WO2020073564A1 - 用于检测音频信号的响度的方法和装置 - Google Patents

用于检测音频信号的响度的方法和装置 Download PDF

Info

Publication number
WO2020073564A1
WO2020073564A1 PCT/CN2019/073125 CN2019073125W WO2020073564A1 WO 2020073564 A1 WO2020073564 A1 WO 2020073564A1 CN 2019073125 W CN2019073125 W CN 2019073125W WO 2020073564 A1 WO2020073564 A1 WO 2020073564A1
Authority
WO
WIPO (PCT)
Prior art keywords
loudness
value
audio
channel
band
Prior art date
Application number
PCT/CN2019/073125
Other languages
English (en)
French (fr)
Inventor
黄传增
Original Assignee
北京字节跳动网络技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京字节跳动网络技术有限公司 filed Critical 北京字节跳动网络技术有限公司
Publication of WO2020073564A1 publication Critical patent/WO2020073564A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/165Management of the audio stream, e.g. setting of volume, audio stream path
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control

Definitions

  • the embodiments of the present disclosure relate to the field of computer technology, and in particular to a method and apparatus for detecting the loudness of audio signals.
  • Loudness also known as volume, describes the loudness of the sound and represents the subjective perception of the human ear.
  • the unit of measurement is sone, defined as 1kHz, and the sound pressure level is 40dB.
  • the loudness of pure tone is 1 song.
  • the current loudness measurement method mainly uses a more complicated loudness measurement model (for example, Moore loudness model, Zwicker loudness model, etc.) to measure.
  • the embodiments of the present disclosure propose a method and apparatus for detecting the loudness of an audio signal.
  • an embodiment of the present disclosure provides a method for detecting the loudness of an audio signal, the method including: acquiring an audio signal of an audio channel in at least one preset audio channel; for at least one audio channel Audio channel, filtering the audio signal of the audio channel to obtain a set of sound intensity values in the target frequency band, where the sound intensity value corresponds to the frequency included in the target frequency band; the target frequency band is divided into at least two sub-bands, where each sub-band With a specified identification; for the sub-bands in at least two sub-bands obtained from the division, determine the sound intensity value of the sub-band based on the sound intensity value corresponding to the frequency included in the sub-band, and input the sound intensity value and the identification of the sub-band into a preset Sub-band loudness model to obtain the sub-band loudness value; based on the obtained loudness value, determine the channel loudness value of the audio channel; based on the obtained channel loudness value, determine the final loudness value.
  • filtering the audio signal of the audio channel to obtain a set of sound intensity values in the target frequency band includes: bandpass filtering the audio signal of the audio channel, and smoothing the bandpass filtered audio signal To get a set of sound intensity values.
  • the audio signal of the audio channel in the at least one audio channel is an audio signal that converts the initial audio signal from the time domain signal to the frequency domain signal.
  • determining the channel loudness value of the audio channel based on the obtained loudness value includes: determining the average value of the obtained loudness values as the channel loudness value of the audio channel.
  • the subband loudness model is a pre-established correspondence table, where the correspondence table includes at least two subband identifiers, at least two sets of sound intensity values, and at least two sets of loudness values.
  • the correspondence table includes at least two subband identifiers, at least two sets of sound intensity values, and at least two sets of loudness values.
  • the subband identification in the identification corresponds to the sound intensity value set and the loudness value set
  • the sound intensity value in the sound intensity value set corresponding to the subband identification corresponds to the loudness value in the loudness value set corresponding to the subband identification.
  • the method further includes: determining whether the final loudness value satisfies the preset condition; in response to determining that the preset condition is not met, for at least one audio channel The audio signal of the audio channel in is adjusted for loudness so that the final loudness meets the preset conditions.
  • the preset condition includes at least one of the following: the difference between the determined final loudness value and the loudness value of the initial audio signal is less than or equal to the preset threshold; for audio channels in at least one audio channel, the audio channel corresponds to The ratio of the loudness value of the target subband in at least two subbands to the channel loudness value of the audio channel reaches the target ratio.
  • an embodiment of the present disclosure provides an apparatus for detecting the loudness of an audio signal
  • the apparatus includes: an acquisition unit configured to acquire an audio signal of an audio channel among at least one preset audio channel; measurement The unit is configured to filter the audio signal of the audio channel for the audio channel in the at least one audio channel to obtain a set of sound intensity values in the target frequency band, where the sound intensity value corresponds to the frequency included in the target frequency band; The frequency band is divided into at least two sub-bands, where each sub-band has a specified identification; for the sub-bands in the at least two sub-bands obtained from the division, the sound intensity value of the sub-band is determined based on the sound intensity value corresponding to the frequency included in the sub-band Input the sound intensity value and identification of the subband into the preset subband loudness model to obtain the loudness value of the subband; based on the obtained loudness value, determine the channel loudness value of the audio channel; the determination unit is configured to be based on the obtained The channel loudness value determines the
  • the measurement unit includes a filtering module configured to perform band-pass filtering on the audio signal of the audio channel, and smooth-filter the band-pass filtered audio signal to obtain a set of sound intensity values.
  • the audio signal of the audio channel in the at least one audio channel is an audio signal that converts the initial audio signal from the time domain signal to the frequency domain signal.
  • the measurement unit includes a determination module configured to determine the average value of the obtained loudness values as the channel loudness value of the audio channel.
  • the subband loudness model is a pre-established correspondence table, where the correspondence table includes at least two subband identifiers, at least two sets of sound intensity values, and at least two sets of loudness values.
  • the correspondence table includes at least two subband identifiers, at least two sets of sound intensity values, and at least two sets of loudness values.
  • the subband identification in the identification corresponds to the sound intensity value set and the loudness value set
  • the sound intensity value in the sound intensity value set corresponding to the subband identification corresponds to the loudness value in the loudness value set corresponding to the subband identification.
  • the apparatus further includes: a second determination unit configured to determine whether the final loudness value satisfies the preset condition; and an adjustment unit configured to, in response to determining that the preset condition is not satisfied, the at least one audio channel The loudness of the audio signal of the audio channel is adjusted so that the final loudness meets the preset conditions.
  • the preset condition includes at least one of the following: the difference between the determined final loudness value and the loudness value of the initial audio signal is less than or equal to the preset threshold; for audio channels in at least one audio channel, the audio channel corresponds to The ratio of the loudness value of the target subband in at least two subbands to the channel loudness value of the audio channel reaches the target ratio.
  • an embodiment of the present disclosure provides a terminal device including: one or more processors; a storage device on which one or more programs are stored; when one or more programs are Multiple processors execute so that one or more processors implement the method as described in any one of the implementation manners of the first aspect.
  • an embodiment of the present disclosure provides a computer-readable medium on which a computer program is stored, which when executed by a processor implements the method described in any one of the implementation manners of the first aspect.
  • the method and apparatus for detecting the loudness of an audio signal continue to filter the audio signal of the audio channel in at least one audio channel to obtain a set of sound intensity values in the target frequency band, and then convert the target frequency band Divided into at least two sub-bands, where each sub-band has a specified identification, and then determine the sound intensity value of each sub-band, and then use the sub-band loudness model to obtain the loudness value of each sub-band, and then determine based on the loudness value of each sub-band
  • the channel loudness value of each audio channel, and finally, the final loudness value is determined based on the channel loudness value of each audio channel, so that the method of dividing the target frequency band into subbands, and using the subband loudness model, improves the accuracy of loudness measurement.
  • FIG. 1 is an exemplary system architecture diagram to which an embodiment of the present disclosure can be applied;
  • FIG. 2 is a flowchart of one embodiment of a method for detecting the loudness of an audio signal according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an application scenario of a method for detecting loudness of an audio signal according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of still another embodiment of a method for detecting the loudness of an audio signal according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of an embodiment of an apparatus for detecting the loudness of an audio signal according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a terminal device suitable for implementing embodiments of the present disclosure.
  • FIG. 1 illustrates an exemplary system architecture 100 of a method for detecting loudness of an audio signal or an apparatus for detecting loudness of an audio signal to which embodiments of the present disclosure can be applied.
  • the system architecture 100 may include terminal devices 101, 102, and 103, a network 104, and a server 105.
  • the network 104 is a medium used to provide a communication link between the terminal devices 101, 102, 103 and the server 105.
  • the network 104 may include various connection types, such as wired, wireless communication links, or fiber optic cables, and so on.
  • the user can use the terminal devices 101, 102, 103 to interact with the server 105 through the network 104 to receive or send messages, and so on.
  • Various communication client applications, audio playback applications, video playback applications, social platform software, etc. may be installed on the terminal devices 101, 102, and 103.
  • the terminal devices 101, 102, and 103 may be hardware or software. When the terminal devices 101, 102, and 103 are hardware, they may be various electronic devices. When the terminal devices 101, 102, and 103 are software, they can be installed in the above electronic device. It can be implemented as multiple software or software modules (for example, software or software modules used to provide distributed services), or as a single software or software module. There is no specific limit here.
  • the server 105 may be a server that provides various services, such as a background audio server that supports audio played on the terminal devices 101, 102, and 103.
  • the background audio server can send audio to the terminal device to play on the terminal device.
  • the method for processing audio signals provided by the embodiments of the present disclosure is generally performed by terminal devices 101, 102, and 103. Accordingly, the apparatus for processing audio signals may be provided in terminal devices 101, 102, 103.
  • the server can be hardware or software.
  • the server can be implemented as a distributed server cluster composed of multiple servers or as a single server.
  • the server is software, it can be implemented as multiple software or software modules (for example, software or software modules for providing distributed services), or as a single software or software module. There is no specific limit here.
  • terminal devices, networks, and servers in FIG. 1 are only schematic. According to the implementation needs, there can be any number of terminal devices, networks and servers.
  • a flow 200 of one embodiment of a method for detecting the loudness of an audio signal according to the present disclosure includes the following steps:
  • Step 201 Acquire audio signals of audio channels in at least one preset audio channel.
  • an execution subject (for example, the terminal device shown in FIG. 1) of the method for detecting the loudness of the audio signal may acquire the audio signal of the audio channel among the at least one preset audio channel.
  • the at least one audio channel may be an audio channel provided in the execution subject.
  • the above-mentioned at least one audio channel may include channels such as a left channel and a right channel.
  • the audio signal of the above-mentioned audio channel may be an audio signal to be stored in the above-mentioned execution subject to be subjected to loudness measurement in advance.
  • the audio signal of the audio channel in the at least one audio channel may be an audio signal that is included in the audio currently played on the execution subject and is provided in a different audio channel.
  • the duration of the audio signal may be a preset duration, such as 5 seconds, 10 seconds, and so on.
  • the audio signal of the audio channel in the at least one audio channel is an audio signal that converts the initial audio signal from a time domain signal to a frequency domain signal.
  • audio signals converted into the frequency domain can be processed more easily (such as filtering and other processing).
  • various algorithms such as DFT (Discrete Fourier Transform, Discrete Fourier Transform) algorithm, FFT (Fast Fourier Transform, Fast Fourier Transformation) algorithm, etc. can be used to convert the time domain signal to the frequency domain signal.
  • Step 202 For the audio channel in at least one audio channel, filter the audio signal of the audio channel to obtain a set of sound intensity values in the target frequency band; divide the target frequency band into at least two subbands, where each subband has a specified Identification; for the sub-bands in at least two sub-bands obtained from the division, determine the sound intensity value of the sub-band based on the sound intensity value corresponding to the frequency included in the sub-band, and input the sound intensity value and the identification of the sub-band into the preset sub-band
  • the loudness model obtains the loudness value of the subband; based on the obtained loudness value, the channel loudness value of the audio channel is determined.
  • the above-mentioned execution subject may perform the following steps:
  • Step 2021 Filter the audio signal of the audio channel to obtain a set of sound intensity values in the target frequency band.
  • the sound intensity value corresponds to the frequency included in the target frequency band.
  • the sound intensity can also be called the sound pressure level (SPL), which is defined as the ratio of the effective value of the sound pressure to be measured p (e) and the reference sound pressure p (ref) to the common logarithm, and then multiplied by 20 ,
  • SPL sound pressure level
  • the unit of the value is decibel (dB).
  • the target frequency band may be a frequency band preset by a technician (for example, 100Hz-10000Hz), or may be a frequency band determined by the execution subject according to the bandwidth of the audio signal (for example, according to the preset frequency upper limit ratio and frequency lower limit ratio, from the audio signal Frequency band extracted within the bandwidth).
