WO2020071572A1 - Method and device for repairing bright spot defect of liquid crystal display device - Google Patents

Method and device for repairing bright spot defect of liquid crystal display device

Info

Publication number
WO2020071572A1
WO2020071572A1 PCT/KR2018/012041 KR2018012041W WO2020071572A1 WO 2020071572 A1 WO2020071572 A1 WO 2020071572A1 KR 2018012041 W KR2018012041 W KR 2018012041W WO 2020071572 A1 WO2020071572 A1 WO 2020071572A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
laser beam
intensity
crystal display
display device
Prior art date
Application number
PCT/KR2018/012041
Other languages
French (fr)
Korean (ko)
Inventor
노재호
김왕유
김학범
Original Assignee
주식회사 코윈디에스티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코윈디에스티 filed Critical 주식회사 코윈디에스티
Publication of WO2020071572A1 publication Critical patent/WO2020071572A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the liquid crystal panel 500 is bonded such that the color filter substrate 530 as an upper substrate and a thin film transistor (TFT) array substrate 510 as a lower substrate are opposed to each other, and have dielectric anisotropy between them. It is provided with a structure in which the liquid crystal layer 520 is formed, and is driven by switching a thin film transistor (TFT) added to hundreds of thousands of pixels through an address wiring for pixel selection to apply a voltage to the corresponding pixel. do.
  • TFT thin film transistor
  • the color filter substrate 530 includes a glass 531, a color filter 532 such as RGB, a black matrix 533 formed between the color filters 532, an overcoat layer 534, and a common electrode. It is made of an indium tin oxide (ITO) 535 and an alignment layer 536, and a polarizing plate 537 is attached to the top of the glass.
  • ITO indium tin oxide
  • the thin film transistor array substrate process is a process of forming a gate wiring, a data wiring, a thin film transistor, and a pixel electrode on a glass substrate by repeating deposition and photolithography processes on a lower substrate.
  • the color filter substrate process is a process of forming an ITO film for a common electrode after producing a color filter of RGB, which is arranged in a certain order on a substrate on which a black matrix is formed, usually an upper substrate.
  • the liquid crystal cell process is a process in which a liquid crystal layer is formed by injecting liquid crystal between the thin film transistor array substrate and the color filter array substrate to maintain a constant gap.
  • ODF one drop filling
  • a test pattern is displayed on the screen of the liquid crystal panel, and the presence or absence of defective pixels is detected and corrected for the defective pixels.
  • the defects of the liquid crystal panel can be roughly divided into point defects, line defects, and display irregularities. Point defects are caused by defects in TFT elements, pixel electrodes, and color filter wiring, and line defects are caused by breaks in TFTs due to open wires, shorts, static electricity between the wires, and defective connection to the driving circuit.
  • the display non-uniformity may be caused by non-uniformity of cell thickness, non-uniformity of liquid crystal orientation, dispersion of TFT characteristic locations, and time constant of relatively large wiring.
  • impurities including dust, organic matter, or metal are adsorbed in the process of manufacturing the liquid crystal panel.
  • impurities including dust, organic matter, or metal are adsorbed in the process of manufacturing the liquid crystal panel.
  • the pixel emits light that is brighter than the brightness of other normal pixels. Can cause phenomena.
  • FIG. 2 is a conceptual diagram showing a form in which a laser repair is performed on a pixel to be processed by a scanning method for a darkening operation.
  • the entire pixel area including the pixel peripheral portion and the pixel central portion is processed with a laser beam of the same intensity.
  • the scanning direction SC0 of the laser beam is usually a zigzag direction.
  • FIG. 3 discloses a phenomenon in which an abnormality in liquid crystal arrangement in a pixel adjacent to a pixel to be processed (pixel, P0) diffuses in a form similar to a bubble and appears similar to black stain (BS).
  • the enlarged drawing portion shows a case in which pixels having black spots are marked with dots BS1 after laser repair processing on a defective pixel.
  • Japanese Patent Application Publication No. 2006-72229 irradiates a laser to the alignment layer to damage the alignment characteristics of the liquid crystal, thereby reducing light transmittance by lowering the transmittance of the liquid crystal. It discloses a technique for removing.
  • Korean Patent Application No. 10-2006-86569 discloses a method of blackening a defective pixel using a femtosecond laser.
  • Republic of Korea Patent Registration No. 10-0879010 discloses a method of blackening a block shot method or a scan method by using a laser beam having a specific wavelength of organic substances for each color constituting a color filter layer of a liquid crystal display device.
  • Korean Patent Registration No. 10-1226711 discloses a pixel configuration that is divided into two parts of an S-PVA mode liquid crystal display device, which is a type of vertically oriented liquid crystal mode, and has a Vcom line and an ITO line pattern.
  • an object of the present invention is to provide a method for repairing defective spots in a liquid crystal display device, which can prevent an adverse effect on adjacent pixels in the process of repairing defective pixels.
  • the present invention causes a phenomenon in which an abnormality of a liquid crystal arrangement state occurring in an adjacent pixel of a pixel to be processed spreads in a form similar to a bubble, thereby preventing or suppressing a problem observed as a stain in a display device.
  • An object of the present invention is to provide a method and a device for repairing defects in a liquid crystal display device.
  • Another object of the present invention has the advantage of suppressing and preventing problems particularly well occurring in the liquid crystal arrangement of adjacent pixels in a vertical alignment mode liquid crystal display device such as patterned vertical alignment (PVA) or super PVA (S-PVA). It is to provide a method and apparatus for repairing defects in a liquid crystal display device.
  • PVA patterned vertical alignment
  • S-PVA super PVA
  • a method for repairing defective spots in a liquid crystal display device for solving the above technical problem is a method for repairing defective luminance in a liquid crystal display device that illuminates and darkens a defective pixel with laser light, corresponding to an edge of a defective pixel.
  • a second step of darkening is a method for repairing defective luminance in a liquid crystal display device that illuminates and darkens a defective pixel with laser light, corresponding to an edge of a defective pixel.
  • the first light intensity ranges from 30% to 80% of the second light intensity.
  • the length of the peripheral portion in the width direction may reach 10 to 15% of each length in the length direction and the width direction of the defective pixel at an outer boundary of the defective pixel.
  • a method for repairing defective spots in a liquid crystal display device may include, before the first step, from a monitoring device coupled to a laser irradiation unit that supplies the laser light or from a storage device connected to the monitoring device.
  • the method may further include obtaining information about a shape and determining a scanning direction and intensity of the laser light according to the obtained information.
  • the method of repairing defective spots in a liquid crystal display device may include a power line pattern inside the defective pixel through welding by laser light before the first step, before the second step, or after the second step. It may further include the step of blocking.
  • the method for repairing defective spots in a liquid crystal display device may further include, after the second step, secondary processing of the peripheral portion to enhance darkening of the peripheral portion.
  • the defective spot repair device of the liquid crystal display device is a liquid crystal display device for repairing dark defects by irradiating defective pixels with laser light, and a laser that irradiates laser light.
  • Irradiation unit A work unit for placing or fixing a liquid crystal display device; An actuator installed in any one or more of the laser irradiation unit and the working unit to change a relative position of laser light irradiated to a defective pixel of the liquid crystal display; And a control unit that controls the operation of the actuator and the operation of the laser irradiation unit, and the control unit irradiates a peripheral portion corresponding to the edge of the defective pixel with laser light of a first light intensity and is surrounded by the peripheral portion.
  • the central portion of the defective pixel is irradiated with laser light of a second light intensity stronger than the first light intensity.
  • the first light intensity is in the range of 30% to 80% of the second light intensity
  • the length in the width direction of the peripheral portion is in the length direction and the width direction of the defective pixel at an outer boundary of the defective pixel. Each can reach 10-15% of the length.
  • the defective spot repair device of the liquid crystal display device before irradiating the laser light of the first light intensity, the defective pixel from a monitoring device coupled to the laser irradiation unit or from a storage device connected to the monitoring device It is possible to obtain information about the internal shape and determine the scanning direction and intensity of the laser light according to the information.
  • the defect repair device of the liquid crystal display device before irradiating the laser light of the first light intensity, before irradiating the laser light of the second light intensity, or the laser light of the second light intensity After irradiating, the power line pattern inside the defective pixel may be blocked through welding by laser light.
  • the liquid crystal display device is a liquid crystal display device in which a liquid crystal in a vertical alignment mode (VA MODE) is disposed in a pixel.
  • VA MODE vertical alignment mode
  • the influence of laser light irradiation in the process of repairing the defective pixel by irradiating relatively weak laser light to the peripheral area of the defective pixel is diffused to the periphery, thereby suppressing adverse effects on the liquid crystal arrangement state of the adjacent pixel. And prevent.
  • a normal alignment of adjacent pixels in a vertical alignment mode liquid crystal display device such as a patterned vertical alignment (PVA) or a super PVA (S-PVA) in which a problem is easily spread to a liquid crystal alignment state to adjacent pixels. It is possible to effectively suppress and prevent the occurrence of a problem in operation.
  • PVA patterned vertical alignment
  • S-PVA super PVA
  • FIG. 1 is a cross-sectional view showing the configuration of a conventional liquid crystal display
  • Figure 2 is a conceptual diagram showing a method of repairing defective pixels (pixels) of a conventional liquid crystal display device with a laser beam
  • Figure 3 is a picture for explaining the problem according to the repair method as in Figure 2,
  • FIG. 4 is a flowchart illustrating a method for repairing defects in bright spots in a liquid crystal display device according to an exemplary embodiment of the present invention
  • FIG. 5 is a conceptual diagram showing a form of irradiating a laser beam of weak intensity to a periphery of a defective pixel to be repaired in accordance with the repair method of FIG. 4 and irradiating a strong intensity laser light to a center of the defective pixel to be repaired;
  • FIG. 6 is an exemplary view of a portion of a screen of a liquid crystal display including pixels darkened by the repair method of FIG. 4.
  • FIG. 7 is a view illustrating various forms of a scanning direction of a laser beam of a strong intensity among the repair method of FIG. 4,
  • FIG. 8 is a flowchart of a method for repairing defects in bright spots of a liquid crystal display according to another embodiment of the present invention.
  • 11 and 12 are exemplary views showing a state in which welding is performed on Vcom and ITO lines of defective pixels to be repaired in the repair method of FIG. 8,
  • FIG. 13 is a view for explaining a method of repairing a defect in a liquid crystal display according to another embodiment of the present invention.
  • FIG. 14 is a block diagram of a defect repair device for a liquid crystal display according to another embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method for repairing defects in bright spots in a liquid crystal display according to an exemplary embodiment of the present invention.
  • FIG. 5 is a conceptual diagram showing a form of irradiating a weak intensity laser light to a periphery of a defective pixel to be repaired in accordance with the repair method of FIG. 4 and irradiating a strong intensity laser light to the center of the defective pixel to be repaired.
  • FIG. 6 is an exemplary view of a portion of a screen of a liquid crystal display including pixels darkened by the repair method of FIG. 4.
  • the method for repairing defective bright spots in the liquid crystal display according to the present embodiment includes: a peripheral region or a peripheral portion of the defective pixel 20 that needs repair. 21) is irradiated with a laser beam (S41 in FIG. 4). Scanning of the laser beam at the periphery (SC1) is carried out along the periphery of the pixel while making a completely closed curve in the clockwise direction or as shown by the arrow in FIG. 5 (a), or by performing two long sides and two short sides respectively. Irradiation, or a part of the periphery, for example, can be made in various ways, such as a method of irradiating laser light only on two sides.
  • the laser power is smaller than, for example, 30 to 80% of the laser beam output for repairing the conventional pixel as shown in FIG. 2, and more preferably 40 to 60%.
  • the laser beam output is too small, the dark ignition of the color filter layer or the alignment layer is insufficient, and light leakage through the peripheral portion may occur.
  • the output is too large and close to 100%, partial darkening of adjacent pixels, which is an undesired result, may occur due to the extension of color filter layer, alignment layer modification, and rupture of adjacent pixels in the process of laser light irradiation to the peripheral portion. .
  • the widths w1 and w2 of the peripheral portion are 5 to 20% of the total pixel width at the pixel boundary, preferably 10 to 15%.
  • the peripheral widths w1 and w2 are too small, it is difficult to sufficiently block the influence of adjacent pixels during laser repair in the center, and if the peripheral widths w1 and w2 are too large, dark ignition may not be sufficiently achieved in this area. Through this, the possibility of light leakage increases.
  • the polyimide film or the like forming the alignment film around the target pixel is hardened to some extent through weak laser beam irradiation on the peripheral part, but severe damage such as rupture does not occur. Moreover, even in the adjacent pixel region close to this periphery, the periphery is processed by weak laser light, so that the effect can be minimized when the processing is performed.
  • the central portion 22 of the corresponding pixel that is, an area or peripheral portion excluding the peripheral portion
  • Laser beam irradiation is performed on the area enclosed by (S42 of FIG. 4).
  • the color filter layer, alignment layer, etc. of the part irradiated with laser light organic material carbonization and degeneration occur, and light transmittance deteriorates, and as the characteristics of the alignment film change, the liquid crystal arrangement state of the processed part changes, so light passes through this pixel. It turns into a dark ignition state that cannot be done.
  • the scan SC2 of the laser beam in the central portion 22 of the pixel to be processed, that is, the defective pixel 20, may be performed in a zigzag form in the vertical direction. According to the method for repairing defective spots according to the present embodiment, repair processing can be performed without adversely affecting peripheral pixels of the repaired pixel P2 as shown in FIG. 6.
  • FIG. 7 is a view illustrating various forms of a scanning direction of a laser beam having a strong intensity among the repair method of FIG. 4.
  • a scan (SC) of a laser beam of a pixel to be processed which can be employed in the method for repairing defective spots according to the present exemplary embodiment, may be performed in various forms.
  • the laser beam is rotated in the left and right width directions within the pixel several times in consideration of the shape and size of the laser beam in various ways as illustrated in FIG. 7.
  • the scan may be performed in the vertical direction, but may be implemented to move the laser beam up and down or left and right at regular intervals for each horizontal scan or vertical scan.
  • laser light irradiation may be performed by selecting the most effective method in consideration of the shape of the pixel and the structure inside the pixel.
  • the scan direction is usually a left-right direction or a vertical direction, but may be made in a diagonal direction such as the ITO line shown according to the rotation state of the liquid crystal display table.
  • the scan trajectory of the laser beam can be created through the relative movement of the laser beam and the liquid crystal display, and more specifically, the angle and position of the optical element such as a light source irradiating the laser beam, a reflection mirror on the path, and a beam splitter. Adjustment can be made by adjusting the position on the xy plane of the table on which the liquid crystal display is placed. Since these specific adjustment methods are already well known, detailed description thereof will be omitted.
  • the intensity of the laser light is strong, so that rupture of the alignment layer or the like may occur, and such rupture may be extended to the periphery as if the gold of the glass extends to the periphery, due to the characteristics of the alignment layer itself.
  • the peripheral portion inside the pixel to be processed is already hardened and the alignment film characteristics are changed, when processing the central portion, the energy of the laser beam does not extend beyond the peripheral portion of the pixel and is blocked.
  • the dark ignition is performed only in the corresponding pixel, the alignment layer is maintained in the peripheral pixel without being ruptured, and there is no change in the arrangement of the liquid crystal of the peripheral pixel, and the luminance decrease due to partial dark ignition in these peripheral pixels. Will not occur.
  • FIG. 8 is a flowchart of a method for repairing defects in bright spots in a liquid crystal display according to another exemplary embodiment of the present invention.
  • 9 and 10 are flowcharts for explaining a modified example of the repair method of FIG. 8.
  • 11 and 12 are exemplary views showing a state in which welding is performed on Vcom and ITO lines of defective pixels to be repaired in the repair method of FIG. 8.
  • a defect repair device (hereinafter simply referred to as a repair device for defective spots) of a liquid crystal display device that implements a method for repairing a defect in a liquid crystal display device according to the present embodiment, first, is a laser scan direction according to a shape inside a pixel. And it is possible to determine the intensity (S81).
  • the defective repair device may scan an edge portion of the laser processing region, that is, a peripheral portion corresponding to the edge with a laser beam of first energy (S82).
  • the defect repair device may scan the inner portion of the laser processing region, that is, the center portion surrounded by the peripheral portion with a laser beam of a second energy greater than the first energy (S83).
  • the defect repair apparatus may short circuit the power electrode pattern inside the pixel included in the laser processing region through laser welding (S84).
  • the short-circuiting step (S84) may be performed before the step (S83) of scanning the central portion with a laser beam.
  • the short-circuiting step (S84) is performed before the step (S82) of scanning the peripheral portion with a laser beam, or determining the laser scanning direction and intensity according to the shape inside the pixel ( S81).
  • the circuit portion of the lower substrate is irradiated with a laser beam having a higher intensity than the intensity of the laser beam in the scan step of the peripheral portion or the center portion of the defective pixel, and the circuit is disconnected or the upper layer circuit
  • the organic material constituting the interlayer insulating film is volatilized and carbonized at the portion where the lower layer circuit overlaps, the upper layer circuit and the lower layer circuit are short-circuited, so that the lighting voltage signal is not properly induced in the corresponding pixel, and the lighting signal is not applied to this pixel, so that the lighting is turned on. It is possible to prevent pixel darkening in a double or redundant manner by preventing it from being achieved.
  • a pixel electrode inside a defective pixel 26
  • the electrical connection of the common electrode 27 may be cut off through the laser welding 30.
  • a welding region 32 connecting across regions dividing two sub-pixels 20a and 20b making one pixel and , A welding region 30 having a shape traversing the ITO pattern 24 displayed in a diagonal shape is shown as an example.
  • laser welding is performed on a common power line (Vcom Line) and a transparent electrode line (ITO Line) inside a pixel to change a defective pixel into a pixel driving impossible state, thereby improving the degree of pixel blackening.
  • Vcom Line common power line
  • ITO Line transparent electrode line
  • the laser shot shape of the laser welding may be formed using X-Y- ⁇ slit.
  • the defective pixel dark ignition according to laser light irradiation is generally performed, and dark ignition is also performed through circuit signal blocking to stably complete the dark ignition processing.
  • the peripheral portion of the defective pixel is denatured through the initial low-intensity laser light irradiation, thereby acting as a barrier to prevent propagation to the periphery of the organic material rupture due to the next strong-intensity laser light irradiation, so that the liquid crystal array is arranged in the peripheral pixel.
  • the phenomenon that the luminance is lowered when disturbed and the lighting signal is applied can be effectively prevented.
  • the first step is to irradiate the periphery of the target pixel with laser light of a weak intensity, and the circuit blocking process of cutting or welding the circuit part by irradiating with strong laser light is performed last,
  • the circuit blocking process may be absent or may be performed first, or may be performed between a weak laser light irradiation step in the periphery and a strong laser light irradiation step in the center portion.
  • FIG. 13 is a view for explaining a defect repair method of a liquid crystal display device according to another embodiment of the present invention.
  • the method for repairing defects in bright spots in the liquid crystal display device improves the lightness or blurring of the peripheral portion 21 relatively lightly after darkening by processing the central portion 22 of the defective pixel 20 with a laser beam. It can be implemented to further perform the step of strengthening the peripheral dark ignition.
  • 13 (a) illustrates the pixel state before the peripheral darkening enhancement step
  • FIG. 13 (b) illustrates the pixel state after the peripheral darkening enhancement step.
  • the step of enhancing the darkening of the periphery may include once again scanning the periphery with a laser beam having a first intensity or less in the same or similar shape to the periphery.
  • the laser beam scan for enhancing the peripheral darkening can be performed quickly in a very short time, such as 10 ⁇ s or less of the first intensity.
  • the defect repair device of the liquid crystal display device darkens the central portion 22 and then scans the peripheral portion 21 once again using a laser beam having a third intensity of a first intensity or less, that is, The dark ignition of the peripheral portion 21 can be enhanced by secondary processing of the peripheral portion 21.
  • This peripheral darkening enhancement process can be used to effectively treat a very small light leakage condition in the peripheral part seen in the processed defective pixel with a probability less than approximately 10% of the defect repair process.
  • FIG. 14 is a block diagram of a defect repair device for a liquid crystal display according to another embodiment of the present invention.
  • the bright spot defect repair apparatus 100 of the liquid crystal display includes a control unit 110 and a storage unit 120, a laser irradiation unit 140, and a monitoring device 150 And an actuator 160. It may include a defect repair device 100, in a broad sense, a laser irradiation unit 140, a monitoring device 150 and an actuator 160.
  • the control unit 110 performs a program stored in the storage unit 120.
  • the control unit 110 may be implemented as a central processing unit, a processor, or the like.
  • the storage unit 120 may store a program that implements a method for repairing defects in a liquid crystal display device.
  • the storage unit 120 may store a program for controlling the operation of the defect repair device of the liquid crystal display device.
  • the program may include software modules.
  • the software module includes a laser management module 121, an actuator control module 122, a laser beam intensity adjustment module 123, an information acquisition module 124, a scan direction determination module 125, a welding processing module 126, and a peripheral enhancement It may include a processing module 127.
  • the laser management module 121 manages the operation of the laser irradiation unit that irradiates laser light.
  • the actuator control module 122 is installed in the work unit for placing or fixing the liquid crystal display device or the laser irradiation unit, and operates to change or control the relative position of the laser light irradiated to the defective pixel of the liquid crystal display device.
  • the laser beam intensity control module 123 adjusts the intensity of the laser beam to a first intensity (first light intensity) when laser scanning the periphery of the defective pixel, and adjusts the intensity of the laser beam when laser scanning the central portion of the defective pixel. Adjust to a second intensity (second light intensity) higher than the first intensity.
  • the information acquisition module 124 acquires information for determining the scanning direction and intensity of the laser according to the state inside the pixel before laser scanning.
  • the information acquisition module 124 may be installed in a defective pixel from a monitoring device 150 coupled to the laser irradiation unit 140 or from a storage device (not shown or 120) connected to the monitoring device 150 to store the collected information. Information about the form can be obtained.
  • the scan direction determination module 125 may compare information acquired by the information acquisition module 124 with pre-stored reference information to determine the scan direction and intensity of the laser beam for the corresponding defective pixel.
  • the welding processing module 126 blocks a power line pattern inside the defective pixel through welding by laser light.
  • the welding processing module 126 may have at least any one of before, after irradiating the laser light of the first light intensity, before irradiating the laser light of the second light intensity, and after irradiating the laser light of the second light intensity to the periphery of the defective pixel. It may be implemented to perform at least one welding process in one or more process processes.
  • the peripheral enhancement module 127 controls the operation of laser scanning of the peripheral portion using a laser beam having a third intensity equal to or less than the first intensity after laser scanning and darkening the central portion of the defective pixel, thereby controlling the peripheral portion of the defective pixel. It improves the dark ignition state and strengthens the dark ignition of the surrounding area.
  • the laser irradiation unit 140 is provided to irradiate the laser beam to the liquid crystal display device disposed on the working unit.
  • the laser irradiation unit 140 may include a laser generator, an optical system, and the like.
  • the monitoring device 150 is disposed around the work unit and is installed to sense the internal state of a specific pixel of the liquid crystal display device.
  • the monitoring device 150 may include a lighting device, a camera device, and the like.
  • the actuator 160 may be installed in the work unit or laser irradiation unit and controlled by a control unit.
  • the actuator 160 may include at least one or more devices selected from motors, pistons, pumps, valves, hydraulic devices, and the like.
  • the bright spot defect repair apparatus 100 can effectively darken a bright spot defective pixel of a liquid crystal display device, particularly a liquid crystal display device having a vertical alignment mode (VA MODE) liquid crystal in a pixel. .
  • VA MODE vertical alignment mode

