WO2020073357A1 - Mems传感器 - Google Patents

Mems传感器 Download PDF

Info

Publication number
WO2020073357A1
WO2020073357A1 PCT/CN2018/111313 CN2018111313W WO2020073357A1 WO 2020073357 A1 WO2020073357 A1 WO 2020073357A1 CN 2018111313 W CN2018111313 W CN 2018111313W WO 2020073357 A1 WO2020073357 A1 WO 2020073357A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
substrate
magnet
mems sensor
sensor according
Prior art date
Application number
PCT/CN2018/111313
Other languages
English (en)
French (fr)
Inventor
邹泉波
冷群文
Original Assignee
歌尔股份有限公司
北京航空航天大学青岛研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司, 北京航空航天大学青岛研究院 filed Critical 歌尔股份有限公司
Publication of WO2020073357A1 publication Critical patent/WO2020073357A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Definitions

  • the present invention relates to the field of measurement, and more particularly, to a sensor, especially a MEMS sensor with high performance.
  • a microphone In the structure of a microphone, it usually includes a substrate, a back plate and a diaphragm formed on the substrate, wherein there is a gap between the back plate and the diaphragm, so that the back plate and the diaphragm together constitute a flat plate type Capacitor sensing structure.
  • the microphone In order to make full use of the mechanical sensitivity of the diaphragm, the microphone needs to design a huge back cavity with ambient pressure to ensure that the rigidity of the flowing air far exceeds the diaphragm.
  • the volume of the back cavity is usually much larger than 1 mm 3 , for example, the volume of the back cavity is usually designed to be 1-15 mm 3 .
  • the microphone chip When the microphone chip is packaged, it needs to open its cavity. This limits the design of the smallest size package of MEMS microphones (> 3mm 3 ).
  • the volume of the back cavity of the microphone is too small, it is very unfavorable for the circulation of air.
  • the rigidity of this air will greatly reduce the mechanical sensitivity of the diaphragm.
  • dense via holes are usually designed on the back plate, and the air flow resistance in the gap or perforation caused by the viscosity of the air becomes the dominant factor of MEMS microphone noise, which will To a certain extent limits the high signal-to-noise performance of the microphone, which will eventually lead to poor performance of the microphone.
  • the diaphragm in order to make the diaphragm resistant to external pressure, it is required that the diaphragm has good rigidity, so that it can withstand greater external pressure, but this will cause the mechanical sensitivity of the diaphragm to be greatly reduced, resulting in an open circuit of the microphone The relatively low sensitivity will eventually affect the performance of the microphone.
  • An object of the present invention is to provide a new technology solution for MEMS sensors.
  • a MEMS sensor including: a substrate and a diaphragm supported above the substrate by a spacer, the substrate, the spacer, and the diaphragm surrounding a vacuum chamber;
  • the static deflection distance of the membrane under atmospheric pressure is less than the distance between the diaphragm and the substrate;
  • a detection structure the detection structure is used to output an electrical signal characterizing the deformation of the diaphragm
  • a driving device configured to provide a force for the diaphragm to resist external pressure in a direction away from the vacuum chamber.
  • the driving device is magnetically driven and includes at least a first magnet provided on the diaphragm and a second magnet relatively fixed on the substrate; the first magnet and the second magnet are configured to A repulsive force is generated so that the first magnet drives the diaphragm against external pressure.
  • the second magnet is disposed on the side of the substrate away from the diaphragm.
  • the first magnet and the second magnet are magnetic thin films.
  • the magnetic thin film is made of CoCrPt or CoPt.
  • the driving device is a piezoelectric sheet provided on the diaphragm, and the piezoelectric sheet is configured to provide the diaphragm with a force against external pressure.
  • the above-mentioned MEMS sensor further includes a polar plate, the polar plate is supported on a side of the diaphragm away from the vacuum chamber, and a through hole is provided on the polar plate; between the polar plate and the diaphragm It is configured to form a first electrostatic force that provides the diaphragm with a force against external pressure.
  • a detection lower electrode forming a flat capacitive detection structure with the diaphragm is provided on the substrate, and the detection lower electrode and the diaphragm are simultaneously configured to form a second electrostatic force: the second electrostatic force The direction is opposite to the direction of the first electrostatic force, and the second electrostatic force and the first electrostatic force are jointly restricted on the diaphragm.
  • the detection structure is a capacitive, piezoelectric, piezoresistive or magnetoresistive detection structure.
  • the MEMS sensing device includes a microphone, a pressure sensor and a force sensor.
  • a vacuum chamber is designed, and the residual gas viscosity in the vacuum chamber is much lower than the air viscosity at standard pressure, which can eliminate the acoustic resistance during vibration of the diaphragm to improve the signal-to-noise ratio (SNR) of the microphone , which can improve the acoustic performance of the microphone.
  • SNR signal-to-noise ratio
  • the diaphragm can effectively resist external pressure while maintaining high mechanical sensitivity, so that the diaphragm can well characterize the state of sound pressure.
  • FIG. 1 is a schematic diagram of a first embodiment of the MEMS sensor of the present invention.
  • FIG. 2 is a schematic diagram of a second embodiment of the MEMS sensor of the present invention.
  • FIG. 3 is a schematic diagram of a third embodiment of the MEMS sensor of the present invention.
  • Diaphragm 2. Substrate, 3. Vacuum chamber, 4. Spacer, 5. Protective layer, 6a. Detection upper electrode, 6b. Detection lower electrode, 7a. First magnet, 7b. Second magnet, 8 . Piezoelectric film, 9. Polar plate, 9a. Via hole.
  • the sensor provided by the embodiment of the present invention may be a microphone, a pressure sensor, a displacement sensor, or other sensors known to those skilled in the art.
  • a pressure sensor when it is applied to a pressure sensor, the diaphragm is sensitive to the external pressure, and the change of the external pressure will drive the diaphragm to deform.
  • a displacement sensor When it is applied to a displacement sensor, a driving rod can be provided to be connected with the diaphragm, and the diaphragm is deformed by the driving rod, which is not listed here.
  • the microphone is taken as an example to describe the technical solution of the present invention in detail.
  • a microphone provided by an embodiment of the present invention includes at least a substrate, a diaphragm supported above the substrate by a spacer, a detection structure for outputting electrical signals characterizing the deformation of the diaphragm, and a force for the diaphragm to resist external pressure
  • the drive device wherein, the substrate, the spacer, and the diaphragm together form a vacuum cavity, and the static deflection distance of the diaphragm under atmospheric pressure is less than the distance between the diaphragm and the substrate.
  • the detection structure will output a changed electrical signal, which can be used to characterize the degree of deformation of the diaphragm to achieve the conversion of sound and electricity. ;
  • the diaphragm can effectively resist the external pressure under the action of the driving device.
  • the driving device is designed in the present invention.
  • the driving device can appropriately reduce the rigidity of the diaphragm, improve the mechanical sensitivity, and can effectively resist various external pressures, so that the microphone has good performance.
  • the driving device may adopt magnetic driving.
  • the structure of the driving device may include at least a first magnet provided on the diaphragm and a second magnet relatively fixed on the substrate.
  • the first magnet and the second magnet are arranged correspondingly, so that the magnetic fields of the first magnet and the second magnet can interact.
  • the first magnet and the second magnet are configured to generate repulsive force between each other, so that the first magnet can drive the diaphragm against any external pressure, such as sound pressure, air pressure, and water pressure A variety of pressures can be applied to different environments.
