WO2020073631A1 - 3d仿真数据的生成方法、系统、计算机存储介质及设备 - Google Patents

3d仿真数据的生成方法、系统、计算机存储介质及设备 Download PDF

Info

Publication number
WO2020073631A1
WO2020073631A1 PCT/CN2019/082633 CN2019082633W WO2020073631A1 WO 2020073631 A1 WO2020073631 A1 WO 2020073631A1 CN 2019082633 W CN2019082633 W CN 2019082633W WO 2020073631 A1 WO2020073631 A1 WO 2020073631A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
component
circuit board
model
simulation
Prior art date
Application number
PCT/CN2019/082633
Other languages
English (en)
French (fr)
Inventor
武纪宏
钱胜杰
刘丰收
Original Assignee
上海望友信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海望友信息科技有限公司 filed Critical 上海望友信息科技有限公司
Publication of WO2020073631A1 publication Critical patent/WO2020073631A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects

Definitions

  • the invention belongs to the technical field of electronic manufacturing, and relates to a generating method and system, in particular to a generating method, system, computer storage medium and equipment of 3D simulation data.
  • the object of the present invention is to provide a method, system, computer storage medium and equipment for generating 3D simulation data, which is used to solve the problem that the existing technology cannot realize the automation of PCB design data to 3D simulation data Generated questions.
  • one aspect of the present invention provides a method for generating 3D simulation data, including: acquiring PCB design data; the PCB design data includes a circuit board and at least one component; from a pre-stored Extract the three-dimensional data of the components matching each component from the three-dimensional component database, and extract the three-dimensional data of the circuit board matching the circuit board from the PCB design data; according to the user's test requirements, the three-dimensional circuit board Import data and component 3D data into pre-stored mechanical simulation software to generate 3D models required for mechanical simulation testing; or import the circuit board 3D data and component 3D data into pre-stored finite element analysis software to generate The 3D model required for structural mechanics analysis and testing; or the 3D model required for mechanical simulation testing is docked into the finite element analysis software to generate the 3D model required for structural mechanics analysis and testing.
  • the user's test requirements include mechanical simulation test requirements and / or structural mechanics analysis tests.
  • the three-dimensional data of the circuit board includes three-dimensional solid model data of the circuit board, data of the connection relationship between each component and the circuit board, and / or position coordinate data of each component on the circuit board;
  • the three-dimensional data of components includes the three-dimensional solid model data of each component and / or the attribute parameter information of each component.
  • the step of importing the circuit board 3D data and component 3D data into pre-stored mechanical simulation software to generate a 3D model required for mechanical simulation testing includes: The three-dimensional data and the three-dimensional data of the components are imported into the pre-stored mechanical simulation software, and the component model and the circuit board model are respectively generated according to the interface function of the mechanical simulation software; the mechanical simulation is automatically set according to the attribute parameter information of each component
  • the model parameters of the software; the component model of each component and the circuit board model of the circuit board are assembled according to the data of the connection relationship between each component and the circuit board and / or the position coordinate data of each component on the circuit board to generate machinery 3D models required for simulation testing.
  • the step of importing the circuit board 3D data and component 3D data into pre-stored finite element analysis software to generate a 3D model required for structural mechanics analysis and testing includes: The circuit board 3D data and component 3D data are imported into the pre-stored finite element analysis software, and the component model and the circuit board model are generated according to the interface function of the finite element analysis software; according to the attribute parameter information of each component, automatically Set the model parameters of the finite element analysis software; assemble each component model into the corresponding position on the circuit board model according to the material coding of the components in the circuit board model to generate a test station for structural mechanics analysis and testing The required 3D model.
  • the step of docking the 3D model required for mechanical simulation testing to the finite element analysis software to generate the 3D model required for structural mechanics analysis testing is to
  • the required 3D model is imported into pre-stored finite element analysis software, and converted into a 3D model required for structural mechanics analysis and testing according to the interface function of the finite element analysis software.
  • the interface function is an API function.
  • Another aspect of the present invention provides a system for generating 3D simulation data, including: an acquisition module for acquiring PCB design data; the PCB design data includes a circuit board and at least 2 components; and an extraction module for storing data from a pre-stored
  • the three-dimensional database of components of each component is extracted from the three-dimensional data of components matching each component, and the three-dimensional data of the circuit board matching the circuit board is extracted from the PCB design data;
  • the model generation module is used to test the needs of users , Import the circuit board 3D data and component 3D data into pre-stored mechanical simulation software to generate the 3D model required for mechanical simulation test; or import the circuit board 3D data and component 3D data into pre-stored In the finite element analysis software, to generate the 3D model required for structural mechanics analysis and testing; or to connect the 3D model required for mechanical simulation testing to the finite element analysis software to generate the required mechanic structural analysis and testing 3D model.
  • Yet another aspect of the present invention provides a computer storage medium on which a computer program is stored, and when the computer program is executed by a processor, the method for generating the 3D simulation data is implemented.
  • a final aspect of the present invention provides a device, including: a processor and a memory; the memory is used to store a computer program, and the processor is used to execute the computer program stored in the memory, so that the device performs the 3D simulation Data generation method.
  • the method, system, computer storage medium and device for generating 3D simulation data of the present invention have the following beneficial effects:
  • the method, system, computer storage medium and equipment for generating 3D simulation data of the present invention can remove a lot of repetitive work, replace the manual with automation, and save 60% -80% compared with the original method. % Of the time; solved the problem of incomplete data in the existing method; at the same time, it also reduced the difficulty of the work. It only takes a few steps to convert the PCB design data into the simulation software, and because the 3D data in the process are the same The data also eliminates errors caused by different designers. At present, it takes only 8-10 minutes to convert the PCB design data of a circuit board with 100 components.
  • FIG. 1A is a schematic flowchart of an embodiment of a method for generating 3D simulation data of the present invention.
  • FIG. 1B is a schematic flowchart of another embodiment of the method for generating 3D simulation data of the present invention.
  • FIG. 1C shows a schematic flow chart of the method for generating 3D simulation data of the present invention in yet another embodiment.
  • FIG. 2 shows a schematic structural diagram of an embodiment of the 3D simulation data generation system of the present invention.
  • FIG. 3 shows a schematic structural diagram of the device of the present invention in an embodiment.
  • This embodiment provides a method for generating 3D simulation data, including:
  • the PCB design data includes a circuit board and at least one component
  • the 3D model required for mechanical simulation testing is docked into the finite element analysis software to generate the 3D model required for structural mechanical analysis testing.
  • FIGS. 1A, 1B, and 1C are schematic flowcharts of a method for generating 3D simulation data in one embodiment, another embodiment, and yet another embodiment.
  • the method for generating 3D simulation data specifically includes the following steps:
  • PCB design data from the EDA software; the PCB design data includes a circuit board and at least one component.
  • the PCB design data includes CAD data + BOM data or Gerber data + BOM data, and so on.
  • the S12 includes:
  • S121 Extract component data from a pre-stored three-dimensional database of components.
  • components and circuit boards are named with the name of the component supplier's material code.
  • the component three-dimensional data of each replaced component is output as standard parameterized three-dimensional data (for example, STEP, IGES format, etc.) and parameter data in text format.
  • the component three-dimensional data includes three-dimensional solid model data of each component and / or attribute parameter information of each component (for example, quality, material, power consumption, etc.).
  • the location information does not have the three-dimensional data of the component, so it is searched according to the material code of the component supplier and the three-dimensional database of the component.
  • the three-dimensional data of the circuit board includes three-dimensional solid model data of the circuit board, data of the connection relationship between each component and the circuit board, and / or position coordinate data of each component on the circuit board.
  • the mechanical simulation software has the following functions:
  • the S13 includes:
  • the interface function is an API interface function.
  • the S13 introduced in the UG specifically includes:
  • the API interface (step214 Importer) is called by secondary development to automatically generate a component model for each output component 3D data.
  • Extract the material information in the attribute parameter information query the corresponding material information in the UG material library by calling API (PhysicalMaterial) and load the material into the model, so that the pins and the body have their own material properties.
  • API PhysicalMaterial
  • Add attributes to the component model by calling API (SetAttribute), load other parameter information into the attributes of the model, store the processed model with the component supplier material code as the naming method, and store it as a single part (suffix .prt ) Is stored in the same directory as the IDF file (suffix .brd) previously output.
  • the circuit board model is generated in the UG, and according to the spatial relationship data of the circuit board and the component, the component model is called and assembled with the circuit board model at the corresponding position (xyz coordinates, front and back, angle, etc.) to generate 3D model required for complete mechanical simulation testing.
  • the component model is called and assembled with the circuit board model at the corresponding position (xyz coordinates, front and back, angle, etc.) to generate 3D model required for complete mechanical simulation testing.
  • PCB EXCHANGE UG internal module
  • the generated 3D model can be connected to ANSYS for subsequent structural simulation analysis through the interface between UG and ANSYS.
  • S13 in PROE specifically includes:
  • Extract the "material” information in the attribute parameter information of the component query the corresponding material information in the PROE material library by calling the API, and load the material into the model.
  • the introduction of S13 in CATIA specifically includes:
  • Extract the material information in the attribute parameter information of the component query the corresponding material information in the CATIA material library by calling the API and load the material into the model, so as to calculate the density of the material itself when the model is subsequently solved for quality .
  • CATIA call its interface to import circuit board data to generate a circuit board model, and automatically assemble the generated component model and circuit board model through the connection relationship and position data of components and circuit boards to generate a complete mechanical simulation test The desired 3D model.
  • the method for generating 3D simulation data further includes:
  • the finite element analysis software has the following functions:
  • the S13 includes:
  • the models between the mechanical simulation software and the finite element analysis software can be docked with each other, but generally in the field of simulation testing, the model is usually created in the mechanical simulation software and then connected to the finite element analysis software for follow-up
  • the simulation test is due to the fact that the mechanical simulation software determines the operation of the model more quickly and accurately than the finite element analysis software. Therefore, as shown in FIG. 1C, the method for generating 3D simulation data further includes:
  • the circuit board 3D data and component 3D data are imported into pre-stored mechanical simulation software to generate the 3D model required for mechanical simulation test; the 3D model required for mechanical simulation test is docked To the finite element analysis software to generate the 3D model required for structural mechanics analysis and testing.
  • the 3D model required for mechanical simulation testing is imported into pre-stored finite element analysis software, and converted into a 3D model required for structural mechanics analysis testing according to the interface function of the finite element analysis software.
  • This embodiment provides a computer storage medium (also referred to as a computer-readable storage medium) on which a computer program is stored.
  • a computer program is executed by a processor, the method for generating the 3D simulation data described above is implemented.
  • the method for generating 3D simulation data described in this embodiment can remove a lot of repetitive work, and replaces manual with automation, which saves 60% -80% of the time compared to the original method; There is the problem of incomplete method data; at the same time, it also reduces the difficulty of the work. Only a few steps are required to convert the PCB design data to the simulation software, and because the 3D data in the process are all the same data, the design is also eliminated Mistakes caused by different personnel. At present, it takes only 8-10 minutes to convert the PCB design data of a circuit board with 100 components.
  • This embodiment provides a system for generating 3D simulation data, including:
  • An acquisition module for acquiring PCB design data includes a circuit board and at least 2 components;
  • An extraction module for extracting the three-dimensional data of the components matching each component from a pre-stored three-dimensional database of components, and extracting the three-dimensional data of the circuit board matching the circuit board from the PCB design data;
  • the model generation module is used to import the three-dimensional data of the circuit board and the three-dimensional data of the components into the pre-stored mechanical simulation software according to the test requirements of the user to generate the 3D model required for the mechanical simulation test; or to generate the circuit
  • the three-dimensional data of the board and the three-dimensional data of the components are imported into the pre-stored finite element analysis software to generate the 3D model required for structural mechanics analysis and testing; To generate the 3D model required for structural mechanics analysis and testing.
  • each module of the following generation system is only a division of logical functions, and may be integrated in whole or part into a physical entity or may be physically separated in actual implementation.
  • these modules can be implemented in the form of software invocation through processing elements, or in the form of hardware, and some modules can be implemented in the form of software invocation through processing elements, and some modules can be implemented in the form of hardware.
  • the x module may be a separately established processing element, or it may be integrated in a chip of the following generation system.
  • the x module may also be stored in the memory of the generation system described below in the form of program code, and be called and executed by one of the processing elements of the generation system described below to perform the functions of the following x module.
  • the implementation of other modules is similar. All or part of these modules can be integrated together or can be implemented independently.
  • the processing element described herein may be an integrated circuit with signal processing capabilities. In the implementation process, the steps of the above method or the following various modules may be completed by instructions in the form of integrated logic circuits of hardware in the processor element or software.
  • the following modules may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC for short), one or more microprocessors (Digital Singnal Processor, (Referred to as DSP), one or more field programmable gate array (Field Programmable Gate Array, referred to as FPGA) and so on.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Singnal Processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processor that can call program code.
  • CPU central processing unit
  • SOC system-on-a-chip
  • FIG. 2 shows a schematic structural diagram of a system for generating 3D simulation data in an embodiment.
  • the 3D simulation data generation system 2 includes: an acquisition module 21, an extraction module 22 and a model generation module 23.
