WO2018205366A1 - 音频信号调节方法及系统 - Google Patents
音频信号调节方法及系统 Download PDFInfo
- Publication number
- WO2018205366A1 WO2018205366A1 PCT/CN2017/089716 CN2017089716W WO2018205366A1 WO 2018205366 A1 WO2018205366 A1 WO 2018205366A1 CN 2017089716 W CN2017089716 W CN 2017089716W WO 2018205366 A1 WO2018205366 A1 WO 2018205366A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hearing
- audio signal
- user
- frequency point
- audio
- Prior art date
Links
- 230000005236 sound signal Effects 0.000 title claims abstract description 107
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000012074 hearing test Methods 0.000 claims abstract description 46
- 230000006835 compression Effects 0.000 claims description 26
- 238000007906 compression Methods 0.000 claims description 26
- 208000016354 hearing loss disease Diseases 0.000 claims description 21
- 238000012360 testing method Methods 0.000 claims description 18
- 238000004590 computer program Methods 0.000 claims description 6
- 230000003750 conditioning effect Effects 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 3
- 210000005069 ears Anatomy 0.000 abstract 1
- 206010011878 Deafness Diseases 0.000 description 11
- 230000006870 function Effects 0.000 description 10
- 231100000888 hearing loss Toxicity 0.000 description 9
- 230000010370 hearing loss Effects 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 208000009205 Tinnitus Diseases 0.000 description 8
- 231100000886 tinnitus Toxicity 0.000 description 8
- 230000008569 process Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000000638 stimulation Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 231100000895 deafness Toxicity 0.000 description 2
- 208000032625 disorder of ear Diseases 0.000 description 2
- 210000003027 ear inner Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 241000700605 Viruses Species 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000003477 cochlea Anatomy 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 231100000199 ototoxic Toxicity 0.000 description 1
- 230000002970 ototoxic effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0316—Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude
- G10L21/0324—Details of processing therefor
- G10L21/034—Automatic adjustment
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
- G10L25/18—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band
Definitions
- the present invention relates to the field of audio signal processing technologies, and in particular, to an audio signal adjustment method and system.
- the human ear is extremely fragile, and the factors causing human ear damage include viruses, environmental noise, ototoxic drugs, heredity, etc. These factors can cause hearing impairment in different degrees and states of the human ear, and severe hearing disability may result.
- the sounds output by various earphones and speakers are linear outputs, and the human ear hearing function performs nonlinear regulation on the received sound.
- the sound and the hearing function output of the earphone and the speaker do not match, resulting in hearing "sound damage", which is serious.
- Hearing impairment or hearing disability In real life, hearing impairment is not easy to detect. When it is perceived, the problem may become serious or irreversible. It needs the help of a hearing aid or an electronic cochlea, which will increase the burden on the family and society.
- hearing loss In the process of occurrence and development of this hearing loss, various environmental sounds The contribution rate of hearing loss reaches 25% (various environmental sounds become a superposition of hearing impairment or aggravation of hearing impairment), that is, hearing loss is directly related to unscientific acceptance of acoustic stimulation or unscientific use of hearing.
- the sound is dynamic, especially in music and nature. It has a large dynamic range of sound pressure, and the difference between the minimum sound pressure level and the maximum sound pressure level can exceed 30dBspl.
- the response thresholds of the inner ear neurons that sense the sound to the sounds of the frequencies introduced by the outside are different. For example, people with high-frequency hearing impairments have higher response thresholds for high-frequency sounds and require more volume to hear. Therefore, people with high frequency hearing impairment use ordinary headphones to listen to music. It is necessary to increase the overall volume of the music input into the human ear to hear the high-frequency part of the music, and this overall volume increase will also enhance the energy of the low-frequency sound.
- Embodiments of the present invention provide an audio signal adjustment method and system for solving at least the technical problem that people in the prior art cannot obtain audio suitable for their own hearing conditions to avoid damage to hearing.
- an embodiment of the present invention provides an audio signal adjustment method, including: acquiring hearing test data of a user; determining, according to the obtained hearing test data, a hearing parameter value of the user at different frequency points, and generating a suitable Describe the audio signal adjustment model of the user; perform audio adjustment on the audio data corresponding to each frequency point in the received audio signal according to the audio signal adjustment model to output to the human ear of the user for listening.
- an embodiment of the present invention further provides an audio signal adjustment system, including:
- test data acquisition program module for acquiring user's hearing test data
- an adjustment model generating program module configured to determine a hearing parameter value of the user at different frequency points according to the obtained hearing test data, and generate an audio signal adjustment model suitable for the user;
- the audio signal adjustment program module is configured to perform audio adjustment on the audio data corresponding to each frequency point in the received audio signal according to the audio signal adjustment model to output to the human ear of the user for listening.
- an embodiment of the present invention provides a computer readable storage medium, where the storage medium stores one or more programs including execution instructions, and the execution instructions can be used by an electronic device (including but not limited to a computer, a server , or a network device, etc.) is read and executed for performing the above-described audio signal adjustment method of the present invention.
- an electronic device including but not limited to a computer, a server , or a network device, etc.
- an electronic device comprising: at least one processor, and At least one processor communicatively coupled memory, wherein the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to execute The audio signal adjusting method of any of the above aspects of the present invention.
- an embodiment of the present invention further provides a computer program product, the computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program When the instructions are executed by the computer, the computer is caused to perform any of the above-described audio signal adjustment methods.
- An advantageous effect of the embodiment of the present invention is that the hearing characteristics of the user's audio components of different frequencies are determined by acquiring and analyzing the user's hearing test data, thereby further determining an audio signal for adjusting the audio signal to an actual hearing suitable for the user. Adjust the model. And adjusting the audio signal that the user listens to according to the determined audio signal adjustment model, so that the user can obtain audio suitable for his own hearing condition, and avoid hearing damage caused by audio that does not match his own hearing condition.
- FIG. 1 is a flow chart of an embodiment of an audio signal adjustment method according to the present invention.
- step S20 of FIG. 1 is a flow chart of an embodiment of step S20 of FIG. 1;
- step S30 of FIG. 1 is a flow chart of an embodiment of step S30 of FIG. 1;
- FIG. 4 is a flow chart of another embodiment of an audio signal adjustment method according to the present invention.
- FIG. 5 is a schematic block diagram of an embodiment of an audio signal conditioning system of the present invention.
- FIG. 6 is a schematic block diagram of an embodiment of an adjustment model generation program module in an audio signal adjustment system of the present invention.
