WO2020073348A1 - 一种高功率信号合束器及其制作方法 - Google Patents

一种高功率信号合束器及其制作方法 Download PDF

Info

Publication number
WO2020073348A1
WO2020073348A1 PCT/CN2018/110567 CN2018110567W WO2020073348A1 WO 2020073348 A1 WO2020073348 A1 WO 2020073348A1 CN 2018110567 W CN2018110567 W CN 2018110567W WO 2020073348 A1 WO2020073348 A1 WO 2020073348A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
fiber
output
optical fiber
cladding
Prior art date
Application number
PCT/CN2018/110567
Other languages
English (en)
French (fr)
Inventor
马修泉
Original Assignee
广东国志激光技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东国志激光技术有限公司 filed Critical 广东国志激光技术有限公司
Priority to US17/284,681 priority Critical patent/US11372162B2/en
Publication of WO2020073348A1 publication Critical patent/WO2020073348A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2552Splicing of light guides, e.g. by fusion or bonding reshaping or reforming of light guides for coupling using thermal heating, e.g. tapering, forming of a lens on light guide ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2555Alignment or adjustment devices for aligning prior to splicing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2826Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals using mechanical machining means for shaping of the couplers, e.g. grinding or polishing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/245Removing protective coverings of light guides before coupling

Definitions

  • the present invention relates to the field of fiber laser technology, and in particular, to a high-power signal combiner and a manufacturing method thereof.
  • Common methods of manufacturing a signal combiner on the market include a knotting method and a ferrule method.
  • the knotting method uses a multi-hole knotting tool to twist multiple optical fibers into a bundle, and the optical fiber bundle is manufactured by melting a taper.
  • each optical fiber is in a state of rotational distortion, stress exists in the cone area, and fiber breakage is easy to occur, and the fiber twisting easily causes mode excitation.
  • the ferrule method is to insert multiple optical fibers into a quartz tube of suitable size, and to melt the optical fiber into a bundle by melting the quartz tube and collapsing the quartz tube; both of the above methods inevitably require the acid rot process and the optical cone Process, the fusion taper method reduces the fiber core and deteriorates the beam quality after combining, resulting in a signal beam combiner with poor light tolerance. At the same time, during the fusion taper process, air bubbles are inevitably generated in the inner cladding of the input fiber. When the air bubble is located around the input fiber core, the optical signal will be refracted, seriously attenuating the optical signal, and deteriorating the quality of the light beam, affecting the total reflection transmission of the optical signal at the input fiber core.
  • the object of the present invention is to overcome the above-mentioned shortcomings, to provide a high-power signal beam combiner and its manufacturing method.
  • a high-power signal combiner includes a plurality of input optical fibers, a combined optical fiber and an output optical fiber, the input optical fiber includes an input fiber core and an optical fiber input cladding wrapped around an outer wall of the input fiber core, the output fiber It includes an output fiber core and an optical fiber output cladding wrapped on the outer wall of the output fiber core.
  • the cross section of the optical fiber input cladding is fan-shaped or hexagonal and is provided with grooves and / or protrusions along the axial direction.
  • Input fibers are nested in each other Together, a combined optical fiber is formed, and the cores in the combined optical fiber are all connected to the output core, and the combined cladding of the combined optical fiber is connected to the output core or the optical fiber output cladding.
  • the optical fiber input cladding is provided with grooves and / or protrusions by laser etching.
  • the cross-sectional shape of the groove and the protrusion is square or T-shaped.
  • a method for manufacturing a high-power signal combiner includes the following steps:
  • Step 1 Stripping part of the input coating of multiple input fibers to expose the fiber input cladding of the part of the input fiber; stripping part of the output coating of the output fiber to make the part of the output fiber The optical fiber input cladding is exposed;
  • Step 2 the exposed optical fiber input cladding is etched by laser to form an etching plane, so that the cross section of the part of the optical fiber input cladding has a fan shape or a hexagonal shape and is provided on the etching plane along the axial direction Grooves and / or protrusions;
  • Step 3 nesting and matching the grooves and protrusions on the multiple input optical fibers to form a combined optical fiber
  • Step four Cut the end surface of the combined optical fiber flat and connect it with the output fiber of the exposed optical fiber output cladding to complete the manufacture of the high-power signal combiner.
  • multiple input optical fibers are nested together to form a combined optical fiber, which not only solves the bubble problem, but also finds that it has a better heat dissipation effect during actual use.