  • the obtaining module 21 is used to obtain PCB design data from the EDA software; the PCB design data includes a circuit board and at least two components.
  • the PCB design data includes CAD data + BOM data or Gerber data + BOM data, and so on.
  • the extraction module coupled to the acquisition module 21 is used to extract the three-dimensional component data matching each component from a pre-stored three-dimensional component database, and extract the matching circuit board from the PCB design data Circuit board three-dimensional data.
  • the extraction module is used to:
  • Extract the component data from the pre-stored component 3D database is named with the name of the component supplier's material code.
  • the component supplier's material coding and component 3D database search for the component 3D data matching each component, to replace the component data in the PCB design data with the component 3D data, and rotate the mounting angle to make it
  • the three-dimensional data of each replaced component is output as standard parameterized three-dimensional data (for example, STEP, IGES format, etc.) and parameter data in text format.
  • the component three-dimensional data includes three-dimensional solid model data of each component and / or attribute parameter information of each component (for example, quality, material, power consumption, etc.).
  • the location information does not have the three-dimensional data of the component, so it is searched according to the material code of the component supplier and the three-dimensional database of the component.
  • the three-dimensional data of the circuit board includes three-dimensional solid model data of the circuit board, data of the connection relationship between each component and the circuit board, and / or position coordinate data of each component on the circuit board.
  • a model generation module 23 coupled to the acquisition module 21 and the extraction module 22 is used to import the three-dimensional data of the circuit board and the three-dimensional data of the components into the pre-stored mechanical simulation software according to the user's mechanical simulation test requirements to generate mechanical simulation 3D models required for testing.
  • the model generation module 23 is used to: import the circuit board 3D data and component 3D data into pre-stored mechanical simulation software (mechanical simulation software such as UG, PROE, CATIA, etc.), and according to the mechanical
  • the interface functions of the simulation software generate component models and circuit board models, respectively.
  • the interface function is an API interface function; automatically set the model parameters of the mechanical simulation software according to the attribute parameter information of each component; the component model of each component and the circuit board model of the circuit board Assemble according to the connection data of each component and the circuit board and / or the position coordinate data of each component on the circuit board to generate a 3D model required for mechanical simulation testing.
  • the model generation module 23 is also used to import the circuit board 3D data and component 3D data into pre-stored finite element analysis software (for example, ANSYS) according to the user's requirements for structural mechanics analysis and testing to generate structural mechanics 3D models required for analysis and testing.
  • ANSYS finite element analysis software
  • the model generation module 23 is specifically used to import component three-dimensional data (IGES format, etc.) and circuit board three-dimensional data (IDF format, etc.) to generate component models and circuit board models by calling its secondary development API. Take out the quality, material and other information from the attribute parameter information of the component, and call the API to load each parameter into the component model in ANSYS, mainly including setting the quality and material information for the model. Add attributes to the component model by calling API (Parameters) to load other unrelated parameter information into the model's attribute information. Assemble the component model to the corresponding position according to the material code in the circuit board model to generate the 3D model required for structural mechanics analysis and testing.
  • API Parameters
  • the models between the mechanical simulation software and the finite element analysis software can be docked with each other, but generally in the field of simulation testing, the model is usually created in the mechanical simulation software and then connected to the finite element analysis software for follow-up
  • the simulation test is due to the fact that the mechanical simulation software determines the operation of the model more quickly and accurately than the finite element analysis software. Therefore, the model generation module 23 is also used to: dock the 3D model required for mechanical simulation testing into the finite element analysis software to generate the 3D model required for structural mechanics analysis testing.
  • the model generation module 23 will import the three-dimensional data of the circuit board and the three-dimensional data of the components into the pre-stored mechanical simulation software according to the user's mechanical simulation test requirements to generate the 3D model required for the mechanical simulation test; the mechanical simulation test
  • the required 3D model is imported into pre-stored finite element analysis software, and converted into a 3D model required for structural mechanics analysis and testing according to the interface function of the finite element analysis software.
  • FIG. 3 is a schematic structural diagram of the device in an embodiment.
  • the device 3 includes: a processor 31, a memory 32, a transceiver 33, a communication interface 34 or / and a system bus 35; the memory 32 and the communication interface 34 communicate with the processor 31 and the transceiver through the system bus 35 33 connects and completes communication with each other, the memory 32 is used to store computer programs, the communication interface 34 is used to communicate with other devices, the processor 31 and the transceiver 33 are used to run computer programs, and the device 3 is executed as in the embodiment Steps of the method for generating 3D simulation data.
  • the system bus mentioned above may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the system bus can be divided into address bus, data bus, control bus and so on.
  • the communication interface is used to communicate between the database access device and other devices (such as client, read-write library, and read-only library).
  • the memory may include random access memory (Random Access Memory, RAM for short), or may also include non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the foregoing processor may be a general-purpose processor, including a central processing unit (Central Processing Unit, CPU for short), a network processor (Network Processing Unit, NP for short), etc .; or a digital signal processor (Digital Signal Processing, DSP for short) , Application Specific Integrated Circuit (Application Specific Integrated Circuit, ASIC for short), Field Programmable Gate Array (Field Programmable Gate Array, FPGA for short) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • a central processing unit Central Processing Unit, CPU for short
  • NP Network Processing Unit
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the invention also provides a system for generating 3D simulation data.
  • the system for generating 3D simulation data can implement the method for generating 3D simulation data according to the invention, but the device for implementing the method for generating 3D simulation data according to the invention Including but not limited to the structure of the 3D simulation data generating system listed in this embodiment, any structural modification and replacement of the prior art made according to the principles of the present invention are included in the protection scope of the present invention.
  • the method, system, computer storage medium and equipment for generating 3D simulation data of the present invention can remove a lot of repetitive work and replace the manual with automation, which is more economical than the original method.
  • 60% -80% of the time solved the problem of incomplete data in the existing methods; at the same time, it also reduced the difficulty of the work, only a few steps of operation, you can achieve the conversion of PCB design data to simulation software, and due to the three-dimensional process
  • the data is the same data, which also eliminates errors caused by different designers. At present, it takes only 8-10 minutes to convert the PCB design data of a circuit board with 100 components.
  • the invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种3D仿真数据的生成方法、系统、计算机存储介质及设备,生成方法包括:获取PCB设计数据(S11);从一预存的元器件三维数据库中提取元器件三维数据,并提取电路板三维数据(S12);根据用户的测试需求,将电路板三维数据和元器件三维数据导入预存的机械仿真软件中,以生成机械仿真测试所需的3D模型(S13);或将电路板三维数据和元器件三维数据导入预存的有限元分析软件中,以生成针对结构力学分析测试所需的3D模型(S13 ');或将机械仿真测试所需的3D模型对接至有限元分析软件中,以生成针对结构力学分析测试所需的3D模型(S13 '')。上述方法可以去除很多重复的工作,用自动化代替了人工,同时也降低了工作难度,可以实现PCB设计数据到仿真软件的快速转化。

