WO2020071470A1 - Phthalocyanine compound and use thereof - Google Patents

Phthalocyanine compound and use thereof

Info

Publication number
WO2020071470A1
WO2020071470A1 PCT/JP2019/039063 JP2019039063W WO2020071470A1 WO 2020071470 A1 WO2020071470 A1 WO 2020071470A1 JP 2019039063 W JP2019039063 W JP 2019039063W WO 2020071470 A1 WO2020071470 A1 WO 2020071470A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
phthalocyanine
atom
Prior art date
Application number
PCT/JP2019/039063
Other languages
French (fr)
Japanese (ja)
Inventor
高坂 明宏
浩之 佐々木
熊谷 洋二郎
Original Assignee
山本化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山本化成株式会社 filed Critical 山本化成株式会社
Priority to JP2020550531A priority Critical patent/JP7431744B2/en
Publication of WO2020071470A1 publication Critical patent/WO2020071470A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/12Obtaining compounds having alkyl radicals, or alkyl radicals substituted by hetero atoms, bound to the phthalocyanine skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/18Obtaining compounds having oxygen atoms directly bound to the phthalocyanine skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/20Obtaining compounds having sulfur atoms directly bound to the phthalocyanine skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to a novel phthalocyanine compound having good organic solvent solubility, good resin compatibility, excellent visible light transparency, and high durability, and its use. Specifically, it has strong absorption in the near-infrared region, has very little absorption in the visible light region, has little coloring, has high durability against light and heat, has good solubility in organic solvents and resins, and has a near infrared
  • the present invention relates to a novel phthalocyanine-based compound widely applicable to near-infrared absorbing materials such as absorption filters, security inks, heat ray shielding films, interlayer films for laminated glass, and infrared thermosensitive recording materials, and uses thereof.
  • near-infrared absorbing materials include optical recording media, near-infrared photosensitizers, photothermal converters, near-infrared absorbing filters, optical filters for image sensors and optical sensors such as face authentication and fingerprint authentication, near-infrared absorbing ink, heat ray shielding It has been used in a wide range of fields such as materials.
  • the ability to absorb near-infrared rays in applications such as near-infrared cut filters used for plasma displays, transparent ink used for security, heat ray shielding materials used for automobiles and building windows, and laser welding of plastics.
  • near-infrared absorbing materials which have high transparency and high visible light transmittance, that is, have low coloring and high transparency, have high durability against light and heat, and are soluble in organic solvents and resins.
  • Cyanine dyes (Reference 1), diimmonium salt dyes (Reference 2), and dithiol nickel complexes (Reference 3) are used as near-infrared absorbing materials because of their low absorption in the visible light region.
  • cyanine-based dyes have high near-infrared absorption ability, there is a problem that durability is low and the organic solvent to be dissolved is limited to a polar solvent.
  • the diimmonium salt-based dye has a problem in that it has low near-infrared absorption ability and durability, and the organic solvent to be dissolved is limited to a polar solvent.
  • a similar problem has been pointed out for the dithiol nickel complex, and there is also a problem regarding its safety.
  • Phthalocyanine compounds are also being studied from the viewpoint of high durability, and phthalocyanine compounds in which the association property in a resin is suppressed (Reference 4) have been proposed, but improvement is desired in terms of resin compatibility.
  • Phthalocyanine compounds similar to the present invention References 5 and 6 have also been proposed, but they are still insufficient in visible transmittance, organic solvent solubility, and resin compatibility, and improvements are desired.
  • An object of the present invention is to provide a novel phthalocyanine compound having strong absorption in the near infrared region, very low absorption in the visible light region, high durability, good organic solvent solubility and good solubility in resins, and
  • An object of the present invention is to provide an infrared absorbing material containing:
  • a phthalocyanine-based compound represented by the general formula (1) [In the formula (1), A1 to A8 each independently represent a hydrogen atom, a substituted or unsubstituted aryl group, a substituent containing an oxygen atom, a substituent containing a sulfur atom, or a nitrogen atom.
  • X1 to X8 each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted Represents an unsubstituted aryloxy group, a substituted or unsubstituted alkylthio group, or a substituted or unsubstituted arylthio group, which may be bonded to each other to form an aromatic ring or a heterocyclic ring.
  • M represents two hydrogen atoms, a divalent metal or a derivative of a trivalent or tetravalent metal, and n1 to n8 each independently represent an integer of 0 to 12.
  • n1 to n8 are not 0 and all of A1 to A8 are alkoxy groups, all of n1 to n8 are not 1 at the same time and may be 8 at the same time. There is no. ]
  • the aryl group having a substituent is a phenyl group having 1 to 5 alkoxy groups or a naphthyl group having 1 to 5 alkoxy groups
  • X1 to X8 are a hydrogen atom, a halogen atom, a substituent Or unsubstituted alkyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aryloxy group, substituted or unsubstituted alkylthio group or substituted or unsubstituted group
  • the phthalocyanine compound of [1] which is an arylthio group of [1].
  • A1 to A8 represent a hydrogen atom, an oxygen atom-containing substituent or a substituted or unsubstituted phenyl group
  • X1 to X8 represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group
  • the phthalocyanine compound of [1] which is a substituted or unsubstituted alkoxy group, wherein four of n1 to n8 are 0.
  • A1 to A8 are a hydrogen atom, an oxygen atom-containing substituent or a substituted or unsubstituted phenyl group, and X1 and X5, X2 and X6, X3 and X7, X4 and X8 are bonded to each other to form a benzene ring.
  • the phthalocyanine compound of [1] wherein four of n1 to n8 are 0.
  • the phthalocyanine compound of [1], wherein the substituent containing an oxygen atom in A1 to A8 is a substituted or unsubstituted alkoxy group, or a substituted or unsubstituted aryloxy group.
  • the substituent containing an oxygen atom is a phenyloxy group having 1 to 5 alkoxy groups or a naphthyloxy group having 1 to 5 alkoxy groups
  • X1 to X8 are a hydrogen atom or a halogen atom.
  • the phthalocyanine-based compound of [1] which is an unsubstituted arylthio group.
  • the substituent containing an oxygen atom is a phenyloxy group having 1 to 5 alkoxy groups or a naphthyloxy group having 1 to 5 alkoxy groups, and X1 to X8 are a hydrogen atom or a halogen atom.
  • the substituent containing an oxygen atom is an alkoxyalkoxy group having a total of 3 to 8 carbon atoms
  • X1 to X8 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group or a substituent.
  • the substituent containing an oxygen atom is an alkoxyalkoxy group having a total of 3 to 6 carbon atoms
  • X1 to X8 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group or a substituent.
  • the phthalocyanine compound according to [1] which is a substituted or unsubstituted alkoxy group or a substituted or unsubstituted aryloxy group, and wherein n1 to n8 are 3 to 6.
  • the substituent containing an oxygen atom is a phenyloxy group having 1 to 5 alkylthio groups or a naphthyloxy group having 1 to 5 alkylthio groups
  • X1 to X8 are a hydrogen atom or a halogen atom.
  • the substituent containing an oxygen atom is a phenyloxy group having 1 to 5 alkylthio groups or a naphthyloxy group having 1 to 5 alkylthio groups, and X1 to X8 are a hydrogen atom or a halogen atom.
  • the substituent having a sulfur atom is a phenylthio group having 1 to 5 alkoxy groups or a naphthylthio group having 1 to 5 alkoxy groups
  • X1 to X8 are a hydrogen atom, a halogen atom
  • the phthalocyanine compound of [1] which is an unsubstituted arylthio group.
  • the substituent containing a nitrogen atom is a substituted or unsubstituted monoalkylamino group, a substituted or unsubstituted dialkylamino group, or a substituted or unsubstituted monoarylamino group.
  • a phthalocyanine compound according to [1] which is a substituted or unsubstituted diarylamino group or a substituted or unsubstituted alkylarylamino group.
  • A1 to A8 are a heterocycle containing an oxygen atom, a heterocycle containing a sulfur atom or a heterocycle containing a nitrogen atom
  • X1 to X8 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group or a substituent Or a substituted or unsubstituted aryloxy group, a substituted or unsubstituted alkylthio group or a substituted or unsubstituted arylthio group.
  • A1 to A8 each have a substituted or unsubstituted furan ring, a substituted or unsubstituted tetrahydrofuran ring, a substituted or unsubstituted 1,3-dioxolane ring, a substituted or unsubstituted 1 , 3-dioxane ring, substituted or unsubstituted 1,4-dioxane ring, substituted or unsubstituted thiophene ring, substituted or unsubstituted tetrahydrothiophene ring, substituted or unsubstituted Substituted thiane ring, substituted or unsubstituted pyrrole ring, substituted or unsubstituted pyrrolidine ring, substituted or unsubstituted pyridine ring, substituted or unsubstituted pyridyl ring A substituted or unsubstituted imidazole
  • A1 to A8 each represent (a1) a hydrogen atom, (a2) a substituted or unsubstituted aryl group, (a3) a substituent containing an oxygen atom, (a4) a substituent containing a sulfur atom, (a5) a nitrogen atom.
  • a combination of two selected from substituents containing atoms When A1 to A8 are a combination of two types of substituents contained in any one of the above (a2) to (a5), the two types of the substituents may be the same or different, [1] to The phthalocyanine compound of [18].
  • X1 to X8 are a fluorine atom, a chlorine atom or a bromine atom [the phthalocyanine compound of [1]. [21] [1], [2], [3], [7], [14], [16] and [16] wherein X1 and X5, X2 and X6, X3 and X7, X4 and X8 are bonded to each other to form a heterocyclic ring. [19] The phthalocyanine-based compound according to any of [19].
  • M is two hydrogen atoms, Pd, Cu, Zn, Pt, Ni, TiO, Co, Fe, Mn, Sn, SnCl 2 , AlCl, AlOH, Si (OH) 2 , VO or InCl, [1] The phthalocyanine-based compound according to any one of to [21].
  • the heat ray shielding material according to [24] which is a heat ray shielding film.
  • the heat ray shielding material according to [25] which is an interlayer film for laminated glass.
  • a phthalocyanine compound having strong absorption in the near-infrared region, extremely low absorption in the visible light region, high durability, and good solubility in organic solvents and resins, and having such properties. It has become possible to provide its use as a near infrared absorbing material.
  • FIG. 3 is an absorption spectrum diagram of a specific example (1-167) manufactured in Example 1.
  • FIG. 14 is an absorption spectrum diagram of a specific example (1-178) manufactured in Example 2.
  • FIG. 14 is an absorption spectrum diagram of a specific example (1-165) manufactured in Example 3.
  • FIG. 14 is an absorption spectrum diagram of the isomer mixtures of the specific examples (2-37) to (2-40) produced in Example 4.
  • FIG. 14 is an absorption spectrum diagram of a specific example (1-170) manufactured in Example 5.
  • 17 is an absorption spectrum diagram of a specific example (1-171) manufactured in Example 6.
  • FIG. 21 is an absorption spectrum diagram of a specific example (1-174) manufactured in Example 7.
  • FIG. 21 is an absorption spectrum diagram of a specific example (1-175) manufactured in Example 8.
  • FIG. 21 is an absorption spectrum diagram of a mixture including Specific Examples (2-1) to (2-4) produced in Example 9.
  • FIG. 14 is an absorption spectrum diagram of a mixture including Specific Examples (2-5) to (2-8) produced in Example 10.
  • FIG. 14 is an absorption spectrum diagram of a mixture including Specific Examples (2-9) to (2-12) produced in Example 11.
  • FIG. 14 is an absorption spectrum diagram of a mixture including Specific Examples (2-13) to (2-16) produced in Example 12.
  • 31 is an absorption spectrum diagram of a specific example (1-156) manufactured in Example 13.
  • FIG. 21 is an absorption spectrum diagram of a specific example (1-310) manufactured in Example 14.
  • FIG. 21 is an absorption spectrum diagram of a specific example (1-311) manufactured in Example 15.
  • FIG. 21 is an absorption spectrum diagram of a specific example (1-179) manufactured in Example 16.
  • FIG. 21 is an absorption spectrum diagram of a specific example (1-182) manufactured in Example 17.
  • FIG. 21 is an absorption spectrum diagram of a specific example (1-158) manufactured in Example 18.
  • FIG. 21 is an absorption spectrum diagram of a specific example (1-183) produced in Example 19.
  • FIG. 21 is an absorption spectrum diagram of a specific example (2-17) manufactured in Example 20.
  • FIG. 21 is an absorption spectrum diagram of a specific example (2-21) manufactured in Example 21.
  • 25 is an absorption spectrum diagram of a specific example (2-25) manufactured in Example 22.
  • FIG. FIG. 27 is an absorption spectrum diagram of a mixture of the specific examples (2-29) to (2-32) produced in Example 23.
  • 21 is an absorption spectrum diagram of a mixture of the specific examples (2-33) to (2-36) produced in Example 24.
  • FIG. 2 is an absorption spectrum diagram of a comparative compound (a) produced in Comparative Example 1.
  • FIG. 5 is an absorption spectrum diagram of a comparative compound (b) produced in Comparative Example 2.
  • FIG. 9 is an absorption spectrum diagram of a comparative compound (d) produced in Comparative Example 3.
  • FIG. 9 is a comparison diagram of transmission spectra of Example 6, Example 12, Example 15, Example 16, and Comparative Example 1.
  • FIG. 14 is a comparison diagram of transmission spectra of Example 20, Example 22, and Comparative Example 3.
  • the first invention of the present invention is a phthalocyanine compound represented by the general formula (1).
  • A1 to A8 each independently represent a hydrogen atom, a substituted or unsubstituted aryl group, a substituent containing an oxygen atom, a substituent containing a sulfur atom, and a nitrogen atom.
  • X1 to X8 each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted Represents a substituted aryloxy group, a substituted or unsubstituted alkylthio group, or a substituted or unsubstituted arylthio group, which may be bonded to each other to form an aromatic ring or a heterocyclic ring.
  • M represents two hydrogen atoms, a divalent metal or a derivative of a trivalent or tetravalent metal
  • n1 to n8 each independently represent an integer of 0 to 12. However, when all of n1 to n8 are not 0 and all of A1 to A8 are alkoxy groups, all of n1 to n8 are not 1 at the same time and may be 8 at the same time. There is no.
  • M is preferably in the general formula (1), M is two hydrogen atoms, Pd, Cu, Zn, Pt , Ni, TiO, Co, Fe, Mn, Sn, SnCl 2, AlCl, AlOH, Si (OH) 2 , VO or InCl. More preferably, M is two hydrogen atoms, Pd, Cu, Zn, TiO, AlCl, AlOH, VO.
  • a hydrogen atom is good, and a substituted or unsubstituted aryl group is preferably a phenyl group or a naphthyl group. Particularly, a phenyl group having 1 to 5 alkoxy groups or a naphthyl group having 1 to 5 alkoxy groups is preferable.
  • Examples of the substituent in which A1 to A8 contain an oxygen atom include a substituted or unsubstituted alkoxy group, a substituted or unsubstituted phenyloxy group, a substituted or unsubstituted naphthyloxy group, an oxygen Heterocycles containing atoms are good, especially phenyloxy groups having 1 to 5 alkoxy groups, naphthyloxy groups having 1 to 5 alkoxy groups, phenyloxy groups having 1 to 5 alkylthio groups, 1 to 5 A naphthyloxy group having 5 alkylthio groups or an alkoxyalkoxy group having 3 to 8 carbon atoms is preferred.
  • Examples of the substituent containing a sulfur atom for A1 to A8 include a substituted or unsubstituted alkylthio group, a substituted or unsubstituted arylthio group, and a heterocyclic ring containing a sulfur atom. And a naphthylthio group having 1 to 5 alkoxy groups.
  • Examples of the substituent in which A1 to A8 have a nitrogen atom include a substituted or unsubstituted monoalkylamino group, dialkylamino group, monoarylamino group, diarylamino group or alkylarylamino group, and a heteroatom containing a nitrogen atom. Ring is good.
  • X1 to X8 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted An unsubstituted alkylthio group, a substituted or unsubstituted arylthio group, and X may be bonded to each other to form an aromatic ring or a heterocyclic ring.
  • n1 to n8 are integers of 0 to 12, and n1 to n8 are not all 0.
  • n1 to n8 are preferably 0 to 8, and particularly preferably 0 to 6.
  • Examples of the substituted or unsubstituted aryl group of A1 to A8 include a phenyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a 3-ethylphenyl group, and a 4-ethylphenyl Group, 4-n-propylphenyl group, 4-isopropylphenyl group, 4-n-butylphenyl group, 4-isobutylphenyl group, 4-tert-butylphenyl group, 4-n-pentylphenyl group, 4-isopentyl Phenyl group, 4-tert-pentylphenyl group, 4-n-hexylphenyl group, 4-cyclohexylphenyl group, 4-n-heptylphenyl group, 4-n-octylphenyl group, 4-n-nonylphenyl group, 4 -N-decylphenyl group, 4-n-
  • Examples of the substituent in which A1 to A8 contain an oxygen atom include a 2-methylphenyloxy group, a 3-methylphenyloxy group, a 4-methylphenyloxy group, a 3-ethylphenyloxy group, and a 4-ethylphenyloxy group 4-n-propylphenyloxy group, 4-isopropylphenyloxy group, 4-n-butylphenyloxy group, 4-isobutylphenyloxy group, 4-tert-butylphenyloxy group, 4-n-pentylphenyloxy group , 4-isopentylphenyloxy group, 4-tert-pentylphenyloxy group, 4-n-hexylphenyloxy group, 4-cyclohexylphenyloxy group, 4-n-heptylphenyloxy group, 4-n-octylphenyloxy Group, 4-n-nonylphenyloxy group, 4-n-decylphenyloxy 4-n
  • substituents in which A1 to A8 contain a sulfur atom include methylthio, ethylthio, propylthio, butylthio, hexylthio, 2-ethylhexylthio, methoxyethylthio, phenoxyethylthio, benzylthio, Phenylethylthio, phenylthio, 2-methoxy-phenylthio, 3-methoxy-phenylthio, 4-methoxy-phenylthio, 2,4-dimethoxy-phenylthio, 3,5-dimethoxy-phenylthio, 2,4 2,6-Trimethoxy-phenylthio, 3-methylthio-phenylthio, 2,4-dimethylthio-phenylthio, 2,4,6-trimethylthio-phenylthio, 2-methoxy-1-naphthylthio, 2-methylthio-1 -Naphthyl
  • Examples of the substituent in which A1 to A8 contain a nitrogen atom include dimethylamino, diethylamino, di-n-propylamino, di-n-butylamino, di-n-hexylamino, N-ethyl —Nn-hexylamino group, N-methyl-NNn-octylamino group, N-ethyl-N-phenylamino group, N-ethyl-N- (4′-tert-butylphenyl) amino group, N -N-butyl-N- (4'-methoxyphenyl) amino group, bis (2-methoxyethyl) amino group, bis (2-isopropoxyethyl) amino group, 2-pyrrolidinyl group, 1-pyrrolidinyl group, N- Substituents such as a methyl-2-pyrrolidinyl group, a 1-piperidinyl group, a 2-piperidinyl group,
  • Examples of X1 to X8 being a halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom, a chlorine atom and a bromine atom are preferred.
  • Examples of an alkyl group where X1 to X8 are a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group , Neopentyl, tert-pentyl, 1,2-dimethylpropyl, 1-methylbutyl, 2-methylbutyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methylpentyl, 4-methyl-2-pentyl, 1,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, n-heptyl, 1- Methylhexyl group, 3-methylhexyl group, 5-methylhe
  • alkoxy group where X1 to X8 are methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, n-pentyloxy, isopentyloxy, neopentyl Oxy group, 1,2-dimethylpropoxy group, 1-methylbutoxy group, n-hexyloxy group, 1-methylpentyloxy group, 2-methylpentyloxy group, 4-methylpentyloxy group, 4-methyl-2- Pentyloxy group, 1,2-dimethylbutyloxy group, 2,3-dimethylbutyloxy group, 3,3-dimethylbutyloxy group, 1-ethylbutyloxy group, 2-ethylbutyloxy group, n-heptyloxy group , 1-methylhexyloxy group, 3-methylhexyloxy group, 5-methylhexyloxy group, 2,4 Dimethylpentyloxy, cyclohexylmethyloxy, cyclo
  • aryloxy group where X1 to X8 are 2-methylphenyloxy group, 3-methylphenyloxy group, 4-methylphenyloxy group, 3-ethylphenyloxy group, 4-ethylphenyloxy group, 4-n -Propylphenyloxy group, 4-isopropylphenyloxy group, 4-n-butylphenyloxy group, 4-isobutylphenyloxy group, 4-tert-butylphenyloxy group, 4-n-pentylphenyloxy group, 4-iso Pentylphenyloxy group, 4-tert-pentylphenyloxy group, 4-n-hexylphenyloxy group, 4-cyclohexylphenyloxy group, 4-n-heptylphenyloxy group, 4-n-octylphenyloxy group, 4- n-nonylphenyloxy group, 4-n-decylphenyloxy group, 4- -Undecylphenyl
  • alkylthio group in which X1 to X8 are a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a hexylthio group, a 2-ethylhexylthio group, a methoxyethylthio group, a cyclohexylthio group, a benzylthio group, a 4-methoxybenzylthio group And a substituent such as a phenylethylthio group and a phenoxyethylthio group.
  • arylthio group in which X1 to X8 are a phenylthio group, a 2-methoxy-phenylthio group, a 3-methoxy-phenylthio group, a 4-methoxy-phenylthio group, a 2,4-dimethoxy-phenylthio group, a 3,5-dimethoxy- Phenylthio group, 2,4,6-trimethoxy-phenylthio group, 3-methylthio-phenylthio group, 2,4-dimethylthio-phenylthio group, 2,4,6-trimethylthio-phenylthio group, 2-methoxy-1-naphthylthio group A 2-methylthio-1-naphthylthio group, a 4-methylthio-1-naphthylthio group, a 5-methoxy-1-naphthylthio group, a 2,4-dimethoxy-1-naphthyl
  • Examples of X1 to X8 bonded to each other to form an aromatic ring or a heterocyclic ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a pyridine ring, an indole ring, a quinoline ring, an isoquinoline ring, a phenoxazine ring, Examples include a phenothiazine ring, a quinoxaline ring, a phenazine ring, and an anthraquinone ring.
  • a benzene ring, a pyridine ring, and a phenothiazine ring are preferred, and a benzene ring is particularly preferred.
  • the aromatic ring or the hetero ring may have a substituent.
  • n1 to n8 are each independently an integer of 0 to 12, and n1 to n8 are not all 0. It is preferably from 0 to 8, particularly preferably from 0 to 6.
  • Specific examples of the phthalocyanine-based compound represented by the general formula (1) are shown in (1-1) to (1-462) in Table 1 and (2-1) to (2-71) in the figure. It is not limited. Table 1 shows a specific example in which all A1 to A8 are the same, all X1 to X8 are the same, and all n1 to n8 are the same.
  • FIGS. (2-1) to (2-71) show specific examples in the case where A1 to A8 are not the same, when X1 to X8 are not the same, or when n1 to n8 are not the same.
  • the phthalocyanine compound represented by the general formula (1) can be produced by referring to a known method. That is, the compound represented by the general formula (1) is, for example, at least a phthalonitrile-based compound represented by the general formula (2) or a 1,3-diiminoisoindoline-based compound represented by the general formula (3). It can be produced by reacting one kind with a metal or a metal derivative.
  • Aa represents A1 to A4
  • Ab represents A5 to A8
  • Xa represents X1 to X
  • Xb represents X5 to X8
  • na represents n1 to n4
  • nb represents n5 to n8, and has the same meaning as in the general formula (1). It is.
  • metal or metal derivative examples include Al, Si, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Ge, Ru, Rh, Pd, In, Sn, Pt, Pb, and halides and carboxylate salts thereof. , Sulfate, nitrate, carbonyl compound, oxide, complex and the like.
  • metal halides or carboxylate salts are preferably used, and examples thereof include copper chloride, copper bromide, copper iodide, nickel chloride, nickel bromide, nickel acetate, cobalt chloride, iron chloride, zinc chloride, and odor.
  • the amount of the metal or metal derivative used is 0.1 mole to 0 mole per 1 mole of the phthalonitrile compound of the general formula (2) or 1 mole of the 1,3-diiminoisoindoline compound of the general formula (3).
  • the molar amount is 0.6 times, preferably 0.2 times to 0.5 times.
  • the reaction temperature is from 60 to 300 ° C, preferably from 100 to 220 ° C.
  • the reaction time is 30 minutes to 72 hours, preferably 1 hour to 48 hours.
  • a solvent As a solvent used in the reaction, an organic solvent having a boiling point of 60 ° C. or higher, preferably 80 ° C. or higher is preferable. Examples include methanol, ethanol, n-propyl alcohol, n-butyl alcohol, isobutyl alcohol, n-amyl alcohol, n-hexanol, 1-heptanol, 1-octanol, 1-dodecanol, benzyl alcohol, ethylene glycol, propylene glycol, ethoxy Alcohol solvents such as ethanol, propoxyethanol, butoxyethanol, dimethylethanol, diethylethanol, etc., dichlorobenzene, trichlorobenzene, chloronaphthalene, sulfolane, nitrobenzene, quinoline, DMI (1,3-dimethyl-2-imidazolidinone), urea, etc. High boiling point solvent. The amount of the solvent used is 0.5 to 50
  • the reaction is carried out in the presence or absence of a catalyst, preferably in the presence of a catalyst.
  • a catalyst include inorganic catalysts such as ammonium molybdate, DBU (1,8-diazabicyclo [5.4.0] undec-7-ene), and DBN (1,5-diazabicyclo [4.3.0] nona-5).
  • -Ene) and other basic organic catalysts can be used.
  • the amount used is 0.01 to 10 moles, preferably 1 to 2 moles, per mole of the phthalonitrile compound or 1 mole of the 1,3-diiminoisondrine compound.
  • the phthalocyanine compound in which M is two hydrogen atoms, is selected from a phthalonitrile compound represented by the general formula (2) or a 1,3-diiminoisoindoline compound represented by the general formula (3). It can be produced by reacting at least ⁇ 1 ⁇ species with metal sodium or metal potassium under the above reaction conditions, and then removing sodium or potassium as the central metal with hydrochloric acid, sulfuric acid or the like.
  • the solvent is distilled off, or the reaction solution is discharged into a poor solvent for the phthalocyanine compound to precipitate the desired product, and the precipitate is filtered to obtain a phthalocyanine compound of the general formula (1).
  • the phthalocyanine compound is obtained as a mixture of isomers.
  • the product can be further purified by a known purification method such as recrystallization or column chromatography to obtain a higher-purity target product.
  • the phthalonitrile-based compound represented by the general formula (2) can be produced with reference to a method known per se. For example, it can be manufactured by the following route with reference to JP-T-2003-516421.
  • Xa and Xb have the same meanings as those in the general formulas (2) and (3), and in the general formulas (5) and (6), R represents an alkyl group Or an aryl group.
  • Aa and na in the general formula (7a) and Ab and nb in the general formula (7b) have the same meanings as those in the general formulas (2) and (3), and in the general formulas (7a) and (7b) Y is a halogen atom.
  • a phthalonitrile compound of the general formula (4) is reacted with an alkyl sulfonic acid chloride or an aryl sulfonic acid chloride of the general formula (5) in an organic solvent in the presence of a base in the general formula (4).
  • a phthalonitrile compound can be produced.
  • Methanesulfonic acid chloride, ethanesulfonic acid chloride, propanesulfonic acid chloride, trifluoromethanesulfonic acid chloride and the like can be used as the alkylsulfonic acid chloride.
  • arylsulfonic acid chloride benzenesulfonic acid chloride, toluenesulfonic acid chloride, chlorobenzenesulfonic acid chloride, naphthalenesulfonic acid chloride and the like can be used.
  • the amount of the alkyl sulfonic acid chloride or the aryl sulfonic acid chloride to be used is 2 to 4 times, preferably 2 to 3 times, more preferably 1 to 1 mol of the phthalonitrile compound of the formula (4). It is 2 times to 2.2 times mol.
  • sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, pyridine and the like can be used.
  • the amount of the base used is 2 to 4 moles, preferably 2 to 3 moles, per 1 mole of the phthalonitrile compound of the general formula (4).
  • the solvent is not particularly limited as long as it does not adversely affect the reaction, and dichloromethane, 1,2-dichloroethane, benzotrifluoride, acetonitrile, toluene and the like can be used.
  • the amount of the solvent used is not particularly limited, it is 500 mL to 3.0 L, preferably 1.0 to 2.0 L, per 1 mol of the phthalonitrile compound.
  • the reaction temperature is from room temperature to 200 ° C, preferably from 50 to 150 ° C, more preferably from 50 to 100 ° C.
  • the reaction time is 10 minutes to 48 hours, preferably 20 minutes to 24 hours, more preferably 30 minutes to 12 hours.
  • the solvent is distilled off, or the reaction solution is discharged into a poor solvent for the phthalonitrile compound to precipitate the desired product, and the precipitate is filtered to obtain the phthalonitrile compound of the general formula (6).
  • the phthalonitrile compound of the general formula (6) is cross-coupled (Negishi reaction) with an organozinc reagent of the general formula (7a) and the general formula (7b) in an organic solvent in the presence of a palladium catalyst to give a compound of the general formula (
  • the phthalonitrile compound of 2) can be produced.
  • Y is chlorine, bromine, iodine or fluorine, preferably chlorine, bromine, more preferably bromine.
  • the amount of the organozinc reagent to be used is 2 to 5 moles, preferably 2 to 3 moles, per 1 mole of the phthalonitrile compound of the general formula (6).
  • a palladium catalyst bis (triphenylphosphine) palladium (II) dichloride, bis (tri-o-tolylphosphine) palladium (II) dichloride, bis (tri-o-tolylphosphine) palladium (II) dichloride, [1,3- Bis (diphenylphosphino) propane] palladium (II) dichloride and the like can be used.
  • the amount of the palladium catalyst to be used is 0.01 to 0.3 equivalent, preferably 0.05 to 0.2 equivalent, per 1 mol of the phthalonitrile compound of the general formula (6).
  • a reaction solvent tetrahydrofuran, diethyl ether, 1,4-dioxane and the like can be used.
  • the amount of the reaction solvent used is not particularly limited, but is 500 mL to 3.0 L, preferably 1.0 to 2.0 L, per 1 mol of the phthalonitrile compound of the general formula (6).
  • the reaction temperature is from room temperature to 200 ° C, preferably from 50 to 150 ° C, more preferably from 50 to 100 ° C.
  • the reaction time is 10 minutes to 48 hours, preferably 20 minutes to 24 hours, more preferably 30 minutes to 12 hours.
  • the solvent is distilled off, and the mixture is extracted with an aromatic solvent such as toluene or a halogenated hydrocarbon solvent such as methylene chloride.
  • the extract is washed with water and concentrated.
  • the phthalonitrile compound of the general formula (2) can be obtained by depositing the substance and filtering the precipitate. If necessary, a higher purity product can be obtained by adding a known purification operation such as recrystallization and column chromatography to the product.
  • the 1,3-diiminoisoindoline-based compound represented by the general formula (3) can be produced by referring to a known method for a known compound. For example, it is produced by reacting a phthalonitrile compound represented by the general formula (2) with ammonia in the presence of a metal alkoxide.
  • the amount of ammonia to be used is 1 to 20 moles, preferably 3 to 10 moles, per 1 mole of the phthalonitrile compound of the formula (2).
  • the metal alkoxide include sodium or potassium methoxide, ethoxide, n-propoxide, n-butoxide, n-pentoxide, n-hexyloxyside, n-octyloxyside, 2-methoxyethoxyoxide, and 2-ethoxyethoxide. , 2-butoxyethoxide and the like are used.
  • the amount of the metal alkoxide to be used is 0.01 to 5 times, preferably 0.1 to 2.0 times the mol of the phthalonitrile compound of the general formula (2).
  • an organic solvent is preferably used in combination, and usually, an alcohol solvent is used as the organic solvent.
  • alcohol solvents include methanol, ethanol, n-propanol, n-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, 2-methoxyethanol, 2-ethoxyethanol, and 2-butoxyethanol.
  • the amount of the alcohol solvent to be used is 200 mL to 15 L, preferably 500 mL to 5 L, per 1 mol of the phthalonitrile compound of the general formula (2).
  • reaction operation after adjusting the alcohol solution of the metal alkoxide by adding metal sodium or metal potassium to the alcohol solvent as the reaction solvent, ammonia and the phthalonitrile compound of the general formula (2) are charged and reacted.
  • the reaction may be carried out by charging ammonia, a phthalonitrile compound of the general formula (2), and a separately prepared metal alkoxide into a reaction solvent.
  • the amount of the metal used for adjusting the metal alkoxyside is 0.01 to 5.0 times, preferably 0.1 to 2.0 times the mol of the phthalonitrile compound of the general formula (2). It is.
  • the reaction temperature is from 0 ° C. to the reflux temperature of the solvent, preferably from 20 ° C. to the reflux temperature of the solvent.
  • the reaction time is preferably 30 minutes to 72 hours.
  • the solvent is distilled off, and the mixture is extracted with an aromatic solvent such as toluene or a halogenated hydrocarbon solvent such as methylene chloride.
  • the 1,3-diiminoisoindoline compound of (3) can be obtained.
  • the phthalocyanine compound of the present invention is a heat ray shielding material for shielding heat rays, an optical filter for a plasma display or a liquid crystal display, a flash fixing toner, a light heat exchange agent for heat transfer / heat stencil, etc., and a light heat conversion for laser welding.
  • the near-infrared absorbing material of the present invention may be the phthalocyanine-based compound of the present invention itself represented by the general formula (1) or the phthalocyanine compound of the general formula (1) together with other components such as a binder resin and an additive. It may contain a system compound. Aspects and components of the near-infrared absorbing material vary depending on the application and are various.
  • the heat ray shielding material of the present invention is suitably used for a heat ray shielding material used for films and interlayers used for buildings and automobile windows, greenhouses, sun visors, welding goggles and the like.
  • the heat ray shielding material of the present invention contains the phthalocyanine compound of the present invention represented by the general formula (1).
  • the phthalocyanine compound of the general formula (1) contained in the heat ray shielding material of the present invention may be used as a single compound or in the form of a mixture of two or more.
  • the use form of the heat ray shielding material of the present invention is not particularly limited, and may be any known form. Specifically, for example, the following examples are given.
  • the substrate examples include, but are not particularly limited to, glass plates; and plastic plates such as polycarbonate, polymethyl methacrylate, polystyrene, polyethylene terephthalate, polyvinyl chloride, polysulfone, and unsaturated polyester.
  • plastic plates such as polycarbonate, polymethyl methacrylate, polystyrene, polyethylene terephthalate, polyvinyl chloride, polysulfone, and unsaturated polyester.
  • a coating film or a film containing a phthalocyanine-based compound and a resin of the general formula (1) as essential components is applied on a substrate, and 3.2 or more substrates have a general formula (1) Of a laminate in which a film or the like containing a phthalocyanine-based compound and a resin as essential components is provided as an intermediate layer.
  • the heat ray shielding material of the present invention includes the phthalocyanine-based compound represented by the general formula (1) and the resin as essential components.
  • the resin can be appropriately selected depending on the intended use of the heat ray shielding material.
  • a resin that is substantially transparent and does not have large absorption and scattering is preferable.
  • polycarbonate resins such as methyl methacrylate
  • polyvinyl resins such as polystyrene, polyvinyl chloride and polyvinylidene chloride
  • polyolefin resins such as polyethylene and polypropylene
  • polybutyral resins acetic acid such as polyvinyl acetate A vinyl resin
  • a polyester resin a polyamide resin; a polyvinyl acetal resin; a polyvinyl alcohol resin; an ethylene-vinyl acetate copolymer resin; an ethylene-acryl copolymer resin
  • the resin is substantially transparent, not only the above-mentioned one kind of resin but also a blend of two or more kinds of resins can be used, and the above-mentioned resin can be inserted into transparent
  • polycarbonate resin (meth) acrylic resin, polyester resin, polyamide resin, polystyrene resin, polyvinyl chloride resin, polyvinyl acetal resin, and polyvinyl alcohol resin are preferable.
  • polycarbonate resin, methacryl resin, polyethylene terephthalate (PET) ) Resins, polyvinyl chloride resins and polyvinyl acetal resins are more preferred.
  • the polycarbonate resin is produced by reacting a dihydric phenol with a carbonate precursor by a solution method or a melting method.
  • dihydric phenols 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (4 -Hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, bis ( 4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone and the like.
  • Preferred dihydric phenols are bis (4-hydroxyphenyl) alkanes, particularly those containing bisphenol as a main component.
  • Examples of the (meth) acrylic resin include methyl methacrylate alone or a polymerizable unsaturated monomer mixture containing 50% or more of methyl methacrylate or a copolymer thereof.
  • Examples of the polymerizable unsaturated monomer copolymerizable with methyl methacrylate include methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, and (meth) acrylic acid.
  • polyester resin examples include homopolyesters such as poly C2-4 alkylene terephthalate and poly C2-4 alkylene naphthalate, and C2-4 alkylene arylate units (C2-4 alkylene terephthalate and / or C2-4 alkylene naphthalate units).
  • C2-4 alkylene arylate units C2-4 alkylene terephthalate and / or C2-4 alkylene naphthalate units.
  • polyarylate resins aliphatic polyesters using aliphatic dicarboxylic acids such as adipic acid, and homo- or copolymers of lactones such as ⁇ -caprolactone.
  • polyester resin polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), and the like are preferable in terms of high transparency and the like.
  • Non-crystalline copolyesters such as C2-4 alkylene arylate copolyesters are also preferred because of their excellent workability.
  • PET is preferable because it is produced in large quantities and has excellent heat resistance, strength, and the like.
  • the polyamide resin is a resin having a structure of a dehydration polycondensate of a diamine compound containing an aromatic or aliphatic group and a dicarboxylic acid compound containing an aromatic or aliphatic group.
  • the aliphatic group includes an alicyclic aliphatic group.
  • Diamine compounds include hexamethylene diamine, m-xylylenediamine, bis (4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, trimethylhexamethylenediamine, bis (aminomethyl) norbornane, Bis (aminomethyl) tetrahydrodicyclopentadiene and the like can be mentioned.
  • dicarboxylic acid compounds examples include adipic acid, dodecanedicarboxylic acid, isophthalic acid, terephthalic acid, bis (hydroxycarbonylmethyl) norbornane, bis (hydroxycarbonylmethyl) tetrahydrodicyclopentadiene, and the like.
  • the polyamide resin an amorphous polyamide resin is particularly preferable from the viewpoint of transparency, and resins generally called transparent nylon are preferable.
  • the polyvinyl chloride resin not only a polymer containing only vinyl chloride monomer but also a copolymer containing vinyl chloride as a main component can be used. Monomers that can be copolymerized with vinyl chloride include vinylidene chloride, ethylene, propylene, acrylonitrile, vinyl acetate, maleic acid, itaconic acid, acrylic acid, methacrylic acid, and the like.
  • polyvinyl acetal resin examples include a polyvinyl formal resin obtained by reacting polyvinyl alcohol (PVA) with formaldehyde, a polyvinyl acetal resin in a narrow sense obtained by reacting PVA with acetaldehyde, and a reaction between PVA and n-butyraldehyde. And polyvinyl butyral resin (PVB) obtained by the above method. Among them, PVB is preferable.
  • the PVA used for synthesizing the polyvinyl acetal resin preferably has an average degree of polymerization of 200 to 5,000, more preferably 500 to 3,000. Further, those having an acetalization degree of 40 to 85 mol% are preferable, and those having a degree of acetalization of 50 to 75 mol% are more preferable.