- FIG. 7 is a schematic block diagram of an embodiment of an audio signal adjustment program module in an audio signal adjustment system of the present invention.
- FIG. 8 is a schematic block diagram of another embodiment of an audio signal conditioning system of the present invention.
- FIG. 9 is a schematic structural view of an embodiment of an electronic device according to the present invention.
- the invention may be described in the general context of computer-executable instructions executed by a computer, such as a program module.
- program modules include routines, programs, objects, elements, data structures, and the like that perform particular tasks or implement particular abstract data types.
- the invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are connected through a communication network.
- program modules can be located in both local and remote computer storage media including storage devices.
- module refers to related entities applied to a computer, such as hardware, a combination of hardware and software, software or software in execution, and the like.
- an element can be, but is not limited to being, a process running on a processor, a processor, an object, an executable element, a thread of execution, a program, and/or a computer.
- an application or script running on a server, or a server can be a component.
- One or more elements can be executed in a process and/or thread, and the elements can be localized on a computer and/or distributed between two or more computers and can be executed by various computer readable media.
- the component may also pass signals based on data having one or more data packets, for example, from a signal interacting with another element in the local system, the distributed system, and/or interacting with other systems over the network of the Internet. Local and/or remote processes to communicate.
- an audio signal adjustment method can be applied to an audio adjustment device, for example, can be used in a hearing aid device, and the method includes:
- the hearing characteristics of the user's audio components of different frequencies are determined by acquiring and analyzing the user's hearing test data, thereby further determining an audio signal adjustment model for adjusting the audio signal to an actual hearing suitable for the user. And adjusting the audio signal that the user listens to according to the determined audio signal adjustment model, so that the user can obtain audio suitable for his own hearing condition, and avoid hearing damage caused by audio that does not match his own hearing condition.
- the user's hearing test data in step S10 is obtained by the hearing test device for the user's hearing test, and may be historical hearing test data taken from the user, or may be real-time measured user's hearing test data.
- This embodiment of the present invention does not limit this.
- Hearing test equipment can use sophisticated hearing test equipment.
- the hearing test data in step S20 includes hearing parameter thresholds for a plurality of test frequency points within each octave, the hearing parameter thresholds including at least the softness obtained by testing the user by the hearing test device
- the threshold ie, the first threshold
- the optimal threshold ie, the second threshold
- the discomfort threshold ie, the third threshold
- the frequency range of the human ear listening is 20 Hz to 20 kHz, and the spectrum analysis of the sound signal generally does not require specific analysis of each frequency component.
- the audio range of 20 Hz to 20 kHz is divided into several paragraphs, and each frequency band is called a frequency range.
- the frequency division is divided by a constant bandwidth ratio, that is, the ratio of the upper and lower limits of the frequency band is a constant.
- the tone is doubled. If the upper limit frequency of each frequency band is doubled than the lower limit frequency, that is, the frequency ratio is 2, each frequency division thus divided is called 1 octave, which is referred to as octave.
- the hearing test data according to the acquired Determining the hearing parameter values of the user at different frequency points to generate an audio data adjustment model suitable for the user includes:
- S21 Determine, according to a soft threshold of each frequency point, a sound pressure level corresponding to each frequency point; that is, a soft threshold value of each frequency point is used as a sound pressure level that causes a user to respond to an audio component of each frequency point with a frequency value;
- the difference between the discomfort threshold value and the optimal threshold value at each frequency point is used as a peak compression ratio corresponding to each frequency point; that is, a difference between the discomfort threshold value and the optimal threshold value is used as a frequency value.
- the difference between the optimal threshold value and the soft threshold value at each frequency point is used as a valley compression ratio corresponding to each frequency point; that is, a difference between the optimal threshold value and the soft threshold value is used as a frequency value.
- step S21 in this embodiment the audio level adjusted by the audio signal adjustment model of the embodiment is ensured by using the soft threshold as the sound pressure level that causes the user to respond to the audio component of the frequency of the certain test frequency point.
- the signal can certainly be heard by the user, ensuring that the user can completely hear all the frequency components contained in the audio signal, thereby ensuring the user without ensuring damage to the human ear due to excessive sound pressure level. Can clearly hear all the frequency components.
- the upper and lower limits of the adjustment of the audio component are determined by determining the peak compression ratio and the valley compression ratio of the audio component of the test frequency point, and the adjusted output is ensured. All frequency components contained in the audio signal fluctuate within a range suitable for the actual hearing condition of the user, thereby avoiding periodic occurrence of frequency components beyond the loud threshold and/or the soft threshold and causing discomfort to the person and even to the person. The ear causes damage.
- the audio data corresponding to each frequency point in the received audio signal is audio-adjusted according to the audio signal adjustment model to be output to the human ear of the user.
- Listening includes:
- the audio signal processing device after receiving the externally input audio signal, the audio signal processing device first performs step S31 to determine all audio components (ie, frequency components) included in the audio signal, and then performs step S32 according to the determined audio signal.
- the model is adjusted to link all of the audio components contained in the received audio signal to suit the actual hearing condition of the user, and then step S33 is performed to transmit the adjusted audio signal to the user's ear for listening.
- the method of transmitting to the human ear in step S33 may be performed by an earphone connected to the audio signal processing device.
- the hearing test data includes hearing thresholds at a plurality of different time periods for a plurality of test frequency points within each octave.
- the audio signal adjustment method further includes:
- a hearing damage warning signal is generated to notify the user that the hearing at the certain frequency point has decreased.
- the alarm information can be sent to the user in time, so that the user can seek medical treatment in time. Or make appropriate adjustments to avoid further deterioration of hearing.
- the hearing parameter threshold further includes an discomfort threshold; the determining the hearing parameter value of the user at different frequency points according to the acquired hearing test data to generate audio data adjustment suitable for the user
- the model also includes:
- the discomfort threshold of each frequency point is used as the frequency value as the maximum threshold value of the instantaneous voltage of the audio component at each frequency point.
- the transient pulse does not exist in the audio data adjusted according to the audio data adjustment model, thereby avoiding the transient pulse to the human.
- the following is an example of a patient with a tinnitus frequency of 4490 Hz.
- the basic data of the 4490 Hz and 5040 Hz acoustic stimuli at the same octave are as follows:
- the five hearing parameter thresholds of 4490 Hz and 5040 Hz at the two frequency points in the same octave are respectively obtained as shown in the above table, including: hearing threshold HL (the lowest sound that the patient can hear) and soft threshold (feeling Soft threshold, less than MCL), optimal threshold MCL, loud threshold (thickness threshold is less than UCL), discomfort threshold UCL.