  • the detection structure can sense the magnetic field formed between the first magnet and the second magnet. During the vibration process of the diaphragm, the detection structure can sense the change of the magnetic field between the first magnet and the second magnet, thereby outputting a changed electrical signal, so as to achieve the conversion of acoustic electricity.
  • the second magnet is arranged on the side of the substrate away from the diaphragm.
  • This design can prevent the repulsive force generated by the first magnet and the second magnet from being too large, causing excessive deformation of the diaphragm, and causing damage to the diaphragm and other problems.
  • the second magnet is arranged on the side of the substrate away from the diaphragm, which can well balance the repulsive force generated between the first magnet and the second magnet, and can play a role in protecting the diaphragm to a certain extent.
  • both the first magnet and the second magnet use magnetic films.
  • the thickness of the magnetic thin film material is about 1 ⁇ m or less, which is relatively light and thin and has strong magnetism.
  • the sensor can be made thin and light and small in volume, which is very suitable for application in MEMS sensors.
  • the magnetic thin film may be made of CoCrPt or CoPt.
  • CoCrPt and CoPt materials have good magnetism, friction resistance and corrosion resistance, which can extend the service life of the drive device, and thus can extend the service life of the sensor to a certain extent.
  • other materials may also be used, as long as they have better magnetic properties, which is not limited in the present invention.
  • the above-mentioned driving device may also use a piezoelectric sheet to achieve piezoelectric driving.
  • the piezoelectric sheet may be disposed on the diaphragm, and the piezoelectric sheet may be configured to provide the diaphragm with a force against external pressure.
  • piezoelectric sheet when a piezoelectric sheet is used, materials such as AlN, PZT, or ZnO, which are well known to those skilled in the art, can be used. It has many advantages such as wide source of materials and low production cost.
  • the microphone provided by the embodiment of the present invention may further include a polar plate, which is supported on the side of the diaphragm away from the vacuum chamber, and a plurality of via holes are provided on the polar plate.
  • the design of the via holes may be The sound is transmitted to the diaphragm; the polar plate and the diaphragm are configured to form a first electrostatic force, and the first electrostatic force provides the diaphragm with a force against external pressure.
  • a detection lower electrode forming a flat capacitive detection structure with the diaphragm is provided on the substrate, and the detection lower electrode and the diaphragm are simultaneously configured to form a second electrostatic force: the direction of the second electrostatic force is the same as that described above The direction of the first electrostatic force is opposite, so that the second electrostatic force and the first electrostatic force can be jointly restricted on the diaphragm.
  • the diaphragm Since a vacuum chamber below atmospheric pressure is formed between the diaphragm and the substrate, the diaphragm will deflect statically under atmospheric pressure and without sound pressure, that is, the diaphragm will deflect statically toward the substrate.
  • the first electrostatic force and the second electrostatic force act on the diaphragm together, the first electrostatic force and the second electrostatic force jointly restrict the diaphragm, which can effectively prevent the diaphragm from contacting with the substrate after deflection when static. Equivalent to electrostatic drive.
  • the static deflection distance of the diaphragm can be designed to be smaller than the distance between the diaphragm and the substrate.
  • the microphone can adopt a high-sensitivity detection structure.
  • a capacitive, piezoelectric, piezoresistive, or magnetoresistive detection structure can be used. The present invention does not limit this.
  • the microphone provided by the embodiment of the present invention can have an open-circuit sensitivity of up to 11-12 mV / Pa, and its open-circuit sensitivity is 4-5 times that of other microphones, and has good performance.
  • the present invention provides a microphone, including: a substrate 2 and a diaphragm 1 supported above the substrate 2 by a spacer 4, wherein the substrate 2.
  • the spacer 4 and the diaphragm 1 together form a vacuum chamber 3.
  • the substrate 2 can be made of single crystal silicon or other materials well known to those skilled in the art, and the spacer 4 can be formed by layer-by-layer deposition, patterning and sacrificial processes and supported on the substrate 2 by the spacer 4 Vibrating membrane 1.
  • the vacuum chamber 3 can be sealed by low-pressure plasma enhanced chemical vapor deposition (PECVD) at 200-350 ° C, for example.
  • PECVD low-pressure plasma enhanced chemical vapor deposition
  • MEMS Micro Electro Mechanical System
  • the vacuum chamber 3 is preferably less than 1 kPa, which can make the residual gas viscosity in the vacuum chamber 3 much lower than the air viscosity at standard pressure to eliminate the acoustic resistance during the vibration of the diaphragm 1 to improve the signal-to-noise ratio (SNR) of the microphone ), which can improve the acoustic performance of the microphone.
  • SNR signal-to-noise ratio
  • the static deflection distance of the diaphragm 1 can be designed to be smaller than the distance between the diaphragm 1 and the substrate 2. This can be achieved mainly by changing the rigidity of the diaphragm 1 and / or changing the distance between the diaphragm 1 and the substrate 2.
  • the size of the diaphragm 1 in the thickness direction can be increased, and of course, the rigidity of the diaphragm 2 can be increased by selecting an appropriate material of the diaphragm 1.
  • the diaphragm 1 can be designed so that the diaphragm 1 has a mechanical sensitivity of 0.02-0.9 nm / Pa. In other words, for every 1Pa of pressure, the diaphragm 1 will deflect from 0.02-0.9nm.
  • the rigidity of this diaphragm 1 is 10-100 times that of the traditional diaphragm, making the diaphragm 1 hard enough to resist the outside. pressure.
  • the external pressure can resist different external pressures, such as sound pressure, air pressure and water pressure, etc., that is, it can resist any external pressure, so that the sensor can be a microphone, pressure sensor, displacement sensor Or other sensors well known to those skilled in the art.
  • the gap between the diaphragm 1 and the substrate 2 can be designed in the range of 1 ⁇ m-100 ⁇ m, and then by matching the diaphragm 1 with a certain rigidity, the diaphragm 1 will not collapse under atmospheric pressure Problems, can extend the life of microphones and so on.
  • the MEMS microphone can adopt a high-sensitivity detection structure.
  • the high-sensitivity detection structure may use a magnetoresistive sensor that outputs an electrical signal according to changes in the magnetic field, such as a giant magnetoresistive sensor (GMR) or a tunnel magnetoresistive sensor (TMR).
  • GMR giant magnetoresistive sensor
  • TMR tunnel magnetoresistive sensor
  • the drive of the drive device is actually a magnetic drive.
  • the structure of the driving device is as follows: referring to FIG. 1, including a first magnet 7a provided on the diaphragm 1 and a second magnet 7b relatively fixed on the substrate 2; wherein, the first magnet 7a.
  • the second magnet 7b is configured to generate a repulsive force between each other, which can provide the diaphragm 1 with a force to resist external pressure in a direction away from the vacuum chamber 3.
  • both the first magnet 7a and the second magnet 7b may use magnetic thin films.
  • the magnetic film can be directly made of magnetic material.
  • the magnetic thin film may be magnetized after the thin film is formed.
  • the above two ways of forming the magnetic thin film have good magnetic properties.
  • the magnetic thin film may be made of CoCrPt or CoPt. Both CoCrPt and CoPt have good magnetic properties, friction resistance and corrosion resistance, which can extend the service life of the driving device and thus extend the service life of the sensor to a certain extent.
  • the second magnet 7b is disposed on the side of the substrate 2 away from the diaphragm 1.
  • the second magnet 7b may be provided at the bottom of the substrate 2.
  • the repulsive force generated between the first magnet 7a and the second magnet 7b can be prevented from being too large, and the magnitude of the repulsive force can be controlled more flexibly while protecting the vibration ⁇ 1 ⁇ Membrane 1.