  • the polyvinyl alcohol resin is obtained, for example, by saponifying polyvinyl acetate.
  • the degree of saponification of the polyvinyl alcohol resin is generally in the range of 70 to 99.9 mol%, preferably in the range of 75 to 99.8 mol%, and more preferably in the range of 80 to 99.8 mol%. Is more preferable.
  • the average degree of polymerization of the polyvinyl alcohol resin is preferably 500 or more, more preferably 1000 or more and 5000 or less.
  • the content of the phthalocyanine compound of the present invention represented by the general formula (1) in the heat ray shielding material of the present invention varies depending on the thickness of the heat ray shielding material.
  • the amount is preferably 0.002 to 0.06 parts by weight, more preferably 0.003 to 0.06 parts by weight, based on 100 parts by weight of the resin mixed in the heat ray shielding material. 0.02 parts by weight.
  • the amount is preferably 0.0005 to 0.02 parts by weight, more preferably 0.001 to 0.005 parts by weight, based on 100 parts by weight of the resin. It is.
  • the amount is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the resin. If the content of the phthalocyanine compound of the general formula (1) is indicated regardless of the thickness of the heat ray shielding material, it is considered that the content of the phthalocyanine compound is 0.01 to 5.0 g / m 2 , considering the weight in the projected area from above. The amount is preferably 0.05 to 1.0 g / m 2 .
  • the heat ray shielding effect is reduced, and when it exceeds 5.0 g / m 2 , transmission of visible light is reduced. May be.
  • the heat ray shielding material of the present invention may contain various additives used in producing a normal transparent resin material, in addition to the phthalocyanine compound of the general formula (1).
  • the additive include a colorant, a polymerization regulator, an antioxidant, an ultraviolet absorber, a heat ray shielding agent, a flame retardant, a plasticizer, a rubber for improving impact resistance, and a release agent. it can.
  • the heat ray shielding agent means particles capable of absorbing infrared rays having a wavelength of 780 nm or more, and includes aluminum-doped tin oxide, indium-doped tin oxide, tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), and aluminum.
  • metal oxides such as doped zinc oxide (AZO), tungsten oxide, composite tungsten oxide, and the like can be given.
  • tin-doped indium oxide (ITO) is preferable.
  • the amount of the additive in the heat ray shielding agent is not particularly limited, but is usually 10% by mass or less in the heat ray shielding material.
  • an ultraviolet absorber is not particularly limited, and a known ultraviolet absorber can be used. Specifically, salicylic acid, benzophenone, benzotriazole, and cyanoacrylate compounds are preferably used.
  • the heat ray shielding material of the present invention may contain other near-infrared absorbing materials in addition to the phthalocyanine compound of the general formula (1).
  • the other near-infrared absorbing material is not particularly limited, and a known near-infrared absorbing material can be appropriately selected depending on the desired maximum absorption wavelength depending on the application.
  • the shape of the heat ray shielding material is not particularly limited, and includes various shapes such as a corrugated plate shape, a spherical shape, and a dome shape in addition to the most general flat shape and film shape.
  • the heat ray shielding material of the present invention is in the form of a flat plate or a film
  • the phthalocyanine compound of the general formula (1) is mixed with a resin and, if necessary, the above-mentioned additives and other near-infrared absorbing materials, followed by molding.
  • a heat ray shielding material is not particularly limited, and a known molding method can be applied. Specific examples include extrusion molding, injection molding, cast polymerization, press molding, calender molding, and cast film formation.
  • the use form of the heat ray shielding material of the present invention is a form in which a film or the like containing a phthalocyanine-based compound of the general formula (1) and a resin as essential components on a base material, an adhesive, It can be applied by sticking a film or sheet-like heat ray shielding material using an adhesive, an adhesive film or the like. Alternatively, it can also be applied by hot pressing or heat laminating a film or sheet-shaped heat ray shielding material on a substrate.
  • the use form of the heat ray shielding material of the present invention is a form in which a coating film containing a phthalocyanine-based compound of the general formula (1) and a resin as essential components is applied on a substrate, the phthalocyanine of the general formula (1) is used.
  • a paint (liquid or paste-like material) containing a system compound and a resin and, if necessary, a solvent for dissolving them and other components can be prepared and applied by coating the paint on a base material. it can.
  • the use form of the heat ray shielding material of the present invention is a form of a laminate in which a film or the like containing a phthalocyanine compound of the general formula (1) and a resin as essential components is provided as an intermediate layer between two or more base materials.
  • a film containing a phthalocyanine-based compound of the general formula (1) and a resin as essential components is sandwiched between base materials, placed in a rubber pack, and heated and vacuum-bonded while being suctioned under reduced pressure. can do.
  • a film containing a phthalocyanine compound of the general formula (1) and a resin as essential components is sandwiched between base materials, or a phthalocyanine compound of the general formula (1) and After applying a paint containing a resin and a solvent that dissolves them and, if necessary, other components, the other substrate may be placed thereon, and the laminate may be adhered by heat or the like.
  • a paint containing a resin and a solvent that dissolves them and, if necessary, other components the other substrate may be placed thereon, and the laminate may be adhered by heat or the like.
  • an adhesive containing a phthalocyanine compound of the general formula (1) and a resin, or a composition containing a phthalocyanine compound of the general formula (1) and a resin as an adhesive, and bonding the base together Can also be applied.
  • the application of the heat ray shielding material of the present invention is not particularly limited, and examples thereof include a film or an intermediate film, a sun visor, and welding goggles used for a building or an automobile window for shielding solar energy from heat rays.
  • the phthalocyanine compound represented by the general formula (1) of the present invention has excellent solvent solubility and compatibility with a resin, and has excellent properties such as heat resistance, light resistance, and weather resistance. It is suitable as a film or an intermediate film used for a window or the like.
  • Heat shielding film The case where the heat ray shielding material of the present invention is a heat ray shielding film used by being attached to a window glass or the like of a building will be described below.
  • the configuration of the heat ray shielding film is not particularly limited, and examples thereof include the following examples.
  • Embodiment 1 which is a film containing a phthalocyanine compound of general formula (1) and a resin.
  • Embodiment 3 which has a film containing a phthalocyanine-based compound of general formula (1) and a resin, a pressure-sensitive adhesive layer, and, if necessary, a release sheet provided on the surface of the pressure-sensitive adhesive layer.
  • Embodiment 3 in which a layer containing a phthalocyanine compound of general formula (1) and a resin is provided on a substrate.
  • Embodiment 4 in which a layer containing a phthalocyanine compound represented by the general formula (1) and a resin which is a pressure-sensitive adhesive on a base material, and a release sheet provided on the surface of the pressure-sensitive adhesive layer as necessary.
  • An embodiment having an adhesive layer is preferred from the viewpoint of ease of sticking to an adhesive, and particularly, 4. Or 5. Is preferred.
  • additional layers such as a hard coat layer, an antifouling layer, an ultraviolet absorbing layer, and an antireflection layer may be provided according to the purpose.
  • Examples of the resin contained together with the phthalocyanine compound of the general formula (1) include the same resins as those contained in the heat ray shielding material.
  • polycarbonate resin, (meth) acrylic resin, polyvinyl resin, polyolefin resin, polybutyral resin, polyester resin, polyamide resin, and polyurethane resin are preferable.
  • Examples of the substrate include those similar to the examples of the substrate described in the usage form of the heat ray shielding material, and a resin sheet or plate is preferable.
  • films of polyester, polyethylene, polypropylene, nylon, polyvinyl chloride, polycarbonate, polyvinyl alcohol, polymethyl methacrylate, fluororesin, ethylene, vinyl alcohol resin and the like can be mentioned.
  • a polyester film is preferable, and a polyethylene terephthalate (PET) film is more preferable.
  • the pressure-sensitive adhesive is not particularly limited as long as it can adhere to the base material and has transparency.
  • the resin as an adhesive examples include the above-mentioned thermoplastic or thermosetting, active energy ray-curable curable resin adhesives, and a (meth) acrylic resin is preferable, and a glass transition temperature of less than 0 ° C.
  • Poly (meth) acrylate resins are particularly preferred.
  • the poly (meth) acrylate resin a resin obtained by using 50% by weight or more of a (meth) acrylate having an alkyl group having 1 to 14 carbon atoms as a monomer is preferable.
  • Examples of the copolymerizable monomer include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, and ethoxyethoxyethyl (meth) acrylate.
  • (Meth) acrylates styrene monomers represented by ⁇ -methylstyrene, vinyltoluene, styrene, etc .; vinyl ether monomers represented by methylvinylether, ethylvinylether, isobutylvinylether, etc .; fumaric acid, fumaric acid Monoalkyl esters, dialkyl esters of fumaric acid; maleic acid, monoalkyl esters of maleic acid, dialkyl esters of maleic acid, itaconic acid, monoalkyl esters of itaconic acid, dialkyl esters of itaconic acid, (meth) acrylic acid Nitrile, vinyl chloride, vinylidene chloride, vinyl acetate, vinyl ketones, vinyl pyridine, and vinyl carbazole.
  • an isocyanate-based curing agent, an epoxy-based curing agent, a metal chelate curing agent, and the like are used as the curing agent for the acrylic pressure-sensitive
  • Each layer of the heat ray shielding film may contain the same additives as those used in the production of the heat ray shielding material.
  • coloring agents polymerization regulators, antioxidants, light stabilizers, ultraviolet absorbers, flame retardants, antistatic agents, plasticizers, and the like can be used.
  • an ultraviolet absorber such as an antioxidant, a flame retardant, an adhesion regulator, a moisture resistant agent, a fluorescent whitening agent and an infrared absorber.
  • a material capable of absorbing heat rays such as carbon black, may be used in combination within a range that does not significantly reduce the visible light transmittance.
  • the thickness of the heat ray shielding film varies depending on its configuration, the type of the base material and the resin of the heat ray shielding layer, its use, and the like, but usually a thickness of about 10 ⁇ m to 500 ⁇ m is preferably used.
  • the thickness of the substrate is preferably about 20 ⁇ m to 300 ⁇ m.
  • the thickness of the layer containing the phthalocyanine compound of the general formula (1) and the resin is preferably about 0.3 to 100 ⁇ m.
  • the content of the phthalocyanine compound of the general formula (1) with respect to the resin depends on the thickness of the layer containing the phthalocyanine compound of the general formula (1) and the resin.
  • the phthalocyanine compound of 1) is preferably in the range of 0.001 to 30 parts by weight, more preferably 0.01 to 10 parts by weight.
  • a phthalocyanine compound and a resin of the general formula (1) are mixed with the above additives, if necessary, and other near-infrared absorbers and ultraviolet absorbers, and then molded.
  • the molding method is not particularly limited, and a known molding method can be applied as it is or after being appropriately modified. Specifically, extrusion molding, injection molding, cast polymerization, press molding, calender molding, cast film forming method and the like can be suitably used. Furthermore, it can also be produced by preparing a resin film containing the phthalocyanine compound of the general formula (1) and subjecting the film to a resin material by hot pressing or heat laminating. Further, it can also be produced by printing or coating an acrylic resin ink or paint containing a phthalocyanine compound of the general formula (1) on a resin material.
  • the interlayer film for laminated glass is a resin film used in a form sandwiched between two glasses.
  • the heat ray shielding material of the present invention is an interlayer film for laminated glass
  • the phthalocyanine-based film of the general formula (1) is used. Contains compounds and resins as essential components.
  • the resin is not particularly limited as long as it has sufficient visibility when used for laminated glass, and preferably has a visible light transmittance of 70% or more when used as laminated glass.
  • a polyvinyl acetal resin, a polyvinyl chloride resin, a saturated polyester resin, a polyurethane resin, an ethylene-vinyl acetate copolymer resin, an ethylene-ethyl acrylate copolymer resin, etc. which have been conventionally used for an intermediate film.
  • Thermoplastic resin In particular, a plasticized polyvinyl acetal resin is preferable.
  • polyvinyl acetal resin examples include a polyvinyl formal resin obtained by reacting polyvinyl alcohol (PVA) with formaldehyde, a polyvinyl acetal resin in a narrow sense obtained by reacting PVA with acetaldehyde, and a reaction between PVA and n-butyraldehyde.
  • PVA polyvinyl alcohol
  • PVA polyvinyl alcohol
  • PVB polyvinyl butyral resin
  • PVB polyvinyl butyral resin
  • the PVA used for synthesizing the polyvinyl acetal resin preferably has an average degree of polymerization of 200 to 5,000, more preferably 500 to 3,000.
  • the polyvinyl acetal resin preferably has an acetalization degree of 40 to 85 mol%, more preferably 50 to 75 mol%. Further, those having a residual acetyl group content of 30 mol% or less are preferable, and those having a residual acetyl group content of 0.5 to 24 mol% are more preferable.
  • Thermoplastic resin preferably as a plasticizer used to plasticize polyvinyl acetal resin, for example, monobasic organic acid ester type, organic acid ester type plasticizer such as polybasic organic acid ester type, Phosphorus plasticizers such as organic phosphoric acid and organic phosphorous acid are exemplified.
  • the thickness of the interlayer film for laminated glass varies depending on the type of the resin, its use, and the like, but is usually preferably in the range of 0.1 to 3 mm, and more preferably in the range of 0.3 to 1.5 mm. More preferably, there is.
  • the content of the phthalocyanine compound of the general formula (1) with respect to the resin is not particularly limited. More preferably, it is in the range of 0.005 to 0.5 part by weight.
  • the interlayer for laminated glass of the present invention may contain the same additives as those used in the production of the heat ray shielding material.
  • examples thereof include a heat ray shielding agent, an ultraviolet absorber, an antioxidant, a light stabilizer, a flame retardant, an antistatic agent, an adhesion regulator, a moisture resistant agent, a fluorescent whitening agent, a coloring agent, and an infrared absorber.
  • an embodiment containing an ultraviolet absorber is preferable.
  • Examples of the method for producing the interlayer film for laminated glass of the present invention include the same methods as those for producing the above-mentioned heat ray shielding material and heat ray shielding film.
  • the interlayer film for a laminated glass of the present invention is, if necessary, one or more of a primer function, an ultraviolet ray cut function, a flame retardant function, an antireflection function, an antiglare function, an antireflection antiglare function, and an antistatic function. It may have a multilayer structure including a functional transparent layer having a function.
  • the laminated glass using the interlayer film for a laminated glass of the present invention has a configuration in which the intermediate film of the present invention is sandwiched between at least two transparent glass substrates and bonded and integrated.
  • the transparent glass substrate is not particularly limited, but includes, for example, float plate glass, polished plate glass, flat glass, curved plate glass, side-by-side glass, template glass, wire mesh-containing plate glass, heat ray absorbing plate glass, clear glass, colored glass plate, and the like. And inorganic glass plates, and organic glass plates such as a polycarbonate plate and a polymethyl methacrylate plate. These transparent glass substrates may be used alone or in combination of two or more.
  • an interlayer film of the present invention is sandwiched between two transparent glass substrates and put in a vacuum bag, and the pressure in the vacuum bag is reduced to about ⁇ 65 to ⁇ 100 kPa.
  • the pressure in the autoclave is further reduced in the autoclave to a degree of reduced pressure of about 0.98 to 1.47 MPa. It can be obtained by performing actual bonding at a temperature of about 120 to 150 ° C. while sucking.
  • Example 1 Production of phthalocyanine-based compound, specific example (1-167) 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline, 0.39 g of vanadium trichloride and 0.38 g of DBU were added to 50 mL of 1-pentanol at an internal temperature of 125. Stirred at C for 24 hours. 300 mL of methanol was added, and the precipitate was collected by filtration and dried. Purification by column chromatography (silica gel / toluene) gave 4.24 g of a green powder. The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 2 Production of phthalocyanine-based compound, specific example (1-178) In place of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 4,7-bis (4- (2-methoxy-4- 4.65 g of a green powder was obtained in the same manner as in Example 1 except that 5.81 g of vinylphenoxy) butyl) -1,3-diiminoisoindoline was used. The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 3 Production of phthalocyanine-based compound, specific example (1-165) 4,7-bis (4- (benzyloxy) butyl)-instead of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1. 3.90 g of a green powder was obtained in the same manner as in Example 1 except that 4.69 g of 1,3-diiminoisoindoline was used. The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 4 Production of Phthalocyanine Compounds, Specific Examples (2-37) to Specific Examples (2-40) 4,5,7-Tris (4-methoxybutyl) -1 was used in place of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1.
  • 3.50 g of a green powder was obtained as an isomer mixture having the structure represented by 2-40).
  • the obtained compound was confirmed by LC-MS to be the target compound from the agreement of m / z of each component.
  • the toluene solution of the compound thus obtained showed a maximum absorption at 714.0 nm, and the gram extinction coefficient was 9.40 ⁇ 10 4 mL / g ⁇ cm.
  • FIG. 4 shows the absorption spectrum chart.
  • Example 5 Production of phthalocyanine-based compound, specific example (1-170) Instead of 5.7 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 4,7-bis (4-((7-methoxynaphthalene- 5.11 g of a green powder was obtained in the same manner as in Example 1 except that 6.02 g of 2-yl) oxy) butyl) -1,3-diiminoisoindoline was used. The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 6 Production of Phthalocyanine Compound, Specific Example (1-171) In place of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 4,7-bis (4-((1,6-dimethoxy) 5.62 g of a green powder was obtained in the same manner as in Example 1 except that 6.62 g of naphthalen-2-yl) oxy) butyl) -1,3-diiminoisoindoline was used. The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 7 Production of phthalocyanine-based compound, specific example (1-174) In place of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 4,7-bis (4-((1,6-di- 6.58 g of a green powder was obtained in the same manner as in Example 1 except that 7.74 g of isopropoxynaphthalen-2-yl) oxy) butyl) -1,3-diiminoisoindoline was used. The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 8 Production of phthalocyanine-based compound, specific example (1-175) In place of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 4,7-bis (4-((6- (2- (2- 6.58 g of a green powder was obtained in the same manner as in Example 1 except that 7.74 g of ethoxyethoxy) naphthalen-2-yl) oxy) butyl) -1,3-diiminoisoindoline was used. The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 9 Production of mixture containing phthalocyanine-based compound, specific examples (2-1) to (2-4) Instead of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 4,7-bis (4-((7 -Methoxynaphthalen-2-yl) oxy) butyl) -1,01 g of 1,3-diiminoisoindoline and 4,7-bis (4-((1,6-dimethoxynaphthalen-2-yl)) in Example 6
  • Specific examples (1-170), specific examples (1-171) and specific examples (2-1) were carried out in the same manner as in Example 1 except that 3.31 g of (oxy) butyl) -1,3-diiminoisoindoline was used.
  • Example 10 Production of mixture containing phthalocyanine-based compound, specific examples (2-5) to (2-8) Instead of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 4,7-bis (4-((7 Using 3.01 g of -methoxynaphthalen-2-yl) oxy) butyl) -1,3-diiminoisoindoline and 1.59 g of 4,7-bis (4-methoxybutyl) -1,3-diiminoisoindoline Except that, in the same manner as in Example 1, 1.96 g of a green material was obtained as a mixture containing the compounds having the structures shown in Specific Examples (2-5) to (2-8).
  • the obtained compound was confirmed by LC-MS to be the target compound from the agreement of m / z of each component.
  • the toluene solution of the compound thus obtained showed a maximum absorption at 737.0 nm, and the gram extinction coefficient was 8.08 ⁇ 10 4 mL / g ⁇ cm. This absorption spectrum chart is shown in FIG.
  • Example 11 Production of mixture containing phthalocyanine-based compound, specific examples (2-9) to (2-12) In place of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 4,7-bis (4-((1 3.31 g of 4,6-dimethoxynaphthalen-2-yl) oxy) butyl) -1,3-diiminoisoindoline and 4,7-bis (4- (2,6-dimethoxyphenoxy) butyl) -1,3- Except that 2.81 g of diiminoisoindoline was used, 2.60 g of a green material was obtained as a mixture containing compounds having the structures shown in Specific Examples (2-9) to (2-12) in the same manner as in Example 1.
  • the obtained compound was confirmed by LC-MS to be the target compound from the agreement of m / z of each component.
  • the toluene solution of the compound thus obtained showed a maximum absorption at 735.5 nm, and the gram extinction coefficient was 6.30 ⁇ 10 4 mL / g ⁇ cm.
  • FIG. 11 shows this absorption spectrum chart.
  • Example 12 Production of mixture containing phthalocyanine-based compound, specific examples (2-13) to (2-16) In place of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 4,7-bis (4-((1 3.31 g of 4,6-dimethoxynaphthalen-2-yl) oxy) butyl) -1,3-diiminoisoindoline and 1.59 g of 4,7-bis (4-methoxybutyl) -1,3-diiminoisoindoline In the same manner as in Example 1 except that was used, 2.09 g of a green material was obtained as a mixture having the structures shown in Specific Examples (2-13) to (2-16).
  • the obtained compound was confirmed by LC-MS to be the target compound from the agreement of m / z of each component.
  • the toluene solution of the compound thus obtained showed a maximum absorption at 739.0 nm, and the gram extinction coefficient was 7.34 ⁇ 10 4 mL / g ⁇ cm.
  • FIG. 12 shows the absorption spectrum chart.
  • Example 13 Production of phthalocyanine-based compound, specific example (1-156) 4.7-bis (4- (2-ethoxyethoxy) butyl instead of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1. 3.67 g of a green substance was obtained in the same manner as in Example 1 except that 4.34 g of 1,3-diiminoisoindoline and 0.25 g of cuprous chloride were used instead of 0.39 g of vanadium trichloride. . The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 14 Production of phthalocyanine-based compound, specific example (1-310) 4,7-bis (6-ethoxyhexyl) -1,3 was used instead of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1. 3.20 g of a green substance was obtained in the same manner as in Example 1, except that 4.02 g of diiminoisoindoline and 0.25 g of cuprous chloride were used instead of 0.39 g of vanadium trichloride. The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 15 Production of phthalocyanine-based compound, specific example (1-311) 4,7-bis (6- (2-ethoxyethoxy) hexyl) was used instead of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1. 3.90 g of a green substance was obtained in the same manner as in Example 1 except that 4.90 g of 1,3-diiminoisoindoline and 0.25 g of cuprous chloride were used instead of 0.39 g of vanadium trichloride. . The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 16 Production of phthalocyanine-based compound, specific example (1-179)
  • 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1 47-bis (4- (2,4,6- 4.97 g of a green substance was obtained in the same manner as in Example 1 except that 6.22 g of (trimethoxyphenoxy) butyl) -1,3-diiminoisoindoline was used.
  • the obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 17 Production of phthalocyanine-based compound, specific example (1-182) 4,7-bis (4- (4- (methylthio) phenoxy) was used instead of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1. ) Butyl) -1,3-diiminoisoindoline 5.33 g was obtained in the same manner as in Example 1 except that 5.34 g was used. The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 18 Production of phthalocyanine-based compound, specific example (1-158) 4.96 g of a green material was obtained in the same manner as in Example 16, except that 0.25 g of cuprous chloride was used instead of 0.39 g of vanadium trichloride in Example 16. The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 19 Production of phthalocyanine-based compound, specific example (1-183) Instead of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 5.30 g of 4,7-bis (4-((4-methoxyphenyl) 4.26 g of a green substance was obtained in the same manner as in Example 1 except that 5.34 g of (thio) butyl) -1,3-diiminoisoindoline was used. The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 20 Production of phthalocyanine compound, specific example (2-17) 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1 Specific Example (2-17) in the same manner as in Example 1 except that 3.55 g of 4-hexyl-9-phenyl-1H-benzo [f] isoindole-1,3 (2H) -diimine was used instead of Specific Example (2-17) alone was further isolated and purified by column chromatography from the isomer mixture having the structure shown in Specific Example (2-20) to obtain 1.78 g of a green substance. The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 21 Preparation of phthalocyanine-based compound, specific example (2-21) A specific example (Example 21) was repeated in the same manner as in Example 20 except that 0.25 g of cuprous chloride was used instead of vanadium trichloride. Only the specific example (2-21) was further isolated and purified by column chromatography from the isomer mixture having the structure shown in the specific examples (2-21) to (2-24) to obtain 1.80 g of a green substance. The obtained compound was confirmed to be the target compound from the following analysis results.
  • Example 22 Preparation of a Phthalocyanine Compound, Specific Example (2-25) 3.55 g of 4-hexyl-9-phenyl-1H-benzo [f] isoindole-1,3 (2H) -diimine in Example 20 was replaced by 4.00 g of 4- (6-ethoxyhexyl) -9-phenyl-1H-benzo [f] isoindole-1,3- (2H) -diimine and 0.39 g of vanadium trichloride. Except that 0.25 g of copper was used, only the specific example (2-25) was prepared from the mixture of isomers having the structures shown in the specific examples (2-25) to (2-28) in the same manner as in Example 20.
  • Example 23 Production of Phthalocyanine Compounds, Specific Examples (2-29) to Specific Examples (2-32) Isomeric Mixtures 4,7-bis (4- (2-phenoxyethoxy) butyl)-in Example 1
  • Specific Example (2-) was conducted in the same manner as in Example 1 except that 2.73 g of 4-ethoxy-7-hexyl-1,3-diiminoisoindoline was used instead of 5.30 g of 1,3-diiminoisoindoline. 29) to 2.15 g of a dark green substance were obtained as an isomer mixture having the structure shown in Examples (2-32). The obtained compound was confirmed by LC-MS to be the target compound from the agreement of m / z of each component. The toluene solution of the compound thus obtained showed a maximum absorption at 751.0 nm, and the gram extinction coefficient was 1.48 ⁇ 10 5 mL / g ⁇ cm.
  • FIG. 23 shows this absorption spectrum chart.
  • Example 24 Preparation of phthalocyanine-based compound, specific examples (2-33) to specific examples (2-36) Isomer mixture: Instead of 0.39 g of vanadium trichloride in Example 23, 0.25 g of cuprous chloride was used. A green substance (2.12 g) was obtained as a mixture of isomers having the structures shown in Specific Examples (2-33) to (2-36) in the same manner as in Example 23 except for using it. The obtained compound was confirmed by LC-MS to be the target compound from the agreement of m / z of each component. The toluene solution of the compound thus obtained showed a maximum absorption at 720.0 nm, and the gram extinction coefficient was 2.00 ⁇ 10 5 mL / g ⁇ cm. FIG. 24 shows the absorption spectrum chart.
  • Example 1 4.7-bis (4-methoxymethyl) -1,3 was used instead of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1. 1.63 g of a dark green substance was obtained in the same manner as in Example 1 except that 2.33 g of diiminoisoindoline was used. The obtained compound was confirmed to be the target compound from the following analysis results.
  • the phthalocyanine compound of the present invention produced in the above examples has high solubility in aromatic organic solvents (for example, benzene, toluene, xylene, mesitylene, etc.). It also has high solubility in polar organic solvents (acetone, ethyl acetate, propylene carbonate, cyclopentanone, etc.). The solubility in cyclopentanone was measured by the following method. Table 2 shows the results.
  • Solubility (wt%) (W0 ⁇ W1) / W0 W0 is the exact weight of the phthalocyanine compound before the treatment, and W1 is the weight of the filter cake (dissolution residue of the phthalocyanine compound) after the drying. When no residue was left on the filter, the solubility was set to 20 wt% or more. Each of the compounds of the examples had higher solubility in cyclopentanone than the compound of the comparative example.
  • Example 25 Production of heat ray shielding film 5 g of phthalocyanine-based compound produced in Example 1, specific example (1-167), 50 g of acrylic resin LP-45M (product name, manufactured by Soken Chemical Co., Ltd.), 20 g of methyl ethyl ketone, toluene 20 g was mixed and stirred to produce a resin composition.
  • the above resin composition was applied to a 100 ⁇ m thick polyethylene terephthalate film (PET film) as a transparent substrate by a bar so as to have a thickness of 2.5 ⁇ m, and then dried at 100 ° C. for 3 minutes.
  • PET film polyethylene terephthalate film
  • a transparent acrylic copolymer-based pressure-sensitive adhesive was applied to the other surface of the PET film (the surface to which the resin composition was not applied) so as to have a thickness of 20 ⁇ m, and dried and cured at 100 ° C. for 3 minutes. After that, a release film was attached to the surface of the pressure-sensitive adhesive to produce a heat ray shielding film.
  • Example 26 Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 2 and the specific example (1-178) was used in the same manner as in Example 25 to produce a heat ray shielding film.
  • Example 27 Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 3 and the specific example (1-165) was used in the same manner as in Example 25 to produce a heat ray shielding film.
  • Example 28 Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 4 and the specific example (2-37) -Specific Example (2-40) A heat ray shielding film was produced in the same manner as in Example 25 except that the mixture was used.
  • Example 29 Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 5 and the specific example (1-170) was used in the same manner as in Example 25 to produce a heat ray shielding film.
  • Example 30 Production of heat ray shielding film In Example 25, the phthalocyanine-based compound produced in Example 1, the compound produced in Example 6 instead of the specific example (1-167), and the specific example (1-171) was used in the same manner as in Example 25 to produce a heat ray shielding film.
  • Example 31 Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 7 and the specific example (1-174) was used in the same manner as in Example 25 to produce a heat ray shielding film.
  • Example 32 Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 8 and the specific example (1-175) was used in the same manner as in Example 25 to produce a heat ray shielding film.
  • Example 33 Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 9 and the specific example (2-1) A heat ray shielding film was manufactured in the same manner as in Example 25, except that a mixture containing the specific examples (2-4) was used.
  • Example 34 Production of heat ray shielding film
  • the phthalocyanine-based compound produced in Example 1 the compound produced in Example 10 instead of the specific example (1-167), and the specific example (2-5)
  • a heat ray shielding film was produced in the same manner as in Example 25 except that a mixture containing the specific examples (2-8) was used.
  • Example 35 Production of Heat Shielding Film
  • the phthalocyanine-based compound produced in Example 1 was replaced by the compound produced in Example 11 in place of Specific Example (1-167), and Specific Example (2-9)
  • a heat ray shielding film was produced in the same manner as in Example 25, except that a mixture containing the specific examples (2-12) was used.
  • Example 36 Production of Heat Shielding Film
  • the phthalocyanine-based compound produced in Example 1 was replaced with the compound produced in Example 12 instead of Specific Example (1-167), and Specific Example (2-13)
  • a heat ray shielding film was produced in the same manner as in Example 25 except that a mixture containing the specific examples (2-16) was used.
  • Example 37 Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 13 and the specific example (1-156) was used in the same manner as in Example 25 to produce a heat ray shielding film.
  • Example 38 Production of heat ray shielding film
  • Example 25 instead of the phthalocyanine-based compound produced in Example 1, the compound produced in Example 14 instead of the specific example (1-167), specific example (1-310)
  • a heat ray shielding film was produced in the same manner as in Example 25 except that the compound of the formula (1) was used.
  • Example 39 Production of heat ray shielding film
  • the compound produced in Example 15 and the specific examples (1-311) was used in the same manner as in Example 25 to produce a heat ray shielding film.
  • Example 40 Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 16 and the specific example (1-179) was used in the same manner as in Example 25 to produce a heat ray shielding film.
  • Example 41 Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 17 and the specific example (1-182) was used in the same manner as in Example 25 to produce a heat ray shielding film.
  • Example 42 Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 18 and the specific example (1-158) was used in the same manner as in Example 25 to produce a heat ray shielding film.
  • Example 43 Production of heat ray shielding film In Example 25, the compound prepared in Example 19 instead of the phthalocyanine-based compound produced in Example 1 and Specific Example (1-167), and specific example (1-183) was used in the same manner as in Example 25 to produce a heat ray shielding film.
  • Example 44 Production of heat ray shielding film In Example 25, the phthalocyanine-based compound produced in Example 1, the compound produced in Example 20 instead of the specific example (1-167), and the specific example (2-17) was used in the same manner as in Example 25 to produce a heat ray shielding film.
  • Example 45 Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1, the compound produced in Example 21 instead of the specific example (1-167), specific example (2-21) was used in the same manner as in Example 25 to produce a heat ray shielding film.
  • Example 46 Production of heat ray shielding film
  • Example 25 instead of the phthalocyanine-based compound produced in Example 1, the compound produced in Example 22 instead of the specific example (1-167), specific example (2-25) was used in the same manner as in Example 25 to produce a heat ray shielding film.
  • Example 47 Production of Heat Shielding Film
  • the phthalocyanine-based compound produced in Example 1 was replaced with the compound produced in Example 23 in place of Concrete Example (1-167), and Concrete Example (2-29) Specific Example (2-32) A heat ray shielding film was produced in the same manner as in Example 25 except that the mixture was used.
  • Example 48 Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 24, and specific example (2-33) -Specific Example (2-36) A heat ray shielding film was produced in the same manner as in Example 25 except that the mixture was used.
  • Comparative Example 4 Production of heat ray shielding film In Example 25, the compound (a) of Comparative Example 1 was used in place of the phthalocyanine-based compound produced in Example 1, specific example (1-167). By performing the same operation as in Example 25, a heat ray shielding film was produced.
  • Tts Total solar energy transmitted through a glazing
  • a smaller value indicates a higher heat shielding ability
  • the absorption spectrum of the test piece was measured with a spectrophotometer (Spectrophotometer U-3500, manufactured by Hitachi, Ltd.), and this was used as the spectrum before the light fastness test.
  • the test specimen was irradiated with 550 W / h light for 200 hours using a xenon light resistance tester (manufactured by Toyo Seiki: Suntest XLS +), and the absorption spectrum of the irradiated test specimen was measured with a spectrophotometer, and the light resistance was measured. The spectrum was taken after the sex test.
  • ⁇ (%) ⁇ (400 to 900 nm of E1) ⁇ ⁇ (400 to 900 nm of E2) ⁇ / ⁇ (400 to 900 nm of E1) ⁇ 100
  • E1 spectrum before test
  • E2 spectrum after test
  • integration of absorbance value.
  • Table 4 all of the heat ray shielding films of the examples exhibited characteristics superior in heat shielding ability, light resistance and heat resistance as compared with Comparative Example 4. In particular, it was very excellent in light resistance and heat resistance.
  • Example 49 Production of interlayer film for laminated glass and production of laminated glass ⁇ Production of interlayer film for laminated glass>
  • organic ester plasticizer 0.013 g of the phthalocyanine-based compound produced in Example 1 (specific example (1-167)) was dissolved in 40 g of triethylene glycol-di-2-ethylhexanoate, and this solution was treated with polyvinyl alcohol. It was added to 100 g of butyral resin (trade name: BH-3, manufactured by Sekisui Chemical Co., Ltd.), melted and kneaded sufficiently with a mixing roll, and extruded using an extruder to obtain an intermediate film having a thickness of 0.76 mm.
  • butyral resin trade name: BH-3, manufactured by Sekisui Chemical Co., Ltd.
  • Example 50 Production of interlayer film for laminated glass and production of laminated glass
  • the phthalocyanine-based compound produced in Example 1 and the compound (1-167) produced in Example 2 were produced in Example 2, and the specific example (1 Except for changing to -178), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
  • Example 51 Production of interlayer film for laminated glass and production of laminated glass
  • Example 49 the phthalocyanine-based compound produced in Example 1, the specific example (1-167), the compound produced in Example 3, and the specific example (1 Except for changing to -165), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
  • Example 52 Production of interlayer film for laminated glass and production of laminated glass
  • Example 49 the phthalocyanine-based compound produced in Example 1, the specific example (1-167), the compound produced in Example 4 and the specific example (2) -37) to Specific Example (2-40)
  • An intermediate film for laminated glass and a laminated glass were produced in the same manner as in Example 49 except that the mixture was changed to a mixture.
  • Example 53 Preparation of interlayer film for laminated glass and production of laminated glass
  • Example 49 the phthalocyanine-based compound produced in Example 1, concrete example (1-167), compound produced in Example 5 and concrete example (1 Except having changed to -170), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
  • Example 54 Production of interlayer film for laminated glass and production of laminated glass
  • the phthalocyanine-based compound produced in Example 1 and the compound (1-167) produced in Example 6 were produced in Example 6; Except for changing to -171), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
  • Example 55 Production of interlayer film for laminated glass and production of laminated glass
  • the phthalocyanine-based compound produced in Example 1, specific example (1-167) was produced in Example 7, and the compound produced in Example 7 was modified. Except for changing to -174), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
  • Example 56 Production of interlayer film for laminated glass and production of laminated glass
  • the phthalocyanine-based compound produced in Example 1, specific example (1-167), the compound produced in Example 8, and specific example (1 Except for changing to -175) the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
  • Example 57 Preparation of interlayer film for laminated glass and laminated glass
  • the phthalocyanine-based compound produced in Example 1, specific example (1-167) was prepared in Example 9;
  • An interlayer film for laminated glass and a laminated glass were produced in the same manner as in Example 49 except that 1) to Specific Example (2-4) were changed.
  • Example 58 Production of interlayer film for laminated glass and production of laminated glass
  • the phthalocyanine-based compound produced in Example 1, concrete example (1-167) was produced in Example 10 and compound (2). The same operation as in Example 49 was performed, except that the mixture was changed to a mixture containing -5) to specific examples (2-8), to produce an interlayer film for laminated glass and a laminated glass.
  • Example 59 Production of interlayer film for laminated glass and production of laminated glass
  • the phthalocyanine-based compound produced in Example 1 and the compound (1-167) produced in Example 11 were produced in Example 11;
  • the same operation as in Example 49 was carried out except that the mixture was changed to the mixture containing -9) to specific example (2-12), to produce an interlayer film for laminated glass and a laminated glass.
  • Example 60 Preparation of interlayer film for laminated glass and production of laminated glass
  • the phthalocyanine-based compound produced in Example 1 the specific example (1-167), the compound produced in Example 12, and the specific example (2)
  • An intermediate film for laminated glass and a laminated glass were produced in the same manner as in Example 49, except that the mixture was changed to a mixture containing -13) to specific examples (2-16).
  • Example 61 Preparation of interlayer film for laminated glass and laminated glass
  • the phthalocyanine-based compound produced in Example 1 the specific example (1-167), the compound produced in Example 13, and the specific example (1 Except for changing to -156)
  • the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
  • Example 62 Production of interlayer film for laminated glass and production of laminated glass
  • the phthalocyanine-based compound produced in Example 1, the specific example (1-167) was produced in Example 14 and the compound obtained in Example 14 was modified. Except for changing to -310), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
  • Example 63 Preparation of interlayer film for laminated glass and production of laminated glass
  • the phthalocyanine-based compound produced in Example 1 was replaced with the compound (1-167) produced in Example 15 and the compound produced in Example 15 was produced. Except having changed to -311), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
  • Example 64 Production of interlayer film for laminated glass and production of laminated glass
  • the phthalocyanine-based compound produced in Example 1 the specific example (1-167) was produced in Example 16 and the compound obtained in Example 16 was produced. Except for changing to -179), the same operation as in Example 49 was performed to produce an interlayer film for laminated glass and a laminated glass.
  • Example 65 Production of interlayer film for laminated glass and production of laminated glass
  • the phthalocyanine-based compound produced in Example 1 was replaced with the compound (1-167) produced in Example 17 and the compound produced in Example 17 was produced. Except for changing to -182), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
  • Example 66 Production of interlayer film for laminated glass and production of laminated glass
  • the phthalocyanine-based compound produced in Example 1 and the specific example (1-167) produced in Example 18 and the compound produced in Example 18 were produced. Except having changed to -158), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
  • Example 67 Production of interlayer film for laminated glass and production of laminated glass
  • Example 49 the phthalocyanine-based compound produced in Example 1, a specific example (1-167), a compound produced in Example 19, and a specific example (1 Except for changing to -183), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
  • Example 68 Production of interlayer film for laminated glass and production of laminated glass
  • An interlayer film for laminated glass and a laminated glass were produced in the same manner as in Example 49 except for changing to (-17).