- hearing threshold HL the lowest sound that the patient can hear
- soft threshold feeling Soft threshold, less than MCL
- optimal threshold MCL optimal threshold MCL
- loud threshold is less than UCL
- discomfort threshold UCL discomfort threshold
- the sensitivity of the human ear to sounds of different decibels at the same frequency point is different. For example, for an audio component with a frequency of 4490 Hz, the patient can hear the sound of the frequency when the decibel number is greater than 35 dB, when the decibel number is about 43 dB. The patient can hear the soft sound of the frequency.
- the patient can hear the most appropriate sound of the frequency.
- the decibel number is 54dB
- the patient will feel the sound of the frequency is larger, when the number of decibels is The patient may feel uncomfortable for 70 dB or more.
- the above hearing parameter threshold is obtained by the hearing test equipment, and the hearing test equipment uses a refined hearing test device, which can accurately test the user's hearing parameter threshold for a certain frequency point.
- the unsuitable threshold value UCL corresponding to the test frequency point is used as the instantaneous maximum voltage output limit of the audio signal.
- Controlling the output sound pressure algorithm using the soft threshold corresponding to the test frequency as a standard, setting the sound pressure level that causes the frequency response.
- Nonlinear control algorithm The peak compression ratio is set by the difference between the double threshold and the optimal threshold MCL, and the valley compression ratio is set by the difference between the optimal threshold MCL and the soft threshold to control the output sound pressure dynamic range.
- the audio signal can also be frequency-modulated and amplitude-modulated when processed by the above steps. Specifically, when the above-mentioned operation processing is performed, the overall change characteristic of the output sound can be set, and the AC-calculated sound can be adjusted by frequency modulation and amplitude to meet different otological patients. Needs, for example:
- the bandwidth can be selected to additionally increase the sound in the selected bandwidth and reduce the output control, including increasing the output sound pressure.
- the decibel value or the decibel value is reduced by 1 dB.
- the FM frequency can be set, and the amplitude of the audio signal can be adjusted according to the frequency of the frequency modulation.
- the frequency of the frequency modulation can be no less than 6 Hz.
- the amplitude of the audio signal can be selected at a value of not less than ⁇ 1 dB, and the intensity of the amplitude change is set according to the expected damage characteristics.
- the time-course setting can be selected as 10m ⁇ 20m ⁇ 30m.
- the automatic control volume is attenuated by 1-10dB, and the user is prompted to lower the volume. Stop playing to avoid damage to the human ear caused by uninterrupted playback for a long time.
- D/A conversion calibration is performed through the input terminal D and the output terminal A of the audio signal adjusting device, so that the audio signal voltage value is consistent with the speaker output sound pressure value.
- the device and method of the present invention can obtain the audio signal for the user by using the method of the present invention only by obtaining the hearing test data of the user measured by the hearing test device, and can be installed on any audio playing device (for the audio adjusting device) Input audio signal), one end is connected to the playback device, and one end is connected with various speakers or earphones (for playing audio adjusted by the audio adjustment device), so that the output sound conforms to different states of the human ear hearing function. It plays a scientific role in ear protection, hearing function, optimizes hearing, avoids hearing damage caused by bad sound stimulation, and avoids or reduces the occurrence of tinnitus and controls the growth of tinnitus loudness.
- an audio signal adjustment system 500 includes:
- test data acquisition program module 510 configured to acquire hearing test data of the user
- An adjustment model generation program module 520 configured to determine, according to the obtained hearing test data Generating a hearing parameter value of the user at different frequency points to generate an audio signal adjustment model suitable for the user;
- the audio signal adjustment program module 530 is configured to perform audio adjustment on the audio data corresponding to each frequency point in the received audio signal according to the audio signal adjustment model to output to the human ear of the user for listening.
- the hearing test data includes hearing parameter values for a plurality of test frequency points within each octave, the hearing parameter values including at least a gentle threshold obtained by testing the user by the hearing test device (No. A threshold), an optimal threshold (second threshold), and an unsuitable threshold (third threshold).
- the adjustment model generation program module 520 includes:
- a sound pressure level determining program unit 521 configured to determine a sound pressure level corresponding to each frequency point according to a first threshold value of each frequency point;
- a valley compression ratio determining program unit 523 configured to use a difference between the second threshold value and the first threshold value of each frequency point as a valley compression ratio corresponding to each frequency point;
- a threshold sorting program module 540 for using multiple hearing thresholds for each frequency point according to time Sort from far to near;
- a threshold comparison program module 550 configured to compare sizes between the plurality of sorted hearing thresholds corresponding to each of the frequency points
- the alarm signal generating program module 560 is configured to generate a hearing impairment warning signal to notify the user at the certain frequency when the comparison result indicates that the plurality of hearing thresholds of a certain frequency point tend to increase in order from time to time. The hearing of the point has dropped.
- an embodiment of the present invention provides a computer readable storage medium, where the storage medium stores one or more programs including execution instructions, which can be used by an electronic device (including but not limited to a computer, a server , or network device, etc.) read and execute for performing the relevant steps in the above method embodiments, for example:
- At least one processor and
- the processor 910, the memory 920, the input device 930, and the output device 940 may be connected by a bus or other means, as exemplified by a bus connection in FIG.
- Input device 930 can receive input digital or character information and generate signals related to user settings and function control of the audio signal conditioning device.
- Output device 940 can include a display device such as a display screen.