Abstract

In a repairing method of irradiating a defective pixel with a laser beam and darkening the defective pixel, disclosed are a method and a device for repairing brightness defect of a liquid crystal display device, comprising: a step of irradiating at least a portion of the peripheral portion of the defective pixel with a laser beam of relatively weak intensity; and a step of irradiating the central portion of the defective pixel with a laser beam of relatively strong intensity. In order to make darkening of the defective pixel clear, a step of irradiating a laser beam on a portion of a circuit of a lower substrate, for example, a power common electrode and a transparent electrode pattern inside a pixel and disconnecting or short-circuiting the circuit so as to change the circuit, may be further provided. According to the present invention, the peripheral portion of the defective pixel is irradiated with a relatively weak laser beam, and the influence of the laser beam irradiation in the process of repairing the defective pixel is diffused towards the surrounding area, thereby suppressing and preventing adverse effects on the liquid crystal arrangement state of adjacent pixels.

Description

액정표시장치의 휘점불량 수리 방법 및 장치Method and device for repairing defects in LCD display
본 발명은 액정표시장치의 휘점불량 수리 기술에 관한 것으로서, 보다 상세하게는 액정표시장치에서 특정 위치에 휘점불량이 있는 경우에 인접 화소에 악영향을 주지 않으면서 해당 화소를 흑화할 수 있는 휘점불량 수리 방법 및 장치에 관한 것이다.The present invention relates to a technique for repairing defects in bright spots in a liquid crystal display device, and more specifically, in the case of a spot failure in a specific position in a liquid crystal display device, repairs a spot defect in which a corresponding pixel can be blackened without adversely affecting adjacent pixels. It relates to a method and apparatus.
통상 액티브매트릭스 방식의 액정표시장치에서는 각 화소(pixel)별로 인가되는 전압에 의해 액정 배열을 바꿈으로써 액정층의 광투과율을 바꾸어 광스위치로 동작시키고 이를 통해 화상을 구현하고 있다.In an active matrix type liquid crystal display device, an optical transmittance is changed by changing a light transmittance of a liquid crystal layer by changing a liquid crystal arrangement by a voltage applied for each pixel, thereby realizing an image.
도 1을 참조하면, 액정패널(500)은 상부 기판인 컬러필터 기판(530)과 하부 기판인 TFT(thin film transistor)어레이 기판(510)이 서로 대향 되도록 합착되고, 그 사이에 유전 이방성을 갖는 액정층(520)이 형성되는 구조로 구비되어, 화소 선택용 어드레스(address)배선을 통해 수십 만개의 화소에 부가된 박막트랜지스터(TFT)를 스위칭 동작시켜 해당 화소에 전압을 인가해 주는 방식으로 구동된다.Referring to FIG. 1, the liquid crystal panel 500 is bonded such that the color filter substrate 530 as an upper substrate and a thin film transistor (TFT) array substrate 510 as a lower substrate are opposed to each other, and have dielectric anisotropy between them. It is provided with a structure in which the liquid crystal layer 520 is formed, and is driven by switching a thin film transistor (TFT) added to hundreds of thousands of pixels through an address wiring for pixel selection to apply a voltage to the corresponding pixel. do.
여기서, 컬러필터 기판(530)은 글래스(531)와, RGB 등의 색필터(532)와, 색필터(532)들 사이에 형성된 블랙매트릭스(533)와, 오버코트층(534)과, 공통전극용 ITO(indium tin oxide, 535)와, 배향막(536)으로 이루어지며, 글래스의 상부에 편광판(537)이 부착된다.Here, the color filter substrate 530 includes a glass 531, a color filter 532 such as RGB, a black matrix 533 formed between the color filters 532, an overcoat layer 534, and a common electrode. It is made of an indium tin oxide (ITO) 535 and an alignment layer 536, and a polarizing plate 537 is attached to the top of the glass.
이러한 액정패널을 제조하기 위해서는 박막트랜지스터 어레이 기판 공정, 컬러필터 기판 공정, 액정셀 공정 등을 수행하여야 한다. 박막트랜지스터 어레이 기판 공정은 하부 기판에 증착(deposition) 및 포토리소그래피(photolithography) 공정을 반복하여 유리 기판상에 게이트 배선, 데이터 배선, 박막트랜지스터 및 화소 전극을 형성하는 공정이다.In order to manufacture such a liquid crystal panel, a thin film transistor array substrate process, a color filter substrate process, and a liquid crystal cell process must be performed. The thin film transistor array substrate process is a process of forming a gate wiring, a data wiring, a thin film transistor, and a pixel electrode on a glass substrate by repeating deposition and photolithography processes on a lower substrate.
컬러 필터 기판 공정은 블랙매트릭스가 형성된 기판, 통상적으로는 상부 기판에 일정한 순서로 배열되어 색상을 구현하는 RGB의 색필터를 제작한 후, 공통전극용 ITO막 등을 형성하는 공정이다.The color filter substrate process is a process of forming an ITO film for a common electrode after producing a color filter of RGB, which is arranged in a certain order on a substrate on which a black matrix is formed, usually an upper substrate.
액정셀 공정은 박막트랜지스터 어레이 기판과 컬러필터 어레이 기판 사이의 일정한 틈이 유지되도록 합착한 후, 그 틈 사이로 액정을 주입하여 액정층을 형성하는 공정이다. 근래에는 박막트랜지스터 어레이 기판에 액정을 균일하게 도포한 후, 컬러필터 기판을 합착하는 ODF(one drop filling)공정이 개시되고 있다.The liquid crystal cell process is a process in which a liquid crystal layer is formed by injecting liquid crystal between the thin film transistor array substrate and the color filter array substrate to maintain a constant gap. Recently, an ODF (one drop filling) process in which a liquid crystal is uniformly applied to a thin film transistor array substrate and then bonded to a color filter substrate has been disclosed.
액정표시 장치의 검사 과정에서는, 액정패널의 화면에 테스트 패턴을 띄우고 불량 화소의 유무를 탐지하여 불량 화소가 발견되었을 때 이에 대한 수정 작업을 수행하게 된다. 액정패널의 불량은 대략 점 결함, 선 결함과 표시 불균일로 나눌 수 있다. 점 결함은 TFT 소자, 화소전극, 컬러필터 배선의 불량 등에 의해 발생되며, 선 결함은 배선간의 단선(open), 쇼트(short), 정전기에 의한 TFT의 파괴, 구동회로와 접속불량에 기인한다. 표시 불균일은 셀 두께 불균일, 액정배향의 불균일, TFT 특성 장소 산포 및 상대적으로 큰 배선의 시정수에 의해 발생될 수 있다.In the inspection process of the liquid crystal display device, a test pattern is displayed on the screen of the liquid crystal panel, and the presence or absence of defective pixels is detected and corrected for the defective pixels. The defects of the liquid crystal panel can be roughly divided into point defects, line defects, and display irregularities. Point defects are caused by defects in TFT elements, pixel electrodes, and color filter wiring, and line defects are caused by breaks in TFTs due to open wires, shorts, static electricity between the wires, and defective connection to the driving circuit. The display non-uniformity may be caused by non-uniformity of cell thickness, non-uniformity of liquid crystal orientation, dispersion of TFT characteristic locations, and time constant of relatively large wiring.
이 중, 점 결함 및 선 결함은 일반적으로 배선의 불량이 그 원인으로 종래에는 단선(open)된 배선이 발견되면, 단선된 부분을 연결해 주고, 쇼트(short)의 경우 해당 배선들을 단선시키는 정도에 불과하였다.Of these, point defects and line defects are generally caused by defective wiring. When an open wire is conventionally found, the disconnected portion is connected, and in the case of a short, the wires are disconnected. It was just.
이러한 결함 외에도 액정패널을 제조하는 과정에서 먼지, 유기물 또는 금속 등을 포함하는 불순물이 흡착되는데, 이러한 불순물이 컬러필터 부근에 흡착될 경우 해당 픽셀은 패널 구동 시 다른 정상적인 픽셀의 밝기보다 매우 밝은 빛을 내는 현상을 유발할 수 있다. In addition to these defects, impurities including dust, organic matter, or metal are adsorbed in the process of manufacturing the liquid crystal panel. When these impurities are adsorbed in the vicinity of the color filter, when the panel is driven, the pixel emits light that is brighter than the brightness of other normal pixels. Can cause phenomena.
이상과 같이 스위칭 소자를 구성하는 소스 및 드레인 전극의 패터닝이 정상적으로 이루어지지 않는 등의 이유로 스위칭의 구동 불량이 발생하게 되면, 휘점(hot pixel) 또는 암점(dead pixel)이 발생할 수 있는데, 사람의 눈은 밝은 상태에서 나타난 암점보다는 어두운 상태에서 나타난 휘점을 상대적으로 더욱 민감하게 인식한다. 따라서 액정 패널의 불량 판정시 암점보다는 휘점 불량에 더 엄격한 기준이 부여된다. 이에 따라 휘점에 의한 패널 불량률을 최소화하기 위한 방안이 요구된다. 이를 위해 휘점을 암점으로 바꾸는 방법들이 제시되고 있다.As described above, when a driving failure of switching occurs due to reasons such as patterning of the source and drain electrodes constituting the switching element is not normally performed, hot pixels or dead pixels may occur. Recognizes the bright spots in the dark state more sensitively than the dark spots in the bright state. Therefore, when determining the defect of the liquid crystal panel, a more strict criterion is given to the defect of the bright spot than the dark spot. Accordingly, a method for minimizing the panel defect rate due to bright spots is required. To this end, methods for converting a bright spot to a dark spot have been proposed.
휘점을 암점으로 바꾸기 위해서는 레이저 리페어(laser repair) 방식이 널리 사용된다. 도2는 암점화 작업을 위해 가공 대상 화소에 대해 레이저 리페어를 스캔 방식으로 실시하는 한 형태를 나타내는 개념도이다. 도2에 도시한 바와 같이, 종래 기술에서는 화소 주변부와 화소 중심부를 포함하는 화소 영역 전체가 모두 같은 세기의 레이저빔으로 처리되고 있다. 레이저빔의 스캔 방향(SC0)은 통상 지그재그 방향이다. 암점화를 충실히 실시하기 위해서는 가공 대상 화소의 화소전극이 형성된 부분뿐 아니라 블랙매트릭스가 형성된 주변부까지도 레이저광 조사를 실시하는 것이 요구된다.In order to convert a bright spot to a dark spot, a laser repair method is widely used. FIG. 2 is a conceptual diagram showing a form in which a laser repair is performed on a pixel to be processed by a scanning method for a darkening operation. As shown in Fig. 2, in the prior art, the entire pixel area including the pixel peripheral portion and the pixel central portion is processed with a laser beam of the same intensity. The scanning direction SC0 of the laser beam is usually a zigzag direction. In order to faithfully perform dark ignition, it is required to irradiate laser light not only to the portion where the pixel electrode of the pixel to be processed is formed, but also to the peripheral portion where the black matrix is formed.
그러나, 이러한 레이저 리페어(laser repair) 과정에서 강한 에너지의 레이저에 의하여 라디칼(radical)이 발생하여, 표시 패널 내의 컬러필터층 및 액정층을 구성하는 물질의 연쇄 반응이 일어나, 해당 화소 영역뿐만 아니라 인접한 화소 영역의 전압보전율(Voltage holding ratio, VHR)을 감소시켜 휘도가 감소될 수 있다.However, in this laser repair process, radicals are generated by a laser having strong energy, and a chain reaction of the materials constituting the color filter layer and the liquid crystal layer in the display panel occurs, so that not only the corresponding pixel region but also adjacent pixels are generated. The luminance may be reduced by reducing the voltage holding ratio (VHR) of the region.
도3은 가공 대상 화소(pixel, P0)의 인접한 화소에서 액정배열 이상이 기포(bubble)와 비슷한 형태로 확산되어 검은 얼룩(black stain, BS)과 비슷하게 나타나는 현상을 개시하고 있다. 확대된 도면 부분에서는 불량 화소에 대한 레이저 리페어 가공 후에 검은 얼룩이 나타나는 화소들을 점들(BS1)으로 표시한 경우를 보여주고 있다.FIG. 3 discloses a phenomenon in which an abnormality in liquid crystal arrangement in a pixel adjacent to a pixel to be processed (pixel, P0) diffuses in a form similar to a bubble and appears similar to black stain (BS). The enlarged drawing portion shows a case in which pixels having black spots are marked with dots BS1 after laser repair processing on a defective pixel.