  • Example 69 Production of interlayer film for laminated glass and production of laminated glass
  • Example 49 the phthalocyanine-based compound produced in Example 1, a specific example (1-167), a compound produced in Example 21 and a specific example (2) Except having changed to -21), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
  • Example 70 Preparation of interlayer film and laminated glass for laminated glass
  • Example 49 the phthalocyanine-based compound produced in Example 1, specific example (1-167) was produced in Example 22. Except having changed to -25), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
  • Example 71 Preparation of interlayer film for laminated glass and production of laminated glass
  • the phthalocyanine-based compound produced in Example 1 specific example (1-167) was produced in Example 23, and the compound was produced in Example 23.
  • -29) to Specific Example (2-32) An intermediate film for laminated glass and a laminated glass were produced in the same manner as in Example 49 except that the mixture was changed to the mixture.
  • Example 72 Production of interlayer film for laminated glass and production of laminated glass
  • Example 49 the phthalocyanine-based compound produced in Example 1, the specific example (1-167) was produced in Example 24, and the specific example (2) -33) to Specific Example (2-36)
  • An intermediate film for laminated glass and a laminated glass were produced in the same manner as in Example 49, except that the mixture was changed to the mixture.
  • Example 5 Production of interlayer film for laminated glass and laminated glass In Example 49, except that the phthalocyanine-based compound produced in Example 1 and specific example (1-167) were changed to compound (a) of Comparative Example 1 By performing the same operation as in Example 49, an interlayer film for laminated glass and a laminated glass were produced.
  • the absorption spectrum of the laminated glass was measured with a spectrophotometer (Spectrophotometer U-3500, manufactured by Hitachi, Ltd.), and this was used as the spectrum before the light fastness test.
  • the laminated glass was irradiated with 550 W / h light for 200 hours using a xenon light resistance tester (manufactured by Toyo Seiki Co., Ltd .: Suntest XLS +), and the absorption spectrum of the laminated glass after the light irradiation was measured with a spectrophotometer. And the spectrum after the light resistance test.
  • the laminated glass for which the spectrum before the test was measured in the same manner as described above was subjected to a heat treatment at a temperature of 100 ° C. for 200 hours using a thermostat (IG400 manufactured by Yamato Scientific Co., Ltd.).
  • the absorption spectrum of the heat-treated laminated glass was measured with a spectrophotometer, and the measured spectrum was taken as the spectrum after the heat resistance test.
  • the absorbance value in the range of 400 to 900 nm was integrated, and the difference between the values before and after the light resistance / heat resistance test was calculated.
  • the difference ⁇ E in absorbance before and after the light resistance / heat resistance test was represented by the following equation.
  • ⁇ (%) ⁇ (400 to 900 nm of E1) ⁇ ⁇ (400 to 900 nm of E2) ⁇ / ⁇ (400 to 900 nm of E1) ⁇ 100
  • E1 spectrum before test
  • E2 spectrum after test
  • integration of absorbance value.
  • Table 5 all of the laminated glasses of Examples 49 to 72 using the phthalocyanine compound of the present invention were superior to Comparative Example 5 in heat shielding ability, visible light transmittance, light resistance and heat resistance. Characteristics. In particular, it was excellent in light resistance and heat resistance.
  • the phthalocyanine-based compound of the present invention has strong absorption in the near-infrared region, very low absorption in the visible light region, good solubility in organic solvents and resins, and extremely low light resistance and heat resistance. Has high durability. Therefore, near-infrared cut filters, transparent inks used for security, heat ray shielding films used for automobiles and building windows, interlayer films for laminated glass, infrared thermosensitive recording materials, laser welding plastics, etc. Very useful as an infrared absorbing dye.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided is a novel phthalocyanine compound represented by general formula (1) that has strong absorption in the near infrared region, has extremely low absorption in the visible light region, is highly durable, and has good organic solvent solubility and solubility in resins. Also provided is an infrared absorbing material containing this compound.

Description

フタロシアニン系化合物、及びその用途Phthalocyanine compounds and uses thereof
 本発明は、有機溶剤溶解性、樹脂相溶性が良好で可視光透明性に優れ、耐久性が高い新規なフタロシアニン系化合物、及びその用途に関する。 
詳しくは、近赤外領域に強い吸収を有し、可視光領域の吸収が非常に小さいため着色が少なく、光や熱に対する耐久性が高く、有機溶剤や樹脂に対する溶解性が良好で、近赤外線吸収フィルター、セキュリティインク、熱線遮蔽フィルム、合わせガラス用中間膜、赤外線感熱記録材料等の近赤外線吸収材料に広く利用可能な新規なフタロシアニン系化合物、及びその用途に関する。
The present invention relates to a novel phthalocyanine compound having good organic solvent solubility, good resin compatibility, excellent visible light transparency, and high durability, and its use.
Specifically, it has strong absorption in the near-infrared region, has very little absorption in the visible light region, has little coloring, has high durability against light and heat, has good solubility in organic solvents and resins, and has a near infrared The present invention relates to a novel phthalocyanine-based compound widely applicable to near-infrared absorbing materials such as absorption filters, security inks, heat ray shielding films, interlayer films for laminated glass, and infrared thermosensitive recording materials, and uses thereof.
技術背景Technology background
 近年、近赤外線吸収材料は光記録媒体、近赤外線光増感剤、光熱変換剤、近赤外線吸収フィルター、イメージセンサーや顔認証および指紋認証などの光学センサー用光学フィルター、近赤外線吸収インク、熱線遮蔽材など、広い分野において使用されるようになってきている。 
 特に、プラズマディスプレイなどに用いられる近赤外線カットフィルター、セキュリティ用に用いられる透明インク、あるいは自動車や建物の窓などに用いられる熱線遮蔽材、プラスチックのレーザー溶着などの用途に、近赤外線を吸収する能力が高くかつ可視光線の透過率の高い、すなわち着色が少なく透明度が高い、加えて光や熱に対する耐久性が高く、また有機溶剤や樹脂に溶解する近赤外線吸収材料の開発要求が高まっている。
In recent years, near-infrared absorbing materials include optical recording media, near-infrared photosensitizers, photothermal converters, near-infrared absorbing filters, optical filters for image sensors and optical sensors such as face authentication and fingerprint authentication, near-infrared absorbing ink, heat ray shielding It has been used in a wide range of fields such as materials.
In particular, the ability to absorb near-infrared rays in applications such as near-infrared cut filters used for plasma displays, transparent ink used for security, heat ray shielding materials used for automobiles and building windows, and laser welding of plastics. There is an increasing demand for the development of near-infrared absorbing materials which have high transparency and high visible light transmittance, that is, have low coloring and high transparency, have high durability against light and heat, and are soluble in organic solvents and resins.
 このような近赤外線吸収材料として種々の有機色素が検討され、アミニウム化合物、インモニウム化合物、フタロシアニン化合物、ナフタロシアニン化合物などは一部実用化にも至っている。
 近赤外線吸収材料には可視光領域の吸収が小さいということから、シアニン系色素(文献1)、ジインモニウム塩系色素(文献2)、ジチオールニッケル錯体(文献3)が用いられている。
Various organic dyes have been studied as such near-infrared absorbing materials, and some of the aminium compounds, immonium compounds, phthalocyanine compounds, naphthalocyanine compounds and the like have been put to practical use.
Cyanine dyes (Reference 1), diimmonium salt dyes (Reference 2), and dithiol nickel complexes (Reference 3) are used as near-infrared absorbing materials because of their low absorption in the visible light region.
 しかし、シアニン系色素は近赤外線吸収能力が高いものの、耐久性が低く、溶解する有機溶剤も極性溶媒に限定されるという問題がある。ジインモニウム塩系色素は、近赤外線吸収能力、耐久性共に低く、溶解する有機溶剤も極性溶媒に限定されるという問題がある。ジチオールニッケル錯体も同様な問題が指摘されており、またその安全性についても問題がある。
 高耐久性ということからフタロシアニン化合物も検討されており、樹脂中の会合性を抑制したフタロシアニン化合物(文献4)が提案されているが、樹脂相溶性という点で改善が望まれている。
 本発明に類似したフタロシアニン系化合物(文献5及び6)も提案されているが、可視透過率或いは有機溶剤溶解性、樹脂相溶性に未だ不十分であり、改善が望まれている。
However, although cyanine-based dyes have high near-infrared absorption ability, there is a problem that durability is low and the organic solvent to be dissolved is limited to a polar solvent. The diimmonium salt-based dye has a problem in that it has low near-infrared absorption ability and durability, and the organic solvent to be dissolved is limited to a polar solvent. A similar problem has been pointed out for the dithiol nickel complex, and there is also a problem regarding its safety.
Phthalocyanine compounds are also being studied from the viewpoint of high durability, and phthalocyanine compounds in which the association property in a resin is suppressed (Reference 4) have been proposed, but improvement is desired in terms of resin compatibility.
Phthalocyanine compounds similar to the present invention (References 5 and 6) have also been proposed, but they are still insufficient in visible transmittance, organic solvent solubility, and resin compatibility, and improvements are desired.
特開2015-34260号公報JP-A-2005-34260 特開2002-226827号公報JP-A-2002-226827 特開2009-144053号公報JP 2009-14053 A 特開2013-218312号公報JP 2013-218312 A 特開1990-138382号公報JP-A-1990-138382 特表2003-516421号公報JP-T-2003-516421 特開1999-152413号公報JP-A-1999-152413
 本発明の課題は、近赤外線領域に強い吸収を有し、可視光領域の吸収が非常に小さく、耐久性が高く、有機溶剤溶解性や樹脂に対する溶解性が良好な新規なフタロシアニン系化合物及びそれを含有する赤外線吸収材料を提供することである。 An object of the present invention is to provide a novel phthalocyanine compound having strong absorption in the near infrared region, very low absorption in the visible light region, high durability, good organic solvent solubility and good solubility in resins, and An object of the present invention is to provide an infrared absorbing material containing:
 本発明者等は、前記課題について鋭意検討した結果、特定のフタロシアニン系化合物が上記した特性を満足することを見出し、本発明を完成するに至った。
 すなわち、本発明は、
[1] 一般式(1)で表されるフタロシアニン系化合物。
Figure JPOXMLDOC01-appb-C000002
〔式(1)中、A1~A8は、それぞれ独立して、水素原子、置換基を有するもしくは非置換のアリール基、酸素原子を含有する置換基、硫黄原子を含有する置換基、窒素原子を含有する置換基を表し、X1~X8は、それぞれ独立して、水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基、置換基を有するもしくは非置換のアリールオキシ基、置換基を有するもしくは非置換のアルキルチオ基、置換基を有するもしくは非置換のアリールチオ基を表し、互いに結合して芳香環もしくは複素環を形成しても良い。Mは2個の水素原子、2価の金属または3価もしくは4価の金属の誘導体を表し、n1~n8はそれぞれ独立して、0~12の整数を表す。ただし、n1~n8がすべて0であることは無く、さらに全てのA1~A8がアルコキシ基である場合、n1~n8は、すべてが同時に1であることは無く、すべてが同時に8であることも無い。〕
[2]
 A1~A8において置換基を有するもしくは非置換のアリール基が、フェニル基またはナフチル基である[1]のフタロシアニン系化合物。
[3]
 A1~A8において置換基を有するアリール基が、1~5個のアルコキシ基を有するフェニル基または1~5個のアルコキシ基を有するナフチル基である[1]のフタロシアニン系化合物。
[4]
 A1~A8において置換基を有するアリール基が、1~5個のアルコキシ基を有するフェニル基または1~5個のアルコキシ基を有するナフチル基で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基、置換基を有するもしくは非置換のアリールオキシ基、置換基を有するもしくは非置換のアルキルチオ基もしくは置換基を有するもしくは非置換のアリールチオ基である[1]のフタロシアニン系化合物。
[5]
 A1~A8が水素原子、酸素原子を含有する置換基または置換基を有するもしくは非置換のフェニル基で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基で、かつn1~n8の4個が0である[1]のフタロシアニン系化合物。
[6]
 A1~A8が水素原子、酸素原子を含有する置換基または置換基を有するもしくは非置換のフェニル基で、かつX1とX5、X2とX6、X3とX7、X4とX8が互いに結合してベンゼン環を形成し、かつn1~n8の4個が0である[1]のフタロシアニン系化合物。
[7]
 A1~A8において酸素原子を含有する置換基が、置換基を有するもしくは非置換アルコキシ基、置換基を有するもしくは非置換のアリールオキシ基である[1]のフタロシアニン系化合物。
[8]
 A1~A8において酸素原子を含有する置換基が、1~5個のアルコキシ基を有するフェニルオキシ基または1~5個のアルコキシ基を有するナフチルオキシ基で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基、置換基を有するもしくは非置換のアリールオキシ基、置換基を有するもしくは非置換のアルキルチオ基もしくは置換基を有するもしくは非置換のアリールチオ基である[1]のフタロシアニン系化合物。
[9]
 A1~A8において酸素原子を含有する置換基が、1~5個のアルコキシ基を有するフェニルオキシ基または1~5個のアルコキシ基を有するナフチルオキシ基で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基もしくは置換基を有するもしくは非置換のアリールオキシ基で、かつn1~n8が3~6である[1]のフタロシアニン系化合物。
[10]
 A1~A8において酸素原子を含有する置換基が、総炭素数3~8個のアルコキシアルコキシ基で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基、置換基を有するもしくは非置換のアリールオキシ基、置換基を有するもしくは非置換のアルキルチオ基、置換基を有するもしくは非置換のアリールチオ基である[1]のフタロシアニン系化合物。
[11]
 A1~A8において酸素原子を含有する置換基が、総炭素数3~6個のアルコキシアルコキシ基で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基もしくは置換基を有するもしくは非置換のアリールオキシ基で、かつn1~n8が3~6である[1]のフタロシアニン系化合物。
[12]
 A1~A8において酸素原子を含有する置換基が、1~5個のアルキルチオ基を有するフェニルオキシ基または1~5個のアルキルチオ基を有するナフチルオキシ基で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基、置換基を有するもしくは非置換のアリールオキシ基、置換基を有するもしくは非置換のアルキルチオ基もしくは置換基を有するもしくは非置換のアリールチオ基である[1]のフタロシアニン系化合物。
[13]
 A1~A8において酸素原子を含有する置換基が、1~5個のアルキルチオ基を有するフェニルオキシ基または1~5個のアルキルチオ基を有するナフチルオキシ基で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基もしくは置換基を有するもしくは非置換のアリールオキシ基で、かつn1~n8が2~6である[1]のフタロシアニン系化合物。
[14]
 A1~A8において硫黄原子を含有する置換基が、置換基を有するもしくは非置換のアルキルチオ基または、置換基を有するもしくは非置換のアリールチオ基である[1]のフタロシアニン系化合物。
[15]
 A1~A8において硫黄原子を含有する置換基が、1~5個のアルコキシ基を有するフェニルチオ基または1~5個のアルコキシ基を有するナフチルチオ基で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基、置換基を有するもしくは非置換のアリールオキシ基、置換基を有するもしくは非置換のアルキルチオ基もしく置換基を有するもしくは非置換のアリールチオ基である[1]のフタロシアニン系化合物。
[16]
 A1~A8において窒素原子を含有する置換基が、置換基を有するもしくは非置換のモノアルキルアミノ基、置換基を有するもしくは非置換のジアルキルアミノ基、置換基を有するもしくは非置換のモノアリールアミノ基、置換基を有するもしくは非置換のジアリールアミノ基もしくは置換基を有するもしくは非置換のアルキルアリールアミノ基である[1]のフタロシアニン系化合物。
[17]
 A1~A8が酸素原子を含む複素環、硫黄原子を含む複素環または窒素原子を含む複素環で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基、置換基を有するもしくは非置換のアリールオキシ基、置換基を有するもしくは非置換のアルキルチオ基もしくは置換基を有するもしくは非置換のアリールチオ基である[1]のフタロシアニン系化合物。
[18]
 A1~A8が置換基を有するもしくは非置換のフラン環、置換基を有するもしくは非置換のテトラヒドロフラン環、置換基を有するもしくは非置換の1,3-ジオキソラン環、置換基を有するもしくは非置換の1,3-ジオキサン環、置換基を有するもしくは非置換の1,4-ジオキサン環、置換基を有するもしくは非置換のチオフェン環、置換基を有するもしくは非置換のテトラヒドロチオフェン環、置換基を有するもしくは非置換のチアン環、置換基を有するもしくは非置換のピロール環、置換基を有するもしくは非置換のピロリジン環、置換基を有するもしくは非置換のピリジン環、置換基を有するもしくは非置換のピぺリジン環、置換基を有するもしくは非置換のイミダゾール環、置換基を有するもしくは非置換のオキサゾール環、置換基を有するもしくは非置換のピラジン環もしくは置換基を有するもしくは非置換のチアゾール環で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基、置換基を有するもしくは非置換のアリールオキシ基、置換基を有するもしくは非置換のアルキルチオ基もしくは置換基を有するもしくは非置換のアリールチオ基である[1]のフタロシアニン系化合物。
[19]
 A1~A8が(a1)水素原子、(a2)置換基を有するもしくは非置換のアリール基、(a3)酸素原子を含有する置換基、(a4)硫黄原子を含有する置換基、(a5)窒素原子を含有する置換基から選択される2種の組み合わせであり、
 A1~A8が前記(a2)~(a5)のいずれか1つに含まれる2種の置換基の組み合わせである場合、2種の前記置換基は同一でも異なっていてもよい、[1]~[18]のフタロシアニン系化合物。
[20]
 X1~X8がフッ素原子、塩素原子または臭素原子である[1のフタロシアニン系化合物。
[21]
 X1とX5、X2とX6、X3とX7、X4とX8が互いに結合して複素環を形成した[1]、[2]、[3]、[7]、[14]、[16]および[19]のいずれかに記載のフタロシアニン系化合物。
[22]
 Mが2個の水素原子、Pd、Cu、Zn、Pt、Ni、TiO、Co、Fe、Mn、Sn、SnCl、AlCl、AlOH、Si(OH)、VOまたはInClである、[1]~[21]のいずれかに記載のフタロシアニン系化合物。
[23]
 [1]~[22]のいずれかに記載のフタロシアニン系化合物の少なくとも1種を含有する近赤外線吸収材料。ただし、光学センサー用光学フィルター用途を除く。
[24]
 [1]~[22]のいずれかに記載のフタロシアニン系化合物の少なくとも1種を含有する熱線遮蔽材。
[25]
 熱線遮蔽フィルムである、[24]の熱線遮蔽材。
[26]
 合わせガラス用中間膜である、[25]の熱線遮蔽材。
The present inventors have conducted intensive studies on the above-mentioned problems, and as a result, have found that a specific phthalocyanine-based compound satisfies the above-mentioned characteristics, and have completed the present invention.
That is, the present invention
[1] A phthalocyanine-based compound represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000002
[In the formula (1), A1 to A8 each independently represent a hydrogen atom, a substituted or unsubstituted aryl group, a substituent containing an oxygen atom, a substituent containing a sulfur atom, or a nitrogen atom. X1 to X8 each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted Represents an unsubstituted aryloxy group, a substituted or unsubstituted alkylthio group, or a substituted or unsubstituted arylthio group, which may be bonded to each other to form an aromatic ring or a heterocyclic ring. M represents two hydrogen atoms, a divalent metal or a derivative of a trivalent or tetravalent metal, and n1 to n8 each independently represent an integer of 0 to 12. However, when all of n1 to n8 are not 0 and all of A1 to A8 are alkoxy groups, all of n1 to n8 are not 1 at the same time and may be 8 at the same time. There is no. ]
[2]
The phthalocyanine compound of [1], wherein the substituted or unsubstituted aryl group in A1 to A8 is a phenyl group or a naphthyl group.
[3]
The phthalocyanine compound of [1], wherein the substituted aryl group in A1 to A8 is a phenyl group having 1 to 5 alkoxy groups or a naphthyl group having 1 to 5 alkoxy groups.
[4]
In A1 to A8, the aryl group having a substituent is a phenyl group having 1 to 5 alkoxy groups or a naphthyl group having 1 to 5 alkoxy groups, and X1 to X8 are a hydrogen atom, a halogen atom, a substituent Or unsubstituted alkyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aryloxy group, substituted or unsubstituted alkylthio group or substituted or unsubstituted group The phthalocyanine compound of [1], which is an arylthio group of [1].
[5]
A1 to A8 represent a hydrogen atom, an oxygen atom-containing substituent or a substituted or unsubstituted phenyl group, and X1 to X8 represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, The phthalocyanine compound of [1], which is a substituted or unsubstituted alkoxy group, wherein four of n1 to n8 are 0.
[6]
A1 to A8 are a hydrogen atom, an oxygen atom-containing substituent or a substituted or unsubstituted phenyl group, and X1 and X5, X2 and X6, X3 and X7, X4 and X8 are bonded to each other to form a benzene ring. And the phthalocyanine compound of [1], wherein four of n1 to n8 are 0.
[7]
The phthalocyanine compound of [1], wherein the substituent containing an oxygen atom in A1 to A8 is a substituted or unsubstituted alkoxy group, or a substituted or unsubstituted aryloxy group.
[8]
In A1 to A8, the substituent containing an oxygen atom is a phenyloxy group having 1 to 5 alkoxy groups or a naphthyloxy group having 1 to 5 alkoxy groups, and X1 to X8 are a hydrogen atom or a halogen atom. Having a substituted or unsubstituted alkyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aryloxy group, substituted or unsubstituted alkylthio group or substituted group Alternatively, the phthalocyanine-based compound of [1], which is an unsubstituted arylthio group.
[9]
In A1 to A8, the substituent containing an oxygen atom is a phenyloxy group having 1 to 5 alkoxy groups or a naphthyloxy group having 1 to 5 alkoxy groups, and X1 to X8 are a hydrogen atom or a halogen atom. A substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group or a substituted or unsubstituted aryloxy group, wherein n1 to n8 are 3 to 6; Phthalocyanine compounds.
[10]
In A1 to A8, the substituent containing an oxygen atom is an alkoxyalkoxy group having a total of 3 to 8 carbon atoms, and X1 to X8 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group or a substituent. Or a substituted or unsubstituted aryloxy group, a substituted or unsubstituted alkylthio group, or a substituted or unsubstituted arylthio group of [1]. Compound.
[11]
In A1 to A8, the substituent containing an oxygen atom is an alkoxyalkoxy group having a total of 3 to 6 carbon atoms, and X1 to X8 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group or a substituent. The phthalocyanine compound according to [1], which is a substituted or unsubstituted alkoxy group or a substituted or unsubstituted aryloxy group, and wherein n1 to n8 are 3 to 6.
[12]
In A1 to A8, the substituent containing an oxygen atom is a phenyloxy group having 1 to 5 alkylthio groups or a naphthyloxy group having 1 to 5 alkylthio groups, and X1 to X8 are a hydrogen atom or a halogen atom. Having a substituted or unsubstituted alkyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aryloxy group, substituted or unsubstituted alkylthio group or substituted group Alternatively, the phthalocyanine-based compound of [1], which is an unsubstituted arylthio group.
[13]
In A1 to A8, the substituent containing an oxygen atom is a phenyloxy group having 1 to 5 alkylthio groups or a naphthyloxy group having 1 to 5 alkylthio groups, and X1 to X8 are a hydrogen atom or a halogen atom. A substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group or a substituted or unsubstituted aryloxy group, wherein n1 to n8 are 2 to 6 [1] Phthalocyanine compounds.
[14]
The phthalocyanine compound according to [1], wherein the substituent containing a sulfur atom in A1 to A8 is a substituted or unsubstituted alkylthio group or a substituted or unsubstituted arylthio group.
[15]
In A1 to A8, the substituent having a sulfur atom is a phenylthio group having 1 to 5 alkoxy groups or a naphthylthio group having 1 to 5 alkoxy groups, and X1 to X8 are a hydrogen atom, a halogen atom, A substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted alkylthio group or a substituted or The phthalocyanine compound of [1], which is an unsubstituted arylthio group.
[16]
In A1 to A8, the substituent containing a nitrogen atom is a substituted or unsubstituted monoalkylamino group, a substituted or unsubstituted dialkylamino group, or a substituted or unsubstituted monoarylamino group. A phthalocyanine compound according to [1], which is a substituted or unsubstituted diarylamino group or a substituted or unsubstituted alkylarylamino group.
[17]
A1 to A8 are a heterocycle containing an oxygen atom, a heterocycle containing a sulfur atom or a heterocycle containing a nitrogen atom, and X1 to X8 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group or a substituent Or a substituted or unsubstituted aryloxy group, a substituted or unsubstituted alkylthio group or a substituted or unsubstituted arylthio group. Compound.
[18]
A1 to A8 each have a substituted or unsubstituted furan ring, a substituted or unsubstituted tetrahydrofuran ring, a substituted or unsubstituted 1,3-dioxolane ring, a substituted or unsubstituted 1 , 3-dioxane ring, substituted or unsubstituted 1,4-dioxane ring, substituted or unsubstituted thiophene ring, substituted or unsubstituted tetrahydrothiophene ring, substituted or unsubstituted Substituted thiane ring, substituted or unsubstituted pyrrole ring, substituted or unsubstituted pyrrolidine ring, substituted or unsubstituted pyridine ring, substituted or unsubstituted pyridyl ring A substituted or unsubstituted imidazole ring, a substituted or unsubstituted oxazole ring, A substituted or unsubstituted pyrazine ring or a substituted or unsubstituted thiazole ring, and X1 to X8 have a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group or a substituted group, or The phthalocyanine compound of [1], which is an unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted alkylthio group or a substituted or unsubstituted arylthio group.
[19]
A1 to A8 each represent (a1) a hydrogen atom, (a2) a substituted or unsubstituted aryl group, (a3) a substituent containing an oxygen atom, (a4) a substituent containing a sulfur atom, (a5) a nitrogen atom. A combination of two selected from substituents containing atoms,
When A1 to A8 are a combination of two types of substituents contained in any one of the above (a2) to (a5), the two types of the substituents may be the same or different, [1] to The phthalocyanine compound of [18].
[20]
X1 to X8 are a fluorine atom, a chlorine atom or a bromine atom [the phthalocyanine compound of [1].
[21]
[1], [2], [3], [7], [14], [16] and [16] wherein X1 and X5, X2 and X6, X3 and X7, X4 and X8 are bonded to each other to form a heterocyclic ring. [19] The phthalocyanine-based compound according to any of [19].
[22]
M is two hydrogen atoms, Pd, Cu, Zn, Pt, Ni, TiO, Co, Fe, Mn, Sn, SnCl 2 , AlCl, AlOH, Si (OH) 2 , VO or InCl, [1] The phthalocyanine-based compound according to any one of to [21].
[23]
A near-infrared absorbing material containing at least one of the phthalocyanine compounds according to any one of [1] to [22]. However, this excludes the use of optical filters for optical sensors.
[24]
A heat ray shielding material containing at least one phthalocyanine compound according to any one of [1] to [22].
[25]
The heat ray shielding material according to [24], which is a heat ray shielding film.
[26]
The heat ray shielding material according to [25], which is an interlayer film for laminated glass.
 本発明により、近赤外領域に強い吸収を有し、可視光領域の吸収が非常に小さく耐久性が高く、有機溶剤や樹脂に対する溶解性が良好なフタロシアニン系化合物、及びこのような特性を有する近赤外線吸収材料などのその用途を提供することが可能になった。 According to the present invention, a phthalocyanine compound having strong absorption in the near-infrared region, extremely low absorption in the visible light region, high durability, and good solubility in organic solvents and resins, and having such properties. It has become possible to provide its use as a near infrared absorbing material.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above and other objects, features and advantages will become more apparent from the preferred embodiments described below and the accompanying drawings.
実施例1で製造した具体例(1-167)の吸収スペクトル図である。FIG. 3 is an absorption spectrum diagram of a specific example (1-167) manufactured in Example 1. 実施例2で製造した具体例(1-178)の吸収スペクトル図である。FIG. 14 is an absorption spectrum diagram of a specific example (1-178) manufactured in Example 2. 実施例3で製造した具体例(1-165)の吸収スペクトル図である。FIG. 14 is an absorption spectrum diagram of a specific example (1-165) manufactured in Example 3. 実施例4で製造した具体例(2-37)~具体例(2-40)異性体混合物の吸収スペクトル図である。FIG. 14 is an absorption spectrum diagram of the isomer mixtures of the specific examples (2-37) to (2-40) produced in Example 4. 実施例5で製造した具体例(1-170)の吸収スペクトル図である。FIG. 14 is an absorption spectrum diagram of a specific example (1-170) manufactured in Example 5. 実施例6で製造した具体例(1-171)の吸収スペクトル図である。17 is an absorption spectrum diagram of a specific example (1-171) manufactured in Example 6. FIG. 実施例7で製造した具体例(1-174)の吸収スペクトル図である。21 is an absorption spectrum diagram of a specific example (1-174) manufactured in Example 7. FIG. 実施例8で製造した具体例(1-175)の吸収スペクトル図である。21 is an absorption spectrum diagram of a specific example (1-175) manufactured in Example 8. FIG. 実施例9で製造した具体例(2-1)~具体例(2-4)を含む混合物の吸収スペクトル図である。FIG. 21 is an absorption spectrum diagram of a mixture including Specific Examples (2-1) to (2-4) produced in Example 9. 実施例10で製造した具体例(2-5)~具体例(2-8)を含む混合物の吸収スペクトル図である。FIG. 14 is an absorption spectrum diagram of a mixture including Specific Examples (2-5) to (2-8) produced in Example 10. 実施例11で製造した具体例(2-9)~具体例(2-12)を含む混合物の吸収スペクトル図である。FIG. 14 is an absorption spectrum diagram of a mixture including Specific Examples (2-9) to (2-12) produced in Example 11. 実施例12で製造した具体例(2-13)~具体例(2-16)を含む混合物の吸収スペクトル図である。FIG. 14 is an absorption spectrum diagram of a mixture including Specific Examples (2-13) to (2-16) produced in Example 12. 実施例13で製造した具体例(1-156)の吸収スペクトル図である。31 is an absorption spectrum diagram of a specific example (1-156) manufactured in Example 13. FIG. 実施例14で製造した具体例(1-310)の吸収スペクトル図である。21 is an absorption spectrum diagram of a specific example (1-310) manufactured in Example 14. FIG. 実施例15で製造した具体例(1-311)の吸収スペクトル図である。21 is an absorption spectrum diagram of a specific example (1-311) manufactured in Example 15. FIG. 実施例16で製造した具体例(1-179)の吸収スペクトル図である。21 is an absorption spectrum diagram of a specific example (1-179) manufactured in Example 16. FIG. 実施例17で製造した具体例(1-182)の吸収スペクトル図である。21 is an absorption spectrum diagram of a specific example (1-182) manufactured in Example 17. FIG. 実施例18で製造した具体例(1-158)の吸収スペクトル図である。21 is an absorption spectrum diagram of a specific example (1-158) manufactured in Example 18. FIG. 実施例19で製造した具体例(1-183)の吸収スペクトル図である。21 is an absorption spectrum diagram of a specific example (1-183) produced in Example 19. FIG. 実施例20で製造した具体例(2-17)の吸収スペクトル図である。21 is an absorption spectrum diagram of a specific example (2-17) manufactured in Example 20. FIG. 実施例21で製造した具体例(2-21)の吸収スペクトル図である。FIG. 21 is an absorption spectrum diagram of a specific example (2-21) manufactured in Example 21. 実施例22で製造した具体例(2-25)の吸収スペクトル図である。25 is an absorption spectrum diagram of a specific example (2-25) manufactured in Example 22. FIG. 実施例23で製造した具体例(2-29)~具体例(2-32)混合物の吸収スペクトル図である。FIG. 27 is an absorption spectrum diagram of a mixture of the specific examples (2-29) to (2-32) produced in Example 23. 実施例24で製造した具体例(2-33)~具体例(2-36)混合物の吸収スペクトル図である。21 is an absorption spectrum diagram of a mixture of the specific examples (2-33) to (2-36) produced in Example 24. FIG. 比較例1で製造した比較例化合物(a)の吸収スペクトル図である。FIG. 2 is an absorption spectrum diagram of a comparative compound (a) produced in Comparative Example 1. 比較例2で製造した比較例化合物(b)の吸収スペクトル図である。FIG. 5 is an absorption spectrum diagram of a comparative compound (b) produced in Comparative Example 2. 比較例3で製造した比較例化合物(d)の吸収スペクトル図である。FIG. 9 is an absorption spectrum diagram of a comparative compound (d) produced in Comparative Example 3. 実施例6、実施例12、実施例15、実施例16および比較例1の透過スペクトルの比較図である。FIG. 9 is a comparison diagram of transmission spectra of Example 6, Example 12, Example 15, Example 16, and Comparative Example 1. 実施例20、実施例22および比較例3の透過スペクトルの比較図である。FIG. 14 is a comparison diagram of transmission spectra of Example 20, Example 22, and Comparative Example 3.
以下、本発明に関し詳細に説明する。
[フタロシアニン系化合物]
 本発明の第1の発明は、一般式(1)で表されるフタロシアニン系化合物である。
Figure JPOXMLDOC01-appb-C000003
Hereinafter, the present invention will be described in detail.
[Phthalocyanine compound]
The first invention of the present invention is a phthalocyanine compound represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000003
 式(1)中、A1~A8は、それぞれ独立して、水素原子、置換基を有するもしくは非置換のアリール基、酸素原子を含有する置換基、硫黄原子を含有する置換基、窒素原子を含有する置換基を表し、X1~X8は、それぞれ独立して、水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基、置換基を有するもしくは非置換のアリールオキシ基、置換基を有するもしくは非置換のアルキルチオ基、置換基を有するもしくは非置換のアリールチオ基を表し、互いに結合して芳香環もしくは複素環を形成しても良い。Mは2個の水素原子、2価の金属または3価もしくは4価の金属の誘導体を表し、n1~n8はそれぞれ独立して、0~12の整数を表す。ただし、n1~n8がすべて0であることは無く、さらに全てのA1~A8がアルコキシ基である場合、n1~n8は、すべてが同時に1であることは無く、すべてが同時に8であることも無い。 In the formula (1), A1 to A8 each independently represent a hydrogen atom, a substituted or unsubstituted aryl group, a substituent containing an oxygen atom, a substituent containing a sulfur atom, and a nitrogen atom. X1 to X8 each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted Represents a substituted aryloxy group, a substituted or unsubstituted alkylthio group, or a substituted or unsubstituted arylthio group, which may be bonded to each other to form an aromatic ring or a heterocyclic ring. M represents two hydrogen atoms, a divalent metal or a derivative of a trivalent or tetravalent metal, and n1 to n8 each independently represent an integer of 0 to 12. However, when all of n1 to n8 are not 0 and all of A1 to A8 are alkoxy groups, all of n1 to n8 are not 1 at the same time and may be 8 at the same time. There is no.
 一般式(1)においてMは好ましくは、Mが2個の水素原子、Pd、Cu、Zn、Pt、Ni、TiO、Co、Fe、Mn、Sn、SnCl、AlCl、AlOH、Si(OH)、VO又はInClである。より好ましくは、Mは、2個の水素原子、Pd、Cu、Zn、TiO、AlCl、AlOH、VOである。 M is preferably in the general formula (1), M is two hydrogen atoms, Pd, Cu, Zn, Pt , Ni, TiO, Co, Fe, Mn, Sn, SnCl 2, AlCl, AlOH, Si (OH) 2 , VO or InCl. More preferably, M is two hydrogen atoms, Pd, Cu, Zn, TiO, AlCl, AlOH, VO.
 A1~A8について、水素原子が良く、置換基を有するもしくは非置換のアリール基としてはフェニル基またはナフチル基が良い。特に1~5個のアルコキシ基を有するフェニル基または1~5個のアルコキシ基を有するナフチル基が良い。
A1~A8が酸素原子を含有する置換基としては、置換基を有するもしくは非置換のアルコキシ基、置換基を有するもしくは非置換のフェニルオキシ基、置換基を有するもしくは非置換のナフチルオキシ基、酸素原子を含む複素環が良く、特に1~5個のアルコキシ基を有するフェニルオキシ基、1~5個のアルコキシ基を有するナフチルオキシ基、1~5個のアルキルチオ基を有するフェニルオキシ基、1~5個のアルキルチオ基を有するナフチルオキシ基または総炭素数3~8個のアルコキシアルコキシ基が良い。
For A1 to A8, a hydrogen atom is good, and a substituted or unsubstituted aryl group is preferably a phenyl group or a naphthyl group. Particularly, a phenyl group having 1 to 5 alkoxy groups or a naphthyl group having 1 to 5 alkoxy groups is preferable.
Examples of the substituent in which A1 to A8 contain an oxygen atom include a substituted or unsubstituted alkoxy group, a substituted or unsubstituted phenyloxy group, a substituted or unsubstituted naphthyloxy group, an oxygen Heterocycles containing atoms are good, especially phenyloxy groups having 1 to 5 alkoxy groups, naphthyloxy groups having 1 to 5 alkoxy groups, phenyloxy groups having 1 to 5 alkylthio groups, 1 to 5 A naphthyloxy group having 5 alkylthio groups or an alkoxyalkoxy group having 3 to 8 carbon atoms is preferred.
 A1~A8が硫黄原子を含有する置換基としては、置換基を有するもしくは非置換のアルキルチオ基、置換基を有するもしくは非置換のアリールチオ基、硫黄原子を含む複素環が良く、特に1~5個のアルコキシ基を有するフェニルオチオ基、1~5個のアルコキシ基を有するナフチルチオ基が良い。
A1~A8が窒素原子を含有する置換基としては、置換基を有するもしくは非置換のモノアルキルアミノ基、ジアルキルアミノ基、モノアリールアミノ基、ジアリールアミノ基もしくはアルキルアリールアミノ基、窒素原子を含む複素環が良い。
Examples of the substituent containing a sulfur atom for A1 to A8 include a substituted or unsubstituted alkylthio group, a substituted or unsubstituted arylthio group, and a heterocyclic ring containing a sulfur atom. And a naphthylthio group having 1 to 5 alkoxy groups.
Examples of the substituent in which A1 to A8 have a nitrogen atom include a substituted or unsubstituted monoalkylamino group, dialkylamino group, monoarylamino group, diarylamino group or alkylarylamino group, and a heteroatom containing a nitrogen atom. Ring is good.
 X1~X8については水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基、置換基を有するもしくは非置換のアリールオキシ基、置換基を有するもしくは非置換のアルキルチオ基、置換基を有するもしくは非置換のアリールチオ基、Xが互いに結合して芳香環もしくは複素環を形成しても良い。特に水素原子、フッ素原子、塩素原子、臭素原子、置換基を有するもしくは非置換のアルコキシアルキル基、置換基を有するもしくは非置換のアリールオキシアルキル基、置換基を有するもしくは非置換のアルキルチオアルキル基、置換基を有するもしくは非置換のアリールチオアルキル基、置換基を有するもしくは非置換のアルコキシアルコキシ基、置換基を有するもしくは非置換のアリールオキシアルコキシ基、Xが互いに結合してベンゼン環を形成したもの、Xが互いに結合してピリジン環を形成したものが良い。
n1~n8は0~12の整数で、n1~n8のすべて0であることは無い。n1~n8は0~8が良く、特に0~6が良い。
X1 to X8 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted An unsubstituted alkylthio group, a substituted or unsubstituted arylthio group, and X may be bonded to each other to form an aromatic ring or a heterocyclic ring. In particular, a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a substituted or unsubstituted alkoxyalkyl group, a substituted or unsubstituted aryloxyalkyl group, a substituted or unsubstituted alkylthioalkyl group, A substituted or unsubstituted arylthioalkyl group, a substituted or unsubstituted alkoxyalkoxy group, a substituted or unsubstituted aryloxyalkoxy group, or a group in which X is bonded to each other to form a benzene ring , X bonded to each other to form a pyridine ring.
n1 to n8 are integers of 0 to 12, and n1 to n8 are not all 0. n1 to n8 are preferably 0 to 8, and particularly preferably 0 to 6.