  • the audio signal may include a frequency within a preset frequency range and a sound intensity value corresponding to the frequency.
  • the above-mentioned execution subject may filter the audio signal according to various existing filtering methods to obtain a set of sound intensity values in the target frequency band .
  • the corresponding relationship between the sound intensity value and the frequency can be characterized by a spectrogram.
  • the spectrogram includes a horizontal axis and a vertical axis, the coordinates on the horizontal axis represent the sound frequency, and the coordinates on the vertical axis represent the sound intensity (ie, sound pressure level) .
  • the above-mentioned executive body may use an existing band-pass filtering method to filter the audio signal, thereby obtaining a set of sound intensity values in the target frequency band.
  • the above-mentioned execution subject may filter the audio signal of the audio channel according to the following steps to obtain a set of sound intensity values in the target frequency band:
  • band-pass filter the audio signal of the audio channel is smoothly filtered to obtain a set of sound intensity values.
  • the above execution subject may perform smooth filtering on the band-pass filtered audio signal according to the existing smooth filtering algorithm.
  • the above-mentioned smoothing filtering algorithm may include, but is not limited to, at least one of the following: first-order smoothing filtering algorithm, high-order smoothing filtering algorithm, median filtering algorithm, and the like. It should be noted that the above various smoothing filter algorithms are well-known technologies that have been widely researched and applied at present, and will not be repeated here. After smooth filtering, the sudden change of sound intensity of the audio signal can be reduced, which is helpful to improve the accuracy of loudness measurement.
  • Step 2022 Divide the target frequency band into at least two subbands, and determine the identifier of the subband.
  • the above-mentioned executive body may divide the target frequency band into at least two sub-bands according to the frequency range corresponding to each sub-band preset by the technician.
  • the frequency range of the sub-band in the low frequency band can be set to be narrow, and the frequency range at the high frequency band can be set to be wide, thereby simulating the frequency of the human ear Resolve characteristics.
  • the frequency range of the above-mentioned low frequency band and high frequency band may be preset by a technician.
  • the above-mentioned executive body may determine the subband identification in various ways.
  • the above-mentioned executive body may number each sub-band according to the order of the frequency range, and use the number as the identifier of each sub-band.
  • the above-mentioned execution subject may use a value (for example, “1kHz-2kHz”) that characterizes the frequency range of the subband as the subband identifier.
  • Step 2023 For the subbands in the at least two obtained subbands, determine the sound intensity value of the subband based on the sound intensity value corresponding to the frequency included in the subband, and input the sound intensity value and the identifier of the subband into the preset subband With the loudness model, the loudness value of the subband is obtained.
  • the above-mentioned executive body may first determine the sound intensity value of the sub-band according to various methods. As an example, the above-mentioned executive body may calculate the average value of the sound intensity values corresponding to each frequency included in the sub-band, and calculate the calculated tie The value is determined as the sound intensity value of the subband. For another example, the above-mentioned execution subject may determine the median of each sound intensity value corresponding to the subband as the sound intensity value of the subband.
  • the above-mentioned execution subject may input the sound intensity value and the identifier of the subband into a preset subband loudness model to obtain the loudness value of the subband.
  • the sub-band loudness model is used to characterize the identification of the sub-band, the correspondence between the sound intensity value of the sub-band and the loudness value of the sub-band.
  • the sub-band loudness model may be a pre-established correspondence table.
  • the correspondence table includes at least two subband identifiers, at least two sound intensity value sets, and at least two loudness value sets.
  • the subband identifiers correspond to the sound intensity value set and the loudness value set
  • the sound intensity values in the sound intensity value set corresponding to the subband identifier correspond to the loudness value set corresponding to the subband identifier The loudness value in.
  • the corresponding relationship between the sound intensity value and the loudness value in the above-mentioned correspondence table may be manually set by a technician, or may be performed by the above-mentioned execution subject or other electronic equipment using the existing method of calculating the loudness of the audio signal. Calculate to get the corresponding loudness value.
  • the correspondence table By setting the correspondence table, the calculation amount of the above-mentioned execution subject can be reduced, which helps to increase the speed of measuring loudness.
  • the above sub-band loudness model may include existing loudness calculation models such as Zwicker loudness model, Moore loudness model, etc.
  • the Zwicker loudness model is a multi-band loudness calculation model based on the excitation mode, which can simulate the hearing mechanism of the human ear.
  • the cochlear basement membrane can be compared to a set of band-pass filters with overlapping bandwidths, called the characteristic frequency band.
  • the characteristic frequency band Under the action of external excitation, the corresponding excitation intensity will be generated on each characteristic frequency band, which is called "excitation mode".
  • the characteristic loudness proportional to the excitation intensity can be obtained, and the characteristic loudness can be obtained by integrating the characteristic loudness.
  • the Moore loudness model is an improved loudness model based on the Zwicker loudness model. Compared with the Zwicker loudness model, the Moore loudness model is suitable for various steady-state noise signals and has a higher frequency resolution.
  • the above sub-band loudness model can determine the frequency range of the sub-band according to the identification of the sub-band, and the loudness value of the sub-band is determined by the Moore loudness model or the Zwicker loudness model.
  • Step 2024 Determine the channel loudness value of the audio channel based on the obtained loudness value.
  • the above-mentioned execution subject may determine the channel loudness value of the audio channel in various ways.
  • the above-mentioned execution subject may determine the obtained average value of each loudness value as the channel loudness value. Because the method of calculating the average value is simple and can characterize the overall loudness of the audio channel, the average value of each loudness value as the channel loudness value can improve the efficiency of loudness measurement.
  • the above-mentioned execution subject may perform weighted summation of each loudness value based on a preset weight value corresponding to each subband to obtain a channel loudness value.
  • the weight value By setting the weight value, the contribution degree of different sub-bands to the channel loudness value can be more accurately reflected, which helps to improve the pertinence and accuracy of loudness measurement.
  • Step 203 Determine the final loudness value based on the obtained channel loudness value.
  • the execution subject may determine the final loudness value based on the obtained loudness value of each channel.
  • the above-mentioned execution subject may determine the average value of the loudness values of the respective channels as the final loudness value.
  • the above-mentioned execution subject may weight and sum the loudness values of the respective channels based on a preset weight value corresponding to each audio channel, so as to obtain a final loudness value.
  • the above-mentioned execution subject may output the obtained final loudness value in various ways.
  • the final loudness value may be output to be displayed on a display screen included in the above-mentioned execution subject, or may be output to be stored in a preset storage area in the above-mentioned execution subject.
  • FIG. 3 is a schematic diagram of an application scenario of the method for detecting the loudness of an audio signal according to this embodiment.
  • the terminal device 301 first obtains the audio signal 302 in the left channel and the audio signal 303 in the right channel to be played on the terminal device 301. Then, the terminal device 301 performs filtering processing on the audio signal 302 and the audio signal 303, respectively, to obtain a sound intensity value set 304 corresponding to the audio signal 302 in the target frequency band, and obtain a sound intensity value corresponding to the audio signal 303 in the target frequency band Collection 305.
  • the terminal device 301 divides the target frequency band into a plurality of (for example, 20) subbands, and determines the identification of each subband (for example, numbered subband 1-subband n in the figure). Then, the terminal device 301 averages the sound intensity values corresponding to the frequencies included in each sub-band corresponding to the audio signal 302 and the audio signal 303 respectively, to obtain the sound intensity value of each sub-band, and compare the sound intensity value of each sub-band with Identify and input the preset subband loudness model 306 to obtain the loudness value of each subband.
  • the respective sub-band loudness values corresponding to the audio signal 302 and the audio signal 303 are averaged to obtain the channel loudness value 307 of the left channel and the channel loudness value 308 of the right channel. Finally, the average value of the channel loudness values 307 and 308 is determined as the final loudness value 309.
  • the method provided by the above embodiments of the present disclosure divides the target frequency band into at least two subbands, and obtains the loudness of each subband by using the subband loudness model, and obtains the final loudness based on the loudness of each subband, which improves the loudness measurement Flexibility and accuracy.
  • FIG. 4 shows a flow 400 of yet another embodiment of a method for detecting the loudness of an audio signal.
  • the process 400 of the method for detecting the loudness of an audio signal includes the following steps:
  • Step 401 Acquire audio signals of audio channels in at least one preset audio channel.
  • step 401 is basically the same as step 201 in the embodiment corresponding to FIG. 2 and will not be repeated here.
  • Step 402 For the audio channel in at least one audio channel, filter the audio signal of the audio channel to obtain a set of sound intensity values in the target frequency band; divide the target frequency band into at least two subbands, where each subband has a specified The identification of the subbands of the at least two subbands obtained from the division, based on the sound intensity value corresponding to the frequency included in the subband, determine the sound intensity value of the subband, and input the sound intensity value and the identification of the subband into the preset With the loudness model, the loudness value of the sub-band is obtained; based on the obtained loudness value, the channel loudness value of the audio channel is determined.
  • step 402 is basically the same as step 202 in the embodiment corresponding to FIG. 2 and will not be repeated here.
  • Step 403 Determine the final loudness value based on the obtained channel loudness value.
  • step 403 is basically the same as step 203 in the embodiment corresponding to FIG. 2 and will not be repeated here.
  • Step 404 Determine whether the final loudness value satisfies the preset condition.
  • an execution subject of the method for detecting the loudness of the audio signal may first determine whether the final loudness value satisfies the preset condition.
  • the preset condition is a judgment condition set in advance for determining whether to perform loudness adjustment.
  • the preset condition includes at least one of the following:
  • the difference between the determined final loudness value and the loudness value of the initial audio signal is less than or equal to the preset threshold.
  • the initial audio signal may be an audio signal that is the same as the source of the audio signal described in the above steps and is not processed.
  • the initial audio signal is an audio signal included in a pre-recorded audio file
  • the audio signal described in the above steps is a signal that performs processing such as reverberation processing and tuning processing on the foregoing initial audio signal.
  • the measurement method of the loudness value of the initial audio signal may be consistent with the measurement method of the loudness value of the audio signal described in the above steps.
  • Preset condition 2 For an audio channel in at least one audio channel, the ratio of the loudness value of the target subband in the at least two subbands corresponding to the audio channel to the channel loudness value of the audio channel reaches the target ratio.
  • the target subband may be a preset subband, for example, the target subband may be a subband where the frequency of a human voice is located. It should be understood that the number of target subbands may be at least one.
  • the above target ratio may be a ratio of the loudness value of the target subband in each subband corresponding to the initial audio signal of each audio channel and the channel loudness value of the initial audio signal of the audio channel after performing the above steps on the initial audio signal. It should be noted that the target ratio may have an error range.
  • the ratio of the loudness value of the target subband to the channel loudness value is within the error range, it is determined that the target ratio is reached.
  • the preset condition 2 is satisfied, the deviation of the ratio of the loudness value representing the target subband to the channel loudness value is small, and the loudness value of the target subband is more accurately restored.
  • Step 405 In response to determining that the preset condition is not satisfied, perform loudness adjustment on the audio signal of the audio channel in the at least one audio channel, so that the final loudness meets the preset condition.
  • the above-mentioned execution subject may adjust the loudness of the audio signal of the audio channel in the at least one audio channel, so that the final loudness meets the preset condition.
  • the above-mentioned execution subject may adjust the sound intensity value of each sub-band of the audio signal of each audio channel to the sound intensity value of the corresponding sub-band of the initial audio signal, so that the final loudness meets the preset condition.
  • the process flow 400 of the method for detecting the loudness of the audio signal in this embodiment highlights the step of adjusting the loudness of the audio signal. Therefore, the solution described in this embodiment can more accurately adjust the loudness of the audio signal to the initial loudness, which helps to avoid sudden changes in loudness during audio playback and improve the audio playback effect.
  • the present disclosure provides an embodiment of an apparatus for detecting the loudness of an audio signal, which is the same as the method embodiment shown in FIG. 2
  • the device can be specifically applied to various electronic devices.