이상과 같은 액정표시장치 이상 및 수리와 관련하여, 일본 공개특허공보 2006-72229에서는 배향막에 레이저를 조사하여 손상을 가하여 액정의 배열특성을 저해시키고, 이로 인하여 액정의 빛에 대한 투과율을 낮추어 빛샘 현상을 제거하는 기술을 개시하고 있다. In connection with the above-described abnormality and repair of the liquid crystal display device, Japanese Patent Application Publication No. 2006-72229 irradiates a laser to the alignment layer to damage the alignment characteristics of the liquid crystal, thereby reducing light transmittance by lowering the transmittance of the liquid crystal. It discloses a technique for removing.
다른 수리 방법으로서, 한국특허출원 10-2006-86569호에는 팸토초 레이저를 이용하여 불량화소를 흑화처리하는 방법이 개시된다.As another repair method, Korean Patent Application No. 10-2006-86569 discloses a method of blackening a defective pixel using a femtosecond laser.
대한민국 등록특허 제10-0879010호에는 액정표시장치의 컬러필터층을 구성하는 컬러별 유기물을 특화된 파장의 레이저빔으로 블럭샷 방식 혹은 스캔 방식으로 흑화처리하는 방법이 개시된다. Republic of Korea Patent Registration No. 10-0879010 discloses a method of blackening a block shot method or a scan method by using a laser beam having a specific wavelength of organic substances for each color constituting a color filter layer of a liquid crystal display device.
대한민국 등록특허 제10-1226711호에는 수직배향 액정 모드의 일종인 S-PVA 모드 액정표시장치의 두 부분으로 구분되고 Vcom 라인과 ITO 라인 패턴을 가지는 화소 구성이 개시된다.Korean Patent Registration No. 10-1226711 discloses a pixel configuration that is divided into two parts of an S-PVA mode liquid crystal display device, which is a type of vertically oriented liquid crystal mode, and has a Vcom line and an ITO line pattern.
하지만, 전술한 종래의 레이저를 이용한 불량화소의 암점화 가공 기술에서는 암점화 과정에서 불량 화소 주변의 화소들에 악영향을 미치는 문제가 있다.However, in the above-described conventional dark ignition processing technology of a defective pixel using a laser, there is a problem that adversely affects pixels around the defective pixel in the dark ignition process.
이에 본 발명은 불량 화소의 암점화 수리와 관련하여, 불량 화소를 수리하는 과정에서 인접 화소에 악영향을 미치는 것을 방지할 수 있는 액정표시장치의 휘점불량 수리방법을 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a method for repairing defective spots in a liquid crystal display device, which can prevent an adverse effect on adjacent pixels in the process of repairing defective pixels.
본 발명은 가령, 가공 대상 화소(pixel)의 인접한 화소에서 발생하는 액정배열상태의 이상이 기포(bubble)와 비슷한 형태로 퍼지는 현상을 일으켜 표시장치 내의 얼룩으로 관측되는 문제를 예방, 억제할 수 있는 액정표시장치의 휘점불량 수리방법 및 장치를 제공하는 것을 목적으로 한다.The present invention, for example, causes a phenomenon in which an abnormality of a liquid crystal arrangement state occurring in an adjacent pixel of a pixel to be processed spreads in a form similar to a bubble, thereby preventing or suppressing a problem observed as a stain in a display device. An object of the present invention is to provide a method and a device for repairing defects in a liquid crystal display device.
본 발명의 다른 목적은 PVA(patterned vertical alignment)나 S-PVA(super PVA)와 같은 수직배향모드 액정표시장치에서 인접 화소 액정배열상태에 특히 문제가 잘 발생하는 것을 억제하고 예방하는 데 특장점을 가지는 액정표시장치의 휘점불량 수리 방법 및 장치를 제공하는 데 있다.Another object of the present invention has the advantage of suppressing and preventing problems particularly well occurring in the liquid crystal arrangement of adjacent pixels in a vertical alignment mode liquid crystal display device such as patterned vertical alignment (PVA) or super PVA (S-PVA). It is to provide a method and apparatus for repairing defects in a liquid crystal display device.
상기 기술적 과제를 해결하기 위한 본 발명의 일 측면에 따른 액정표시장치의 휘점불량 수리방법은, 결함 픽셀을 레이저광으로 조사하여 암점화하는 액정표시장치 휘도불량 수리방법으로서, 불량 화소의 가장자리에 대응하는 주변부를 제1 광세기의 레이저광으로 조사하여 경화 상태의 격벽을 형성하는 제1 단계, 및 주변부로 둘러쌓인 불량 화소의 중앙부를 제1 광세기보다 강한 제2 광세기의 레이저광으로 조사하여 암점화하는 제2 단계를 포함한다.A method for repairing defective spots in a liquid crystal display device according to an aspect of the present invention for solving the above technical problem is a method for repairing defective luminance in a liquid crystal display device that illuminates and darkens a defective pixel with laser light, corresponding to an edge of a defective pixel. The first step of forming a partition wall in a hardened state by irradiating the peripheral portion with the first light intensity laser light, and irradiating the central portion of the defective pixel surrounded by the peripheral part with a laser light having a second light intensity stronger than the first light intensity And a second step of darkening.
일실시예에서, 상기 제1 광세기는 상기 제2 광세기의 30% 내지 80% 범위이다.In one embodiment, the first light intensity ranges from 30% to 80% of the second light intensity.
일실시예에서, 상기 주변부의 폭 방향의 길이는 상기 불량 화소의 외곽 경계에서 상기 불량 화소의 길이 방향과 폭 방향에서의 각각의 길이의 10~15%에 이를 수 있다.In one embodiment, the length of the peripheral portion in the width direction may reach 10 to 15% of each length in the length direction and the width direction of the defective pixel at an outer boundary of the defective pixel.
일실시예에서, 액정표시장치의 휘점불량 수리방법은, 상기 제1 단계 전에, 상기 레이저광을 공급하는 레이저 조사유닛에 결합된 감시장치로부터 혹은 상기 감시장치에 연결된 저장장치로부터 상기 불량 화소 내부의 형태에 대한 정보를 획득하고, 상기 획득된 정보에 따라 레이저광의 스캔 방향 및 세기를 결정하는 단계를 더 포함할 수 있다.In one embodiment, a method for repairing defective spots in a liquid crystal display device may include, before the first step, from a monitoring device coupled to a laser irradiation unit that supplies the laser light or from a storage device connected to the monitoring device. The method may further include obtaining information about a shape and determining a scanning direction and intensity of the laser light according to the obtained information.
일실시예에서, 액정표시장치의 휘점불량 수리방법은, 상기 제1 단계 전에, 상기 제2 단계 전에, 혹은 상기 제2 단계 이후에 레이저광에 의한 웰딩을 통해 상기 불량 화소 내부의 전원 라인 패턴을 차단하는 단계를 더 포함할 수 있다.In one embodiment, the method of repairing defective spots in a liquid crystal display device may include a power line pattern inside the defective pixel through welding by laser light before the first step, before the second step, or after the second step. It may further include the step of blocking.
일실시예에서, 액정표시장치의 휘점불량 수리방법은, 상기 제2 단계 이후에, 상기 주변부를 2차 가공하여 상기 주변부의 암점화를 강화하는 단계를 더 포함할 수 있다.In one embodiment, the method for repairing defective spots in a liquid crystal display device may further include, after the second step, secondary processing of the peripheral portion to enhance darkening of the peripheral portion.
상기 기술적 과제를 해결하기 위한 본 발명의 다른 측면에 따른 액정표시장치의 휘점불량 수리장치는, 불량 화소를 레이저광으로 조사하여 암점화하는 액정표시장치 휘도불량 수리장치로서, 레이저광을 조사하는 레이저 조사유닛; 액정표시장치를 올려놓거나 고정하는 작업유닛; 상기 액정표시장치의 불량 화소에 조사되는 레이저광의 상대적인 위치를 변경하기 위하여 상기 레이저 조사유닛 및 상기 작업유닛 중 어느 하나 이상에 설치되는 액추에이터; 및 상기 액추에이터의 동작과 상기 레이저 조사부의 동작을 제어하는 제어유닛을 포함하고, 상기 제어유닛은 상기 불량 화소의 가장자리에 대응하는 주변부를 제1 광세기의 레이저광으로 조사하고, 상기 주변부로 둘러쌓인 상기 불량 화소의 중앙부를 상기 제1 광세기보다 강한 제2 광세기의 레이저광으로 조사하도록 이루어진다.In order to solve the above technical problem, the defective spot repair device of the liquid crystal display device according to another aspect of the present invention is a liquid crystal display device for repairing dark defects by irradiating defective pixels with laser light, and a laser that irradiates laser light. Irradiation unit; A work unit for placing or fixing a liquid crystal display device; An actuator installed in any one or more of the laser irradiation unit and the working unit to change a relative position of laser light irradiated to a defective pixel of the liquid crystal display; And a control unit that controls the operation of the actuator and the operation of the laser irradiation unit, and the control unit irradiates a peripheral portion corresponding to the edge of the defective pixel with laser light of a first light intensity and is surrounded by the peripheral portion. The central portion of the defective pixel is irradiated with laser light of a second light intensity stronger than the first light intensity.
일실시예에서, 상기 제1 광세기는 상기 제2 광세기의 30% 내지 80% 범위이고, 상기 주변부의 폭 방향의 길이는 상기 불량 화소의 외곽 경계에서 상기 불량 화소의 길이 방향과 폭 방향에서의 각각의 길이의 10~15%에 이를 수 있다.In one embodiment, the first light intensity is in the range of 30% to 80% of the second light intensity, and the length in the width direction of the peripheral portion is in the length direction and the width direction of the defective pixel at an outer boundary of the defective pixel. Each can reach 10-15% of the length.
일실시예에서, 액정표시장치의 휘점불량 수리장치는, 상기 제1 광세기의 레이저광을 조사하기 전에, 상기 레이저 조사유닛에 결합된 감시장치로부터 혹은 상기 감시장치에 연결된 저장장치로부터 상기 불량 화소 내부의 형태에 대한 정보를 획득하고, 상기 정보에 따라 레이저광의 스캔 방향 및 세기를 결정할 수 있다.In one embodiment, the defective spot repair device of the liquid crystal display device, before irradiating the laser light of the first light intensity, the defective pixel from a monitoring device coupled to the laser irradiation unit or from a storage device connected to the monitoring device It is possible to obtain information about the internal shape and determine the scanning direction and intensity of the laser light according to the information.
일실시예에서, 액정표시장치의 휘점불량 수리장치는, 상기 제1 광세기의 레이저광을 조사하기 전에, 상기 제2 광세기의 레이저광을 조사하기 전에, 혹은 상기 제2 광세기의 레이저광을 조사한 이후에, 레이저광에 의한 웰딩을 통해 상기 불량 화소 내부의 전원 라인 패턴을 차단할 수 있다.In one embodiment, the defect repair device of the liquid crystal display device, before irradiating the laser light of the first light intensity, before irradiating the laser light of the second light intensity, or the laser light of the second light intensity After irradiating, the power line pattern inside the defective pixel may be blocked through welding by laser light.
일실시예에서, 액정표시장치의 휘점불량 수리장치는, 상기 제2 세기의 레이저광을 조사한 후에, 상기 제1 세기 이하의 제3 세기의 레이저빔으로 주변부를 2차 가공하여 주변부의 암점화를 강화하도록 이루어질 수 있다.In one embodiment, after repairing the bright spot defect of the liquid crystal display device, after irradiating the laser beam of the second intensity, secondary processing of the peripheral area with a laser beam of the third intensity below the first intensity causes darkening of the peripheral area. It can be made to strengthen.
일실시예에서, 상기 액정표시장치는 화소에 수직배향모드(VA MODE)의 액정이 배치되는 액정표시장치이다.In one embodiment, the liquid crystal display device is a liquid crystal display device in which a liquid crystal in a vertical alignment mode (VA MODE) is disposed in a pixel.