 A1~A8の置換基を有するもしくは非置換のアリール基の例としては、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、3-エチルフェニル基、4-エチルフェニル基、4-n-プロピルフェニル基、4-イソプロピルフェニル基、4-n-ブチルフェニル基、4-イソブチルフェニル基、4-tert-ブチルフェニル基、4-n-ペンチルフェニル基、4-イソペンチルフェニル基、4-tert-ペンチルフェニル基、4-n-ヘキシルフェニル基、4-シクロヘキシルフェニル基、4-n-ヘプチルフェニル基、4-n-オクチルフェニル基、4-n-ノニルフェニル基、4-n-デシルフェニル基、4-n-ウンデシルフェニル基、4-n-ドデシルフェニル基、4-n-テトラデシルフェニル基、4-n-ヘキサデシルフェニル基、4-n-オクタデシルフェニル基、2,3-ジメチルフェニル基、2,4-ジメチルフェニル基、2,5-ジメチルフェニル基、2,6-ジメチルフェニル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、3,4,5-トリメチルフェニル基、2,3,5,6-テトラメチルフェニル基、5-インダニル基、1,2,3,4-テトラヒドロ-5-ナフチル基、1,2,3,4-テトラヒドロ-6-ナフチル基、2-メトキシフェニル基、3-メトキシフェニル基、4-メトキシフェニル基、3-エトキシフェニル基、4-エトキシフェニル基、4-n-プロポキシフェニル基、4-イソプロポキシフェニル基、4-n-ブトキシフェニル基、4-イソブトキシフェニル基、4-n-ペンチルオキシフェニル基、4-n-ヘキシルオキシフェニル基、4-シクロヘキシルオキシフェニル基、4-n-ヘプチルオキシフェニル基、4-n-オクチルオキシフェニル基、4-n-ノニルオキシフェニル基、4-n-デシルオキシフェニル基、4-n-ウンデシルオキシフェニル基、4-n-ドデシルオキシフェニル基、4-n-テトラデシルオキシフェニル基、4-n-ヘキサデシルオキシフェニル基、4-n-オクタデシルオキシフェニル基、2,3-ジメトキシフェニル基、2,4-ジメトキシフェニル基、2,5-ジメトキシフェニル基、2,6-ジメトキシフェニル基、3,4-ジメトキシフェニル基、3,5-ジメトキシフェニル基、3,5-ジエトキシフェニル基、2-メトキシ-4-メチルフェニル基、2-メトキシ-5-メチルフェニル基、3-メトキシ-4-メチルフェニル基、2-メチル-4-メトキシフェニル基、3-メチル-4-メトキシフェニル基、3-メチル-5-メトキシフェニル基、2,4,6-トリメトキシフェニル基、2,3,5-トリメトキシフェニル基、2,4,5-トリメトキシフェニル基、3,4,5-トリメトキシフェニル基、2,3,5-トリメトキシフェニル基、2,3,4,6-テトラメトキシフェニル基、
2,3,5,6-テトラメトキシフェニル基、2,3,5,6-テトラメトキシ-4-メチルフェニル基、2,3,4,5-テトラメトキシ-6-メチルフェニル基、2,3,4,5,6-ペンタメトキシフェニル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2-クロロフェニル基、3-クロロフェニル基、4-クロロフェニル基、4-ブロモフェニル基、4-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、2,4-ジフルオロフェニル基、2,6-ジフルオロフェニル基、3,5-ジフルオロフェニル基、2,4-ジクロロフェニル基、2,6-ジクロロフェニル基、3,4-ジクロロフェニル基、3,5-ジクロロフェニル基、2-メチル-4-クロロフェニル基、2-クロロ-4-メチルフェニル基、3-クロロ-4-メチルフェニル基、2-クロロ-4-メトキシフェニル基、3-メトキシ-4-フルオロフェニル基、3-メトキシ-4-クロロフェニル基、3-フルオロ-4-メトキシフェニル基、4-フェニルフェニル基、3-フェニルフェニル基、2-フェニルフェニル基、4-(4’-メチルフェニル)フェニル基、4-(4’-メトキシフェニル)フェニル基、3,5-ジフェニルフェニル基、1-ナフチル基、2-ナフチル基、4-メチル-1-ナフチル基、4-エトキシ-1-ナフチル基、6-n-ブチル-2-ナフチル基、2-メトキシ-1-ナフチル基、3-メトキシ-1-ナフチル基、4-メトキシ-1-ナフチル基、5-メトキシ-1-ナフチル基、6-メトキシ-1-ナフチル基、1-メトキシ-2-ナフチル基、3-メトキシ-2-ナフチル基、4-メトキシ-2-ナフチル基、6-メトキシ-2-ナフチル基、7-メトキシ-2-ナフチル基、7-エトキシ-2-ナフチル基、7-イソプロポキシ-2-ナフチル基、7-(エトキシエトキシ)-2-ナフチル基、2,4-ジメトキシ-1-ナフチル基、2,6-ジメトキシ-1-ナフチル基、2,7-ジメトキシ-1-ナフチル基、2,8-ジメトキシ-1-ナフチル基、3,6-ジメトキシ-1-ナフチル基、1,4-ジメトキシ-2-ナフチル基、1,5-ジメトキシ-2-ナフチル基、1,6-ジメトキシ-2-ナフチル基、1,6-ジエトキシ-2-ナフチル基、2,5,6-トリメトキシ-1-ナフチル基、2,5,6-トリエトキシ-1-ナフチル基、
4,5,8-トリメトキシ-1-ナフチル基、4,6,8-トリメトキシ-2-ナフチル基、1,5,6-トリメトキシ-2-ナフチル基、3,6,7-トリメトキシ-2-ナフチル基、4,6,7-トリメトキシ-2-ナフチル基、5,6,7,8-テトラメトキシ-1-ナフチル基、2,3,6,7-テトラメトキシ-1-ナフチル基、1,4,5,8-テトラメトキシ-2-ナフチル基、1,4,5,8-テトラエトキシ-2-ナフチル基、1,3,5,7-テトラメトキシ-2-ナフチル基、2-フリル基、5-メチル-2-フリル基、5-メトキシ-2-フリル基、2-チエニル基、3-チエニル基、2-ピリジル基、6-メチル-2-ピリジル基、3-メトキシ-2-ピリジル基、6-フルオロ-2-ピリジル基、3-ピリジル基、6-エチル-3-ピリジル基、5-エトキシ-3-ピリジル基、4-ピリジル基、2,6-ジメチル-4-ピリジル基、2,6-ジメトキシ-4-ピリジル基、2-ピラジニル基、2-イミダゾリル基、3-ピラゾリル基、2-チアゾリル基、2-オキサゾリル基、4-(N,N-ジメチルアミノ)フェニル基、3-(N,N-ジメチルアミノ)フェニル基、2-(N,N-ジメチルアミノ)フェニル基、4-(N,N-ジエチルアミノ)フェニル基、2-(N,N-ジエチルアミノ)フェニル基、4-(N,N-ジ-n-ブチルアミノ)フェニル基、4-(N,N-ジ-n-ヘキシルアミノ)フェニル基、4-(N-シクロヘキシル-N-メチルアミノ)フェニル基、4-(N,N-ジエチルアミノ)-1-ナフチル基、4-ピロリジノフェニル基、4-ピペリジノフェニル基、4-モルフォリノフェニル基、4-ピロリジノ-1-ナフチル基、4-(N-ベンジル-N-メチルアミノ)フェニル基、4-(N-ベンジル-N-フェニルアミノ)フェニル基、4-(N-メチル-N-フェニルアミノ)フェニル基、4-(N-エチル-N-フェニルアミノ)フェニル基、4-(N-n-ブチル-N-フェニルアミノ)フェニル基、4-(N,N-ジフェニルアミノ)フェニル基、2-(N,N-ジフェニルアミノ)フェニル基、4-〔N,N-ジ(4’-メチルフェニル)アミノ〕フェニル基、4-〔N,N-ジ(3’-メチルフェニル)アミノ〕フェニル基、4-〔N,N-ジ(4’-エチルフェニル)アミノ〕フェニル基、4-〔N,N-ジ(4’-tert-ブチルフェニル)アミノ〕フェニル基、4-〔N,N-ジ(4’-n-ヘキシルフェニル)アミノ〕フェニル基、4-〔N,N-ジ(4’-メトキシフェニル)アミノ〕フェニル基、4-〔N,N-ジ(4’-エトキシフェニル)アミノ〕フェニル基、4-〔N,N-ジ(4’-n-ブトキシフェニル)アミノ〕フェニル基、4-〔N,N-ジ(4’-n-ヘキシルオキシフェニル)アミノ〕フェニル基、4-〔N,N-ジ(1’-ナフチル)アミノ〕フェニル基、4-〔N,N-ジ(2’-ナフチル)アミノ〕フェニル基、4-〔N-フェニル-N-(3’-メチルフェニル)アミノ〕フェニル基、4-〔N-フェニル-N-(4’-メチルフェニル)アミノ〕フェニル基、4-〔N-フェニル-N-(4’-オクチルフェニル)アミノ〕フェニル基、4-〔N-フェニル-N-(4’-メトキシフェニル)アミノ〕フェニル基、4-〔N-フェニル-N-(4’-エトキシフェニル)アミノ〕フェニル基、4-〔N-フェニル-N-(4’-n-ヘキシルオキシフェニル)アミノ〕フェニル基、4-〔N-フェニル-N-(4’-フルオロフェニル)アミノ〕フェニル基、
4-〔N-フェニル-N-(1’-ナフチル)アミノ〕フェニル基、4-〔N-フェニル-N-(2’-ナフチル)アミノ〕フェニル基、4-〔N-フェニル-N-(4’-フェニルフェニル)アミノ〕フェニル基、4-(N,N-ジフェニルアミノ)-1-ナフチル基、6-(N,N-ジフェニルアミノ)-2-ナフチル基、4-(N-カルバゾリイル)フェニル基、4-(N-フェノキサジイル)フェニル基などの置換基が挙げられる。
Examples of the substituted or unsubstituted aryl group of A1 to A8 include a phenyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a 3-ethylphenyl group, and a 4-ethylphenyl Group, 4-n-propylphenyl group, 4-isopropylphenyl group, 4-n-butylphenyl group, 4-isobutylphenyl group, 4-tert-butylphenyl group, 4-n-pentylphenyl group, 4-isopentyl Phenyl group, 4-tert-pentylphenyl group, 4-n-hexylphenyl group, 4-cyclohexylphenyl group, 4-n-heptylphenyl group, 4-n-octylphenyl group, 4-n-nonylphenyl group, 4 -N-decylphenyl group, 4-n-undecylphenyl group, 4-n-dodecylphenyl group, 4-n-tetradecylphenyl Group, 4-n-hexadecylphenyl group, 4-n-octadecylphenyl group, 2,3-dimethylphenyl group, 2,4-dimethylphenyl group, 2,5-dimethylphenyl group, 2,6-dimethylphenyl Group, 3,4-dimethylphenyl group, 3,5-dimethylphenyl group, 3,4,5-trimethylphenyl group, 2,3,5,6-tetramethylphenyl group, 5-indanyl group, 1,2,2 3,4-tetrahydro-5-naphthyl group, 1,2,3,4-tetrahydro-6-naphthyl group, 2-methoxyphenyl group, 3-methoxyphenyl group, 4-methoxyphenyl group, 3-ethoxyphenyl group, 4-ethoxyphenyl group, 4-n-propoxyphenyl group, 4-isopropoxyphenyl group, 4-n-butoxyphenyl group, 4-isobutoxyphenyl group, 4-n Pentyloxyphenyl, 4-n-hexyloxyphenyl, 4-cyclohexyloxyphenyl, 4-n-heptyloxyphenyl, 4-n-octyloxyphenyl, 4-n-nonyloxyphenyl, 4- n-decyloxyphenyl group, 4-n-undecyloxyphenyl group, 4-n-dodecyloxyphenyl group, 4-n-tetradecyloxyphenyl group, 4-n-hexadecyloxyphenyl group, 4-n- Octadecyloxyphenyl, 2,3-dimethoxyphenyl, 2,4-dimethoxyphenyl, 2,5-dimethoxyphenyl, 2,6-dimethoxyphenyl, 3,4-dimethoxyphenyl, 3,5-dimethoxy Phenyl group, 3,5-diethoxyphenyl group, 2-methoxy-4-methylphenyl group, 2-methoxy Xy-5-methylphenyl group, 3-methoxy-4-methylphenyl group, 2-methyl-4-methoxyphenyl group, 3-methyl-4-methoxyphenyl group, 3-methyl-5-methoxyphenyl group, 2, 4,6-trimethoxyphenyl group, 2,3,5-trimethoxyphenyl group, 2,4,5-trimethoxyphenyl group, 3,4,5-trimethoxyphenyl group, 2,3,5-trimethoxy Phenyl group, 2,3,4,6-tetramethoxyphenyl group,
2,3,5,6-tetramethoxyphenyl group, 2,3,5,6-tetramethoxy-4-methylphenyl group, 2,3,4,5-tetramethoxy-6-methylphenyl group, 2,3 , 4,5,6-pentamethoxyphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, 4-bromophenyl group , 4-trifluoromethylphenyl group, 3-trifluoromethylphenyl group, 2,4-difluorophenyl group, 2,6-difluorophenyl group, 3,5-difluorophenyl group, 2,4-dichlorophenyl group, 2, 6-dichlorophenyl group, 3,4-dichlorophenyl group, 3,5-dichlorophenyl group, 2-methyl-4-chlorophenyl group, 2- B-4-Methylphenyl group, 3-chloro-4-methylphenyl group, 2-chloro-4-methoxyphenyl group, 3-methoxy-4-fluorophenyl group, 3-methoxy-4-chlorophenyl group, 3-fluoro -4-methoxyphenyl group, 4-phenylphenyl group, 3-phenylphenyl group, 2-phenylphenyl group, 4- (4'-methylphenyl) phenyl group, 4- (4'-methoxyphenyl) phenyl group, , 5-Diphenylphenyl group, 1-naphthyl group, 2-naphthyl group, 4-methyl-1-naphthyl group, 4-ethoxy-1-naphthyl group, 6-n-butyl-2-naphthyl group, 2-methoxy- 1-naphthyl group, 3-methoxy-1-naphthyl group, 4-methoxy-1-naphthyl group, 5-methoxy-1-naphthyl group, 6-methoxy-1-naphthyl group, 1- Methoxy-2-naphthyl group, 3-methoxy-2-naphthyl group, 4-methoxy-2-naphthyl group, 6-methoxy-2-naphthyl group, 7-methoxy-2-naphthyl group, 7-ethoxy-2-naphthyl Group, 7-isopropoxy-2-naphthyl group, 7- (ethoxyethoxy) -2-naphthyl group, 2,4-dimethoxy-1-naphthyl group, 2,6-dimethoxy-1-naphthyl group, 2,7- Dimethoxy-1-naphthyl group, 2,8-dimethoxy-1-naphthyl group, 3,6-dimethoxy-1-naphthyl group, 1,4-dimethoxy-2-naphthyl group, 1,5-dimethoxy-2-naphthyl group 1,6-dimethoxy-2-naphthyl group, 1,6-diethoxy-2-naphthyl group, 2,5,6-trimethoxy-1-naphthyl group, 2,5,6-triethoxy-1-naphthyl group,
4,5,8-trimethoxy-1-naphthyl group, 4,6,8-trimethoxy-2-naphthyl group, 1,5,6-trimethoxy-2-naphthyl group, 3,6,7-trimethoxy-2-naphthyl Group, 4,6,7-trimethoxy-2-naphthyl group, 5,6,7,8-tetramethoxy-1-naphthyl group, 2,3,6,7-tetramethoxy-1-naphthyl group, 1,4 A 5,5,8-tetramethoxy-2-naphthyl group, a 1,4,5,8-tetraethoxy-2-naphthyl group, a 1,3,5,7-tetramethoxy-2-naphthyl group, a 2-furyl group, 5-methyl-2-furyl, 5-methoxy-2-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 6-methyl-2-pyridyl, 3-methoxy-2-pyridyl , 6-fluoro-2-pyridyl group, 3-pyridyl , 6-ethyl-3-pyridyl, 5-ethoxy-3-pyridyl, 4-pyridyl, 2,6-dimethyl-4-pyridyl, 2,6-dimethoxy-4-pyridyl, 2-pyrazinyl , 2-imidazolyl group, 3-pyrazolyl group, 2-thiazolyl group, 2-oxazolyl group, 4- (N, N-dimethylamino) phenyl group, 3- (N, N-dimethylamino) phenyl group, 2- ( N, N-dimethylamino) phenyl group, 4- (N, N-diethylamino) phenyl group, 2- (N, N-diethylamino) phenyl group, 4- (N, N-di-n-butylamino) phenyl group 4- (N, N-di-n-hexylamino) phenyl group, 4- (N-cyclohexyl-N-methylamino) phenyl group, 4- (N, N-diethylamino) -1-naphthyl group, 4- Pyrrolidi Phenyl group, 4-piperidinophenyl group, 4-morpholinophenyl group, 4-pyrrolidino-1-naphthyl group, 4- (N-benzyl-N-methylamino) phenyl group, 4- (N-benzyl-N -Phenylamino) phenyl group, 4- (N-methyl-N-phenylamino) phenyl group, 4- (N-ethyl-N-phenylamino) phenyl group, 4- (NN-butyl-N-phenylamino) ) Phenyl, 4- (N, N-diphenylamino) phenyl, 2- (N, N-diphenylamino) phenyl, 4- [N, N-di (4′-methylphenyl) amino] phenyl, 4- [N, N-di (3'-methylphenyl) amino] phenyl group, 4- [N, N-di (4'-ethylphenyl) amino] phenyl group, 4- [N, N-di (4 '-Tert-butylphenyl Amino] phenyl group, 4- [N, N-di (4'-n-hexylphenyl) amino] phenyl group, 4- [N, N-di (4'-methoxyphenyl) amino] phenyl group, 4- [ N, N-di (4'-ethoxyphenyl) amino] phenyl group, 4- [N, N-di (4'-n-butoxyphenyl) amino] phenyl group, 4- [N, N-di (4 ' -N-hexyloxyphenyl) amino] phenyl group, 4- [N, N-di (1'-naphthyl) amino] phenyl group, 4- [N, N-di (2'-naphthyl) amino] phenyl group, 4- [N-phenyl-N- (3'-methylphenyl) amino] phenyl group, 4- [N-phenyl-N- (4'-methylphenyl) amino] phenyl group, 4- [N-phenyl-N -(4'-octylphenyl) amino] phenyl group, 4- [N-phenyl -N- (4'-methoxyphenyl) amino] phenyl group, 4- [N-phenyl-N- (4'-ethoxyphenyl) amino] phenyl group, 4- [N-phenyl-N- (4'-n -Hexyloxyphenyl) amino] phenyl group, 4- [N-phenyl-N- (4′-fluorophenyl) amino] phenyl group,
4- [N-phenyl-N- (1′-naphthyl) amino] phenyl group, 4- [N-phenyl-N- (2′-naphthyl) amino] phenyl group, 4- [N-phenyl-N- ( 4'-phenylphenyl) amino] phenyl group, 4- (N, N-diphenylamino) -1-naphthyl group, 6- (N, N-diphenylamino) -2-naphthyl group, 4- (N-carbazolyyl) And substituents such as a phenyl group and a 4- (N-phenoxadiyl) phenyl group.
 A1~A8が酸素原子を含有する置換基の例としては、2-メチルフェニルオキシ基、3-メチルフェニルオキシ基、4-メチルフェニルオキシ基、3-エチルフェニルオキシ基、4-エチルフェニルオキシ基、4-n-プロピルフェニルオキシ基、4-イソプロピルフェニルオキシ基、4-n-ブチルフェニルオキシ基、4-イソブチルフェニルオキシ基、4-tert-ブチルフェニルオキシ基、4-n-ペンチルフェニルオキシ基、4-イソペンチルフェニルオキシ基、4-tert-ペンチルフェニルオキシ基、4-n-ヘキシルフェニルオキシ基、4-シクロヘキシルフェニルオキシ基、4-n-ヘプチルフェニルオキシ基、4-n-オクチルフェニルオキシ基、4-n-ノニルフェニルオキシ基、4-n-デシルフェニルオキシ基、4-n-ウンデシルフェニルオキシ基、4-n-ドデシルフェニルオキシ基、4-n-テトラデシルフェニルオキシ基、4-n-ヘキサデシルフェニルオキシ基、4-n-オクタデシルフェニルオキシ基、2,3-ジメチルフェニルオキシ基、2,4-ジメチルフェニルオキシ基、2,5-ジメチルフェニルオキシ基、2,6-ジメチルフェニルオキシ基、3,4-ジメチルフェニルオキシ基、3,5-ジメチルフェニルオキシ基、3,4,5-トリメチルフェニルオキシ基、2,3,5,6-テトラメチルフェニルオキシ基、5-インダニルオキシ基、1,2,3,4-テトラヒドロ-5-ナフチルオキシ基、1,2,3,4-テトラヒドロ-6-ナフチルオキシ基、2-メトキシフェニルオキシ基、3-メトキシフェニルオキシ基、4-メトキシフェニルオキシ基、3-エトキシフェニルオキシ基、4-エトキシフェニルオキシ基、4-n-プロポキシフェニルオキシ基、4-イソプロポキシフェニルオキシ基、4-n-ブトキシフェニルオキシ基、4-イソブトキシフェニルオキシ基、4-n-ペンチルオキシフェニルオキシ基、4-n-ヘキシルオキシフェニルオキシ基、4-シクロヘキシルオキシフェニルオキシ基、4-n-ヘプチルオキシフェニルオキシ基、4-n-オクチルオキシフェニルオキシ基、4-n-ノニルオキシフェニルオキシ基、4-n-デシルオキシフェニルオキシ基、4-n-ウンデシルオキシフェニルオキシ基、4-n-ドデシルオキシフェニルオキシ基、4-n-テトラデシルオキシフェニルオキシ基、4-n-ヘキサデシルオキシフェニルオキシ基、4-n-オクタデシルオキシフェニルオキシ基、2,3-ジメトキシフェニルオキシ基、2,4-ジメトキシフェニルオキシ基、2,5-ジメトキシフェニルオキシ基、2,6-ジメトキシフェニルオキシ基、3,4-ジメトキシフェニルオキシ基、3,5-ジメトキシフェニルオキシ基、3,5-ジエトキシフェニルオキシ基、2-メトキシ-4-メチルフェニルオキシ基、2-メトキシ-5-メチルフェニルオキシ基、3-メトキシ-4-メチルフェニルオキシ基、2-メチル-4-メトキシフェニルオキシ基、3-メチル-4-メトキシフェニルオキシ基、3-メチル-5-メトキシフェニルオキシ基、2,4,6-トリメトキシフェニルオキシ基、2,3,5-トリメトキシフェニルオキシ基、2,4,5-トリメトキシフェニルオキシ基、3,4,5-トリメトキシフェニルオキシ基、2,3,5-トリメトキシフェニルオキシ基、2,3,4,6-テトラメトキシフェニルオキシ基、2,3,5,6-テトラメトキシフェニルオキシ基、2,3,5,6-テトラメトキシ-4-メチルフェニルオキシ基、2,3,4,5-テトラメトキシ-6-メチルフェニルオキシ基、2,3,4,5,6-ペンタメトキシフェニルオキシ基、2-フルオロフェニルオキシ基、3-フルオロフェニルオキシ基、4-フルオロフェニルオキシ基、2-クロロフェニルオキシ基、3-クロロフェニルオキシ基、4-クロロフェニルオキシ基、4-ブロモフェニルオキシ基、4-トリフルオロメチルフェニルオキシ基、3-トリフルオロメチルフェニルオキシ基、2,4-ジフルオロフェニルオキシ基、2,6-ジフルオロフェニル基、3,5-ジフルオロフェニルオキシ基、2,4-ジクロロフェニルオキシ基、
2,6-ジクロロフェニルオキシ基、3,4-ジクロロフェニルオキシ基、3,5-ジクロロフェニルオキシ基、2-メチル-4-クロロフェニルオキシ基、2-クロロ-4-メチルフェニルオキシ基、3-クロロ-4-メチルフェニルオキシ基、2-クロロ-4-メトキシフェニルオキシ基、3-メトキシ-4-フルオロフェニルオキシ基、3-メトキシ-4-クロロフェニルオキシ基、3-フルオロ-4-メトキシフェニルオキシ基、4-フェニルフェニルオキシ基、3-フェニルフェニルオキシ基、2-フェニルフェニルオキシ基、4-(4’-メチルフェニル)フェニルオキシ基、4-(4’-メトキシフェニル)フェニルオキシ基、3,5-ジフェニルフェニルオキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、4-メチル-1-ナフチルオキシ基、4-エトキシ-1-ナフチルオキシ基、6-n-ブチル-2-ナフチルオキシ基、2-メトキシ-1-ナフチルオキシ基、3-メトキシ-1-ナフチルオキシ基、4-メトキシ-1-ナフチルオキシ基、5-メトキシ-1-ナフチルオキシ基、6-メトキシ-1-ナフチルオキシ基、1-メトキシ-2-ナフチルオキシ基、3-メトキシ-2-ナフチルオキシ基、4-メトキシ-2-ナフチルオキシ基、6-メトキシ-2-ナフチルオキシ基、7-メトキシ-2-ナフチルオキシ基、7-エトキシ-2-ナフチルオキシ基、7-イソプロポキシ-2-ナフチルオキシ基、7-(エトキシエトキシ)-2-ナフチルオキシ基、2,4-ジメトキシ-1-ナフチルオキシ基、2,6-ジメトキシ-1-ナフチルオキシ基、2,7-ジメトキシ-1-ナフチルオキシ基、2,8-ジメトキシ-1-ナフチルオキシ基、3,6-ジメトキシ-1-ナフチルオキシ基、1,4-ジメトキシ-2-ナフチルオキシ基、1,5-ジメトキシ-2-ナフチルオキシ基、1,6-ジメトキシ-2-ナフチルオキシ基、
1,6-ジエトキシ-2-ナフチルオキシ基、2,5,6-トリメトキシ-1-ナフチルオキシ基、2,5,6-トリエトキシ-1-ナフチルオキシ基、4,5,8-トリメトキシ-1-ナフチルオキシ基、4,6,8-トリメトキシ-2-ナフチルオキシ基、1,5,6-トリメトキシ-2-ナフチルオキシ基、3,6,7-トリメトキシ-2-ナフチルオキシ基、4,6,7-トリメトキシ-2-ナフチルオキシ基、5,6,7,8-テトラメトキシ-1-ナフチルオキシ基、2,3,6,7-テトラメトキシ-1-ナフチルオキシ基、1,4,5,8-テトラメトキシ-2-ナフチルオキシ基、1,4,5,8-テトラエトキシ-2-ナフチルオキシ基、1,3,5,7-テトラメトキシ-2-ナフチルオキシ基、2-メチルチオフェニルオキシ基、3-メチルチオフェニルオキシ基、4-メチルチオフェニルオキシ基、2,4-ジメチルチオフェニルオキシ基、2,6-ジメチルチオフェニルオキシ基、2,4,6-トリメチルチオフェニルオキシ基、2,3,5,6-テトラメチルチオ-4-メチルフェニルオキシ基、2,3,4,5-テトラメチルチオ-6-メチルフェニルオキシ基、2,3,4,5,6-ペンタメチルチオフェニルオキシ基、2-メチルチオ-1-ナフチルオキシ基、4-メチルチオ-1-ナフチルオキシ基、5-メチルチオ-1-ナフチルオキシ基、2,4-ジメチルチオ-1-ナフチルオキシ基、1-メチルチオ-2-ナフチルオキシ基、6-メチルチオ-2-ナフチルオキシ基、1,6-ジメチルチオ-2-ナフチルオキシ基、4,6,8-トリメチルチオ-2-ナフチルオキシ基、3,6,7-トリメチルチオ-2-ナフチルオキシ基、1,5,6-トリメチルチオ-2-ナフチルオキシ基、5,6,7,8-テトラメチルチオ-2-ナフチルオキシ基、2,3,6,7-テトラメチルチオ-1-ナフチルオキシ基、1,5,6,7,8-ペンタメチルチオ-2-ナフチルオキシ基、2-フリル基、5-メチル-2-フリルオキシ基、5-メトキシ-2-フリルオキシ基、2-チエニルオキシ基、3-チエニルオキシ基、2-ピリジルオキシ基、6-メチル-2-ピリジルオキシ基、3-メトキシ-2-ピリジルオキシ基、6-フルオロ-2-ピリジルオキシ基、3-ピリジルオキシ基、
6-エチル-3-ピリジルオキシ基、5-エトキシ-3-ピリジルオキシ基、4-ピリジルオキシ基、2,6-ジメチル-4-ピリジルオキシ基、2,6-ジメトキシ-4-ピリジルオキシ基、2-ピラジニルオキシ基、2-イミダゾリルオキシ基、3-ピラゾリルオキシ基、2-チアゾリルオキシ基、2-オキサゾリルオキシ基、4-(N,N-ジメチルアミノ)フェニルオキシ基、3-(N,N-ジメチルアミノ)フェニルオキシ基、2-(N,N-ジメチルアミノ)フェニルオキシ基、4-(N,N-ジエチルアミノ)フェニルオキシ基、2-(N,N-ジエチルアミノ)フェニルオキシ基、4-(N,N-ジ-n-ブチルアミノ)フェニルオキシ基、4-(N,N-ジ-n-ヘキシルアミノ)フェニルオキシ基、4-(N-シクロヘキシル-N-メチルアミノ)フェニルオキシ基、4-(N,N-ジエチルアミノ)-1-ナフチルオキシ基、4-ピロリジノフェニルオキシ基、4-ピペリジノフェニルオキシ基、4-モルフォリノフェニルオキシ基、4-ピロリジノ-1-ナフチルオキシ基、4-(N-ベンジル-N-メチルアミノ)フェニルオキシ基、4-(N-ベンジル-N-フェニルアミノ)フェニルオキシ基、4-(N-メチル-N-フェニルアミノ)フェニルオキシ基、4-(N-エチル-N-フェニルアミノ)フェニルオキシ基、4-(N-n-ブチル-N-フェニルアミノ)フェニルオキシ基、4-(N,N-ジフェニルアミノ)フェニルオキシ基、2-(N,N-ジフェニルアミノ)フェニルオキシ基、4-〔N,N-ジ(4’-メチルフェニル)アミノ〕フェニルオキシ基、4-〔N,N-ジ(3’-メチルフェニル)アミノ〕フェニルオキシ基、4-〔N,N-ジ(4’-エチルフェニル)アミノ〕フェニルオキシ基、4-〔N,N-ジ(4’-tert-ブチルフェニル)アミノ〕フェニルオキシ基、4-〔N,N-ジ(4’-n-ヘキシルフェニル)アミノ〕フェニルオキシ基、4-〔N,N-ジ(4’-メトキシフェニル)アミノ〕フェニルオキシ基、4-〔N,N-ジ(4’-エトキシフェニル)アミノ〕フェニルオキシ基、4-〔N,N-ジ(4’-n-ブトキシフェニル)アミノ〕フェニルオキシ基、4-〔N,N-ジ(4’-n-ヘキシルオキシフェニル)アミノ〕フェニルオキシ基、4-〔N,N-ジ(1’-ナフチル)アミノ〕フェニルオキシ基、4-〔N,N-ジ(2’-ナフチル)アミノ〕フェニルオキシ基、4-〔N-フェニル-N-(3’-メチルフェニル)アミノ〕フェニルオキシ基、4-〔N-フェニル-N-(4’-メチルフェニル)アミノ〕フェニルオキシ基、4-〔N-フェニル-N-(4’-オクチルフェニル)アミノ〕フェニルオキシ基、4-〔N-フェニル-N-(4’-メトキシフェニル)アミノ〕フェニルオキシ基、4-〔N-フェニル-N-(4’-エトキシフェニル)アミノ〕フェニルオキシ基、4-〔N-フェニル-N-(4’-n-ヘキシルオキシフェニル)アミノ〕フェニルオキシ基、4-〔N-フェニル-N-(4’-フルオロフェニル)アミノ〕フェニルオキシ基、4-〔N-フェニル-N-(1’-ナフチル)アミノ〕フェニルオキシ基、4-〔N-フェニル-N-(2’-ナフチル)アミノ〕フェニルオキシ基、4-〔N-フェニル-N-(4’-フェニルフェニル)アミノ〕フェニルオキシ基、4-(N,N-ジフェニルアミノ)-1-ナフチルオキシ基、6-(N,N-ジフェニルアミノ)-2-ナフチルオキシ基、4-(N-カルバゾリイル)フェニルオキシ基、4-(N-フェノキサジイル)フェニルオキシ基、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、tert-ペンチルオキシ基、1,2-ジメチルプロピルオキシ基、1-メチルブチルオキシ基、
2-メチルブチルオキシ基、n-ヘキシルオキシ基、1-メチルペンチルオキシ基、2-メチルペンチルオキシ基、4-メチルペンチルオキシ基、4-メチル-2-ペンチルオキシ基、1,2-ジメチルブチルオキシ基、2,3-ジメチルブチルオキシ基、3,3-ジメチルブチルオキシ基、1-エチルブチルオキシ基、2-エチルブチルオキシ基、n-ヘプチルオキシ基、1-メチルヘキシルオキシ基、3-メチルヘキシルオキシ基、5-メチルヘキシルオキシ基、2,4-ジメチルペンチルオキシ基、シクロヘキシルメチルオキシ基、n-オクチルオキシ基、tert-オクチルオキシ基、1-メチルヘプチルオキシ基、2-エチルヘキシルオキシ基、2-プロピルペンチルオキシ基、2,5-ジメチルヘキシルオキシ基、2,5,5-トリメチルヘキシルオキシ基、n-ノニルオキシ基、2,2-ジメチルヘプチルオキシ基、2,6-ジメチル-4-ヘプチルオキシ基、3,5,5-トリメチルヘキシルオキシ基、n-デシルオキシ基、4-エチルオクチルオキシ基、n-ウンデシルオキシ基、1-メチルデシルオキシ基、n-ドデシルオキシ基、1,3,5,7-テトラメチルオクチルオキシ基、n-トリデシルオキシ基、1-ヘキシルヘプチルオキシ基、n-テトラデシルオキシ基、n-ペンタデシルオキシ基、n-ヘキサデシルオキシ基、n-ヘプタデシルオキシ基、n-オクタデシルオキシ基、n-エイコシルオキシ基、n-トリコシルオキシ基、n-テトラコシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、4-メチルシクロヘキシルオキシ基、4-tert-ブチルシクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、メトキシエトキシ基、エトキシエトキシ基、メトキシプロポキシ基、イソプロポキシエトキシ基、メトキシブトキシ基、エトキシヘキシルオキシ基、エトキシエトキシエトキシ基、エトキシエトキシエトキシエトキシ基、2-テトラヒドロフリル基、テトラヒドロフリルオキシ基、テトラヒドロフルフリルオキシ基、2-メチル-5-テトラヒドロフリル基、テトラヒドロピラン-2-イル基、1,3-ジオキソラン-2-イル基、2,2-ジメチル-1,3-ジオキソラン-2-イル基、1,4-ジオキサン-2-イル基、1,3-ジオキサン-2-イル基などの置換基が挙げられる。
Examples of the substituent in which A1 to A8 contain an oxygen atom include a 2-methylphenyloxy group, a 3-methylphenyloxy group, a 4-methylphenyloxy group, a 3-ethylphenyloxy group, and a 4-ethylphenyloxy group 4-n-propylphenyloxy group, 4-isopropylphenyloxy group, 4-n-butylphenyloxy group, 4-isobutylphenyloxy group, 4-tert-butylphenyloxy group, 4-n-pentylphenyloxy group , 4-isopentylphenyloxy group, 4-tert-pentylphenyloxy group, 4-n-hexylphenyloxy group, 4-cyclohexylphenyloxy group, 4-n-heptylphenyloxy group, 4-n-octylphenyloxy Group, 4-n-nonylphenyloxy group, 4-n-decylphenyloxy 4-n-undecylphenyloxy group, 4-n-dodecylphenyloxy group, 4-n-tetradecylphenyloxy group, 4-n-hexadecylphenyloxy group, 4-n-octadecylphenyloxy group, 2 2,3-dimethylphenyloxy group, 2,4-dimethylphenyloxy group, 2,5-dimethylphenyloxy group, 2,6-dimethylphenyloxy group, 3,4-dimethylphenyloxy group, 3,5-dimethylphenyl Oxy group, 3,4,5-trimethylphenyloxy group, 2,3,5,6-tetramethylphenyloxy group, 5-indanyloxy group, 1,2,3,4-tetrahydro-5-naphthyloxy group A 1,2,3,4-tetrahydro-6-naphthyloxy group, a 2-methoxyphenyloxy group, a 3-methoxyphenyloxy group, -Methoxyphenyloxy group, 3-ethoxyphenyloxy group, 4-ethoxyphenyloxy group, 4-n-propoxyphenyloxy group, 4-isopropoxyphenyloxy group, 4-n-butoxyphenyloxy group, 4-isobutoxy Phenyloxy group, 4-n-pentyloxyphenyloxy group, 4-n-hexyloxyphenyloxy group, 4-cyclohexyloxyphenyloxy group, 4-n-heptyloxyphenyloxy group, 4-n-octyloxyphenyloxy Group, 4-n-nonyloxyphenyloxy group, 4-n-decyloxyphenyloxy group, 4-n-undecyloxyphenyloxy group, 4-n-dodecyloxyphenyloxy group, 4-n-tetradecyloxy Phenyloxy group, 4-n-hexadecyloxyphenyl Oxy group, 4-n-octadecyloxyphenyloxy group, 2,3-dimethoxyphenyloxy group, 2,4-dimethoxyphenyloxy group, 2,5-dimethoxyphenyloxy group, 2,6-dimethoxyphenyloxy group, 3 2,4-dimethoxyphenyloxy group, 3,5-dimethoxyphenyloxy group, 3,5-diethoxyphenyloxy group, 2-methoxy-4-methylphenyloxy group, 2-methoxy-5-methylphenyloxy group, 3 -Methoxy-4-methylphenyloxy group, 2-methyl-4-methoxyphenyloxy group, 3-methyl-4-methoxyphenyloxy group, 3-methyl-5-methoxyphenyloxy group, 2,4,6-tri Methoxyphenyloxy group, 2,3,5-trimethoxyphenyloxy group, 2,4,5-trimethoxy Enyloxy group, 3,4,5-trimethoxyphenyloxy group, 2,3,5-trimethoxyphenyloxy group, 2,3,4,6-tetramethoxyphenyloxy group, 2,3,5,6-tetra Methoxyphenyloxy group, 2,3,5,6-tetramethoxy-4-methylphenyloxy group, 2,3,4,5-tetramethoxy-6-methylphenyloxy group, 2,3,4,5,6 -Pentamethoxyphenyloxy group, 2-fluorophenyloxy group, 3-fluorophenyloxy group, 4-fluorophenyloxy group, 2-chlorophenyloxy group, 3-chlorophenyloxy group, 4-chlorophenyloxy group, 4-bromophenyl Oxy group, 4-trifluoromethylphenyloxy group, 3-trifluoromethylphenyloxy group, 2,4-difur B phenyloxy group, 2,6-difluorophenyl group, 3,5-difluorophenyl group, 2,4-dichlorophenyl group,
2,6-dichlorophenyloxy group, 3,4-dichlorophenyloxy group, 3,5-dichlorophenyloxy group, 2-methyl-4-chlorophenyloxy group, 2-chloro-4-methylphenyloxy group, 3-chloro-4 -Methylphenyloxy group, 2-chloro-4-methoxyphenyloxy group, 3-methoxy-4-fluorophenyloxy group, 3-methoxy-4-chlorophenyloxy group, 3-fluoro-4-methoxyphenyloxy group, 4 -Phenylphenyloxy group, 3-phenylphenyloxy group, 2-phenylphenyloxy group, 4- (4'-methylphenyl) phenyloxy group, 4- (4'-methoxyphenyl) phenyloxy group, 3,5- Diphenylphenyloxy group, 1-naphthyloxy group, 2-naphthyloxy group, 4-methyl 1-naphthyloxy group, 4-ethoxy-1-naphthyloxy group, 6-n-butyl-2-naphthyloxy group, 2-methoxy-1-naphthyloxy group, 3-methoxy-1-naphthyloxy group, 4- Methoxy-1-naphthyloxy group, 5-methoxy-1-naphthyloxy group, 6-methoxy-1-naphthyloxy group, 1-methoxy-2-naphthyloxy group, 3-methoxy-2-naphthyloxy group, 4- Methoxy-2-naphthyloxy group, 6-methoxy-2-naphthyloxy group, 7-methoxy-2-naphthyloxy group, 7-ethoxy-2-naphthyloxy group, 7-isopropoxy-2-naphthyloxy group, 7 -(Ethoxyethoxy) -2-naphthyloxy group, 2,4-dimethoxy-1-naphthyloxy group, 2,6-dimethoxy-1-naphthyloxy group, 2,7-dimethoxy-1-naphthyloxy group, 2,8-dimethoxy-1-naphthyloxy group, 3,6-dimethoxy-1-naphthyloxy group, 1,4-dimethoxy-2-naphthyloxy group, 1, 5-dimethoxy-2-naphthyloxy group, 1,6-dimethoxy-2-naphthyloxy group,
1,6-diethoxy-2-naphthyloxy group, 2,5,6-trimethoxy-1-naphthyloxy group, 2,5,6-triethoxy-1-naphthyloxy group, 4,5,8-trimethoxy-1- Naphthyloxy group, 4,6,8-trimethoxy-2-naphthyloxy group, 1,5,6-trimethoxy-2-naphthyloxy group, 3,6,7-trimethoxy-2-naphthyloxy group, 4,6 7-trimethoxy-2-naphthyloxy group, 5,6,7,8-tetramethoxy-1-naphthyloxy group, 2,3,6,7-tetramethoxy-1-naphthyloxy group, 1,4,5, 8-tetramethoxy-2-naphthyloxy group, 1,4,5,8-tetraethoxy-2-naphthyloxy group, 1,3,5,7-tetramethoxy-2-naphthyloxy group, 2-methylthiophene Loxy, 3-methylthiophenyloxy, 4-methylthiophenyloxy, 2,4-dimethylthiophenyloxy, 2,6-dimethylthiophenyloxy, 2,4,6-trimethylthiophenyloxy, 2 2,3,5,6-tetramethylthio-4-methylphenyloxy group, 2,3,4,5-tetramethylthio-6-methylphenyloxy group, 2,3,4,5,6-pentamethylthiophenyloxy group , 2-methylthio-1-naphthyloxy, 4-methylthio-1-naphthyloxy, 5-methylthio-1-naphthyloxy, 2,4-dimethylthio-1-naphthyloxy, 1-methylthio-2-naphthyl Oxy group, 6-methylthio-2-naphthyloxy group, 1,6-dimethylthio-2-naphthyloxy group, 4,6,8- Limethylthio-2-naphthyloxy group, 3,6,7-trimethylthio-2-naphthyloxy group, 1,5,6-trimethylthio-2-naphthyloxy group, 5,6,7,8-tetramethylthio-2 -Naphthyloxy group, 2,3,6,7-tetramethylthio-1-naphthyloxy group, 1,5,6,7,8-pentamethylthio-2-naphthyloxy group, 2-furyl group, 5-methyl- 2-furyloxy group, 5-methoxy-2-furyloxy group, 2-thienyloxy group, 3-thienyloxy group, 2-pyridyloxy group, 6-methyl-2-pyridyloxy group, 3-methoxy-2- Pyridyloxy group, 6-fluoro-2-pyridyloxy group, 3-pyridyloxy group,
6-ethyl-3-pyridyloxy group, 5-ethoxy-3-pyridyloxy group, 4-pyridyloxy group, 2,6-dimethyl-4-pyridyloxy group, 2,6-dimethoxy-4-pyridyloxy group, 2-pyrazinyloxy group, 2-imidazolyloxy group, 3-pyrazolyloxy group, 2-thiazolyloxy group, 2-oxazolyloxy group, 4- (N, N-dimethylamino) phenyloxy group, 3- (N, N- Dimethylamino) phenyloxy group, 2- (N, N-dimethylamino) phenyloxy group, 4- (N, N-diethylamino) phenyloxy group, 2- (N, N-diethylamino) phenyloxy group, 4- ( N, N-di-n-butylamino) phenyloxy group, 4- (N, N-di-n-hexylamino) phenyloxy group, 4- (N-cyclohexyl) Sil-N-methylamino) phenyloxy group, 4- (N, N-diethylamino) -1-naphthyloxy group, 4-pyrrolidinophenyloxy group, 4-piperidinophenyloxy group, 4-morpholinophenyloxy Group, 4-pyrrolidino-1-naphthyloxy group, 4- (N-benzyl-N-methylamino) phenyloxy group, 4- (N-benzyl-N-phenylamino) phenyloxy group, 4- (N-methyl -N-phenylamino) phenyloxy group, 4- (N-ethyl-N-phenylamino) phenyloxy group, 4- (Nn-butyl-N-phenylamino) phenyloxy group, 4- (N, N -Diphenylamino) phenyloxy group, 2- (N, N-diphenylamino) phenyloxy group, 4- [N, N-di (4'-methylphenyl) amino] Phenyloxy group, 4- [N, N-di (3′-methylphenyl) amino] phenyloxy group, 4- [N, N-di (4′-ethylphenyl) amino] phenyloxy group, 4- [N, N-di (4'-tert-butylphenyl) amino] phenyloxy group, 4- [N, N-di (4'-n-hexylphenyl) amino] phenyloxy group, 4- [N, N-di ( 4'-methoxyphenyl) amino] phenyloxy group, 4- [N, N-di (4'-ethoxyphenyl) amino] phenyloxy group, 4- [N, N-di (4'-n-butoxyphenyl) Amino] phenyloxy group, 4- [N, N-di (4′-n-hexyloxyphenyl) amino] phenyloxy group, 4- [N, N-di (1′-naphthyl) amino] phenyloxy group, 4- [N, N-di (2'-naphthyl) a Phenyloxy group, 4- [N-phenyl-N- (3'-methylphenyl) amino] phenyloxy group, 4- [N-phenyl-N- (4'-methylphenyl) amino] phenyloxy group, 4- [N-phenyl-N- (4'-octylphenyl) amino] phenyloxy group, 4- [N-phenyl-N- (4'-methoxyphenyl) amino] phenyloxy group, 4- [N-phenyl -N- (4'-ethoxyphenyl) amino] phenyloxy group, 4- [N-phenyl-N- (4'-n-hexyloxyphenyl) amino] phenyloxy group, 4- [N-phenyl-N- (4'-fluorophenyl) amino] phenyloxy group, 4- [N-phenyl-N- (1'-naphthyl) amino] phenyloxy group, 4- [N-phenyl-N- (2'-naphthyl) amino Phenyloxy group, 4- [N-phenyl-N- (4′-phenylphenyl) amino] phenyloxy group, 4- (N, N-diphenylamino) -1-naphthyloxy group, 6- (N, N- Diphenylamino) -2-naphthyloxy group, 4- (N-carbazolyyl) phenyloxy group, 4- (N-phenoxadiyl) phenyloxy group, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n -Butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, isopentyloxy group, neopentyloxy group, tert-pentyloxy group, 1,2-dimethylpropyloxy group, 1- Methylbutyloxy group,
2-methylbutyloxy group, n-hexyloxy group, 1-methylpentyloxy group, 2-methylpentyloxy group, 4-methylpentyloxy group, 4-methyl-2-pentyloxy group, 1,2-dimethylbutyl Oxy, 2,3-dimethylbutyloxy, 3,3-dimethylbutyloxy, 1-ethylbutyloxy, 2-ethylbutyloxy, n-heptyloxy, 1-methylhexyloxy, 3- Methylhexyloxy group, 5-methylhexyloxy group, 2,4-dimethylpentyloxy group, cyclohexylmethyloxy group, n-octyloxy group, tert-octyloxy group, 1-methylheptyloxy group, 2-ethylhexyloxy group , 2-propylpentyloxy group, 2,5-dimethylhexyloxy group, 2,5,5- Limethylhexyloxy group, n-nonyloxy group, 2,2-dimethylheptyloxy group, 2,6-dimethyl-4-heptyloxy group, 3,5,5-trimethylhexyloxy group, n-decyloxy group, 4-ethyl Octyloxy group, n-undecyloxy group, 1-methyldecyloxy group, n-dodecyloxy group, 1,3,5,7-tetramethyloctyloxy group, n-tridecyloxy group, 1-hexylheptyloxy Group, n-tetradecyloxy group, n-pentadecyloxy group, n-hexadecyloxy group, n-heptadecyloxy group, n-octadecyloxy group, n-eicosyloxy group, n-tricosyloxy group, n-tetracosyloxy group, cyclopentyloxy group, cyclohexyloxy group, 4-methylcyclohexyloxy group 4-tert-butylcyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, methoxyethoxy group, ethoxyethoxy group, methoxypropoxy group, isopropoxyethoxy group, methoxybutoxy group, ethoxyhexyloxy group, ethoxyethoxyethoxy group, Ethoxyethoxyethoxyethoxy, 2-tetrahydrofuryl, tetrahydrofuryloxy, tetrahydrofurfuryloxy, 2-methyl-5-tetrahydrofuryl, tetrahydropyran-2-yl, 1,3-dioxolan-2-yl And a substituent such as a 2,2-dimethyl-1,3-dioxolan-2-yl group, a 1,4-dioxan-2-yl group, and a 1,3-dioxan-2-yl group.