  • the apparatus 500 for detecting the loudness of an audio signal in this embodiment includes: an acquiring unit 501 configured to acquire audio signals of audio channels among at least one preset audio channel; a measuring unit 502 is It is configured to filter the audio signal of the audio channel for at least one audio channel to obtain a set of sound intensity values in the target frequency band, where the sound intensity value corresponds to the frequency included in the target frequency band; the target frequency band is divided into At least two subbands, where each subband has a specified identification; for the subbands in the at least two subbands obtained from the division, the sound intensity value of the subband is determined based on the sound intensity value corresponding to the frequency included in the subband, and The sound intensity value and the logo are input into the preset subband loudness model to obtain the subband loudness value; based on the obtained loudness value, the channel loudness value of the audio channel is determined; the determining unit 503 is configured to be based on the obtained channel loudness Value to determine the final loudness value.
  • the acquiring unit 501 may acquire audio signals of audio channels in at least one preset audio channel.
  • the at least one audio channel may be an audio channel provided in the device 500.
  • the above-mentioned at least one audio channel may include channels such as a left channel and a right channel.
  • the audio signal of the above-mentioned audio channel may be an audio signal to be stored in the above-mentioned device 500 and to be subjected to loudness measurement.
  • the audio signal of the audio channel in the at least one audio channel may be an audio signal included in the audio currently played on the device 500 and set in a different audio channel.
  • the duration of the audio signal may be a preset duration, such as 5 seconds, 10 seconds, and so on.
  • the measurement unit 502 may perform the following steps:
  • Step 5021 Filter the audio signal of the audio channel to obtain a set of sound intensity values in the target frequency band.
  • the sound intensity value corresponds to the frequency included in the target frequency band.
  • the sound intensity can also be called the sound pressure level (SPL), which is defined as the ratio of the effective value of the sound pressure to be measured p (e) and the reference sound pressure p (ref) to the common logarithm, and then multiplied by 20 ,
  • SPL sound pressure level
  • the unit of the value is decibel (dB).
  • the target frequency band may be a frequency band preset by a technician (for example, 100Hz-10000Hz), or may be a frequency band determined by the device 500 according to the bandwidth of the audio signal (for example, according to the preset upper frequency ratio and lower frequency ratio, from the audio signal Frequency band extracted within the bandwidth).
  • the audio signal may include a frequency within a preset frequency range and a sound intensity value corresponding to the frequency.
  • the measurement unit 502 may filter the audio signal according to various existing filtering methods to obtain a sound intensity value within a target frequency band set.
  • the corresponding relationship between the sound intensity value and the frequency can be characterized by a spectrogram.
  • the spectrogram includes a horizontal axis and a vertical axis, the coordinates on the horizontal axis represent the sound frequency, and the coordinates on the vertical axis represent the sound intensity (ie, sound pressure level) .
  • Step 5022 Divide the target frequency band into at least two subbands, and determine the identifier of the subband.
  • the above measurement unit 502 may divide the target frequency band into at least two subbands according to a frequency range corresponding to each subband preset by a technician.
  • the frequency range of the sub-band in the low frequency band can be set to be narrow, and the frequency range at the high frequency band can be set to be wide, thereby simulating the frequency of the human ear Resolve characteristics.
  • the frequency range of the above-mentioned low frequency band and high frequency band may be preset by a technician.
  • the above measurement unit 502 can determine the identifier of the subband in various ways. As an example, the above measurement unit 502 may number each subband according to the order of frequency range arrangement, and use the number as an identifier of each subband. Alternatively, the measurement unit 502 may use a value (for example, "1kHz-2kHz") that characterizes the frequency range of the subband as the subband identifier.
  • Step 5023 For the sub-bands in the at least two sub-bands obtained by the division, determine the sound intensity value of the sub-band based on the sound intensity value corresponding to the frequency included in the sub-band, and input the sound intensity value and the identifier of the sub-band into a preset sub-band With the loudness model, the loudness value of the subband is obtained.
  • the measurement unit 502 may first determine the sound intensity value of the sub-band according to various methods. As an example, the measurement unit 502 may calculate the average value of the sound intensity value corresponding to each frequency included in the sub-band, and obtain the calculated The tie value of is determined as the sound intensity value of the subband. For another example, the measurement unit 502 may determine the median of each sound intensity value corresponding to the subband as the sound intensity value of the subband.
  • the measurement unit 502 may input the sound intensity value and the identifier of the subband into a preset subband loudness model to obtain the loudness value of the subband.
  • the sub-band loudness model is used to characterize the identification of the sub-band, the correspondence between the sound intensity value of the sub-band and the loudness value of the sub-band.
  • Step 5024 Determine the channel loudness value of the audio channel based on the obtained loudness value.
  • the above measurement unit 502 may determine the channel loudness value of the audio channel in various ways.
  • the above measurement unit 502 may determine the obtained average value of each loudness value as the channel loudness value. Because the method of calculating the average value is simple and can characterize the overall loudness of the audio channel, the average value of each loudness value as the channel loudness value can improve the efficiency of loudness measurement.
  • the determining unit 503 may determine the final loudness value based on the obtained loudness value of each channel.
  • the above determination unit 503 may determine the average value of the loudness values of the respective channels as the final loudness value.
  • the above determination unit 503 may weight and sum the loudness values of the respective channels based on the preset weight values corresponding to each audio channel, so as to obtain the final loudness value.
  • the measurement unit 502 may include: a filtering module (not shown in the figure) configured to band-pass filter the audio signal of the audio channel to filter the band-pass filtered audio The signal is smoothly filtered to obtain a set of sound intensity values.
  • a filtering module (not shown in the figure) configured to band-pass filter the audio signal of the audio channel to filter the band-pass filtered audio The signal is smoothly filtered to obtain a set of sound intensity values.
  • the audio signal of the audio channel in the at least one audio channel is an audio signal that converts the initial audio signal from the time domain signal to the frequency domain signal.
  • the measurement unit 502 may include a determination module (not shown in the figure) configured to determine the average value of the obtained loudness values as the channel loudness value of the audio channel.
  • the subband loudness model is a pre-established correspondence table, where the correspondence table includes at least two subband identifiers, at least two sound intensity value sets, and at least two loudness values Set, for the subband identifiers in at least two subband identifiers, the subband identifiers correspond to the sound intensity value set and the loudness value set, and the sound intensity values in the sound intensity value set corresponding to the subband identifier correspond to the loudness corresponding to the subband identifier The loudness value in the value set.
  • the apparatus 500 may further include: a second determination unit (not shown in the figure) configured to determine whether the final loudness value meets a preset condition; an adjustment unit (in the figure (Not shown), configured to, in response to determining that the preset condition is not satisfied, perform loudness adjustment on the audio signal of the audio channel in the at least one audio channel, so that the final loudness meets the preset condition.
  • a second determination unit not shown in the figure
  • an adjustment unit in the figure (Not shown) configured to, in response to determining that the preset condition is not satisfied, perform loudness adjustment on the audio signal of the audio channel in the at least one audio channel, so that the final loudness meets the preset condition.
  • the preset condition includes at least one of the following: the difference between the determined final loudness value and the loudness value of the initial audio signal is less than or equal to the preset threshold; for at least one audio channel Audio channel, the ratio of the loudness value of the target subband in the at least two subbands corresponding to the audio channel to the channel loudness value of the audio channel reaches the target ratio.
  • the device provided by the above embodiment of the present disclosure divides the target frequency band into at least two subbands, and obtains the loudness of each subband by using the subband loudness model, and obtains the final loudness based on the loudness of each subband, improving the loudness measurement Flexibility and accuracy.
  • Terminal devices in the embodiments of the present disclosure may include, but are not limited to, such as mobile phones, notebook computers, digital broadcast receivers, PDAs (personal digital assistants), PADs (tablet computers), PMPs (portable multimedia players), in-vehicle terminals ( For example, mobile terminals such as car navigation terminals) and fixed terminals such as digital TVs, desktop computers, and so on.
  • the terminal device shown in FIG. 6 is only an example, and should not bring any limitation to the functions and use scope of the embodiments of the present disclosure.
  • the terminal device 600 may include a processing device (such as a central processing unit, a graphics processor, etc.) 601, which may be loaded into random access according to a program stored in a read-only memory (ROM) 602 or from the storage device 608
  • the program in the memory (RAM) 603 performs various appropriate operations and processes.
  • various programs and data necessary for the operation of the terminal device 600 are also stored.
  • the processing device 601, ROM 602, and RAM 603 are connected to each other via a bus 604.
  • An input / output (I / O) interface 605 is also connected to the bus 604.
  • the following devices can be connected to the I / O interface 605: including input devices 606 such as touch screen, touch pad, keyboard, mouse, camera, microphone, accelerometer, gyroscope, etc .; including, for example, liquid crystal display (LCD), speaker, vibration
  • An output device 607 such as a storage device; a storage device 608 including, for example, a magnetic tape, a hard disk, etc .; and a communication device 609.
  • the communication device 609 may allow the terminal device 600 to perform wireless or wired communication with other devices to exchange data.
  • FIG. 6 shows a terminal device 600 having various devices, it should be understood that it is not required to implement or have all the devices shown. More or fewer devices may be implemented or provided instead.
  • the process described above with reference to the flowchart may be implemented as a computer software program.
  • embodiments of the present disclosure include a computer program product that includes a computer program carried on a computer-readable medium, the computer program containing program code for performing the method shown in the flowchart.
  • the computer program may be downloaded and installed from the network through the communication device 609, or from the storage device 608, or from the ROM 602.
  • the processing device 601 the above-described functions defined in the method of the embodiments of the present disclosure are executed.
  • the computer-readable medium described in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the two.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination of the above. More specific examples of computer-readable storage media may include, but are not limited to: electrical connections with one or more wires, portable computer diskettes, hard drives, random access memory (RAM), read-only memory (ROM), erasable Programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the foregoing.
  • the computer-readable storage medium may be any tangible medium that contains or stores a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal that is propagated in baseband or as part of a carrier wave, in which computer-readable program code is carried. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • the computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, and the computer-readable signal medium may send, propagate, or transmit a program for use by or in combination with an instruction execution system, apparatus, or device .
  • the program code contained on the computer readable medium may be transmitted using any appropriate medium, including but not limited to: electric wires, optical cables, RF (radio frequency), etc., or any suitable combination of the foregoing.
  • the above-mentioned computer-readable medium may be included in the above-mentioned terminal device; or it may exist alone without being assembled into the terminal device.
  • the computer-readable medium carries one or more programs, and when the one or more programs are executed by the terminal device, the terminal device is caused to: acquire audio signals of audio channels in at least one preset audio channel; for at least An audio channel in an audio channel filters the audio signal of the audio channel to obtain a set of sound intensity values in the target frequency band, where the sound intensity values correspond to the frequencies included in the target frequency band; the target frequency band is divided into at least two subbands , Where each subband has a specified identifier; for the subbands in at least two subbands obtained from the division, the sound intensity value of the subband is determined based on the sound intensity value corresponding to the frequency included in the subband, and the sound intensity value of the subband Enter the preset subband loudness model with and mark to obtain the loudness value of the subband; determine the channel loudness value of the audio channel based on
  • Computer program code for performing the operations of the present disclosure may be written in one or more programming languages or a combination thereof, the programming languages including object-oriented programming languages such as Java, Smalltalk, C ++, and also including conventional Procedural programming language-such as "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as an independent software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (eg, through an Internet service provider Internet connection).
  • LAN local area network
  • WAN wide area network
  • Internet service provider Internet connection e.g, AT&T, MCI, Sprint, EarthLink, MSN, GTE, etc.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of code that contains one or more logic functions Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession can actually be executed in parallel, and sometimes they can also be executed in reverse order, depending on the functions involved.
  • each block in the block diagrams and / or flowcharts, and combinations of blocks in the block diagrams and / or flowcharts can be implemented with dedicated hardware-based systems that perform specified functions or operations Or, it can be realized by a combination of dedicated hardware and computer instructions.
  • the units described in the embodiments of the present disclosure may be implemented in software or hardware.
  • the name of the unit does not constitute a limitation on the unit itself.
  • the acquiring unit may also be described as “a unit acquiring audio signals of audio channels in at least one preset audio channel”.