  • the specific position of the second magnet 7b can be flexibly set according to needs, and the second magnet 7b can be relatively fixed on the substrate 2, which is not limited in the present invention.
  • the first magnet 7a and the second magnet 7b can be formed on the diaphragm 1 and the substrate 2 respectively by deposition or other means well known to those skilled in the art, which is not limited in the present invention.
  • an insulating layer may be deposited on the substrate 2 first, and then the second magnet 7b may be formed by deposition and patterning.
  • a passivation layer covering the second magnet 7b may be deposited on the insulating layer.
  • the insulating layer and the passivation layer can be selected from materials well known to those skilled in the art, and the present invention will not describe them in detail here.
  • the first magnet 7a and the second magnet 7b are arranged correspondingly, and are respectively arranged horizontally on the diaphragm 1 and the substrate 2 in the same magnetic pole direction, so that the first magnet 7a and the second magnet 7b are mutually A repulsive force can be generated, so that the first magnet 7a can drive the diaphragm 1 against external pressure.
  • the two thin films are magnetized simultaneously.
  • the left side of the first magnet 7a and the second magnet 7b are both N poles and the right side are S poles; vice versa.
  • both the upper part of the first magnet 7a and the lower part of the second magnet 7b are N poles, and the lower part of the first magnet 7a and the upper part of the second magnet 7b are S poles; vice versa.
  • a mutual repulsive force can be generated between the first magnet 7a and the second magnet 7b.
  • FIG. 1 One structure of the detection structure is as shown in FIG. 1: it includes a detection upper electrode 6a and a detection lower electrode 6b that are separately provided, wherein the detection upper electrode 6a is disposed on the diaphragm 1 on the side of the vacuum chamber 3, and the detection The electrode 6b is disposed on the substrate 2 on the other side of the vacuum chamber 3, that is, the detection upper electrode 6a and the detection lower electrode 6b are arranged correspondingly.
  • a lead portion may be provided on the diaphragm 1 and the substrate 2 on the side of the vacuum chamber 3, and one end of the lead portion is respectively connected to the detection upper electrode 6a and the detection lower electrode.
  • the electrode 6b is connected, and the other end of the diaphragm 1 extends to the position of the spacer 4 and a pad is formed outside the diaphragm 1.
  • the diaphragm 1 when the diaphragm 1 is subjected to external sound pressure, the diaphragm 1 deforms toward the substrate 2. Since the detection upper electrode 6 a on the diaphragm 1 is close to the first magnet 7 a, the detection lower electrode on the substrate 2 When 6b is close to the second magnet 7b, the detection upper electrode 6a and the detection lower electrode 6b can sense the change of the magnetic field between the first magnet 7a and the second magnet 7b, thereby outputting a changed electrical signal, and realizing the conversion of sound and electricity.
  • a vacuum cavity 3 is enclosed between the diaphragm 1 and the substrate 2, and the air viscosity in the vacuum cavity 3 is much lower than the air viscosity in the ambient pressure, thereby reducing the acoustic resistance to the diaphragm 1
  • the influence of vibration can effectively improve the signal-to-noise ratio of the microphone.
  • the MEMS microphone of this structure does not require a large volume of back cavity, the overall size of the MEMS microphone can be greatly reduced, and the reliability of the microphone is enhanced.
  • the detection structure includes a detection upper electrode 6a and a detection lower electrode 6b, and the detection upper electrode 6a is disposed in the diaphragm 1 and the detection lower electrode 6b is disposed in the substrate 2, at this time the first magnet 7a disposed on the diaphragm 1
  • the magnetic field of the second magnet 7b provided on the substrate 2 can be effectively sensed by the detection structure, so it will not affect the performance of the MEMS microphone.
  • the detection upper electrode 6a may also be disposed in the multi-layer structure diaphragm 1 to protect the detection upper electrode 6a, and the detection lower electrode 6b may be disposed on the substrate 2 and protected with a protective layer 5
  • the protective layer 5 can be selected from materials well known to those skilled in the art, which will not be described in detail here.
  • the diaphragm may adopt a composite structure.
  • a covering layer with sacrificial holes needs to be provided first, and the sacrificial layer under the covering layer is etched away through the sacrificial holes;
  • a filling layer is deposited above the cover layer to close the sacrificial holes on the cover layer to form a vacuum chamber.
  • the detection upper electrode 6a may be disposed on or in the filling layer, and finally a passivation layer is deposited for protection, so that the detection upper electrode 6a is formed in the composite structure of the diaphragm.
  • a protective layer may be formed on the substrate, and the detection lower electrode 6b may be disposed in the protective layer.
  • the driving device uses a piezoelectric sheet 8 which is provided on the diaphragm 1 and the piezoelectric sheet 8 is configured to provide the diaphragm 1 with a force against external pressure.
  • the use of the piezoelectric sheet 8 is equivalent to the use of pressure technology to drive the diaphragm 1.
  • a piezoelectric device when used as the driving device, materials such as AlN, PZT or ZnO, which are well known to those skilled in the art, may be selected.
  • the piezoelectric sheet 8 can be formed on the diaphragm 1 in a manner well known to those skilled in the art, and the electrical signal of the piezoelectric sheet 8 can be led out through the conductive portion, and a corresponding external pad can be formed on the outside of the diaphragm 1 .
  • the microphone further includes an electrode plate 9, which can be supported on the side of the diaphragm 1 away from the vacuum chamber 3 by a supporting member
  • a through hole 9a is provided in the electrode plate 9.
  • the through hole 9 a penetrates the thickness direction of the electrode plate 9. The design of the through hole 9a can make the sound be transmitted to the diaphragm 1 smoothly.
  • the number of the via holes 9a can be set as many as required.
  • the plurality of through holes 9a may be uniformly provided on the electrode plate 9.
  • cross-sectional shape of the through hole 9a may be circular, square, rectangular, isosceles trapezoid, etc., and can be flexibly arranged as needed, and the present invention does not limit this.
  • the aperture size of the through hole 9a and the spacing between different through holes 3a can be flexibly selected according to needs, and the present invention does not limit this.
  • the polar plate 9 and the diaphragm 1 are configured to form a first electrostatic force, which can be used to provide the diaphragm 1 with a force against external pressure.
  • a detection lower electrode 6b forming a plate capacitive detection structure with the diaphragm 1 is provided on the substrate 2, and the detection lower electrode 6b and the diaphragm 1 are simultaneously configured to form a second electrostatic force: the second electrostatic force
  • the direction of is opposite to the direction of the first electrostatic force described above, and the second electrostatic force and the first electrostatic force are jointly restricted on the diaphragm 1.
  • the diaphragm 1 Since the vacuum chamber 3 below atmospheric pressure is formed between the diaphragm 1 and the substrate 2, the diaphragm 1 will be statically deflected under atmospheric pressure and without sound pressure, that is, the diaphragm 1 will face the direction of the substrate Static deflection occurred. At this time, the first electrostatic force and the second electrostatic force are jointly restrained on the diaphragm 1, which can effectively prevent the diaphragm 1 from deflecting in contact with the substrate 2 after static. This is equivalent to using electrostatic force to drive the diaphragm.
  • the microphone provided by the embodiment of the present invention may use a magnetic force, a piezoelectric force, an electrostatic force, etc. to drive the diaphragm to resist external pressure.
  • the diaphragm may have better mechanical sensitivity, which is beneficial to improve the signal-to-noise ratio of the microphone.