본 발명에 따르면, 불량 화소의 주변 영역에는 상대적으로 약한 레이저광을 조사하여 해당 불량 화소를 수리하는 과정에서의 레이저광 조사의 영향이 주변으로 확산되어 인접 화소의 액정배열상태 등에 악영향을 미치는 것을 억제 및 방지할 수 있다.According to the present invention, the influence of laser light irradiation in the process of repairing the defective pixel by irradiating relatively weak laser light to the peripheral area of the defective pixel is diffused to the periphery, thereby suppressing adverse effects on the liquid crystal arrangement state of the adjacent pixel. And prevent.
본 발명에 따르면, 불량화소 레이저 수리시에 인접 화소로 액정배열상태에 문제가 확산되기 쉬운 PVA(patterned vertical alignment)나 S-PVA(super PVA)와 같은 수직배향모드 액정표시장치에서 인접 화소의 정상적 동작에 문제가 발생하는 것을 효과적으로 억제 및 예방할 수 있다.According to the present invention, when a defective pixel laser is repaired, a normal alignment of adjacent pixels in a vertical alignment mode liquid crystal display device such as a patterned vertical alignment (PVA) or a super PVA (S-PVA) in which a problem is easily spread to a liquid crystal alignment state to adjacent pixels. It is possible to effectively suppress and prevent the occurrence of a problem in operation.
도1은 종래의 액정표시장치의 구성을 나타내는 단면도,1 is a cross-sectional view showing the configuration of a conventional liquid crystal display,
도2는 종래의 액정표시장치의 불량 화소(pixels)를 레이저빔으로 수리하는 방식을 나타내는 개념도,Figure 2 is a conceptual diagram showing a method of repairing defective pixels (pixels) of a conventional liquid crystal display device with a laser beam,
도3은 도2와 같은 수리 방식에 따른 문제점을 설명하기 위한 사진,Figure 3 is a picture for explaining the problem according to the repair method as in Figure 2,
도4는 본 발명의 일 실시예에 따른 액정표시장치의 휘점불량 수리방법을 나타낸 흐름도, 4 is a flowchart illustrating a method for repairing defects in bright spots in a liquid crystal display device according to an exemplary embodiment of the present invention,
도5는 도4의 수리방법에 따라 액정표시장치의 수리 대상 불량 화소의 주변부에 약한 세기의 레이저광을 조사하고, 수리 대상 불량 화소의 중심부에 강한 세기의 레이저광을 조사하는 형태를 나타내는 개념도,FIG. 5 is a conceptual diagram showing a form of irradiating a laser beam of weak intensity to a periphery of a defective pixel to be repaired in accordance with the repair method of FIG. 4 and irradiating a strong intensity laser light to a center of the defective pixel to be repaired;
도6은 도4의 수리방법에 의해 암점화된 화소를 포함하는 액정표시장치의 화면 일부분에 대한 예시도.6 is an exemplary view of a portion of a screen of a liquid crystal display including pixels darkened by the repair method of FIG. 4.
도7은 도4의 수리방법 중 강한 세기의 레이저광의 스캔 방향의 다양한 형태를 예시한 도면,7 is a view illustrating various forms of a scanning direction of a laser beam of a strong intensity among the repair method of FIG. 4,
도8은 본 발명의 다른 실시예에 따른 액정표시장치의 휘점불량 수리방법에 대한 흐름도,8 is a flowchart of a method for repairing defects in bright spots of a liquid crystal display according to another embodiment of the present invention;
도9 및 도10은 도8의 수리방법에 대한 변형예를 설명하기 위한 흐름도들,9 and 10 are flow charts for explaining a modification to the repair method of Figure 8,
도11 및 도12는 도8의 수리방법에서 수리 대상 불량 화소의 Vcom 및 ITO 라인에 웰딩을 실시한 상태를 나타내는 예시도들,11 and 12 are exemplary views showing a state in which welding is performed on Vcom and ITO lines of defective pixels to be repaired in the repair method of FIG. 8,
도13은 본 발명의 또 다른 실시예에 따른 액정표시장치의 휘점불량 수리방법을 설명하기 위한 도면,13 is a view for explaining a method of repairing a defect in a liquid crystal display according to another embodiment of the present invention;
도14는 본 발명의 또 다른 실시예에 따른 액정표시장치의 휘점불량 수리장치에 대한 블록도이다.14 is a block diagram of a defect repair device for a liquid crystal display according to another embodiment of the present invention.
이하 도면을 참조하면서 구체적 실시예를 통해 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to drawings.
도4는 본 발명의 일 실시예에 따른 액정표시장치의 휘점불량 수리방법을 나타낸 흐름도이다. 도5는 도4의 수리방법에 따라 액정표시장치의 수리 대상 불량 화소의 주변부에 약한 세기의 레이저광을 조사하고, 수리 대상 불량 화소의 중심부에 강한 세기의 레이저광을 조사하는 형태를 나타내는 개념도이다. 그리고, 도6은 도4의 수리방법에 의해 암점화된 화소를 포함하는 액정표시장치의 화면 일부분에 대한 예시도이다.4 is a flowchart illustrating a method for repairing defects in bright spots in a liquid crystal display according to an exemplary embodiment of the present invention. FIG. 5 is a conceptual diagram showing a form of irradiating a weak intensity laser light to a periphery of a defective pixel to be repaired in accordance with the repair method of FIG. 4 and irradiating a strong intensity laser light to the center of the defective pixel to be repaired. . Also, FIG. 6 is an exemplary view of a portion of a screen of a liquid crystal display including pixels darkened by the repair method of FIG. 4.
도4 및 도 5를 참조하면, 본 실시예에 따른 액정표시장치의 휘점불량 수리방법(이하, 간단히 휘점불량 수지방법이라고 한다)은, 먼저 수리가 필요한 불량 화소(20)의 주변 영역 또는 주변부(21)에 대해 레이저빔을 조사한다(도4의 S41). 주변부에서의 레이저빔의 스캔(SC1)은 화소의 주변부를 따라 시계방향 혹은 도5의 (a)에 화살표로 도시된 바와 같이 반시계방향으로 완전히 폐곡선을 이루면서 실시하거나, 두 장변과 두 단변을 각각 조사하거나, 주변부의 일부, 가령, 두 장변만 레이저광을 조사하는 방식 등으로 다양하게 이루어질 수 있다. 4 and 5, the method for repairing defective bright spots in the liquid crystal display according to the present embodiment (hereinafter, simply referred to as a bright spot defective resin method) includes: a peripheral region or a peripheral portion of the defective pixel 20 that needs repair. 21) is irradiated with a laser beam (S41 in FIG. 4). Scanning of the laser beam at the periphery (SC1) is carried out along the periphery of the pixel while making a completely closed curve in the clockwise direction or as shown by the arrow in FIG. 5 (a), or by performing two long sides and two short sides respectively. Irradiation, or a part of the periphery, for example, can be made in various ways, such as a method of irradiating laser light only on two sides.
이때 레이저 출력은 도2와 같이 종래의 화소 전반에 조사하는 리페어용 레이저빔 출력보다 작게, 가령, 30~80% 정도로 하며 더욱 바람직하게는 40~60% 정도로 한다. 레이저빔 출력이 너무 작으면 컬러필터층이나 배향막의 탄화, 변성이 이루어지는 암점화가 충분하지 못하여 주변부를 통한 빛샘 현상이 발생할 수 있다. 반대로, 출력이 너무 커서 100%에 근접하면 주변부에 대한 레이저광 조사 과정에서 이미 인접 화소에 대한 컬러필터층이나 배향막 변성, 파열의 연장이 이루어져 원하지 않는 결과인 인접 화소의 부분적 암점화가 생길 수 있기 때문이다.At this time, the laser power is smaller than, for example, 30 to 80% of the laser beam output for repairing the conventional pixel as shown in FIG. 2, and more preferably 40 to 60%. When the laser beam output is too small, the dark ignition of the color filter layer or the alignment layer is insufficient, and light leakage through the peripheral portion may occur. On the contrary, if the output is too large and close to 100%, partial darkening of adjacent pixels, which is an undesired result, may occur due to the extension of color filter layer, alignment layer modification, and rupture of adjacent pixels in the process of laser light irradiation to the peripheral portion. .
본 실시예에서 주변부의 폭(w1, w2)는 화소 경계에서 전체 화소 폭의 5~20%, 바람직하게는 10~15%에 이르는 부분으로 한다. 이때, 주변부 폭(w1, w2)이 너무 작으면 중앙부 레이저 리페어시 인접 화소로 영향을 미치는 것을 충분히 차단하기 어렵고, 주변부 폭(w1, w2)이 너무 크면 이 부분에서는 암점화가 충분히 이루어지지 못하여 이 부분을 통해 빛샘이 발생할 가능성이 커진다. In this embodiment, the widths w1 and w2 of the peripheral portion are 5 to 20% of the total pixel width at the pixel boundary, preferably 10 to 15%. At this time, if the peripheral widths w1 and w2 are too small, it is difficult to sufficiently block the influence of adjacent pixels during laser repair in the center, and if the peripheral widths w1 and w2 are too large, dark ignition may not be sufficiently achieved in this area. Through this, the possibility of light leakage increases.
이러한 주변부에 대한 약한 레이저빔 조사를 통해 대상 화소 주변부의 배향막을 이루는 폴리이미드막 등은 어느 정도 경화되지만 파열되는 등의 심한 파손은 발생하지 않게 된다. 더욱이, 이 주변부와 가까운 인접한 화소 영역에서도 주변부는 약한 레이저광에 의해 처리되므로 그 처리가 이루어질 때 영향이 최소화될 수 있다. The polyimide film or the like forming the alignment film around the target pixel is hardened to some extent through weak laser beam irradiation on the peripheral part, but severe damage such as rupture does not occur. Moreover, even in the adjacent pixel region close to this periphery, the periphery is processed by weak laser light, so that the effect can be minimized when the processing is performed.
다음으로 도5의 (a)와 같이 화소 주변부(21)에 약한 레이저빔 조사가 이루어진 상태에서 도5의 (b)에 도시한 바와 같이 해당 화소의 중앙부(22) 즉, 주변부를 제외한 영역 혹은 주변부로 둘러쌓인 영역에 대한 레이저빔 조사를 실시한다(도4의 S42). 이 과정에서 레이저광이 조사된 부분의 컬러필터층, 배향막 등에서는 유기물 탄화, 변성이 이루어지면서 광투과성은 나빠지고 배향막의 특성이 달라짐에 따라 가공되는 부분의 액정 배열 상태도 달라져 빛은 이 화소를 통과하지 못하는 암점화 상태로 변하게 된다.Next, as shown in FIG. 5 (a), in the state in which a weak laser beam is irradiated to the pixel peripheral portion 21, as shown in FIG. 5 (b), the central portion 22 of the corresponding pixel, that is, an area or peripheral portion excluding the peripheral portion Laser beam irradiation is performed on the area enclosed by (S42 of FIG. 4). In this process, in the color filter layer, alignment layer, etc. of the part irradiated with laser light, organic material carbonization and degeneration occur, and light transmittance deteriorates, and as the characteristics of the alignment film change, the liquid crystal arrangement state of the processed part changes, so light passes through this pixel. It turns into a dark ignition state that cannot be done.
가공 대상 화소 즉 불량 화소(20)의 중앙부(22)에서의 레이저빔의 스캔(SC2)은 상하 방향으로 지그재그 형태로 수행될 수 있다. 본 실시예에 따른 휘점불량 수리방법에 의하면, 도6에 도시한 바와 같이 리페어된 화소(P2)의 주변 화소들에 악영향을 미치지 않고 리페어 가공을 실시할 수 있다.The scan SC2 of the laser beam in the central portion 22 of the pixel to be processed, that is, the defective pixel 20, may be performed in a zigzag form in the vertical direction. According to the method for repairing defective spots according to the present embodiment, repair processing can be performed without adversely affecting peripheral pixels of the repaired pixel P2 as shown in FIG. 6.
도7은 도4의 수리방법 중 강한 세기의 레이저광의 스캔 방향의 다양한 형태를 예시한 도면이다.7 is a view illustrating various forms of a scanning direction of a laser beam having a strong intensity among the repair method of FIG. 4.
도7의 (a) 내지 (h)을 참조하면, 본 실시예에 따른 휘점불량 수리방법에 채용할 수 있는 가공 대상 화소의 레이저빔의 스캔(SC)은 다양한 형태로 수행될 수 있다.Referring to FIGS. 7A to 7H, a scan (SC) of a laser beam of a pixel to be processed, which can be employed in the method for repairing defective spots according to the present exemplary embodiment, may be performed in various forms.