  • the reason is that the groove and the convex At the time of mating, there is a very small gap, and air molecules can pass through and form a temperature difference, forming a certain air flow, which can take away the heat in the combined optical fiber.
  • FIG. 1 is a schematic structural view of the present invention
  • FIG. 2 is a schematic structural view of an input optical fiber with square grooves and protrusions in an embodiment of the present invention
  • FIG. 3 is a schematic cross-sectional view of the input optical fiber of FIG. 2 taken along line A-A in FIG. 1;
  • FIG. 4 is a schematic diagram of the structure of the T-shaped grooves and protrusions of the input optical fiber ribbon in an embodiment of the present invention
  • FIG. 5 is a schematic cross-sectional view of the input optical fiber in FIG. 4 taken along line A-A in FIG. 1;
  • FIG. 6 is a schematic structural view of a square projection of an input optical fiber in another embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of the input optical fiber in FIG. 6;
  • FIG. 8 is a schematic structural view of a square groove of an input optical fiber in another embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view of the input optical fiber in FIG. 8 taken along line A-A in FIG. 1;
  • FIG. 10 is a schematic structural view of a T-shaped protrusion of an input optical fiber ribbon in another embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view of the input optical fiber in FIG. 10;
  • FIG. 12 is a schematic structural view of a T-shaped groove of an input optical fiber in another embodiment of the present invention.
  • FIG. 13 is a schematic cross-sectional view of the input optical fiber of FIG. 12 taken along line A-A in FIG. 1;
  • FIG. 14 is a B-B cross-sectional schematic view of the combined optical fiber with square grooves and protrusions in an embodiment of the present invention in FIG. 1;
  • FIG. 15 is a B-B cross-sectional schematic diagram of the combined optical fiber with T-shaped grooves and protrusions in an embodiment of the present invention.
  • FIG. 16 is a schematic cross-sectional view of B-B cross-section in FIG. 1 of a combined optical fiber with square grooves and protrusions in another embodiment of the present invention
  • FIG. 17 is a schematic cross-sectional view of B-B cross-section in FIG. 1 of a combined optical fiber with T-shaped grooves and protrusions in another embodiment of the present invention.
  • a high-power signal combiner includes a plurality of input optical fibers 10, a combined optical fiber 20, and an output optical fiber 30, and the input optical fiber 10 includes an input The fiber core 13 and the optical fiber input cladding 12 wrapped around the outer wall of the input fiber core 13, the output fiber 30 includes an output fiber core 31 and a fiber output cladding 32 wrapped around the outer wall of the output fiber core 31, the fiber input cladding 12 Has a fan-shaped or hexagonal shape and is provided with grooves 121 and / or protrusions 122 along the axial direction.
  • a plurality of the input optical fibers 10 are nested together to form a combined optical fiber 20, and the combined optical fiber 20
  • the inner cores are all connected to the output core 31, and the combined cladding of the combined optical fiber 20 is connected to the output core 31 or the optical fiber output cladding 32; in this embodiment, the optical fiber input
  • the cladding 12 is provided with grooves 121 and / or protrusions 122 by laser etching; further in this embodiment, the cross-sectional shapes of the grooves 121 and protrusions 122 are square or T-shaped.
  • each of the input optical fibers 10 further includes an input coating layer 11 wrapped around the outer wall of the optical fiber input cladding 12, and the output optical fiber 30 further includes an output coating layer wrapped around the outer wall of the optical fiber output cladding 32 33; stripping one end of the input fiber 10 into the coating layer 11 to expose the fiber input cladding 12 of the input fiber 10 of this section, and etching the exposed fiber input cladding 12 by laser to form an etching plane
  • the cross-sectional shape of the optical fiber input cladding 12 is fan-shaped or hexagonal
  • the etching plane of the optical fiber input cladding 12 of each input optical fiber 10 is provided with square or T-shaped grooves 121 and / Or protrusion 122, the groove 121 and the protrusion 122 are staggered, and then a plurality of fan-shaped input optical fibers 10 are nested together by a mechanical jig to form a combined optical fiber 20, and the end surface of the combined optical fiber 20 is cut flat After that
  • the number of input optical fibers 10 is four, that is, 4X1 signal combiners, the input coating layer 11 has a diameter of 550um, and the optical fiber input cladding The diameter of 12 is 400um, and the diameter of input core 13 is 20um.
  • the output coating layer 33 has a diameter of 480um, the fiber output cladding 32 has a diameter of 360um, and the output core 31 has a diameter of 100um; then the exposed fiber input cladding 12 is etched by a laser to form an etch plane, and the input core 13 will not be exposed, at the same time set square or T-shaped grooves 121 and protrusions 122 in the etching plane; four etched or input fiber 10 through the groove 121 and the protrusion 122 are nested together The combined optical fiber 20 is formed, and then the end surface of the combined optical fiber 20 is cut flat and fused with the output optical fiber 30 to complete the manufacture of the high-power signal combiner.