Abstract

一种MEMS传感器,包括:衬底(2)以及通过间隔部(4)支撑在衬底(2)上方的振膜(1),所述衬底(2)、间隔部(4)、振膜(1)围成了真空腔(3);其中,振膜(1)在大气压力下的静态偏转距离小于振膜(1)与衬底(2)之间的距离;检测结构,所述检测结构用于输出表征振膜(1)变形的电信号;驱动装置,所述驱动装置被配置为:为振膜(1)提供朝远离真空腔(3)方向抵抗外界压力的力。该传感器,通过设计有真空腔(3),真空腔(3)中的残余气体粘度大大低于标准压力下的空气粘度,可以消除振膜(1)振动期间的声阻,以改善麦克风的信噪比(SNR),从而能提高麦克风的声学性能,在驱动装置的作用下,振膜(1)能在保持较高机械灵敏度的同时,还可以有效的抵抗外界的压力,以使振膜(1)能良好的表征声压的状态。

Description

MEMS传感器 技术领域
本发明涉及测量领域,更具体地,涉及一种传感器,尤其是一种具有高性能的MEMS传感器。
背景技术
现有主流的传感器,例如麦克风、压力传感器、位移传感器等,均是通过平板电容器的原理进行检测。例如在麦克风的结构中,通常包括衬底以及形成在衬底上的背极板、振膜,其中,背极板与振膜之间具有间隙,使得背极板、振膜共同构成了平板式的电容器感测结构。
为了充分利用振膜的机械灵敏度,麦克风需要设计一个具有环境压力的巨大后腔,以确保流动空气的刚性远远超过振膜。后腔的容积通常远大于1mm 3,例如后腔的容积通常设计为1-15mm 3。而且麦克风芯片在封装的时候,需要开放其腔体。这就限制了MEMS麦克风最小尺寸封装的设计(>3mm 3)。
这时如果麦克风的后腔容积过小,则非常不利于空气的流通,这种空气的刚性会大大降低振膜的机械灵敏度。另外,为了均衡后腔内的压力,在背极板上通常会设计密集的导通孔,而由于空气粘度造成的间隙或穿孔中的空气流动阻力成为MEMS麦克风噪声的主导因素,从而会在一定程度上限制麦克风的高信噪比性能,最终会导致麦克的性能不佳。并且,为了使振膜能抵抗外界的压力,就要求振膜要具有较好的刚性,使其能承受更大的外界压力,但是这会导致振膜的机械灵敏度大大的降低,造成麦克风的开路灵敏度相对较低,最终也会影响到麦克风的性能。
由此可见,需要提出一种新的传感器结构,以解决现有技术中存在的至少一个问题。
发明内容
本发明的一个目的是提供一种MEMS传感器的新技术方案。
根据本发明的一个方面,提供了一种MEMS传感器,包括:衬底以及通过间隔部支撑在衬底上方的振膜,所述衬底、间隔部、振膜围成了真空腔;其中,振膜在大气压力下的静态偏转距离小于振膜与衬底之间的距离;
检测结构,所述检测结构用于输出表征振膜变形的电信号;
驱动装置,所述驱动装置被配置为:为振膜提供朝远离真空腔方向抵抗外界压力的力。
可选地,所述驱动装置为磁性驱动,至少包括设置在振膜上的第一磁体,以及相对固定在衬底上的第二磁体;所述第一磁体、第二磁体被配置为互相之间产生排斥力,以使第一磁体驱动振膜抵抗外界压力。
可选地,所述第二磁体设置在衬底上远离振膜的一侧。
可选地,所述第一磁体、第二磁体为磁性薄膜。
可选地,所述磁性薄膜采用CoCrPt或者CoPt材质。
可选地,所述驱动装置为设置在振膜上的压电片,所述压电片被配置:为振膜提供抵抗外界压力的力。
可选地,上述的MEMS传感器,还包括极板,所述极板支撑在振膜上远离真空腔的一侧,所述极板上设置有导通孔;所述极板、振膜之间被配置为形成第一静电力,该第一静电力为振膜提供抵抗外界压力的力。
可选地,在衬底上设置有与振膜形成平板电容式检测结构的检测下电极,所述检测下电极、振膜之间同时被配置为形成第二静电力:该第二静电力的方向与第一静电力的方向相反,第二静电力与第一静电力共同制约在振膜上。
可选地,所述检测结构为电容式、压电式、压阻式或磁阻式检测结构。
可选地,MEMS传感装置包括麦克风,压力传感器和力传感器。
根据本公开的一个实施例,设计有真空腔,真空腔中的残余气体粘度大大低于标准压力下的空气粘度,可以消除振膜振动期间的声阻,以改善麦克风的信噪比(SNR),从而能提高麦克风的声学性能。在驱动装置的 作用下,振膜能在保持较高机械灵敏度的同时,还可以有效的抵抗外界的压力,以使振膜能良好的表征声压的状态。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是本发明的MEMS传感器第一种实施方式的示意图。
图2是本发明的MEMS传感器第二种实施方式的示意图。
图3是本发明的MEMS传感器第三种实施方式的示意图。
附图标记说明:
1.振膜,2.衬底,3.真空腔,4.间隔部,5.保护层,6a.检测上电极,6b.检测下电极,7a.第一磁体,7b.第二磁体,8.压电片,9.极板,9a.导通孔。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本发明实施例提供的传感器,其可以是麦克风、压力传感器、位移传感器或者本领域技术人员所熟知的其它传感器。例如当将其应用到压力传感器中时,振膜对外界的压力敏感,外界压力的变化会驱动振膜发生形变。当将其应用到位移传感器中时,可以设置一驱动杆与振膜连接在一起,通过驱动杆推动振膜发生形变,在此不再一一列举。
为了便于描述,现以麦克风为例,对本发明的技术方案进行详尽的描述。
