WO2020071864A1 - 복합 광학 조준장치 - Google Patents

복합 광학 조준장치

Info

Publication number
WO2020071864A1
WO2020071864A1 PCT/KR2019/013055 KR2019013055W WO2020071864A1 WO 2020071864 A1 WO2020071864 A1 WO 2020071864A1 KR 2019013055 W KR2019013055 W KR 2019013055W WO 2020071864 A1 WO2020071864 A1 WO 2020071864A1
Authority
WO
WIPO (PCT)
Prior art keywords
eyepiece
disposed
optical
reticle
target
Prior art date
Application number
PCT/KR2019/013055
Other languages
English (en)
French (fr)
Inventor
정보선
이동희
정인
강경우
Original Assignee
정보선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정보선 filed Critical 정보선
Publication of WO2020071864A1 publication Critical patent/WO2020071864A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/30Reflecting-sights specially adapted for smallarms or ordnance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/32Night sights, e.g. luminescent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/38Telescopic sights specially adapted for smallarms or ordnance; Supports or mountings therefor

Definitions

  • the present invention relates to a composite optical aiming device, and more specifically, to provide an optical scope module capable of long-distance precision aiming in one housing, a thermal imaging module capable of aiming in a dark environment, and a dot sight module capable of short-term rapid aiming, It relates to a composite optical aiming device that can facilitate the switching of each mode.
  • the sight can be coupled to one side of the firearm to accurately aim the external target.
  • aiming is achieved by aligning the sight line of the scale and the scale, and the rapidity indicating how quickly the aiming is achieved and aiming can be fired, and the accuracy indicating whether the aiming shot is accurately aiming at the target This is very important.
  • the aiming and shooting method requires a complicated process and time, such as capturing and confirming a target, aligning the aiming line, and aiming, and the scale and the scale itself are very small.
  • the sight is concentrated on the scale and the scale itself, rather than the target or the forward situation, and the view becomes narrow.
  • An optical scope has been proposed to improve the accuracy while solving the hassle of aligning the sight line.
  • the optical scope uses an optical system with a magnification consisting of an objective lens and an alternative lens reticle, so that the target can be magnified and viewed, so the target's identification ability is excellent, and aiming can be achieved through a reticle inside the scope. It is possible.
  • Such an optical scope requires an upright optical unit that serves to convert an inverted image into an upright image, and is largely divided into a prism method and a relay lens method.
  • 1 is a schematic diagram of a prism type optical scope
  • FIG. 2 is a relay lens type optical scope structure diagram.
  • the prism-type optical scope 10 includes an objective lens 11, a prism optical system 12, a reticle 13, and an eyepiece 14.
  • the objective lens 11 and the eyepiece 14 are each composed of one lens, but in practice, they may be composed of multiple lenses to remove aberrations and the like.
  • the principle of the telescope is to simultaneously magnify and view the image of the external object and the reticle 13 by the eyepiece 14 at the same time.
  • the objective lens 11 and the reticle (13) is a prism optical system 12, which is a sizing optical unit that serves to convert an inverted image into a sizing image.
  • the optical scope 10 ′ adopting the relay lens method which is another method of the sizing optical unit serving to change the inverted image into a sizing image, includes an objective lens 11 and a field lens 15. , Reticle 13, relay lens 16, eyepiece 14, and the like.
  • the objective lens 11, the field lens 15, and the eyepiece 14 are each composed of one lens, but in practice, they may be composed of multiple lenses to remove aberrations and the like.
  • the relay lens 16 When the image of the external object by the objective lens 11 is imaged at the position of the reticle 13, the relay lens 16 simultaneously reimages the image of the external object and the target of the reticle 13 in front of the eyepiece 14
  • the principle of the relay lens type telescope is to change the inverted image into an erect image, and magnify it with the eyepiece 14 to see it.
  • the image of the objective lens 11 is imaged on the reticle 13 as it is, the image is inverted and looks upside down. This is once again re-imaged by the relay lens 16 to make it look upside down.
  • the image is formed into an erect image, and the eyepiece 14 enlarges this image.
  • the field lens 15 present before and after the relay lens 16 serves to collect the light flux incident on the relay lens 16.
  • the optical scope has an advantage that the target can be enlarged and aimed, but in order to match the target of the reticle 13 with the target (alignment of the sight line), the observer's eye gaze passes the target and target of the reticle 13.
  • the observer's eye In order to aim, the observer's eye must be moved so that the eye's line of sight passes through the center of the observation window in the scope. Therefore, in order for the observer to accurately shoot, the eye must always be placed in the center of the observation window and fired. If a target is seen around the observation window, the gun is placed in the center of the observation window while the target is placed in the center of the observation window again. Should be adjusted. This action hinders the speed of shooting because it delays shooting time.
  • Dot Sight is characterized by simple and quick aiming, and it has a very useful advantage in short-term situations or short-range situations requiring quick response.
  • the dot sight requires little time for alignment of the aiming line, and the aiming itself needs to quickly move the virtual image by the reflector of the dot reticle of the dot generating unit as a target, and unlike the optical scope, dot sight Since there is no need to move the virtual image by the reflector of the dot target of the dot generating portion in the center of the observation window, it is possible to minimize the time required for aiming as well as the obstruction of surrounding vision and situation due to aiming.
  • the above-described dot sight device 20 includes an inner barrel alignment adjustment terminal 22 positioned above the collimator housing 21 of a cylindrical structure, and a rifle scale positioned below the housing 21.
  • the target generation unit 25 may be configured to include a reflector 26 having a specific curvature and located behind the protective window 24 inside the housing 21.
  • the user can facilitate the aiming by shooting when the virtual image by the reflector of the dot target of the dot target generator is matched with the target.
  • the long-range optical scope and the short-range dot sight as described above can observe the target only when the surrounding environment is bright, and thus the infrared wavelength light emitted from the target is generated in the dark environment where the target cannot be observed by visible light.
  • a separate thermal imager that can observe the target is required.
  • the thermal imager is an infrared imaging objective for imaging an infrared image, an infrared detection element for detecting infrared rays, and a display unit for providing a thermal image signal detected by the infrared detection element as an image for a user to view. It may be composed of an eyepiece that enlarges and shows the image output from the unit.
  • the volume and weight of the firearm increase, reducing portability, and using the aiming device attached to different locations depending on the surrounding situation.
  • aiming a target there is a problem that it is difficult to respond quickly.
  • the object of the present invention is to solve such a conventional problem, an optical scope module capable of long-distance precision aiming in one housing, a thermal imaging module capable of aiming in a dark environment, and a dot sight module capable of short-range rapid aiming.
  • an optical scope module capable of long-distance precision aiming in one housing
  • a thermal imaging module capable of aiming in a dark environment
  • a dot sight module capable of short-range rapid aiming.
  • the object is, according to the present invention, a housing; and an eyepiece disposed at the rear end of the housing; and an objective lens for a scope disposed in a first through hole formed in the front end of the housing, and the objective lens for the scope
  • An optical scope module including an upright optical portion disposed at the rear of the reticle disposed at a front region of the eyepiece; and an objective lens for thermal imaging disposed at a second through hole formed in the front end portion of the housing, and
  • a thermal imaging module including an infrared detection element disposed behind the objective lens for thermal imaging and a display unit disposed in the front region of the eyepiece and outputting a thermal image signal obtained from the infrared detection element;
  • a switch for controlling light rays from the reticle and the display portion such that any one of rays from an image of an external object formed on the reticle of the optical scope module and rays from the display portion of the thermal imaging module enters the eyepiece. It is achieved by a composite optical aiming device comprising
  • the switching unit includes a moving member which is rotatably disposed in front of the eyepiece in a state in which the reticle and the display unit are fixed, and the reticle of the eyepiece in a state where the moving member moves to the first moving position. It is preferably disposed on the optical path, and the display unit is disposed on the optical path of the eyepiece while the moving member is moved to the second moving position.
  • the switching unit includes a frame forming a receiving space for accommodating the moving member in a rotatable state, rotation shafts are formed on both sides of the moving member, and the rotation shafts are inserted and supported on both sides of the frame. It is preferable that an insertion hole is formed.
  • a projection is formed on the rotation shaft, and it is preferable that a stopper is provided in the insertion hole to limit the rotational radius of the projection to guide the first movement position and the second movement position of the moving member.
  • the optical scope module further includes an optical path converting unit that transmits an image of a target, which is provided as a first optical axis through the erecting optical unit, to a second optical axis that is an optical path of the eyepiece.
  • the optical path conversion unit is preferably made of a pair of prism or a flat reflector disposed in a form facing each other on the first optical axis and the second optical axis.
  • the dot sight module including a reflector disposed in the third through hole formed in the front end of the housing and a dot target generating unit that provides an aiming target toward the reflector; and further comprising, wherein the reflector is the dot It is preferable to form a dot image provided by the table generating unit into a virtual image in front of the user.
  • a fourth through hole in which the eyepiece is disposed and a fifth through hole through which the target is observed through the dot sight module are formed on the rear surface of the housing, and the fourth through fifth holes are disposed adjacent to each other. It is desirable to be.
  • the reticle is disposed in front of the eyepiece
  • the display portion is disposed at a position deviating from the optical path between the reticle and the eyepiece
  • the switching portion is moved to be inclined in the region between the reticle and the eyepiece.
  • It includes a movable member that is disposed to be possible, the moving member is moved from the first moving position to move off the optical path between the reticle and the eyepiece so that the light from the reticle faces the eyepiece, and the second move It is preferable to block the optical path between the reticle and the eyepiece while moving to the position while reflecting the light beam provided from the display unit toward the eyepiece.
  • an optical scope module capable of long-distance precision aiming and a thermal imaging module capable of aiming in a dark environment and a dot sight module capable of short-range rapid aiming are provided in one housing, which can facilitate switching of each mode.
  • a composite optical aiming device is provided.
  • FIG. 3 is a structural diagram of a typical dot sight device
  • FIGS. 4 and 5 are perspective views of the composite optical aiming device of the present invention.
  • FIG. 6 is a perspective view of a state in which the housing of FIG. 4 is removed
  • FIG. 7 is an exploded perspective view of a composite optical aiming device of the present invention.
  • Figure 8 is a cross-sectional view showing various embodiments of the optical path conversion unit according to the present invention composite optical aiming device
  • FIG. 9 is an exploded perspective view of a switching unit according to the present invention composite optical aiming device
  • FIG. 10 is a cross-sectional view showing a state of using an optical scope module according to the present invention composite optical aiming device
  • FIG. 11 is a cross-sectional view taken along line A-A 'in FIG. 10;
  • FIG. 12 is a cross-sectional view showing a state of using a thermal imaging module according to the composite optical aiming device of the present invention
  • FIG. 13 is a cross-sectional view taken along line B-B 'in FIG. 12,
  • FIG. 14 is a cross-sectional view showing a state of using a dot sight module according to the present invention composite optical aiming device
  • FIG. 15 is a schematic configuration diagram showing a composite optical aiming device according to a second embodiment of the present invention.
  • 16 is a schematic configuration diagram showing a composite optical aiming device according to a third embodiment of the present invention.
  • FIGS. 4 and 5 are perspective views of the composite optical aiming device of the present invention
  • FIG. 6 is a perspective view of the housing of FIG. 4 removed
  • FIG. 7 is an exploded perspective view of the composite optical aiming device of the present invention
  • FIG. 8 Is a cross-sectional view showing various embodiments of a light path conversion unit according to the present invention, and an exploded perspective view of a switching unit according to the present invention.
  • the composite optical aiming device of the present invention as shown in the above drawings includes an optical scope module 130 capable of long-distance precision aiming, a thermal imaging module 140 capable of aiming in a dark environment, and a dot sight module 160 capable of short-range rapid aiming.
  • an optical scope module 130 capable of long-distance precision aiming
  • a thermal imaging module 140 capable of aiming in a dark environment
  • a dot sight module 160 capable of short-range rapid aiming.
  • a first through hole 111 in which the optical scope module 130 is disposed and a second through hole 112 in which the thermal imaging module 140 is disposed are formed in the lower center of the front surface
  • a third through hole 113 in which the dot sight module 160 is disposed is formed in the center upper portion of the center
  • a fourth through hole 114 in which the eyepiece 120 is disposed in the center lower portion of the rear surface is formed, and in the center of the rear surface.