Abstract

本公开的实施例公开了用于检测音频信号的响度的方法和装置。该方法的一具体实施方式包括:获取预设的至少一个音频通道中的音频通道的音频信号;对于至少一个音频通道中的音频通道,对音频通道的音频信号进行滤波处理,得到目标频带内的声音强度值集合;将目标频带划分为至少两个子带,其中每个子带具有指定的标识;对于划分得到的至少两个子带中的子带,基于子带包括的频率对应的声音强度值,确定子带的声音强度值,将子带的声音强度值和标识输入预设的子带响度模型,得到子带的响度值;基于所得到的响度值,确定音频通道的通道响度值;基于所得到的通道响度值,确定最终响度值。该实施方式提高了响度测量的准确性。

Description

用于检测音频信号的响度的方法和装置
本专利申请要求于2018年10月12日提交的、申请号为201811190438.5、申请人为北京微播视界科技有限公司、发明名称为“用于检测音频信号的响度的方法和装置”的中国专利申请的优先权,该申请的全文以引用的方式并入本申请中。
技术领域
本公开的实施例涉及计算机技术领域,具体涉及用于检测音频信号的响度的方法和装置。
背景技术
随着互联网技术与电子技术的结合程度越来越高,人们对电子设备的智能化、人性化的要求也越来越高。手机以及便携式电子终端的使用普及度越来越高,多媒体功能是用户使用最多的应用之一。
响度又称音量,描述的是声音的响亮程度,表示人耳对声音的主观感受,其计量单位是宋(sone),定义1kHz,声压级为40dB纯音的响度为1宋。目前的响度测量方法,主要通过较复杂的响度测量模型(例如Moore响度模型、Zwicker响度模型等)来进行测量。
发明内容
本公开的实施例提出了用于检测音频信号的响度的方法和装置。
第一方面,本公开的实施例提供了一种用于检测音频信号的响度的方法,该方法包括:获取预设的至少一个音频通道中的音频通道的音频信号;对于至少一个音频通道中的音频通道,对音频通道的音频信号进行滤波处理,得到目标频带内的声音强度值集合,其中,声音强度值对应于目标频带包括的频率;将目标频带划分为至少两个子带,其中每个子带具有指定的标识;对于划分得到的至少两个子带中的子带,基于子带包括的频率对应的声音强度值,确定子带的声音强度值,将子带的声音强度值和标识输入预设的子带响度模型,得到子带的响 度值;基于所得到的响度值,确定音频通道的通道响度值;基于所得到的通道响度值,确定最终响度值。
在一些实施例中,对音频通道的音频信号进行滤波处理,得到目标频带内的声音强度值集合,包括:对音频通道的音频信号进行带通滤波,将带通滤波后的音频信号进行平滑滤波,得到声音强度值集合。
在一些实施例中,至少一个音频通道中的音频通道的音频信号是将初始的音频信号由时域信号转换为频域信号的音频信号。
在一些实施例中,基于所得到的响度值,确定音频通道的通道响度值,包括:将所得到的响度值的平均值确定为音频通道的通道响度值。
在一些实施例中,子带响度模型为预先建立的对应关系表,其中,对应关系表包括至少两个子带标识、至少两个声音强度值集合和至少两个响度值集合,对于至少两个子带标识中的子带标识,子带标识对应于声音强度值集合和响度值集合,子带标识对应的声音强度值集合中的声音强度值对应于子带标识对应的响度值集合中的响度值。
在一些实施例中,在基于所得到的通道响度值,确定最终响度值之后,该方法还包括:确定最终响度值是否满足预设条件;响应于确定不满足预设条件,对至少一个音频通道中的音频通道的音频信号进行响度调节,以使最终响度满足预设条件。
在一些实施例中,预设条件包括以下至少一种:所确定的最终响度值与初始音频信号的响度值之差小于等于预设阈值;对于至少一个音频通道中的音频通道,音频通道对应的至少两个子带中的目标子带的响度值与音频通道的通道响度值的比例达到目标比例。
第二方面,本公开的实施例提供了一种用于检测音频信号的响度的装置,该装置包括:获取单元,被配置成获取预设的至少一个音频通道中的音频通道的音频信号;测量单元,被配置成对于至少一个音频通道中的音频通道,对音频通道的音频信号进行滤波处理,得到目标频带内的声音强度值集合,其中,声音强度值对应于目标频带包括的频率;将目标频带划分为至少两个子带,其中每个子带具有指定的标识;对于划分得到的至少两个子带中的子带,基于子带包括的频率 对应的声音强度值,确定子带的声音强度值,将子带的声音强度值和标识输入预设的子带响度模型,得到子带的响度值;基于所得到的响度值,确定音频通道的通道响度值;确定单元,被配置成基于所得到的通道响度值,确定最终响度值。
在一些实施例中,测量单元包括:滤波模块,被配置成对音频通道的音频信号进行带通滤波,将带通滤波后的音频信号进行平滑滤波,得到声音强度值集合。
在一些实施例中,至少一个音频通道中的音频通道的音频信号是将初始的音频信号由时域信号转换为频域信号的音频信号。
在一些实施例中,测量单元包括:确定模块,被配置成将所得到的响度值的平均值确定为音频通道的通道响度值。
在一些实施例中,子带响度模型为预先建立的对应关系表,其中,对应关系表包括至少两个子带标识、至少两个声音强度值集合和至少两个响度值集合,对于至少两个子带标识中的子带标识,子带标识对应于声音强度值集合和响度值集合,子带标识对应的声音强度值集合中的声音强度值对应于子带标识对应的响度值集合中的响度值。
在一些实施例中,该装置还包括:第二确定单元,被配置成确定最终响度值是否满足预设条件;调节单元,被配置成响应于确定不满足预设条件,对至少一个音频通道中的音频通道的音频信号进行响度调节,以使最终响度满足预设条件。
在一些实施例中,预设条件包括以下至少一种:所确定的最终响度值与初始音频信号的响度值之差小于等于预设阈值;对于至少一个音频通道中的音频通道,音频通道对应的至少两个子带中的目标子带的响度值与音频通道的通道响度值的比例达到目标比例。
第三方面,本公开的实施例提供了一种终端设备,该终端设备包括:一个或多个处理器;存储装置,其上存储有一个或多个程序;当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现如第一方面中任一实现方式描述的方法。
第四方面,本公开的实施例提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如第一方面中任 一实现方式描述的方法。
本公开的实施例提供的用于检测音频信号的响度的方法和装置,通过对至少一个音频通道中的音频通道的音频信号继续滤波处理,得到目标频带内的声音强度值集合,再将目标频带划分为至少两个子带,其中每个子带具有指定的标识,然后确定各个子带的声音强度值,再利用子带响度模型,得到各个子带的响度值,再基于各个子带的响度值确定各个音频通道的通道响度值,最后基于各个音频通道的通道响度值,确定最终响度值,从而利用对目标频带划分为子带的方法,并且利用子带响度模型,提高了响度测量的准确性。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本公开的其它特征、目的和优点将会变得更明显:
图1是本公开的一个实施例可以应用于其中的示例性系统架构图;
图2是根据本公开的实施例的用于检测音频信号的响度的方法的一个实施例的流程图;
图3是根据本公开的实施例的用于检测音频信号的响度的方法的一个应用场景的示意图;
图4是根据本公开的实施例的用于检测音频信号的响度的方法的又一个实施例的流程图;
图5是根据本公开的实施例的用于检测音频信号的响度的装置的一个实施例的结构示意图;
图6是适于用来实现本公开的实施例的终端设备的结构示意图。
具体实施方式
下面结合附图和实施例对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关公开,而非对该公开的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关公开相关的部分。
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开。
图1示出了可以应用本公开的实施例的用于检测音频信号的响度的方法或用于检测音频信号的响度的装置的示例性系统架构100。
如图1所示,系统架构100可以包括终端设备101、102、103,网络104和服务器105。网络104用以在终端设备101、102、103和服务器105之间提供通信链路的介质。网络104可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。
用户可以使用终端设备101、102、103通过网络104与服务器105交互,以接收或发送消息等。终端设备101、102、103上可以安装有各种通讯客户端应用,音频播放类应用、视频播放类应用、社交平台软件等。
终端设备101、102、103可以是硬件,也可以是软件。当终端设备101、102、103为硬件时,可以是各种电子设备。当终端设备101、102、103为软件时,可以安装在上述电子设备中。其可以实现成多个软件或软件模块(例如用来提供分布式服务的软件或软件模块),也可以实现成单个软件或软件模块。在此不做具体限定。
服务器105可以是提供各种服务的服务器,例如对终端设备101、102、103上播放的音频提供支持的后台音频服务器。后台音频服务器可以向终端设备发送音频,以在终端设备上播放。
需要说明的是,本公开的实施例所提供的用于处理音频信号的方法一般由终端设备101、102、103执行,相应地,用于处理音频信号的装置可以设置于终端设备101、102、103中。
需要说明的是,服务器可以是硬件,也可以是软件。当服务器为硬件时,可以实现成多个服务器组成的分布式服务器集群,也可以实现成单个服务器。当服务器为软件时,可以实现成多个软件或软件模块(例如用来提供分布式服务的软件或软件模块),也可以实现成单个软件或软件模块。在此不做具体限定。
应该理解,图1中的终端设备、网络和服务器的数目仅仅是示意 性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器。
继续参考图2,示出了根据本公开的用于检测音频信号的响度的方法的一个实施例的流程200。该用于检测音频信号的响度的方法,包括以下步骤:
步骤201,获取预设的至少一个音频通道中的音频通道的音频信号。
在本实施例中,用于检测音频信号的响度的方法的执行主体(例如图1所示的终端设备)可以获取预设的至少一个音频通道中的音频通道的音频信号。其中,上述至少一个音频通道可以是设置在上述执行主体中的音频通道。例如,上述至少一个音频通道可以包括左声道、右声道等通道。上述音频通道的音频信号可以是预先存储在上述执行主体中的、待对其进行响度测量的音频信号。作为示例,上述至少一个音频通道中的音频通道的音频信号可以是当前在上述执行主体上播放的音频包括的、设置在不同的音频通道的音频信号。音频信号的时长可以是预设时长,例如5秒、10秒等。