本发明实施例提供的一种麦克风,至少包括衬底、通过间隔部支撑在衬底上方的振膜、用于输出表征振膜形变电信号的检测结构以及为振膜提供抵抗外界压力的力的驱动装置;其中,衬底、间隔部、振膜一起围成了真空腔,振膜在大气压力下的静态偏转距离小于振膜与衬底之间的距离。当声音作用在振膜上时,振膜会在声压的作用下发生一定的形变,此时检测结构会输出变化的电信号,可以用来表征振膜的形变程度,以实现声电的转换;而振膜在驱动装置的作用下,可以有效的抵抗外界的压力。
实际上,在现有技术中,为了使振膜能抵抗外界的压力,通常要求振膜要具有较高的刚性,以使振膜能承受更大的压力,但是这将会导致振膜的机械灵敏度大大的降低,造成麦克风的开路灵敏度相对较低,最终会影响到麦克风的性能。而本发明中的设计了驱动装置,该驱动装置可以使振膜适当的降低刚性,提升机械灵敏度,能有效的抵抗外界的多种压力,从而使麦克风具有良好的性能。
其中,驱动装置可以采用磁性驱动。
进一步地,上述驱动装置的结构可以为:至少包括设置在振膜上的第一磁体,以及相对固定在衬底上的第二磁体。其中,第一磁体、第二磁体呈相对应的布置,使得第一磁体和第二磁体的磁场可以相互作用。在上述的麦克风的结构中,第一磁体、第二磁体被配置为互相之间可以产生排斥力,以使第一磁体能够驱动振膜抵抗外界的任何压力,比如:声压、气压以及水压等等多种压力,可以适用于不同的环境中。
其中,检测结构可以感应第一磁体、第二磁体之间形成的磁场。在振膜产生振动的过程中,检测结构可以通过感应第一磁体、第二磁体之间磁 场的变化,从而输出变化的电信号,以实现声电的转换。
对于第二磁体的设置位置,优选的是,将第二磁体设置在衬底上远离振膜的一侧。这一设计可以防止第一磁体与第二磁体互相之间产生的排斥力过大,造成振膜的形变过大,以及造成对振膜的损伤等诸多问题。其中,将第二磁体设置在衬底上远离振膜的一侧,可以很好的均衡第一磁体和第二磁体之间产生的排斥力,可以在一定程度上起到保护振膜的目的。
进一步地,第一磁体、第二磁体均采用磁性薄膜。通常,磁性薄膜材料的厚度约在1μm以下,比较轻薄,具有较强的磁性,应用后能使传感器轻薄、体积小,非常适合应用于MEMS传感器中。
更进一步优选地,磁性薄膜可以采用CoCrPt材质或者CoPt材质。CoCrPt、CoPt这些材料均具有良好的磁性、耐摩擦且耐腐蚀,可以延长驱动装置的使用寿命,从而能在一定程度上延长传感器的使用寿命。当然,也可以采用其它的材质,只要具有较佳的磁性即可,本发明对此不作限定。
另外,上述驱动装置还可以采用压电片,以实现压电驱动。
具体地,可以将压电片设置在振膜上,并将该压电片配置为:为振膜提供抵抗外界压力的力。
进一步地,当选用压电片时,可以选用本领域技术人员所熟知的AlN、PZT或ZnO材质等。具有材料来源广泛,制作成本低等诸多优点。
此外,本发明实施例提供的上述麦克风,还可以包括极板,该极板支撑在振膜上远离真空腔的一侧,在极板上设置有多个导通孔,导通孔的设计可以使声音传递到振膜;极板、振膜之间被配置为形成第一静电力,由该第一静电力为振膜提供抵抗外界压力的力。
进一步地,在衬底上设置有与振膜形成平板电容式检测结构的检测下电极,检测下电极、振膜之间同时被配置为形成第二静电力:该第二静电力的方向与上述的第一静电力的方向相反,由此第二静电力与第一静电力可以共同制约在振膜上。
由于振膜与衬底之间形成了低于大气压力的真空腔,因此振膜在大气压力下且无声压时会发生静态偏转,也就是说振膜会朝向衬底的方向发生静态偏转。当将第一静电力和第二静电力共同作用在振膜上时,第一静电 力和第二静电力共同制约振膜,可以有效的防止振膜静态时偏转后与衬底相接触,这相当于静电驱动。期间,可以设计振膜的静态偏转距离要小于振膜与衬底之间的距离。
为了提高麦克风的灵敏度,麦克风可以采用高灵敏度的检测结构。例如可以采用电容式、压电式、压阻式或磁阻式检测结构。本发明对此不作限制。
本发明实施例提供的麦克风,其开路灵敏度(open-circuit sensitivity)可以高达11-12mV/Pa,其开路灵敏度为其它的麦克风的4-5倍,具有良好的性能。
下面结合具体的实施方式,对本发明的技术方案进行详尽的描述。
实施例1
具体地,在本发明一个实施方式中,参照图1所示,本发明提供了一种麦克风,包括:衬底2以及通过间隔部4支撑在衬底2上方的振膜1,其中,衬底2、间隔部4以及振膜1共同围成了真空腔3。
其中,衬底2可以采用单晶硅或者本领域技术人员所熟知的其它材质,并可通过逐层沉积、图案化、牺牲的工艺形成间隔部4以及通过间隔部4支撑在衬底2上的振膜1。
其中,真空腔3例如可由低压等离子体增强化学气相沉积(PECVD)在200-350℃下进行密封。这种MEMS(微机电系统)工艺属于本领域技术人员的公知常识,在此不再具体说明。
并且,真空腔3优选小于1kPa,这可以使得真空腔3中的残余气体粘度大大低于标准压力下的空气粘度,以消除振膜1振动期间的声阻,以改善麦克风的信噪比(SNR),从而能提高麦克风的声学性能。
由于振膜1与衬底2之间形成了低于大气压力的真空腔3,因此振膜1在大气压力下且无声压时会发生静态偏转,即振膜1会朝向衬底2的方向发生静态偏转。而为了防止振膜1静态时偏转至与衬底2相接触,可以设计该振膜1的静态偏转距离要小于振膜1与衬底2之间的距离。这主要可以通过改变振膜1的刚性和/或改变振膜1与衬底2之间的距离来实现。