  • a fifth through hole 115 disposed on the same axis as the third through hole 113 and communicating with the third through hole is formed.
  • the eyepiece 120 is disposed in the fourth through hole 114 provided on the rear surface of the housing 110, and is composed of an enlarged lens having a predetermined magnification so that an image is enlarged and provided to a user.
  • the optical scope module 130 is a scope objective lens 131 disposed in the first through hole 111 of the housing 110, and an upright optical portion 132 disposed behind the scope objective lens 131. ) And a reticle 133 disposed in front of the eyepiece 120 to provide an aiming target.
  • the objective lens 131 for the scope is to magnify the image of the target several times to form an image of the target on the reticle 133.
  • the erecting optical part (132) may be a relay lens imaging type, a roofed Pechan prism type, or an Abbe-Konig prism type. , In this embodiment, it will be described, for example, that the roof-type pechan prism method is applied.
  • the reticle 133 may be formed in a form in which the aiming target is formed on a transparent lens having no magnification.
  • the thermal imaging module 140 includes an objective lens 141 for thermal imaging disposed in the second through hole 112 of the housing 110, and an infrared detection element disposed behind the objective lens 141 for thermal imaging. 142 and a display unit 143 which is disposed in front of the eyepiece 120 and outputs a thermal image signal detected by the infrared detection element 142 as an image.
  • the infrared detection element 142 may be configured as an infrared (infrared) image sensor capable of generating an image signal by detecting the infrared light incident through the objective lens 141 for thermal imaging.
  • infrared infrared
  • the display unit 143 may be formed of a liquid crystal display device or an organic light-emitting diode capable of displaying the image signal generated by the infrared detection element 142 have.
  • the reticle 133 and the switching unit 150 that controls the light beams from the display unit 143 include light rays from the image of an external object formed on the reticle 133 of the optical scope module 130 and the thermal image. Controlling the light rays from the reticle 133 and the display unit 143 such that any one of the light rays from the display unit 143 of the module 140 enters the eyepiece 120, the receiving space therein A frame (151a) is formed and disposed between the optical path converter 134 and the eyepiece 120, and the reticle 133 and the display 143 are fixed to the rotating shaft 154a provided on both sides It includes a moving member 154 that is rotatably supported in the accommodation space 151a of the first frame 151 through.
  • the frame, the first frame 151 is provided with an eyepiece 120 is fixed at one end and an accommodation space 151a with one side open at the other end, and one end is an opening of the accommodation space 151a.
  • the second frame 152 fixed to the other end of the first frame 151 and the other end fixed to the optical path conversion unit 134, and the rotating shaft 154a of the moving member 154 to finish the
  • An insertion hole 153a that can be inserted and supported is provided, and includes a third frame 153 disposed on both sides of the receiving space 151a.
  • the moving member 154, the reticle 133 of the optical scope module 130 is fixed to one end of the cylindrical pipe, the display portion of the thermal imaging module 140 on the outer surface of the cylindrical pipe ( 143) is fixed, the reticle 133 is disposed in front of the eyepiece 120 when moved to the first moving position, and the display unit 143 is the eyepiece when moving to the second moving position. It is configured to be disposed in front of 120.
  • a projection 154b is formed on the outer circumferential surface of the rotation shaft 154a, and the rotational radius of the projection 154b is limited to the insertion hole 153a.
  • a stopper 153b capable of being provided may be provided.
  • the optical scope module 130 passes through the sizing optics 132 to provide an image of a target provided as a first optical axis as a second optical axis in which the eyepiece 120 is disposed, so that the user can provide the eyepiece 120 It may further include an optical path conversion unit 134 to view the target image through the reticle 133.
  • the optical path converter 134 may be configured as a pair of prisms or a pair of planar reflectors arranged in a form facing each other on the first and second optical axes.
  • the inclined surface of the prism is used as a reflective surface so that the inclined surfaces face each other on the first and second optical axes.
  • the inclined surface of the prism may be configured as a total internal reflection surface, and the inclined surface may be disposed to face each other on the first optical axis and the second optical axis.
  • the optical path converting unit 134 is made of a pair of planar reflectors, as shown in FIG. 8 (c)
  • the pair of planar reflectors may be arranged in a form facing each other on the first and second optical axes.
  • the optical path converter 134 may be configured by a combination of a triangular prism and a planar reflector.
  • the dot sight module 160 is provided on the inner circumferential surface of the reflector 161 disposed in the third through hole 113 of the housing 110, and the barrel connecting the third through hole 113 and the fifth through hole 115. It is arranged between the dot target generating unit 162 and the dot target generating unit 162 and the reflector 161 to provide a dot target of the dot target provided from the dot target generating unit 162 Reflects the light beam toward the reflector 161, passes through the reflector 161 and transmits the light beam from the target provided toward the user and the light reflected from the reflector 161 and reflected through the dot target light provided to the user And a beam splitter 163. Since the configuration and operation principle of the dot sight module 160 is known through Korean Patent Registration No. 10-1511420 and Korean Patent Publication No. 10-2015-0069245, detailed description thereof will be omitted.
  • the user selects one of the optical scope module 130 and the thermal imaging module 140 through the eyepiece 120 to observe the target, or the dot sight module through the fifth through 115
  • the target can be observed through 160.
  • each mode can be switched quickly.
  • a driving means capable of providing a rotational driving force according to a control signal input by a user is connected to the rotating shaft 154a of the moving member 154, or exposed to the outside of the housing 110 Rotation knob that can be rotated directly by the user can be connected.
  • FIG. 10 is a cross-sectional view showing a state of using an optical scope module according to the present invention composite optical aiming device
  • FIG. 11 is a cross-sectional view taken along line A-A 'in FIG. 10
  • FIG. 12 is according to a composite optical aiming device of the present invention
  • Fig. 13 is a cross-sectional view showing a state of using a thermal imaging module
  • Fig. 13 is a cross-sectional view taken along line B-B 'in Fig. 12
  • Fig. 14 is a cross-sectional view showing a state of using a dot sight module according to the present invention compound optical aiming device.
  • 10 and 11 illustrate a state in which the user aims the target in front through the optical scope module 130.
  • the optical scope module 130 is disposed in the first through hole 111 located on one side of the front of the housing 110, and the thermal imaging module 140 is disposed in the second through hole 112 located on the other side of the front of the housing 110.
  • the eyepiece 120 is disposed in the fourth through hole 114 located in the center of the rear of the housing 110.
  • the reticle 133 and the switching unit 150 for controlling light beams from the display unit 143 are disposed in front of the eyepiece 120, and a moving member rotating in the front region of the eyepiece 120 (
  • the reticle 133 of the optical scope module 130 is fixed to one side of 154, and the display portion 143 of the thermal image module 140 is fixed to the other side of the moving member 154.
  • the user selects an optical scope mode for observing the image of the target through the optical scope module 130 by controlling the rotational position of the moving member 154, or observes the image of the target through the thermal imaging module 140. You can select the thermal imaging mode.
  • the moving member 154 is provided between the first frame 151 fixed to the front end side of the eyepiece 120 and the second frame 152 fixed to the optical path converter 134 side.
  • the rotation shafts 154a provided on both sides are rotatably coupled to the insertion holes 153a of the third frame 153 fixed to both sides of the accommodation space 151a.
  • the moving member 154 moves to the first moving position, and the reticle 133 is positioned between the switching unit 150 and the eyepiece 120.
  • the protrusion 154b formed on the rotating shaft 154a of the moving member 154 is a stopper formed in the insertion hole 153a of the third frame 153 ( 153b), the first moving position of the moving member 154 is guided, so that the reticle 133 can be positioned at the correct position in front of the eyepiece 120.
  • visible light incident from the target in front is provided as a first optical axis through the objective lens 131 for the scope and the sizing optics 132.
  • the optical path converter 134 After being transmitted to the second optical axis by the optical path converter 134, passes through the reticle 133 and is imaged by the user's eye through the eyepiece 120. That is, the user can observe the image of the target overlapping with the reticle 133, so that the target can be aimed using the reticle 133.
  • FIGS. 12 and 13 illustrate a state in which the user aims the target in front through the thermal image module 140.
  • the moving member 154 moves to the second moving position, and the optical path between the switching unit 150 and the eyepiece 120 is blocked by the moving member 154.
  • the display unit 143 is positioned in front of the eyepiece 120.
  • the protrusion 154b formed on the rotating shaft 154a of the moving member 154 is formed in the insertion hole 153a of the third frame 153 ( 153b) is in close contact with the other side, the second moving position of the moving member 154 is guided, so that the display unit 143 can be positioned at the correct position in front of the eyepiece 120.
  • infrared light incident from the target in front passes through the objective lens 141 for thermal imaging and is provided to the infrared detection element 142 to generate a thermal image.
  • the signal is generated, and the thermal image signal is displayed through the display unit 143 electrically connected to the infrared detection element 142, and thus is imaged by the user's eye through the eyepiece 120. That is, the user can observe the image of the target using infrared rays in a dark environment, and thereby aim the target.
  • FIG. 14 illustrates a state in which a user aims a target in front through the dot sight module 160.
  • the light incident from the target in front passes through the reflector 161 and the beam splitter 163 of the dot sight module 160 disposed in the third through hole 113 of the housing 110 and is imaged in the eyes of the user.
  • the dot target provided from the dot target generator 162 disposed on the bottom surface of the beam splitter 163 is reflected from the beam splitter 163 toward the reflector 161, and then reflected back by the reflector 161 to reflect the beam. It passes through the splitter 163 and is provided to the user's eyes.
  • the dot target is formed as a virtual image in front of the user by the reflector 161, the user can aim the target by overlapping the target image and the dot target virtual image.
  • the target is selected by selecting any one of the optical scope module 130 and the thermal imaging module 140 through one eyepiece lens 120 disposed at the lower center of the rear of the housing 110.
  • the dot sight module 160 may be selected through the fifth through hole 115 disposed at the upper center of the rear surface of the housing 110 to aim the target.
  • the optical scope module 130, the thermal imaging module 140, and the dot sight module 160 are disposed in one housing 110 installed in the firearm to enable quick and accurate aiming in various environments. At the same time, it is possible to selectively observe the images of the optical scope module 130 and the thermal imaging module 140 using one eyepiece 120, thereby providing the advantage of reducing the weight of the product and improving portability. do.
  • FIG. 15 is a schematic configuration diagram showing the operation of the composite optical aiming device according to the second embodiment of the present invention.
  • FIG. 15 (a) shows a state in which the moving member 154 'is moved to the first moving position and the reticle 133 is disposed in the front region of the eyepiece 120
  • FIG. 15 (b) Denotes a state in which the moving member 154 ′ is moved to the second moving position and the display unit 143 is disposed in the front region of the eyepiece 120.
  • a guide for guiding the sliding of the moving member 154 'to the switching unit 150', and a stopper capable of guiding the first moving position and the second moving position of the moving member 154 '. May be additionally provided.
  • FIG. 16 is a schematic configuration diagram showing a switching unit of the composite optical aiming device according to the third embodiment of the present invention.
  • the reticle 133 of the optical scope module 130 is disposed in front of the eyepiece 120
  • the display unit of the thermal imaging module 140 143 is disposed at a position off the optical path between the reticle 133 and the eyepiece 120
  • the switching unit 150 is inclined in the region between the reticle 133 and the eyepiece 120. It includes a movable member 154 "that is movably disposed so as to be capable of reflecting light rays provided from the display unit 143 on a surface facing the display unit 143 of the movable member 154". A reflective surface can be formed.
  • the moving member 154" when the moving member 154 "is rotated to the first moving position, the moving member 154" is a sight between the reticle 133 and the eyepiece 120. Since it is separated from the furnace, light from the reticle 133 is provided toward the eyepiece 120, so that a user can observe the image of an external object formed on the reticle 133.
  • the moving member 154" when the moving member 154 "is rotated to the second moving position, the moving member 154" is an optical path between the reticle 133 and the eyepiece 120. It is arranged obliquely on the screen to block the light from the reticle 133 and at the same time reflects the light from the display unit 143 toward the eyepiece 120, so that the user outputs heat through the display unit 143 The image signal can be observed.
  • the moving member 154 "rotates and moves to the first moving position and the second moving position, for example, but the moving member is moved from the second moving position in FIG. 16 (b). It may also be possible to configure to move to another first moving position while sliding in the Z-axis direction shown in FIG. 16B.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Telescopes (AREA)