- the electronic device of the embodiment of the present application exists in various forms, including but not limited to:
- the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Quality & Reliability (AREA)
- Circuit For Audible Band Transducer (AREA)
- Telephone Function (AREA)
Abstract
一种音频信号调节方法及系统(500),其中调节方法包括:获取用户的听力测试数据(S10);根据获取的听力测试数据确定用户在不同频率点的听力参数值,生成适于用户的音频信号调节模型(S20);根据音频信号调节模型对接收的音频信号中对应于各频率点的音频数据进行音频调节以输出至用户的人耳进行聆听(S30)。能够为用户提供适于其自身听力状况的音频,避免了不匹配音频对听力造成的损伤。
Description
本发明涉及音频信号处理技术领域,尤其涉及一种音频信号调节方法及系统。
人耳极具易损性,造成人耳损伤的因素包括病毒、环境噪声、耳毒性药物、遗传等,这些因素能够导致人耳不同程度和状态的听力损伤,严重的可能导致听力残疾。各种耳机和喇叭输出的声音都是线性输出,而人耳听觉功能对接收的声音进行的是非线性调控,由于耳机和喇叭输出的声音与听觉功能不匹配导致听觉“声损伤”,严重者导致听力障碍或者听力残疾。在现实生活中,听力损伤不易觉察,当觉察时可能问题已变得严重或不可逆转了,需要借助助听器或电子耳蜗的帮助,这将增加家庭和社会的负担。
世界卫生组织发布的消息称:目前全球有11亿青少年因为使用耳机可能导致听力损伤。强声会导致耳聋、耳鸣,但是有研究表明:低强度的声音的长时间刺激以及长期累积刺激同样会导致耳聋、耳鸣。在现实生活中,噪声是无处不在的。数据显示,新生儿听力损伤发生率0.1-0.3%,后天发展到10%左右,50%的60岁人口中有不同程度的听损,在这个听损发生、发展过程中,各种环境声音对听损的贡献率达到25%(各种环境声成为导致听力损伤或加重听力损伤的叠加因素),即听损与不科学的接受声刺激或不科学使用听觉直接相关。
声音是动态变化的,尤其是音乐和自然界的声音,具有较大的声压动态范围,其最小声压级和最大声压级相差可超过30dBspl。对于一些耳科疾病患者,由于其感受声音的内耳神经元对外界传入的各频率的声音的响应阈值不同。例如,高频听力损伤的人群,其对高频声音的响应阈值更高,需要更大的音量才能听到。因此高频听力损伤的人群使用普通耳机听音乐
时需要把输入人耳的音乐的整体音量调高才能听到音乐中高频部分的声音,而这种整体音量增长也将增强低频声音的能量。这对于高频听力损伤的人群中低频听力没有损伤人来说将会造成感受低频声音的内耳神经元的损伤,长久下来产生听损或耳鸣。目前聆听音乐或接听电话等外界音源通常使用耳机,耳机接受播放装置输入的音频信号把声音通过音量控制后输入到人耳,而耳机输出的声音对人耳听阈范围的各频率的声音的音量调节是一致的(各频率的声音同时放大或降低音量,是一种线性变化),并非按照使用者的实际听力状态进行调节输出。
发明内容
本发明实施例提供一种音频信号调节方法及系统,用于至少解决现有技术中人们不能够获得适合自身听力状况的音频,以避免对听力造成损伤的技术问题。
第一方面,本发明实施例提供一种音频信号调节方法,包括:获取用户的听力测试数据;根据获取的所述听力测试数据确定所述用户在不同频率点的听力参数值,生成适于所述用户的音频信号调节模型;根据所述音频信号调节模型对接收的音频信号中对应于各频率点的音频数据进行音频调节,以输出至所述用户的人耳进行聆听。
第二方面,本发明实施例还提供一种音频信号调节系统,包括:
测试数据获取程序模块,用于获取用户的听力测试数据;
调节模型生成程序模块,用于根据获取的所述听力测试数据确定所述用户在不同频率点的听力参数值,生成适于所述用户的音频信号调节模型;
音频信号调节程序模块,用于根据所述音频信号调节模型对接收的音频信号中对应于各频率点的音频数据进行音频调节以输出至所述用户的人耳进行聆听。
第三方面,本发明实施例提供一种计算机可读存储介质,所述存储介质中存储有一个或多个包括执行指令的程序,所述执行指令能够被电子设备(包括但不限于计算机,服务器,或者网络设备等)读取并执行,以用于执行本发明上述任一项音频信号调节方法。
第四方面,提供一种电子设备,其包括:至少一个处理器,以及与所述
至少一个处理器通信连接的存储器,其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行本发明上述任一项音频信号调节方法。
第五方面,本发明实施例还提供一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述任一项音频信号调节方法。
本发明实施例的有益效果在于:通过获取并分析用户的听力测试数据确定了用户对不同频率音频成分的听力特性,从而进一步确定了用于将音频信号调整为适于用户的实际听力的音频信号调节模型。并根据确定音频信号调节模型对用户所收听的音频信号进行调节,从而使得用户能够获取到适合于自身听力状况的音频,避免收听与自身听力状况不匹配的音频对听力造成的损伤。
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的音频信号调节方法一实施例的流程图;
图2为图1中步骤S20的一实施方式的流程图;
图3为图1中步骤S30的一实施方式的流程图;
图4为本发明的音频信号调节方法的另一实施例的流程图;
图5为本发明的音频信号调节系统的一实施例的原理框图;
图6为本发明的音频信号调节系统中的调节模型生成程序模块一实施例的原理框图;
图7为本发明的音频信号调节系统中的音频信号调节程序模块一实施例的原理框图;
图8为本发明的音频信号调节系统的另一实施例的原理框图;
图9为本发明的电子设备的一实施例的结构示意图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本发明可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、元件、数据结构等等。也可以在分布式计算环境中实践本发明,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
在本发明中,“模块”、“装置”、“系统”等等指应用于计算机的相关实体,如硬件、硬件和软件的组合、软件或执行中的软件等。详细地说,例如,元件可以、但不限于是运行于处理器的过程、处理器、对象、可执行元件、执行线程、程序和/或计算机。还有,运行于服务器上的应用程序或脚本程序、服务器都可以是元件。一个或多个元件可在执行的过程和/或线程中,并且元件可以在一台计算机上本地化和/或分布在两台或多台计算机之间,并可以由各种计算机可读介质运行。元件还可以根据具有一个或多个数据包的信号,例如,来自一个与本地系统、分布式系统中另一元件交互的,和/或在因特网的网络通过信号与其它系统交互的数据的信号通过本地和/或远程过程来进行通信。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”,不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要
素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
