处理方法,其特征在于,所述获取喷头沿第一扫描方向扫描一次所对应的打印数据组成的矩阵记作第一打印数据矩阵包括:
    获取单位区域内的原始打印覆盖次数及当前打印所用打印机的喷头单元在所述第二扫描方向上的高度记作喷头高度;
    依据所述原始打印覆盖次数和所述喷头高度获取所述图像数据矩阵前后的填充数据矩阵;
    依据所述原始打印覆盖次数和所述喷头高度将由所述图像数据矩阵和所述填充数据矩阵拼接的打印数据矩阵拆分成若干份所述第一打印数据矩阵,所述第一打印数据矩阵与所述喷头高度相等。
  9. 根据权利要求8所述的打印数据处理方法,其特征在于,所述方法还包括:
    依据羽化长度及原始打印覆盖次数获取所述喷头沿第一扫描方向扫描一次后在第二方向移动的距离记作走纸点数;
    依据所述走纸点数及喷头高度获取单位区域内的实际打印覆盖次数;
    依据所述实际打印覆盖次数提取所述第二打印数据矩阵。
  10. 根据权利要求9所述的打印数据处理方法,其特征在于,所述走纸点数f通过以下公式获得:
    Figure PCTCN2019108800-appb-100001
    其中,d为喷头高度,r为羽化长度,pass为单位区域的原始打印覆盖次数,f、d、r及pass都为正整数。
  11. 根据权利要求10所述的打印数据处理方法,其特征在于,所述实际打印覆盖次数通过以下公式获得:
    Figure PCTCN2019108800-appb-100002
    其中,h为所述实际打印覆盖次数,h为大于等于2的正整数,f为所述喷头沿第一扫描方向扫描一次后在第二扫描方向移动的距离,d为喷头高度。
  12. 根据权利要求1所述的打印数据处理方法,其特征在于,获取第一掩模模板,所述依据所述第一掩模模板生成第二掩模模板包括:
    获取高度与所述羽化长度相等的第一掩模模板;
    获取与所述第一掩模模板中的元素数量相同的单位矩阵;
    依据所述单位矩阵和所述第一掩模模板生成所述第二掩模模板。
  13. 根据权利要求12所述的打印数据处理方法,其特征在于,所述获取高度与所述羽化长度相等的第一掩模模板包括:
    根据所述羽化长度获取预设的掩模模板;
    根据所述预设掩模模板选取灰度图;
    依据所述灰度图得到所述位图图像矩阵;
    获取所述第一打印数据矩阵与所述位图图像矩阵的宽度;
    依据所述第一打印数据矩阵与所述位图图像矩阵的宽度处理所述位图图像矩阵得到所述第一掩模模板,使得所述第一掩模模板的宽度与所述第一打印数据矩阵的宽度相等。
  14. 根据权利要求13所述的打印数据处理方法,其特征在于,所述依据所述灰度图得到所述位图图像矩阵包括:
    将所述灰度图经过半色调算法处理得到所述位图图像矩阵。
  15. 根据权利要求14所述的打印数据处理方法,其特征在于,所述半色调算法为抖动法、误差扩散法、迭代法中的一种。
  16. 根据权利要求13所述的打印数据处理方法,其特征在于,所述依据所述第一打印数据矩阵与所述位图图像矩阵的宽度处理所述位图图像矩阵得到所述第一掩模模板,使得所述第一掩模模板的宽度与所述第一打印数据矩阵的宽度相等包括:
    当所述第一打印数据矩阵的宽度大于所述位图图像矩阵的宽度时,将若干个所述位图图像矩阵拼接形成所述第一掩模模板;