  • FIGS. 1, 6 to 13, 16, and 17, another structural manner of this embodiment is to input light
  • the number of fibers 10 is 7, the number of input optical fibers 10 is 7, that is, a 7X1 signal combiner, the input coating layer 11 has a diameter of 550 um, the fiber input cladding 12 has a diameter of 400 um, and the input core 13 has a diameter of 20 um, the diameter of the output coating layer 33 is 780 um, the diameter of the fiber output cladding 32 is 500 um, and the diameter of the output core 31 is 300 um; then the bare fiber input cladding 12 is etched by a laser to form an etching plane ,
  • the cross section of the fiber input cladding 12 of one of the input fibers 10 is hexagonal, the cross section of the fiber input cladding 12 of the remaining input fibers 10 is fan-shaped, and the etching plane of the input fiber 10 with a hexagonal cross section
  • Six square or T-shaped protrusions 122 are provided on the etch plane of the remaining input optical fiber 10,
  • the combined optical fiber 20 can be further fixed by dispensing, or the combined optical fiber 20 can be sheathed in a rubber tube, a metal tube, or a glass tube, so that the structure of the combined optical fiber 20 is firmer.
  • the high-power signal combiner of this embodiment there is no need to go through a melting taper or acid rot process, without damaging the structure of the input core 13, and effectively avoiding the deterioration of the beam quality caused by mode excitation.
  • the fiber input of the input fiber 10 No air bubbles are generated in the cladding 12 to ensure that the signal is transmitted in the input optical fiber 10 with total reflection, the signal light bearing capacity is stronger, and it is favorable for transmitting high-power signals, and the structure of this embodiment is simple and easy to manufacture
  • the multiple input optical fibers 10 are nested with each other to form a combined optical fiber 20, which not only solves the bubble problem, but also finds that it has a better heat dissipation effect during actual use.
  • the reason is that the groove When 121 cooperates with the protrusion 122, there is a very small gap, air molecules can pass through, and a temperature difference is formed, a certain air flow is formed, and the heat in the combined optical fiber 20 can be taken away.
  • a method for manufacturing a high-power signal combiner includes the following steps:
  • Step 1 strip a part of the input coating layer 11 of the plurality of input optical fibers 10 to expose the fiber input cladding 12 of the part of the input optical fiber 10; strip a part of the output coating layer 33 of the output optical fiber 30, Exposing the fiber input cladding 12 of this part of the output fiber 30 to bare;
  • Step 2 the exposed optical fiber input cladding 12 is laser etched to form an etching plane, so that the cross section of the part of the optical fiber input cladding 12 has a fan shape or a hexagonal shape and is axially on the etching plane With groove 1 21 and / or raised 122;
  • Step three the multiple input fibers 10 on the groove 121 and the protrusion 122 are nested with each other to form a combined optical fiber 20;
  • Step four After cutting the end surface of the combined optical fiber 20 flat, it is connected to the output optical fiber 30 of the exposed optical fiber output cladding 32 to complete the manufacture of the high-power signal combiner.
  • the optical fiber input cladding 12 is laser etched, and the input core 13 is not damaged and the internal structure of the optical fiber input cladding 12 is not affected, so that the input optical fiber 10 is protected The bubble problem will not occur; at the same time, the multiple input optical fibers 10 are nested and matched with each other through a mechanical fixture to protect the input optical fibers 10 from being crushed and damaged.
  • a plurality of input optical fibers 10 are nested with each other through square or T-shaped grooves 121 and protrusions 122 to form a combined optical fiber 20 without passing through a fusion taper and
  • the acid rot process ensures that the input core 13 will not be deformed, avoid introducing impurities, and prevent fiber breakage and mode excitation from causing deterioration of the beam quality.
  • no air bubbles will be generated in the fiber input cladding 12 to ensure that the signal is in the input core
  • the total reflection transmission in 13 improves the light bearing capacity of the signal combiner and is beneficial for transmitting high-power signals
  • the high-power signal combiner completed by the manufacturing method of this embodiment not only solves the problem of air bubbles, but also finds that it has a better heat dissipation effect in actual use. The reason is that the groove 121 and When the protrusion 122 is fitted, there is a very small gap for air molecules to pass through, and a temperature difference is formed, a certain air flow is formed, and the heat in the combined optical fiber 20 is taken away.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Lasers (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