Abstract

본 발명은 복합 광학 조준장치에 관한 것으로서, 본 발명에 따른 복합 광학 조준장치는 하우징;과, 상기 하우징의 후단부에 배치되는 접안렌즈;와, 상기 하우징의 전단부에 형성된 제1통공에 배치되는 스코프용 대물렌즈와, 상기 스코프용 대물렌즈의 후방에 배치되는 정립광학부와, 상기 접안렌즈의 전방 영역에 배치되는 레티클을 포함하는 광학식 스코프 모듈;과, 상기 하우징의 전단부에 형성된 제2통공에 배치되는 열영상용 대물렌즈와, 상기 열영상용 대물렌즈의 후방에 배치되는 적외선 검출소자와, 상기 접안렌즈의 전방 영역에 배치되고 상기 적외선 검출소자에서 획득한 열화상신호를 출력하는 디스플레이부를 포함하는 열영상 모듈; 및 상기 광학식 스코프 모듈의 레티클에 결상된 외부 물체의 상으로부터의 광선과 상기 열영상 모듈의 디스플레이부로부터의 광선 중 어느 하나가 상기 접안렌즈로 입사되도록 상기 레티클과 디스플레이부로부터의 광선을 제어하는 전환부;를 포함하는 것을 특징으로 한다.