 A1~A8が硫黄原子を含有する置換基の例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ヘキシルチオ基、2-エチルヘキシルチオ基、メトキシエチルチオ基、フェノキシエチルチオ基、ベンジルチオ基、フェニルエチルチオ基、フェニルチオ基、2-メトキシ-フェニルチオ基、3-メトキシ-フェニルチオ基、4-メトキシ-フェニルチオ基、2,4-ジメトキシ-フェニルチオ基、3,5-ジメトキシ-フェニルチオ基、2,4,6-トリメトキシ-フェニルチオ基、3-メチルチオ-フェニルチオ基、2,4-ジメチルチオ-フェニルチオ基、2,4,6-トリメチルチオ-フェニルチオ基、2-メトキシ-1-ナフチルチオ基、2-メチルチオ-1-ナフチルチオ基、4-メチルチオ-1-ナフチルチオ基、5-メトキシ-1-ナフチルチオ基、2,4-ジメトキシ-1-ナフチルチオ基、2,4-ジメチルチオ-1-ナフチルチオ基、1-メチルチオ-2-ナフチルチオ基、1-メトキシ-2-ナフチルチオ基、6-メチルチオ-2-ナフチルチオ基、6-メトキシ-2-ナフチルチオ基、1,6-ジメチルチオ-2-ナフチルチオ基、1,6-ジメトキシ-2-ナフチルチオ基、4,6,8-トリメチルチオ-2-ナフチルチオ基、4,6,8-トリメトキシ-2-ナフチルチオ基、3,6,7-トリメチルチオ-2-ナフチルチオ基、3,6,7-トリメトキシ-2-ナフチルチオ基、1,5,6-トリメチルチオ-2-ナフチルチオ基、1,5,6-トリメトキシ-2-ナフチルチオ基、5,6,7,8-テトラメチルチオ-2-ナフチルチオ基、5,6,7,8-テトラメトキシ-2-ナフチルチオ基、2,3,6,7-テトラメチルチオ-1-ナフチルチオ基、2,3,6,7-テトラメトキシ-1-ナフチルチオ基、1,5,6,7,8-ペンタメチルチオ-2-ナフチルチオ基、テトラヒドロチオフェン-2-イル基、テトラヒドロチオフェン-3-イル基、テトラヒドロチオピラン-2-イル基などの置換基が挙げられる。 Examples of substituents in which A1 to A8 contain a sulfur atom include methylthio, ethylthio, propylthio, butylthio, hexylthio, 2-ethylhexylthio, methoxyethylthio, phenoxyethylthio, benzylthio, Phenylethylthio, phenylthio, 2-methoxy-phenylthio, 3-methoxy-phenylthio, 4-methoxy-phenylthio, 2,4-dimethoxy-phenylthio, 3,5-dimethoxy-phenylthio, 2,4 2,6-Trimethoxy-phenylthio, 3-methylthio-phenylthio, 2,4-dimethylthio-phenylthio, 2,4,6-trimethylthio-phenylthio, 2-methoxy-1-naphthylthio, 2-methylthio-1 -Naphthylthio group, 4-methylthio-1-naphthyl Thio group, 5-methoxy-1-naphthylthio group, 2,4-dimethoxy-1-naphthylthio group, 2,4-dimethylthio-1-naphthylthio group, 1-methylthio-2-naphthylthio group, 1-methoxy-2-naphthylthio Group, 6-methylthio-2-naphthylthio group, 6-methoxy-2-naphthylthio group, 1,6-dimethylthio-2-naphthylthio group, 1,6-dimethoxy-2-naphthylthio group, 4,6,8-trimethylthio -2-naphthylthio group, 4,6,8-trimethoxy-2-naphthylthio group, 3,6,7-trimethylthio-2-naphthylthio group, 3,6,7-trimethoxy-2-naphthylthio group, 1,5 6-trimethylthio-2-naphthylthio group, 1,5,6-trimethoxy-2-naphthylthio group, 5,6,7,8-tetramethylthio-2 Naphthylthio, 5,6,7,8-tetramethoxy-2-naphthylthio, 2,3,6,7-tetramethylthio-1-naphthylthio, 2,3,6,7-tetramethoxy-1-naphthylthio And substituents such as 1,5,6,7,8-pentamethylthio-2-naphthylthio group, tetrahydrothiophen-2-yl group, tetrahydrothiophen-3-yl group, and tetrahydrothiopyran-2-yl group. .
 A1~A8が窒素原子を含有する置換基の例としては、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、ジ-n-ブチルアミノ基、ジ-n-ヘキシルアミノ基、N-エチル-N-n-ヘキシルアミノ基、N-メチル-N-n-オクチルアミノ基、N-エチル-N-フェニルアミノ基、N-エチル-N-(4’-tert-ブチルフェニル)アミノ基、N-n-ブチル-N-(4’-メトキシフェニル)アミノ基、ビス(2-メトキシエチル)アミノ基、ビス(2-イソプロポキシエチル)アミノ基、2-ピロリジニル基、1-ピロリジニル基、N-メチル-2-ピロリジニル基、1-ピペリジニル基、2-ピペリジニル基、N-メチル-2-ピペリジニル基、N-メチル-4-ピペリジニル基などの置換基が挙げられる。 Examples of the substituent in which A1 to A8 contain a nitrogen atom include dimethylamino, diethylamino, di-n-propylamino, di-n-butylamino, di-n-hexylamino, N-ethyl —Nn-hexylamino group, N-methyl-NNn-octylamino group, N-ethyl-N-phenylamino group, N-ethyl-N- (4′-tert-butylphenyl) amino group, N -N-butyl-N- (4'-methoxyphenyl) amino group, bis (2-methoxyethyl) amino group, bis (2-isopropoxyethyl) amino group, 2-pyrrolidinyl group, 1-pyrrolidinyl group, N- Substituents such as a methyl-2-pyrrolidinyl group, a 1-piperidinyl group, a 2-piperidinyl group, an N-methyl-2-piperidinyl group, and an N-methyl-4-piperidinyl group are exemplified.
 X1~X8がハロゲン原子である例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられるが、フッ素原子、塩素原子、臭素原子が好ましい。 Examples of X1 to X8 being a halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom, a chlorine atom and a bromine atom are preferred.
 X1~X8がアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1,2-ジメチルプロピル基、1-メチルブチル基、2-メチルブチル基、n-ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、4-メチルペンチル基、4-メチル-2-ペンチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、3,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、n-ヘプチル基、1-メチルヘキシル基、3-メチルヘキシル基、5-メチルヘキシル基、2,4-ジメチルペンチル基、シクロヘキシルメチル基、n-オクチル基、tert-オクチル基、1-メチルヘプチル基、2-エチルヘキシル基、2-プロピルペンチル基、2,5-ジメチルヘキシル基、2,5,5-トリメチルヘキシル基、n-ノニル基、2,2-ジメチルヘプチル基、2,6-ジメチル-4-ヘプチル基、3,5,5-トリメチルヘキシル基、n-デシル基、4-エチルオクチル基、n-ウンデシル基、1-メチルデシル基、n-ドデシル基、1,3,5,7-テトラメチルオクチル基、n-トリデシル基、1-ヘキシルヘプチル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-エイコシル基、n-トリコシル基、n-テトラコシル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、4-tert-ブチルシクロヘキシル基、シクロヘプチル基、シクロオクチル基、2-フェニルエチル基、2-(4’-メトキシフェニル)エチル基、メトキシエチル基、エトキシエチル基、メトキシプロピル基、イソプロポキシエチル基、メトキシブチル基、エトキシヘキシル基、エトキシエトキシエチル基、ベンジル基、4-メトキシベンジル基、2-フェノキシエチル基、2-(4’-メトキシフェノキシ)エチル基、4-(3’-メトキシフェノキシ)ブチル基、4-(2’, 6’-ジメトキシフェノキシ)ブチル基、4-(2’, 4’,6’-トリメトキシフェノキシ)ブチル基、2-(ジメチルアミノ)エチル基、4-(ジエチルアミノ)ブチル基、4-(フェニルアミノ)ブチル基、2,2,2-トリフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、1,1,1,2,2,2-ヘキサフルオロ-2-プロピル基、ペンタフルオロプロピル基、2-(2,2,2-トリフルオロエトキシ)エチル基、4-(2,2,3,3-テトラフルオロプロポキシ)ブチル基、6-(2,2,2-トリフルオロエトキシ)ヘキシル基などの置換基が挙げられる。 Examples of an alkyl group where X1 to X8 are a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group , Neopentyl, tert-pentyl, 1,2-dimethylpropyl, 1-methylbutyl, 2-methylbutyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methylpentyl, 4-methyl-2-pentyl, 1,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, n-heptyl, 1- Methylhexyl group, 3-methylhexyl group, 5-methylhexyl group, 2,4-dimethylpentyl group, cyclohexylmethyl group, n-octyl Group, tert-octyl group, 1-methylheptyl group, 2-ethylhexyl group, 2-propylpentyl group, 2,5-dimethylhexyl group, 2,5,5-trimethylhexyl group, n-nonyl group, 2,2 -Dimethylheptyl group, 2,6-dimethyl-4-heptyl group, 3,5,5-trimethylhexyl group, n-decyl group, 4-ethyloctyl group, n-undecyl group, 1-methyldecyl group, n-dodecyl Group, 1,3,5,7-tetramethyloctyl group, n-tridecyl group, 1-hexylheptyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group , N-eicosyl, n-tricosyl, n-tetracosyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, 4-t rt-butylcyclohexyl, cycloheptyl, cyclooctyl, 2-phenylethyl, 2- (4'-methoxyphenyl) ethyl, methoxyethyl, ethoxyethyl, methoxypropyl, isopropoxyethyl, methoxy Butyl group, ethoxyhexyl group, ethoxyethoxyethyl group, benzyl group, 4-methoxybenzyl group, 2-phenoxyethyl group, 2- (4'-methoxyphenoxy) ethyl group, 4- (3'-methoxyphenoxy) butyl group 4- (2 ′, '6′-dimethoxyphenoxy) butyl group, 4- (2 ′, 4 ′, 6′-trimethoxyphenoxy) butyl group, 2- (dimethylamino) ethyl group, 4- (diethylamino) butyl Group, 4- (phenylamino) butyl group, 2,2,2-trifluoroethyl group, 2,2 , 3-tetrafluoropropyl group, 1,1,1,2,2,2-hexafluoro-2-propyl group, pentafluoropropyl group, 2- (2,2,2-trifluoroethoxy) ethyl group, 4 And substituents such as-(2,2,3,3-tetrafluoropropoxy) butyl group and 6- (2,2,2-trifluoroethoxy) hexyl group.
 X1~X8がアルコキシ基の例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、1,2-ジメチルプロポキシ基、1-メチルブトキシ基、n-ヘキシルオキシ基、1-メチルペンチルオキシ基、2-メチルペンチルオキシ基、4-メチルペンチルオキシ基、4-メチル-2-ペンチルオキシ基、1,2-ジメチルブチルオキシ基、2,3-ジメチルブチルオキシ基、3,3-ジメチルブチルオキシ基、1-エチルブチルオキシ基、2-エチルブチルオキシ基、n-ヘプチルオキシ基、1-メチルヘキシルオキシ基、3-メチルヘキシルオキシ基、5-メチルヘキシルオキシ基、2,4-ジメチルペンチルオキシ基、シクロヘキシルメチルオキシ基、n-オクチルオキシ基、tert-オクチルオキシ基、1-メチルヘプチルオキシ基、2-エチルヘキシルオキシ基、2-プロピルペンチルオキシ基、2,5-ジメチルヘキシルオキシ基、2,5,5-トリメチルヘキシルオキシ基、2-メトキシエトキシ基、2-エトキシエトキシ基、2-ブトキシキシエトキシ基、3-メトキシプロポキシ基、2-イソプロポキシエトキシ基、4-メトキシブトキシ基、4-エトキシブトキシ基、4-ブトキシキシブトキシ基、6-エトキシヘキシルオキシ基、エトキシエトキシエトキシ基、2-フェニルエトキシ基、2-(4’-メトキシフェノキシ)エトキシ基、4-(3’-メトキシフェノキシ)ブトキシ基、4-(2’, 6’-ジメトキシフェノキシ)ブトキシ基、4-(2’, 4’,6’-トリメトキシフェノキシ)ブトキシ基、2-(ジメチルアミノ)エトキシ基、4-(ジエチルアミノ)ブトキシ基、4-(フェニルアミノ)ブトキシ基などの置換基が挙げられる。 Examples of the alkoxy group where X1 to X8 are methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, n-pentyloxy, isopentyloxy, neopentyl Oxy group, 1,2-dimethylpropoxy group, 1-methylbutoxy group, n-hexyloxy group, 1-methylpentyloxy group, 2-methylpentyloxy group, 4-methylpentyloxy group, 4-methyl-2- Pentyloxy group, 1,2-dimethylbutyloxy group, 2,3-dimethylbutyloxy group, 3,3-dimethylbutyloxy group, 1-ethylbutyloxy group, 2-ethylbutyloxy group, n-heptyloxy group , 1-methylhexyloxy group, 3-methylhexyloxy group, 5-methylhexyloxy group, 2,4 Dimethylpentyloxy, cyclohexylmethyloxy, n-octyloxy, tert-octyloxy, 1-methylheptyloxy, 2-ethylhexyloxy, 2-propylpentyloxy, 2,5-dimethylhexyloxy 2,5,5-trimethylhexyloxy group, 2-methoxyethoxy group, 2-ethoxyethoxy group, 2-butoxyethoxy group, 3-methoxypropoxy group, 2-isopropoxyethoxy group, 4-methoxybutoxy group, 4-ethoxybutoxy, 4-butoxybutoxy, 6-ethoxyhexyloxy, ethoxyethoxyethoxy, 2-phenylethoxy, 2- (4′-methoxyphenoxy) ethoxy, 4- (3′-methoxy) Phenoxy) butoxy group, 4- (2 ′, 6′-di Methoxyphenoxy) butoxy group, 4- (2 ′, 4 ′, 6′-trimethoxyphenoxy) butoxy group, 2- (dimethylamino) ethoxy group, 4- (diethylamino) butoxy group, 4- (phenylamino) butoxy group And the like.
 X1~X8がアリールオキシ基の例としては、2-メチルフェニルオキシ基、3-メチルフェニルオキシ基、4-メチルフェニルオキシ基、3-エチルフェニルオキシ基、4-エチルフェニルオキシ基、4-n-プロピルフェニルオキシ基、4-イソプロピルフェニルオキシ基、4-n-ブチルフェニルオキシ基、4-イソブチルフェニルオキシ基、4-tert-ブチルフェニルオキシ基、4-n-ペンチルフェニルオキシ基、4-イソペンチルフェニルオキシ基、4-tert-ペンチルフェニルオキシ基、4-n-ヘキシルフェニルオキシ基、4-シクロヘキシルフェニルオキシ基、4-n-ヘプチルフェニルオキシ基、4-n-オクチルフェニルオキシ基、4-n-ノニルフェニルオキシ基、4-n-デシルフェニルオキシ基、4-n-ウンデシルフェニルオキシ基、4-n-ドデシルフェニルオキシ基、4-n-テトラデシルフェニルオキシ基、4-n-ヘキサデシルフェニルオキシ基、4-n-オクタデシルフェニルオキシ基、2,3-ジメチルフェニルオキシ基、2,4-ジメチルフェニルオキシ基、2,5-ジメチルフェニルオキシ基、2,6-ジメチルフェニルオキシ基、3,4-ジメチルフェニルオキシ基、3,5-ジメチルフェニルオキシ基、3,4,5-トリメチルフェニルオキシ基、2,3,5,6-テトラメチルフェニルオキシ基、5-インダニルオキシ基、1,2,3,4-テトラヒドロ-5-ナフチルオキシ基、1,2,3,4-テトラヒドロ-6-ナフチルオキシ基、2-メトキシフェニルオキシ基、3-メトキシフェニルオキシ基、4-メトキシフェニルオキシ基、3-エトキシフェニルオキシ基、4-エトキシフェニルオキシ基、4-n-プロポキシフェニルオキシ基、4-イソプロポキシフェニルオキシ基、4-n-ブトキシフェニルオキシ基、4-イソブトキシフェニルオキシ基、4-n-ペンチルオキシフェニルオキシ基、4-n-ヘキシルオキシフェニルオキシ基、
4-シクロヘキシルオキシフェニルオキシ基、4-n-ヘプチルオキシフェニルオキシ基、4-n-オクチルオキシフェニルオキシ基、4-n-ノニルオキシフェニルオキシ基、4-n-デシルオキシフェニルオキシ基、4-n-ウンデシルオキシフェニルオキシ基、4-n-ドデシルオキシフェニルオキシ基、4-n-テトラデシルオキシフェニルオキシ基、4-n-ヘキサデシルオキシフェニルオキシ基、4-n-オクタデシルオキシフェニルオキシ基、2,3-ジメトキシフェニルオキシ基、2,4-ジメトキシフェニルオキシ基、2,5-ジメトキシフェニルオキシ基、2,6-ジメトキシフェニルオキシ基、3,4-ジメトキシフェニルオキシ基、3,5-ジメトキシフェニルオキシ基、3,5-ジエトキシフェニルオキシ基、2-メトキシ-4-メチルフェニルオキシ基、2-メトキシ-5-メチルフェニルオキシ基、3-メトキシ-4-メチルフェニルオキシ基、2-メチル-4-メトキシフェニルオキシ基、3-メチル-4-メトキシフェニルオキシ基、3-メチル-5-メトキシフェニルオキシ基、2,4,6-トリメトキシフェニルオキシ基、2,3,5-トリメトキシフェニルオキシ基、2,4,5-トリメトキシフェニルオキシ基、3,4,5-トリメトキシフェニルオキシ基、2,3,5-トリメトキシフェニルオキシ基、2,3,4,6-テトラメトキシフェニルオキシ基、2,3,5,6-テトラメトキシフェニルオキシ基、2,3,5,6-テトラメトキシ-4-メチルフェニルオキシ基、2,3,4,5-テトラメトキシ-6-メチルフェニルオキシ基、2,3,4,5,6-ペンタメトキシフェニルオキシ基、2-フルオロフェニルオキシ基、3-フルオロフェニルオキシ基、4-フルオロフェニルオキシ基、2-クロロフェニルオキシ基、3-クロロフェニルオキシ基、4-クロロフェニルオキシ基、4-ブロモフェニルオキシ基、4-トリフルオロメチルフェニルオキシ基、3-トリフルオロメチルフェニルオキシ基、2,4-ジフルオロフェニルオキシ基、2,6-ジフルオロフェニル基、3,5-ジフルオロフェニルオキシ基、2,4-ジクロロフェニルオキシ基、2,6-ジクロロフェニルオキシ基、3,4-ジクロロフェニルオキシ基、3,5-ジクロロフェニルオキシ基、2-メチル-4-クロロフェニルオキシ基、2-クロロ-4-メチルフェニルオキシ基、3-クロロ-4-メチルフェニルオキシ基、2-クロロ-4-メトキシフェニルオキシ基、3-メトキシ-4-フルオロフェニルオキシ基、3-メトキシ-4-クロロフェニルオキシ基、3-フルオロ-4-メトキシフェニルオキシ基、4-フェニルフェニルオキシ基、
3-フェニルフェニルオキシ基、2-フェニルフェニルオキシ基、4-(4’-メチルフェニル)フェニルオキシ基、4-(4’-メトキシフェニル)フェニルオキシ基、3,5-ジフェニルフェニルオキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、4-メチル-1-ナフチルオキシ基、4-エトキシ-1-ナフチルオキシ基、6-n-ブチル-2-ナフチルオキシ基、2-メトキシ-1-ナフチルオキシ基、3-メトキシ-1-ナフチルオキシ基、4-メトキシ-1-ナフチルオキシ基、5-メトキシ-1-ナフチルオキシ基、6-メトキシ-1-ナフチルオキシ基、1-メトキシ-2-ナフチルオキシ基、3-メトキシ-2-ナフチルオキシ基、4-メトキシ-2-ナフチルオキシ基、6-メトキシ-2-ナフチルオキシ基、7-メトキシ-2-ナフチルオキシ基、7-エトキシ-2-ナフチルオキシ基、7-イソプロポキシ-2-ナフチルオキシ基、7-(エトキシエトキシ)-2-ナフチルオキシ基、2,4-ジメトキシ-1-ナフチルオキシ基、2,6-ジメトキシ-1-ナフチルオキシ基、2,7-ジメトキシ-1-ナフチルオキシ基、2,8-ジメトキシ-1-ナフチルオキシ基、3,6-ジメトキシ-1-ナフチルオキシ基、1,4-ジメトキシ-2-ナフチルオキシ基、1,5-ジメトキシ-2-ナフチルオキシ基、1,6-ジメトキシ-2-ナフチルオキシ基、1,6-ジエトキシ-2-ナフチルオキシ基、2,5,6-トリメトキシ-1-ナフチルオキシ基、2,5,6-トリエトキシ-1-ナフチルオキシ基、4,5,8-トリメトキシ-1-ナフチルオキシ基、4,6,8-トリメトキシ-2-ナフチルオキシ基、1,5,6-トリメトキシ-2-ナフチルオキシ基、3,6,7-トリメトキシ-2-ナフチルオキシ基、4,6,7-トリメトキシ-2-ナフチルオキシ基、5,6,7,8-テトラメトキシ-1-ナフチルオキシ基、2,3,6,7-テトラメトキシ-1-ナフチルオキシ基、1,4,5,8-テトラメトキシ-2-ナフチルオキシ基、1,4,5,8-テトラエトキシ-2-ナフチルオキシ基、1,3,5,7-テトラメトキシ-2-ナフチルオキシ基、2-メチルチオフェニルオキシ基、3-メチルチオフェニルオキシ基、4-メチルチオフェニルオキシ基、2,4-ジメチルチオフェニルオキシ基、2,6-ジメチルチオフェニルオキシ基、2,4,6-トリメチルチオフェニルオキシ基、2,3,5,6-テトラメチルチオ-4-メチルフェニルオキシ基、2,3,4,5-テトラメチルチオ-6-メチルフェニルオキシ基、
2,3,4,5,6-ペンタメチルチオフェニルオキシ基、2-メチルチオ-1-ナフチルオキシ基、4-メチルチオ-1-ナフチルオキシ基、5-メチルチオ-1-ナフチルオキシ基、2,4-ジメチルチオ-1-ナフチルオキシ基、1-メチルチオ-2-ナフチルオキシ基、6-メチルチオ-2-ナフチルオキシ基、1,6-ジメチルチオ-2-ナフチルオキシ基、4,6,8-トリメチルチオ-2-ナフチルオキシ基、3,6,7-トリメチルチオ-2-ナフチルオキシ基、1,5,6-トリメチルチオ-2-ナフチルオキシ基、5,6,7,8-テトラメチルチオ-2-ナフチルオキシ基、2,3,6,7-テトラメチルチオ-1-ナフチルオキシ基、1,5,6,7,8-ペンタメチルチオ-2-ナフチルオキシ基、2-フリル基、5-メチル-2-フリルオキシ基、5-メトキシ-2-フリルオキシ基、2-チエニルオキシ基、3-チエニルオキシ基、2-ピリジルオキシ基、6-メチル-2-ピリジルオキシ基、3-メトキシ-2-ピリジルオキシ基、6-フルオロ-2-ピリジルオキシ基、3-ピリジルオキシ基、6-エチル-3-ピリジルオキシ基、5-エトキシ-3-ピリジルオキシ基、4-ピリジルオキシ基、2,6-ジメチル-4-ピリジルオキシ基、2,6-ジメトキシ-4-ピリジルオキシ基、2-ピラジニルオキシ基、2-イミダゾリルオキシ基、3-ピラゾリルオキシ基、2-チアゾリルオキシ基、2-オキサゾリルオキシ基、4-(N,N-ジメチルアミノ)フェニルオキシ基、3-(N,N-ジメチルアミノ)フェニルオキシ基、2-(N,N-ジメチルアミノ)フェニルオキシ基、4-(N,N-ジエチルアミノ)フェニルオキシ基、2-(N,N-ジエチルアミノ)フェニルオキシ基、4-(N,N-ジ-n-ブチルアミノ)フェニルオキシ基、4-(N,N-ジ-n-ヘキシルアミノ)フェニルオキシ基、4-(N-シクロヘキシル-N-メチルアミノ)フェニルオキシ基、4-(N,N-ジエチルアミノ)-1-ナフチルオキシ基、4-ピロリジノフェニルオキシ基、4-ピペリジノフェニルオキシ基、
4-モルフォリノフェニルオキシ基、4-ピロリジノ-1-ナフチルオキシ基、4-(N-ベンジル-N-メチルアミノ)フェニルオキシ基、4-(N-ベンジル-N-フェニルアミノ)フェニルオキシ基、4-(N-メチル-N-フェニルアミノ)フェニルオキシ基、4-(N-エチル-N-フェニルアミノ)フェニルオキシ基、4-(N-n-ブチル-N-フェニルアミノ)フェニルオキシ基、4-(N,N-ジフェニルアミノ)フェニルオキシ基、2-(N,N-ジフェニルアミノ)フェニルオキシ基、4-〔N,N-ジ(4’-メチルフェニル)アミノ〕フェニルオキシ基、4-〔N,N-ジ(3’-メチルフェニル)アミノ〕フェニルオキシ基、4-〔N,N-ジ(4’-エチルフェニル)アミノ〕フェニルオキシ基、4-〔N,N-ジ(4’-tert-ブチルフェニル)アミノ〕フェニルオキシ基、4-〔N,N-ジ(4’-n-ヘキシルフェニル)アミノ〕フェニルオキシ基、4-〔N,N-ジ(4’-メトキシフェニル)アミノ〕フェニルオキシ基、4-〔N,N-ジ(4’-エトキシフェニル)アミノ〕フェニルオキシ基、4-〔N,N-ジ(4’-n-ブトキシフェニル)アミノ〕フェニルオキシ基、4-〔N,N-ジ(4’-n-ヘキシルオキシフェニル)アミノ〕フェニルオキシ基、4-〔N,N-ジ(1’-ナフチル)アミノ〕フェニルオキシ基、4-〔N,N-ジ(2’-ナフチル)アミノ〕フェニルオキシ基、4-〔N-フェニル-N-(3’-メチルフェニル)アミノ〕フェニルオキシ基、4-〔N-フェニル-N-(4’-メチルフェニル)アミノ〕フェニルオキシ基、4-〔N-フェニル-N-(4’-オクチルフェニル)アミノ〕フェニルオキシ基、4-〔N-フェニル-N-(4’-メトキシフェニル)アミノ〕フェニルオキシ基、4-〔N-フェニル-N-(4’-エトキシフェニル)アミノ〕フェニルオキシ基、4-〔N-フェニル-N-(4’-n-ヘキシルオキシフェニル)アミノ〕フェニルオキシ基、4-〔N-フェニル-N-(4’-フルオロフェニル)アミノ〕フェニルオキシ基、4-〔N-フェニル-N-(1’-ナフチル)アミノ〕フェニルオキシ基、4-〔N-フェニル-N-(2’-ナフチル)アミノ〕フェニルオキシ基、4-〔N-フェニル-N-(4’-フェニルフェニル)アミノ〕フェニルオキシ基、4-(N,N-ジフェニルアミノ)-1-ナフチルオキシ基、6-(N,N-ジフェニルアミノ)-2-ナフチルオキシ基、4-(N-カルバゾリイル)フェニルオキシ基、4-(N-フェノキサジイル)フェニルオキシ基などの置換基が挙げられる。
Examples of the aryloxy group where X1 to X8 are 2-methylphenyloxy group, 3-methylphenyloxy group, 4-methylphenyloxy group, 3-ethylphenyloxy group, 4-ethylphenyloxy group, 4-n -Propylphenyloxy group, 4-isopropylphenyloxy group, 4-n-butylphenyloxy group, 4-isobutylphenyloxy group, 4-tert-butylphenyloxy group, 4-n-pentylphenyloxy group, 4-iso Pentylphenyloxy group, 4-tert-pentylphenyloxy group, 4-n-hexylphenyloxy group, 4-cyclohexylphenyloxy group, 4-n-heptylphenyloxy group, 4-n-octylphenyloxy group, 4- n-nonylphenyloxy group, 4-n-decylphenyloxy group, 4- -Undecylphenyloxy group, 4-n-dodecylphenyloxy group, 4-n-tetradecylphenyloxy group, 4-n-hexadecylphenyloxy group, 4-n-octadecylphenyloxy group, 2,3-dimethyl Phenyloxy group, 2,4-dimethylphenyloxy group, 2,5-dimethylphenyloxy group, 2,6-dimethylphenyloxy group, 3,4-dimethylphenyloxy group, 3,5-dimethylphenyloxy group, 3 , 4,5-trimethylphenyloxy group, 2,3,5,6-tetramethylphenyloxy group, 5-indanyloxy group, 1,2,3,4-tetrahydro-5-naphthyloxy group, 1,2 , 3,4-tetrahydro-6-naphthyloxy group, 2-methoxyphenyloxy group, 3-methoxyphenyloxy group, 4-methoxy Cyphenyloxy group, 3-ethoxyphenyloxy group, 4-ethoxyphenyloxy group, 4-n-propoxyphenyloxy group, 4-isopropoxyphenyloxy group, 4-n-butoxyphenyloxy group, 4-isobutoxyphenyl An oxy group, a 4-n-pentyloxyphenyloxy group, a 4-n-hexyloxyphenyloxy group,
4-cyclohexyloxyphenyloxy group, 4-n-heptyloxyphenyloxy group, 4-n-octyloxyphenyloxy group, 4-n-nonyloxyphenyloxy group, 4-n-decyloxyphenyloxy group, 4- n-undecyloxyphenyloxy group, 4-n-dodecyloxyphenyloxy group, 4-n-tetradecyloxyphenyloxy group, 4-n-hexadecyloxyphenyloxy group, 4-n-octadecyloxyphenyloxy group 2,3-dimethoxyphenyloxy group, 2,4-dimethoxyphenyloxy group, 2,5-dimethoxyphenyloxy group, 2,6-dimethoxyphenyloxy group, 3,4-dimethoxyphenyloxy group, 3,5- Dimethoxyphenyloxy group, 3,5-diethoxyphenyloxy group, 2 Methoxy-4-methylphenyloxy group, 2-methoxy-5-methylphenyloxy group, 3-methoxy-4-methylphenyloxy group, 2-methyl-4-methoxyphenyloxy group, 3-methyl-4-methoxyphenyl An oxy group, a 3-methyl-5-methoxyphenyloxy group, a 2,4,6-trimethoxyphenyloxy group, a 2,3,5-trimethoxyphenyloxy group, a 2,4,5-trimethoxyphenyloxy group, 3,4,5-trimethoxyphenyloxy group, 2,3,5-trimethoxyphenyloxy group, 2,3,4,6-tetramethoxyphenyloxy group, 2,3,5,6-tetramethoxyphenyloxy Group, 2,3,5,6-tetramethoxy-4-methylphenyloxy group, 2,3,4,5-tetramethoxy-6-methylphenyl Xy, 2,3,4,5,6-pentamethoxyphenyloxy, 2-fluorophenyloxy, 3-fluorophenyloxy, 4-fluorophenyloxy, 2-chlorophenyloxy, 3-chlorophenyloxy Group, 4-chlorophenyloxy group, 4-bromophenyloxy group, 4-trifluoromethylphenyloxy group, 3-trifluoromethylphenyloxy group, 2,4-difluorophenyloxy group, 2,6-difluorophenyl group, 3,5-difluorophenyloxy group, 2,4-dichlorophenyloxy group, 2,6-dichlorophenyloxy group, 3,4-dichlorophenyloxy group, 3,5-dichlorophenyloxy group, 2-methyl-4-chlorophenyloxy group , 2-chloro-4-methylphenyloxy group, 3- Loro-4-methylphenyloxy group, 2-chloro-4-methoxyphenyloxy group, 3-methoxy-4-fluorophenyloxy group, 3-methoxy-4-chlorophenyloxy group, 3-fluoro-4-methoxyphenyloxy Group, 4-phenylphenyloxy group,
3-phenylphenyloxy group, 2-phenylphenyloxy group, 4- (4′-methylphenyl) phenyloxy group, 4- (4′-methoxyphenyl) phenyloxy group, 3,5-diphenylphenyloxy group, -Naphthyloxy group, 2-naphthyloxy group, 4-methyl-1-naphthyloxy group, 4-ethoxy-1-naphthyloxy group, 6-n-butyl-2-naphthyloxy group, 2-methoxy-1-naphthyl Oxy group, 3-methoxy-1-naphthyloxy group, 4-methoxy-1-naphthyloxy group, 5-methoxy-1-naphthyloxy group, 6-methoxy-1-naphthyloxy group, 1-methoxy-2-naphthyl Oxy group, 3-methoxy-2-naphthyloxy group, 4-methoxy-2-naphthyloxy group, 6-methoxy-2-naphthyloxy group, 7 Methoxy-2-naphthyloxy group, 7-ethoxy-2-naphthyloxy group, 7-isopropoxy-2-naphthyloxy group, 7- (ethoxyethoxy) -2-naphthyloxy group, 2,4-dimethoxy-1- Naphthyloxy group, 2,6-dimethoxy-1-naphthyloxy group, 2,7-dimethoxy-1-naphthyloxy group, 2,8-dimethoxy-1-naphthyloxy group, 3,6-dimethoxy-1-naphthyloxy Group, 1,4-dimethoxy-2-naphthyloxy group, 1,5-dimethoxy-2-naphthyloxy group, 1,6-dimethoxy-2-naphthyloxy group, 1,6-diethoxy-2-naphthyloxy group, 2,5,6-trimethoxy-1-naphthyloxy group, 2,5,6-triethoxy-1-naphthyloxy group, 4,5,8-trimethoxy-1-naphth Tyloxy group, 4,6,8-trimethoxy-2-naphthyloxy group, 1,5,6-trimethoxy-2-naphthyloxy group, 3,6,7-trimethoxy-2-naphthyloxy group, 4,6,7 -Trimethoxy-2-naphthyloxy group, 5,6,7,8-tetramethoxy-1-naphthyloxy group, 2,3,6,7-tetramethoxy-1-naphthyloxy group, 1,4,5,8 -Tetramethoxy-2-naphthyloxy group, 1,4,5,8-tetraethoxy-2-naphthyloxy group, 1,3,5,7-tetramethoxy-2-naphthyloxy group, 2-methylthiophenyloxy group , 3-methylthiophenyloxy group, 4-methylthiophenyloxy group, 2,4-dimethylthiophenyloxy group, 2,6-dimethylthiophenyloxy group, 2,4,6-trime Thiophenyl group, 2,3,5,6-tetramethyl-thio-4-methylphenyl group, 2,3,4,5-tetramethyl-thio-6-methylphenyl group,
2,3,4,5,6-pentamethylthiophenyloxy group, 2-methylthio-1-naphthyloxy group, 4-methylthio-1-naphthyloxy group, 5-methylthio-1-naphthyloxy group, 2,4- Dimethylthio-1-naphthyloxy group, 1-methylthio-2-naphthyloxy group, 6-methylthio-2-naphthyloxy group, 1,6-dimethylthio-2-naphthyloxy group, 4,6,8-trimethylthio-2 -Naphthyloxy group, 3,6,7-trimethylthio-2-naphthyloxy group, 1,5,6-trimethylthio-2-naphthyloxy group, 5,6,7,8-tetramethylthio-2-naphthyloxy Group, 2,3,6,7-tetramethylthio-1-naphthyloxy group, 1,5,6,7,8-pentamethylthio-2-naphthyloxy group, 2-furyl group 5-methyl-2-furyloxy group, 5-methoxy-2-furyloxy group, 2-thienyloxy group, 3-thienyloxy group, 2-pyridyloxy group, 6-methyl-2-pyridyloxy group, 3- A methoxy-2-pyridyloxy group, a 6-fluoro-2-pyridyloxy group, a 3-pyridyloxy group, a 6-ethyl-3-pyridyloxy group, a 5-ethoxy-3-pyridyloxy group, a 4-pyridyloxy group, 2,6-dimethyl-4-pyridyloxy group, 2,6-dimethoxy-4-pyridyloxy group, 2-pyrazinyloxy group, 2-imidazolyloxy group, 3-pyrazolyloxy group, 2-thiazolyloxy group, 2-oxazolyl An oxy group, a 4- (N, N-dimethylamino) phenyloxy group, a 3- (N, N-dimethylamino) phenyloxy group, a 2- (N, -Dimethylamino) phenyloxy group, 4- (N, N-diethylamino) phenyloxy group, 2- (N, N-diethylamino) phenyloxy group, 4- (N, N-di-n-butylamino) phenyloxy Group, 4- (N, N-di-n-hexylamino) phenyloxy group, 4- (N-cyclohexyl-N-methylamino) phenyloxy group, 4- (N, N-diethylamino) -1-naphthyloxy Group, 4-pyrrolidinophenyloxy group, 4-piperidinophenyloxy group,
4-morpholinophenyloxy group, 4-pyrrolidino-1-naphthyloxy group, 4- (N-benzyl-N-methylamino) phenyloxy group, 4- (N-benzyl-N-phenylamino) phenyloxy group, 4- (N-methyl-N-phenylamino) phenyloxy group, 4- (N-ethyl-N-phenylamino) phenyloxy group, 4- (Nn-butyl-N-phenylamino) phenyloxy group, 4- (N, N-diphenylamino) phenyloxy group, 2- (N, N-diphenylamino) phenyloxy group, 4- [N, N-di (4'-methylphenyl) amino] phenyloxy group, -[N, N-di (3'-methylphenyl) amino] phenyloxy group, 4- [N, N-di (4'-ethylphenyl) amino] phenyloxy group, 4- [N, N- (4'-tert-butylphenyl) amino] phenyloxy group, 4- [N, N-di (4'-n-hexylphenyl) amino] phenyloxy group, 4- [N, N-di (4'- Methoxyphenyl) amino] phenyloxy group, 4- [N, N-di (4'-ethoxyphenyl) amino] phenyloxy group, 4- [N, N-di (4'-n-butoxyphenyl) amino] phenyl Oxy group, 4- [N, N-di (4′-n-hexyloxyphenyl) amino] phenyloxy group, 4- [N, N-di (1′-naphthyl) amino] phenyloxy group, 4- [ N, N-di (2'-naphthyl) amino] phenyloxy group, 4- [N-phenyl-N- (3'-methylphenyl) amino] phenyloxy group, 4- [N-phenyl-N- (4 '-Methylphenyl) amino] phenylo 4-group, 4- [N-phenyl-N- (4'-octylphenyl) amino] phenyloxy group, 4- [N-phenyl-N- (4'-methoxyphenyl) amino] phenyloxy group, 4- [ N-phenyl-N- (4'-ethoxyphenyl) amino] phenyloxy group, 4- [N-phenyl-N- (4'-n-hexyloxyphenyl) amino] phenyloxy group, 4- [N-phenyl -N- (4'-fluorophenyl) amino] phenyloxy group, 4- [N-phenyl-N- (1'-naphthyl) amino] phenyloxy group, 4- [N-phenyl-N- (2'- Naphthyl) amino] phenyloxy group, 4- [N-phenyl-N- (4′-phenylphenyl) amino] phenyloxy group, 4- (N, N-diphenylamino) -1-naphthyloxy group, 6- ( N, N And substituents such as -diphenylamino) -2-naphthyloxy group, 4- (N-carbazolyyl) phenyloxy group and 4- (N-phenoxadiyl) phenyloxy group.