例如可以加厚振膜1的厚度方向上的尺寸,当然也可以通过选择合适的振膜1材质来提升振膜2的刚性。例如可以通过设计,使得振膜1具有0.02-0.9nm/Pa的机械灵敏度。也就是说,每受1Pa的压力,振膜1则会发生0.02-0.9nm的偏转,这种振膜1的刚性是传统振膜的10-100倍,使得振膜1足够坚硬以抵抗外界的压力。其中,外界的压力,根据外界环境的不同,可以抵抗不同的外部压力,例如声压、气压以及水压等等,即能够抵抗任何的外界压力,以使得传感器可以是麦克风、压力传感器、位移传感器或者本领域技术人员所熟知的其它传感器。
可选地,振膜1和衬底2之间的间隙可以设计在1μm-100μm的范围之内,再通过配合具有一定刚性的振膜1,可以使得在大气压力下不会发生振膜1塌陷的问题,能延长麦克风等的使用寿命。
为了提高MEMS麦克风的灵敏度,MEMS麦克风可以采用高灵敏度的检测结构。
在本发明一个具体的实施方式中,高灵敏度的检测结构可以采用根据磁场变化而输出电信号的磁阻传感器,例如巨磁阻传感器(GMR)或者隧道磁阻传感器(TMR)。通过采用高灵敏度的磁阻传感器来获得检测的电信号,可以补偿由于振膜刚性而带来的对麦克风整体灵敏度的影响,这一设计能确保轻薄化麦克风的声学性能。
其中,驱动装置的驱动实际为磁性驱动。
进一步地,该驱动装置的结构为:参照图1所示,包括设置在振膜1上的第一磁体7a,以及相对固定在衬底2上的第二磁体7b;其中,所述第一磁体7a、第二磁体7b被配置为互相之间能够产生排斥力,能够为振膜1提供朝远离真空腔3方向抵抗外界压力的力。
其中,第一磁体7a和第二磁体7b均可以采用磁性薄膜。
可选地,磁性薄膜可以直接采用磁性材质制成。
可选地,磁性薄膜也可以是形成薄膜后再对该薄膜进行磁化。
上述两种方式形成磁性薄膜均具有良好的磁性。
在本发明一个具体的实施方式中,磁性薄膜可以采用CoCrPt材质或者CoPt材质。CoCrPt、CoPt均具有良好的磁性、耐摩擦且耐腐蚀,可以 延长驱动装置的使用寿命,从而能在一定程度上延长传感器的使用寿命。
在本发明一个可选的实施方式中,第二磁体7b设置在衬底2上远离振膜1的一侧。例如可以将第二磁体7b设置在衬底2的底部。当第一磁体7a和第二磁体7b相距较远时,可以防止第一磁体7a与第二磁体7b之间产生的排斥力过大,可以更为灵活的控制排斥力的大小,同时能保护振膜1。当然,可以根据需要灵活的设置第二磁体7b的具体位置,将第二磁体7b相对的固定在衬底2上即可,本发明对此不作限制。
其中,第一磁体7a、第二磁体7b可以通过沉积或者本领域技术人员所熟知的其它手段分别对应的形成在振膜1、衬底2上,本发明对此不作限制。
以在衬底2上形成第二磁体7b为例,具体在制作的时候,可以首先在衬底2上沉积一层绝缘层,然后通过沉积、图案化处理形成第二磁体7b。而为了保护第二磁体7b,还可以在绝缘层上沉积一层将第二磁体7b覆盖起来的钝化层。其中,绝缘层、钝化层可以选用本领域技术人员所熟知的材质,本发明在此对其不再具体说明。
其中,第一磁体7a、第二磁体7b呈相对应的设置,且以磁极方向相同的方式分别水平布置在振膜1、衬底2上,以使得第一磁体7a、第二磁体7b互相之间可以产生排斥力,从而能使第一磁体7a驱动振膜1抵抗外界压力。
例如在制作的时候,先形成两个彼此独立的薄膜,然后对该两个薄膜同时进行磁化。待磁化后,第一磁体7a、第二磁体7b的左侧均为N极,右侧均为S极;反之亦可。或者,待磁化后,第一磁体7a的上部和第二磁体7b的下部均为N极,第一磁体7a的下部和第二磁体7b的上部均为S极;反之亦可。采用该设计可以使得第一磁体7a与第二磁体7b之间产生相互排斥额排斥力。
检测结构的一种结构为,参照图1所示:包括分开设置的检测上电极6a和检测下电极6b,其中,检测上电极6a设置在振膜1上位于真空腔3的一侧,检测下电极6b设置在衬底2上位于真空腔3的另一侧,即检测上电极6a和检测下电极6b呈相对应的设置。为了将检测上电极6a和检测下 电极6b的电信号引出,可以在振膜1和衬底2上位于真空腔3的一侧设置引线部,该引线部一端分别与检测上电极6a、检测下电极6b连接,另一端在振膜1上延伸至与间隔部4的位置,并在振膜1的外侧形成焊盘。
实际上,当振膜1受到外界的声压时,振膜1向着衬底2的方向发生形变,由于振膜1上的检测上电极6a靠近第一磁体7a,衬底2上的检测下电极6b靠近第二磁体7b,则检测上电极6a和检测下电极6b可以感应第一磁体7a、第二磁体7b之间磁场的变化,从而输出变化的电信号,实现了声电的转换。
本公开的麦克风,振膜1与衬底2之间围成了真空腔3,在该真空腔3内的空气粘度远远低于环境压力中的空气粘度,从而可以降低声阻对振膜1振动的影响,因而可以有效的提高麦克风的信噪比。除此之外,由于该结构的MEMS麦克风不需要较大容积的后腔,因此可以大大降低MEMS麦克风的整体尺寸,增强了麦克风的可靠性。
其中,检测结构包括检测上电极6a和检测下电极6b,且检测上电极6a设置在振膜1内,检测下电极6b设置在衬底2内,此时振膜1上设置的第一磁体7a,衬底2上设置的第二磁体7b的磁场可以有效地被检测结构感应到,因此不会影响到MEMS麦克风的性能。