Description

복합 광학 조준장치
본 발명은 복합 광학 조준장치에 관한 것으로서, 보다 상세하게는 하나의 하우징에 원거리 정밀 조준이 가능한 광학식 스코프 모듈과 어두운 환경에서 조준이 가능한 열영상 모듈 및 근거리 신속 조준이 가능한 도트사이트 모듈을 마련하되, 각 모드의 전환을 용이하게 할 수 있는 복합 광학 조준장치에 관한 것이다.
일반적으로, 조준경은 외부목표물을 정확하게 조준할 수 있도록 총기의 일 측부에 결합될 수 있다. 그런데, 총기 중 특히 소총의 경우 가늠자와 가늠쇠의 조준선 정렬에 의한 조준이 이뤄지게 되는데, 상기 조준이 얼마나 신속하게 이뤄져 조준사격을 할 수 있는지를 나타내는 신속성과, 상기 조준사격이 정확하게 표적을 향하는지를 나타내는 정확성이 매우 중요하다.
그러나 작은 진동이나 떨림에도 조준선 정렬이 어려워지고, 근거리나 급박한 상황에서 요청되는 신속한 조준에 불리한 문제점이 있었다.
즉, 조준사격 방법에서는 목표 포착 및 확인, 조준선 정렬, 조준 등의 복잡한 과정과 시간이 요구되며, 가늠쇠와 가늠자 자체가 매우 작아서 이를 정확하게 정렬함에 있어 작은 떨림에도 민감하게 반응할 뿐만 아니라 지나치게 조준선 정렬에 신경을 쓰다 보면 표적이나 전방 상황보다는 가늠쇠와 가늠자 자체에 시선이 집중되어 시야가 좁아지게 된다.
이와 같은 조준선 정렬의 번거로움을 해결하면서 좀 더 정확성을 높이기 위해 광학식 스코프가 제안되었다.
광학식 스코프는 대물렌즈와 대안렌즈 레티클(reticle:조준선)로 구성되는 배율이 있는 광학계를 사용하여 목표물을 확대해서 볼 수 있기 때문에 목표물의 식별능력이 뛰어나 스코프 내부에 있는 레티클(reticle)을 통해 정조준을 가능하게 한다.
이와 같은 광학식 스코프는 도립상을 정립상으로 바꾸는 역할을 하는 정립광학부가 필요한데 여기에는 프리즘 방식과 릴레이렌즈 방식으로 크게 나누어진다. 도 1은 프리즘 방식의 광학식 스코프 구조도이고, 도 2는 릴레이렌즈 방식의 광학식 스코프 구조도이다.
먼저, 도 1을 참조하면, 프리즘 방식의 광학식 스코프(10)는 대물렌즈(11), 프리즘 광학계(12), 레티클(13) 및 접안렌즈(14) 등으로 구성된다. 도 1에는 대물렌즈(11)와 접안렌즈(14)가 각각 하나의 렌즈로 구성되어 있으나 실제적으로는 수차 등을 제거하기 위해 여러 개의 렌즈로 구성하기도 한다.
대물렌즈(11)에 의한 외부 물체의 상을 레티클(13) 위치에 결상을 하면 외부 물체의 상과 레티클(13)을 동시에 접안렌즈(14)에 의해 확대해서 보는 것이 망원경의 원리이다. 이때 대물렌즈(11)의 상이 레티클(13)에 그대로 결상하면 상이 거꾸로 보이기 때문에 이것을 다시 한 번 거꾸로 보이게 하여 접안렌즈(14)를 통해 보이는 상이 정립될 수 있도록 하는 것이 상기 대물렌즈(11)와 레티클(13) 사이에서 도립상을 정립상으로 바꾸는 역할을 하는 정립광학부인 프리즘 광학계(12)이다.
다음, 도 2를 참조하면, 도립상을 정립상으로 바꾸는 역할을 하는 정립광학부의 또 하나의 방식인 릴레이렌즈 방식을 채택한 광학식 스코프(10')는, 대물렌즈(11), 필드렌즈(15), 레티클(13), 릴레이렌즈(16), 접안렌즈(14) 등으로 구성된다. 도 2에는 대물렌즈(11), 필드렌즈(15), 접안렌즈(14)가 각각 한 개의 렌즈로 구성되어 있으나 실제적으로는 수차 등을 제거하기 위해 여러 개의 렌즈로 구성하기도 한다.
대물렌즈(11)에 의한 외부 물체의 상을 레티클(13) 위치에 결상을 하면 릴레이렌즈(16)가 외부 물체의 상과 레티클(13)의 시표를 동시에 접안렌즈(14) 앞쪽에 재 결상시켜 도립상을 정립상으로 바꾸어주고, 이것을 접안렌즈(14)에 의해 확대해서 보는 것이 릴레이 렌즈 방식의 망원경의 원리이다. 이때, 대물렌즈(11)의 상이 레티클(13)에 그대로 결상하면 상이 도립되어 거꾸로 보이게 되는데, 이것을 다시 한 번 릴레이렌즈(16)에 의해 재 결상시켜 다시 거꾸로 보이게 하므로 접안렌즈(14) 앞쪽에서의 상은 정립상으로 결상하게 되며, 이 상을 접안렌즈(14)가 확대해 보게 되는 것이다.
여기서, 릴레이렌즈(16) 전후에 존재하는 필드렌즈(15)는 릴레이렌즈(16)에 입사하는 광속을 모아주는 역할을 한다.
상기 광학식 스코프는 목표물을 확대해서 조준할 수 있는 장점이 있지만, 레티클(13)의 시표와 목표물을 일치(조준선 정렬)시키기 위해 관찰자의 눈의 주시선이 레티클(13)의 시표와 목표물을 지나가도록 하여야하기 때문에 관찰자는 조준을 하기 위해 눈의 주시선이 스코프 내의 관찰창의 중심을 지나도록 관찰자의 눈의 위치가 움직여야 한다. 따라서 관찰자는 사격을 정확하게 하기 위해서는 눈을 항상 관찰창의 중심에 두고 사격을 해야 하는데 만약 관찰창의 주변에 목표물이 보이면 다시 그 목표물을 관찰창의 중심에 두면서 관찰자의 눈도 관찰창의 중심에 두도록 하기 위해 총열을 조정해야한다. 이러한 행위는 사격 시간을 지체하기 때문에 사격의 신속성을 저해한다.
이와 같은 문제를 해결하기 위해 도트사이트가 제안되었다.
도트사이트는 간단하고 빠른 조준이 가능하다는데 특징이 있으며, 신속한 대응이 필요한 급박한 상황이나 근거리에서 매우 유용한 장점이 있다.
즉, 도트사이트는 조준선 정렬의 시간이 거의 요구되지 않는데다 조준 자체도 도트 발생부의 도트시표(dot reticle)의 반사경에 의한 허상을 표적으로 신속하게 이동시키면 되고, 상기 광학식 스코프와는 다르게 도트사이트의 관찰창의 중앙에 도트 발생부의 도트시표의 반사경에 의한 허상을 옮겨서 보지 않아도 되기 때문에 조준에 걸리는 시간뿐만 아니라 조준으로 인해 주변 시야 및 상황확인이 방해되는 것을 최소한으로 줄일 수 있는 장점이 있다.
도 3은 일반적인 도트사이트 장치의 구조도이다. 도 3을 참조하면, 상술한 도트사이트 장치(20)는, 원통형 구조의 조준기 하우징(21) 상부에 위치하는 내부 경통 정렬용 조절단자(22), 상기 하우징(21)의 하부에 위치하는 소총 가늠자 뭉치(미도시) 상단에 레일방식으로 착탈가능하게 연결되는 고정그릴(23), 하우징(21) 내부에 위치하는 보호용 윈도우(24), 하우징(21) 내부 경통 내측면의 소정부에 위치하여 도트시표 발생부(25), 특정 곡률을 가지며 하우징(21) 내부의 상기 보호용 윈도우(24) 뒤에 위치하는 반사경(26)을 포함하여 구성될 수 있다.
사용자(관측자)는 도트시표 발생부의 도트시표의 반사경에 의한 허상이 목표물이 일치할 때 사격함으로써 조준을 용이하게 할 수 있다.
한편, 상기와 같은 원거리용 광학식 스코프와 근거리용 도트사이트는 주변 환경이 밝은 경우에만 목표물을 관찰할 수 있기 때문에, 가시광선에 의해 목표물을 관찰할 수 없는 어두운 환경에서는 목표물에서 발생되는 적외선 파장의 빛을 이용해 목표물을 관찰할 수 있는 열영상 조준기가 별도로 필요하게 된다.
이러한 열영상 조준기는 적외선 이미지를 결상하는 적외선 결상용 대물렌즈와, 적외선을 감지하는 적외선 검출소자와, 적외선 검출소자에 감지된 열화상신호를 사용자가 볼 수 있도록 이미지로 제공하는 디스플레이부와, 디스플레이부에서 출력되는 이미지를 확대하여 보여주는 접안렌즈로 구성될 수 있다.
하지만, 상기와 같은 광학식 스코프와 도트사이트 및 열영상 조준기를 사용자가 각각 휴대하면서 주변 상황에 따라 어느 하나를 선택하여 총기에 장착한 다음 목표물을 조준하는 경우에는, 신속한 대응이 불가능할 뿐만 아니라 사용자가 휴대해야 하는 장비가 증가하게 되어 이동에 불편함이 따르게 된다.
또한, 총기에 마련된 장착레일에 광학식 스코프와 도트사이트 및 열영상 조준기를 각각 부착하는 경우에는 총기의 부피와 중량이 증가하여 휴대성이 떨어지고, 주변 상황에 따라 서로 다른 위치에 부착된 조준장치를 이용해 목표물을 조준하는 경우에는 신속한 대응이 어려운 문제가 있다.
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 하나의 하우징에 원거리 정밀 조준이 가능한 광학식 스코프 모듈과 어두운 환경에서 조준이 가능한 열영상 모듈 및 근거리 신속 조준이 가능한 도트사이트 모듈을 마련하되, 각 모드의 전환을 용이하게 할 수 있는 복합 광학 조준장치를 제공함에 있다.
상기 목적은, 본 발명에 따라, 하우징;과, 상기 하우징의 후단부에 배치되는 접안렌즈;와, 상기 하우징의 전단부에 형성된 제1통공에 배치되는 스코프용 대물렌즈와, 상기 스코프용 대물렌즈의 후방에 배치되는 정립광학부와, 상기 접안렌즈의 전방 영역에 배치되는 레티클을 포함하는 광학식 스코프 모듈;과, 상기 하우징의 전단부에 형성된 제2통공에 배치되는 열영상용 대물렌즈와, 상기 열영상용 대물렌즈의 후방에 배치되는 적외선 검출소자와, 상기 접안렌즈의 전방 영역에 배치되고 상기 적외선 검출소자에서 획득한 열화상신호를 출력하는 디스플레이부를 포함하는 열영상 모듈; 및 상기 광학식 스코프 모듈의 레티클에 결상된 외부 물체의 상으로부터의 광선과 상기 열영상 모듈의 디스플레이부로부터의 광선 중 어느 하나가 상기 접안렌즈로 입사되도록 상기 레티클과 디스플레이부로부터의 광선을 제어하는 전환부;를 포함하는 복합 광학 조준장치에 의해 달성된다.
여기서, 상기 전환부는 상기 레티클과 디스플레이부가 고정된 상태로 상기 접안렌즈의 전방에 회동 가능하게 배치되는 이동부재를 포함하며, 상기 레티클은 상기 이동부재가 제1이동위치로 이동한 상태에서 접안렌즈의 광경로 상에 배치되고, 상기 디스플레이부는 상기 이동부재가 제2이동위치로 이동한 상태에서 접안렌즈의 광경로 상에 배치되는 것이 바람직하다.
또한, 상기 전환부는, 상기 이동부재를 회동 가능한 상태로 수용할 수 있는 수용공간을 형성하는 프레임을 포함하고, 상기 이동부재의 양측에는 회전축이 형성되고, 상기 프레임의 양측에는 상기 회전축이 삽입 지지되는 삽입공이 형성되는 것이 바람직하다.
또한, 상기 회전축에는 돌기가 형성되고, 상기 삽입공에는 상기 이동부재의 제1이동위치와 제2이동위치를 안내하도록 상기 돌기의 회전반경을 제한하는 스토퍼가 마련되는 것이 바람직하다.
또한, 상기 광학식 스코프 모듈은 상기 정립광학부를 통해 제1광축으로 제공되는 목표물의 상을 상기 접안렌즈의 광경로인 제2광축으로 전달하는 광경로 변환부를 더 포함하는 것이 바람직하다.
또한, 상기 광경로 변환부는 상기 제1광축과 제2광축에 서로 마주보는 형태로 배치되는 한 쌍의 프리즘 또는 평면반사경으로 이루어지는 것이 바람직하다.