在本实施例的一些可选的实现方式中,上述至少一个音频通道中的音频通道的音频信号是将初始的音频信号由时域信号转换为频域信号的音频信号。通常,转换为频域的音频信号,可以被更简便地进行处理(例如滤波等处理)。实践中,可以利用各种算法(例如DFT(离散傅里叶变换,Discrete Fourier Transform)算法、FFT(快速傅里叶变换,Fast Fourier Transformation)算法等),将时域信号转换为频域信号。
步骤202,对于至少一个音频通道中的音频通道,对音频通道的音频信号进行滤波处理,得到目标频带内的声音强度值集合;将目标频带划分为至少两个子带,其中每个子带具有指定的标识;对于划分得到的至少两个子带中的子带,基于子带包括的频率对应的声音强度值,确定子带的声音强度值,将子带的声音强度值和标识输入预设的子带响度模型,得到子带的响度值;基于所得到的响度值,确定音频通道的通道响度值。
在本实施例中,对于上述至少一个音频通道中的音频通道,上述执行主体可以执行如下步骤:
步骤2021,对音频通道的音频信号进行滤波处理,得到目标频带内的声音强度值集合。
其中,声音强度值对应于目标频带包括的频率。声音强度又可以称为声压级(Sound Pressure Level,SPL),其定义为将待测声压有效值p(e)与参考声压p(ref)的比值取常用对数,再乘以20,其值的单位为分贝(dB)。上述目标频带可以是技术人员预设的频带(例如100Hz-10000Hz),也可以是上述执行主体根据音频信号的带宽所确定的频带(例如根据预设的频率上限比例和频率下限比例,从音频信号的带宽内提取的频带)。
通常,音频信号可以包括预设频率范围内的频率和与频率对应的声音强度值,上述执行主体可以对音频信号按照各种现有的滤波方法进行滤波处理,得到目标频带内的声音强度值集合。实践中,声音强度值与频率的对应关系可以用频谱图来表征,频谱图包括横轴和纵轴,横轴上的坐标表征声音频率,纵轴上的坐标表征声音强度(即声压级)。通过滤波吹,可以将音频信号中的高频和/或低频成分滤除,从而有助于提高测量响度的准确性。
作为示例,上述执行主体可以利用现有的带通滤波方法,对音频信号进行滤波,从而得到目标频带内的声音强度值集合。
在本实施例的一些可选的实现方式中,上述执行主体可以按照如下步骤对音频通道的音频信号进行滤波处理,得到目标频带内的声音强度值集合:
首先,对音频通道的音频信号进行带通滤波。然后,将带通滤波后的音频信号进行平滑滤波,得到声音强度值集合。具体地,上述执行主体可以按照现有的平滑滤波算法,对带通滤波后的音频信号进行平滑滤波。上述平滑滤波算法可以包括但不限于以下至少一种:一阶平滑滤波算法、高阶平滑滤波算法、中值滤波算法等。需要说明的是,上述各种平滑滤波算法是目前广泛研究和应用的公知技术,在此不再赘述。通过平滑滤波后,可以减小音频信号的声音强度突变,有利于 提高响度测量的准确性。
步骤2022,将目标频带划分为至少两个子带,以及确定子带的标识。
具体地,上述执行主体可以根据技术人员预先设置的每个子带对应的频率范围,将目标频带划分为至少两个子带。通常,由于人耳对不同频段的声音的分辨能力不同,因此,可以将处于低频段的子带的频率范围设置为较窄,处于高频段的频率范围设置为较宽,从而模拟人耳的频率分辨特性。其中,上述低频段和高频段的频率范围可以是技术人员预先设置的。
上述执行主体可以按照各种方式确定子带的标识。作为示例,上述执行主体可以对各个子带按照频率范围的排列顺序进行编号,将编号作为各个子带的标识。或者,上述执行主体可以将表征子带的频率范围的数值(例如“1kHz-2kHz”)作为子带标识。
步骤2023,对于划分得到的至少两个子带中的子带,基于子带包括的频率对应的声音强度值,确定子带的声音强度值,将子带的声音强度值和标识输入预设的子带响度模型,得到子带的响度值。
具体地,上述执行主体可以首先按照各种方法确定子带的声音强度值,作为示例,上述执行主体可以计算子带包括的各个频率分别对应的声音强度值的平均值,将所计算得到的平局值确定为子带的声音强度值。再例如,上述执行主体可以将子带对应的各个声音强度值的中位数确定为子带的声音强度值。
然后,上述执行主体可以将子带的声音强度值和标识输入预设的子带响度模型,得到子带的响度值。其中,子带响度模型用于表征子带的标识、子带的声音强度值与子带的响度值的对应关系。
在本实施例的一些可选的实现方式中,子带响度模型可以为预先建立的对应关系表。其中,对应关系表包括至少两个子带标识、至少两个声音强度值集合和至少两个响度值集合。对于至少两个子带标识中的子带标识,子带标识对应于声音强度值集合和响度值集合,子带标识对应的声音强度值集合中的声音强度值对应于子带标识对应的响度值集合中的响度值。
上述对应关系表中的声音强度值和响度值的对应关系可以是技术人员手动设置的,也可以是上述执行主体或其他电子设备利用现有的计算音频信号的响度的方法,对声音强度值进行计算,从而得到对应的响度值。通过设置对应关系表,可以减少上述执行主体的计算量,有助于提高测量响度的速度。
可选地,上述子带响度模型可以包括现有的诸如Zwicker响度模型、Moore响度模型等响度计算模型。其中,Zwicker响度模型是一种基于激励模式的多频带响度计算模型,能够模拟人耳的听觉产生机理。根据人耳产生听觉的机理,耳蜗基底膜可被类比为一组带宽重叠的带通滤波器,称为特征频带。在外部激励的作用下,每个特征频带上会产生对应的激励强度,称为“激励模式”。根据激励强度,可以得到与激励强度成比例关系的特征响度,对特征响度积分,可以得到子带的响度。Moore响度模型是在Zwicker响度模型的基础上改进的响度模型,与Zwicker响度模型相比,Moore响度模型适用于各种稳态噪声信号,频率分辨率较高。上述子带响度模型可以根据子带的标识,确定子带的频率范围,在通过Moore响度模型或Zwicker响度模型确定子带的响度值。
步骤2024,基于所得到的响度值,确定音频通道的通道响度值。
具体地,上述执行主体可以按照各种方式确定音频通道的通道响度值。
作为示例,上述执行主体可以确定所得到的各个响度值的平均值作为通道响度值。由于计算平均值的方法简单,且能够表征音频通道的整体响度,因此,将各个响度值的平均值作为通道响度值可以提高响度测量的效率。
作为另一示例,上述执行主体可以基于预设的、每个子带对应的权重值,对各个响度值进行加权求和,得到通道响度值。通过设置权重值,可以更准确地反映不同的子带对通道响度值的贡献程度,有助于提高响度测量的针对性和准确性。
步骤203,基于所得到的通道响度值,确定最终响度值。
在本实施例中,上述执行主体可以基于所得到的各个通道响度值, 确定最终响度值。作为示例,上述执行主体可以确定各个通道响度值的平均值作为最终响度值。或者,上述执行主体可以基于预设的、每个音频通道对应的权重值,对各个通道响度值进行加权求和,从而得到最终响度值。
可选地,在上述步骤203之后,上述执行主体可以按照各种方式将所得到的最终响度值输出。例如,可以将最终响度值输出到上述执行主体包括的显示屏上显示,或者将最终响度值输出到上述执行主体中的预设存储区域中存储。
继续参见图3,图3是根据本实施例的用于检测音频信号的响度的方法的应用场景的一个示意图。在图3的应用场景中,终端设备301首先获取在终端设备301上待播放的、左声道中的音频信号302和右声道中的音频信号303。然后,终端设备301对音频信号302和音频信号303分别进行滤波处理,得到音频信号302对应的、目标频带内的声音强度值集合304,以及得到音频信号303对应的、目标频带内的声音强度值集合305。接着,终端设备301将目标频带划分为多个(例如20个)子带,以及确定每个子带的标识(例如图中的编号子带1-子带n)。再然后,终端设备301对音频信号302和音频信号303分别对应的每个子带包括的频率对应的声音强度值取平均值,得到每个子带的声音强度值,将每个子带的声音强度值和标识输入预设的子带响度模型306,得到每个子带的响度值。再对音频信号302和音频信号303分别对应的各个子带响度值取平均值,得到左声道的通道响度值307和右声道的通道响度值308。最后,确定通道响度值307和308的平均值作为最终响度值309。
本公开的上述实施例提供的方法,通过将目标频带划分为至少两个子带,并且利用子带响度模型得到各个子带的响度,以及基于各个子带的响度,得到最终响度,提高了响度测量的灵活性和准确性。
进一步参考图4,其示出了用于检测音频信号的响度的方法的又一个实施例的流程400。该用于检测音频信号的响度的方法的流程400,包括以下步骤:
步骤401,获取预设的至少一个音频通道中的音频通道的音频信号。
在本实施例中,步骤401与图2对应实施例中的步骤201基本一致,这里不再赘述。
步骤402,对于至少一个音频通道中的音频通道,对音频通道的音频信号进行滤波处理,得到目标频带内的声音强度值集合,;将目标频带划分为至少两个子带,其中每个子带具有指定的标识;对于划分得到的至少两个子带中的子带,基于子带包括的频率对应的声音强度值,确定子带的声音强度值,将子带的声音强度值和标识输入预设的子带响度模型,得到子带的响度值;基于所得到的响度值,确定音频通道的通道响度值。
在本实施例中,步骤402与图2对应实施例中的步骤202基本一致,这里不再赘述。
步骤403,基于所得到的通道响度值,确定最终响度值。
在本实施例中,步骤403与图2对应实施例中的步骤203基本一致,这里不再赘述。
步骤404,确定最终响度值是否满足预设条件。
在本实施例中,用于检测音频信号的响度的方法的执行主体(例如图1所示的终端设备)可以首先确定最终响度值是否满足预设条件。其中,预设条件是预先设置的、用于确定是否进行响度调节的判断条件。
在本实施例的一些可选的实现方式中,预设条件包括以下至少一种:
预设条件一,所确定的最终响度值与初始音频信号的响度值之差小于等于预设阈值。其中,初始音频信号可以是与上述各步骤中描述的音频信号的来源相同的、未进行处理的音频信号。例如,初始音频信号是预先录制的音频文件包括的音频信号,上述各步骤描述的音频信号是对上述初始音频信号进行诸如混响处理、调音处理等处理的信号。初始音频信号的响度值的测量方法可以与上述各步骤描述的音频信号的响度值的测量方法一致。当满足预设条件一时,表征最终响度 值与初始音频信号的响度值的差距较小,较准确地还原了音频信号的响度值。
预设条件二,对于至少一个音频通道中的音频通道,音频通道对应的至少两个子带中的目标子带的响度值与音频通道的通道响度值的比例达到目标比例。其中,目标子带可以是预先设置的子带,例如,目标子带可以是人声的频率所处的子带。应当理解,目标子带的数量可以是至少一个。上述目标比例可以是对初始音频信号执行上述各步骤后,各音频通道的初始音频信号对应的各个子带中的目标子带的响度值与音频通道的初始音频信号的通道响度值的比例。需要说明的是,目标比例可以具有误差范围,当目标子带的响度值与通道响度值的比例处于误差范围内时,即确定达到目标比例。当满足预设条件二时,表征目标子带的响度值占通道响度值的比例偏差较小,较准确地还原了目标子带的响度值。