当然,对于检测结构而言,也可以将检测上电极6a设置在多层结构的振膜1中,以保护检测上电极6a,将检测下电极6b设置在衬底2上并采用保护层5保护起来,其中,保护层5可以选用本领域技术人员所熟知的材质,在此对其不再具体说明。
在本发明一个可选的实施方式中,振膜可以采用复合结构,例如为了形成真空腔,需要首先设置一层具有牺牲孔的覆盖层,通过牺牲孔将覆盖层下方的牺牲层腐蚀掉;之后在覆盖层的上方沉积一层填充层,以将覆盖层上的牺牲孔封闭住,形成真空腔。检测上电极6a可以设置在填充层上或者填充层中,最终沉积一层钝化层进行保护,使得检测上电极6a形成在振膜的复合结构中。在衬底上可以形成一层保护层,检测下电极6b可以设置在保护层中。
实施例2
参照图2所示,与上述的实施例1不同的是,在该实施例中,驱动装置采用的是压电片8,该压电片8被设置在振膜1上,且该压电片8被配置为:可以为振膜1提供抵抗外界压力的力。采用压电片8相当于采用压力技术驱动振膜1。
在本发明一个具体的实施方式中,当驱动装置采用压电片时,可以选用本领域技术人员所熟知的AlN、PZT或ZnO材质等。
其中,压电片8可以通过本领域技术人员所熟知的方式形成在振膜1上并可通过导电部将压电片8的电信号引出,在振膜1的外侧位置形成相应的外接焊盘。
实施例3
参照图3所示,与上述的实施例2不同的是,在该实施例中,麦克风还包括极板9,该极板9可以通过支撑部件支撑在振膜1上远离真空腔3的一侧,在该极板9上设置有导通孔9a。其中,导通孔9a贯穿极板9的厚度方向。导通孔9a的设计可以使声音顺利的传送至振膜1。
进一步地,导通孔9a的数量根据需要可以设置多个。当在极板9上设置多个导通孔9a时,可以将多个导通孔9a均匀的设置在极板9上。
进一步地,导通孔9a的截面形状可以呈圆形、方形、矩形、等腰梯形等等,根据需要可以灵活设置,本发明对此不作限制。
进一步地,导通孔9a的孔径尺寸和不同导通孔3a之间的间距根据需要可以灵活选择,本发明对此不作限制。
并且,极板9和振膜1之间被配置为形成第一静电力,该第一静电力可用于为振膜1提供抵抗外界压力的力。
并且,在衬底2上设置有与振膜1形成平板电容式检测结构的检测下电极6b,检测下电极6b、振膜1之间同时被配置为形成第二静电力:该第二静电力的方向与上述的第一静电力的方向相反,第二静电力与第一静电力共同制约在振膜1上。
由于振膜1与衬底2之间形成了低于大气压力的真空腔3,因此振膜 1在大气压力下且无声压时会发生静态偏转,也就是说振膜1会朝向衬底的方向发生静态偏转。此时,将第一静电力和第二静电力共同制约在振膜1上,可以有效的防止振膜1静态时偏转后与衬底2相接触。这相当于采用静电力驱动振膜。
本发明实施例提供的麦克风,可以采用磁力、压电、静电力等驱动振膜来抵抗外界的压力,振膜可以具有较好机械灵敏度,有利于提升麦克风的信噪比。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种MEMS传感器,包括:
    衬底以及通过间隔部支撑在衬底上方的振膜,所述衬底、间隔部、振膜围成了真空腔;其中,振膜在大气压力下的静态偏转距离小于振膜与衬底之间的距离;
    检测结构,所述检测结构用于输出表征振膜变形的电信号;
    驱动装置,所述驱动装置被配置为:为振膜提供朝远离真空腔方向抵抗外界压力的力。
  2. 根据权利要求1所述的MEMS传感器,其中,所述驱动装置为磁性驱动,至少包括设置在振膜上的第一磁体,以及相对固定在衬底上的第二磁体;所述第一磁体、第二磁体被配置为互相之间产生排斥力,以使第一磁体驱动振膜抵抗外界压力。
  3. 根据权利要求2所述的MEMS传感器,其中,所述第二磁体设置在衬底上远离振膜的一侧。
  4. 根据权利要求2或3所述的MEMS传感器,其中,所述第一磁体、第二磁体为磁性薄膜。
  5. 根据权利要求4所述的MEMS传感器,其中,所述磁性薄膜采用CoCrPt或者CoPt材质。
  6. 根据权利要求1所述的MEMS传感器,其中,所述驱动装置为设置在振膜上的压电片,所述压电片被配置为:为振膜提供抵抗外界压力的力。
  7. 根据权利要求1所述的MEMS传感器,其中,还包括极板,所述 极板支撑在振膜上远离真空腔的一侧,所述极板上设置有导通孔;所述极板、振膜之间被配置为形成第一静电力,该第一静电力为振膜提供抵抗外界压力的力。
  8. 根据权利要求7所述的MEMS传感器,其中,在衬底上设置有与振膜形成平板电容式检测结构的检测下电极,所述检测下电极、振膜之间同时被配置为形成第二静电力:该第二静电力的方向与第一静电力的方向相反,第二静电力与第一静电力共同制约在振膜上。
  9. 根据权利要求1所述的MEMS传感器,其中,所述检测结构为电容式、压电式、压阻式或磁阻式检测结构。
  10. 根据权利要求1所述的MEMS传感器,其中,MEMS传感装置包括麦克风,压力传感器和力传感器。
PCT/CN2018/111313 2018-10-09 2018-10-23 Mems传感器 WO2020073357A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811174126.5 2018-10-09
CN201811174126.5A CN109246566B (zh) 2018-10-09 2018-10-09 Mems传感器