如图1所示,本发明的一实施例的音频信号调节方法,该方法能够用于音频调节设备,例如,可以用于一种助听器设备,所述方法包括:
S10、获取用户的听力测试数据;
S20、根据获取的所述听力测试数据确定所述用户在不同频率点的听力参数值,生成适于所述用户的音频信号调节模型;
S30、根据所述音频信号调节模型对接收的音频信号中对应于各频率点的音频数据进行音频调节以输出至所述用户的人耳进行聆听。
本实施例中通过获取并分析用户的听力测试数据确定了用户对不同频率音频成分的听力特性,从而进一步确定了用于将音频信号调整为适于用户的实际听力的音频信号调节模型。并根据确定音频信号调节模型对用户所收听的音频信号进行调节,从而使得用户能够获取到适合于自身听力状况的音频,避免收听与自身听力状况不匹配的音频对听力造成的损伤。
在一些实施例中,步骤S10中的用户的听力测试数据由听力测试设备对用户进行听力测试得到,可以是取自用户的历史听力测试数据,也可以是实时测得的用户的听力测试数据,本发明实施例对此不作限定。听力测试设备可以采用精细化听力测试设备。
在一些实施例中,的步骤S20中的听力测试数据包括每个倍频程内的多个测试频率点的听力参数阈值,所述听力参数阈值至少包括由听力测试设备对用户进行测试得到的轻柔阈值(即,第一阈值)、最适阈值(即,第二阈值)和不适阈值(即,第三阈值)。
人耳听音的频率范围为20Hz到20KHz,声音信号频谱分析一般不需要对每个频率成分进行具体分析。为了方便起见,把20Hz到20KHz的声频范围分为几个段落,每个频带称为一个频程。频程的划分采用恒定带宽比,即保持频带的上、下限之比为一常数。实验证明,当声音的声压级不变而频率提高一倍时,听起来音调也提高一倍。若使每一频带的上限频率比下限频率高一倍,即频率之比为2,这样划分的每一个频程称1倍频程,简称倍频程。
如图2所示,在一些实施例中,所述根据获取的所述听力测试数据
确定所述用户在不同频率点的听力参数值,以生成适于所述用户的音频数据调节模型包括:
S21、根据各频率点的轻柔阈值,确定对应于各频率点的声压级;即,以各频率点的轻柔阈值作为引起用户对频率值为各频率点的音频成分响应的声压级;
S22、以各频率点的所述不适阈值与所述最适阈值的差值作为对应于各频率点的波峰压缩比;即,以所述不适阈值与所述最适阈值的差值作为频率值为各频率点的音频成分的波峰压缩比;
S23、以各频率点的所述最适阈值与所述轻柔阈值的差值作为对应于各频率点的波谷压缩比;即,以所述最适阈值与所述轻柔阈值的差值作为频率值为各频率点的音频成分的波谷压缩比;
S24、至少基于所述声压级、波峰压缩比、波谷压缩比,生成适于所述用户的音频数据调节模型。
本实施例中的步骤S21中,通过将轻柔阈值作为引起用户对频率值为所述某一测试频率点的音频成分响应的声压级保证了经本实施例的音频信号调节模型调节后的音频信号肯定能够被用户所听到,保证了用户能够完整的听到音频信号中所包含的所有频率成分,从而在确保不因声压级过高而对人耳造成损伤的情况下还确保了用户能够清晰的听到所有的频率成分。
本实施例中的步骤S22、S23中,通过确定频率值为测试频率点的音频成分的波峰压缩比和波谷压缩比的方式确定了对该音频成分调节的上下限,保证了经调整后输出的音频信号所包含的所有的频率成分都在适于用户实际听力状况的范围内波动,从而避免了周期性出现超出大声阈值和/或轻柔阈值之外的频率成分而对人造成不适感甚至对人耳造成损伤。
如图3所示,在一些实施例中,所述根据所述音频信号调节模型对接收的音频信号中中对应于各频率点的音频数据进行音频调节,以输出至所述用户的人耳进行聆听包括:
S31、确定接收的音频信号中对应于各频率点的音频数据;
S32、根据所述音频调节模型对所述应于各频率点的音频数据;
S33、将根据所述音频调节模型调节后的音频信号输出至所述用户的人耳进行聆听。
在本实施例中音频信号处理设备在接收到外部输入的音频信号之后,首先执行步骤S31以确定音频信号所包含的所有的音频成分(即,频率成分),然后执行步骤S32根据确定的音频信号调节模型来条接接收的音频信号所包含的所有的音频成分以适于用户的实际听力状况,之后执行步骤S33将调节后的音频信号发送至用户的人耳进行聆听。步骤S33中发送至人耳的方式可以是通过与音频信号处理设备连接的耳机进行传输。
在一些实施例中,所述听力测试数据包括每个倍频程内的多个测试频率点的在多个不同时期的听力阈值。
如图4所示,在一些实施例中音频信号调节方法还包括:
S41、对每一个频率点的多个听力阈值按照时间由远到近的顺序进行排序;
S42、比较对应于每一个频率点的排序后的多个听力阈值之间的大小;
S43、当比较结果表明某频率点的多个听力阈值按照时间由远到近的顺序趋于增大时,生成听力损伤告警信号以通知所述用户在所述某频率点的听力发生了下降。
本实施例中根据针对于用户的不同时期的听力测试数据的变化趋势能够发现用户的听力下降是否发生下降,并在发现用户的听力下降时能够及时的向用户发出告警信息,以便用户能够及时就医或者作出适当调整,以避免听力进一步的恶化。
在一些实施例中,所述听力参数阈值还包括不适阈值;所述根据获取的所述听力测试数据确定所述用户在不同频率点的听力参数值,以生成适于所述用户的音频数据调节模型还包括:
以各频点的不适阈值作为频率值为各频率点的音频成分的瞬时电压最大阈值。
本实施例中通过设定音频信号的频率成分的输出瞬时电压最大阈值确保了按照音频数据调节模型调节后的音频数据中不存在瞬态脉冲达到不适阈值的情况,从而避免了瞬态脉冲对人耳造成的尖锐刺激引发的瞬时
耳鸣或者长久损伤。
以下以耳鸣频率为4490Hz的患者为例,其在同一倍频程的4490Hz和5040Hz的声刺激的基本数据如下表:
Hz | HLdB | SOFTdB | MCLdB | LOUDdB | UCLdB |
4490 | 35 | 43 | 48 | 54 | 70 |
5040 | 40 | 49 | 56 | 62 | 69 |
如上表所示分别获取了同一个倍频程内两个频率点4490Hz和5040Hz的五个听力参数阈值,分别包括:听力阈值HL(该患者人耳能够听到的最低声音)、soft阈值(感觉轻柔的阈值、小于MCL)、最适阈值MCL、loud阈值(感觉大声的阈值,小于UCL)、不适阈值UCL。人耳对同一频率点不同分贝的声音的敏感度是不同的,例如,对于频率为4490Hz的音频成分,当分贝数大于35dB时该患者才能够听到该频率的声音,当分贝数为43dB左右时该患者可以听到该频率轻柔的声音,当分贝数为48dB时该患者能够听到该频率最合适的声音,当分贝数为54dB时该患者会觉得该频率的声音较大,当分贝数为70dB或以上事该患者会觉得不舒服。上述听力参数阈值由听力测试设备测试得到,听力测试设备采用精细化听力测试设备,可以精准的测试用户对于某一频率点的听力参数阈值。
通过以下步骤确定音频调节模型:
A、饱和输出控制运算:以测试频点对应的不适阈值UCL作为音频信号瞬时最大电压输出限度。
B、控制输出声压算法:以测试频点对应的soft阈值作为标准,设定引起该频点响应的声压级。
C、非线性控制算法:以loud阈值与最适阈值MCL的差值设定波峰压缩比,以最适阈值MCL与soft阈值的差值设定波谷压缩比,控制输出声压动态范围。
在经上述步骤处理时还可以对音频信号进行调频调幅,具体地:在进行上述运算处理时,可设置输出声音整体变化特征,可对经A-C运算的声音进行调频调幅设置以满足不同耳科患者的需要,例如:
a、对于一些耳科疾病患者(例如,耳鸣患者),可以选择频宽,对选定频宽范围内的声音进行额外增加和削减输出控制,包括增加输出声压
级分贝数值或降低分贝数值,步进不小于1dB。
b、可设置调频频率,调节音频信号的振幅按调频频率周期变化,调频频率可选不低于6Hz。