本发明公开了一种高功率信号合束器及其制作方法,它包括多根输入光纤、合束光纤和输出光纤,输入光纤包括输入纤芯和包裹在输入纤芯外壁的光纤输入包层,输出光纤包括输出纤芯和包裹在输出纤芯外壁的光纤输出包层,光纤输入包层的截面呈扇形状或六边形状并沿轴向设有凹槽和/或凸起,多根输入光纤相互嵌套在一起后形成合束光纤,合束光纤内的纤芯均与输出纤芯连接,合束光纤的合束包层均与输出纤芯或光纤输出包层连接;采用本发明的结构及方法,无需经过熔融拉锥或酸腐工艺,有效避免光束质量恶化,输入光纤的光纤输入包层内不会产生空气气泡,保障信号在输入光纤内进行全反射传递,信号光承受能力更强,利于传递高功率信号。

Description

一种高功率信号合束器及其制作方法 技术领域
[0001] 本发明涉及光纤激光技术领域, 特别是涉及一种高功率信号合束器及其制作方 法。
背景技术
[0002] 市面上常见的信号合束器制作方法包括了打结法和套管法, 打结法通过多孔打 结制具, 将多根光纤扭结成束, 通过熔融拉锥制作光纤束。 该方法制作的光纤 束, 各根光纤处于旋转扭曲状态, 锥区处存在应力, 容易出现断纤, 且光纤扭 曲容易引起模式激发。 套管法是将多根光纤穿入尺寸合适的石英管中, 通过熔 融拉锥使石英管塌陷将各根光纤束缚成束; 以上两种方法均不可避免都需用到 酸腐工艺和拉锥工艺, 熔融拉锥方式使纤芯缩小引起合束后光束质量恶化, 导 致信号合束器的光承受能力不强, 同时在熔融拉锥过程中, 输入光纤的内包层 内难免会产生空气气泡, 而气泡位于输入纤芯周围时, 会导致光信号出现折射 现象, 严重导致光信号的衰减, 光束质量恶化, 影响光信号在输入纤芯的全反 射传递。
发明概述
技术问题
问题的解决方案
技术解决方案
[0003] 本发明的目的在于克服以上所述的缺点, 提供一种高功率信号合束器及其制作 方法。
[0004] 为实现上述目的, 本发明的具体方案如下:
[0005] 一种高功率信号合束器, 包括多根输入光纤、 合束光纤和输出光纤, 所述输入 光纤包括输入纤芯和包裹在输入纤芯外壁的光纤输入包层, 所述输出光纤包括 输出纤芯和包裹在输出纤芯外壁的光纤输出包层, 所述光纤输入包层的截面呈 扇形状或六边形状并沿轴向设有凹槽和 /或凸起, 多根所述输入光纤相互嵌套在 一起后形成合束光纤, 所述合束光纤内的纤芯均与所述输出纤芯连接, 所述合 束光纤的合束包层与所述输出纤芯或光纤输出包层连接。
[0006] 其中, 所述光纤输入包层通过激光刻蚀设有凹槽和 /或凸起。
[0007] 其中, 所述凹槽和凸起的截面形状为方形或 T形。
[0008] 一种高功率信号合束器的制作方法, 包括如下步骤:
[0009] 步骤一、 将多根输入光纤的部分输入涂覆层剥除, 使该部分输入光纤的光纤输 入包层裸露; 将输出光纤的部分输出涂覆层剥除, 使该部分输出光纤的光纤输 入包层裸露;
[0010] 步骤二、 然后对裸露的光纤输入包层通过激光刻蚀形成刻蚀平面, 使该部分光 纤输入包层的截面呈扇形状或六边形状并在刻蚀平面上沿轴向设置有凹槽和 /或 凸起;
[0011] 步骤三、 将多根输入光纤上的凹槽与凸起之间进行相互嵌套配合, 形成合束光 纤;
[0012] 步骤四、 将合束光纤端面切平后与裸露出光纤输出包层的输出光纤进行连接, 完成高功率信号合束器的制作。
[0013] 其中, 所述步骤三是通过机械夹具将多根输入光纤进行相互嵌套配合。
发明的有益效果
有益效果
[0014] 采用本发明的结构及方法, 无需经过熔融拉锥或酸腐工艺, 不破坏输入纤芯的 结构, 有效避免模式激发导致的光束质量恶化, 输入光纤的光纤输入包层内不 会产生空气气泡, 保障信号在输入光纤内进行全反射传递, 信号光承受能力更 强, 利于传递高功率信号, 且本发明结构简单, 制作容易;
[0015] 另外, 多根输入光纤是通过相互嵌套在一起后形成合束光纤, 不仅解决了气泡 问题, 还在实际使用时发现具备了更好的散热效果, 其原因在于, 凹槽与凸起 配合时, 有非常小的间隙, 空气分子可以穿过, 并形成温度差, 形成一定的空 气气流, 能带走合束光纤内的热量。
对附图的简要说明
附图说明 [0016] 图 1是本发明的结构示意图;
[0017] 图 2是本发明一实施例中输入光纤带方形凹槽和凸起的结构示意图;
[0018] 图 3是图 2中输入光纤在图 1中 A-A横截面示意图;