Publications (1)

Publication Number Publication Date
WO2020073357A1 true WO2020073357A1 (zh) 2020-04-16

Family

ID=65054376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111313 WO2020073357A1 (zh) 2018-10-09 2018-10-23 Mems传感器

Country Status (2)

Country Link
CN (1) CN109246566B (zh)
WO (1) WO2020073357A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11937511B2 (en) * 2020-09-23 2024-03-19 Apple Inc. Multifunction magnetic and piezoresistive MEMS pressure sensor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109734047B (zh) * 2019-02-27 2021-03-23 京东方科技集团股份有限公司 一种mems器件及其制作方法、显示基板
CN109883456A (zh) 2019-04-02 2019-06-14 江苏多维科技有限公司 一种磁电阻惯性传感器芯片
CN110207586B (zh) * 2019-05-23 2020-09-18 潍坊歌尔微电子有限公司 一种磁传感器芯片中磁阻的布置结构及磁传感器芯片
CN110345972B (zh) * 2019-06-25 2021-12-31 潍坊歌尔微电子有限公司 一种传感器及电子设备
CN111757225B (zh) * 2020-06-19 2022-02-25 歌尔微电子有限公司 Mems芯片及其制作方法、mems麦克风
CN111854925B (zh) * 2020-06-24 2022-09-16 歌尔微电子有限公司 微机电系统绝对压力传感器、传感器单体及电子设备
CN112019985B (zh) * 2020-10-15 2021-01-22 潍坊歌尔微电子有限公司 麦克风结构和电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045430A (ja) * 2008-08-08 2010-02-25 Panasonic Electric Works Co Ltd 静電型トランスデューサ
CN102749159A (zh) * 2011-04-21 2012-10-24 飞思卡尔半导体公司 具有密封结构的传感器器件
CN102790935A (zh) * 2011-05-20 2012-11-21 博士科技(深圳)有限公司 一种高频压缩驱动器及其谐波失真的抑制方法
CN104254046A (zh) * 2013-06-28 2014-12-31 英飞凌科技股份有限公司 具有在振膜与对电极之间的低压区的mems麦克风
CN104333838A (zh) * 2013-07-22 2015-02-04 英飞凌科技股份有限公司 微机电系统器件
CN104584585A (zh) * 2012-07-31 2015-04-29 弗兰霍菲尔运输应用研究公司 电声驱动器
CN105792084A (zh) * 2016-04-26 2016-07-20 瑞声声学科技(深圳)有限公司 Mems麦克风及其制造方法
CN107835477A (zh) * 2017-11-24 2018-03-23 歌尔股份有限公司 一种mems麦克风
CN108551646A (zh) * 2018-06-25 2018-09-18 歌尔股份有限公司 Mems麦克风

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105282671A (zh) * 2014-07-24 2016-01-27 北京卓锐微技术有限公司 一种可在高声压级下工作的硅电容麦克风
US10001391B1 (en) * 2014-08-14 2018-06-19 Vesper Technologies Inc. Adjusting resonant frequencies based on feedback networks
US9602930B2 (en) * 2015-03-31 2017-03-21 Qualcomm Incorporated Dual diaphragm microphone
CN206402447U (zh) * 2016-10-31 2017-08-11 歌尔股份有限公司 一种mems发声装置及电子设备
TW201913642A (zh) * 2017-09-05 2019-04-01 美律實業股份有限公司 聲學傳感裝置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045430A (ja) * 2008-08-08 2010-02-25 Panasonic Electric Works Co Ltd 静電型トランスデューサ
CN102749159A (zh) * 2011-04-21 2012-10-24 飞思卡尔半导体公司 具有密封结构的传感器器件
CN102790935A (zh) * 2011-05-20 2012-11-21 博士科技(深圳)有限公司 一种高频压缩驱动器及其谐波失真的抑制方法
CN104584585A (zh) * 2012-07-31 2015-04-29 弗兰霍菲尔运输应用研究公司 电声驱动器
CN104254046A (zh) * 2013-06-28 2014-12-31 英飞凌科技股份有限公司 具有在振膜与对电极之间的低压区的mems麦克风
CN104333838A (zh) * 2013-07-22 2015-02-04 英飞凌科技股份有限公司 微机电系统器件
CN105792084A (zh) * 2016-04-26 2016-07-20 瑞声声学科技(深圳)有限公司 Mems麦克风及其制造方法
CN107835477A (zh) * 2017-11-24 2018-03-23 歌尔股份有限公司 一种mems麦克风
CN108551646A (zh) * 2018-06-25 2018-09-18 歌尔股份有限公司 Mems麦克风

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11937511B2 (en) * 2020-09-23 2024-03-19 Apple Inc. Multifunction magnetic and piezoresistive MEMS pressure sensor

Also Published As

Publication number Publication date
CN109246566A (zh) 2019-01-18
CN109246566B (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2020073357A1 (zh) Mems传感器
US11102586B2 (en) MEMS microphone
WO2020029360A1 (zh) 一种传感器
WO2020029361A1 (zh) 一种传感器
WO2020173086A1 (zh) Mems传感器及电子设备
CN109218870B (zh) 一种麦克风
US11297441B2 (en) Microphone
JP2015527568A5 (zh)
US11297414B2 (en) MEMS microphone
US11202156B2 (en) MEMS capacitor microphone
WO2022042524A1 (zh) 微机电系统力学传感器、传感器单体及电子设备
US20190058956A1 (en) Capacitive mems microphone and electronic apparatus
US9369809B2 (en) MEMS component for generating pressure pulses
JP5429013B2 (ja) 物理量センサ及びマイクロフォン
US11388526B2 (en) MEMS microphone
CN208300025U (zh) Mems压电麦克风
WO2020133253A1 (zh) 检测膜体、传感器及电子设备
CN111854925B (zh) 微机电系统绝对压力传感器、传感器单体及电子设备
JP7234750B2 (ja) 物理量センサ素子、圧力センサ、マイクロフォン、超音波センサおよびタッチパネル
CN112087695A (zh) 绝对压力感测微机电系统麦克风、麦克风单体及电子设备
CN109565634A (zh) Mems麦克风以及电子设备
CN112291694A (zh) Mems换能器以及用于操作该mems换能器的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936809

Country of ref document: EP

Kind code of ref document: A1