또한, 상기 하우징의 전단부에 형성된 제3통공에 배치되는 반사경과, 상기 반사경을 향해 조준시표를 제공하는 도트시표 발생부를 포함하는 도트사이트 모듈;을 더 포함하며, 상기 반사경은 상기 도트시표 발생부에서 제공되는 도트시표를 사용자의 전방에 허상으로 결상하는 것이 바람직하다.
또한, 상기 하우징의 후면에는 상기 접안렌즈가 배치되는 제4통공과, 상기 도트사이트 모듈을 통해 전방의 목표물을 관찰할 수 있는 제5통공이 형성되고, 상기 제4통공과 제5통공은 인접 배치되는 것이 바람직하다.
또한, 상기 레티클은 접안렌즈의 전방에 배치되고, 상기 디스플레이부는 상기 레티클과 접안렌즈 사이의 광경로로부터 벗어난 위치에 배치되고, 상기 전환부는 상기 레티클과 접안렌즈의 사이영역에 경사 배치될 수 있도록 이동 가능하게 배치되는 이동부재를 포함하며, 상기 이동부재는 제1이동위치로 이동한 상태에서 상기 레티클과 접안렌즈 사이의 광경로 상에서 벗어나 상기 레티클로부터의 광선이 접안렌즈를 향하도록 하고, 제2이동위치로 이동한 상태에서 상기 레티클과 접안렌즈 사이의 광경로를 차단하는 동시에 상기 디스플레이부로부터 제공되는 광선을 접안렌즈를 향해 반사시키는 것이 바람직하다.
본 발명에 따르면, 하나의 하우징에 원거리 정밀 조준이 가능한 광학식 스코프 모듈과 어두운 환경에서 조준이 가능한 열영상 모듈 및 근거리 신속 조준이 가능한 도트사이트 모듈을 마련하되, 각 모드의 전환을 용이하게 할 수 있는 복합 광학 조준장치가 제공된다.
도 1은 프리즘 방식의 광학식 스코프 구조도,
도 2는 릴레이렌즈 방식의 광학식 스코프 구조도,
도 3은 일반적인 도트사이트 장치의 구조도,
도 4 및 도 5는 본 발명 복합 광학 조준장치의 사시도,
도 6은 도 4의 하우징을 제거한 상태의 사시도,
도 7은 본 발명 복합 광학 조준장치의 분해사시도,
도 8은 본 발명 복합 광학 조준장치에 따른 광경로 변환부의 다양한 실시형태를 나타낸 단면도,
도 9는 본 발명 복합 광학 조준장치에 따른 전환부의 분해사시도,
도 10은 본 발명 복합 광학 조준장치에 따라 광학식 스코프 모듈을 사용하는 상태를 나타내는 단면도,
도 11은 도 10의 A-A'선 단면도,
도 12는 본 발명 복합 광학 조준장치에 따라 열영상 모듈을 사용하는 상태를 나타내는 단면도,
도 13은 도 12의 B-B'선 단면도이고,
도 14는 본 발명 복합 광학 조준장치에 따라 도트사이트 모듈을 사용하는 상태를 나타내는 단면도,
도 15는 본 발명의 제2실시예에 따른 복합 광학 조준장치를 나타내는 개략구성도이고,
도 16은 본 발명의 제3실시예에 따른 복합 광학 조준장치를 나타내는 개략구성도이다.
설명에 앞서, 여러 실시예에 있어서, 동일한 구성을 가지는 구성요소에 대해서는 동일한 부호를 사용하여 대표적으로 제1실시예에서 설명하고, 그 외의 실시예에서는 제1실시예와 다른 구성에 대해서 설명하기로 한다.
이하, 첨부한 도면을 참조하여 본 발명의 제1실시예에 따른 복합 광학 조준장치에 대하여 상세하게 설명한다.
첨부도면 중, 도 4 및 도 5는 본 발명 복합 광학 조준장치의 사시도이고, 도 6은 도 4의 하우징을 제거한 상태의 사시도이고, 도 7은 본 발명 복합 광학 조준장치의 분해사시도이고, 도 8은 본 발명 복합 광학 조준장치에 따른 광경로 변환부의 다양한 실시형태를 나타낸 단면도이고, 도 9는 본 발명 복합 광학 조준장치에 따른 전환부의 분해사시도이다.
상기 도면에서 도시하는 바와 같은 본 발명 복합 광학 조준장치는 원거리 정밀 조준이 가능한 광학식 스코프 모듈(130)과 어두운 환경에서 조준이 가능한 열영상 모듈(140) 및 근거리 신속 조준이 가능한 도트사이트 모듈(160)이 하나의 하우징(110) 내에 마련되는 것으로서, 하우징(110), 접안렌즈(120), 광학식 스코프 모듈(130), 열영상 모듈(140), 전환부(150) 및 도트사이트 모듈(160)을 포함하여 구성된다.
상기 하우징(110)은, 전면의 중앙하부에는 상기 광학식 스코프 모듈(130)이 배치되는 제1통공(111)과 상기 열영상 모듈(140)이 배치되는 제2통공(112)이 형성되고, 전면의 중앙상부에는 상기 도트사이트 모듈(160)이 배치되는 제3통공(113)이 형성되고, 후면의 중앙하부에는 접안렌즈(120)가 배치되는 제4통공(114)이 형성되고, 후면의 중앙상부에는 상기 제3통공(113)과 동일 축선 상에 배치되고 상기 제3통공과 연통하는 제5통공(115)이 형성된다.
상기 접안렌즈(120)는 상기 하우징(110)의 후면에 마련된 제4통공(114)에 배치되는 것으로서, 상을 확대하여 사용자에게 제공할 수 있도록 소정의 배율을 갖는 확대 렌즈로 구성된다.
상기 광학식 스코프 모듈(130)은 상기 하우징(110)의 제1통공(111)에 배치되는 스코프용 대물렌즈(131)와, 상기 스코프용 대물렌즈(131)의 후방에 배치되는 정립광학부(132)와, 상기 접안렌즈(120)의 전방에 배치되어 조준시표를 제공하는 레티클(133)을 포함한다.
여기서, 상기 스코프용 대물렌즈(131)는 목표물의 상을 수 배 확대하여 제공하는 것으로, 상기 레티클(133)에 목표물의 상을 결상한다.
상기 정립광학부(erecting optical part, 132)는 릴레이 렌즈 결상 방식(relay lens imaging type), 지붕형페찬프리즘 방식(roofed Pechan prism type), 아베코니그 프리즘 방식(Abbe-Konig prism type)이 적용될 수 있으며, 본 실시예에서는 지붕형페찬프리즘 방식이 적용된 것으로 예를 들어 설명한다.
또한, 상기 레티클(133)은 배율이 없는 투명렌즈 상에 조준시표가 형성된 형태로 이루어질 수 있다.
상기 열영상 모듈(140)은 상기 하우징(110)의 제2통공(112)에 배치되는 열영상용 대물렌즈(141)와, 상기 열영상용 대물렌즈(141)의 후방에 배치되는 적외선 검출소자(142)와, 상기 접안렌즈(120)의 전방에 배치되고 상기 적외선 검출소자(142)에서 검출된 열화상신호를 이미지로 출력하는 디스플레이부(143)를 포함한다.
여기서, 상기 적외선 검출소자(142)는 상기 열영상용 대물렌즈(141)를 통해 입사되는 적외선을 감지하여 영상신호를 생성할 수 있는 적외선(infrared) 이미지 센서로 구성될 수 있다.
또한, 상기 디스플레이부(143)는 상기 적외선 검출소자(142)에서 생성된 영상신호를 디스플레이할 수 있는 액정표시장치(liquid crystal device) 또는 유기발광다이오드(Organic Light-Emitting Diode) 등으로 구성될 수 있다.
상기 레티클(133)과 디스플레이부(143)로부터의 광선을 제어하는 전환부(150)는, 상기 광학식 스코프 모듈(130)의 레티클(133)에 결상된 외부 물체의 상으로부터의 광선과 상기 열영상 모듈(140)의 디스플레이부(143)로부터의 광선 중 어느 하나가 상기 접안렌즈(120)로 입사되도록, 상기 레티클(133)과 디스플레이부(143)로부터의 광선을 제어하는 것으로서, 내부에 수용공간(151a)이 형성되어 광경로 변환부(134)와 접안렌즈(120) 사이에 배치되는 프레임과, 상기 레티클(133)과 디스플레이부(143)가 고정된 상태로 양측에 마련된 회전축(154a)을 통해 상기 제1프레임(151)의 수용공간(151a) 내에 회동 가능하게 지지되는 이동부재(154)를 포함한다.
여기서, 상기 프레임은, 일단부에 접안렌즈(120)가 고정되고 타단부에는 일측이 개구된 수용공간(151a)이 마련되는 제1프레임(151)과, 일단부는 상기 수용공간(151a)의 개구를 마감하도록 상기 제1프레임(151)의 타단부에 고정되고 타단부는 상기 광경로 변환부(134)에 고정되는 제2프레임(152)과, 상기 이동부재(154)의 회전축(154a)이 삽입 지지될 수 있는 삽입공(153a)이 마련되고 상기 수용공간(151a)의 양측에 각각 배치되는 제3프레임(153)을 포함한다.
또한, 상기 이동부재(154)는, 원통형 파이프의 일단부에 상기 광학식 스코프 모듈(130)의 레티클(133)이 고정되고, 원통형 파이프의 바깥쪽 면에 상기 열영상 모듈(140)의 디스플레이부(143)가 고정되며, 제1이동위치로 이동한 상태에서는 상기 레티클(133)이 접안렌즈(120)의 전방에 배치되고, 제2이동위치로 이동한 상태에서는 상기 디스플레이부(143)가 접안렌즈(120)의 전방에 배치되도록 구성된다. 또한, 상기 이동부재(154)의 회동위치를 안내하기 위해, 상기 회전축(154a)의 외주면에는 돌기(154b)가 형성되고, 상기 삽입공(153a)에는 상기 돌기(154b)의 회전반경을 제한할 수 있는 스토퍼(153b)가 마련될 수 있다.
상기 광학식 스코프 모듈(130)은 상기 정립광학부(132)를 통과하여 제1광축으로 제공되는 목표물의 상을 접안렌즈(120)가 배치된 제2광축으로 제공하여 사용자가 접안렌즈(120)를 통해 목표물의 상을 레티클(133)과 중첩하여 볼 수 있도록 하는 광경로 변환부(134)를 더 포함할 수 있다. 이러한 광경로 변환부(134)는 상기 제1광축과 제2광축에 서로 마주보는 형태로 배치되는 한 쌍의 프리즘 또는 한 쌍의 평면반사경으로 구성될 수 있다.
구체적으로, 광경로 변환부(134)가 한 쌍의 프리즘으로 이루어지는 경우에는 도 8의 (a)와 같이 프리즘의 빗면을 반사면으로 하여 빗면이 제1광축과 제2광축에 서로 마주보는 형태로 배치하거나, 도 8의 (b)와 같이 프리즘의 빗면을 내부 전반사면으로 구성하여 빗면이 제1광축과 제2광축에 서로 마주보는 형태로 배치할 수 있다. 또한, 광경로 변환부(134)가 한 쌍의 평면반사경으로 이루어지는 경우에는 도 8의 (c)와 같이 한 쌍의 평면반사경을 제1광축과 제2광축에 서로 마주보는 형태로 배치할 수 있다. 한편, 도면에는 도시하지 않았으나 상기 광경로 변환부(134)는 삼각프리즘과 평면반사경의 조합으로도 구성될 수 있을 것이다.
상기 도트사이트 모듈(160)은 상기 하우징(110)의 제3통공(113)에 배치되는 반사경(161)과, 상기 제3통공(113)과 제5통공(115)을 연결하는 경통의 내주면에 배치되어 도트시표를 제공하는 도트시표 발생부(162) 및 상기 도트시표 발생부(162)와 반사경(161) 사이에 배치되어 상기 도트시표 발생부(162)로부터 제공되는 도트시표의 광선을 반사경(161)을 향해 반사시키고, 상기 반사경(161)을 투과하여 사용자를 향해 제공되는 목표물로부터의 광선과 상기 반사경(161)에서 되반사되어 사용자를 향해 제공되는 도트시표의 광선을 투과하는 빔 스플리터(163)를 포함한다. 이러한 도트사이트 모듈(160)의 구성 및 작동원리는 대한민국 등록특허 제10-1511420호 및 대한민국 공개특허 제10-2015-0069245호를 통해 공지되었으므로, 이에 대한 구체적인 설명은 생략한다.