Description

3D仿真数据的生成方法、系统、计算机存储介质及设备 技术领域
本发明属于电子制造技术领域,涉及一种生成方法和系统,特别是涉及一种3D仿真数据的生成方法、系统、计算机存储介质及设备。
背景技术
电子制造行业应用仿真软件进行仿真测试,对于提升电子产品质量、缩短设计周期、提高电子产品竞争力具有重大意义。而目前现有的将PCB设计数据连接至有限元仿真软件或者机械仿真软件生成3D仿真数据的方法非常复杂、繁冗,并且十分耗时。
例如:存在以下弊端:
1、由于通过EDA软件输出的IDF数据是一个不精确的三维数据,其只有外框数据没有内部构造数据,会造成数据丢失/不全,从而导致仿真的有效性无法保障;
2、在手工创建元器件模型时,将会耗费操作人员大量的时间,并且过程繁琐,若按照现有方法来操作一块拥有100个元器件的电路板的仿真测试大约需要30个小时,可见耗时非常长;
3、现有方法对操作人员的能力要求比较高;
4、按照现有方法在同时进行机械和结构力学两种仿真测试时会造成很多重复性地工作,比如同一个元器件模型可能需要做两次。
所以,随着电子产品更新换代的加速,智能制造和工业4.0的推进,互联网+制造和智慧工厂理念的深入人心,使得整个电子制造业都在探寻更加高效及可靠的制造方法与技术。
因此,如何提供一种3D仿真数据的生成方法、系统、计算机存储介质及设备,以解决现有技术无法实现PCB设计数据到3D仿真数据的自动化生成等缺陷,成为本领域技术人员亟待解决的技术问题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种3D仿真数据的生成方法、系统、计算机存储介质及设备,用于解决现有技术无法实现PCB设计数据到3D仿真数据的自动化生成的问题。
为实现上述目的及其他相关目的,本发明一方面提供一种3D仿真数据的生成方法,包括:获取PCB设计数据;所述PCB设计数据中包括电路板和至少1个元器件;从一预存的 元器件三维数据库中提取与每一元器件匹配的元器件三维数据,并从所述PCB设计数据中提取与所述电路板匹配的电路板三维数据;根据用户的测试需求,将所述电路板三维数据和元器件三维数据导入预存的机械仿真软件中,以生成机械仿真测试所需的3D模型;或将所述电路板三维数据和元器件三维数据导入预存的有限元分析软件中,以生成针对结构力学分析测试所需的3D模型;或将机械仿真测试所需的3D模型对接至所述有限元分析软件中,以生成针对结构力学分析测试所需的3D模型。
于本发明的一实施例中,所述用户的测试需求包括机械仿真测试需求和/或针对结构力学分析测试。
于本发明的一实施例中,所述电路板三维数据包括电路板的三维实体模型数据、每一元器件与电路板连接关系数据和/或每一元器件在电路板上的位置坐标数据;所述元器件三维数据包括每一元器件的三维实体模型数据和/或每一元器件的属性参数信息。
于本发明的一实施例中,所述将所述电路板三维数据和元器件三维数据导入预存的机械仿真软件中,以生成机械仿真测试所需的3D模型的步骤包括:将所述电路板三维数据和元器件三维数据导入预存的机械仿真软件中,并根据所述机械仿真软件的接口函数分别生成元器件模型和电路板模型;根据每一元器件的属性参数信息,自动设置所述机械仿真软件的模型参数;将每一元器件的元器件模型和电路板的电路板模型根据每一元器件与电路板连接关系数据和/或每一元器件在电路板上的位置坐标数据进行组装,以生成机械仿真测试所需的3D模型。
于本发明的一实施例中,所述将所述电路板三维数据和元器件三维数据导入预存的有限元分析软件中,以生成针对结构力学分析测试所需的3D模型的步骤包括:将所述电路板三维数据和元器件三维数据导入预存的有限元分析软件中,并根据所述有限元分析软件的接口函数分别生成元器件模型和电路板模型;根据每一元器件的属性参数信息,自动设置所述有限元分析软件的模型参数;将每一元器件模型根据在所述电路板模型中元器件的物料编码,组装到所述电路板模型上对应位置上,以生成针对结构力学分析测试所需的3D模型。
于本发明的一实施例中,所述将机械仿真测试所需的3D模型对接至所述有限元分析软件中,以生成针对结构力学分析测试所需的3D模型的步骤为将机械仿真测试所需的3D模型导入预存的有限元分析软件中,并根据所述有限元分析软件的接口函数转换成针对结构力学分析测试所需的3D模型。
于本发明的一实施例中,所述接口函数为API函数。
本发明另一方提供一种3D仿真数据的生成系统,包括:获取模块,用于获取PCB设计 数据;所述PCB设计数据中包括电路板和至少2个元器件;提取模块,用于从一预存的元器件三维数据库中提取与每一元器件匹配的元器件三维数据,并从所述PCB设计数据中提取与所述电路板匹配的电路板三维数据;模型生成模块,用于根据用户的测试需求,将所述电路板三维数据和元器件三维数据导入预存的机械仿真软件中,以生成机械仿真测试所需的3D模型;或用于将所述电路板三维数据和元器件三维数据导入预存的有限元分析软件中,以生成针对结构力学分析测试所需的3D模型;或用于将机械仿真测试所需的3D模型对接至所述有限元分析软件中,以生成针对结构力学分析测试所需的3D模型。
本发明又一方面提供一种计算机存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现所述3D仿真数据的生成方法。
本发明最后一方面提供一种设备,包括:处理器及存储器;所述存储器用于存储计算机程序,所述处理器用于执行所述存储器存储的计算机程序,以使所述设备执行所述3D仿真数据的生成方法。
如上所述,本发明所述的3D仿真数据的生成方法、系统、计算机存储介质及设备,具有以下有益效果:
本发明所述3D仿真数据的生成方法、系统、计算机存储介质及设备相比于传统的3D仿真流程,可以去除很多重复的工作,用自动化代替了人工,较原有方法节省了60%-80%的时间;解决了现有方法数据不全的问题;同时也降低了工作难度,只需要几步操作,就可以实现PCB设计数据到仿真软件的转化,并且由于过程中的三维数据都是同一份数据,也消除了由于设计人员不同带来的失误。目前经过测试对于有100个元器件的电路板PCB设计数据转化只需要8—10分钟。
附图说明
图1A显示为本发明的3D仿真数据的生成方法于一实施例的流程示意图。
图1B显示为本发明的3D仿真数据的生成方法于另一实施例的流程示意图。
图1C显示为本发明的3D仿真数据的生成方法于又一实施例中的流程示意图。
图2显示为本发明的3D仿真数据的生成系统于一实施例中的原理结构示意图。
图3显示为本发明的设备于一实施例中的原理结构示意图。
元件标号说明
2         3D仿真数据的生成系统
21       获取模块
22       提取模块
23       模型生成模块
3        设备
31       处理器
32       存储器
33       收发器
34       通信接口
35       系统总线
S1~Sn   步骤
S1~Sn   步骤
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
实施例一
本实施例提供一种3D仿真数据的生成方法,包括:
获取PCB设计数据;所述PCB设计数据中包括电路板和至少1个元器件;
从一预存的元器件三维数据库中提取与每一元器件匹配的元器件三维数据,并从所述PCB设计数据中提取与所述电路板匹配的电路板三维数据;
根据用户的测试需求,将所述电路板三维数据和元器件三维数据导入预存的机械仿真软件中,以生成机械仿真测试所需的3D模型;或
将所述电路板三维数据和元器件三维数据导入预存的有限元分析软件中,以生成针对结 构力学分析测试所需的3D模型;或
将机械仿真测试所需的3D模型对接至所述有限元分析软件中,以生成针对结构力学分析测试所需的3D模型。
以下将结合图示对本实施例所提供的3D仿真数据的生成方法进行详细描述。请参阅图1A、1B及1C,显示为3D仿真数据的生成方法于一实施例、另一实施例及又一实施例中的流程示意图。如图1A所示,所述3D仿真数据的生成方法具体包括以下几个步骤:
S11,从EDA软件中获取PCB设计数据;所述PCB设计数据中包括电路板和至少1个元器件。在本实施例中,所述PCB设计数据包括CAD数据+BOM数据或Gerber数据+BOM数据等。
S12,从一预存的元器件三维数据库中提取与每一元器件匹配的元器件三维数据,并从所述PCB设计数据中提取与所述电路板匹配的电路板三维数据。
具体地,所述S12包括:
S121,从预存的元器件三维数据库中提取出元器件数据。其中,所述预存的元器件三维数据库中以元器件供应商物料编码为命名方式命名元器件和电路板。
