CN113433610A - 一种空芯保偏光纤 - Google Patents

一种空芯保偏光纤 Download PDF

Info

Publication number
CN113433610A
CN113433610A CN202110651262.4A CN202110651262A CN113433610A CN 113433610 A CN113433610 A CN 113433610A CN 202110651262 A CN202110651262 A CN 202110651262A CN 113433610 A CN113433610 A CN 113433610A
Authority
CN
China
Prior art keywords
hollow
wall
cladding
core
polarization maintaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110651262.4A
Other languages
English (en)
Inventor
郑羽
殷若琛
江昕
罗卓昭
付晓松
邹琪琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aifeibo Ningbo Optoelectronic Technology Co ltd
Original Assignee
Aifeibo Ningbo Optoelectronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aifeibo Ningbo Optoelectronic Technology Co ltd filed Critical Aifeibo Ningbo Optoelectronic Technology Co ltd
Priority to CN202110651262.4A priority Critical patent/CN113433610A/zh
Publication of CN113433610A publication Critical patent/CN113433610A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02323Core having lower refractive index than cladding, e.g. photonic band gap guiding
    • G02B6/02328Hollow or gas filled core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02357Property of longitudinal structures or background material varies radially and/or azimuthally in the cladding, e.g. size, spacing, periodicity, shape, refractive index, graded index, quasiperiodic, quasicrystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

本发明提供一种空芯保偏光纤,涉及光纤领域,包括:一包层区域,包括:一外包层,外包层的内壁呈椭圆形;一内包层,内嵌于外包层的内壁,内包层包括多个尺寸一致的微毛细管,各微毛细管的外壁紧贴于外包层的内壁;一空芯区域,空芯区域由各微毛细管的背离外包层的一侧包围形成,空芯区域的径向截面呈椭圆形;包层区域的折射率高于空芯区域的折射率。本技术方案使用内壁呈椭圆形的固态套管,并将多个尺寸一致的微毛细管紧贴在固态套管的椭圆形内壁上,使得各微毛细管所围成的空芯区域的径向截面呈椭圆形,实现了空芯光纤结构中的保偏功能。