[0019] 图 4是本发明一实施例中输入光纤带 T形凹槽和凸起的结构示意图;
[0020] 图 5是图 4中输入光纤在图 1中 A-A横截面示意图;
[0021] 图 6是本发明另一实施例中输入光纤带方形凸起的结构示意图;
[0022] 图 7是图 6中输入光纤的横截面示意图;
[0023] 图 8是本发明另一实施例中输入光纤带方形凹槽的结构示意图;
[0024] 图 9是图 8中输入光纤在图 1中 A- A横截面示意图;
[0025] 图 10是本发明另一实施例中输入光纤带 T形凸起的结构示意图;
[0026] 图 11是图 10中输入光纤的横截面示意图;
[0027] 图 12是本发明另一实施例中输入光纤带 T形凹槽的结构示意图;
[0028] 图 13是图 12中输入光纤在图 1中 A-A横截面示意图;
[0029] 图 14是本发明一实施例中带方形凹槽和凸起的合束光纤在图 1中 B-B横截面示意 图;
[0030] 图 15是本发明一实施例中带 T形凹槽和凸起的合束光纤在图 1中 B-B横截面示意 图;
[0031] 图 16是本发明另一实施例中带方形凹槽和凸起的合束光纤在图 1中 B-B横截面示 意图;
[0032] 图 17是本发明另一实施例中带 T形凹槽和凸起的合束光纤在图 1中 B-B横截面示 意图;
[0033] 附图标记说明: 10-输入光纤; 11-输入涂覆层; 12 -光纤输入包层; 121-凹槽; 122 -凸起; 13 -输入纤芯; 20 -合束光纤; 30 -输出光纤; 31 -输出纤芯; 32 -光纤输 出包层; 33 -输出涂覆层。
[0034]
发明实施例
本发明的实施方式
[0035] 下面结合附图和具体实施例对本发明作进一步详细的说明, 并不是把本发明的 实施范围局限于此。
[0036] 如图 1至图 17所示, 本实施例所述的一种高功率信号合束器, 包括多根输入光 纤 10、 合束光纤 20和输出光纤 30, 所述输入光纤 10包括输入纤芯 13和包裹在输 入纤芯 13外壁的光纤输入包层 12, 所述输出光纤 30包括输出纤芯 31和包裹在输 出纤芯 31外壁的光纤输出包层 32, 所述光纤输入包层 12的截面呈扇形状或六边 形状并沿轴向设有凹槽 121和 /或凸起 122, 多根所述输入光纤 10相互嵌套在一起 后形成合束光纤 20, 所述合束光纤 20内的纤芯均与所述输出纤芯 31连接, 所述 合束光纤 20的合束包层与所述输出纤芯 31或光纤输出包层 32连接; 本实施例进 一步地, 所述光纤输入包层 12通过激光刻蚀设有凹槽 121和 /或凸起 122; 本实施 例进一步地, 所述凹槽 121和凸起 122的截面形状为方形或 T形。
[0037] 具体地, 每根所述输入光纤 10还包括包裹在光纤输入包层 12外壁的输入涂覆层 11, 所述输出光纤 30还包括包裹在光纤输出包层 32外壁的输出涂覆层 33 ; 将所 述输入光纤 10的一端输入涂覆层 11剥除, 使该段输入光纤 10的光纤输入包层 12 裸露, 通过激光对该裸露的光纤输入包层 12进行刻蚀形成刻蚀平面, 同时使该 光纤输入包层 12的截面形状呈扇形或六边形, 每根所述输入光纤 10的光纤输入 包层 12的刻蚀平面沿轴向设置有方形或 T形的凹槽 121和 /或凸起 122, 该凹槽 121 和凸起 122错开设置, 然后通过机械夹具将多根扇形状的输入光纤 10相互嵌套在 一起形成合束光纤 20, 将合束光纤 20的端面切平后与输出光纤 30进行熔接, 完 成制作高功率信号合束器。
[0038] 如图 1至图 5、 图 14、 图 15所示, 进一步地, 输入光纤 10的数量为 4根, 即 4X1信 号合束器, 输入涂覆层 11直径为 550um, 光纤输入包层 12直径为 400um, 输入纤 芯 13直径为 20um。 输出涂覆层 33直径为 480um, 光纤输出包层 32直径为 360um, 输出纤芯 31直径为 lOOum; 然后通过激光对裸露的光纤输入包层 12进行刻蚀形成 刻蚀平面, 并且使输入纤芯 13不会裸露在外, 同时在刻蚀平面设置方形或 T形的 凹槽 121和凸起 122; 将 4根刻蚀或的输入光纤 10通过凹槽 121与凸起 122的配合相 互嵌套在一起形成合束光纤 20, 然后将合束光纤 20的的端面切平后与输出光纤 3 0进行熔接, 完成高功率信号合束器的制作。