S122,根据元器件供应商物料编码与元器件三维数据库进行查找与每一元器件匹配的元器件三维数据,以使用元器件三维数据替换PCB设计数据中的元器件数据,并通过旋转贴装角度,使其与电路板中的焊盘数据对应,将每个替换好的元器件三维数据输出为标准的参数化三维数据(例如,STEP、IGES格式等)与文本格式的参数数据。在本实施例中,所述元器件三维数据包括每一元器件的三维实体模型数据和/或每一元器件的属性参数信息(例如,质量、材料、功耗等)。在本实施例中,由于在PCB设计数据虽然存在元器件信息,但是只有位置信息没有元器件的三维数据,所以根据元器件供应商物料编码与元器件三维数据库进行查找。
S123,从所述PCB设计数据中提取与所述电路板匹配的电路板三维数据,并将电路板三维数据输出为一份三维数据(例如,IDF格式等)。在本实施例中,所述电路板三维数据包括电路板的三维实体模型数据、每一元器件与电路板连接关系数据和/或每一元器件在电路板上的位置坐标数据。
S13,根据用户的机械仿真测试需求,将所述电路板三维数据和元器件三维数据导入预存的机械仿真软件中,以生成机械仿真测试所需的3D模型。
在本实施例中,所述机械仿真软件具有以下功能:
1.将输出的IDF数据在机械仿真软件(UG、PROE、CATIA等)内通过其三维接口导 入生成电路板模型。
2.根据元器件产品手册在机械仿真软件内人工创建元器件模型并进行相应的参数设置等操作。
3.将电路板模型与元器件模型在机械仿真软件中根据PCB设计数据中的物料编码及关联位置进行组装,进行机械仿真分析。
具体地,所述S13包括:
将所述电路板三维数据和元器件三维数据导入预存的机械仿真软件(机械仿真软件例如,UG、PROE、CATIA等)中,并根据所述机械仿真软件的接口函数分别生成元器件模型和电路板模型。在本实施例中,所述接口函数为API接口函数。
根据每一元器件的属性参数信息,自动设置所述机械仿真软件的模型参数;
将每一元器件的元器件模型和电路板的电路板模型根据每一元器件与电路板连接关系数据和/或每一元器件在电路板上的位置坐标数据进行组装,以生成机械仿真测试所需的3D模型。
例如,导入UG中所述S13具体包括:
在UG中通过二次开发调用其API接口(step214Importer)对每个输出的元器件三维数据自动生成元器件模型。
将元器件的属性参数信息中的”质量”信息取出,由于UG中不能直接设置质量,所以采用设置密度来反推质量。先调用API(NewMassProperties)查询模型的总体积,然后用参数中的质量除以总体积求解出其密度,再将此密度值通过调用API(SolidDensity)设定到UG中,这样UG在后续求解元件质量时,就会得出参数中的质量值。
将属性参数信息中的材料信息提取,通过调用API(PhysicalMaterial)在UG的材料库中查询对应的材料信息并且将材料加载进模型中,使引脚与本体具有各自的材料属性。
通过调用API(SetAttribute)对元器件模型进行属性添加将其他参数信息加载进模型的属性中,将处理好的模型以元器件供应商物料编码为命名方式,存储为单个的零件(后缀为.prt)与之前输出的IDF文件(后缀为.brd)存放在同一目录下。
将处理好的单个元器件模型,以各自的元器件编码为命名存储为单个的零件。
根据电路板三维数据在UG内生成电路板模型,根据电路板与元器件空间关系数据,调用元器件模型在对应位置上(xyz坐标、正反面、角度等)与电路板模型进行组装,以生成完整的机械仿真测试所需的3D模型。或者当我们输出为标准的PCB三维数据(IDF格式等)时,通过UG内部的模块(PCB EXCHANGE)可以导入电路板模型并自动调用相关元器件模 型进行组装,以生成完整的机械仿真测试所需的3D模型。
如果还需要进行结构仿真分析的话,可以通过UG内部的与ANSYS的接口,将生成的3D模型对接到ANSYS中进行后续的结构仿真分析。
例如,导入PROE中所述S13具体包括:
通过调用其二次开发API导入元器件三维数据(STEP格式等)生成元器件模型。
将元器件的属性参数信息中的“质量”信息取出,调用API(mass_prop.volume)查询模型的总体积,然后用参数中的质量除以总体积求解出其密度,再将此密度值通过调用API(Pro Part Density Set)设定到PROE中,PROE在后续求解元件质量时,就会得出参数中的质量值。
将元器件的属性参数信息中的“材料”信息提取,通过调用API在PROE的材料库中查询对应的材料信息并且将材料加载进模型中。
通过调用API(Pro Parameter Value Set)对元器件模型进行属性添加将其他参数信息加载进模型的属性中。
将处理好的单个元器件模型,以各自的元器件编码为命名存储为单个的零件。
根据电路板三维数据在PROE内生成电路板模型,根据电路板与元器件的连接关系(xyz坐标、正反面、贴装角度、器件抬高等)将元器件模型与电路板模型进行自动组装,生成一个完整的机械仿真测试所需的3D模型。
例如,导入CATIA中所述S13具体包括:
通过调用其二次开发API导入元器件三维数据(STEP格式等)生成元器件模型。
将元器件的属性参数信息中的材料信息提取,通过调用API在CATIA的材料库中查询对应的材料信息并且将材料加载进模型中,从而在模型后续求解质量时,调取材料本身密度来计算。
通过调用API对元器件模型进行属性添加将其他属性参数信息加载进模型的属性中。
将处理好的单个元器件模型,以各自的元器件编码为命名存储为单个的零件。
在CATIA中,调用其接口将电路板数据导入生成电路板模型,并通过元器件与电路板连接关系、位置数据将生成的元器件模型与电路板模型进行自动组装,生成一个完整的机械仿真测试所需的3D模型。
如图1B所示,所述3D仿真数据的生成方法还包括:
S13’,根据用户的针对结构力学分析测试,将所述电路板三维数据和元器件三维数据导入预存的有限元分析软件(例如,ANSYS)中,以生成针对结构力学分析测试所需的3D模 型。
在本实施例中,所述有限元分析软件具有以下功能:
1.将输出的IDF数据在有限元分析软件(ANSYS等)内通过其三维接口导入生成电路板模型。
2.根据元器件产品手册在机械仿真软件内人工创建元器件模型并进行相应的参数设置等操作。
3.将电路板模型与元器件模型在机械仿真软件中根据PCB设计数据中的物料编码及关联位置进行组装,进行热(流体等)仿真分析。
例如,与ANSYS进行对接,所述S13’包括:
通过调用其二次开发API导入元器件三维数据(IGES格式等)与电路板三维数据(brd等)生成元器件模型与电路板模型。
从元器件的属性参数信息中取出其质量、材料等信息,调用API在ANSYS中将各个参数加载进元器件模型中,主要包括为模型设定质量参数与材料信息。
通过调用API(Parameters)对元器件模型进行属性添加将其他无法关联的参数信息加载进模型的属性信息中。
将处理好的单个元器件模型,以各自的元器件编码为命名存储为单个的零件。
将元器件模型根据电路板模型中的物料编码组装到相应位置上,产生针对结构力学分析测试所需的3D模型。
在本实施例中,机械仿真软件与有限元分析软件之间的模型是可以相互对接的,但是一般在仿真测试领域通常都是在机械仿真软件中创建模型再对接到有限元分析软件中做后续仿真测试,这是由于机械仿真软件比有限元分析软件对于模型的操作更加快速与准确决定的。因此,如图1C所示,所述3D仿真数据的生成方法还包括:
S13”,根据用户的机械仿真测试需求,将电路板三维数据和元器件三维数据导入预存的机械仿真软件中,以生成机械仿真测试所需的3D模型;将机械仿真测试所需的3D模型对接至所述有限元分析软件中,以生成针对结构力学分析测试所需的3D模型。
具体地,将机械仿真测试所需的3D模型导入预存的有限元分析软件中,并根据所述有限元分析软件的接口函数转换成针对结构力学分析测试所需的3D模型。
本实施例提供一种计算机存储介质(亦称为计算机可读存储介质),其上存储有计算机程序,该计算机程序被处理器执行时实现上述3D仿真数据的生成方法。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过计算 机程序相关的硬件来完成。前述的计算机程序可以存储于一计算机可读存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本实施例所述3D仿真数据的生成方法相比于传统的3D仿真流程,可以去除很多重复的工作,用自动化代替了人工,较原有方法节省了60%-80%的时间;解决了现有方法数据不全的问题;同时也降低了工作难度,只需要几步操作,就可以实现PCB设计数据到仿真软件的转化,并且由于过程中的三维数据都是同一份数据,也消除了由于设计人员不同带来的失误。目前经过测试对于有100个元器件的电路板PCB设计数据转化只需要8—10分钟。
实施例二
本实施例提供一种3D仿真数据的生成系统,包括:
获取模块,用于获取PCB设计数据;所述PCB设计数据中包括电路板和至少2个元器件;