본 실시예에 따르면, 사용자는 접안렌즈(120)를 통해 광학식 스코프 모듈(130)과 열영상 모듈(140) 중 어느 하나를 선택하여 목표물을 관찰하거나, 제5통공(115)을 통해 도트사이트 모듈(160)을 통해 목표물을 관찰할 수 있다.
이때, 상기 제5통공(115)은 접안렌즈(120)가 배치되는 제4통공(114)에 인접하여 배치됨에 따라, 사용자가 접안렌즈(120)를 통해 목표물을 관찰하거나 도트사이트 모듈(160)을 통해 목표물을 관찰하는 과정에서, 각 모드의 전환이 신속하게 이루어질 수 있다.
한편, 도면에는 도시하지 않았으나, 상기 이동부재(154)의 회전축(154a)에는 사용자에 의해 입력되는 제어신호에 따라 회전구동력을 제공할 수 있는 구동수단이 연결되거나, 하우징(110)의 외부로 노출되어 사용자가 직접 회전시킬 수 있는 회전노브가 연결될 수 있다.
*지금부터는 상술한 복합 광학 조준장치의 제1실시예의 작동에 대하여 설명한다.
첨부도면 중, 도 10은 본 발명 복합 광학 조준장치에 따라 광학식 스코프 모듈을 사용하는 상태를 나타내는 단면도, 도 11은 도 10의 A-A'선 단면도, 도 12는 본 발명 복합 광학 조준장치에 따라 열영상 모듈을 사용하는 상태를 나타내는 단면도, 도 13은 도 12의 B-B'선 단면도, 도 14는 본 발명 복합 광학 조준장치에 따라 도트사이트 모듈을 사용하는 상태를 나타내는 단면도이다.
도 10 및 도 11은 사용자가 광학식 스코프 모듈(130)을 통해 전방의 목표물을 조준하는 상태를 나타내는 것이다.
광학식 스코프 모듈(130)은 하우징(110)의 전면 일측에 위치한 제1통공(111)에 배치되고, 열영상 모듈(140)은 하우징(110)의 전면 타측에 위치한 제2통공(112)에 배치되고, 접안렌즈(120)는 하우징(110)의 후면 중앙에 위치한 제4통공(114)에 배치된다.
또한, 레티클(133)과 디스플레이부(143)로부터의 광선을 제어하는 전환부(150)는 상기 접안렌즈(120)의 전방에 배치되고, 접안렌즈(120)의 전방 영역에서 회동하는 이동부재(154)의 일측에는 상기 광학식 스코프 모듈(130)의 레티클(133)이 고정되고, 이동부재(154)의 타측에는 상기 열영상 모듈(140)의 디스플레이부(143)가 고정된다.
따라서, 사용자는 상기 이동부재(154)의 회동위치를 제어하여 광학식 스코프 모듈(130)을 통해 목표물의 상을 관찰하는 광학식 스코프 모드를 선택하거나, 열영상 모듈(140)을 통해 목표물의 상을 관찰하는 열영상 모드를 선택할 수 있다.
상기 이동부재(154)는 상기 접안렌즈(120)의 전단부 측에 고정되는 제1프레임(151)과 상기 광경로 변환부(134) 측에 고정되는 제2프레임(152)의 사이에 마련되는 수용공간(151a) 내에 배치되며, 양측에 마련된 회전축(154a)이 상기 수용공간(151a)의 양측에 고정되는 제3프레임(153)의 삽입공(153a)에 회전가능하게 결합된다.
사용자가 광학식 스코프 모드를 선택하면, 상기 이동부재(154)가 제1이동위치로 이동하여 상기 전환부(150)와 접안렌즈(120) 사이에 레티클(133)이 위치하게 된다.
이동부재(154)가 제1이동위치로 이동한 상태에서는 상기 이동부재(154)의 회전축(154a)에 형성된 돌기(154b)가 상기 제3프레임(153)의 삽입공(153a)에 형성된 스토퍼(153b)의 일측에 밀착되면서, 이동부재(154)의 제1이동위치가 안내되므로, 레티클(133)이 접안렌즈(120) 전방의 정확한 위치에 위치하도록 할 수 있다.
상기와 같이 레티클(133)이 접안렌즈(120)의 전방에 배치되면, 전방의 목표물로부터 입사되는 가시광선은 스코프용 대물렌즈(131) 및 정립광학부(132)를 통해 제1광축으로 제공되고, 광경로 변환부(134)에 의해 제2광축으로 전달된 후, 레티클(133)을 통과하여 접안렌즈(120)를 통해 사용자의 눈으로 결상된다. 즉, 사용자는 목표물의 상을 레티클(133)과 중첩하여 관찰할 수 있게 되므로, 레티클(133)을 이용해 목표물을 조준할 수 있게 된다.
한편, 도 12 및 도 13은 사용자가 열영상 모듈(140)을 통해 전방의 목표물을 조준하는 상태를 나타내는 것이다.
사용자가 열영상 모드를 선택하면, 상기 이동부재(154)가 제2이동위치로 이동하여 상기 전환부(150)와 접안렌즈(120) 사이의 광경로는 이동부재(154)에 의해 가로막히게 되고, 접안렌즈(120)의 전방에는 디스플레이부(143)가 위치하게 된다.
이동부재(154)가 제2이동위치로 이동한 상태에서는 상기 이동부재(154)의 회전축(154a)에 형성된 돌기(154b)가 상기 제3프레임(153)의 삽입공(153a)에 형성된 스토퍼(153b)의 타측에 밀착되면서, 이동부재(154)의 제2이동위치가 안내되므로, 디스플레이부(143)가 접안렌즈(120) 전방의 정확한 위치에 위치하도록 할 수 있다.
상기와 같이 디스플레이부(143)가 접안렌즈(120)의 전방에 배치되면, 전방의 목표물로부터 입사되는 적외선이 열영상용 대물렌즈(141)를 통과하여 적외선 검출소자(142)로 제공되어 열화상신호가 생성되고, 열화상신호는 상기 적외선 검출소자(142)와 전기적으로 연결된 디스플레이부(143)를 통해 디스플레이되므로, 접안렌즈(120)를 통해 사용자의 눈으로 결상된다. 즉, 사용자는 어두운 환경에서 적외선을 이용해 목표물의 상을 관찰할 수 있으며, 이를 통해 목표물을 조준할 수 있게 된다.
도 14는 사용자가 도트사이트 모듈(160)을 통해 전방의 목표물을 조준하는 상태를 나타내는 것이다.
전방의 목표물로부터 입사되는 광은 하우징(110)의 제3통공(113)에 배치된 도트사이트 모듈(160)의 반사경(161)과 빔 스플리터(163)를 통과하여 사용자의 눈에 결상되고, 상기 빔 스플리터(163)의 저면에 배치된 도트시표 발생부(162)로부터 제공되는 도트시표는 빔 스플리터(163)에서 반사경(161)을 향해 반사되고, 반사경(161)에서 되반사된 후 빔 스플리터(163)를 통과하여 사용자의 눈으로 제공된다.
이때, 상기 도트시표는 반사경(161)에 의해 사용자의 전방에 허상으로 결상되므로, 사용자는 목표물의 상과 도트시표의 허상을 중첩하여 목표물을 조준할 수 있게 된다.
상기와 같은 본 실시예에 따르면, 하우징(110)의 후면 중앙 하부에 배치된 하나의 접안렌즈(120)를 통해 광학식 스코프 모듈(130)과 열영상 모듈(140) 중 어느 하나를 선택하여 목표물을 조준할 수 있을 뿐만 아니라, 하우징(110)의 후면 중앙 상부에 배치된 제5통공(115)을 통해 도트사이트 모듈(160)을 선택하여 목표물을 조준할 수 있다.
즉, 본 실시예에서는 총기류에 설치되는 하나의 하우징(110)에 광학식 스코프 모듈(130)과 열영상 모듈(140) 및 도트사이트 모듈(160)을 배치하여 다양한 환경에서 신속하고도 정확한 조준을 가능하게 하는 동시에, 하나의 접안렌즈(120)를 이용해 광학식 스코프 모듈(130)과 열영상 모듈(140)의 상을 선택적으로 관찰할 수 있도록 함으로써 제품의 중량을 감소하여 휴대성을 향상시키는 이점을 제공한다.
첨부도면 중, 도 15는 본 발명의 제2실시예에 따른 복합 광학 조준장치의 작용을 나타내는 개략구성도이다.
한편, 상술한 제1실시예에서는 상기 이동부재(154)가 회동하면서 레티클(133)과 디스플레이부(143) 중 어느 하나를 접안렌즈(120)의 전방영역에 배치하는 것으로 예를 들어 설명하였으나, 도 15에 도시된 바와 같이 이동부재(154')가 좌우 또는 상하로 슬라이딩하면서 레티클(133)과 디스플레이부(143) 중 어느 하나를 접안렌즈(120)의 전방영역에 배치하도록 구성하는 것도 가능할 것이다.
구체적으로, 도 15의 (a)는 이동부재(154')가 제1이동위치로 이동하여 레티클(133)을 접안렌즈(120)의 전방영역에 배치한 상태를 나타낸 것이고, 도 15의 (b)는 이동부재(154')가 제2이동위치로 이동하여 디스플레이부(143)를 접안렌즈(120)의 전방영역에 배치한 상태를 나타낸 것이다.
한편, 도면에는 도시하지 않았으나 전환부(150')에는 이동부재(154')의 슬라이딩을 안내하는 가이드와, 이동부재(154')의 제1이동위치와 제2이동위치를 안내할 수 있는 스토퍼가 추가로 마련될 수 있다.
첨부도면 중, 도 16은 본 발명의 제3실시예에 따른 복합 광학 조준장치의 전환부를 나타내는 개략구성도이다.
도 16에 도시된 바와 같이, 본 발명의 제3실시예에 따르면, 광학식 스코프 모듈(130)의 레티클(133)은 접안렌즈(120)의 전방에 배치되고, 열영상 모듈(140)의 디스플레이부(143)는 상기 레티클(133)과 접안렌즈(120) 사이의 광경로로부터 벗어난 위치에 배치되고, 전환부(150")는 상기 레티클(133)과 접안렌즈(120)의 사이영역에 경사 배치될 수 있도록 이동 가능하게 배치되는 이동부재(154")를 포함하며, 상기 이동부재(154")의 상기 디스플레이부(143)와 마주하는 면에는 상기 디스플레이부(143)로부터 제공되는 광선을 반사시킬 수 있는 반사면이 형성될 수 있다.
구체적으로, 도 16의 (a)와 같이 상기 이동부재(154")가 제1이동위치로 회동한 상태에서는, 이동부재(154")가 상기 레티클(133)과 접안렌즈(120) 사이의 광경로 상에서 이탈하여 상기 레티클(133)로부터의 광선이 접안렌즈(120)를 향해 제공되므로, 사용자가 레티클(133)에 결상된 외부 물체의 상을 관찰할 수 있게 된다.
또한, 도 16의 (b)와 같이 상기 이동부재(154")가 제2이동위치로 회동한 상태에서는, 이동부재(154")가 상기 레티클(133)과 접안렌즈(120) 사이의 광경로 상에 경사 배치되어 상기 레티클(133)로부터의 광선을 차단하는 동시에 상기 디스플레이부(143)로부터 제공되는 광선을 접안렌즈(120)를 향해 반사시키므로, 사용자가 디스플레이부(143)를 통해 출력되는 열화상신호를 관찰할 수 있게 된다.
한편, 본 실시예에서는 상기 이동부재(154")가 회동하면서 제1이동위치와 제2이동위치로 이동하는 것으로 예를 들어 설명하였으나, 이동부재가 도 16의 (b)의 제2이동위치에서 도 16의 (b)에 표시된 Z축 방향으로 슬라이딩하면서 또 다른 제1이동위치로 이동할 수 있도록 구성하는 것도 가능할 것이다.
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.