[0039] 如图 1、 图 6至图 13、 图 16、 图 17所示, 本实施例的另一种结构方式是, 输入光 纤 10的数量为 7根, 输入光纤 10的数量为 7根, 即 7X1信号合束器, 输入涂覆层 11 直径为 550 um, 光纤输入包层 12的直径 400 um, 输入纤芯 13直径为 20 um, 输出 涂覆层 33直径为 780 um, 光纤输出包层 32直径为 500 um, 输出纤芯 31直径为 300 um; 然后通过激光对裸露的光纤输入包层 12进行刻蚀形成刻蚀平面, 使其中一 个输入光纤 10的光纤输入包层 12的截面呈六边形, 剩余输入光纤 10的光纤输入 包层 12的截面呈扇形, 并在截面为六边形的输入光纤 10的刻蚀平面上设置六个 方形或 T形的凸起 122, 剩余输入光纤 10的刻蚀平面上对应设置方形或 T形的凹槽 121, 然后将截面呈六边形的输入光纤 10设于中心位置, 其余输入光纤 10则通过 凹槽 121与凸起 122的配合与截面呈六边形的输入光纤 10相互嵌套在一起形成合 束光纤 20, 然后将合束光纤 20的端面切平后与输出光纤 30进行熔接, 完成高功 率信号合束器的制作。
[0040] 当然, 本实施例中, 合束光纤 20还可通过点胶方式进一步固定、 或将合束光纤 20套设于胶管、 金属管或玻璃管内, 使合束光纤 20结构更牢固。
[0041] 采用本实施例的高功率信号合束器, 无需经过熔融拉锥或酸腐工艺, 不破坏输 入纤芯 13的结构, 有效避免模式激发导致的光束质量恶化, 输入光纤 10的光纤 输入包层 12内不会产生空气气泡, 保障信号在输入光纤 10内进行全反射传递, 信号光承受能力更强, 利于传递高功率信号, 且本实施例结构简单, 制作容易
[0042] 另外, 多根输入光纤 10是通过相互嵌套在一起后形成合束光纤 20, 不仅解决了 气泡问题, 还在实际使用时发现具备了更好的散热效果, 其原因在于, 凹槽 121 与凸起 122配合时, 有非常小的间隙, 空气分子可以穿过, 并形成温度差, 形成 一定的空气气流, 能带走合束光纤 20内的热量。
[0043] 如图 1至图 17所示, 一种高功率信号合束器的制作方法, 包括如下步骤:
[0044] 步骤一、 将多根输入光纤 10的部分输入涂覆层 11剥除, 使该部分输入光纤 10的 光纤输入包层 12裸露; 将输出光纤 30的部分输出涂覆层 33剥除, 使该部分输出 光纤 30的光纤输入包层 12裸露;
[0045] 步骤二、 然后对裸露的光纤输入包层 12通过激光刻蚀形成刻蚀平面, 使该部分 光纤输入包层 12的截面呈扇形状或六边形状并在刻蚀平面上沿轴向设置有凹槽 1 21和 /或凸起 122;
[0046] 步骤三、 将多根输入光纤 10上的凹槽 121与凸起 122之间进行相互嵌套配合, 形 成合束光纤 20;
[0047] 步骤四、 将合束光纤 20端面切平后与裸露出光纤输出包层 32的输出光纤 30进行 连接, 完成高功率信号合束器的制作。
[0048] 本实施例的制作方法, 仅对光纤输入包层 12进行激光刻蚀, 不会对输入纤芯 13 产生破坏及不会对光纤输入包层 12内部结构产生影响, 保障输入光纤 10内不会 产生气泡问题; 同时通过机械夹具将多根输入光纤 10进行相互嵌套配合, 保护 输入光纤 10不会受到挤压破坏。
[0049] 采用本实施例所述制作方法, 将多根输入光纤 10通过方形或 T形的凹槽 121和凸 起 122配合相互嵌套在一起形成合束光纤 20, 而无需经过熔融拉锥和酸腐工艺, 保障输入纤芯 13不会发生形变, 避免引入杂质, 避免出现断纤及模式激发导致 光束质量恶化, 同时在光纤输入包层 12内不会产生空气气泡, 保障信号在输入 纤芯 13内的全反射传递, 提高信号合束器的光承受能力, 利于传递高功率信号
[0050] 另外, 经过本实施例的制作方法完成的高功率信号合束器, 不仅解决了气泡问 题, 还在实际使用时发现具备了更好的散热效果, 其原因在于, 是凹槽 121与凸 起 122配合时, 有非常小的间隙, 可供空气分子穿过, 并形成温度差, 形成一定 的空气气流, 带走合束光纤 20内的热量。
[0051] 以上所述仅是本发明的一个较佳实施例, 故凡依本发明专利申请范围所述的构 造、 特征及原理所做的等效变化或修饰, 包含在本发明专利申请的保护范围内
[0052]