步骤405,响应于确定不满足预设条件,对至少一个音频通道中的音频通道的音频信号进行响度调节,以使最终响度满足预设条件。
在本实施例中,上述执行主体可以响应于确定不满足预设条件,对至少一个音频通道中的音频通道的音频信号进行响度调节,以使最终响度满足预设条件。作为示例,上述执行主体可以将每个音频通道的音频信号的各个子带的声音强度值,调整到初始音频信号的对应子带的声音强度值,从而使最终响度满足预设条件。
从图4中可以看出,与图2对应的实施例相比,本实施例中的用于检测音频信号的响度的方法的流程400突出了对音频信号进行响度调节的步骤。由此,本实施例描述的方案可以更准确地将音频信号的响度调整到初始的响度,有助于避免音频播放过程中的响度突变,改善音频播放效果。
进一步参考图5,作为对上述各图所示方法的实现,本公开提供了一种用于检测音频信号的响度的装置的一个实施例,该装置实施例与图2所示的方法实施例相对应,该装置具体可以应用于各种电子设备中。
如图5所示,本实施例的用于检测音频信号的响度的装置500包括:获取单元501,被配置成获取预设的至少一个音频通道中的音频通道的音频信号;测量单元502,被配置成对于至少一个音频通道中的音频通道,对音频通道的音频信号进行滤波处理,得到目标频带内的声音强度值集合,其中,声音强度值对应于目标频带包括的频率;将目标频带划分为至少两个子带,其中每个子带具有指定的标识;对于划分得到的至少两个子带中的子带,基于子带包括的频率对应的声音强度值,确定子带的声音强度值,将子带的声音强度值和标识输入预设的子带响度模型,得到子带的响度值;基于所得到的响度值,确定音频通道的通道响度值;确定单元503,被配置成基于所得到的通道响度值,确定最终响度值。
在本实施例中,获取单元501可以获取预设的至少一个音频通道中的音频通道的音频信号。其中,上述至少一个音频通道可以是设置在上述装置500中的音频通道。例如,上述至少一个音频通道可以包括左声道、右声道等通道。上述音频通道的音频信号可以是预先存储在上述装置500中的、待对其进行响度测量的音频信号。作为示例,上述至少一个音频通道中的音频通道的音频信号可以是当前在上述装置500上播放的音频包括的、设置在不同的音频通道的音频信号。音频信号的时长可以是预设时长,例如5秒、10秒等。
在本实施例中,对于上述至少一个音频通道中的音频通道,上述测量单元502可以执行如下步骤:
步骤5021,对音频通道的音频信号进行滤波处理,得到目标频带内的声音强度值集合。
其中,声音强度值对应于目标频带包括的频率。声音强度又可以称为声压级(Sound Pressure Level,SPL),其定义为将待测声压有效值p(e)与参考声压p(ref)的比值取常用对数,再乘以20,其值的单位为分贝(dB)。上述目标频带可以是技术人员预设的频带(例如100Hz-10000Hz),也可以是上述装置500根据音频信号的带宽所确定的频带(例如根据预设的频率上限比例和频率下限比例,从音频信号的带宽内提取的频带)。
通常,音频信号可以包括预设频率范围内的频率和与频率对应的声音强度值,上述测量单元502可以对音频信号按照各种现有的滤波方法进行滤波处理,得到目标频带内的声音强度值集合。实践中,声音强度值与频率的对应关系可以用频谱图来表征,频谱图包括横轴和纵轴,横轴上的坐标表征声音频率,纵轴上的坐标表征声音强度(即声压级)。通过滤波吹,可以将音频信号中的高频和/或低频成分滤除,从而有助于提高测量响度的准确性。
步骤5022,将目标频带划分为至少两个子带,以及确定子带的标识。
具体地,上述测量单元502可以根据技术人员预先设置的每个子带对应的频率范围,将目标频带划分为至少两个子带。通常,由于人耳对不同频段的声音的分辨能力不同,因此,可以将处于低频段的子带的频率范围设置为较窄,处于高频段的频率范围设置为较宽,从而模拟人耳的频率分辨特性。其中,上述低频段和高频段的频率范围可以是技术人员预先设置的。
上述测量单元502可以按照各种方式确定子带的标识。作为示例,上述测量单元502可以对各个子带按照频率范围的排列顺序进行编号,将编号作为各个子带的标识。或者,上述测量单元502可以将表征子带的频率范围的数值(例如“1kHz-2kHz”)作为子带标识。
步骤5023,对于划分得到的至少两个子带中的子带,基于子带包括的频率对应的声音强度值,确定子带的声音强度值,将子带的声音强度值和标识输入预设的子带响度模型,得到子带的响度值。
具体地,上述测量单元502可以首先按照各种方法确定子带的声音强度值,作为示例,上述测量单元502可以计算子带包括的各个频率分别对应的声音强度值的平均值,将所计算得到的平局值确定为子带的声音强度值。再例如,上述测量单元502可以将子带对应的各个声音强度值的中位数确定为子带的声音强度值。
然后,上述测量单元502可以将子带的声音强度值和标识输入预设的子带响度模型,得到子带的响度值。其中,子带响度模型用于表征子带的标识、子带的声音强度值与子带的响度值的对应关系。
步骤5024,基于所得到的响度值,确定音频通道的通道响度值。
具体地,上述测量单元502可以按照各种方式确定音频通道的通道响度值。
作为示例,上述测量单元502可以确定所得到的各个响度值的平均值作为通道响度值。由于计算平均值的方法简单,且能够表征音频通道的整体响度,因此,将各个响度值的平均值作为通道响度值可以提高响度测量的效率。
在本实施例中,确定单元503可以基于所得到的各个通道响度值,确定最终响度值。作为示例,上述确定单元503可以确定各个通道响度值的平均值作为最终响度值。或者,上述确定单元503可以基于预设的、每个音频通道对应的权重值,对各个通道响度值进行加权求和,从而得到最终响度值。
在本实施例的一些可选的实现方式中,测量单元502可以包括:滤波模块(图中未示出),被配置成对音频通道的音频信号进行带通滤波,将带通滤波后的音频信号进行平滑滤波,得到声音强度值集合。
在本实施例的一些可选的实现方式中,至少一个音频通道中的音频通道的音频信号是将初始的音频信号由时域信号转换为频域信号的音频信号。
在本实施例的一些可选的实现方式中,测量单元502可以包括:确定模块(图中未示出),被配置成将所得到的响度值的平均值确定为音频通道的通道响度值。
在本实施例的一些可选的实现方式中,子带响度模型为预先建立的对应关系表,其中,对应关系表包括至少两个子带标识、至少两个声音强度值集合和至少两个响度值集合,对于至少两个子带标识中的子带标识,子带标识对应于声音强度值集合和响度值集合,子带标识对应的声音强度值集合中的声音强度值对应于子带标识对应的响度值集合中的响度值。
在本实施例的一些可选的实现方式中,该装置500还可以包括:第二确定单元(图中未示出),被配置成确定最终响度值是否满足预设条件;调节单元(图中未示出),被配置成响应于确定不满足预设条件, 对至少一个音频通道中的音频通道的音频信号进行响度调节,以使最终响度满足预设条件。
在本实施例的一些可选的实现方式中,预设条件包括以下至少一种:所确定的最终响度值与初始音频信号的响度值之差小于等于预设阈值;对于至少一个音频通道中的音频通道,音频通道对应的至少两个子带中的目标子带的响度值与音频通道的通道响度值的比例达到目标比例。
本公开的上述实施例提供的装置,通过将目标频带划分为至少两个子带,并且利用子带响度模型得到各个子带的响度,以及基于各个子带的响度,得到最终响度,提高了响度测量的灵活性和准确性。
下面参考图6,其示出了适于用来实现本公开的实施例的终端设备600的结构示意图。本公开的实施例中的终端设备可以包括但不限于诸如移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图6示出的终端设备仅仅是一个示例,不应对本公开的实施例的功能和使用范围带来任何限制。
如图6所示,终端设备600可以包括处理装置(例如中央处理器、图形处理器等)601,其可以根据存储在只读存储器(ROM)602中的程序或者从存储装置608加载到随机访问存储器(RAM)603中的程序而执行各种适当的动作和处理。在RAM 603中,还存储有终端设备600操作所需的各种程序和数据。处理装置601、ROM 602以及RAM603通过总线604彼此相连。输入/输出(I/O)接口605也连接至总线604。
通常,以下装置可以连接至I/O接口605:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置606;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置607;包括例如磁带、硬盘等的存储装置608;以及通信装置609。通信装置609可以允许终端设备600与其他设备进行无线或有线通信以交换数 据。虽然图6示出了具有各种装置的终端设备600,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。
特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置609从网络上被下载和安装,或者从存储装置608被安装,或者从ROM 602被安装。在该计算机程序被处理装置601执行时,执行本公开的实施例的方法中限定的上述功能。
需要说明的是,本公开所述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
上述计算机可读介质可以是上述终端设备中所包含的;也可以是 单独存在,而未装配入该终端设备中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该终端设备执行时,使得该终端设备:获取预设的至少一个音频通道中的音频通道的音频信号;对于至少一个音频通道中的音频通道,对音频通道的音频信号进行滤波处理,得到目标频带内的声音强度值集合,其中,声音强度值对应于目标频带包括的频率;将目标频带划分为至少两个子带,其中每个子带具有指定的标识;对于划分得到的至少两个子带中的子带,基于子带包括的频率对应的声音强度值,确定子带的声音强度值,将子带的声音强度值和标识输入预设的子带响度模型,得到子带的响度值;基于所得到的响度值,确定音频通道的通道响度值;基于所得到的通道响度值,确定最终响度值。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组 合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开的实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元的名称在某种情况下并不构成对该单元本身的限定,例如,获取单元还可以被描述为“获取预设的至少一个音频通道中的音频通道的音频信号的单元”。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (16)