 X1~X8がアルキルチオ基の例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ヘキシルチオ基、2-エチルヘキシルチオ基、メトキシエチルチオ基、シクロヘキシルチオ基、ベンジルチオ基、4-メトキシベンジルチオ基、フェニルエチルチオ基、フェノキシエチルチオ基などの置換基が挙げられる。 Examples of the alkylthio group in which X1 to X8 are a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a hexylthio group, a 2-ethylhexylthio group, a methoxyethylthio group, a cyclohexylthio group, a benzylthio group, a 4-methoxybenzylthio group And a substituent such as a phenylethylthio group and a phenoxyethylthio group.
 X1~X8がアリールチオ基の例としては、フェニルチオ基、2-メトキシ-フェニルチオ基、3-メトキシ-フェニルチオ基、4-メトキシ-フェニルチオ基、2,4-ジメトキシ-フェニルチオ基、3,5-ジメトキシ-フェニルチオ基、2,4,6-トリメトキシ-フェニルチオ基、3-メチルチオ-フェニルチオ基、2,4-ジメチルチオ-フェニルチオ基、2,4,6-トリメチルチオ-フェニルチオ基、2-メトキシ-1-ナフチルチオ基、2-メチルチオ-1-ナフチルチオ基、4-メチルチオ-1-ナフチルチオ基、5-メトキシ-1-ナフチルチオ基、2,4-ジメトキシ-1-ナフチルチオ基、2,4-ジメチルチオ-1-ナフチルチオ基、1-メチルチオ-2-ナフチルチオ基、1-メトキシ-2-ナフチルチオ基、6-メチルチオ-2-ナフチルチオ基、6-メトキシ-2-ナフチルチオ基、1,6-ジメチルチオ-2-ナフチルチオ基、1,6-ジメトキシ-2-ナフチルチオ基、4,6,8-トリメチルチオ-2-ナフチルチオ基、4,6,8-トリメトキシ-2-ナフチルチオ基、3,6,7-トリメチルチオ-2-ナフチルチオ基、3,6,7-トリメトキシ-2-ナフチルチオ基、1,5,6-トリメチルチオ-2-ナフチルチオ基、1,5,6-トリメトキシ-2-ナフチルチオ基、5,6,7,8-テトラメチルチオ-2-ナフチルチオ基、5,6,7,8-テトラメトキシ-2-ナフチルチオ基、2,3,6,7-テトラメチルチオ-1-ナフチルチオ基、2,3,6,7-テトラメトキシ-1-ナフチルチオ基、1,5,6,7,8-ペンタメチルチオ-2-ナフチルチオ基などの置換基が挙げられる。 Examples of the arylthio group in which X1 to X8 are a phenylthio group, a 2-methoxy-phenylthio group, a 3-methoxy-phenylthio group, a 4-methoxy-phenylthio group, a 2,4-dimethoxy-phenylthio group, a 3,5-dimethoxy- Phenylthio group, 2,4,6-trimethoxy-phenylthio group, 3-methylthio-phenylthio group, 2,4-dimethylthio-phenylthio group, 2,4,6-trimethylthio-phenylthio group, 2-methoxy-1-naphthylthio group A 2-methylthio-1-naphthylthio group, a 4-methylthio-1-naphthylthio group, a 5-methoxy-1-naphthylthio group, a 2,4-dimethoxy-1-naphthylthio group, a 2,4-dimethylthio-1-naphthylthio group, 1-methylthio-2-naphthylthio group, 1-methoxy-2-naphthylthio group 6-methylthio-2-naphthylthio group, 6-methoxy-2-naphthylthio group, 1,6-dimethylthio-2-naphthylthio group, 1,6-dimethoxy-2-naphthylthio group, 4,6,8-trimethylthio-2 -Naphthylthio, 4,6,8-trimethoxy-2-naphthylthio, 3,6,7-trimethylthio-2-naphthylthio, 3,6,7-trimethoxy-2-naphthylthio, 1,5,6- Trimethylthio-2-naphthylthio group, 1,5,6-trimethoxy-2-naphthylthio group, 5,6,7,8-tetramethylthio-2-naphthylthio group, 5,6,7,8-tetramethoxy-2- Naphthylthio group, 2,3,6,7-tetramethylthio-1-naphthylthio group, 2,3,6,7-tetramethoxy-1-naphthylthio group, 1,5,6,7,8 Include substituents such as pentamethyl-thio-2-naphthylthio group.
 X1~X8が互いに結合して芳香環もしくは複素環を形成している例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピリジン環、インドール環、キノリン環、イソキノリン環、フェノキサジン環、フェノチアジン環、キノキサリン環、フェナジン環、アントラキノン環などが挙げられ、ベンゼン環、ピリジン環、フェノチアジン環が良く、特にベンゼン環が良い。さらに芳香環もしくは複素環に置換基を有していても良い。 Examples of X1 to X8 bonded to each other to form an aromatic ring or a heterocyclic ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a pyridine ring, an indole ring, a quinoline ring, an isoquinoline ring, a phenoxazine ring, Examples include a phenothiazine ring, a quinoxaline ring, a phenazine ring, and an anthraquinone ring. A benzene ring, a pyridine ring, and a phenothiazine ring are preferred, and a benzene ring is particularly preferred. Further, the aromatic ring or the hetero ring may have a substituent.
 n1~n8はそれぞれ独立して、0~12の整数で、n1~n8がすべて0であることは無い。好ましくは0~8で、特に0~6が好ましい。
 一般式(1)で表されるフタロシアニン系化合物の具体例を表1の(1-1)~(1-462)と図の(2-1)~(2-71)に示すが、これらに限定されるものではない。表1は、すべてのA1~A8が同一、すべてのX1~X8が同一、すべてのn1~n8が同一の場合の具体例を示す。図(2-1)~(2-71)は、A1~A8が同一でない場合、あるいはX1~X8が同一でない場合、あるいはn1~n8が同一でない場合のいずれかの場合の具体例を示す。
n1 to n8 are each independently an integer of 0 to 12, and n1 to n8 are not all 0. It is preferably from 0 to 8, particularly preferably from 0 to 6.
Specific examples of the phthalocyanine-based compound represented by the general formula (1) are shown in (1-1) to (1-462) in Table 1 and (2-1) to (2-71) in the figure. It is not limited. Table 1 shows a specific example in which all A1 to A8 are the same, all X1 to X8 are the same, and all n1 to n8 are the same. FIGS. (2-1) to (2-71) show specific examples in the case where A1 to A8 are not the same, when X1 to X8 are not the same, or when n1 to n8 are not the same.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 一般式(1)で表されるフタロシアニン系化合物は公知の方法を参考にして製造することができる。
 すなわち、一般式(1)で表される化合物は、例えば一般式(2)で表されるフタロニトリル系化合物或いは一般式(3)で表される1,3-ジイミノイソインドリン系化合物の少なくとも1種と、金属または金属誘導体を反応させることにより製造することができる。
The phthalocyanine compound represented by the general formula (1) can be produced by referring to a known method.
That is, the compound represented by the general formula (1) is, for example, at least a phthalonitrile-based compound represented by the general formula (2) or a 1,3-diiminoisoindoline-based compound represented by the general formula (3). It can be produced by reacting one kind with a metal or a metal derivative.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 式中、AaはA1~A4、AbはA5~A8、XaはX1~X4、XbはX5~X8、naはn1~n4およびnbはn5~n8を示し、一般式(1)におけるものと同義である。 In the formula, Aa represents A1 to A4, Ab represents A5 to A8, Xa represents X1 to X4, Xb represents X5 to X8, na represents n1 to n4 and nb represents n5 to n8, and has the same meaning as in the general formula (1). It is.
 金属又は金属誘導体としてはAl、Si、Ti,V、Mn、Fe、Co、Ni、Cu、Zn、Ge、Ru、Rh、Pd、In、Sn、Pt、Pb及びこれらのハロゲン化物、カルボン酸塩、硫酸塩、硝酸塩、カルボニル化合物、酸化物、錯体等が挙げられる。 
 特に金属のハロゲン化物又はカルボン酸塩が好ましく用いられ、これらの例としては塩化銅、臭化銅、沃化銅、塩化ニッケル、臭化ニッケル、酢酸ニッケル、塩化コバルト、塩化鉄、塩化亜鉛、臭化亜鉛、沃化亜鉛、酢酸亜鉛、塩化バナジウム、オキシ塩化バナジウム、塩化パラジウム、酢酸パラジウム、塩化アルミニウム、塩化マンガン、塩化鉛、酢酸鉛、塩化インジウム、塩化チタン、塩化スズ等が挙げられる。
Examples of the metal or metal derivative include Al, Si, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Ge, Ru, Rh, Pd, In, Sn, Pt, Pb, and halides and carboxylate salts thereof. , Sulfate, nitrate, carbonyl compound, oxide, complex and the like.
In particular, metal halides or carboxylate salts are preferably used, and examples thereof include copper chloride, copper bromide, copper iodide, nickel chloride, nickel bromide, nickel acetate, cobalt chloride, iron chloride, zinc chloride, and odor. Zinc iodide, zinc iodide, zinc acetate, vanadium chloride, vanadium oxychloride, palladium chloride, palladium acetate, aluminum chloride, manganese chloride, lead chloride, lead acetate, indium chloride, titanium chloride, tin chloride and the like.
 金属又は金属誘導体の使用量は、一般式(2)のフタロニトリル系化合物1モル或いは一般式(3)の1,3-ジイミノイソインドリン系化合物1モルに対し、0.1倍モル~0.6倍モル、好ましくは0.2倍モル~0.5倍モルである。
 反応温度は60~300℃、好ましくは100~220℃である。 
 反応時間は30分~72時間、好ましくは1時間~48時間である。
The amount of the metal or metal derivative used is 0.1 mole to 0 mole per 1 mole of the phthalonitrile compound of the general formula (2) or 1 mole of the 1,3-diiminoisoindoline compound of the general formula (3). The molar amount is 0.6 times, preferably 0.2 times to 0.5 times.
The reaction temperature is from 60 to 300 ° C, preferably from 100 to 220 ° C.
The reaction time is 30 minutes to 72 hours, preferably 1 hour to 48 hours.
 反応においては、溶媒を使用することが好ましい。反応に使用される溶媒としては沸点60℃以上、好ましくは80℃以上の有機溶媒が好ましい。 
 例としてメタノール、エタノール、n-プロピルアルコール、n-ブチルアルコール、イソブチルアルコール、n-アミルアルコール、n-ヘキサノール、1-ヘプタノール、1-オクタノール、1-ドデカノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、エトキシエタノール、プロポキシエタノール、ブトキシエタノール、ジメチルエタノール、ジエチルエタノール等のアルコール溶媒、ジクロロベンゼン、トリクロロベンゼン、クロロナフタレン、スルフォラン、ニトロベンゼン、キノリン、DMI(1,3-ジメチル-2-イミダゾリジノン)、尿素等の高沸点溶媒が挙げられる。 
 溶媒の使用量は一般式(2)のフタロニトリル系化合物或いは一般式(3)の1,3-ジイミノイソインドリン系化合物の0.5~50倍容量、好ましくは1~15倍容量である。
In the reaction, it is preferable to use a solvent. As a solvent used in the reaction, an organic solvent having a boiling point of 60 ° C. or higher, preferably 80 ° C. or higher is preferable.
Examples include methanol, ethanol, n-propyl alcohol, n-butyl alcohol, isobutyl alcohol, n-amyl alcohol, n-hexanol, 1-heptanol, 1-octanol, 1-dodecanol, benzyl alcohol, ethylene glycol, propylene glycol, ethoxy Alcohol solvents such as ethanol, propoxyethanol, butoxyethanol, dimethylethanol, diethylethanol, etc., dichlorobenzene, trichlorobenzene, chloronaphthalene, sulfolane, nitrobenzene, quinoline, DMI (1,3-dimethyl-2-imidazolidinone), urea, etc. High boiling point solvent.
The amount of the solvent used is 0.5 to 50 times, preferably 1 to 15 times the volume of the phthalonitrile compound of the general formula (2) or the 1,3-diiminoisoindoline compound of the general formula (3). .
 反応は触媒の存在下或いは非存在下に行われるが、触媒存在下の方が好ましい。 
 触媒としてはモリブデン酸アンモニウム等の無機触媒、或いはDBU(1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン)、DBN(1,5-ジアザビシクロ[4.3.0]ノナ-5-エン)等の塩基性有機触媒が使用できる。使用量はフタロニトリル系化合物1モル或いは1,3-ジイミノイソンドリン系化合物1モルに対して0.01~10倍モル、好ましくは1~2倍モルである。 
The reaction is carried out in the presence or absence of a catalyst, preferably in the presence of a catalyst.
Examples of the catalyst include inorganic catalysts such as ammonium molybdate, DBU (1,8-diazabicyclo [5.4.0] undec-7-ene), and DBN (1,5-diazabicyclo [4.3.0] nona-5). -Ene) and other basic organic catalysts can be used. The amount used is 0.01 to 10 moles, preferably 1 to 2 moles, per mole of the phthalonitrile compound or 1 mole of the 1,3-diiminoisondrine compound.
 なお、Mが2個の水素原子であるフタロシアニン化合物の場合は、一般式(2)で表されるフタロニトリル系化合物或いは一般式(3)の1,3-ジイミノイソインドリン系化合物から選ばれる少なくとも 1 種と金属ナトリウム或いは金属カリウムと上記反応条件にて反応させた後、中心金属であるナトリウム或いはカリウムを塩酸、硫酸等で脱離処理することにより製造できる。  In the case of a phthalocyanine compound in which M is two hydrogen atoms, the phthalocyanine compound is selected from a phthalonitrile compound represented by the general formula (2) or a 1,3-diiminoisoindoline compound represented by the general formula (3). It can be produced by reacting at least {1} species with metal sodium or metal potassium under the above reaction conditions, and then removing sodium or potassium as the central metal with hydrochloric acid, sulfuric acid or the like.
 反応終了後、溶媒を留去するか、又は反応液をフタロシアニン系化合物に対する貧溶媒に排出して目的物を析出させ、析出物をろ過することにより一般式(1)のフタロシアニン系化合物を得ることが出来る。 
 通常、フタロシアニン化系合物は異性体の混合物として得られる。 
 目的に応じて、更に再結晶或いはカラムクロマトグラフィー等公知の精製方法で精製することにより、より高純度の目的物を得ることができる。
After completion of the reaction, the solvent is distilled off, or the reaction solution is discharged into a poor solvent for the phthalocyanine compound to precipitate the desired product, and the precipitate is filtered to obtain a phthalocyanine compound of the general formula (1). Can be done.
Usually, the phthalocyanine compound is obtained as a mixture of isomers.
Depending on the purpose, the product can be further purified by a known purification method such as recrystallization or column chromatography to obtain a higher-purity target product.
 なお、一般式(2)で表されるフタロニトリル系化合物は、それ自体公知の方法を参考にして製造することができる。
 例えば、特表2003-516421号公報を参考にして下記のルートで製造することができる。
The phthalonitrile-based compound represented by the general formula (2) can be produced with reference to a method known per se.
For example, it can be manufactured by the following route with reference to JP-T-2003-516421.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 一般式(4)および一般式(6)においてXaおよびXbは一般式(2)および一般式(3)におけるものと同義であり、一般式(5)および一般式(6)においてRはアルキル基またはアリール基を表す。一般式(7a)におけるAaおよびna、一般式(7b)におけるAbおよびnbは一般式(2)および一般式(3)におけるものと同義であり、一般式(7a)および一般式(7b)におけるYはハロゲン原子である。 In the general formulas (4) and (6), Xa and Xb have the same meanings as those in the general formulas (2) and (3), and in the general formulas (5) and (6), R represents an alkyl group Or an aryl group. Aa and na in the general formula (7a) and Ab and nb in the general formula (7b) have the same meanings as those in the general formulas (2) and (3), and in the general formulas (7a) and (7b) Y is a halogen atom.
 具体的には、有機溶媒中、一般式(4)のフタロニトリル系化合物に塩基の存在下、一般式(5)のアルキルスルホン酸クロライド或いはアリールスルホン酸クロライドを反応して一般式(6)のフタロニトリル系化合物を製造することができる。
アルキルスルホン酸クロライドとしてメタンスルホン酸クロライド、エタンスルホン酸クロライド、プロパンスルホン酸クロライド、トリフルオロメタンスルホン酸クロライドなどが使用できる。
Specifically, a phthalonitrile compound of the general formula (4) is reacted with an alkyl sulfonic acid chloride or an aryl sulfonic acid chloride of the general formula (5) in an organic solvent in the presence of a base in the general formula (4). A phthalonitrile compound can be produced.
Methanesulfonic acid chloride, ethanesulfonic acid chloride, propanesulfonic acid chloride, trifluoromethanesulfonic acid chloride and the like can be used as the alkylsulfonic acid chloride.
 アリールスルホン酸クロライドとしてベンゼンスルホン酸クロライド、トルエンスルホン酸クロライド、クロロベンゼンスルホン酸クロライド、ナフタレンスルホン酸クロライドなどが使用できる。
 アルキルスルホン酸クロライド或いはアリールスルホン酸クロライドの使用量としては一般式(4)のフタロニトリル系化合物1モルに対し、2倍モル~4倍モル、好ましくは2倍モル~3倍モル、より好ましくは2倍モル~2.2倍モルである。
As the arylsulfonic acid chloride, benzenesulfonic acid chloride, toluenesulfonic acid chloride, chlorobenzenesulfonic acid chloride, naphthalenesulfonic acid chloride and the like can be used.
The amount of the alkyl sulfonic acid chloride or the aryl sulfonic acid chloride to be used is 2 to 4 times, preferably 2 to 3 times, more preferably 1 to 1 mol of the phthalonitrile compound of the formula (4). It is 2 times to 2.2 times mol.
 塩基としては水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ピリジンなどが使用できる。
 塩基の使用量としては一般式(4)のフタロニトリル系化合物1モルに対し、2倍モル~4倍モル、好ましくは2倍モル~3倍モルである。
As the base, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, pyridine and the like can be used.
The amount of the base used is 2 to 4 moles, preferably 2 to 3 moles, per 1 mole of the phthalonitrile compound of the general formula (4).
 溶媒としては反応に悪影響を及ぼすものでなければ特に制限はなく、ジクロロメタン、1,2-ジクロロエタン、ベンゾトリフルオライド、アセトニトリル、トルエンなどが使用できる。
 溶媒の使用量として特に限定するものではないが、フタロニトリル系化合物1モルに対して、500mL~3.0L、好ましくは、1.0~2.0Lである。
The solvent is not particularly limited as long as it does not adversely affect the reaction, and dichloromethane, 1,2-dichloroethane, benzotrifluoride, acetonitrile, toluene and the like can be used.
Although the amount of the solvent used is not particularly limited, it is 500 mL to 3.0 L, preferably 1.0 to 2.0 L, per 1 mol of the phthalonitrile compound.
 反応温度は室温~200℃であり、好ましくは50~150℃、より好ましくは50~100℃である。
 反応時間は10分~48時間、好ましくは20分~24時間、より好ましくは30分~12時間である。
The reaction temperature is from room temperature to 200 ° C, preferably from 50 to 150 ° C, more preferably from 50 to 100 ° C.
The reaction time is 10 minutes to 48 hours, preferably 20 minutes to 24 hours, more preferably 30 minutes to 12 hours.
 反応終了後、溶媒を留去するか、又は反応液をフタロニトリル系化合物に対する貧溶媒に排出して目的物を析出させ、析出物をろ過することにより一般式(6)のフタロニトリル系化合物を得ることができる。
 必要に応じて、この生成物にさらに再結晶、カラムクロマトグラフィーなどの公知の精製操作を加えることにより、より高純度品を得ることが出来る。
After completion of the reaction, the solvent is distilled off, or the reaction solution is discharged into a poor solvent for the phthalonitrile compound to precipitate the desired product, and the precipitate is filtered to obtain the phthalonitrile compound of the general formula (6). Obtainable.
If necessary, a higher purity product can be obtained by adding a known purification operation such as recrystallization and column chromatography to the product.
 ついで一般式(6)のフタロニトリル系化合物に有機溶媒中、パラジウム触媒の存在下、一般式(7a)および一般式(7b)の有機亜鉛試薬とクロスカップリング(根岸反応)して一般式(2)のフタロニトリル系化合物を製造することができる。 Next, the phthalonitrile compound of the general formula (6) is cross-coupled (Negishi reaction) with an organozinc reagent of the general formula (7a) and the general formula (7b) in an organic solvent in the presence of a palladium catalyst to give a compound of the general formula ( The phthalonitrile compound of 2) can be produced.
 Yは塩素、臭素、ヨウ素、フッ素であり、好ましくは塩素、臭素、より好ましくは臭素である。
 有機亜鉛試薬の使用量としては一般式(6)のフタロニトリル系化合物1モルに対し、2倍モル~5倍モル、好ましくは2倍モル~3倍モルである。
 パラジウム触媒としてビス(トリフェニルホスフィン)パラジウム(II)ジクロリド、ビス(トリ-o-トリルホスフィン)パラジウム(II)ジクロリド、ビス(トリ-o-トリルホスフィン)パラジウム(II)ジクロリド、[1,3-ビス(ジフェニルホスフィノ)プロパン]パラジウム(II)ジクロリドなどが使用できる。
 パラジウム触媒の使用量としては一般式(6)のフタロニトリル系化合物1モルに対し、0.01~0.3当量、好ましくは、0.05~0.2当量である。
反応溶媒としてはテトラヒドロフラン、ジエチルエーテル、1,4-ジオキサンなどが使用できる。
Y is chlorine, bromine, iodine or fluorine, preferably chlorine, bromine, more preferably bromine.
The amount of the organozinc reagent to be used is 2 to 5 moles, preferably 2 to 3 moles, per 1 mole of the phthalonitrile compound of the general formula (6).
As a palladium catalyst, bis (triphenylphosphine) palladium (II) dichloride, bis (tri-o-tolylphosphine) palladium (II) dichloride, bis (tri-o-tolylphosphine) palladium (II) dichloride, [1,3- Bis (diphenylphosphino) propane] palladium (II) dichloride and the like can be used.
The amount of the palladium catalyst to be used is 0.01 to 0.3 equivalent, preferably 0.05 to 0.2 equivalent, per 1 mol of the phthalonitrile compound of the general formula (6).
As a reaction solvent, tetrahydrofuran, diethyl ether, 1,4-dioxane and the like can be used.
 反応溶媒の使用量としては特に限定するものではないが、一般式(6)のフタロニトリル系化合物1モルに対して、500mL~3.0L、好ましくは、1.0~2.0Lである。
 反応温度は室温~200℃であり、好ましくは50~150℃、より好ましくは50~100℃である。
 反応時間は10分~48時間、好ましくは20分~24時間、より好ましくは30分~12時間である。
The amount of the reaction solvent used is not particularly limited, but is 500 mL to 3.0 L, preferably 1.0 to 2.0 L, per 1 mol of the phthalonitrile compound of the general formula (6).
The reaction temperature is from room temperature to 200 ° C, preferably from 50 to 150 ° C, more preferably from 50 to 100 ° C.
The reaction time is 10 minutes to 48 hours, preferably 20 minutes to 24 hours, more preferably 30 minutes to 12 hours.
 反応終了後、溶媒を留去し、トルエン等の芳香族系溶媒や塩化メチレン等のハロゲン化炭化水素系溶媒にて抽出し、抽出液を水洗、濃縮し、濃縮物に貧溶媒を加えて目的物を析出させ、析出物をろ過することにより一般式(2)のフタロニトリル系化合物を得ることができる。
 必要に応じて、この生成物にさらに再結晶、カラムクロマトグラフィーなどの公知の精製操作を加えることにより、より高純度品を得ることが出来る。
After completion of the reaction, the solvent is distilled off, and the mixture is extracted with an aromatic solvent such as toluene or a halogenated hydrocarbon solvent such as methylene chloride.The extract is washed with water and concentrated. The phthalonitrile compound of the general formula (2) can be obtained by depositing the substance and filtering the precipitate.
If necessary, a higher purity product can be obtained by adding a known purification operation such as recrystallization and column chromatography to the product.
 一般式(3)で表される1,3-ジイミノイソインドリン系化合物は、公知の化合物に関する公知の方法を参考にして製造することができる。
 例えば、前記一般式(2)で表されるフタロニトリル系化合物とアンモニアとを、金属アルコキサイドの存在下に反応させることにより製造される。
The 1,3-diiminoisoindoline-based compound represented by the general formula (3) can be produced by referring to a known method for a known compound.
For example, it is produced by reacting a phthalonitrile compound represented by the general formula (2) with ammonia in the presence of a metal alkoxide.
 アンモニアの使用量は一般式(2)のフタロニトリル系化合物1モルに対し、1倍モル~20倍モルであり、好ましくは3倍モル~10倍モルである。
 金属アルコキサイドとしては、ナトリウム或いはカリウムのメトキサイド、エトキサイド、n-プロポキサイド、n-ブトキサイド、n-ペントキサイド、n-ヘキシルオキシサイド、n-オクチルオキシサイド、2-メトキシエトキサイド、2-エトキシエトキサイド、2-ブトキシエトキサイド等が用いられる。
 金属アルコキサイドの使用量は、一般式(2)のフタロニトリル系化合物に対し、0.01倍モル~5倍モル、好ましくは0.1倍モル~2.0倍モルである。
The amount of ammonia to be used is 1 to 20 moles, preferably 3 to 10 moles, per 1 mole of the phthalonitrile compound of the formula (2).
Examples of the metal alkoxide include sodium or potassium methoxide, ethoxide, n-propoxide, n-butoxide, n-pentoxide, n-hexyloxyside, n-octyloxyside, 2-methoxyethoxyoxide, and 2-ethoxyethoxide. , 2-butoxyethoxide and the like are used.
The amount of the metal alkoxide to be used is 0.01 to 5 times, preferably 0.1 to 2.0 times the mol of the phthalonitrile compound of the general formula (2).
 反応においては有機溶媒を併用することが好ましく、通常、有機溶媒としてアルコール系溶媒が用いられる。アルコール系溶媒としてはメタノール、エタノール、n-プロパノール、n-ブタノール、n-ペンタノール、n-ヘキサノール、n-ヘプタノール、n-オクタノール、2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール等が用いられる。
 アルコール系溶媒の使用量は、一般式(2)のフタロニトリル系化合物1モルに対し200mL~15Lであり、好ましくは500mL~5Lである。
In the reaction, an organic solvent is preferably used in combination, and usually, an alcohol solvent is used as the organic solvent. Examples of alcohol solvents include methanol, ethanol, n-propanol, n-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, 2-methoxyethanol, 2-ethoxyethanol, and 2-butoxyethanol. Used.
The amount of the alcohol solvent to be used is 200 mL to 15 L, preferably 500 mL to 5 L, per 1 mol of the phthalonitrile compound of the general formula (2).
 反応操作においては、反応溶媒であるアルコール系溶媒に金属ナトリウム又は金属カリウムを添加して金属アルコキサイドのアルコール溶液を調整した後、アンモニア及び一般式(2)のフタロニトリル系化合物を装入して反応しても良く、又他の方法として、アンモニア、一般式(2)のフタロニトリル系化合物及び別途調整した金属アルコキサイドを反応溶媒に装入して反応しても良い。金属アルコキシサイドを調整するために使用する金属の量は、一般式(2)のフタロニトリル系化合物に対し0.01倍モル~5.0倍モル、好ましくは0.1~2.0倍モルである。 In the reaction operation, after adjusting the alcohol solution of the metal alkoxide by adding metal sodium or metal potassium to the alcohol solvent as the reaction solvent, ammonia and the phthalonitrile compound of the general formula (2) are charged and reacted. Alternatively, as another method, the reaction may be carried out by charging ammonia, a phthalonitrile compound of the general formula (2), and a separately prepared metal alkoxide into a reaction solvent. The amount of the metal used for adjusting the metal alkoxyside is 0.01 to 5.0 times, preferably 0.1 to 2.0 times the mol of the phthalonitrile compound of the general formula (2). It is.
 反応温度は0℃~溶媒の還流温度であり、好ましくは20℃~溶媒の還流温度である。反応時間は30分~72時間が好ましい。
 反応後、溶媒を留去し、トルエン等の芳香族系溶媒や塩化メチレン等のハロゲン化炭化水素系溶媒にて抽出し、抽出液を水洗、濃縮して析出物をろ過することにより、一般式(3)の1,3-ジイミノイソインドリン系合物を得ることができる。
The reaction temperature is from 0 ° C. to the reflux temperature of the solvent, preferably from 20 ° C. to the reflux temperature of the solvent. The reaction time is preferably 30 minutes to 72 hours.