예를 들어, 레이저빔을 화소 영역 전반에 걸쳐 빠짐없이 조사하기 위해 도7에 도시된 것과 같이 다양한 방법으로 레이저빔 형태 및 크기를 고려하여 수차례에 걸쳐 레이저빔을 화소 내에서 좌우 폭방향으로 혹은 상하 방향으로 스캔을 실시하되 각각의 좌우 혹은 상하 방향 스캔마다 일정 간격씩 상하 혹은 좌우로 레이저빔을 이동시켜 조사하도록 구현될 수 있다.For example, in order to irradiate the laser beam seamlessly over the entire pixel area, the laser beam is rotated in the left and right width directions within the pixel several times in consideration of the shape and size of the laser beam in various ways as illustrated in FIG. 7. The scan may be performed in the vertical direction, but may be implemented to move the laser beam up and down or left and right at regular intervals for each horizontal scan or vertical scan.
이런 여러 스캔 방법 가운데 화소의 형태와 크기 화소 내부의 구조를 고려하여 가장 효과적인 방법을 선택하여 레이저광 조사를 실시할 수 있다. 스캔 방향은 통상 좌우 방향 혹은 상하 방향이 되지만 액정표시장치 테이블의 회전 상태에 따라 도시된 ITO 라인과 같은 사선 방향으로 이루어질 수도 있다. Among these various scanning methods, laser light irradiation may be performed by selecting the most effective method in consideration of the shape of the pixel and the structure inside the pixel. The scan direction is usually a left-right direction or a vertical direction, but may be made in a diagonal direction such as the ITO line shown according to the rotation state of the liquid crystal display table.
이때, 레이저빔의 스캔 궤적은 레이저빔과 액정표시장치의 상대적 이동을 통해 만들어낼 수 있으며, 보다 구체적으로 레이저빔을 조사하는 광원이나 그 경로상의 반사거울, 빔스플리터 등 광학요소의 각도 조절, 위치 조절, 액정표시장치가 놓이는 테이블의 x-y 평면상의 위치 조절을 통해 이루어질 수 있다. 이런 구체적 조절 방법들은 기존에 이미 잘 알려진 것이므로 그 구체적 설명은 생략하기로 한다. At this time, the scan trajectory of the laser beam can be created through the relative movement of the laser beam and the liquid crystal display, and more specifically, the angle and position of the optical element such as a light source irradiating the laser beam, a reflection mirror on the path, and a beam splitter. Adjustment can be made by adjusting the position on the xy plane of the table on which the liquid crystal display is placed. Since these specific adjustment methods are already well known, detailed description thereof will be omitted.
이런 레이저빔 조사 과정에서 레이저광의 세기가 강하여 배향막 등의 파열이 발생할 수 있고, 이런 파열은 배향막 자체의 특성에 의해, 마치 유리의 금이 주변으로 연장되듯이 주변으로 연장될 수 있지만, 본 실시예에서는 가공 대상 화소 내부의 주변부가 이미 경화되어 배향막 특성이 달라져 있으므로 중앙부를 가공할 때 레이저빔의 에너지가 화소의 주변부를 넘어 확장되지 못하고 차단된다.During the laser beam irradiation process, the intensity of the laser light is strong, so that rupture of the alignment layer or the like may occur, and such rupture may be extended to the periphery as if the gold of the glass extends to the periphery, due to the characteristics of the alignment layer itself. In, since the peripheral portion inside the pixel to be processed is already hardened and the alignment film characteristics are changed, when processing the central portion, the energy of the laser beam does not extend beyond the peripheral portion of the pixel and is blocked.
그 결과, 해당 화소 내에서만 암점화가 이루어지고, 주변 화소에서는 배향막이 파열되지 않고 유지되며, 주변 화소의 액정의 배열에 대한 변화도 발생하지 않고, 이들 주변 화소에서 부분적인 암점화로 인한 휘도 저하현상은 발생하지 않게 된다.As a result, the dark ignition is performed only in the corresponding pixel, the alignment layer is maintained in the peripheral pixel without being ruptured, and there is no change in the arrangement of the liquid crystal of the peripheral pixel, and the luminance decrease due to partial dark ignition in these peripheral pixels. Will not occur.
도8은 본 발명의 다른 실시예에 따른 액정표시장치의 휘점불량 수리방법에 대한 흐름도이다. 도9 및 도10은 도8의 수리방법에 대한 변형예를 설명하기 위한 흐름도들이다. 그리고, 도11 및 도12는 도8의 수리방법에서 수리 대상 불량 화소의 Vcom 및 ITO 라인에 웰딩을 실시한 상태를 나타내는 예시도들이다.8 is a flowchart of a method for repairing defects in bright spots in a liquid crystal display according to another exemplary embodiment of the present invention. 9 and 10 are flowcharts for explaining a modified example of the repair method of FIG. 8. 11 and 12 are exemplary views showing a state in which welding is performed on Vcom and ITO lines of defective pixels to be repaired in the repair method of FIG. 8.
도8을 참조하면, 본 실시예에 따른 액정표시장치의 휘점불량 수리방법을 구현하는 액정표시장치의 휘점불량 수리장치(이하 간단히 휘점불량 수리장치)는, 먼저 픽셀 내부의 형상에 따라 레이저 스캔 방향 및 세기를 결정할 수 있다(S81).Referring to FIG. 8, a defect repair device (hereinafter simply referred to as a repair device for defective spots) of a liquid crystal display device that implements a method for repairing a defect in a liquid crystal display device according to the present embodiment, first, is a laser scan direction according to a shape inside a pixel. And it is possible to determine the intensity (S81).
다음으로, 휘점불량 수리장치는 레이저 가공 영역의 가장자리 부분 즉, 가장자리에 대응하는 주변부를 제1 에너지의 레이저빔으로 스캔할 수 있다(S82).Next, the defective repair device may scan an edge portion of the laser processing region, that is, a peripheral portion corresponding to the edge with a laser beam of first energy (S82).
다음으로, 휘점불량 수리장치는 레이저 가공 영역의 안쪽 부분 즉, 주변부로 둘러쌓인 중앙부를 제1 에너지보다 큰 제2 에너지의 레이저빔으로 스캔할 수 있다(S83).Next, the defect repair device may scan the inner portion of the laser processing region, that is, the center portion surrounded by the peripheral portion with a laser beam of a second energy greater than the first energy (S83).
다음으로, 휘점불량 수리장치는 레이저 가공 영역에 포함된 화소 내부의 전원 전극 패턴을 레이저 웰딩을 통해 단락시킬 수 있다(S84).Next, the defect repair apparatus may short circuit the power electrode pattern inside the pixel included in the laser processing region through laser welding (S84).
한편, 도9에 도시한 바와 같이, 상기의 단락 단계(S84)는 중앙부를 레이저빔으로 스캔하는 단계(S83) 이전에 실시될 수 있다.On the other hand, as shown in Figure 9, the short-circuiting step (S84) may be performed before the step (S83) of scanning the central portion with a laser beam.
또한, 도10에 도시한 바와 같이, 상기의 단락 단계(S84)는 주변부를 레이저빔으로 스캔하는 단계(S82) 이전에 실시되거나, 화소 내부의 형상에 따라 레이저 스캔 방향 및 세기를 결정하는 단계(S81) 이전에 실시될 수 있다.In addition, as shown in FIG. 10, the short-circuiting step (S84) is performed before the step (S82) of scanning the peripheral portion with a laser beam, or determining the laser scanning direction and intensity according to the shape inside the pixel ( S81).
본 실시예에 의하면, 불량 화소에 대한 주변부 또는 중앙부의 스캔 단계에서의 레이저빔의 세기에 비해 더 높은 세기를 가지는 레이저빔으로 하부 기판의 회로 부분을 조사하여 해당 부분에서 회로가 단선되거나 상층회로와 하층회로가 겹치는 부분에서 층간절연막을 이루는 유기물질이 휘발, 탄화되면서 상층회로와 하층회로가 단락되고, 이로써 해당 화소에 점등 전압 신호가 제대로 유기되지 못하게 되고, 이 화소에는 점등 신호가 들어오지 않아 점등이 이루어지지 못하게 함으로써 이중적 혹은 가외적(redundant) 방식으로 화소 암점화가 이루어지도록 할 수 있다.According to this embodiment, the circuit portion of the lower substrate is irradiated with a laser beam having a higher intensity than the intensity of the laser beam in the scan step of the peripheral portion or the center portion of the defective pixel, and the circuit is disconnected or the upper layer circuit As the organic material constituting the interlayer insulating film is volatilized and carbonized at the portion where the lower layer circuit overlaps, the upper layer circuit and the lower layer circuit are short-circuited, so that the lighting voltage signal is not properly induced in the corresponding pixel, and the lighting signal is not applied to this pixel, so that the lighting is turned on. It is possible to prevent pixel darkening in a double or redundant manner by preventing it from being achieved.
일례로, 도11에 도시한 바와 같이, TFT 기판 상의 픽셀전극(26)과 공통전극(27)과 이들 사이에 배치되는 액정(25)를 구비하는 액정표시장치에서, 불량 화소 내부의 픽셀전극(26) 또는 공통전극(27)의 전기적인 연결을 레이저 웰딩(30)을 통해 차단할 수 있다. As an example, as shown in FIG. 11, in a liquid crystal display device having a pixel electrode 26 and a common electrode 27 on a TFT substrate and a liquid crystal 25 disposed therebetween, a pixel electrode inside a defective pixel ( 26) Alternatively, the electrical connection of the common electrode 27 may be cut off through the laser welding 30.
또 다른 예로써, 도12에 도시한 바와 같이, S-PVA 방식 액정표시장치의 경우에는, 한 화소를 만드는 두 서브 화소(20a, 20b)를 나누는 영역을 가로질러 연결하는 웰딩 영역(32)과, 사선 형태로 표시되는 ITO 패턴(24)을 가로지르는 형태의 웰딩 영역(30)이 예로서 표시되어 있다.As another example, as shown in FIG. 12, in the case of an S-PVA type liquid crystal display, a welding region 32 connecting across regions dividing two sub-pixels 20a and 20b making one pixel and , A welding region 30 having a shape traversing the ITO pattern 24 displayed in a diagonal shape is shown as an example.
즉, 본 실시예에서는 픽셀 내부의 공통전원 라인(Vcom Line)과 투명전극 라인(ITO Line)에 대해서 레이저 웰딩(laser welding) 가공으로 불량 화소를 픽셀 구동 불가 상태로 변경하여 픽셀 흑화 정도를 향상시키는 단계를 추가함으로써 휘점불량 화소의 수리 가공 성공율을 크게 높일 수 있다. 거기서, 레이저 웰딩의 레이저 샷(laser shot) 형상은 X-Y-θ 슬릿(slit)을 이용하여 형성될 수 있다.That is, in the present embodiment, laser welding is performed on a common power line (Vcom Line) and a transparent electrode line (ITO Line) inside a pixel to change a defective pixel into a pixel driving impossible state, thereby improving the degree of pixel blackening. By adding a step, the success rate of repair processing of defective pixels can be greatly increased. There, the laser shot shape of the laser welding may be formed using X-Y-θ slit.
본 실시예에 의하면 불량 화소에서는 레이저광 조사에 따른 암점화가 전반적으로 이루어지고, 회로적 신호 차단을 통한 암점화도 이루어져 안정적으로 암점화 처리가 완료된다. 동시에 불량 화소의 주변부는 초기의 낮은 세기의 레이저광 조사를 통해 변성되어 다음 단계의 강한 세기의 레이저광 조사에 따른 유기물 파열의 주변으로의 전파를 방지하는 격체의 역할을 함으로써 주변 화소에 액정 배열이 교란되고 점등신호 인가시 휘도가 저하되는 현상은 효과적으로 방지될 수 있다.According to the present embodiment, in the defective pixel, dark ignition according to laser light irradiation is generally performed, and dark ignition is also performed through circuit signal blocking to stably complete the dark ignition processing. At the same time, the peripheral portion of the defective pixel is denatured through the initial low-intensity laser light irradiation, thereby acting as a barrier to prevent propagation to the periphery of the organic material rupture due to the next strong-intensity laser light irradiation, so that the liquid crystal array is arranged in the peripheral pixel. The phenomenon that the luminance is lowered when disturbed and the lighting signal is applied can be effectively prevented.
한편, 이상의 실시예에서는 대상 화소의 주변부를 약한 세기의 레이저광으로 조사하는 것을 제일 먼저 실시하고, 회로 부분을 강한 레이저광으로 조사하여 커트하거나 웰딩하는 회로적 차단과정이 가장 나중에 이루어지고 있지만, 실시예에 따라서는 회로적 차단과정이 아예 없거나, 가장 먼저 이루어지거나, 주변부의 약한 레이저광 조사 단계와 중앙부의 강한 레이저광 조사 단계 사이에 이루어질 수도 있다.On the other hand, in the above embodiment, the first step is to irradiate the periphery of the target pixel with laser light of a weak intensity, and the circuit blocking process of cutting or welding the circuit part by irradiating with strong laser light is performed last, Depending on the example, the circuit blocking process may be absent or may be performed first, or may be performed between a weak laser light irradiation step in the periphery and a strong laser light irradiation step in the center portion.