  1. 一种用于检测音频信号的响度的方法,包括:
    获取预设的至少一个音频通道中的音频通道的音频信号;
    对于所述至少一个音频通道中的音频通道,对所述音频通道的音频信号进行滤波处理,得到目标频带内的声音强度值集合,其中,声音强度值对应于所述目标频带包括的频率;
    将所述目标频带划分为至少两个子带,其中每个子带具有指定的标识;
    对于划分得到的至少两个子带中的子带,基于所述子带包括的频率对应的声音强度值,确定所述子带的声音强度值;
    将所述子带的声音强度值和标识输入预设的子带响度模型,得到所述子带的响度值;
    基于所得到的响度值,确定所述音频通道的通道响度值;并且
    基于所得到的通道响度值,确定最终响度值。
  2. 根据权利要求1所述的方法,其中,所述对所述音频通道的音频信号进行滤波处理,得到目标频带内的声音强度值集合,包括:
    对所述音频通道的音频信号进行带通滤波,将带通滤波后的音频信号进行平滑滤波,得到声音强度值集合。
  3. 根据权利要求1所述的方法,其中,所述至少一个音频通道中的音频通道的音频信号是将初始的音频信号由时域信号转换为频域信号的音频信号。
  4. 根据权利要求1所述的方法,其中,所述基于所得到的响度值,确定所述音频通道的通道响度值,包括:
    将所得到的响度值的平均值确定为所述音频通道的通道响度值。
  5. 根据权利要求1所述的方法,其中,所述子带响度模型为预先 建立的对应关系表,其中,所述对应关系表包括至少两个子带标识、至少两个声音强度值集合和至少两个响度值集合,对于所述至少两个子带标识中的子带标识,所述子带标识对应于声音强度值集合和响度值集合,所述子带标识对应的声音强度值集合中的声音强度值对应于所述子带标识对应的响度值集合中的响度值。
  6. 根据权利要求1-5之一所述的方法,其中,在所述基于所得到的通道响度值,确定最终响度值之后,所述方法还包括:
    确定所述最终响度值是否满足预设条件;
    响应于确定不满足预设条件,对所述至少一个音频通道中的音频通道的音频信号进行响度调节,以使最终响度满足预设条件。
  7. 根据权利要求6所述的方法,其中,所述预设条件包括以下至少一种:
    所确定的最终响度值与初始音频信号的响度值之差小于等于预设阈值;
    对于所述至少一个音频通道中的音频通道,所述音频通道对应的至少两个子带中的目标子带的响度值与所述音频通道的通道响度值的比例达到目标比例。
  8. 一种用于检测音频信号的响度的装置,包括:
    获取单元,被配置成获取预设的至少一个音频通道中的音频通道的音频信号;
    测量单元,被配置成:
    对于所述至少一个音频通道中的音频通道,对所述音频通道的音频信号进行滤波处理,得到目标频带内的声音强度值集合,其中,声音强度值对应于所述目标频带包括的频率;
    将所述目标频带划分为至少两个子带,其中每个子带具有指定的标识;
    对于划分得到的至少两个子带中的子带,基于所述子带包括的 频率对应的声音强度值,确定所述子带的声音强度值,将所述子带的声音强度值和标识输入预设的子带响度模型,得到所述子带的响度值;基于所得到的响度值,确定所述音频通道的通道响度值;以及
    确定单元,被配置成基于所得到的通道响度值,确定最终响度值。
  9. 根据权利要求8所述的装置,其中,所述测量单元包括:
    滤波模块,被配置成对所述音频通道的音频信号进行带通滤波,将带通滤波后的音频信号进行平滑滤波,得到声音强度值集合。
  10. 根据权利要求8所述的装置,其中,所述至少一个音频通道中的音频通道的音频信号是将初始的音频信号由时域信号转换为频域信号的音频信号。
  11. 根据权利要求8所述的装置,其中,所述测量单元包括:
    确定模块,被配置成将所得到的响度值的平均值确定为所述音频通道的通道响度值。
  12. 根据权利要求8所述的装置,其中,所述子带响度模型为预先建立的对应关系表,其中,所述对应关系表包括至少两个子带标识、至少两个声音强度值集合和至少两个响度值集合,对于所述至少两个子带标识中的子带标识,所述子带标识对应于声音强度值集合和响度值集合,所述子带标识对应的声音强度值集合中的声音强度值对应于所述子带标识对应的响度值集合中的响度值。
  13. 根据权利要求8-12之一所述的装置,其中,所述装置还包括:
    第二确定单元,被配置成确定所述最终响度值是否满足预设条件;
    调节单元,被配置成响应于确定不满足预设条件,对所述至少一个音频通道中的音频通道的音频信号进行响度调节,以使最终响度满足预设条件。
  14. 根据权利要求13所述的装置,其中,所述预设条件包括以下至少一种:
    所确定的最终响度值与初始音频信号的响度值之差小于等于预设阈值;
    对于所述至少一个音频通道中的音频通道,所述音频通道对应的至少两个子带中的目标子带的响度值与所述音频通道的通道响度值的比例达到目标比例。
  15. 一种终端设备,包括:
    一个或多个处理器;
    存储装置,其上存储有一个或多个程序,
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-7中任一所述的方法。
  16. 一种计算机可读介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如权利要求1-7中任一所述的方法。
PCT/CN2019/073125 2018-10-12 2019-01-25 用于检测音频信号的响度的方法和装置 WO2020073564A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811190438.5A CN111045633A (zh) 2018-10-12 2018-10-12 用于检测音频信号的响度的方法和装置
CN201811190438.5 2018-10-12