Description

一种空芯保偏光纤
技术领域
本发明涉及光纤领域,尤其涉及一种空芯保偏光纤。
背景技术
保偏光纤,能够传输线偏振光,广泛用于航天、航空、航海、工业制造技术及通信等国民经济的各个领域。保偏光纤作为一种特种光纤,主要应用于光纤陀螺,光纤水听器等传感器和DWDM、EDFA等光纤通信系统。保偏光纤的保偏功能使得保偏光纤传输的光具有两个偏振态,为了实现两个偏振态,需要保偏光纤传输的光的有效折射率产生差别,即使得保偏光纤传输的光能够产生双折射。保偏光纤在拉制过程中,由于光纤内部产生的结构缺陷会造成保偏性能的下降,即当线偏振光沿光纤的一个特征轴传输时,部分光信号会耦合进入另一个与之垂直的特征轴,最终造成出射偏振光信号偏振消光比的下降,这种缺陷就是影响光纤内的双折射效应。保偏光纤中,双折射效应越强,拍长越短,保持传输光偏振态越好。目前,为了实现保偏光纤传输的光能够产生双折射,大致有两种实现方式:一种实现方式将保偏光纤的纤芯模场做成几何形态,利用模场几何形态的非中心对称性提升纤芯的双折射,该种实现方式结构较为复杂,但能实现大幅度调整纤芯的双折射。另一种实现方式是在纤芯两端施加不均匀的内应力,利用内应力使得纤芯产生双折射,传统的熊猫保偏光纤就是基于内应力产生双折射的。
将光纤作成空心,形成圆筒状空间,用于光传输的光纤,称作空芯光纤(HollowFiber)。空芯光纤主要用于能量传送,可供X射线、紫外线和远红外线光能传输。空芯光纤是主要在空心区域导波的光纤,只有一少部分光在固体光纤材料(通常为玻璃)中传播。空芯光纤的优势在于光主要在空气中传播会极大的减小非线性效应,因此损伤阈值较高。实际上,即使玻璃材料对某一波长光的透明度比较差时也能实现导波。
目前,让空芯光纤实现保偏效果的核心是:中心空气纤芯中传输光波导模式的两个偏振模具有较大折射率差,使这两个偏振模具在传输过程中不易发生耦合。而主要实现的方式是让中心空气纤芯的几何形状呈椭圆形。
在一个现有的技术方案中,通过改变微毛细管尺寸,实现中间空气纤芯呈椭圆形,从而产生较高双折射。但是微毛细管的尺寸不一致,会存在一些问题:
(1)微毛细管大小不一,微毛细管之间会存在较大间隙,这些间隙之间导致光纤损耗提高、抗弯性能下降;
(2)微毛细管大小不一,在制备过程中难以保证光纤中微毛细管壁的壁厚相同,基于反谐振光纤的导光机理可知,微毛细管壁的壁厚不同,导致光纤导光窗口急剧变窄,甚至可能无法导光,与此同时光纤损耗也急剧增加。
(3)微毛细管大小不一,在制备过程中需要采用不同的压力控制,制备难度极大。
发明内容
针对现有技术中存在的问题,本发明提供一种空芯保偏光纤,包括:
一包层区域,包括:
一外包层,所述外包层的内壁呈椭圆形;
一内包层,内嵌于所述外包层的内壁,所述内包层包括多个尺寸一致的微毛细管,各所述微毛细管的外壁紧贴于所述外包层的内壁;
一空芯区域,所述空芯区域由各所述微毛细管的背离所述外包层的一侧包围形成,所述空芯区域的径向截面呈椭圆形;
所述包层区域的折射率高于所述空芯区域的折射率。
优选的,所述微毛细管的管壁壁厚为0.25~3微米。
优选的,相邻两所述微毛细管之间留有预设间隙,所述预设间隙的大小为所述微毛细管的外径与所述空芯区域的短轴和长轴的平均值的比值。
优选的,所述比值的取值范围在0.2~0.95之间。
优选的,所述微毛细管的数量为4~20个,且所述微毛细管的外径为微米量级。
优选的,所述外包层包括:
内壁呈椭圆形的一固态套管;
一包层套管,套设于所述固态套管的外部;
所述固态套管与包层套管熔融一体构成所述外包层。
优选的,所述固态套管的管壁壁厚为20~200微米。
优选的,所述固态套管的椭圆形内壁的长短轴比值的取值范围为1~1.8。
优选的,所述固态套管、所述包层套管和各所述微毛细管由同一制作材料制作而成,所述制作材料包括:
二氧化硅或重金属氧化物玻璃或硫化物玻璃或硒化物玻璃碲化物玻璃或高分子聚合物。
优选的,靠近所述空芯区域的长轴端部且关于所述长轴对称的每对所述微毛细管互相粘连。
上述技术方案具有如下优点或有益效果:
本技术方案使用内壁呈椭圆形的固态套管,并将多个尺寸一致的微毛细管紧贴在固态套管的椭圆形内壁上,使得各微毛细管所围成的空芯区域的径向截面呈椭圆形,实现了空芯光纤结构中的保偏功能。
附图说明
图1为本发明的较佳的实施例中,空芯保偏光纤的径向截面示意图;
图2为本发明的较佳的实施例中,具有粘连结构的6孔空芯保偏光纤的径向截面示意图;
图3为本发明的较佳的实施例中,软件计算得到的具有粘连结构的6孔空芯保偏光纤的径向截面示意图;
图4为本发明的较佳的实施例中,8孔空芯保偏光纤的径向截面示意图;
图5为本发明的较佳的实施例中,空芯保偏光纤制备方法的流程图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本发明并不限定于该实施方式,只要符合本发明的主旨,则其他实施方式也可以属于本发明的范畴。
本发明的较佳的实施例中,基于现有技术中存在的上述问题,现提供一种空芯保偏光纤,如图1所示,包括:
一包层区域1,包括:
一外包层11,外包层11的内壁呈椭圆形;
一内包层12,内嵌于外包层11的内壁,内包层12包括多个尺寸一致的微毛细管13,各微毛细管13的外壁紧贴于外包层11的内壁;
一空芯区域2,空芯区域2由各微毛细管13背离外包层11的一侧包围形成,空芯区域2的径向截面呈椭圆形;
包层区域1的折射率高于空芯区域2的折射率。
具体地,本实施例中,同时使用内壁呈椭圆形的外包层11,并将多个尺寸一致的微毛细管13紧贴于外包层11的椭圆形内壁上,使得各微毛细管13所围成的空芯区域2的径向截面呈椭圆形,实现了空芯光纤结构中的保偏功能。
进一步地,空芯区域2的长轴为横向方向。
进一步地,各微毛细管13形成的空芯区域2使得本技术方案中的空芯保偏光纤的中心区域为空心,相较于中心为实心的光纤,本技术方案中的空芯光纤能够有效降低非线性效应,同时有效提升传输速度,能够满足特殊应用需求。
进一步地,本技术方案中的空芯保偏反谐振光纤可以实现对线偏振光输出的高功率激光进行远距离传输。
进一步地,本技术方案通过使用尺寸一致的微毛细管13,使得各微毛细管13的大小和壁厚均一致,减小了各微毛细管13之间的预设间隙的尺寸,降低光纤损耗,提升抗弯性能。
本发明的较佳的实施例中,微毛细管13的管壁壁厚可以为0.25~3微米。
具体地,本实施例中,微毛细管13的管壁壁厚决定了该空芯保偏光纤的导光区间,通过对微毛细管13的管壁壁厚的限定,实现了对该空芯保偏光线的导光性能的限定。
本发明的较佳的实施例中,相邻两微毛细管13之间留有预设间隙,预设间隙的大小为微毛细管13的外径与椭圆形空芯区域2的短轴和长轴的平均值的比值。
具体地,本实施例中,由于微毛细管13之间的预设空隙是影响光纤损耗的重要因素,通过在各微毛细管13之间设置预设空隙,使得各微毛细管13之间互不相连,可以有效地减少微毛细管13表面光学模式,进而降低光纤的纤芯模式与表面光学模式之间的相互耦合,从而降低光纤的损耗,提升光纤利用率。
进一步地,比值的取值范围在0.2~0.95之间。
进一步地,预设空隙的大小由微毛细管13的外径与空芯区域2的短轴和长轴的平均值的比值来定义,通过该比值对微毛细管13的数量进行限定。
进一步地,当微毛细管13的外径与空芯区域2的短轴和长轴的平均值的比值范围为0.6~0.75时,空芯保偏光纤能够实现单一模式的传输。
本发明的较佳的实施例中,微毛细管13的数量为4~20个,且微毛细管13的外径为微米量级。
本发明的较佳的实施例中,外包层11包括:
内壁呈椭圆形的一固态套管;