After the reaction, the solvent is distilled off, and the mixture is extracted with an aromatic solvent such as toluene or a halogenated hydrocarbon solvent such as methylene chloride. The 1,3-diiminoisoindoline compound of (3) can be obtained.
[近赤外線吸収材料]
 以下に、本発明の近赤外線吸収材料について説明する。
 本発明のフタロシアニン系化合物は、熱線を遮蔽する目的の熱線遮蔽材、プラズマディスプレイや液晶ディスプレイ用の光学フィルター、フラッシュ定着トナー、感熱転写・感熱孔版等用の光熱交換剤、レーザー溶着用の光熱変換剤、PETボトルの成形加工時のプレヒーティング助剤、半導体レーザーを使う光記録媒体、光学文字読取機等に用いられる近赤外線吸収色素、腫瘍治療用感光性色素、近赤外線吸収フィルターなど、広範囲の用途に用いられる近赤外線吸収材料として非常に有用である。
[Near infrared absorbing material]
Hereinafter, the near infrared absorbing material of the present invention will be described.
The phthalocyanine compound of the present invention is a heat ray shielding material for shielding heat rays, an optical filter for a plasma display or a liquid crystal display, a flash fixing toner, a light heat exchange agent for heat transfer / heat stencil, etc., and a light heat conversion for laser welding. Agents, preheating aids for PET bottle molding, optical recording media using semiconductor lasers, near infrared absorbing dyes used in optical character readers, photosensitive dyes for tumor treatment, near infrared absorbing filters, etc. It is very useful as a near-infrared absorbing material used for applications.
 本発明の近赤外線吸収材料は、前記一般式(1)で表される本発明のフタロシアニン系化合物自体であっても良いし、バインダー樹脂や添加剤など他の成分とともに一般式(1)のフタロシアニン系化合物を含有するものであっても良い。
近赤外線吸収材料の態様や成分は、その用途に応じ異なり、多様である。
The near-infrared absorbing material of the present invention may be the phthalocyanine-based compound of the present invention itself represented by the general formula (1) or the phthalocyanine compound of the general formula (1) together with other components such as a binder resin and an additive. It may contain a system compound.
Aspects and components of the near-infrared absorbing material vary depending on the application and are various.
[熱線遮蔽材]
 以下に、本発明の熱線遮蔽材について説明する。
 本発明のフタロシアニン系化合物は、建物や自動車の窓等に使用するフィルムや中間膜、ビニールハウス、サンバイザー、溶接用ゴーグルなどに使用される熱線遮蔽材に好適に用いられる。
 本発明の熱線遮蔽材は、前記一般式(1)で表される本発明のフタロシアニン系化合物を含有する。
[Heat shielding material]
Hereinafter, the heat ray shielding material of the present invention will be described.
The phthalocyanine-based compound of the present invention is suitably used for a heat ray shielding material used for films and interlayers used for buildings and automobile windows, greenhouses, sun visors, welding goggles and the like.
The heat ray shielding material of the present invention contains the phthalocyanine compound of the present invention represented by the general formula (1).
 本発明の熱線遮蔽材に含有される一般式(1)のフタロシアニン系化合物は、単独の化合物で使用されても良いし、2種以上の混合物の形態であってもよい。
 本発明の熱線遮蔽材の使用形態は、特に限定されず、公知のいずれの形態であっても良い。具体的には、例えば以下のような例が挙げられる。
The phthalocyanine compound of the general formula (1) contained in the heat ray shielding material of the present invention may be used as a single compound or in the form of a mixture of two or more.
The use form of the heat ray shielding material of the present invention is not particularly limited, and may be any known form. Specifically, for example, the following examples are given.
1.一般式(1)のフタロシアニン系化合物および樹脂を必須成分として含有する成形体自体を使用する形態
2.基材上に、一般式(1)のフタロシアニン系化合物および樹脂を必須成分として含有する塗膜やフィルム等を適用する形態
3.2枚以上の基材の間に、一般式(1)のフタロシアニン系化合物および樹脂を必須成分として含有するフィルム等を中間層として設けた積層体の形態
4.基材中に、一般式(1)のフタロシアニン系化合物を含ませた形態
1. 1. Use of a molded article itself containing the phthalocyanine compound of the general formula (1) and a resin as essential components. Form in which a coating film or a film containing a phthalocyanine-based compound of the general formula (1) and a resin as essential components is applied on a substrate. 3. A phthalocyanine of the general formula (1) 3. Form of laminate in which a film containing a base compound and a resin as essential components is provided as an intermediate layer. Form in which a phthalocyanine compound of the general formula (1) is contained in a base material
 基材としては、特に制限されないが、ガラス板;ポリカーボネート、ポリメチルメタクリレート、ポリスチレン、ポリエチレンテレフタレート、ポリ塩化ビニル、ポリスルフォン、不飽和ポリエステル等の板材等のプラスチック板などが挙げられる。
 上記の各形態のうち、特に、2.基材上に、一般式(1)のフタロシアニン系化合物および樹脂を必須成分として含有する塗膜やフィルム等を適用する形態、および3.2枚以上の基材の間に、一般式(1)のフタロシアニン系化合物および樹脂を必須成分として含有するフィルム等を中間層として設けた積層体の形態、が好ましい。
 このように、本発明の熱線遮蔽材は、一般式(1)のフタロシアニン系化合物および樹脂を必須成分として含有する態様が好ましい。
Examples of the substrate include, but are not particularly limited to, glass plates; and plastic plates such as polycarbonate, polymethyl methacrylate, polystyrene, polyethylene terephthalate, polyvinyl chloride, polysulfone, and unsaturated polyester.
Among the above embodiments, in particular, 2. A form in which a coating film or a film containing a phthalocyanine-based compound and a resin of the general formula (1) as essential components is applied on a substrate, and 3.2 or more substrates have a general formula (1) Of a laminate in which a film or the like containing a phthalocyanine-based compound and a resin as essential components is provided as an intermediate layer.
As described above, it is preferable that the heat ray shielding material of the present invention includes the phthalocyanine-based compound represented by the general formula (1) and the resin as essential components.
 樹脂としては、熱線遮蔽材の使用用途によって適宜選択することができるが、実質的に透明であって、吸収、散乱が大きくない樹脂が好ましい。
 具体的には、ポリカーボネート樹脂;メチルメタクリレート等の(メタ)アクリル樹脂;ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン等のポリビニル樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;ポリブチラール樹脂;ポリ酢酸ビニル等の酢酸ビニル系樹脂;ポリエステル樹脂;ポリアミド樹脂;ポリビニルアセタール樹脂;ポリビニルアルコール樹脂;エチレン-酢酸ビニル共重合体樹脂;エチレン-アクリル共重合体樹脂;ポリウレタン樹脂等を挙げることができる。また、実質的に透明であれば、上記1種類の樹脂に限らず、2種以上の樹脂をブレンドしたものも用いることができ、透明性のガラスに上記の樹脂をはさみこんで用いることもできる。
The resin can be appropriately selected depending on the intended use of the heat ray shielding material. However, a resin that is substantially transparent and does not have large absorption and scattering is preferable.
Specifically, polycarbonate resins; (meth) acrylic resins such as methyl methacrylate; polyvinyl resins such as polystyrene, polyvinyl chloride and polyvinylidene chloride; polyolefin resins such as polyethylene and polypropylene; polybutyral resins; acetic acid such as polyvinyl acetate A vinyl resin; a polyester resin; a polyamide resin; a polyvinyl acetal resin; a polyvinyl alcohol resin; an ethylene-vinyl acetate copolymer resin; an ethylene-acryl copolymer resin; In addition, as long as the resin is substantially transparent, not only the above-mentioned one kind of resin but also a blend of two or more kinds of resins can be used, and the above-mentioned resin can be inserted into transparent glass. .
 これらの樹脂のうち、ポリカーボネート樹脂、(メタ)アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリビニルアセタール樹脂、ポリビニルアルコール樹脂が好ましく、特にポリカーボネート樹脂、メタクリル樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリ塩化ビニル樹脂、ポリビニルアセタール樹脂がより好ましい。 Among these resins, polycarbonate resin, (meth) acrylic resin, polyester resin, polyamide resin, polystyrene resin, polyvinyl chloride resin, polyvinyl acetal resin, and polyvinyl alcohol resin are preferable. Particularly, polycarbonate resin, methacryl resin, polyethylene terephthalate (PET) ) Resins, polyvinyl chloride resins and polyvinyl acetal resins are more preferred.
 ポリカーボネート樹脂は、2価フェノールとカーボネート前駆体とを溶液法または溶融法で反応させて製造されるものである。2価フェノールの代表的な例として以下のものが挙げられる。2,2-ビス(4-ヒドロキシフェニル)プロパン〔ビスフェノールA〕、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホンなどが挙げられる。好ましい2価のフェノールは、ビス(4-ヒドロキシフェニル)アルカン系であり、特にビスフェノールを主成分とするものである。 The polycarbonate resin is produced by reacting a dihydric phenol with a carbonate precursor by a solution method or a melting method. The following are typical examples of dihydric phenols. 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (4 -Hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, bis ( 4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone and the like. Preferred dihydric phenols are bis (4-hydroxyphenyl) alkanes, particularly those containing bisphenol as a main component.
 (メタ)アクリル樹脂としては、メタクリル酸メチル単独またはメタクリル酸メチルを50%以上含む重合性不飽和単量体混合物またはその共重合物が挙げられる。
 メタクリル酸メチルと共重合可能な重合性不飽和単量体としては、例えば、アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸N,N-ジエチルアミノエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸トリブロモフェニル、(メタ)アクリル酸テトラヒドロキシフルフリル、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリメチロールエタンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートなどが挙げられる。
Examples of the (meth) acrylic resin include methyl methacrylate alone or a polymerizable unsaturated monomer mixture containing 50% or more of methyl methacrylate or a copolymer thereof.
Examples of the polymerizable unsaturated monomer copolymerizable with methyl methacrylate include methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, and (meth) acrylic acid. 2-ethylhexyl, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, glycidyl (meth) acrylate, ( Tribromophenyl (meth) acrylate, tetrahydroxyfurfuryl (meth) acrylate, ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, trimethylolethanedi (meth) ) Acrylate, neope Chill glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate.
 ポリエステル樹脂としては、代表的にはポリC2-4アルキレンテレフタレートやポリC2-4アルキレンナフタレートなどのホモポリエステル、C2-4アルキレンアリレート単位(C2-4アルキレンテレフタレート及び/又はC2-4アルキレンナフタレート単位)を主成分として含むコポリエステルなどが挙げられるが、ポリアリレート系樹脂、アジピン酸などの脂肪族ジカルボン酸を用いた脂肪族ポリエステル、ε-カプロラクトンなどのラクトンの単独又は共重合体も含まれる。ポリエステル樹脂の例としては、透明性が高い等の点で、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等が好ましい。また、C2-4アルキレンアリレート系コポリエステルなどのような非結晶性コポリエステルも加工性に優れ好ましい。特にPETが、大量に生産され、耐熱性、強度等に優れているので好ましい。 Typical examples of the polyester resin include homopolyesters such as poly C2-4 alkylene terephthalate and poly C2-4 alkylene naphthalate, and C2-4 alkylene arylate units (C2-4 alkylene terephthalate and / or C2-4 alkylene naphthalate units). ) As a main component, but also include polyarylate resins, aliphatic polyesters using aliphatic dicarboxylic acids such as adipic acid, and homo- or copolymers of lactones such as ε-caprolactone. As examples of the polyester resin, polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), and the like are preferable in terms of high transparency and the like. Non-crystalline copolyesters such as C2-4 alkylene arylate copolyesters are also preferred because of their excellent workability. In particular, PET is preferable because it is produced in large quantities and has excellent heat resistance, strength, and the like.
 ポリアミド樹脂は、芳香族又は脂肪族基を含むジアミン化合物類と、芳香族又は脂肪族基を含むジカルボン酸化合物類との脱水重縮合物の構造を有する樹脂である。ここで脂肪族基は脂環式脂肪族基も含まれる。ジアミン化合物類としては、ヘキサメチレンジアミン、m-キシリレンジアミン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、トリメチルヘキサメチレンジアミン、ビス(アミノメチル)ノルボルナン、ビス(アミノメチル)テトラヒドロジシクロペンタジエンなどが挙げられる。ジカルボン酸化合物類としては、アジピン酸、ドデカンジカルボン酸、イソフタル酸、テレフタル酸、ビス(ヒドロキシカルボニルメチル)ノルボルナン、ビス(ヒドロキシカルボニルメチル)テトラヒドロジシクロペンタジエンなどが挙げられる。ポリアミド樹脂としては、特に透明性の観点から非結晶性のポリアミド樹脂が好ましく、一般的には透明ナイロンと称される樹脂類が好ましい。
 ポリ塩化ビニル樹脂としては、塩化ビニルの単量体のみの重合体ばかりでなく、塩化ビニルを主成分とする共重合体も使用できる。塩化ビニルと共重合させることのできる単量体としては、塩化ビニリデン、エチレン、プロピレン、アクリロニトリル、酢酸ビニル、マレイン酸、イタコン酸、アクリル酸、メタクリル酸等が挙げられる。
The polyamide resin is a resin having a structure of a dehydration polycondensate of a diamine compound containing an aromatic or aliphatic group and a dicarboxylic acid compound containing an aromatic or aliphatic group. Here, the aliphatic group includes an alicyclic aliphatic group. Diamine compounds include hexamethylene diamine, m-xylylenediamine, bis (4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, trimethylhexamethylenediamine, bis (aminomethyl) norbornane, Bis (aminomethyl) tetrahydrodicyclopentadiene and the like can be mentioned. Examples of the dicarboxylic acid compounds include adipic acid, dodecanedicarboxylic acid, isophthalic acid, terephthalic acid, bis (hydroxycarbonylmethyl) norbornane, bis (hydroxycarbonylmethyl) tetrahydrodicyclopentadiene, and the like. As the polyamide resin, an amorphous polyamide resin is particularly preferable from the viewpoint of transparency, and resins generally called transparent nylon are preferable.
As the polyvinyl chloride resin, not only a polymer containing only vinyl chloride monomer but also a copolymer containing vinyl chloride as a main component can be used. Monomers that can be copolymerized with vinyl chloride include vinylidene chloride, ethylene, propylene, acrylonitrile, vinyl acetate, maleic acid, itaconic acid, acrylic acid, methacrylic acid, and the like.
 ポリビニルアセタール樹脂としては、ポリビニルアルコール(PVA)とホルムアルデヒドとを反応させて得られるポリビニルホルマール樹脂、PVAとアセトアルデヒドとを反応させて得られる狭義のポリビニルアセタール樹脂、PVAとn-ブチルアルデヒドとを反応させて得られるポリビニルブチラール樹脂(PVB)等が挙げられ、なかでもPVBが好ましい。ポリビニルアセタール樹脂の合成に用いられるPVAは、平均重合度が200~5000のものが好ましく、より好ましくは500~3000のものである。また、アセタール化度が40~85モル%であるものが好ましく、より好ましくは50~75モル%のものである。 Examples of the polyvinyl acetal resin include a polyvinyl formal resin obtained by reacting polyvinyl alcohol (PVA) with formaldehyde, a polyvinyl acetal resin in a narrow sense obtained by reacting PVA with acetaldehyde, and a reaction between PVA and n-butyraldehyde. And polyvinyl butyral resin (PVB) obtained by the above method. Among them, PVB is preferable. The PVA used for synthesizing the polyvinyl acetal resin preferably has an average degree of polymerization of 200 to 5,000, more preferably 500 to 3,000. Further, those having an acetalization degree of 40 to 85 mol% are preferable, and those having a degree of acetalization of 50 to 75 mol% are more preferable.
 ポリビニルアルコール樹脂は、例えば、ポリ酢酸ビニルをけん化することにより得られる。ポリビニルアルコール樹脂のけん化度は、一般に70~99.9モル%の範囲内であり、75~99.8モル%の範囲内であることが好ましく、80~99.8モル%の範囲内であることがより好ましい。ポリビニルアルコール樹脂の平均重合度は、好ましくは500以上、より好ましくは1000以上5000以下である。 The polyvinyl alcohol resin is obtained, for example, by saponifying polyvinyl acetate. The degree of saponification of the polyvinyl alcohol resin is generally in the range of 70 to 99.9 mol%, preferably in the range of 75 to 99.8 mol%, and more preferably in the range of 80 to 99.8 mol%. Is more preferable. The average degree of polymerization of the polyvinyl alcohol resin is preferably 500 or more, more preferably 1000 or more and 5000 or less.
 本発明の熱線遮蔽材中の、前記一般式(1)で表される本発明のフタロシアニン系化合物の含有量は、熱線遮蔽材の厚さにより異なる。
 例えば、厚さ3mmの熱線遮蔽板を作製する場合には、熱線遮蔽材に配合される樹脂100重量部に対して、0.002~0.06重量部が好ましく、より好ましくは0.003~0.02重量部である。また、例えば、厚さ10mmの熱線遮蔽板を作製する場合には、樹脂100重量部に対して、0.0005~0.02重量部が好ましく、より好ましくは0.001~0.005重量部である。厚さ10μmの熱線遮蔽フィルムを作製する場合には、樹脂100重量部に対して、0.1~20重量部が好ましく、より好ましくは0.5~10重量部である。
 熱線遮蔽材の厚さに関係なく一般式(1)のフタロシアニン系化合物の含有量を表示するとすれば、上方からの投影面積中の重量と考えて、0.01~5.0g/mの配合量が好ましく、より好ましくは0.05~1.0g/mである。一般式(1)のフタロシアニン系化合物の配合量が、0.01g/m未満の場合には、熱線遮蔽効果が少なくなり、5.0g/mを超える場合は、可視光線の透過が少なくなる場合がある。
The content of the phthalocyanine compound of the present invention represented by the general formula (1) in the heat ray shielding material of the present invention varies depending on the thickness of the heat ray shielding material.
For example, when manufacturing a heat ray shielding plate having a thickness of 3 mm, the amount is preferably 0.002 to 0.06 parts by weight, more preferably 0.003 to 0.06 parts by weight, based on 100 parts by weight of the resin mixed in the heat ray shielding material. 0.02 parts by weight. For example, in the case of manufacturing a heat ray shielding plate having a thickness of 10 mm, the amount is preferably 0.0005 to 0.02 parts by weight, more preferably 0.001 to 0.005 parts by weight, based on 100 parts by weight of the resin. It is. When a heat-shielding film having a thickness of 10 μm is prepared, the amount is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the resin.
If the content of the phthalocyanine compound of the general formula (1) is indicated regardless of the thickness of the heat ray shielding material, it is considered that the content of the phthalocyanine compound is 0.01 to 5.0 g / m 2 , considering the weight in the projected area from above. The amount is preferably 0.05 to 1.0 g / m 2 . When the blending amount of the phthalocyanine compound of the general formula (1) is less than 0.01 g / m 2 , the heat ray shielding effect is reduced, and when it exceeds 5.0 g / m 2 , transmission of visible light is reduced. May be.
 本発明の熱線遮蔽材には、一般式(1)のフタロシアニン系化合物以外に、通常の透明性樹脂材料を製造する際に用いられる各種の添加剤を含有していても良い。該添加剤としては、例えば、着色剤、重合調節剤、酸化防止剤、紫外線吸収剤、熱線遮蔽剤、難燃剤、可塑剤、耐衝撃性向上のためのゴム、あるいは剥離剤等を挙げることができる。熱線遮蔽剤とは、波長780nm以上の赤外線を吸収することができる粒子を意味し、アルミニウムドープ酸化錫、インジウムドープ酸化錫、錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫(ATO)、及びアルミニウムドープ酸化亜鉛(AZO)などの金属酸化物の他、タングステン酸化物、及び複合タングステン酸化物等を挙げることができる。特に、錫ドープ酸化インジウム(ITO)が好ましい。 熱 The heat ray shielding material of the present invention may contain various additives used in producing a normal transparent resin material, in addition to the phthalocyanine compound of the general formula (1). Examples of the additive include a colorant, a polymerization regulator, an antioxidant, an ultraviolet absorber, a heat ray shielding agent, a flame retardant, a plasticizer, a rubber for improving impact resistance, and a release agent. it can. The heat ray shielding agent means particles capable of absorbing infrared rays having a wavelength of 780 nm or more, and includes aluminum-doped tin oxide, indium-doped tin oxide, tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), and aluminum. In addition to metal oxides such as doped zinc oxide (AZO), tungsten oxide, composite tungsten oxide, and the like can be given. In particular, tin-doped indium oxide (ITO) is preferable.
 添加剤の熱線遮蔽剤中の添加量は特に制限されるものではないが、通常熱線遮蔽材中10質量%以下である。
 特に、本発明の熱線遮蔽材が太陽光に対して用いられるものである場合などには、紫外線吸収剤を含有することは好ましい態様である。紫外線吸収剤としては、特に制限されず、公知の紫外線吸収剤が使用できる。具体的には、サリチル酸系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系の化合物が好適に使用される。
 また、本発明の熱線遮蔽材には、一般式(1)のフタロシアニン系化合物以外に、他の近赤外線吸収材料を含有してもよい。他の近赤外線吸収材料としては特に制限されず、用途によって所望される最大吸収波長によって公知の近赤外線吸収材料が適宜選択されうる。
The amount of the additive in the heat ray shielding agent is not particularly limited, but is usually 10% by mass or less in the heat ray shielding material.
In particular, when the heat ray shielding material of the present invention is used for sunlight, it is a preferred embodiment to contain an ultraviolet absorber. The ultraviolet absorber is not particularly limited, and a known ultraviolet absorber can be used. Specifically, salicylic acid, benzophenone, benzotriazole, and cyanoacrylate compounds are preferably used.
Further, the heat ray shielding material of the present invention may contain other near-infrared absorbing materials in addition to the phthalocyanine compound of the general formula (1). The other near-infrared absorbing material is not particularly limited, and a known near-infrared absorbing material can be appropriately selected depending on the desired maximum absorption wavelength depending on the application.
 なお、本発明において、熱線遮蔽材の形状に格別の制約はなく、最も一般的な平板状やフィルム状のほか波板状、球面状、ドーム状など、様々な形状のものが含まれる。
 本発明の熱線遮蔽材が平板状やフィルム状の場合、一般式(1)のフタロシアニン系化合物を、樹脂および必要に応じて前記添加剤や他の近赤外線吸収材料と混合後、成形することによって、熱線遮蔽材が得られる。成形方法としては、特に制限されず、公知の成形方法が適用できる。具体的には、押出成形、射出成形、注型重合、プレス成形、カレンダー成形あるいは注型製膜法などが挙げられる。
In the present invention, the shape of the heat ray shielding material is not particularly limited, and includes various shapes such as a corrugated plate shape, a spherical shape, and a dome shape in addition to the most general flat shape and film shape.
When the heat ray shielding material of the present invention is in the form of a flat plate or a film, the phthalocyanine compound of the general formula (1) is mixed with a resin and, if necessary, the above-mentioned additives and other near-infrared absorbing materials, followed by molding. And a heat ray shielding material. The molding method is not particularly limited, and a known molding method can be applied. Specific examples include extrusion molding, injection molding, cast polymerization, press molding, calender molding, and cast film formation.
 本発明の熱線遮蔽材の使用形態が、基材上に、一般式(1)のフタロシアニン系化合物および樹脂を必須成分として含有するフィルム等を適用する形態である場合、基材に、接着剤、粘着剤、接着フィルム等を使用して、フィルムやシート状の熱線遮蔽材を貼付することで適用することができる。あるいは、フィルムやシート状の熱線遮蔽材を基材に熱プレスあるいは熱ラミネート成形することにより適用することもできる。 When the use form of the heat ray shielding material of the present invention is a form in which a film or the like containing a phthalocyanine-based compound of the general formula (1) and a resin as essential components on a base material, an adhesive, It can be applied by sticking a film or sheet-like heat ray shielding material using an adhesive, an adhesive film or the like. Alternatively, it can also be applied by hot pressing or heat laminating a film or sheet-shaped heat ray shielding material on a substrate.
 本発明の熱線遮蔽材の使用形態が、基材上に、一般式(1)のフタロシアニン系化合物および樹脂を必須成分として含有する塗膜を適用する形態である場合、一般式(1)のフタロシアニン系化合物および樹脂と、必要に応じこれらを溶解する溶剤や、その他の成分を含有する塗料(液状ないしペースト状物)を作製し、この塗料を基材に上にコーティングすることにより適用することができる。 When the use form of the heat ray shielding material of the present invention is a form in which a coating film containing a phthalocyanine-based compound of the general formula (1) and a resin as essential components is applied on a substrate, the phthalocyanine of the general formula (1) is used. A paint (liquid or paste-like material) containing a system compound and a resin and, if necessary, a solvent for dissolving them and other components can be prepared and applied by coating the paint on a base material. it can.
 本発明の熱線遮蔽材の使用形態が、2枚以上の基材の間に、一般式(1)のフタロシアニン系化合物および樹脂を必須成分として含有するフィルム等を中間層として設けた積層体の形態である場合、例えば、基材の間に一般式(1)のフタロシアニン系化合物および樹脂を必須成分として含有するフィルムを挟み、ゴムパックに入れ減圧吸引しながら、加熱して真空接着することにより適用することができる。
 または、基材の間に一般式(1)のフタロシアニン化系合物および樹脂を必須成分として含有するフィルムを挟んで、あるいは一方の基材の上に、一般式(1)のフタロシアニン系化合物および樹脂と、必要に応じこれらを溶解する溶剤や、その他の成分を含有する塗料を塗布した後、他方の基材を載せて、これらの積層体を熱などによって接着することによって適用することもできる。さらに、一般式(1)のフタロシアニン系化合物および樹脂を含有する接着剤、あるいは一般式(1)のフタロシアニン系化合物および粘着剤としての樹脂を含有する組成物を使用し、基剤を貼り合わせることによって適用することもできる。
The use form of the heat ray shielding material of the present invention is a form of a laminate in which a film or the like containing a phthalocyanine compound of the general formula (1) and a resin as essential components is provided as an intermediate layer between two or more base materials. In the case of, for example, a film containing a phthalocyanine-based compound of the general formula (1) and a resin as essential components is sandwiched between base materials, placed in a rubber pack, and heated and vacuum-bonded while being suctioned under reduced pressure. can do.
Alternatively, a film containing a phthalocyanine compound of the general formula (1) and a resin as essential components is sandwiched between base materials, or a phthalocyanine compound of the general formula (1) and After applying a paint containing a resin and a solvent that dissolves them and, if necessary, other components, the other substrate may be placed thereon, and the laminate may be adhered by heat or the like. . Further, using an adhesive containing a phthalocyanine compound of the general formula (1) and a resin, or a composition containing a phthalocyanine compound of the general formula (1) and a resin as an adhesive, and bonding the base together Can also be applied.
 本発明の熱線遮蔽材の用途としては、特に制限はないが、太陽エネルギーの熱線遮蔽用として建物や自動車の窓等に使用するフィルムや中間膜、サンバイザー、溶接用ゴーグルなどが挙げられる。特に、本発明の一般式(1)で表されるフタロシアニン化合物は、溶媒溶解性や樹脂との相溶性に優れ、また耐熱性、耐光性、耐候性等の諸特性に優れるため、建物や自動車の窓等に使用するフィルムや中間膜として好適である。 The application of the heat ray shielding material of the present invention is not particularly limited, and examples thereof include a film or an intermediate film, a sun visor, and welding goggles used for a building or an automobile window for shielding solar energy from heat rays. In particular, the phthalocyanine compound represented by the general formula (1) of the present invention has excellent solvent solubility and compatibility with a resin, and has excellent properties such as heat resistance, light resistance, and weather resistance. It is suitable as a film or an intermediate film used for a window or the like.
[熱線遮蔽フィルム]
 本発明の熱線遮蔽材が、建物の窓ガラス等に貼り付けて使用する熱線遮蔽フィルムである場合について以下に説明する。
熱線遮蔽フィルムの構成としては、特に制限はないが、例えば以下のような例が挙げられる。
[Heat shielding film]
The case where the heat ray shielding material of the present invention is a heat ray shielding film used by being attached to a window glass or the like of a building will be described below.
The configuration of the heat ray shielding film is not particularly limited, and examples thereof include the following examples.
1.一般式(1)のフタロシアニン系化合物および樹脂を含有するフィルムである態様
2.一般式(1)のフタロシアニン系化合物および樹脂を含有するフィルム、粘着剤層、及び必要に応じて粘着剤層の表面に設けられた剥離シートを有する態様である態様
3.基材上に、一般式(1)のフタロシアニン系化合物および樹脂を含有する層を設けてなる態様
4.基材上に、一般式(1)のフタロシアニン系化合物および粘着剤である樹脂を含有する層、及び必要に応じて粘着剤層の表面に設けられた剥離シートを有する態様
5.基材、一般式(1)のフタロシアニン系化合物および樹脂を含有する層、粘着剤層、及び必要に応じて粘着剤層の表面に設けられた剥離シートを有する態様
 上記各態様のうち、窓ガラスへの貼り付け易さ等の点から、粘着剤層を有する態様が好ましく、特に4.または5.の態様が好ましい。
 また、これらの態様に加えて、目的に応じて、ハードコート層、防汚層、紫外線吸収層、反射防止層等、更なる層を設けても良い。
1. Embodiment 1, which is a film containing a phthalocyanine compound of general formula (1) and a resin. Embodiment 3, which has a film containing a phthalocyanine-based compound of general formula (1) and a resin, a pressure-sensitive adhesive layer, and, if necessary, a release sheet provided on the surface of the pressure-sensitive adhesive layer. Embodiment 3 in which a layer containing a phthalocyanine compound of general formula (1) and a resin is provided on a substrate. Embodiment 4, in which a layer containing a phthalocyanine compound represented by the general formula (1) and a resin which is a pressure-sensitive adhesive on a base material, and a release sheet provided on the surface of the pressure-sensitive adhesive layer as necessary. Embodiment having a substrate, a layer containing a phthalocyanine compound of general formula (1) and a resin, an adhesive layer, and, if necessary, a release sheet provided on the surface of the adhesive layer. An embodiment having an adhesive layer is preferred from the viewpoint of ease of sticking to an adhesive, and particularly, 4. Or 5. Is preferred.
Further, in addition to these embodiments, additional layers such as a hard coat layer, an antifouling layer, an ultraviolet absorbing layer, and an antireflection layer may be provided according to the purpose.
 一般式(1)のフタロシアニン系化合物とともに含有される樹脂としては、前記熱線遮蔽材が含有する樹脂の例と同様のものが挙げられる。特に、ポリカーボネート樹脂、(メタ)アクリル樹脂、ポリビニル樹脂、ポリオレフィン樹脂、ポリブチラール樹脂、ポリエステル樹脂、ポリアミド系樹脂、ポリウレタン樹脂が好ましい。
基材としては、前記熱線遮蔽材の使用形態において説明した基材の例と同様のものが挙げられるが、樹脂製のシートや板が好ましい。例えば、ポリエステル、ポリエチレン、ポリプロピレン、ナイロン、ポリ塩化ビニル、ポリカーボネート、ポリビニルアルコール、ポリメチルメタクリレート、フッ素樹脂、エチレン、ビニルアルコール樹脂等のフィルムが挙げられる。中でも、ポリエステルフィルムが好ましく、ポリエチレンテレフタレート(PET)フィルムがより好ましい。
Examples of the resin contained together with the phthalocyanine compound of the general formula (1) include the same resins as those contained in the heat ray shielding material. In particular, polycarbonate resin, (meth) acrylic resin, polyvinyl resin, polyolefin resin, polybutyral resin, polyester resin, polyamide resin, and polyurethane resin are preferable.
Examples of the substrate include those similar to the examples of the substrate described in the usage form of the heat ray shielding material, and a resin sheet or plate is preferable. For example, films of polyester, polyethylene, polypropylene, nylon, polyvinyl chloride, polycarbonate, polyvinyl alcohol, polymethyl methacrylate, fluororesin, ethylene, vinyl alcohol resin and the like can be mentioned. Among them, a polyester film is preferable, and a polyethylene terephthalate (PET) film is more preferable.
 粘着剤としては、基材に接着することができ、透明性を有するものであれば特に限定されないが、例えば(メタ)アクリル系;(メタ)アクリルウレタン系;(メタ)アクリルシリコーン系;シロキサン結合を主鎖にもつシリコーン系;ポリ塩化ビニル系;メラミン系;ウレタン系;スチレン系;アルキド系;フェノール系;、エポキシ系;ポリエステル系;ポリフッ化ビニリデンなどのフッ素系樹脂などの熱可塑性または熱硬化性、活性エネルギー線硬化性の硬化性樹脂粘着剤、天然ゴム、ブチルゴム、イソプロピレンゴム、エチレンプロピレンゴム、メチルゴム、クロロプレンゴム、エチレン-プロピレン共重合ゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴムなどのゴム系粘着剤等が挙げられる。 The pressure-sensitive adhesive is not particularly limited as long as it can adhere to the base material and has transparency. For example, (meth) acrylic type; (meth) acrylic urethane type; (meth) acrylic silicone type; siloxane bond Polyurethane chloride; Melamine-based; Urethane-based; Styrene-based; Alkyd-based; Phenol-based; Epoxy-based; Polyester-based; Thermoplastic or thermosetting of fluorine-based resin such as polyvinylidene fluoride , Active energy ray-curable curable resin adhesives, natural rubber, butyl rubber, isopropylene rubber, ethylene propylene rubber, methyl rubber, chloroprene rubber, ethylene-propylene copolymer rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, etc. Rubber-based adhesives and the like can be mentioned.
 粘着剤である樹脂としては、上記の熱可塑性または熱硬化性、活性エネルギー線硬化性の硬化性樹脂粘着剤が挙げられるが、(メタ)アクリル系樹脂が好ましく、ガラス転移温度が0℃未満のポリ(メタ)アクリル酸エステル系樹脂が特に好ましい。
 ポリ(メタ)アクリル酸エステル系樹脂としては、単量体として炭素数1~14のアルキル基を有する(メタ)アクリル酸エステルを50重量%以上使用してなるものが好ましい。
Examples of the resin as an adhesive include the above-mentioned thermoplastic or thermosetting, active energy ray-curable curable resin adhesives, and a (meth) acrylic resin is preferable, and a glass transition temperature of less than 0 ° C. Poly (meth) acrylate resins are particularly preferred.
As the poly (meth) acrylate resin, a resin obtained by using 50% by weight or more of a (meth) acrylate having an alkyl group having 1 to 14 carbon atoms as a monomer is preferable.
 共重合可能な単量体の例としては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート等の(メタ)アクリレート類;α-メチルスチレン、ビニルトルエン、スチレンなどに代表されるスチレン系単量体;メチルビニルエーテル、エチルビニルエーテル、イソブチルビニルエーテルなどに代表されるビニルエーテル系単量体;フマル酸、フマル酸のモノアルキルエステル、フマル酸のジアルキルエステル;マレイン酸、マレイン酸のモノアルキルエステル、マレイン酸のジアルキルエステル、イタコン酸、イタコン酸のモノアルキルエステル、イタコン酸のジアルキルエステル、(メタ)アクリロニトリル、塩化ビニル、塩化ビニリデン、酢酸ビニル、ビニルケトン、ビニルピリジン、ビニルカルバゾールなどを挙げることができる。
 アクリル系粘着剤の硬化剤としては、イソシアネ-ト系硬化剤、エポキシ系硬化剤、金属キレ-ト硬化剤などが用いられる。
Examples of the copolymerizable monomer include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, and ethoxyethoxyethyl (meth) acrylate. (Meth) acrylates; styrene monomers represented by α-methylstyrene, vinyltoluene, styrene, etc .; vinyl ether monomers represented by methylvinylether, ethylvinylether, isobutylvinylether, etc .; fumaric acid, fumaric acid Monoalkyl esters, dialkyl esters of fumaric acid; maleic acid, monoalkyl esters of maleic acid, dialkyl esters of maleic acid, itaconic acid, monoalkyl esters of itaconic acid, dialkyl esters of itaconic acid, (meth) acrylic acid Nitrile, vinyl chloride, vinylidene chloride, vinyl acetate, vinyl ketones, vinyl pyridine, and vinyl carbazole.
As the curing agent for the acrylic pressure-sensitive adhesive, an isocyanate-based curing agent, an epoxy-based curing agent, a metal chelate curing agent, and the like are used.
 熱線遮蔽フィルムの各層には、前記熱線遮蔽材を製造する際に用いられる各種の添加剤と同様のものを含有しても良い。例えば、着色剤、重合調節剤、酸化防止剤、光安定剤、紫外線吸収剤、難燃剤、帯電防止剤、可塑剤等が挙げられる。酸化防止剤、難燃剤、接着力調整剤、耐湿剤、蛍光増白剤及び赤外線吸収剤等特に、紫外線吸収剤を含有する態様は好ましい。
 また、可視光透過率を大きく低下させない範囲で、カーボンブラック等の熱線を吸収できる材料を併用しても良い。
Each layer of the heat ray shielding film may contain the same additives as those used in the production of the heat ray shielding material. For example, coloring agents, polymerization regulators, antioxidants, light stabilizers, ultraviolet absorbers, flame retardants, antistatic agents, plasticizers, and the like can be used. Particularly preferred is an embodiment containing an ultraviolet absorber such as an antioxidant, a flame retardant, an adhesion regulator, a moisture resistant agent, a fluorescent whitening agent and an infrared absorber.
Further, a material capable of absorbing heat rays, such as carbon black, may be used in combination within a range that does not significantly reduce the visible light transmittance.
 熱線遮蔽フィルムの厚さは、その構成、基材や熱線遮蔽層の樹脂の種類、その用途などに応じて異なるが、通常、10μm~500μm程度のものが好ましく用いられる。
 例えば、熱線遮蔽フィルムが、基材上に、一般式(1)のフタロシアニン系化合物および樹脂を含有する層を設けてなる態様である場合、基材の厚さは20μm~300μm程度が好ましい。また、一般式(1)のフタロシアニン系化合物および樹脂を含有する層の厚さは、0.3~100μm程度が好ましい。
The thickness of the heat ray shielding film varies depending on its configuration, the type of the base material and the resin of the heat ray shielding layer, its use, and the like, but usually a thickness of about 10 μm to 500 μm is preferably used.
For example, in the case where the heat ray shielding film is an embodiment in which a layer containing a phthalocyanine compound of the general formula (1) and a resin is provided on a substrate, the thickness of the substrate is preferably about 20 μm to 300 μm. The thickness of the layer containing the phthalocyanine compound of the general formula (1) and the resin is preferably about 0.3 to 100 μm.
 樹脂に対する一般式(1)のフタロシアニン系化合物の含有量は、一般式(1)のフタロシアニン系化合物および樹脂を含有する層の厚さ次第であるが、通常、樹脂100重量部に対し一般式(1)のフタロシアニン系化合物を0.001~30重量部の範囲内であることが好ましく、0.01~10重量部の範囲内であることがより好ましい。 The content of the phthalocyanine compound of the general formula (1) with respect to the resin depends on the thickness of the layer containing the phthalocyanine compound of the general formula (1) and the resin. The phthalocyanine compound of 1) is preferably in the range of 0.001 to 30 parts by weight, more preferably 0.01 to 10 parts by weight.