도13은 본 발명의 또 다른 실시예에 따른 액정표시장치의 휘점불량 수리방법을 설명하기 위한 도면이다.13 is a view for explaining a defect repair method of a liquid crystal display device according to another embodiment of the present invention.
본 실시예에 따른 액정표시장치의 휘점불량 수리방법은, 불량 화소(20)의 중앙부(22)를 레이저빔으로 가공하여 암점화한 후에, 상대적으로 주변부(21)의 연한 혹은 흐린 암점화를 개선하기 위한 주변부 암점화 강화 단계를 더 실시하도록 구현될 수 있다. 도13의 (a)는 주변부 암점화 강화 단계 전의 화소 상태를 예시하고, 도13의 (b)는 주변부 암점화 강화 단계 후의 화소 상태를 예시한다.The method for repairing defects in bright spots in the liquid crystal display device according to the present embodiment improves the lightness or blurring of the peripheral portion 21 relatively lightly after darkening by processing the central portion 22 of the defective pixel 20 with a laser beam. It can be implemented to further perform the step of strengthening the peripheral dark ignition. 13 (a) illustrates the pixel state before the peripheral darkening enhancement step, and FIG. 13 (b) illustrates the pixel state after the peripheral darkening enhancement step.
주변부 암점화 강화 단계는 주변부를 제1 세기 이하의 레이저빔으로 주변부의 스캔 형태와 동일하거나 유사한 형태로 다시 한번 레이저 스캔하는 것을 포함할 수 있다. 주변부 암점화 강화를 위한 레이저빔 스캔은 제1 세기 예컨대 10㎼ 이하로 아주 짧은 시간에 빠르게 수행될 수 있다.The step of enhancing the darkening of the periphery may include once again scanning the periphery with a laser beam having a first intensity or less in the same or similar shape to the periphery. The laser beam scan for enhancing the peripheral darkening can be performed quickly in a very short time, such as 10 µs or less of the first intensity.
본 실시예에 의하면, 액정표시장치의 휘점불량 수리장치는 중앙부(22)를 암점화한 후에 제1 세기 이하의 제3 세기를 갖는 레이저빔을 사용하여 주변부(21)를 다시 한번 스캔함으로써 즉, 주변부(21)를 2차 가공함으로써 주변부(21)의 암점화를 강화할 수 있다. 이러한 주변부 암점화 강화 공정은 휘점불량 수리공정 중 대략 10%보다도 작은 확률로 가공처리된 불량 화소에서 보이는 주변부에서의 매우 작은 빛샘 상태를 효과적으로 처리하는데 사용될 수 있다.According to the present embodiment, the defect repair device of the liquid crystal display device darkens the central portion 22 and then scans the peripheral portion 21 once again using a laser beam having a third intensity of a first intensity or less, that is, The dark ignition of the peripheral portion 21 can be enhanced by secondary processing of the peripheral portion 21. This peripheral darkening enhancement process can be used to effectively treat a very small light leakage condition in the peripheral part seen in the processed defective pixel with a probability less than approximately 10% of the defect repair process.
도14는 본 발명의 또 다른 실시예에 따른 액정표시장치의 휘점불량 수리장치에 대한 블록도이다.14 is a block diagram of a defect repair device for a liquid crystal display according to another embodiment of the present invention.
도 14를 참조하면, 본 실시예에 따른 액정표시장치의 휘점불량 수리장치(100)는, 제어부(110) 및 저장부(120)를 구비하고, 레이저 조사유닛(140), 감시장치(150) 및 액추에이터(160)에 연결될 수 있다. 휘점불량 수리장치(100), 넓은 의미에서, 레이저 조사유닛(140), 감시장치(150) 및 액추에이터(160)을 포함할 수 있다.Referring to FIG. 14, the bright spot defect repair apparatus 100 of the liquid crystal display according to the present exemplary embodiment includes a control unit 110 and a storage unit 120, a laser irradiation unit 140, and a monitoring device 150 And an actuator 160. It may include a defect repair device 100, in a broad sense, a laser irradiation unit 140, a monitoring device 150 and an actuator 160.
제어부(110)는 저장부(120)에 저장되는 프로그램을 수행한다. 제어부(110)는 중앙처리장치, 프로세서 등으로 구현될 수 있다.The control unit 110 performs a program stored in the storage unit 120. The control unit 110 may be implemented as a central processing unit, a processor, or the like.
저장부(120)는 액정표시장치의 휘점불량 수리방법을 구현하는 프로그램을 저장할 수 있다. 또한, 저장부(120)는 액정표시장치의 휘점불량 수리장치의 동작을 제어하기 위한 프로그램을 저장할 수 있다. 프로그램은 소프트웨어 모듈을 포함할 수 있다.The storage unit 120 may store a program that implements a method for repairing defects in a liquid crystal display device. In addition, the storage unit 120 may store a program for controlling the operation of the defect repair device of the liquid crystal display device. The program may include software modules.
소프트웨어 모듈은 레이저 관리모듈(121), 액추에이터 제어모듈(122), 레이저빔 세기 조절모듈(123), 정보 획득 모듈(124), 스캔방향 결정모듈(125), 웰딩 처리모듈(126), 주변부 강화 처리모듈(127)을 포함할 수 있다.The software module includes a laser management module 121, an actuator control module 122, a laser beam intensity adjustment module 123, an information acquisition module 124, a scan direction determination module 125, a welding processing module 126, and a peripheral enhancement It may include a processing module 127.
레이저 관리모듈(121)는 레이저광을 조사하는 레이저 조사유닛의 동작을 관리한다. 액추에이터 제어모듈(122)은 액정표시장치를 올려놓거나 고정하는 작업유닛이나 상기의 레이저 조사유닛에 설치되어 액정표시장치의 불량 화소에 조사되는 레이저광의 상대적인 위치를 변경하거나 제어하도록 동작한다. 레이저빔 세기 조절모듈(123)은 불량 화소의 주변부를 레이저 스캔할 때 레이저빔의 세기를 제1 세기(제1 광세기)로 조절하고, 불량 화소의 중앙부를 레이저 스캔할 때 레이저빔의 세기를 제1 세기보다 높은 제2 세기(제2 광세기)로 조절한다.The laser management module 121 manages the operation of the laser irradiation unit that irradiates laser light. The actuator control module 122 is installed in the work unit for placing or fixing the liquid crystal display device or the laser irradiation unit, and operates to change or control the relative position of the laser light irradiated to the defective pixel of the liquid crystal display device. The laser beam intensity control module 123 adjusts the intensity of the laser beam to a first intensity (first light intensity) when laser scanning the periphery of the defective pixel, and adjusts the intensity of the laser beam when laser scanning the central portion of the defective pixel. Adjust to a second intensity (second light intensity) higher than the first intensity.
정보 획득 모듈(124)은 레이저 스캔 전에 화소 내부의 상태에 따라 레이저의 스캔 방향과 세기를 결정하기 위한 정보를 획득한다. 정보 획득 모듈(124)은 레이저 조사유닛(140)에 결합된 감시장치(150)로부터 혹은 감시장치(150)에 연결되어 수집된 정보를 저장하는 저장장치(미도시 또는 120)로부터 불량 화소 내부의 형태에 대한 정보를 획득할 수 있다. 스캔방향 결정모듈(125)은 정보 획득 모듈(124)에서 획득한 정보와 미리 저장된 기준정보를 비교하여 해당 불량 화소에 대한 레이저빔의 스캔 방향과 세기를 결정할 수 있다.The information acquisition module 124 acquires information for determining the scanning direction and intensity of the laser according to the state inside the pixel before laser scanning. The information acquisition module 124 may be installed in a defective pixel from a monitoring device 150 coupled to the laser irradiation unit 140 or from a storage device (not shown or 120) connected to the monitoring device 150 to store the collected information. Information about the form can be obtained. The scan direction determination module 125 may compare information acquired by the information acquisition module 124 with pre-stored reference information to determine the scan direction and intensity of the laser beam for the corresponding defective pixel.
웰딩 처리모듈(126)은 레이저광에 의한 웰딩을 통해 불량 화소 내부의 전원 라인 패턴을 차단한다. 웰딩 처리모듈(126)은 불량 화소의 주변부에 제1 광세기의 레이저광을 조사하기 전에, 제2 광세기의 레이저광을 조사하기 전에, 및 제2 광세기의 레이저광을 조사한 이후 중 적어도 어느 하나 이상의 공정 과정에서 적어도 1회 이상 웰딩 공정을 수행하도록 구현될 수 있다.The welding processing module 126 blocks a power line pattern inside the defective pixel through welding by laser light. The welding processing module 126 may have at least any one of before, after irradiating the laser light of the first light intensity, before irradiating the laser light of the second light intensity, and after irradiating the laser light of the second light intensity to the periphery of the defective pixel. It may be implemented to perform at least one welding process in one or more process processes.
주변부 강화 처리모듈(127)은, 불량 화소의 중앙부를 레이저 스캔하여 암점화한 후에, 제1 세기 이하의 제3 세기를 갖는 레이저빔을 이용한 주변부의 레이저 스캔의 동작을 제어하여 불량 화소의 주변부의 흐린 암점화 상태를 개선하여 주변부의 암점화를 강화한다.The peripheral enhancement module 127 controls the operation of laser scanning of the peripheral portion using a laser beam having a third intensity equal to or less than the first intensity after laser scanning and darkening the central portion of the defective pixel, thereby controlling the peripheral portion of the defective pixel. It improves the dark ignition state and strengthens the dark ignition of the surrounding area.
레이저 조사유닛(140)은 작업유닛 상에 배치되는 액정표시장치에 레이저빔을 조사하도록 구비된다. 레이저 조사유닛(140)은 레이저 발생장치, 광학계 등을 포함할 수 있다.The laser irradiation unit 140 is provided to irradiate the laser beam to the liquid crystal display device disposed on the working unit. The laser irradiation unit 140 may include a laser generator, an optical system, and the like.
감시장치(150)는 작업유닛 주변에 배치되어 액정표시장치의 특정 화소의 내부 상태를 센싱하도록 설치된다. 감시장치(150)는 조명 장치, 카메라 장치 등을 포함할 수 있다.The monitoring device 150 is disposed around the work unit and is installed to sense the internal state of a specific pixel of the liquid crystal display device. The monitoring device 150 may include a lighting device, a camera device, and the like.
액추레이터(160)는 상기의 작업유닛이나 레이저 조사유닛에 설치되고 제어부에 의해 제어될 수 있다. 액추에이터(160)는 모터, 피스톤, 펌프, 밸브, 유압장치 등에서 선택되는 적어도 어느 하나 이상의 장치를 포함할 수 있다.The actuator 160 may be installed in the work unit or laser irradiation unit and controlled by a control unit. The actuator 160 may include at least one or more devices selected from motors, pistons, pumps, valves, hydraulic devices, and the like.
이와 같이, 본 실시예에 의하면, 휘점불량 수리장치(100)는 액정표시장치 특히, 화소에 수직배향모드(VA MODE)의 액정을 구비하는 액정표시장치의 휘점 불량 화소를 효과적으로 암점화할 수 있다.As described above, according to the present exemplary embodiment, the bright spot defect repair apparatus 100 can effectively darken a bright spot defective pixel of a liquid crystal display device, particularly a liquid crystal display device having a vertical alignment mode (VA MODE) liquid crystal in a pixel. .
이상에서는 한정된 실시예를 통해 본 발명을 설명하고 있으나, 이는 본 발명의 이해를 돕기 위해 예시적으로 설명된 것일 뿐 본원 발명은 이들 특정의 실시예에 한정되지 아니한다. 따라서, 당해 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명을 토대로 다양한 변경이나 응용예를 실시할 수 있을 것이며 이러한 변형례나 응용예는 첨부된 청구범위에 속함은 당연한 것이다.In the above, the present invention has been described through limited embodiments, but the present invention is not limited to these specific embodiments, which are merely illustratively described to help understanding of the present invention. Accordingly, a person having ordinary knowledge in the field to which the present invention pertains may make various changes or application examples based on the present invention, and it is natural that such modifications and application examples belong to the appended claims.