Claims

权利要求书
[权利要求 1] 一种高功率信号合束器, 其特征在于: 包括多根输入光纤 (10) 、 合 束光纤 (20) 和输出光纤 (30) , 所述输入光纤 (10) 包括输入纤芯 (13) 和包裹在输入纤芯 (13) 外壁的光纤输入包层 (12) , 所述输 出光纤 (30) 包括输出纤芯 (31) 和包裹在输出纤芯 (31) 外壁的光 纤输出包层 (32) , 所述光纤输入包层 (12) 的截面呈扇形状或六边 形状并沿轴向设有凹槽 (121) 和 /或凸起 (122) , 多根所述输入光 纤 (10) 相互嵌套在一起后形成合束光纤 (20) , 所述合束光纤 (20 ) 内的纤芯均与所述输出纤芯 (31) 连接, 所述合束光纤 (20) 的合 束包层与所述输出纤芯 (31) 或光纤输出包层 (32) 连接。
[权利要求 2] 根据权利要求 1所述的一种高功率信号合束器, 其特征在于: 所述光 纤输入包层 (12) 通过激光刻蚀设有凹槽 (121) 和 /或凸起 (122)
[权利要求 3] 根据权利要求 1或 2所述的一种高功率信号合束器, 其特征在于: 所述 凹槽 (121) 和凸起 (122) 的截面形状为方形或 T形。
[权利要求 4] 种高功率信号合束器的制作方法, 其特征在于: 包括如下步骤: 步 骤一、 将多根输入光纤 (10) 的部分输入涂覆层 (11) 剥除, 使该部 分输入光纤 (10) 的光纤输入包层 (12) 裸露; 将输出光纤 (30) 的 部分输出涂覆层 (33) 剥除, 使该部分输出光纤 (30) 的光纤输入包 层 (12) 裸露; 步骤二、 然后对裸露的光纤输入包层 (12) 通过激光 刻蚀形成刻蚀平面, 使该部分光纤输入包层 (12) 的截面呈扇形状或 六边形状并在刻蚀平面上沿轴向设置有凹槽 (121) 和 /或凸起 (122 ) ; 步骤三、 将多根输入光纤 (10) 上的凹槽 (121) 与凸起 (122) 之间进行相互嵌套配合, 形成合束光纤 (20) ; 步骤四、 将合束光纤 (20) 端面切平后与裸露出光纤输出包层 (32) 的输出光纤 (30) 进 行连接, 完成高功率信号合束器的制作。
[权利要求 5] 根据权利要求 4所述的一种高功率信号合束器的制作方法, 其特征在 于: 所述步骤三是通过机械夹具将多根输入光纤 (10) 进行相互嵌套 配合
PCT/CN2018/110567 2018-10-12 2018-10-17 一种高功率信号合束器及其制作方法 WO2020073348A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/284,681 US11372162B2 (en) 2018-10-12 2018-10-17 Beam combiner for high-power signal, and manufacturing method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811191745.5 2018-10-12
CN201811191745.5A CN109061801B (zh) 2018-10-12 2018-10-12 一种高功率信号合束器及其制作方法

Publications (1)

Publication Number Publication Date
WO2020073348A1 true WO2020073348A1 (zh) 2020-04-16

Family

ID=64764017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110567 WO2020073348A1 (zh) 2018-10-12 2018-10-17 一种高功率信号合束器及其制作方法

Country Status (3)

Country Link
US (1) US11372162B2 (zh)
CN (1) CN109061801B (zh)
WO (1) WO2020073348A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109676979A (zh) * 2019-01-07 2019-04-26 刘向宁 一种塑料光纤分光器、其制备方法以及热压模具
CN112363277A (zh) * 2021-01-13 2021-02-12 深圳市星汉激光科技股份有限公司 一种光纤合束结构及其制作方法
CN112987199B (zh) * 2021-03-02 2023-05-05 浙江热刺激光技术有限公司 一种高功率激光合束及激光合束的生产方法
CN114488400B (zh) * 2022-02-19 2023-01-24 中红外激光研究院(江苏)有限公司 一种基于倏逝波耦合的高亮度光纤合束器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1419657A (zh) * 2000-04-03 2003-05-21 高准光源科技有限公司 包含在单光纤光波导与多根单光纤光波导之间传导光的耦合装置的光学系统
CN102116902A (zh) * 2011-03-15 2011-07-06 武汉锐科光纤激光器技术有限责任公司 光纤功率合束器及其制备方法
CN102890312A (zh) * 2011-12-30 2013-01-23 清华大学 大模场光纤泵浦耦合器及其制造方法
CN103472535A (zh) * 2013-09-10 2013-12-25 西安正圆激光科技有限公司 光纤激光合束器制作方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179185A (en) * 1978-02-27 1979-12-18 Corning Glass Works Coupler for optical communication system
JP2000206361A (ja) * 1999-01-13 2000-07-28 Shin Etsu Chem Co Ltd 光ファイバ型多分岐カプラ―及びその製造方法
US6219480B1 (en) * 1999-01-29 2001-04-17 Fiberstars Incorporated Optical coupler for coupling light between one and a plurality of light ports
US7046875B2 (en) * 2003-10-29 2006-05-16 Itf Technologies Optiques Inc. Optical coupler comprising multimode fibers and method of making the same
US20060165358A1 (en) * 2005-01-21 2006-07-27 Ceramoptec Industries, Inc. Compact bundles of light guides with sections having reduced interstitial area
FI120471B (fi) * 2005-02-23 2009-10-30 Liekki Oy Optisen kuidun käsittelymenetelmä
US7236671B2 (en) * 2005-05-10 2007-06-26 Corning Incorporated Fiber bundles and methods of making fiber bundles
US7409128B2 (en) * 2005-06-29 2008-08-05 Lucent Technologies Inc. Pumping arrangement for fiber amplifiers with reduced reflective feedback
US7559706B2 (en) * 2006-02-22 2009-07-14 Liekki Oy Light amplifying fiber arrangement
US7532792B2 (en) * 2006-08-28 2009-05-12 Crystal Fibre A/S Optical coupler, a method of its fabrication and use
EP2149211A4 (en) * 2007-04-18 2014-06-04 François Gonthier FIBER AMPLIFIER
JP4981632B2 (ja) * 2007-11-16 2012-07-25 三菱電線工業株式会社 ダブルクラッドファイバのファイバ端部加工方法
DE102008020828A1 (de) * 2008-04-25 2009-10-29 Jt Optical Engine Gmbh + Co. Kg Faserkoppler
US9063289B1 (en) * 2008-06-30 2015-06-23 Nlight Photonics Corporation Multimode fiber combiners
JP5436964B2 (ja) * 2009-07-24 2014-03-05 タツタ電線株式会社 3波長光合波器
KR101405414B1 (ko) * 2010-08-26 2014-06-11 한국전자통신연구원 광섬유 커플러, 그의 제조방법 및 능동 광모듈
US8903211B2 (en) * 2011-03-16 2014-12-02 Ofs Fitel, Llc Pump-combining systems and techniques for multicore fiber transmissions
US8515220B1 (en) * 2012-04-12 2013-08-20 Raytheon Company Optical fiber coupler for coupling signal beams into a non-circularly shaped optical beam
DE102012209630A1 (de) * 2012-06-08 2013-12-12 Jenoptik Laser Gmbh Faserkoppler
JP5689929B2 (ja) * 2013-07-18 2015-03-25 株式会社フジクラ 光ファイバコンバイナの製造方法、光ファイバコンバイナ、及び、レーザ装置
JP5814314B2 (ja) * 2013-08-09 2015-11-17 株式会社フジクラ 光コンバイナ、及び、それを用いたレーザ装置、並びに、光コンバイナの製造方法
CN103466934B (zh) * 2013-08-29 2015-07-01 烽火通信科技股份有限公司 一种高效并束型激光光纤拉制方法及光纤
JP2018190918A (ja) * 2017-05-11 2018-11-29 株式会社フジクラ コンバイナ、ファイバレーザ装置、およびコンバイナの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1419657A (zh) * 2000-04-03 2003-05-21 高准光源科技有限公司 包含在单光纤光波导与多根单光纤光波导之间传导光的耦合装置的光学系统
CN102116902A (zh) * 2011-03-15 2011-07-06 武汉锐科光纤激光器技术有限责任公司 光纤功率合束器及其制备方法
CN102890312A (zh) * 2011-12-30 2013-01-23 清华大学 大模场光纤泵浦耦合器及其制造方法
CN103472535A (zh) * 2013-09-10 2013-12-25 西安正圆激光科技有限公司 光纤激光合束器制作方法