c、调幅:音频信号的振幅可以在不小于±1dB的数值选择振幅变化强度,按预期损伤特性进行设置。
此外,还可以进行连续播放时程衰减控制:时程设置可选择10m\20m\30m,当连续播放时间超过设定的时程时,自动控制音量衰减1-10dB,用降低音量的方式提示用户停止播放,以避免长时间不间断的播放对人耳造成损伤。
最后,通过音频信号调节设备的输入端D和输出端A,进行D/A转换校准,使音频电信号电压值与喇叭输出声压值一致。
本发明的装置和方法,只需获得听力测试设备所测得的用户的听力测试数据,便可使用本发明的方法为用户定制音频信号,可安装在任何音频播放装置(用于向音频调节设备输入音频信号),一端与播放装置连接,一端与各种扬声器或耳机相(用于播放经音频调节设备调节后的音频)连接,使得输出声音符合人耳听觉功能的不同状态。起到科学用耳、保护听觉功能、优化听觉、避免不良声刺激造成的听力损伤以及避免或减少耳鸣的发生与控制耳鸣响度增长。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作合并,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
如图5所示为本申请实施例提供的一种音频信号调节系统500,包括:
测试数据获取程序模块510,用于获取用户的听力测试数据;
调节模型生成程序模块520,用于根据获取的所述听力测试数据确定所
述用户在不同频率点的听力参数值,生成适于所述用户的音频信号调节模型;
音频信号调节程序模块530,用于根据所述音频信号调节模型对接收的音频信号中对应于各频率点的音频数据进行音频调节,以输出至所述用户的人耳进行聆听。
在一些实施例中,所述听力测试数据包括每个倍频程内的多个测试频率点的听力参数值,所述听力参数值至少包括由听力测试设备对用户进行测试得到的轻柔阈值(第一阈值)、最适阈值(第二阈值)和不适阈值(第三阈值)。
如图6所示,在一些实施例中,所述调节模型生成程序模块520包括:
声压级确定程序单元521,用于根据各频率点的第一阈值,确定对应于各频率点的声压级;
波峰压缩比确定程序单元522,用于以各频率点的所述第三阈值与所述第二阈值的差值作为对应于各频率点的波峰压缩比;
波谷压缩比确定程序单元523,用于以各频率点的所述第二阈值与所述第一阈值的差值作为对应于各频率点的波谷压缩比;
模型生成程序单元524,用于至少基于所述声压级、波峰压缩比、波谷压缩比,生成适于所述用户的音频数据调节模型。
如图7所示,在一些实施例中,所述音频信号调节程序模块530包括:
音频成分确定程序单元531,用于确定接收的音频信号中对应于各频率点的音频数据;
音频成分调节程序单元532,用于根据所述音频调节模型对所述应于各频率点的音频数据进行调节;
音频信号输出程序单元533,用于将根据所述音频调节模型调节后的音频信号输出至所述用户的人耳进行聆听。
如图8所示,在一些实施例中,所述听力测试数据包括每个倍频程内的多个测试频率点的在多个不同时期的听力阈值;所述系统500还包括:
阈值排序程序模块540,用于对每一个频率点的多个听力阈值按照时间
由远到近的顺序进行排序;
阈值比较程序模块550,用于比较对应于所述每一个频率点的排序后的多个听力阈值之间的大小;
告警信号生成程序模块560,用于当比较结果表明某频率点的多个听力阈值按照时间由远到近的顺序趋于增大时,生成听力损伤告警信号以通知所述用户在所述某频率点的听力发生了下降。
上述本发明实施例的音频数据调节系统可用于执行本发明实施例的音频数据调节方法,并相应的达到上述本发明实施例的音频数据调节方法所达到的技术效果,这里不再赘述。
本发明实施例中可以通过硬件处理器(hardware processor)来实现相关功能模块。
另一方面,本发明实施例提供一种计算机可读存储介质,所述存储介质中存储有一个或多个包括执行指令的程序,所述执行指令能够被电子设备(包括但不限于计算机,服务器,或者网络设备等)读取并执行,以用于执行上述方法实施例中的相关步骤,例如:
获取用户的听力测试数据;
根据获取的所述听力测试数据确定所述用户在不同频率点的听力参数值,生成适于所述用户的音频信号调节模型;
根据所述音频信号调节模型对接收的音频信号中对应于各频率点的音频数据进行音频调节,以输出至所述用户的人耳进行聆听。
另一方面,本发明实施例还公开一种电子设备,其包括:
至少一个处理器,以及
与所述至少一个处理器通信连接的存储器,其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行:
获取用户的听力测试数据;
根据获取的所述听力测试数据确定所述用户在不同频率点的听力参数值,生成适于所述用户的音频信号调节模型;
根据所述音频信号调节模型对接收的音频信号中对应于各频率点的音频数据进行音频调,节以输出至所述用户的人耳进行聆听。
图9是本申请另一实施例提供的执行音频信号调节方法的电子设备的硬件结构示意图,如图9所示,该设备包括:
一个或多个处理器910以及存储器920,图9中以一个处理器910为例。
执行音频信号调节方法的设备还可以包括:输入装置930和输出装置940。
处理器910、存储器920、输入装置930和输出装置940可以通过总线或者其他方式连接,图9中以通过总线连接为例。
存储器920作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的音频信号调节方法对应的程序指令/模块。处理器910通过运行存储在存储器920中的非易失性软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例音频信号调节方法。
存储器920可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据音频信号调节装置的使用所创建的数据等。此外,存储器920可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器920可选包括相对于处理器910远程设置的存储器,这些远程存储器可以通过网络连接至音频信号调节装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置930可接收输入的数字或字符信息,以及产生与音频信号调节装置的用户设置以及功能控制有关的信号。输出装置940可包括显示屏等显示设备。
所述一个或者多个模块存储在所述存储器920中,当被所述一个或者多个处理器910执行时,执行上述任意方法实施例中的音频信号调节方法。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施
例所提供的方法。
本申请实施例的电子设备以多种形式存在,包括但不限于:
(1)移动通信设备:这类设备的特点是具备移动通信功能,并且以提供话音、数据通信为主要目标。这类终端包括:智能手机(例如iPhone)、多媒体手机、功能性手机,以及低端手机等。
(2)超移动个人计算机设备:这类设备属于个人计算机的范畴,有计算和处理功能,一般也具备移动上网特性。这类终端包括:PDA、MID和UMPC设备等,例如iPad。
(3)便携式娱乐设备:这类设备可以显示和播放多媒体内容。该类设备包括:音频、视频播放器(例如iPod),掌上游戏机,电子书,以及智能玩具和便携式车载导航设备。
(4)服务器:提供计算服务的设备,服务器的构成包括处理器、硬盘、内存、系统总线等,服务器和通用的计算机架构类似,但是由于需要提供高可靠的服务,因此在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面要求较高。