Publications (1)

Publication Number Publication Date
WO2020073564A1 true WO2020073564A1 (zh) 2020-04-16

Family

ID=70164175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073125 WO2020073564A1 (zh) 2018-10-12 2019-01-25 用于检测音频信号的响度的方法和装置

Country Status (2)

Country Link
CN (1) CN111045633A (zh)
WO (1) WO2020073564A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111884729B (zh) * 2020-07-17 2022-03-01 上海动听网络科技有限公司 录音通道选择方法、装置及电子设备
CN112037825B (zh) * 2020-08-10 2022-09-27 北京小米松果电子有限公司 音频信号的处理方法及装置、存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8103008B2 (en) * 2007-04-26 2012-01-24 Microsoft Corporation Loudness-based compensation for background noise
CN103177727A (zh) * 2011-12-23 2013-06-26 重庆重邮信科通信技术有限公司 一种音频频带处理方法及系统
CN103680513A (zh) * 2013-12-13 2014-03-26 广州华多网络科技有限公司 语音信号处理方法、装置及服务器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI397903B (zh) * 2005-04-13 2013-06-01 Dolby Lab Licensing Corp 編碼音訊之節約音量測量技術
TWI503816B (zh) * 2009-05-06 2015-10-11 Dolby Lab Licensing Corp 調整音訊信號響度並使其具有感知頻譜平衡保持效果之技術
JP2013102411A (ja) * 2011-10-14 2013-05-23 Sony Corp 音声信号処理装置、および音声信号処理方法、並びにプログラム
CN103323532B (zh) * 2012-03-21 2015-07-08 中国科学院声学研究所 一种基于心理声学参量的鱼类识别方法及系统
US9685921B2 (en) * 2012-07-12 2017-06-20 Dts, Inc. Loudness control with noise detection and loudness drop detection
CN103345376B (zh) * 2013-07-08 2015-12-23 南京琅声声学科技有限公司 一种数字音频信号响度监测方法
CN106060707B (zh) * 2016-05-27 2021-05-04 北京小米移动软件有限公司 混响处理方法及装置
CN107084851A (zh) * 2017-04-18 2017-08-22 常州大学 基于统计能量流分析预测高速列车车内心理声学参数的方法
CN108271017B (zh) * 2017-12-29 2020-11-06 北京广电天地科技有限公司 数字广播电视的音频响度测量系统和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8103008B2 (en) * 2007-04-26 2012-01-24 Microsoft Corporation Loudness-based compensation for background noise
CN103177727A (zh) * 2011-12-23 2013-06-26 重庆重邮信科通信技术有限公司 一种音频频带处理方法及系统
CN103680513A (zh) * 2013-12-13 2014-03-26 广州华多网络科技有限公司 语音信号处理方法、装置及服务器

Also Published As

Publication number Publication date
CN111045633A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
JP6849797B2 (ja) 音響信号の聴取試験および変調
US10466957B2 (en) Active acoustic filter with automatic selection of filter parameters based on ambient sound
US11122374B2 (en) Systems and methods for providing personalized audio replay on a plurality of consumer devices
US10368154B2 (en) Systems, devices and methods for executing a digital audiogram
WO2018205366A1 (zh) 音频信号调节方法及系统
JP2013187912A (ja) ヘッドホーン補正のためのシステム
US10045115B2 (en) Annoyance noise suppression
US20190320268A1 (en) Systems, devices and methods for executing a digital audiogram
EP3641343A1 (en) Method to enhance audio signal from an audio output device
US11218796B2 (en) Annoyance noise suppression
CN112017693B (zh) 一种音频质量评估方法及装置
CN112306448A (zh) 根据环境噪声调节输出音频的方法、装置、设备和介质
WO2018014673A1 (zh) 一种啸叫检测方法和装置
US11632200B2 (en) Measuring and evaluating a test signal generated by a device under test (DUT)
CN112017687A (zh) 一种骨传导设备的语音处理方法、装置及介质
WO2020073564A1 (zh) 用于检测音频信号的响度的方法和装置
CN103282960A (zh) 声音控制装置、声音控制方法以及声音控制程序
CN112565981A (zh) 啸叫抑制方法、装置、助听器及存储介质
WO2020125325A1 (zh) 一种消除回声的方法和设备
CN108932953B (zh) 一种音频均衡函数确定方法、音频均衡方法及设备
CN111045634A (zh) 音频处理方法和装置
CN114554379A (zh) 助听器验配方法、装置、充电盒和计算机可读介质
CN111048107B (zh) 音频处理方法和装置
WO2021042538A1 (zh) 一种音频处理方法、装置及计算机存储介质
CN113362839A (zh) 音频数据处理方法、装置、计算机设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 02/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19870310

Country of ref document: EP

Kind code of ref document: A1