一包层套管,套设于固态套管的外部;
固态套管与包层套管熔融一体构成外包层11。
具体地,本实施例中,固态套管可以为一层较厚的固态材料形成的保护环形结构。
本发明的较佳的实施例中,固态套管的管壁壁厚为20~200微米。
本发明的较佳的实施例中,固态套管的椭圆形内壁的长短轴比值范围为1~1.8。
本发明的较佳的实施例中,固态套管、包层套管和各微毛细管13由同一制作材料制作而成,制作材料包括:
二氧化硅、重金属氧化物玻璃、硫化物玻璃、硒化物玻璃、碲化物玻璃或高分子聚合物。
在一个优选的实施例一中,外包层11的内壁上紧贴设置有6个微毛细管13,每个微毛细管13的管壁壁厚为0.45微米。
进一步地,在实施例一中,固态套管的管壁壁厚为110微米。
在一个优选的实施例二中,如图2所示,空芯区域2的长轴在横向方向上,空芯区域2的长轴端部且关于长轴对称的每对微毛细管13互相粘连,形成具有粘连结构的空芯保偏光纤。其中,互相粘连的每对微毛细管13形成粘连结构。通过设置粘连结构,有效增大空芯区域2的长轴有效折射率,增大长短轴折射率差,进而提升光纤的双折射。
如图3所示,空芯区域2的的长轴半径为55微米,短轴半径为47.5微米,长轴半径与短轴半径的比值约为1.1。
其中,空芯区域2外部的外包层11的壁厚为10微米,微毛细管13的管壁壁厚为0.35微米。
进一步地,分别对图5中的具有粘连结构的6孔保偏空芯光纤进行等比例缩小至原先的0.8倍、0.5倍、0.3倍同时保持微毛细管13的管壁壁厚不变后,发现6孔保偏空芯光纤的双偏振轴有效折射率以及双折射均会发生变化。
进一步地,保持图3中的具有粘连结构的6孔保偏空芯光纤比例不变,同时分别对微毛细管13的管壁壁厚扩大至原先的1.28倍和1.58倍后,发现6孔保偏空芯光纤的双偏振轴有效折射率以及双折射均会发生变化。
通过调整6孔保偏空芯光纤的整体结构大小和微毛细管13的管壁壁厚,该6孔保偏空芯光纤的双折射可达10-4量级。
在一个优选的实施例三中,如图4所示,外包层11的内壁上紧贴设置有8个微毛细管13,每个微毛细管13的管壁壁厚为1微米。
进一步地,在实施例三中,固态套管的管壁壁厚为110微米。
一种空芯保偏光纤的制备方法,应用于上述的空芯保偏光纤,如图5所示,制备方法包括:
步骤S1,取一根内壁呈椭圆形的固态套管,紧贴固态套管的椭圆形内壁均匀间隔排布一圈微毛细管,各微毛细管在固态套管的内壁的椭圆形分布使得各微毛细管包围形成的一空芯区域的径向截面呈椭圆形;
步骤S2,从固态套管的两轴端各插入一根匹配于空芯区域的第一毛细棒,使第一毛细棒的外壁紧贴各微毛细管的外壁,且第一毛细棒的外轴端面与固态套管的轴端面齐平;
步骤S3,从固态套管的两轴端向相邻两根微毛细管之间的预留间隙、各微毛细管的外壁与第一毛细棒的外壁之间插入不同尺寸的第二毛细棒,以维持所有微毛细管的位置固定,且第二毛细棒的外轴端面与固态套管的轴端面齐平,进而得到两轴端形成多点支撑而中腹部形成悬挂的一堆栈体;
步骤S4,对堆栈体的中腹部进行拉制,在拉制过程中需要配合适的拉制温度,使得空芯区域的结构扁平,得到一椭圆形的中间体。
步骤S5,将一包层套管套设在拉制后得到的中间体的中腹部的外部,形成一光纤预制棒;对光纤预制棒进行光纤制备,同时对各微毛细管内的压力、各微毛细管之间的预留间隙内的压力、所有微毛细管所围成的空芯区域内的压力进行控制,得到一空芯保偏光纤。
进一步地,于步骤S4中,拉制温度的范围为2000~2200℃。
以上所述仅为本发明较佳的实施例,并非因此限制本发明的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本说明书及图示内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本发明的保护范围内。