Claims (15)

  1. 불량 화소를 레이저빔으로 조사하여 암점화하는 액정표시장치 휘도불량 수리방법에 있어서, In the method of repairing the defective luminance of the liquid crystal display device to darken by irradiating a defective pixel with a laser beam,
    상기 불량 화소의 가장자리에 대응하는 주변부를 제1 세기의 레이저빔으로 조사하여 상기 주변부를 경화 상태의 격벽으로 형성하는 제1 단계; 및A first step of irradiating a peripheral portion corresponding to the edge of the defective pixel with a laser beam of a first intensity to form the peripheral portion as a partition wall in a hardened state; And
    상기 주변부로 둘러쌓인 상기 불량 화소의 중앙부를 상기 제1 세기보다 강한 제2 세기의 레이저빔으로 조사하여 암점화하는 제2 단계;A second step of darkening by irradiating a central portion of the defective pixel surrounded by the peripheral portion with a laser beam of a second intensity stronger than the first intensity;
    를 포함하는 것을 특징으로 하는 액정표시장치의 휘점불량 수리방법.Repair method of defects in the liquid crystal display device comprising a.
  2. 제 1 항에 있어서,According to claim 1,
    상기 제1 세기는 상기 제2 세기의 30% 내지 80% 범위인 것을 특징으로 하는 액정표시장치의 휘점불량 수리방법.The first intensity is 30% to 80% of the second intensity, characterized in that the defect repair method of the liquid crystal display device.
  3. 제 1 항에 있어서,According to claim 1,
    상기 주변부의 폭 방향의 길이는 상기 불량 화소의 외곽 경계에서 상기 불량 화소의 길이 방향과 폭 방향에서의 각각의 길이의 10~15%에 이르는 것을 특징으로 하는 액정표시장치의 휘점불량 수리방법.The length of the peripheral portion in the width direction reaches 10 to 15% of the length of each of the defective pixels in the longitudinal direction and the width direction at the outer boundary of the defective pixel.
  4. 제 1 항에 있어서,According to claim 1,
    상기 제1 단계 전에, 상기 레이저빔을 공급하는 레이저 조사유닛에 결합된 감시장치로부터 혹은 상기 감시장치에 연결된 저장장치로부터 상기 불량 화소의 내부 형태에 대한 정보를 획득하고, 상기 획득된 정보에 따라 레이저광의 스캔 방향 및 세기를 결정하는 단계를 더 포함하는 것을 특징으로 하는 액정표시장치의 휘점불량 수리방법.Before the first step, information on the internal shape of the defective pixel is obtained from a monitoring device coupled to the laser irradiation unit that supplies the laser beam or from a storage device connected to the monitoring device, and a laser is used according to the obtained information. And determining the scanning direction and intensity of the light.
  5. 제 1 항에 있어서,According to claim 1,
    상기 제1 단계 전에, 상기 제2 단계 전에, 혹은 상기 제2 단계 이후에 레이저빔에 의한 웰딩을 통해 상기 불량 화소 내부의 전원 라인 패턴을 차단하는 단계를 더 포함하는 것을 특징으로 하는 액정표시장치의 휘점불량 수리방법.And before the first step, before the second step, or after the second step, blocking the power line pattern inside the defective pixel through welding by a laser beam. How to repair bad spots.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 전원 라인 패턴은 상기 불량 화소 내부의 공통전원(Vcom) 전극라인과 투명전극이 상하층으로 겹치는 영역 가운데 적어도 하나인 것을 특징으로 하는 액정표시장치의 휘점불량 수리방법.The power line pattern is at least one of a region in which the common power (Vcom) electrode line and the transparent electrode in the defective pixel overlap the upper and lower layers.
  7. 제 1 항에 있어서,According to claim 1,
    상기 제2 단계 이후에, 상기 제1 세기 이하의 제3 세기를 갖는 레이저빔의 레이저 스캔을 통해 상기 주변부를 2차 가공하여 상기 주변부의 암점화를 강화하는 단계를 더 포함하는 것을 특징으로 하는 액정표시장치의 휘점불량 수리방법.And after the second step, further comprising the step of secondaryly processing the periphery of the laser beam through a laser scan of the laser beam having a third intensity equal to or less than the first intensity to enhance darkening of the periphery. How to repair defective display device.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 7,
    상기 액정표시장치는 화소에 수직배향모드(VA MODE)의 액정을 구비하는 것을 특징으로 하는 액정표시장치의 휘점불량 수리방법.The liquid crystal display device, the vertical alignment mode (VA MODE) of the liquid crystal display, characterized in that the liquid crystal display device is provided with a defect.
  9. 불량 화소를 레이저빔으로 조사하여 암점화하는 액정표시장치 휘도불량 수리장치로서,A liquid crystal display device for illuminating dark pixels by irradiating defective pixels with a laser beam.
    레이저빔을 출력하는 레이저 조사유닛;A laser irradiation unit for outputting a laser beam;
    액정표시장치를 올려놓거나 고정하는 작업유닛;A work unit for placing or fixing a liquid crystal display device;
    상기 액정표시장치의 불량 화소에 조사되는 레이저빔의 상대적인 위치를 변경하기 위하여 상기 레이저 조사유닛 및 상기 작업유닛 중 어느 하나 이상에 설치되는 액추에이터; 및An actuator installed in at least one of the laser irradiation unit and the working unit to change a relative position of a laser beam irradiated to a defective pixel of the liquid crystal display; And
    상기 액추에이터의 동작과 상기 레이저 조사부의 동작을 제어하는 제어유닛을 포함하고,It includes a control unit for controlling the operation of the actuator and the operation of the laser irradiation unit,
    상기 제어유닛은 상기 불량 화소의 가장자리에 대응하는 주변부를 제1 세기의 레이저빔으로 조사하고, 상기 주변부로 둘러쌓인 상기 불량 화소의 중앙부를 상기 제1 세기보다 강한 제2 세기의 레이저빔으로 조사하는 것을 특징으로 하는 액정표시장치의 휘점불량 수리장치.The control unit irradiates a peripheral portion corresponding to the edge of the defective pixel with a laser beam of a first intensity, and irradiates a central portion of the defective pixel surrounded by the peripheral portion with a laser beam of a second intensity stronger than the first intensity. Repair device for defective bright spots of a liquid crystal display device, characterized in that.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 제1 세기는 상기 제2 세기의 30% 내지 80% 범위인 것을 특징으로 하는 액정표시장치의 휘점불량 수리장치.The first intensity is 30% to 80% of the second intensity range Defect repair device of the liquid crystal display device, characterized in that.
  11. 제 9 항에 있어서,The method of claim 9,
    상기 주변부의 폭 방향의 길이는 상기 불량 화소의 외곽 경계에서 상기 불량 화소의 길이 방향과 폭 방향에서의 각각의 길이의 10~15%에 이르는 것을 특징으로 하는 액정표시장치의 휘점불량 수리장치.The length of the peripheral portion in the width direction reaches 10 to 15% of each length in the length direction and the width direction of the defective pixel at an outer boundary of the defective pixel.
  12. 제 9 항에 있어서,The method of claim 9,
    상기 제1 세기의 레이저빔을 조사하기 전에, 상기 제어장치는 상기 레이저 조사유닛에 결합된 감시장치로부터 혹은 상기 감시장치에 연결된 저장장치로부터 상기 불량 화소의 내부 형태에 대한 정보를 획득하고, 상기 정보에 따라 레이저빔의 스캔 방향 및 세기를 결정하는 것을 특징으로 하는 액정표시장치의 휘점불량 수리장치.Before irradiating the laser beam of the first intensity, the control device obtains information on the internal shape of the defective pixel from a monitoring device coupled to the laser irradiation unit or from a storage device connected to the monitoring device, and the information Defect point repair device of a liquid crystal display device, characterized in that to determine the scanning direction and intensity of the laser beam according to.
  13. 제 9 항에 있어서,The method of claim 9,
    상기 제1 세기의 레이저빔을 조사하기 전에, 상기 제2 세기의 레이저빔을 조사하기 전에, 혹은 상기 제2 세기의 레이저빔을 조사한 이후에, 상기 제어장치는 레이저빔에 의한 웰딩을 통해 상기 불량 화소 내부의 전원 라인 패턴을 차단하는 것을 특징으로 하는 액정표시장치의 휘점불량 수리장치.Before irradiating the laser beam of the first intensity, before irradiating the laser beam of the second intensity, or after irradiating the laser beam of the second intensity, the control device performs the defect through welding by the laser beam. A defect repair device for a liquid crystal display device, characterized in that the power line pattern inside the pixel is cut off.
  14. 제 9 항에 있어서,The method of claim 9,
    상기 제2 세기의 레이저광을 조사한 후에, 상기 제어장치는 상기 제1 세기 이하의 제3 세기를 갖는 레이저빔을 통해 상기 주변부를 레이저 스캔하여 상기 주변부의 암점화를 강화하는 것을 특징으로 하는 액정표시장치의 휘점불량 수리장치.After irradiating the laser beam of the second intensity, the control device laser-scans the periphery through a laser beam having a third intensity less than or equal to the first intensity to enhance darkening of the peripheral area. A device for repairing defective devices.
  15. 제 9 항 내지 제 14 항 중 어느 한 항에 있어서,The method according to any one of claims 9 to 14,
    상기 액정표시장치는 화소에 수직배향모드(VA MODE)의 액정이 배치되는 액정표시장치인 것을 특징으로 하는 액정표시장치의 휘점불량 수리장치.The liquid crystal display device is a liquid crystal display device, characterized in that the liquid crystal in the vertical alignment mode (VA MODE) is disposed in the pixel.
PCT/KR2018/012041 2018-10-05 2018-10-12 Method and device for repairing bright spot defect of liquid crystal display device WO2020071572A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0118941 2018-10-05
KR1020180118941A KR102079455B1 (en) 2018-10-05 2018-10-05 Methdo and apparatus for repairing birght pixels of liquid crystal display