(5)其他具有数据交互功能的电子装置。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术
人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (10)
- 一种音频信号调节方法,包括:获取用户的听力测试数据;根据获取的所述听力测试数据确定所述用户在不同频率点的听力参数值,生成适于所述用户的音频信号调节模型;根据所述音频信号调节模型对接收的音频信号中对应于各频率点的音频数据进行音频调节,以输出至所述用户的人耳进行聆听。
- 根据权利要求1所述的方法,其中,所述听力参数值至少包括由听力测试设备对用户进行测试得到的第一阈值、第二阈值和第三阈值,所述第二阈值大于所述第一阈值,所述第三阈值大于所述第二阈值;所述根据获取的所述听力测试数据确定所述用户在不同频率点的听力参数值,生成适于所述用户的音频数据调节模型包括:根据各频率点的第一阈值,确定对应于各频率点的声压级;以各频率点的所述第三阈值与所述第二阈值的差值作为对应于各频率点的波峰压缩比;以各频率点的所述第二阈值与所述第一阈值的差值作为对应于各频率点的波谷压缩比;至少基于所述声压级、波峰压缩比、波谷压缩比,生成适于所述用户的音频数据调节模型。
- 根据权利要求1所述的方法,其中,所述根据所述音频信号调节模型对接收的音频信号中对应于各频率点的音频数据进行音频调节,以输出至所述用户的人耳进行聆听包括:确定接收的音频信号中对应于各频率点的音频数据;根据所述音频调节模型对所述应于各频率点的音频数据进行调节;将根据所述音频调节模型调节后的音频信号输出至所述用户的人耳进行聆听。
- 根据权利要求1所述的方法,其中,所述听力测试数据包括每个倍频程内的多个测试频率点在多个不同时期的听力阈值;所述方法还包括:对每一个频率点的多个听力阈值按照时间由远到近的顺序进行排序;比较对应于所述每一个频率点的排序后的多个听力阈值之间的大小;当比较结果表明某频率点的多个听力阈值按照时间由远到近的顺序趋于增大时,生成听力损伤告警信号以通知所述用户在所述某频率点的听力发生了下降。
- 一种音频信号调节系统,包括:测试数据获取程序模块,用于获取用户的听力测试数据;调节模型生成程序模块,用于根据获取的所述听力测试数据确定所述用户在不同频率点的听力参数值,生成适于所述用户的音频信号调节模型;音频信号调节程序模块,用于根据所述音频信号调节模型对接收的音频信号中对应于各频率点的音频数据进行音频调节,以输出至所述用户的人耳进行聆听。
- 根据权利要求5所述的系统,其中,所述听力参数值至少包括由听力测试设备对用户进行测试得到的第一阈值、第二阈值和第三阈值,所述第二阈值大于所述第一阈值,所述第三阈值大于所述第二阈值;所述调节模型生成程序模块包括:声压级确定程序单元,用于根据各频率点的第一阈值,确定对应于各频率点的声压级;波峰压缩比确定程序单元,用于以各频率点的所述第三阈值与所述第二阈值的差值作为对应于各频率点的波峰压缩比;波谷压缩比确定程序单元,用于以各频率点的所述第二阈值与所述第一阈值的差值作为对应于各频率点的波谷压缩比;模型生成程序单元,用于至少基于所述声压级、波峰压缩比、波谷压缩比,生成适于所述用户的音频数据调节模型。
- 根据权利要求5所述的系统,其中,所述音频信号调节程序模块包 括:音频成分确定程序单元,用于确定接收的音频信号中对应于各频率点的音频数据;音频成分调节程序单元,用于根据所述音频调节模型对所述应于各频率点的音频数据进行调节;音频信号输出程序单元,用于将根据所述音频调节模型调节后的音频信号输出至所述用户的人耳进行聆听。
- 根据权利要求5所述的系统,其中,所述听力测试数据包括每个倍频程内的多个测试频率点的在多个不同时期的听力阈值;所述系统还包括:阈值排序程序模块,用于对每一个频率点的多个听力阈值按照时间由远到近的顺序进行排序;阈值比较程序模块,用于比较对应于所述每一个频率点的排序后的多个听力阈值之间的大小;告警信号生成程序模块,用于当比较结果表明某频率点的多个听力阈值按照时间由远到近的顺序趋于增大时,生成听力损伤告警信号以通知所述用户在所述某频率点的听力发生了下降。
- 一种存储介质,所述存储介质存储有计算机程序,所述计算机程序能够被计算机读取并执行,以用于执行权利要求1-4任一项所述的音频信号调节方法。
- 一种电子设备,其包括:至少一个处理器,以及与所述至少一个处理器通信连接的存储器,其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-4任一项所述的音频信号调节方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710321635.5A CN107170463A (zh) | 2017-05-09 | 2017-05-09 | 音频信号调节方法及系统 |
CN201710321635.5 | 2017-05-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018205366A1 true WO2018205366A1 (zh) | 2018-11-15 |
Family
ID=59812538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/089716 WO2018205366A1 (zh) | 2017-05-09 | 2017-06-23 | 音频信号调节方法及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107170463A (zh) |
WO (1) | WO2018205366A1 (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017218483A1 (de) * | 2017-10-16 | 2019-04-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur einstellung von parametern zur individuellen anpassung eines audiosignals |
CN110012389A (zh) * | 2018-01-05 | 2019-07-12 | 宝沃汽车(中国)有限公司 | 设置音效参数的方法、装置及车辆 |
CN108260052A (zh) * | 2018-03-13 | 2018-07-06 | 佛山博智医疗科技有限公司 | 用于助听器的音频数据调节电路及助听器设备 |
CN108650363A (zh) * | 2018-07-17 | 2018-10-12 | 苏州科技大学 | 一种手机音量调节方法及装置 |
CN108834020A (zh) * | 2018-07-17 | 2018-11-16 | 苏州科技大学 | 一种保护耳朵听力的音量调节方法和系统 |
CN109068222A (zh) * | 2018-09-06 | 2018-12-21 | 东莞市库珀电子有限公司 | 一种可调节人耳听感的方法、蓝牙耳机及系统 |
CN109862470A (zh) * | 2018-12-26 | 2019-06-07 | 广东思派康电子科技有限公司 | 对耳病患者播音的方法、耳机及其计算机可读存储介质 |
CN112577590A (zh) * | 2019-09-30 | 2021-03-30 | 万魔声学科技有限公司 | 听力保护方法及装置 |
CN112887877B (zh) * | 2021-01-28 | 2023-09-08 | 歌尔科技有限公司 | 一种音频参数设置方法、装置、电子设备及存储介质 |