Claims (10)

1.一种空芯保偏光纤,其特征在于,包括:
一包层区域,包括:
一外包层,所述外包层的内壁呈椭圆形;
一内包层,内嵌于所述外包层的内壁,所述内包层包括多个尺寸一致的微毛细管,各所述微毛细管的外壁紧贴于所述外包层的内壁;
一空芯区域,所述空芯区域由各所述微毛细管的背离所述外包层的一侧包围形成,所述空芯区域的径向截面呈椭圆形;
所述包层区域的折射率高于所述空芯区域的折射率。
2.根据权利要求1所述的空芯保偏光纤,其特征在于,所述微毛细管的管壁壁厚为0.25~3微米。
3.根据权利要求1所述的空芯保偏光纤,其特征在于,相邻两所述微毛细管之间留有预设间隙,所述预设间隙的大小为所述微毛细管的外径与所述空芯区域的短轴和长轴的平均值的比值。
4.根据权利要求3所述的空芯保偏光纤,其特征在于,所述比值的取值范围在0.2~0.95之间。
5.根据权利要求1所述的空芯保偏光纤,所述微毛细管的数量为4~20个,且所述微毛细管的外径为微米量级。
6.根据权利要求1所述的空芯保偏光纤,其特征在于,所述外包层包括:
内壁呈椭圆形的一固态套管;
一包层套管,套设于所述固态套管的外部;
所述固态套管与包层套管熔融一体构成所述外包层。
7.根据权利要求6所述的空芯保偏光纤,其特征在于,所述固态套管的管壁壁厚为20~200微米。
8.根据权利要求6所述的空芯保偏光纤,其特征在于,所述固态套管的椭圆形内壁的长短轴比值的取值范围为1~1.8。
9.根据权利要求6所述的空芯保偏光纤,其特征在于,所述固态套管、所述包层套管和各所述微毛细管由同一制作材料制作而成,所述制作材料包括:
二氧化硅或重金属氧化物玻璃或硫化物玻璃或硒化物玻璃碲化物玻璃或高分子聚合物。
10.根据权利要求2所述的空芯保偏光纤,其特征在于,靠近所述空芯区域的长轴端部且关于所述长轴对称的每对所述微毛细管互相粘连。
CN202110651262.4A 2021-06-10 2021-06-10 一种空芯保偏光纤 Pending CN113433610A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110651262.4A CN113433610A (zh) 2021-06-10 2021-06-10 一种空芯保偏光纤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110651262.4A CN113433610A (zh) 2021-06-10 2021-06-10 一种空芯保偏光纤

Publications (1)

Publication Number Publication Date
CN113433610A true CN113433610A (zh) 2021-09-24

Family

ID=77755577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110651262.4A Pending CN113433610A (zh) 2021-06-10 2021-06-10 一种空芯保偏光纤

Country Status (1)

Country Link
CN (1) CN113433610A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115248475A (zh) * 2022-08-04 2022-10-28 艾菲博(宁波)光电科技有限责任公司 一种微结构保偏光纤
US20230176278A1 (en) * 2021-12-07 2023-06-08 Advalue Photonics, Inc. Configuring infrared optical fibers from oxide glasses

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239551A (ja) * 1997-03-03 1998-09-11 Mitsubishi Cable Ind Ltd 増幅用光ファイバ
CN1967297A (zh) * 2006-11-20 2007-05-23 燕山大学 一种保持圆偏振态的低损耗单模空芯光纤
CN102608695A (zh) * 2012-04-06 2012-07-25 复旦大学 一种太赫兹保偏光纤及其制作方法
CN105923988A (zh) * 2016-05-12 2016-09-07 宁波大学 椭圆度任意可调的椭圆芯保偏光纤预制棒的挤压制备方法
CN108474905A (zh) * 2015-12-23 2018-08-31 Nkt光子学有限公司 中空芯光纤和激光系统
CN209690556U (zh) * 2019-03-14 2019-11-26 深圳大学 反谐振光纤
CN111095059A (zh) * 2017-09-13 2020-05-01 南安普敦大学 反谐振空芯预制件和光纤以及制造方法
CN111812772A (zh) * 2020-06-15 2020-10-23 艾菲博(宁波)光电科技有限责任公司 一种空芯保偏反谐振光纤及其制备方法
US20210036480A1 (en) * 2019-07-31 2021-02-04 Huawei Technologies Canada Co., Ltd. Polarization-maintaining highly elliptical core fiber with stress-induced birefringence