提取模块,用于从一预存的元器件三维数据库中提取与每一元器件匹配的元器件三维数据,并从所述PCB设计数据中提取与所述电路板匹配的电路板三维数据;
模型生成模块,用于根据用户的测试需求,将所述电路板三维数据和元器件三维数据导入预存的机械仿真软件中,以生成机械仿真测试所需的3D模型;或用于将所述电路板三维数据和元器件三维数据导入预存的有限元分析软件中,以生成针对结构力学分析测试所需的3D模型;或将机械仿真测试所需的3D模型对接至所述有限元分析软件中,以生成针对结构力学分析测试所需的3D模型。
以下将结合图示对本实施例所提供的3D仿真数据的生成系统进行详细描述。需要说明的是,应理解以下生成系统的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现,也可以全部以硬件的形式实现,还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如:x模块可以为单独设立的处理元件,也可以集成在下述生成系统的某一个芯片中实现。此外,x模块也可以以程序代码的形式存储于下述生成系统的存储器中,由下述生成系统的某一个处理元件调用并执行以下x模块的功能。其它模块的实现与之类似。这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以下各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。以下这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多 个特定集成电路(Application Specific Integrated Circuit,简称ASIC),一个或多个微处理器(Digital Singnal Processor,简称DSP),一个或者多个现场可编程门阵列(Field Programmable Gate Array,简称FPGA)等。当以下某个模块通过处理元件调用程序代码的形式实现时,该处理元件可以是通用处理器,如中央处理器(Central Processing Unit,简称CPU)或其它可以调用程序代码的处理器。这些模块可以集成在一起,以片上系统(System-on-a-chip,简称SOC)的形式实现。
请参阅图2,显示为3D仿真数据的生成系统于一实施例中的原理结构示意图。如图2所示,所述3D仿真数据的生成系统2包括:获取模块21、提取模块22及模型生成模块23。
所述获取模块21用于从EDA软件中获取PCB设计数据;所述PCB设计数据中包括电路板和至少2个元器件。在本实施例中,所述PCB设计数据包括CAD数据+BOM数据或Gerber数据+BOM数据等。
与所述获取模块21耦合的提取模块用22于从一预存的元器件三维数据库中提取与每一元器件匹配的元器件三维数据,并从所述PCB设计数据中提取与所述电路板匹配的电路板三维数据。
具体地,所述提取模块用于:
从预存的元器件三维数据库中提取出元器件数据。其中,所述预存的元器件三维数据库中以元器件供应商物料编码为命名方式命名元器件和电路板。
根据元器件供应商物料编码与元器件三维数据库进行查找与每一元器件匹配的元器件三维数据,以使用元器件三维数据替换PCB设计数据中的元器件数据,并通过旋转贴装角度,使其与电路板中的焊盘数据对应,将每个替换好的元器件三维数据输出为标准的参数化三维数据(例如,STEP、IGES格式等)与文本格式的参数数据。在本实施例中,所述元器件三维数据包括每一元器件的三维实体模型数据和/或每一元器件的属性参数信息(例如,质量、材料、功耗等)。在本实施例中,由于在PCB设计数据虽然存在元器件信息,但是只有位置信息没有元器件的三维数据,所以根据元器件供应商物料编码与元器件三维数据库进行查找。
从所述PCB设计数据中提取与所述电路板匹配的电路板三维数据,并将电路板三维数据输出为一份三维数据(例如,IDF格式等)。在本实施例中,所述电路板三维数据包括电路板的三维实体模型数据、每一元器件与电路板连接关系数据和/或每一元器件在电路板上的位置坐标数据。
与所述获取模块21和提取模块22耦合的模型生成模块23用于根据用户的机械仿真测试需求,将所述电路板三维数据和元器件三维数据导入预存的机械仿真软件中,以生成机械仿 真测试所需的3D模型。
具体地,所述模型生成模块23用于:将所述电路板三维数据和元器件三维数据导入预存的机械仿真软件(机械仿真软件例如,UG、PROE、CATIA等)中,并根据所述机械仿真软件的接口函数分别生成元器件模型和电路板模型。在本实施例中,所述接口函数为API接口函数;根据每一元器件的属性参数信息,自动设置所述机械仿真软件的模型参数;将每一元器件的元器件模型和电路板的电路板模型根据每一元器件与电路板连接关系数据和/或每一元器件在电路板上的位置坐标数据进行组装,以生成机械仿真测试所需的3D模型。
所述模型生成模块23还用于根据用户的针对结构力学分析测试需求,将所述电路板三维数据和元器件三维数据导入预存的有限元分析软件(例如,ANSYS)中,以生成针对结构力学分析测试所需的3D模型。
所述模型生成模块23具体用于通过调用其二次开发API导入元器件三维数据(IGES格式等)与电路板三维数据(IDF格式等)生成元器件模型与电路板模型。从元器件的属性参数信息中取出其质量、材料等信息,调用API在ANSYS中将各个参数加载进元器件模型中,主要包括为模型设定质量、材料信息等。通过调用API(Parameters)对元器件模型进行属性添加将其他无法关联的参数信息加载进模型的属性信息中。将元器件模型根据电路板模型中的物料编码组装到相应位置上,产生针对结构力学分析测试所需的3D模型。
在本实施例中,机械仿真软件与有限元分析软件之间的模型是可以相互对接的,但是一般在仿真测试领域通常都是在机械仿真软件中创建模型再对接到有限元分析软件中做后续仿真测试,这是由于机械仿真软件比有限元分析软件对于模型的操作更加快速与准确决定的。因此,所述模型生成模块23还用于:将机械仿真测试所需的3D模型对接至所述有限元分析软件中,以生成针对结构力学分析测试所需的3D模型。
具体地,所述模型生成模块23将根据用户的机械仿真测试需求,将电路板三维数据和元器件三维数据导入预存的机械仿真软件中,以生成机械仿真测试所需的3D模型;机械仿真测试所需的3D模型导入预存的有限元分析软件中,并根据所述有限元分析软件的接口函数转换成针对结构力学分析测试所需的3D模型。
实施例三
本实施例提供一种设备,请参阅图3,显示为设备于一实施例中的原理结构示意图。如图3所示,所述设备3包括:处理器31、存储器32、收发器33、通信接口34或/和系统总线35;存储器32和通信接口34通过系统总线35与处理器31和收发器33连接并完成相互间的通信,存储器32用于存储计算机程序,通信接口34用于和其他设备进行通信,处理器31和 收发器33用于运行计算机程序,使所述设备3执行如实施例一所述3D仿真数据的生成方法的各个步骤。
上述提到的系统总线可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。该系统总线可以分为地址总线、数据总线、控制总线等。通信接口用于实现数据库访问装置与其他设备(如客户端、读写库和只读库)之间的通信。存储器可能包含随机存取存储器(Random Access Memory,简称RAM),也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
本发明所述的3D仿真数据的生成方法的保护范围不限于本实施例列举的步骤执行顺序,凡是根据本发明的原理所做的现有技术的步骤增减、步骤替换所实现的方案都包括在本发明的保护范围内。
本发明还提供一种3D仿真数据的生成系统,所述3D仿真数据的生成系统可以实现本发明所述的3D仿真数据的生成方法,但本发明所述的3D仿真数据的生成方法的实现装置包括但不限于本实施例列举的3D仿真数据的生成系统的结构,凡是根据本发明的原理所做的现有技术的结构变形和替换,都包括在本发明的保护范围内。
综上所述,本发明所述3D仿真数据的生成方法、系统、计算机存储介质及设备相比于传统的3D仿真流程,可以去除很多重复的工作,用自动化代替了人工,较原有方法节省了60%-80%的时间;解决了现有方法数据不全的问题;同时也降低了工作难度,只需要几步操作,就可以实现PCB设计数据到仿真软件的转化,并且由于过程中的三维数据都是同一份数据,也消除了由于设计人员不同带来的失误。目前经过测试对于有100个元器件的电路板PCB设计数据转化只需要8—10分钟。本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等