Also Published As

Publication number Publication date
US11372162B2 (en) 2022-06-28
CN109061801B (zh) 2024-02-20
CN109061801A (zh) 2018-12-21
US20210356671A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
WO2020073348A1 (zh) 一种高功率信号合束器及其制作方法
JP3057331B2 (ja) ファイバオプティックカプラおよびその製造方法
US7419308B2 (en) Fiber bundle termination with reduced fiber-to-fiber pitch
CN112904485B (zh) 一种用于多芯光纤的空分复用/解复用器及其制备方法
JP2013522677A (ja) マルチコアファイバへの低損失でモードフィールドが整合された結合のための方法、および装置
CN105633779A (zh) 用于光纤放大器的光纤端面泵浦耦合器及其制作方法
CN105633778A (zh) 高阶模滤除光纤端面泵浦耦合器及其制作方法
CN109581592B (zh) 光纤合束器的制备装置及制备方法
CN113698090B (zh) 一种光纤预制棒、匀化光纤及其制备方法、应用
CN112421367A (zh) 基于套管法的光纤端面泵浦耦合器制备方法
CN113866892B (zh) 激光光纤耦合器及制作方法
JP2004133389A (ja) 偏波保持光ファイバカプラおよびその製造方法
JPWO2018062484A1 (ja) 光接続構造、光モジュール
JP5719960B1 (ja) マルチコアファイバと偏波面保存ファイバの光接続部品および光接続部品の製造方法
CN112397983A (zh) 基于扭转法的光纤端面泵浦耦合器制备方法
CN210924014U (zh) 一种激光合束器
CN104345388B (zh) 一种大芯径光纤耦合器及其制作方法
CN114488400B (zh) 一种基于倏逝波耦合的高亮度光纤合束器及其制备方法
WO2015027851A1 (zh) 一种高效并束型激光光纤拉制方法及光纤
CN111045153A (zh) 一种低损耗的单模光纤与环形芯光纤耦合器及制备方法
CN208984828U (zh) 一种高功率信号合束器
CN115128740B (zh) 一种信号合束器、激光器及信号合束器的制作方法
CN208984829U (zh) 一种输入光纤截面呈扇形状的信号合束器
JPH0210401B2 (zh)
CN110412687B (zh) 从大芯径空芯光纤向单模光纤耦合的结构及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936490

Country of ref document: EP

Kind code of ref document: A1