Claims (9)

  1. 하우징;
    상기 하우징의 후단부에 배치되는 접안렌즈;
    상기 하우징의 전단부에 형성된 제1통공에 배치되는 스코프용 대물렌즈와, 상기 스코프용 대물렌즈의 후방에 배치되는 정립광학부와, 상기 접안렌즈의 전방 영역에 배치되는 레티클을 포함하는 광학식 스코프 모듈;
    상기 하우징의 전단부에 형성된 제2통공에 배치되는 열영상용 대물렌즈와, 상기 열영상용 대물렌즈의 후방에 배치되는 적외선 검출소자와, 상기 접안렌즈의 전방 영역에 배치되고 상기 적외선 검출소자에서 획득한 열화상신호를 출력하는 디스플레이부를 포함하는 열영상 모듈; 및
    상기 광학식 스코프 모듈의 레티클에 결상된 외부 물체의 상으로부터의 광선과 상기 열영상 모듈의 디스플레이부로부터의 광선 중 어느 하나가 상기 접안렌즈로 입사되도록 상기 레티클과 디스플레이부로부터의 광선을 제어하는 전환부;를 포함하는 복합 광학 조준장치.
  2. 제 1항에 있어서,
    상기 전환부는 상기 레티클과 디스플레이부가 고정된 상태로 상기 접안렌즈의 전방에 이동가능하게 배치되는 이동부재를 포함하며, 상기 레티클은 상기 이동부재가 제1이동위치로 이동한 상태에서 접안렌즈의 광경로 상에 배치되고, 상기 디스플레이부는 상기 이동부재가 제2이동위치로 이동한 상태에서 접안렌즈의 광경로 상에 배치되는 것을 특징으로 하는 복합 광학 조준장치.
  3. 제 2항에 있어서,
    상기 전환부는, 상기 이동부재를 회동 가능한 상태로 수용할 수 있는 수용공간을 형성하는 프레임을 포함하고,
    상기 이동부재의 양측에는 회전축이 형성되고, 상기 프레임의 양측에는 상기 회전축이 삽입 지지되는 삽입공이 형성되는 것을 특징으로 하는 복합 광학 조준장치.
  4. 제 3항에 있어서,
    상기 회전축에는 돌기가 형성되고, 상기 삽입공에는 상기 이동부재의 제1이동위치와 제2이동위치를 안내하도록 상기 돌기의 회전반경을 제한하는 스토퍼가 마련되는 것을 특징으로 하는 복합 광학 조준장치.
  5. 제 1항에 있어서,
    상기 광학식 스코프 모듈은 상기 정립광학부를 통해 제1광축으로 제공되는 목표물의 상을 상기 접안렌즈의 광경로인 제2광축으로 전달하는 광경로 변환부를 더 포함하는 것을 특징으로 하는 복합 광학 조준장치.
  6. 제 5항에 있어서,
    상기 광경로 변환부는 상기 제1광축과 제2광축에 서로 마주보는 형태로 배치되는 한 쌍의 프리즘 또는 평면반사경으로 이루어지는 것을 특징으로 하는 복합 광학 조준장치.
  7. 제 1항에 있어서,
    상기 하우징의 전단부에 형성된 제3통공에 배치되는 반사경과, 상기 반사경을 향해 조준시표를 제공하는 도트시표 발생부를 포함하는 도트사이트 모듈;을 더 포함하며, 상기 반사경은 상기 도트시표 발생부에서 제공되는 도트시표를 사용자의 전방에 허상으로 결상하는 것을 특징으로 하는 복합 광학 조준장치.
  8. 제 7항에 있어서,
    상기 하우징의 후면에는 상기 접안렌즈가 배치되는 제4통공과, 상기 도트사이트 모듈을 통해 전방의 목표물을 관찰할 수 있는 제5통공이 형성되고, 상기 제4통공과 제5통공은 인접 배치되는 것을 특징으로 하는 복합 광학 조준장치.
  9. 제 1항에 있어서,
    상기 레티클은 접안렌즈의 전방에 배치되고, 상기 디스플레이부는 상기 레티클과 접안렌즈 사이의 광경로로부터 벗어난 위치에 배치되고,
    상기 전환부는 상기 레티클과 접안렌즈의 사이영역에 경사 배치될 수 있도록 이동 가능하게 배치되는 이동부재를 포함하며,
    상기 이동부재는 제1이동위치로 이동한 상태에서 상기 레티클과 접안렌즈 사이의 광경로 상에서 벗어나 상기 레티클로부터의 광선이 접안렌즈를 향하도록 하고, 제2이동위치로 이동한 상태에서 상기 레티클과 접안렌즈 사이의 광경로를 차단하는 동시에 상기 디스플레이부로부터 제공되는 광선을 접안렌즈를 향해 반사시키는 것을 특징으로 하는 복합 광학 조준장치.
PCT/KR2019/013055 2018-10-04 2019-10-04 복합 광학 조준장치 WO2020071864A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0118191 2018-10-04
KR1020180118191A KR102635119B1 (ko) 2018-10-04 2018-10-04 복합 광학 조준장치