    当所述第一打印数据的宽度等于所述位图图像矩阵的宽度时,直接将所述位图图像矩阵作为所述第一掩模模板;
    当所述第一打印数据的宽度小于所述位图图像矩阵的宽度时,将所述位图图像矩阵分成若干份子位图图像矩阵,选取其中一份子位图图像矩阵作为所述第一掩模模板,所述子位图图像矩阵的高度及宽度分别等于所述第一打印数据矩阵的高度及宽度。
  17. 根据权利要求16所述的打印数据处理方法,其特征在于,所述当所述第一打印数据矩阵的宽度大于所述位图图像矩阵的宽度时,将若干个所述位图图像矩阵拼接形成所述第一掩模模板,则所述第一掩模模板通过以下公式得到:
    Figure PCTCN2019108800-appb-100003
    Figure PCTCN2019108800-appb-100004
    其中,B j表示所述第一掩模模板,A mn表示所述位图图像矩阵,j表示所述位图图像矩阵A mn的个数且为正整数,c表示所述第一打印数据矩阵的宽度且为正整数,
    Figure PCTCN2019108800-appb-100005
    为向上取整符号,m表示所述位图图像矩阵A mn的高度且为正整数,n表示所述位图图像矩阵A mn的宽度且为正整数。
  18. 一种打印数据处理设备,其特征在于,所述设备包括:至少一个处理器、至少一个存储器以及存储在所述存储器中的计算机程序指令,当所述计算机程序指令被所述处理器执行时实现打印数据处理方法,所述打印数据处理方法包括:
    获取喷头沿第一扫描方向扫描一次所对应的打印数据组成的矩阵记作第一打印数据矩阵及羽化长度;
    获取第一掩模模板,依据所述第一掩模模板获取第二掩模模板;
    依据所述羽化长度、所述第一掩模模板和所述第二掩模模板对所述第一打印数据矩阵进行数据处理得到第二打印数据矩阵。
  19. 根据权利要求18所述的打印数据处理设备,其特征在于,所述打印数据处理方法还包括:
    获取单位区域内的原始打印覆盖次数及当前打印所用打印机的喷头单元在所述第二方向上的高度记作喷头高度;
    依据所述原始打印覆盖次数和所述喷头高度获取拼接在由待打印图像光栅化处理得到的图像数据矩阵前后的填充数据矩阵;
    依据所述原始打印覆盖次数和所述喷头高度将由所述图像数据矩阵和所述填充数据矩阵拼接的数据矩阵拆分成若干份所述第一打印数据矩阵,所述第一打印数据矩阵与所述喷头高度相等。
  20. 一种存储介质,其上存储有计算机程序指令,其特征在于,当所述计算机程序指令被处理器执行时实现如权利要求1所述的打印数据处理方法。
PCT/CN2019/108800 2018-10-13 2019-09-28 打印数据处理方法、设备及存储介质 WO2020073836A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811192753.1 2018-10-13
CN201811192763.5A CN109272471B (zh) 2018-10-13 2018-10-13 打印数据羽化处理方法、装置、设备及存储介质
CN201811192763.5 2018-10-13
CN201811192753.1A CN109254742B (zh) 2018-10-13 2018-10-13 喷墨打印方法、喷墨打印装置及喷墨打印设备