Publications (1)

Publication Number Publication Date
WO2020071572A1 true WO2020071572A1 (en) 2020-04-09

Family

ID=69669721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012041 WO2020071572A1 (en) 2018-10-05 2018-10-12 Method and device for repairing bright spot defect of liquid crystal display device

Country Status (3)

Country Link
KR (1) KR102079455B1 (en)
TW (1) TWI706559B (en)
WO (1) WO2020071572A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086048A (en) * 2020-08-31 2020-12-15 苏州迈为科技股份有限公司 OLED screen bright spot repairing method and device
CN112882297A (en) * 2021-03-01 2021-06-01 滁州惠科光电科技有限公司 Liquid crystal panel and liquid crystal panel repairing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090025145A (en) * 2007-09-05 2009-03-10 소니 가부시끼가이샤 Method of repairing organic light-emitting display
KR20120029100A (en) * 2010-09-16 2012-03-26 (주)미래컴퍼니 Method and device for repairing brightness defect of liquid crystal display panel
KR20130010340A (en) * 2011-07-18 2013-01-28 엘지디스플레이 주식회사 System and method for repairing organic electro-luminescent device
US20160126458A1 (en) * 2013-05-23 2016-05-05 Joled Inc. Method of manufacturing organic electroluminescence display apparatus and organic electroluminescence display apparatus
KR20180035217A (en) * 2015-07-30 2018-04-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 METHOD OF PRODUCING LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE, MODULE,

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4355476B2 (en) * 2002-08-21 2009-11-04 奇美電子股▲ふん▼有限公司 IPS liquid crystal display and dark spot pixel conversion method
TWI228313B (en) * 2003-11-21 2005-02-21 Hannstar Display Corp Pixel and repairing method thereof
JP2006091671A (en) * 2004-09-27 2006-04-06 Toshiba Corp Defect pixel correction method and detect pixel correcting device for liquid crystal display
EP1884910B1 (en) * 2005-05-23 2013-03-13 Sharp Kabushiki Kaisha Active matrix substrate, display device, and pixel defect correcting method
JP2007310180A (en) * 2006-05-19 2007-11-29 Mitsubishi Electric Corp Liquid crystal display device and method of restoring defective pixel
KR100879012B1 (en) * 2007-06-18 2009-01-15 주식회사 코윈디에스티 Method of repairing flat pannel display
KR20090016077A (en) * 2007-08-10 2009-02-13 주식회사 코윈디에스티 Apparatus for repairing defective lcd panels using the laser and method therefor
KR20110126779A (en) * 2010-05-18 2011-11-24 (주)에이치피케이 Lazer manufacturing device for refairing faulty of display panel and the refairign mathod thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090025145A (en) * 2007-09-05 2009-03-10 소니 가부시끼가이샤 Method of repairing organic light-emitting display
KR20120029100A (en) * 2010-09-16 2012-03-26 (주)미래컴퍼니 Method and device for repairing brightness defect of liquid crystal display panel
KR20130010340A (en) * 2011-07-18 2013-01-28 엘지디스플레이 주식회사 System and method for repairing organic electro-luminescent device
US20160126458A1 (en) * 2013-05-23 2016-05-05 Joled Inc. Method of manufacturing organic electroluminescence display apparatus and organic electroluminescence display apparatus
KR20180035217A (en) * 2015-07-30 2018-04-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 METHOD OF PRODUCING LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE, MODULE,

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086048A (en) * 2020-08-31 2020-12-15 苏州迈为科技股份有限公司 OLED screen bright spot repairing method and device
CN112882297A (en) * 2021-03-01 2021-06-01 滁州惠科光电科技有限公司 Liquid crystal panel and liquid crystal panel repairing method

Also Published As

Publication number Publication date
KR102079455B1 (en) 2020-02-19
TW202015232A (en) 2020-04-16
TWI706559B (en) 2020-10-01

Similar Documents

Publication Publication Date Title
KR100504228B1 (en) Liquid crystal display device
KR101117982B1 (en) Liquid Crystal Display Device And Method For Repairing Bright Spot Of The Same
US5636042A (en) Liquid crystal display apparatus and fabrication method thereof
KR20080111384A (en) Method of repairing flat pannel display
KR20120033584A (en) Thin film transistor panel, liquid crystal display device, and method to repair thereof
KR101232136B1 (en) Method of repair an Liquid Crystal Cell, method of manufacturing Liquid Crystal Display Device using the same, and Liquid Crystal Display repaired using the same
WO2020071572A1 (en) Method and device for repairing bright spot defect of liquid crystal display device
US20210055613A1 (en) Liquid Crystal Panel and Repairing Method Thereof, and Display Device
US10634967B2 (en) Display device, brightness defect correction method for display device, and brightness defect correction device for display device
KR101133080B1 (en) Apparatus of repairing flat pannel display
JP3673742B2 (en) Bright spot defect correcting method and apparatus for liquid crystal display device
JP2015175857A (en) Display device and manufacturing method thereof
KR20080022845A (en) Carbonized organic film, hazing apparatus for organic film and method the same
KR100695614B1 (en) Repair method for one pixel using laser chemical vapor deposition and a repaired substrate of liquid crystal display device
KR20170100427A (en) Display device, and method and apparatus for manufacturing the same
JP6362013B2 (en) Display device, manufacturing method thereof, and manufacturing apparatus
KR100877537B1 (en) Method of repair for Bad Pixel of Liquid Crystal Panel
WO2008156286A1 (en) Method of repairing flat pannel display
KR20210012096A (en) Panel repairing apparatus and method of repairing display panel using the same
US10656485B2 (en) Display device and method for manufacturing the same
WO2010128819A2 (en) Apparatus for repairing a bright point defect in a display device
WO2008156280A1 (en) Method of repairing flat pannel display
JP6709978B2 (en) Display device
JP2019133022A (en) Display, and method for manufacturing the same and device for manufacturing the same
TWI814549B (en) Active device substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936021

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18936021

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/04/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 18936021

Country of ref document: EP

Kind code of ref document: A1