Publications (1)

Publication Number Publication Date
WO2020071864A1 true WO2020071864A1 (ko) 2020-04-09

Family

ID=70055106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013055 WO2020071864A1 (ko) 2018-10-04 2019-10-04 복합 광학 조준장치

Country Status (2)

Country Link
KR (1) KR102635119B1 (ko)
WO (1) WO2020071864A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11209243B1 (en) 2020-02-19 2021-12-28 Maztech Industries, LLC Weapon system with multi-function single-view scope
CN114296229A (zh) * 2022-01-17 2022-04-08 合肥英睿系统技术有限公司 分划调节结构、多模式瞄准装置及其分划调节方法
US12078793B2 (en) 2021-08-18 2024-09-03 Maztech Industries, LLC Weapon sight systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102488919B1 (ko) * 2022-08-04 2023-01-18 한화시스템(주) 무기용 확대배율 원적외선 조준경

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090131666A (ko) * 2008-06-18 2009-12-29 정인 도트사이트 모드 및 스코프 모드 겸용 광학식 조준경
JP2011138071A (ja) * 2009-12-29 2011-07-14 Raito Koki Seisakusho:Kk レーザー光発生素子を用いたレチクル照明装置
US20140110483A1 (en) * 2012-03-15 2014-04-24 Flir Systems, Inc. Ballistic Sight System
KR20170119081A (ko) * 2016-04-18 2017-10-26 임도현 절환식 주야 겸용 조준경
US20180128576A1 (en) * 2016-11-10 2018-05-10 Kiho Military Acquisition Consulting, Inc. Composite telescopic sight, sight mount, and electroluminescent digitally adjustable reticle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101511420B1 (ko) 2012-10-10 2015-04-10 정보선 빔 스플리터를 갖는 도트사이트 장치
KR102141049B1 (ko) 2013-12-13 2020-08-04 정보선 빔 스플리터를 구비한 도트 사이트 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090131666A (ko) * 2008-06-18 2009-12-29 정인 도트사이트 모드 및 스코프 모드 겸용 광학식 조준경
JP2011138071A (ja) * 2009-12-29 2011-07-14 Raito Koki Seisakusho:Kk レーザー光発生素子を用いたレチクル照明装置
US20140110483A1 (en) * 2012-03-15 2014-04-24 Flir Systems, Inc. Ballistic Sight System
KR20170119081A (ko) * 2016-04-18 2017-10-26 임도현 절환식 주야 겸용 조준경
US20180128576A1 (en) * 2016-11-10 2018-05-10 Kiho Military Acquisition Consulting, Inc. Composite telescopic sight, sight mount, and electroluminescent digitally adjustable reticle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11209243B1 (en) 2020-02-19 2021-12-28 Maztech Industries, LLC Weapon system with multi-function single-view scope
US11473874B2 (en) 2020-02-19 2022-10-18 Maztech Industries, LLC Weapon system with multi-function single-view scope
US12078793B2 (en) 2021-08-18 2024-09-03 Maztech Industries, LLC Weapon sight systems
CN114296229A (zh) * 2022-01-17 2022-04-08 合肥英睿系统技术有限公司 分划调节结构、多模式瞄准装置及其分划调节方法
WO2023134102A1 (zh) * 2022-01-17 2023-07-20 合肥英睿系统技术有限公司 分划调节结构、多模式瞄准装置及其分划调节方法

Also Published As

Publication number Publication date
KR102635119B1 (ko) 2024-02-07
KR20200038678A (ko) 2020-04-14

Similar Documents

Publication Publication Date Title
WO2020071864A1 (ko) 복합 광학 조준장치
EP0852021B1 (en) Day and night sighting system
US6583862B1 (en) Combined telescope and telemeter device
WO2012121531A2 (ko) 디스플레이형 광학식 조준경
WO2021225351A1 (ko) 도트 사이트 장치
WO2006135737A2 (en) Dual band night vision device
WO2011102663A2 (ko) 사각 광경로를 형성하는 광학 시스템 및 그 방법
RU2613767C2 (ru) Командирский прицельно-наблюдательный комплекс
SE451282B (sv) Binokuler betraktningsanordning for att betrakta samma bild med bada ogonen samtidigt
US20160238854A1 (en) Focal Length Extender for Telescopic Imaging Systems
RU2368856C1 (ru) Прицел-прибор наведения с лазерным дальномером
US20240027742A1 (en) Film Through Scope Camera Mount System
GB923926A (en) Improvements relating to optical observing instruments
GB2163868A (en) Device for harmonising the optical axes of an optical sight
CA2076898C (en) Direct view and infrared imaging apparatus for a portable missile launcher
WO2018145050A1 (en) System and method for introducing display image into a focal optics device
WO2019203376A1 (ko) 도트사이트 겸용 외부 목표물 관측 장치
RU2313116C1 (ru) Комбинированный прицел с лазерным дальномером
WO2018192068A1 (zh) 一种激光测距单眼望远镜
RU2005125389A (ru) Лазерный дальномер
EP1868023B1 (en) Night vision arrangement
RU63054U1 (ru) Лазерный дальномер
RU2299402C1 (ru) Лазерный дальномер
WO2011056012A2 (ko) 입체영상 촬영렌즈계
RU221960U1 (ru) Прицел-дальномер

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19869053

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19869053

Country of ref document: EP

Kind code of ref document: A1