Publications (1)

Publication Number Publication Date
WO2020073836A1 true WO2020073836A1 (zh) 2020-04-16

Family

ID=70163753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108800 WO2020073836A1 (zh) 2018-10-13 2019-09-28 打印数据处理方法、设备及存储介质

Country Status (1)

Country Link
WO (1) WO2020073836A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113934380A (zh) * 2020-06-29 2022-01-14 森大(深圳)技术有限公司 用于圆柱体打印的羽化处理方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7497538B2 (en) * 2006-08-08 2009-03-03 Lexmark International, Inc. Method of multipass printing using a plurality of halftone patterns of dots
CN103660640A (zh) * 2012-09-24 2014-03-26 长沙八思量信息技术有限公司 采用fpga实现位运算的高速喷绘机控制系统
CN105103529A (zh) * 2013-01-29 2015-11-25 惠普发展公司,有限责任合伙企业 打印机和处理要打印的图像的方法
CN108177442A (zh) * 2018-01-17 2018-06-19 森大(深圳)技术有限公司 喷嘴异常补偿方法、装置、喷墨打印设备及存储介质
CN108340675A (zh) * 2017-01-25 2018-07-31 精工爱普生株式会社 图像处理方法、打印方法、图像处理装置、打印装置
CN109254742A (zh) * 2018-10-13 2019-01-22 森大(深圳)技术有限公司 喷墨打印方法、喷墨打印装置及喷墨打印设备
CN109272471A (zh) * 2018-10-13 2019-01-25 森大(深圳)技术有限公司 打印数据羽化处理方法、装置、设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7497538B2 (en) * 2006-08-08 2009-03-03 Lexmark International, Inc. Method of multipass printing using a plurality of halftone patterns of dots
CN103660640A (zh) * 2012-09-24 2014-03-26 长沙八思量信息技术有限公司 采用fpga实现位运算的高速喷绘机控制系统
CN105103529A (zh) * 2013-01-29 2015-11-25 惠普发展公司,有限责任合伙企业 打印机和处理要打印的图像的方法
CN108340675A (zh) * 2017-01-25 2018-07-31 精工爱普生株式会社 图像处理方法、打印方法、图像处理装置、打印装置
CN108177442A (zh) * 2018-01-17 2018-06-19 森大(深圳)技术有限公司 喷嘴异常补偿方法、装置、喷墨打印设备及存储介质
CN109254742A (zh) * 2018-10-13 2019-01-22 森大(深圳)技术有限公司 喷墨打印方法、喷墨打印装置及喷墨打印设备
CN109272471A (zh) * 2018-10-13 2019-01-25 森大(深圳)技术有限公司 打印数据羽化处理方法、装置、设备及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113934380A (zh) * 2020-06-29 2022-01-14 森大(深圳)技术有限公司 用于圆柱体打印的羽化处理方法、装置、设备及存储介质
CN113934380B (zh) * 2020-06-29 2024-04-26 森大(深圳)技术有限公司 用于圆柱体打印的羽化处理方法、装置、设备及存储介质

Similar Documents

Publication Publication Date Title
JP3981367B2 (ja) ハードコピー装置及び方法
CN109272471B (zh) 打印数据羽化处理方法、装置、设备及存储介质
CN110816065B (zh) 喷头重叠孔区域出墨方法、装置及存储介质
US10434765B2 (en) Printing control apparatus, printing control method, and medium storing printing control program
US11783150B2 (en) Artifact compensation mechanism
CN110193997B (zh) 印刷装置以及印刷方法
CN111045609B (zh) 喷墨打印方法、装置、设备及存储介质
JP2014156063A (ja) 記録装置及び記録方法
WO2020073836A1 (zh) 打印数据处理方法、设备及存储介质
KR102256207B1 (ko) 인쇄 장치 및 인쇄 방법
US10144214B2 (en) Control device for controlling printer to execute multi-pass printing
CN113327213B (zh) 消除喷嘴拼接影响打印质量的方法、装置、设备及介质
JP6896405B2 (ja) 記録装置および記録方法
JP4953919B2 (ja) 閾値マトリクス生成方法、画像データ生成方法、画像データ生成装置、印刷装置および閾値マトリクス
JP2014139005A (ja) 記録装置及び記録方法
JP3994651B2 (ja) インクジェット記録装置
US10137699B2 (en) Image forming method
JP7047311B2 (ja) 印刷制御装置、印刷装置および印刷制御方法
CN113858801B (zh) 打印数据处理方法、装置、设备及存储介质
US11386311B2 (en) Recording device and recording method using halftone processing technique
JP2019080278A (ja) 画像処理装置、画像処理方法および印刷装置
JP2018069530A (ja) 画像形成装置及び印字補正方法
US8342631B2 (en) Inkjet print apparatus and inkjet print method
JP5219791B2 (ja) 画像処理装置および画像処理方法
US9375919B2 (en) Inkjet printing apparatus, inkjet printing method, and non-transitory computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870962

Country of ref document: EP

Kind code of ref document: A1