CN114007166B (zh) * | 2021-09-18 | 2024-02-27 | 北京车和家信息技术有限公司 | 定制声音的方法及装置、电子设备和存储介质 |
CN113993037A (zh) * | 2021-10-22 | 2022-01-28 | 展讯半导体(南京)有限公司 | 音频控制方法、系统、电子设备和介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103052012A (zh) * | 2011-10-14 | 2013-04-17 | 奥迪康有限公司 | 基于听觉诱发电位的自动实时助听器验配 |
CN105228069A (zh) * | 2015-09-28 | 2016-01-06 | 南京工程学院 | 一种基于声压级分段的数字助听器宽动态压缩方法 |
CN105307093A (zh) * | 2015-11-26 | 2016-02-03 | 东南大学 | 一种自适应的听力补偿方法 |
CN105764018A (zh) * | 2016-04-21 | 2016-07-13 | 天津大学 | 一种基于智能终端的自主验配助听器系统及其方法 |
-
2017
- 2017-05-09 CN CN201710321635.5A patent/CN107170463A/zh active Pending
- 2017-06-23 WO PCT/CN2017/089716 patent/WO2018205366A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103052012A (zh) * | 2011-10-14 | 2013-04-17 | 奥迪康有限公司 | 基于听觉诱发电位的自动实时助听器验配 |
CN105228069A (zh) * | 2015-09-28 | 2016-01-06 | 南京工程学院 | 一种基于声压级分段的数字助听器宽动态压缩方法 |
CN105307093A (zh) * | 2015-11-26 | 2016-02-03 | 东南大学 | 一种自适应的听力补偿方法 |
CN105764018A (zh) * | 2016-04-21 | 2016-07-13 | 天津大学 | 一种基于智能终端的自主验配助听器系统及其方法 |
Non-Patent Citations (1)
Title |
---|
XIA, DAIDAI: "Science -Engineering (B), China Master s Theses Full-Text Database", RESEARCH ON LOUDNESS COMPENSATION METHOD OF DIGITAL HEARING AIDS, 15 August 2016 (2016-08-15), pages 12, 15 - 18, ISSN: 1674-0246 * |
Also Published As
Publication number | Publication date |
---|---|
CN107170463A (zh) | 2017-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018205366A1 (zh) | 音频信号调节方法及系统 | |
US10880647B2 (en) | Active acoustic filter with location-based filter characteristics | |
US10368164B2 (en) | Approach for partially preserving music in the presence of intelligible speech | |
WO2021189990A1 (zh) | 一种用于听力耳机的验配方法和装置 | |
US9918159B2 (en) | Time heuristic audio control | |
JP6374529B2 (ja) | ヘッドセットと音源との間のオーディオの協調的処理 | |
JP6325686B2 (ja) | ヘッドセットと音源との間のオーディオの協調的処理 | |
US10199047B1 (en) | Systems and methods for processing an audio signal for replay on an audio device | |
US9980028B2 (en) | Sound exposure limiter | |
CN102172044B (zh) | 音频输出的控制方法及设备 | |
EP2944097A1 (en) | Method and system for self-managed sound enhancement | |
US10951994B2 (en) | Method to acquire preferred dynamic range function for speech enhancement | |
CN105262887B (zh) | 移动终端及其音频设置方法 | |
CN104754462A (zh) | 音量自动调节装置及方法和耳机 | |
US10991375B2 (en) | Systems and methods for processing an audio signal for replay on an audio device | |
US20110228948A1 (en) | Systems and methods for processing audio data | |
WO2020073564A1 (zh) | 用于检测音频信号的响度的方法和装置 | |
Patel et al. | Compression Fitting of Hearing Aids and Implementation | |
WO2020220271A1 (zh) | 存储器、声学单元及其音频处理方法、装置、设备和系统 | |
CN208174978U (zh) | 用于助听器的音频数据调节电路及助听器设备 | |
Hribar Jr et al. | Verification of Direct Streaming to Hearing Aids: A How-to Guide to the Digital Listening Environment | |
Kulkarni et al. | Hearing loss Detection through Audiogram in Mobile Devices | |
CN116264658A (zh) | 音讯调节系统及音讯调节方法 | |
PL225391B1 (pl) | Układ do poprawy jakości dźwięku cyfrowych urządzeń elektronicznych |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17909127 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/06/2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17909127 Country of ref document: EP Kind code of ref document: A1 |