Claims (10)

  1. 一种3D仿真数据的生成方法,其特征在于,包括:
    获取PCB设计数据;所述PCB设计数据中包括电路板和至少1个元器件;
    从一预存的元器件三维数据库中提取与每一元器件匹配的元器件三维数据,并从所述PCB设计数据中提取与所述电路板匹配的电路板三维数据;
    根据用户的测试需求,将所述电路板三维数据和元器件三维数据导入预存的机械仿真软件中,以生成机械仿真测试所需的3D模型;或
    将所述电路板三维数据和元器件三维数据导入预存的有限元分析软件中,以生成针对结构力学分析测试所需的3D模型;或
    将机械仿真测试所需的3D模型对接至所述有限元分析软件中,以生成针对结构力学分析测试所需的3D模型。
  2. 根据权利要求1所述的3D仿真数据的生成方法,其特征在于,
    所述用户的测试需求包括机械仿真测试需求和/或针对结构力学分析测试。
  3. 根据权利要求1所述的3D仿真数据的生成方法,其特征在于,
    所述电路板三维数据包括电路板的三维实体模型数据、每一元器件与电路板连接关系数据和/或每一元器件在电路板上的位置坐标数据;
    所述元器件三维数据包括每一元器件的三维实体模型数据和/或每一元器件的属性参数信息。
  4. 根据权利要求3所述的3D仿真数据的生成方法,其特征在于,所述将所述电路板三维数据和元器件三维数据导入预存的机械仿真软件中,以生成机械仿真测试所需的3D模型的步骤包括:
    将所述电路板三维数据和元器件三维数据导入预存的机械仿真软件中,并根据所述机械仿真软件的接口函数分别生成元器件模型和电路板模型;
    根据每一元器件的属性参数信息,自动设置所述机械仿真软件的模型参数;
    将每一元器件的元器件模型和电路板的电路板模型根据每一元器件与电路板连接关系数据和/或每一元器件在电路板上的位置坐标数据进行组装,以生成机械仿真测试所需的3D模型。
  5. 根据权利要求3所述的3D仿真数据的生成方法,其特征在于,所述将所述电路板三维数 据和元器件三维数据导入预存的有限元分析软件中,以生成针对结构力学分析测试所需的3D模型的步骤包括:
    将所述电路板三维数据和元器件三维数据导入预存的有限元分析软件中,并根据所述有限元分析软件的接口函数分别生成元器件模型和电路板模型;
    根据每一元器件的属性参数信息,自动设置所述有限元分析软件的模型参数;
    将每一元器件模型根据在所述电路板模型中元器件的物料编码,组装到所述电路板模型上对应位置上,以生成针对结构力学分析测试所需的3D模型。
  6. 根据权利要求1、4或5任一项所述的3D仿真数据的生成方法,其特征在于,所述将机械仿真测试所需的3D模型对接至所述有限元分析软件中,以生成针对结构力学分析测试所需的3D模型的步骤为将机械仿真测试所需的3D模型导入预存的有限元分析软件中,并根据所述有限元分析软件的接口函数转换成针对结构力学分析测试所需的3D模型。
  7. 根据权利要求4、5或6任一项所述的3D仿真数据的生成方法,其特征在于,所述接口函数为API函数。
  8. 一种3D仿真数据的生成系统,其特征在于,包括:
    获取模块,用于获取PCB设计数据;所述PCB设计数据中包括电路板和至少2个元器件;
    提取模块,用于从一预存的元器件三维数据库中提取与每一元器件匹配的元器件三维数据,并从所述PCB设计数据中提取与所述电路板匹配的电路板三维数据;
    模型生成模块,用于根据用户的测试需求,将所述电路板三维数据和元器件三维数据导入预存的机械仿真软件中,以生成机械仿真测试所需的3D模型;或用于将所述电路板三维数据和元器件三维数据导入预存的有限元分析软件中,以生成针对结构力学分析测试所需的3D模型;或用于将机械仿真测试所需的3D模型对接至所述有限元分析软件中,以生成针对结构力学分析测试所需的3D模型。
  9. 一种计算机存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现权利要求1至7中任一项所述3D仿真数据的生成方法。
  10. 一种设备,其特征在于,包括:处理器及存储器;
    所述存储器用于存储计算机程序,所述处理器用于执行所述存储器存储的计算机程序,以使所述设备执行如权利要求1至7中任一项所述3D仿真数据的生成方法。
PCT/CN2019/082633 2018-10-12 2019-04-15 3d仿真数据的生成方法、系统、计算机存储介质及设备 WO2020073631A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811189571.9A CN109446600A (zh) 2018-10-12 2018-10-12 3d仿真数据的生成方法、系统、计算机存储介质及设备
CN201811189571.9 2018-10-12