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239551A (ja) * 1997-03-03 1998-09-11 Mitsubishi Cable Ind Ltd 増幅用光ファイバ
CN1967297A (zh) * 2006-11-20 2007-05-23 燕山大学 一种保持圆偏振态的低损耗单模空芯光纤
CN102608695A (zh) * 2012-04-06 2012-07-25 复旦大学 一种太赫兹保偏光纤及其制作方法
CN108474905A (zh) * 2015-12-23 2018-08-31 Nkt光子学有限公司 中空芯光纤和激光系统
CN105923988A (zh) * 2016-05-12 2016-09-07 宁波大学 椭圆度任意可调的椭圆芯保偏光纤预制棒的挤压制备方法
CN111095059A (zh) * 2017-09-13 2020-05-01 南安普敦大学 反谐振空芯预制件和光纤以及制造方法
CN209690556U (zh) * 2019-03-14 2019-11-26 深圳大学 反谐振光纤
US20210036480A1 (en) * 2019-07-31 2021-02-04 Huawei Technologies Canada Co., Ltd. Polarization-maintaining highly elliptical core fiber with stress-induced birefringence
CN111812772A (zh) * 2020-06-15 2020-10-23 艾菲博(宁波)光电科技有限责任公司 一种空芯保偏反谐振光纤及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
L. VINCETTI, V. SETTI: "Elliptical hollow core tube lattice fibers for terahertz applications", 《OPTICAL FIBER TECHNOLOGY》 *
MATTIA MICHIELETTO ET AL.: "Hollow-core fibers for high power pulse delivery", 《OPTICS EXPRESS》 *
MEHMET C. GÜNENDI ET AL.: "Broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes", 《OPTICS LETTERS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230176278A1 (en) * 2021-12-07 2023-06-08 Advalue Photonics, Inc. Configuring infrared optical fibers from oxide glasses
US11828979B2 (en) * 2021-12-07 2023-11-28 Advalue Photonics, Inc. Configuring infrared optical fibers from oxide glasses
CN115248475A (zh) * 2022-08-04 2022-10-28 艾菲博(宁波)光电科技有限责任公司 一种微结构保偏光纤

Similar Documents

Publication Publication Date Title
CN111812772B (zh) 一种空芯保偏反谐振光纤及其制备方法
US10761271B2 (en) Polarization maintaining optical fiber array
US9885825B2 (en) Pitch reducing optical fiber array and multicore fiber comprising at least one chiral fiber grating
RU2489741C2 (ru) Многосердцевинный волоконный световод (варианты)
CN105785511B (zh) 一种基于拉锥自组装的多芯光纤耦合器制备方法
KR100315178B1 (ko) 무색 광섬유 커플러
CN109143460B (zh) 一种负曲率空芯光纤及其制备方法
CN108549128B (zh) 空芯反谐振光子晶体光纤耦合器及其应用
US6539151B2 (en) Method for making separable multiple core optical fibers, the resulting fiber structures, and uses thereof
EP0628839B1 (en) Low loss coupler
CN113433610A (zh) 一种空芯保偏光纤
CN111999800A (zh) 负曲率反谐振空芯光纤
CN111552025A (zh) 一种具有下凹三包层过渡光纤的多芯光纤Fan-in/out器件
CN110346864B (zh) 一种多芯少模光纤及其制造方法
JP3689872B2 (ja) ファイバオプティックカプラ
CN101694536B (zh) 一种光子晶体光纤耦合器的制作方法
CN103698841A (zh) 一种微结构光纤器件
CN112099130B (zh) 一种低芯间串扰的斜坡型折射率分布多芯光纤
JP2024502562A (ja) 反共振光学構成要素及びその製造方法
CN218497187U (zh) 一种双层嵌套反谐振空芯光纤
JP2003040637A (ja) 光ファイバの製造方法および光ファイバ
Tian et al. Design and fabrication of embedded two elliptical cores hollow fiber
US20230138454A1 (en) Multicore fiber stubs, multicore fan-in, fan-out devices, and methods of fabricating the same
JP2828251B2 (ja) 光ファイバカプラ
US20230176300A1 (en) Optical fiber bundle structure, optical connection structure, and method of manufacturing optical fiber bundle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210924

RJ01 Rejection of invention patent application after publication