Publications (1)

Publication Number Publication Date
WO2020073631A1 true WO2020073631A1 (zh) 2020-04-16

Family

ID=65546616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082633 WO2020073631A1 (zh) 2018-10-12 2019-04-15 3d仿真数据的生成方法、系统、计算机存储介质及设备

Country Status (2)

Country Link
CN (1) CN109446600A (zh)
WO (1) WO2020073631A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112329177A (zh) * 2020-11-18 2021-02-05 济南重工集团有限公司 一种盾构机主轴承动力学模型的建模与仿真方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109165227B (zh) * 2018-07-25 2022-02-11 上海望友信息科技有限公司 Eda焊盘封装库的更新/应用方法、系统、介质及终端
CN109446600A (zh) * 2018-10-12 2019-03-08 上海望友信息科技有限公司 3d仿真数据的生成方法、系统、计算机存储介质及设备
CN110197019B (zh) * 2019-05-20 2021-09-10 上海望友信息科技有限公司 基于系统封装技术的工艺设计方法、系统、介质及设备
CN110516472A (zh) * 2019-08-20 2019-11-29 珠海格力电器股份有限公司 仿真方法和装置
CN110795904A (zh) * 2019-10-25 2020-02-14 深圳市元征科技股份有限公司 一种pcb布局与产品外壳结构核对方法及装置
CN111739162B (zh) * 2020-08-10 2020-12-04 成都智明达电子股份有限公司 一种基于ecad接口的pcba精准三维模型自动生成方法
CN116090405B (zh) * 2023-03-23 2023-09-12 深圳前海硬之城信息技术有限公司 三维仿真方法、装置、设备及存储介质
CN116011398A (zh) * 2023-03-27 2023-04-25 深圳前海硬之城信息技术有限公司 限高的pcb三维图纸生成方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000641A (zh) * 2006-12-30 2007-07-18 北海银河高科技产业股份有限公司 电力系统直流电源设备结构的设计方法
CN101763447A (zh) * 2009-12-28 2010-06-30 中国农业大学 三维造型软件与有限元分析软件之间数据自动转换的方法
US20160246914A1 (en) * 2015-02-23 2016-08-25 Lsis Co., Ltd. Printed circuit board design device
CN106777756A (zh) * 2016-12-30 2017-05-31 上海望友信息科技有限公司 基于3d aoi及axi的pcba检测方法及系统
CN109446600A (zh) * 2018-10-12 2019-03-08 上海望友信息科技有限公司 3d仿真数据的生成方法、系统、计算机存储介质及设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100541502C (zh) * 2007-12-13 2009-09-16 来新泉 一种具有检错功能的pcb仿真系统及其实现方法
CN102073775B (zh) * 2011-01-18 2012-08-08 西安电子科技大学 审查印制电路板电装数据的方法
CN103678826A (zh) * 2013-12-30 2014-03-26 哈尔滨工业大学 基于Solid Edge与Ansys Workbench的特种计算机的制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000641A (zh) * 2006-12-30 2007-07-18 北海银河高科技产业股份有限公司 电力系统直流电源设备结构的设计方法
CN101763447A (zh) * 2009-12-28 2010-06-30 中国农业大学 三维造型软件与有限元分析软件之间数据自动转换的方法
US20160246914A1 (en) * 2015-02-23 2016-08-25 Lsis Co., Ltd. Printed circuit board design device
CN106777756A (zh) * 2016-12-30 2017-05-31 上海望友信息科技有限公司 基于3d aoi及axi的pcba检测方法及系统
CN109446600A (zh) * 2018-10-12 2019-03-08 上海望友信息科技有限公司 3d仿真数据的生成方法、系统、计算机存储介质及设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112329177A (zh) * 2020-11-18 2021-02-05 济南重工集团有限公司 一种盾构机主轴承动力学模型的建模与仿真方法

Also Published As

Publication number Publication date
CN109446600A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2020073631A1 (zh) 3d仿真数据的生成方法、系统、计算机存储介质及设备
CN1885295B (zh) 使用逻辑单元建置集成电路
WO2018018736A1 (zh) 一种pcb网板制作方法及系统
US9703921B1 (en) Naturally connecting mixed-signal power networks in mixed-signal simulations
WO2020019502A1 (zh) Eda焊盘封装库的更新/应用方法、系统、介质及终端
CN111027266A (zh) 一种多个fpga的设计分割的方法、系统、存储介质及终端
WO2020186850A1 (zh) 网板阶梯的设计方法、系统、计算机可读存储介质及设备
CN109992567B (zh) 一种基于图匹配的pcb封装文件检索方法
CN112818457A (zh) 基于cad图纸的bim模型智能生成方法及系统
EP3159816A1 (en) Method and device for chip integration and storage medium
US10846449B1 (en) Conversion of block model-based circuit designs into circuit implementations
WO2019242298A1 (zh) 用于图纸设计的数据处理方法、plm插件及计算设备
CN108388731B (zh) 船舶基座数字化协同设计方法、系统及电子设备
CN112149227B (zh) 船舶管路敏捷设计方法、装置、终端及介质
CN108288303B (zh) 三维模型采购规格的自动校验方法、装置、设备及介质
CN114004190B (zh) 基于物理版图的多层级信息获取及可扩展操作的方法
CN116303461A (zh) 一种部件库创建方法、装置、电子设备和存储介质
CN114548028B (zh) 进行低功耗设计的方法、电子设备及存储介质
CN107729601B (zh) 仿真过程中配置ram的方法、装置及计算机存储介质
CN116069726A (zh) 一种集成电路设计库的管理方法、设备及介质
Liu et al. A convenient part library based on SolidWorks platform
JP7313020B2 (ja) マウントデータを生成する方法、媒体及びデバイス
Hoque et al. Designing using manufacturing feature library
Liu et al. Common management technology of automation equipment in industry 4.0
CN116185952A (zh) 数据处理方法、装置、设备及存储介质

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870594

Country of ref document: EP

Kind code of ref document: A1