 本発明の熱線遮蔽フィルムを製造する方法としては、一般式(1)のフタロシアニン系化合物および樹脂と、必要に応じ上記添加剤、他の近赤外線吸収剤や紫外線吸収剤等と混合後、成形する。成形方法としては、特に制限されず、公知の成形方法がそのままあるいは適宜修飾されて適用できる。具体的には、押出成形、射出成形、注型重合、プレス成形、カレンダー成形あるいは注型製膜法などが好適に使用できる。
 さらに、一般式(1)のフタロシアニン系化合物を含有する樹脂フィルムを作製し、そのフィルムを樹脂材に熱プレスあるいは熱ラミネート成形することにより製造することもできる。また、一般式(1)のフタロシアニン系化合物を含有するアクリル樹脂インクまたは塗料等を樹脂材に印刷またはコーティングすることにより製造することもできる。
As a method for producing the heat ray shielding film of the present invention, a phthalocyanine compound and a resin of the general formula (1) are mixed with the above additives, if necessary, and other near-infrared absorbers and ultraviolet absorbers, and then molded. . The molding method is not particularly limited, and a known molding method can be applied as it is or after being appropriately modified. Specifically, extrusion molding, injection molding, cast polymerization, press molding, calender molding, cast film forming method and the like can be suitably used.
Furthermore, it can also be produced by preparing a resin film containing the phthalocyanine compound of the general formula (1) and subjecting the film to a resin material by hot pressing or heat laminating. Further, it can also be produced by printing or coating an acrylic resin ink or paint containing a phthalocyanine compound of the general formula (1) on a resin material.
[合わせガラス用中間膜]
 本発明の熱線遮蔽材が、自動車の窓ガラス等に使用される合わせガラス用中間膜である場合について以下に説明する。
 合わせガラス用中間膜は、2枚のガラスの間に挟んだ形態で用いられる樹脂膜で、本発明の熱線遮蔽材が合わせガラス用中間膜である場合には、一般式(1)のフタロシアニン系化合物および樹脂を必須成分として含有する。
[Interlayer for laminated glass]
The case where the heat ray shielding material of the present invention is an interlayer film for laminated glass used for a window glass of an automobile will be described below.
The interlayer film for laminated glass is a resin film used in a form sandwiched between two glasses. When the heat ray shielding material of the present invention is an interlayer film for laminated glass, the phthalocyanine-based film of the general formula (1) is used. Contains compounds and resins as essential components.
 樹脂としては、合わせガラスに用いた際に視認性が十分に確保されるもの、好ましくは合わせガラスとした際の可視光透過率が70%以上のものであれば特に限定されない。
 例えば、ポリビニルアセタール系樹脂、ポリ塩化ビニル系樹脂、飽和ポリエステル系樹脂、ポリウレタン系樹脂、エチレン-酢酸ビニル共重合体系樹脂、エチレン-エチルアクリレート共重合体系樹脂等の従来から中間膜用として用いられている熱可塑性樹脂が挙げられる。特に、可塑化されたポリビニルアセタール系樹脂が好ましい。
The resin is not particularly limited as long as it has sufficient visibility when used for laminated glass, and preferably has a visible light transmittance of 70% or more when used as laminated glass.
For example, a polyvinyl acetal resin, a polyvinyl chloride resin, a saturated polyester resin, a polyurethane resin, an ethylene-vinyl acetate copolymer resin, an ethylene-ethyl acrylate copolymer resin, etc., which have been conventionally used for an intermediate film. Thermoplastic resin. In particular, a plasticized polyvinyl acetal resin is preferable.
 ポリビニルアセタール系樹脂としては、ポリビニルアルコール(PVA)とホルムアルデヒドとを反応させて得られるポリビニルホルマール樹脂、PVAとアセトアルデヒドとを反応させて得られる狭義のポリビニルアセタール樹脂、PVAとn-ブチルアルデヒドとを反応させて得られるポリビニルブチラール樹脂(PVB)等が挙げられ、特に、ポリビニルブチラール樹脂(PVB)が好ましい。 Examples of the polyvinyl acetal resin include a polyvinyl formal resin obtained by reacting polyvinyl alcohol (PVA) with formaldehyde, a polyvinyl acetal resin in a narrow sense obtained by reacting PVA with acetaldehyde, and a reaction between PVA and n-butyraldehyde. Examples thereof include polyvinyl butyral resin (PVB) obtained by the above method, and polyvinyl butyral resin (PVB) is particularly preferable.
 上記ポリビニルアセタール系樹脂の合成に用いられるPVAは、平均重合度が200~5000のものが好ましく、より好ましくは500~3000のものである。上記ポリビニルアセタール系樹脂は、アセタール化度が40~85モル%であるものが好ましく、より好ましくは50~75モル%のものである。また、残存アセチル基量が30モル% 以下であるものが好ましく、より好ましくは0.5~24モル%のものである。
 熱可塑性樹脂、好ましくはポリビニルアセタール系樹脂を可塑化するために用いられる可塑剤としては、例えば、一塩基性有機酸エステル系、多塩基性有機酸エステル系などの有機酸エステル系可塑剤や、有機リン酸系、有機亜リン酸系などのリン酸系可塑剤等が挙げられる。
The PVA used for synthesizing the polyvinyl acetal resin preferably has an average degree of polymerization of 200 to 5,000, more preferably 500 to 3,000. The polyvinyl acetal resin preferably has an acetalization degree of 40 to 85 mol%, more preferably 50 to 75 mol%. Further, those having a residual acetyl group content of 30 mol% or less are preferable, and those having a residual acetyl group content of 0.5 to 24 mol% are more preferable.
Thermoplastic resin, preferably as a plasticizer used to plasticize polyvinyl acetal resin, for example, monobasic organic acid ester type, organic acid ester type plasticizer such as polybasic organic acid ester type, Phosphorus plasticizers such as organic phosphoric acid and organic phosphorous acid are exemplified.
 合わせガラス用中間膜の厚さは、樹脂の種類、その用途などに応じて異なるが、通常、0.1~3mmの範囲内であることが好ましく、0.3mm~1.5mmの範囲内であることがより好ましい。
 樹脂に対する一般式(1)のフタロシアニン系化合物の含有量は特に限定されないが、樹脂100重量部に対し一般式(1)のフタロシアニン系化合物を0.001~2重量部の範囲内であることが好ましく、0.005~0.5重量部の範囲内であることがより好ましい。
The thickness of the interlayer film for laminated glass varies depending on the type of the resin, its use, and the like, but is usually preferably in the range of 0.1 to 3 mm, and more preferably in the range of 0.3 to 1.5 mm. More preferably, there is.
The content of the phthalocyanine compound of the general formula (1) with respect to the resin is not particularly limited. More preferably, it is in the range of 0.005 to 0.5 part by weight.
 本発明の合わせガラス用中間膜には、前記熱線遮蔽材を製造する際に用いられる各種の添加剤と同様のものを含有しても良い。例えば、熱線遮蔽剤、紫外線吸収剤、酸化防止剤、光安定剤、難燃剤、帯電防止剤、接着力調整剤、耐湿剤、蛍光増白剤、着色剤、赤外線吸収剤等が挙げられる。特に、紫外線吸収剤を含有する態様は好ましい。 中間 The interlayer for laminated glass of the present invention may contain the same additives as those used in the production of the heat ray shielding material. Examples thereof include a heat ray shielding agent, an ultraviolet absorber, an antioxidant, a light stabilizer, a flame retardant, an antistatic agent, an adhesion regulator, a moisture resistant agent, a fluorescent whitening agent, a coloring agent, and an infrared absorber. In particular, an embodiment containing an ultraviolet absorber is preferable.
 本発明の合わせガラス用中間膜を製造する方法としては、上記熱線遮蔽材、熱線遮蔽フィルムを製造する際と同様の方法が挙げられる。
 本発明の合わせガラス用中間膜は、必要に応じて、プライマー機能、紫外線カット機能、難燃機能、反射防止機能、防眩機能、反射防止防眩機能、帯電防止機能のいずれか一つ以上の機能を有する機能性透明層とあわせた複層構造としても良い。
 本発明の合わせガラス用中間膜を使用した合わせガラスは、少なくとも二枚の透明ガラス基材の間に本発明の中間膜が挟持され接着一体化された構成となる。
Examples of the method for producing the interlayer film for laminated glass of the present invention include the same methods as those for producing the above-mentioned heat ray shielding material and heat ray shielding film.
The interlayer film for a laminated glass of the present invention is, if necessary, one or more of a primer function, an ultraviolet ray cut function, a flame retardant function, an antireflection function, an antiglare function, an antireflection antiglare function, and an antistatic function. It may have a multilayer structure including a functional transparent layer having a function.
The laminated glass using the interlayer film for a laminated glass of the present invention has a configuration in which the intermediate film of the present invention is sandwiched between at least two transparent glass substrates and bonded and integrated.
 透明ガラス基材としては、特に限定されないが、例えば、フロート板ガラス、磨き板ガラス、平板ガラス、曲板ガラス、並板ガラス、型板ガラス、金網入り型板ガラス、熱線吸収板ガラス、クリアガラス、着色されたガラス板などの各種無機ガラス板や、ポリカーボネート板、ポリメチルメタクリレート板などの有機ガラス板等が挙げられる。これら透明ガラス基材は、単独の種類で用いられても良いし、2種類以上の種類で併用されてもよい。 The transparent glass substrate is not particularly limited, but includes, for example, float plate glass, polished plate glass, flat glass, curved plate glass, side-by-side glass, template glass, wire mesh-containing plate glass, heat ray absorbing plate glass, clear glass, colored glass plate, and the like. And inorganic glass plates, and organic glass plates such as a polycarbonate plate and a polymethyl methacrylate plate. These transparent glass substrates may be used alone or in combination of two or more.
 合わせガラスの作製方法としては、例えば、二枚の透明ガラス基材の間に本発明の中間膜を挟んで真空バッグの中に入れ、この真空バッグ内の圧力が約-65~-100kPaの減圧度となるように減圧吸引しながら温度約70~110℃で予備接着を行った後、さらに、オートクレーブ中で、オートクレーブ内の圧力が約0.98~1.47MPaの減圧度となるように減圧吸引しながら温度約120~150℃で本接着を行うことにより、得ることができる。 As a method for manufacturing a laminated glass, for example, an interlayer film of the present invention is sandwiched between two transparent glass substrates and put in a vacuum bag, and the pressure in the vacuum bag is reduced to about −65 to −100 kPa. After performing pre-adhesion at a temperature of about 70 to 110 ° C. while suctioning under reduced pressure to a degree, the pressure in the autoclave is further reduced in the autoclave to a degree of reduced pressure of about 0.98 to 1.47 MPa. It can be obtained by performing actual bonding at a temperature of about 120 to 150 ° C. while sucking.
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
[実施例1] フタロシアニン系化合物、具体例(1-167)の製造 
 4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30g、三塩化バナジウム0.39g、DBU0.38gを1-ペンタノール50mL中、内温125℃にて24時間撹拌した。メタノール300mLを添加、析出物をろ取、乾燥した。カラムクロマトグラフィー(シリカゲル/トルエン)で精製して緑色粉末4.24gを得た。 
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z 2117M+)
・元素分析値:実測値(C:72.62%、H:6.88%、N:5.32%);
理論値(C:72.60%、H:6.85%、N:5.29%)
 このようにして得られた化合物のトルエン溶液は735.0nmに極大吸収を示し、グラム吸光係数は7.10×10mL/g・cmであった。この吸収スペクトルチャートを図1に示す。
[Example 1] Production of phthalocyanine-based compound, specific example (1-167)
5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline, 0.39 g of vanadium trichloride and 0.38 g of DBU were added to 50 mL of 1-pentanol at an internal temperature of 125. Stirred at C for 24 hours. 300 mL of methanol was added, and the precipitate was collected by filtration and dried. Purification by column chromatography (silica gel / toluene) gave 4.24 g of a green powder.
The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 2117M +)
Elemental analysis value: actual measurement value (C: 72.62%, H: 6.88%, N: 5.32%);
Theoretical value (C: 72.60%, H: 6.85%, N: 5.29%)
The toluene solution of the compound thus obtained showed a maximum absorption at 735.0 nm, and the gram extinction coefficient was 7.10 × 10 4 mL / g · cm. This absorption spectrum chart is shown in FIG.
[実施例2] フタロシアニン系化合物、具体例(1-178)の製造 
 実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに4,7-ビス(4-(2-メトキシ-4-ビニルフェノキシ)ブチル)-1,3-ジイミノイソインドリン5.81gを使用した以外は実施例1と同様にして緑色粉末4.65gを得た。
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z 2325M+)
・元素分析値:実測値(C:74.32%、H:6.95%、N:4.85%);
理論値(C:74.36%、H:6.93%、N:4.82%)
 このようにして得られた化合物のトルエン溶液は735.5nmに極大吸収を示し、グラム吸光係数は5.96×10mL/g・cmであった。この吸収スペクトルチャートを図2に示す。
[Example 2] Production of phthalocyanine-based compound, specific example (1-178)
In place of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 4,7-bis (4- (2-methoxy-4- 4.65 g of a green powder was obtained in the same manner as in Example 1 except that 5.81 g of vinylphenoxy) butyl) -1,3-diiminoisoindoline was used.
The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 2325M +)
Elemental analysis value: actual measurement value (C: 74.32%, H: 6.95%, N: 4.85%);
Theoretical value (C: 74.36%, H: 6.93%, N: 4.82%)
The toluene solution of the compound thus obtained showed a maximum absorption at 735.5 nm, and the gram extinction coefficient was 5.96 × 10 4 mL / g · cm. This absorption spectrum chart is shown in FIG.
[実施例3] フタロシアニン系化合物、具体例(1-165)の製造 
 実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに4,7-ビス(4-(ベンジルオキシ)ブチル)-1,3-ジイミノイソインドリン4.69gを使用した以外は実施例1と同様にして緑色粉末3.90gを得た。
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z 1876M+)
・元素分析値:実測値(C:76.70%、H:6.90%、N:6.03%);
理論値(C:76.77%、H:6.87%、N:5.97%)
 このようにして得られた化合物のトルエン溶液は735.0nmに極大吸収を示し、グラム吸光係数は8.02×10mL/g・cmであった。この吸収スペクトルチャートを図3に示す。
[Example 3] Production of phthalocyanine-based compound, specific example (1-165)
4,7-bis (4- (benzyloxy) butyl)-instead of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1. 3.90 g of a green powder was obtained in the same manner as in Example 1 except that 4.69 g of 1,3-diiminoisoindoline was used.
The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1876M +)
Elemental analysis value: actual measurement value (C: 76.70%, H: 6.90%, N: 6.03%);
Theoretical value (C: 76.77%, H: 6.87%, N: 5.97%)
The toluene solution of the compound thus obtained showed a maximum absorption at 735.0 nm, and the gram extinction coefficient was 8.02 × 10 4 mL / g · cm. This absorption spectrum chart is shown in FIG.
[実施例4] フタロシアニン系化合物、具体例(2-37)~具体例(2-40)異性体混合物の製造 
 実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに4,5,7-トリス(4-メトキシブチル)-1,3-ジイミノイソインドリン4.44g、三塩化バナジウム0.39gの代わりに塩化第一銅0.25gを使用した以外は実施例1と同様にして具体例(2-37)~具体例(2-40)で示される構造の異性体混合物として緑色粉末3.50gを得た。
 得られた化合物は、LC-MSにて各成分の m/zの一致より目的の化合物であることを確認した。
 このようにして得られた化合物のトルエン溶液は714.0nmに極大吸収を示し、グラム吸光係数は9.40×10mL/g・cmであった。この吸収スペクトルチャートを図4に示す。
Example 4 Production of Phthalocyanine Compounds, Specific Examples (2-37) to Specific Examples (2-40)
4,5,7-Tris (4-methoxybutyl) -1 was used in place of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1. Examples (2-37) to (Examples) in the same manner as in Example 1 except that 4.44 g of 1,3-diiminoisoindoline and 0.25 g of cuprous chloride were used instead of 0.39 g of vanadium trichloride. As a result, 3.50 g of a green powder was obtained as an isomer mixture having the structure represented by 2-40).
The obtained compound was confirmed by LC-MS to be the target compound from the agreement of m / z of each component.
The toluene solution of the compound thus obtained showed a maximum absorption at 714.0 nm, and the gram extinction coefficient was 9.40 × 10 4 mL / g · cm. FIG. 4 shows the absorption spectrum chart.
[実施例5] フタロシアニン系化合物、具体例(1-170)の製造 
 実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに4,7-ビス(4-((7-メトキシナフタレン-2-イル)オキシ)ブチル)-1,3-ジイミノイソインドリン6.02gを使用した以外は実施例1と同様にして緑色粉末5.11gを得た。 
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z 2405M+)
・元素分析値:実測値(C:75.94%、H:6.07%、N:4.70%);
理論値(C:75.89%、H:6.03%、N:4.66%)
 このようにして得られた化合物のトルエン溶液は739.0nmに極大吸収を示し、グラム吸光係数は6.43×10mL/g・cmであった。この吸収スペクトルチャートを図5に示す。
[Example 5] Production of phthalocyanine-based compound, specific example (1-170)
Instead of 5.7 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 4,7-bis (4-((7-methoxynaphthalene- 5.11 g of a green powder was obtained in the same manner as in Example 1 except that 6.02 g of 2-yl) oxy) butyl) -1,3-diiminoisoindoline was used.
The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 2405M +)
Elemental analysis value: actual measurement value (C: 75.94%, H: 6.07%, N: 4.70%);
Theoretical value (C: 75.89%, H: 6.03%, N: 4.66%)
The toluene solution of the compound thus obtained showed a maximum absorption at 739.0 nm, and the gram extinction coefficient was 6.43 × 10 4 mL / g · cm. FIG. 5 shows this absorption spectrum chart.
[実施例6] フタロシアニン系化合物、具体例(1-171)の製造 
 実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに4,7-ビス(4-((1,6-ジメトキシナフタレン-2-イル)オキシ)ブチル)-1,3-ジイミノイソインドリン6.62gを使用した以外は実施例1と同様にして緑色粉末5.62gを得た。
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z 2645M+)
・元素分析値:実測値(C:72.55%、H:6.17%、N:4.27%);
理論値(C:72.63%、H:6.10%、N:4.23%)
 このようにして得られた化合物のトルエン溶液は735.5nmに極大吸収を示し、グラム吸光係数は5.85×10mL/g・cmであった。この吸収スペクトルチャートを図6に示す。
Example 6 Production of Phthalocyanine Compound, Specific Example (1-171)
In place of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 4,7-bis (4-((1,6-dimethoxy) 5.62 g of a green powder was obtained in the same manner as in Example 1 except that 6.62 g of naphthalen-2-yl) oxy) butyl) -1,3-diiminoisoindoline was used.
The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 2645M +)
Elemental analysis value: actual measurement value (C: 72.55%, H: 6.17%, N: 4.27%);
Theoretical value (C: 72.63%, H: 6.10%, N: 4.23%)
The toluene solution of the compound thus obtained showed a maximum absorption at 735.5 nm, and the gram extinction coefficient was 5.85 × 10 4 mL / g · cm. FIG. 6 shows the absorption spectrum chart.
[実施例7] フタロシアニン系化合物、具体例(1-174)の製造 
 実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに4,7-ビス(4-((1,6-ジイソプロポキシナフタレン-2-イル)オキシ)ブチル)-1,3-ジイミノイソインドリン7.74gを使用した以外は実施例1と同様にして緑色粉末6.58gを得た。 
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z 3094M+)
・元素分析値:実測値(C:74.44%、H:7.33%、N:3.65%);
理論値(C:74.51%、H:7.30%、N:3.62%)
 このようにして得られた化合物のトルエン溶液は737.0nmに極大吸収を示し、グラム吸光係数は7.14×10mL/g・cmであった。この吸収スペクトルチャートを図7に示す。
[Example 7] Production of phthalocyanine-based compound, specific example (1-174)
In place of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 4,7-bis (4-((1,6-di- 6.58 g of a green powder was obtained in the same manner as in Example 1 except that 7.74 g of isopropoxynaphthalen-2-yl) oxy) butyl) -1,3-diiminoisoindoline was used.
The obtained compound was confirmed to be the target compound from the following analysis results.
-MS: (EI) m / z 3094M +)
Elemental analysis value: actual measurement value (C: 74.44%, H: 7.33%, N: 3.65%);
Theoretical value (C: 74.51%, H: 7.30%, N: 3.62%)
The toluene solution of the compound thus obtained showed a maximum absorption at 737.0 nm, and the gram extinction coefficient was 7.14 × 10 4 mL / g · cm. FIG. 7 shows this absorption spectrum chart.
[実施例8] フタロシアニン系化合物、具体例(1-175)の製造 
 実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに4,7-ビス(4-((6-(2-エトキシエトキシ)ナフタレン-2-イル)オキシ)ブチル)-1,3-ジイミノイソインドリン7.74gを使用した以外は実施例1と同様にして緑色粉末6.58gを得た。 
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z 2869M+)
・元素分析値:実測値(C:73.61%、H:6.68%、N:3.927%);
理論値(C:73.64%、H:6.74%、N:3.90%)
 このようにして得られた化合物のトルエン溶液は738.5nmに極大吸収を示し、グラム吸光係数は5.37×10mL/g・cmであった。この吸収スペクトルチャートを図8に示す。
[Example 8] Production of phthalocyanine-based compound, specific example (1-175)
In place of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 4,7-bis (4-((6- (2- (2- 6.58 g of a green powder was obtained in the same manner as in Example 1 except that 7.74 g of ethoxyethoxy) naphthalen-2-yl) oxy) butyl) -1,3-diiminoisoindoline was used.
The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 2869M +)
Elemental analysis value: actual measurement value (C: 73.61%, H: 6.68%, N: 3.927%);
Theoretical value (C: 73.64%, H: 6.74%, N: 3.90%)
The toluene solution of the compound thus obtained showed a maximum absorption at 738.5 nm, and the gram extinction coefficient was 5.37 × 10 4 mL / g · cm. FIG. 8 shows this absorption spectrum chart.
[実施例9] フタロシアニン系化合物、具体例(2-1)~具体例(2-4)を含む混合物の製造 
 実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに実施例5における4,7-ビス(4-((7-メトキシナフタレン-2-イル)オキシ)ブチル)-1,3-ジイミノイソインドリン3.01gおよび実施例6における4,7-ビス(4-((1,6-ジメトキシナフタレン-2-イル)オキシ)ブチル)-1,3-ジイミノイソインドリン3.31gを使用した以外は実施例1と同様にして具体例(1-170)、具体例(1-171)および具体例(2-1)~具体例(2-4)で示される構造の混合物として緑色物質5.37gを得た。 
 得られた化合物は、LC-MSにて各成分の m/zの一致より目的の化合物であることを確認した。
 このようにして得られた化合物のトルエン溶液は737.5nmに極大吸収を示し、グラム吸光係数は5.94×10mL/g・cmであった。この吸収スペクトルチャートを図9に示す。
[Example 9] Production of mixture containing phthalocyanine-based compound, specific examples (2-1) to (2-4)
Instead of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 4,7-bis (4-((7 -Methoxynaphthalen-2-yl) oxy) butyl) -1,01 g of 1,3-diiminoisoindoline and 4,7-bis (4-((1,6-dimethoxynaphthalen-2-yl)) in Example 6 Specific examples (1-170), specific examples (1-171) and specific examples (2-1) were carried out in the same manner as in Example 1 except that 3.31 g of (oxy) butyl) -1,3-diiminoisoindoline was used. 5.37 g of a green substance was obtained as a mixture having the structure shown in any one of (2) to (4).
The obtained compound was confirmed by LC-MS to be the target compound from the agreement of m / z of each component.
The toluene solution of the compound thus obtained showed a maximum absorption at 737.5 nm, and the gram extinction coefficient was 5.94 × 10 4 mL / g · cm. This absorption spectrum chart is shown in FIG.
[実施例10] フタロシアニン系化合物、具体例(2-5)~具体例(2-8)を含む混合物の製造 
 実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに実施例5における4,7-ビス(4-((7-メトキシナフタレン-2-イル)オキシ)ブチル)-1,3-ジイミノイソインドリン3.01gおよび4,7-ビス(4-メトキシブチル)-1,3-ジイミノイソインドリン1.59gを使用した以外は実施例1と同様にして具体例(2-5)~具体例(2-8)で示される構造の化合物を含む混合物として緑色物質1.96gを得た。 
 得られた化合物は、LC-MSにて各成分の m/zの一致より目的の化合物であることを確認した。
 このようにして得られた化合物のトルエン溶液は737.0nmに極大吸収を示し、グラム吸光係数は8.08×10mL/g・cmであった。この吸収スペクトルチャートを図10に示す。
[Example 10] Production of mixture containing phthalocyanine-based compound, specific examples (2-5) to (2-8)
Instead of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 4,7-bis (4-((7 Using 3.01 g of -methoxynaphthalen-2-yl) oxy) butyl) -1,3-diiminoisoindoline and 1.59 g of 4,7-bis (4-methoxybutyl) -1,3-diiminoisoindoline Except that, in the same manner as in Example 1, 1.96 g of a green material was obtained as a mixture containing the compounds having the structures shown in Specific Examples (2-5) to (2-8).
The obtained compound was confirmed by LC-MS to be the target compound from the agreement of m / z of each component.
The toluene solution of the compound thus obtained showed a maximum absorption at 737.0 nm, and the gram extinction coefficient was 8.08 × 10 4 mL / g · cm. This absorption spectrum chart is shown in FIG.
[実施例11] フタロシアニン系化合物、具体例(2-9)~具体例(2-12)を含む混合物の製造 
 実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに実施例6における4,7-ビス(4-((1,6-ジメトキシナフタレン-2-イル)オキシ)ブチル)-1,3-ジイミノイソインドリン3.31gおよび4,7-ビス(4-(2,6-ジメトキシフェノキシ)ブチル)-1,3-ジイミノイソインドリン2.81gを使用した以外は実施例1と同様にして具体例(2-9)~具体例(2-12)示される構造の化合物を含む混合物として緑色物質2.60gを得た。 
 得られた化合物は、LC-MSにて各成分の m/zの一致より目的の化合物であることを確認した。
 このようにして得られた化合物のトルエン溶液は735.5nmに極大吸収を示し、グラム吸光係数は6.30×10mL/g・cmであった。この吸収スペクトルチャートを図11に示す。
[Example 11] Production of mixture containing phthalocyanine-based compound, specific examples (2-9) to (2-12)
In place of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 4,7-bis (4-((1 3.31 g of 4,6-dimethoxynaphthalen-2-yl) oxy) butyl) -1,3-diiminoisoindoline and 4,7-bis (4- (2,6-dimethoxyphenoxy) butyl) -1,3- Except that 2.81 g of diiminoisoindoline was used, 2.60 g of a green material was obtained as a mixture containing compounds having the structures shown in Specific Examples (2-9) to (2-12) in the same manner as in Example 1. Was.
The obtained compound was confirmed by LC-MS to be the target compound from the agreement of m / z of each component.
The toluene solution of the compound thus obtained showed a maximum absorption at 735.5 nm, and the gram extinction coefficient was 6.30 × 10 4 mL / g · cm. FIG. 11 shows this absorption spectrum chart.
[実施例12] フタロシアニン系化合物、具体例(2-13)~具体例(2-16)を含む混合物の製造 
 実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに実施例6における4,7-ビス(4-((1,6-ジメトキシナフタレン-2-イル)オキシ)ブチル)-1,3-ジイミノイソインドリン3.31gおよび4,7-ビス(4-メトキシブチル)-1,3-ジイミノイソインドリン1.59gを使用した以外は実施例1と同様にして具体例(2-13)~具体例(2-16)で示される構造の混合物として緑色物質2.09gを得た。
 得られた化合物は、LC-MSにて各成分の m/zの一致より目的の化合物であることを確認した。
 このようにして得られた化合物のトルエン溶液は739.0nmに極大吸収を示し、グラム吸光係数は7.34×10mL/g・cmであった。この吸収スペクトルチャートを図12に示す。
[Example 12] Production of mixture containing phthalocyanine-based compound, specific examples (2-13) to (2-16)
In place of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 4,7-bis (4-((1 3.31 g of 4,6-dimethoxynaphthalen-2-yl) oxy) butyl) -1,3-diiminoisoindoline and 1.59 g of 4,7-bis (4-methoxybutyl) -1,3-diiminoisoindoline In the same manner as in Example 1 except that was used, 2.09 g of a green material was obtained as a mixture having the structures shown in Specific Examples (2-13) to (2-16).
The obtained compound was confirmed by LC-MS to be the target compound from the agreement of m / z of each component.
The toluene solution of the compound thus obtained showed a maximum absorption at 739.0 nm, and the gram extinction coefficient was 7.34 × 10 4 mL / g · cm. FIG. 12 shows the absorption spectrum chart.
[実施例13] フタロシアニン系化合物、具体例(1-156)の製造 
 実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに4,7-ビス(4-(2-エトキシエトキシ)ブチル)-1,3-ジイミノイソインドリン4.34g、三塩化バナジウム0.39gの代わりに塩化第一銅0.25gを使用した以外は実施例1と同様にして緑色物質3.67gを得た。 
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z 1729M+)
・元素分析値:実測値(C:66.70%、H:6.52%、N:6.50%);
理論値(C:66.66%、H:6.48%、N:6.48%)
 このようにして得られた化合物のトルエン溶液は706.0nmに極大吸収を示し、グラム吸光係数は1.16×10mL/g・cmであった。この吸収スペクトルチャートを図13に示す。
Example 13 Production of phthalocyanine-based compound, specific example (1-156)
4.7-bis (4- (2-ethoxyethoxy) butyl instead of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1. 3.67 g of a green substance was obtained in the same manner as in Example 1 except that 4.34 g of 1,3-diiminoisoindoline and 0.25 g of cuprous chloride were used instead of 0.39 g of vanadium trichloride. .
The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1729M +)
Elemental analysis value: actual measurement value (C: 66.70%, H: 6.52%, N: 6.50%);
Theoretical value (C: 66.66%, H: 6.48%, N: 6.48%)
The toluene solution of the compound thus obtained showed a maximum absorption at 706.0 nm, and the gram extinction coefficient was 1.16 × 10 5 mL / g · cm. This absorption spectrum chart is shown in FIG.
[実施例14] フタロシアニン系化合物、具体例(1-310)の製造 
 実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに4,7-ビス(6-エトキシヘキシル)-1,3-ジイミノイソインドリン4.02g、三塩化バナジウム0.39gの代わりに塩化第一銅0.25gを使用した以外は実施例1と同様にして緑色物質3.20gを得た。 
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z 1729M+)
・元素分析値:実測値(C:72.01%、H:9.07%、N:7.04%);
理論値(C:71.98%、H:9.06%、N:7.00%)
 このようにして得られた化合物のトルエン溶液は707.0nmに極大吸収を示し、グラム吸光係数は1.27×10mL/g・cmであった。この吸収スペクトルチャートを図14に示す。
Example 14 Production of phthalocyanine-based compound, specific example (1-310)
4,7-bis (6-ethoxyhexyl) -1,3 was used instead of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1. 3.20 g of a green substance was obtained in the same manner as in Example 1, except that 4.02 g of diiminoisoindoline and 0.25 g of cuprous chloride were used instead of 0.39 g of vanadium trichloride.
The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1729M +)
Elemental analysis value: actual measurement value (C: 72.01%, H: 9.07%, N: 7.04%);
Theoretical value (C: 71.98%, H: 9.06%, N: 7.00%)
The toluene solution of the compound thus obtained showed a maximum absorption at 707.0 nm, and the gram extinction coefficient was 1.27 × 10 5 mL / g · cm. FIG. 14 shows this absorption spectrum chart.
[実施例15] フタロシアニン系化合物、具体例(1-311)の製造 
 実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに4,7-ビス(6-(2-エトキシエトキシ)ヘキシル)-1,3-ジイミノイソインドリン4.90g、三塩化バナジウム0.39gの代わりに塩化第一銅0.25gを使用した以外は実施例1と同様にして緑色物質3.90gを得た。
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z 1953M+)
・元素分析値:実測値(C:68.80%、H:9.11%、N:5.75%);
理論値(C:68.84%、H:9.08%、N:5.73%)
 このようにして得られた化合物のトルエン溶液は707.0nmに極大吸収を示し、グラム吸光係数は1.00×10mL/g・cmであった。この吸収スペクトルチャートを図15に示す。
[Example 15] Production of phthalocyanine-based compound, specific example (1-311)
4,7-bis (6- (2-ethoxyethoxy) hexyl) was used instead of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1. 3.90 g of a green substance was obtained in the same manner as in Example 1 except that 4.90 g of 1,3-diiminoisoindoline and 0.25 g of cuprous chloride were used instead of 0.39 g of vanadium trichloride. .
The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1953M +)
Elemental analysis value: actual measurement value (C: 68.80%, H: 9.11%, N: 5.75%);
Theoretical value (C: 68.84%, H: 9.08%, N: 5.73%)
The toluene solution of the compound thus obtained showed a maximum absorption at 707.0 nm, and the gram extinction coefficient was 1.00 × 10 5 mL / g · cm. FIG. 15 shows the absorption spectrum chart.
[実施例16] フタロシアニン系化合物、具体例(1-179)の製造 
 実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに4,7-ビス(4-(2,4,6-トリメトキシフェノキシ)ブチル)-1,3-ジイミノイソインドリン6.22gを使用した以外は実施例1と同様にして緑色物質4.97gを得た。
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z 2485M+)
・元素分析値:実測値(C:65.71%、H:6.53%、N:4.53%);
理論値(C:65.71%、H:6.49%、N:4.51%)
 このようにして得られた化合物のトルエン溶液は735.0nmに極大吸収を示し、グラム吸光係数は6.26×10mL/g・cmであった。この吸収スペクトルチャートを図16に示す。
Example 16 Production of phthalocyanine-based compound, specific example (1-179)
In place of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 4,7-bis (4- (2,4,6- 4.97 g of a green substance was obtained in the same manner as in Example 1 except that 6.22 g of (trimethoxyphenoxy) butyl) -1,3-diiminoisoindoline was used.
The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 2485M +)
Elemental analysis value: actual measurement value (C: 65.71%, H: 6.53%, N: 4.53%);
Theoretical value (C: 65.71%, H: 6.49%, N: 4.51%)
The toluene solution of the compound thus obtained showed a maximum absorption at 735.0 nm, and the gram extinction coefficient was 6.26 × 10 4 mL / g · cm. FIG. 16 shows the absorption spectrum chart.
[実施例17] フタロシアニン系化合物、具体例(1-182)の製造 
 実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに4,7-ビス(4-(4-(メチルチオ)フェノキシ)ブチル)-1,3-ジイミノイソインドリン5.34gを使用した以外は実施例1と同様にして緑色物質4.27gを得た。 
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z 2133M+)
・元素分析値:実測値(C:67.60%、H:6.04%、N:5.27%);
理論値(C:67.55%、H:6.05%、N:5.25%)
 このようにして得られた化合物のトルエン溶液は736.5nmに極大吸収を示し、グラム吸光係数は6.97×10mL/g・cmであった。この吸収スペクトルチャートを図17に示す。
Example 17 Production of phthalocyanine-based compound, specific example (1-182)
4,7-bis (4- (4- (methylthio) phenoxy) was used instead of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1. ) Butyl) -1,3-diiminoisoindoline 5.33 g was obtained in the same manner as in Example 1 except that 5.34 g was used.
The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 2133M +)
Elemental analysis value: actual measurement value (C: 67.60%, H: 6.04%, N: 5.27%);
Theoretical value (C: 67.55%, H: 6.05%, N: 5.25%)
The toluene solution of the compound thus obtained showed a maximum absorption at 736.5 nm, and the gram extinction coefficient was 6.97 × 10 4 mL / g · cm. FIG. 17 shows the absorption spectrum chart.
[実施例18] フタロシアニン系化合物、具体例(1-158)の製造 
実施例16における三塩化バナジウム0.39gの代わりに塩化第一銅0.25gを使用した以外は実施例16と同様にして緑色物質4.96gを得た。 
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z 2481M+)
・元素分析値:実測値(C:65.66%、H:6.55%、N:4.54%);
理論値(C:65.80%、H:6.50%、N:4.51%)
 このようにして得られた化合物のトルエン溶液は706.0nmに極大吸収を示し、グラム吸光係数は8.07×10mL/g・cmであった。この吸収スペクトルチャートを図18に示す。
Example 18 Production of phthalocyanine-based compound, specific example (1-158)
4.96 g of a green material was obtained in the same manner as in Example 16, except that 0.25 g of cuprous chloride was used instead of 0.39 g of vanadium trichloride in Example 16.
The obtained compound was confirmed to be the target compound from the following analysis results.
-MS: (EI) m / z 2481M +)
Elemental analysis value: actual measurement value (C: 65.66%, H: 6.55%, N: 4.54%);
Theoretical value (C: 65.80%, H: 6.50%, N: 4.51%)
The toluene solution of the compound thus obtained showed a maximum absorption at 706.0 nm, and the gram extinction coefficient was 8.07 × 10 4 mL / g · cm. FIG. 18 shows the absorption spectrum chart.
[実施例19] フタロシアニン系化合物、具体例(1-183)の製造 
実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに4,7-ビス(4-((4-メトキシフェニル)チオ)ブチル)-1,3-ジイミノイソインドリン5.34gを使用した以外は実施例1と同様にして緑色物質4.26gを得た。 
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z 2134M+)
・元素分析値:実測値(C:67.56%、H:6.02%、N:5.22%);
理論値(C:67.55%、H:6.05%、N:5.25%)
 このようにして得られた化合物のトルエン溶液は737.5nmに極大吸収を示し、グラム吸光係数は7.17×10mL/g・cmであった。この吸収スペクトルチャートを図19に示す。
Example 19 Production of phthalocyanine-based compound, specific example (1-183)
Instead of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1, 5.30 g of 4,7-bis (4-((4-methoxyphenyl) 4.26 g of a green substance was obtained in the same manner as in Example 1 except that 5.34 g of (thio) butyl) -1,3-diiminoisoindoline was used.
The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 2134M +)
Elemental analysis value: actual measurement value (C: 67.56%, H: 6.02%, N: 5.22%);
Theoretical value (C: 67.55%, H: 6.05%, N: 5.25%)
The toluene solution of the compound thus obtained showed a maximum absorption at 737.5 nm, and the gram extinction coefficient was 7.17 × 10 4 mL / g · cm. FIG. 19 shows the absorption spectrum chart.
[実施例20] フタロシアニン系化合物、具体例(2-17)の製造
 実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに4-ヘキシル-9-フェニル-1H-ベンゾ[f]イソインドール-1,3(2H)-ジイミン3.55gを使用した以外は実施例1と同様にして具体例(2-17)~具体例(2-20)で示される構造の異性体混合物より具体例(2-17)のみをさらにカラムクロマトグラフィーにより単離精製し、緑色物質1.78gを得た。
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z 1421M+)
・元素分析値:実測値(C:81.20%、H:6.27%、N:7.93%);
理論値(C:81.16%、H:6.24%、N:7.89%)
 このようにして得られた化合物のトルエン溶液は890.5nmに極大吸収を示し、グラム吸光係数は1.30×10mL/g・cmであった。この吸収スペクトルチャートを図20に示す。
[Example 20] Production of phthalocyanine compound, specific example (2-17) 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1 Specific Example (2-17) in the same manner as in Example 1 except that 3.55 g of 4-hexyl-9-phenyl-1H-benzo [f] isoindole-1,3 (2H) -diimine was used instead of Specific Example (2-17) alone was further isolated and purified by column chromatography from the isomer mixture having the structure shown in Specific Example (2-20) to obtain 1.78 g of a green substance.
The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1421M +)
Elemental analysis value: actual measurement value (C: 81.20%, H: 6.27%, N: 7.93%);
Theoretical value (C: 81.16%, H: 6.24%, N: 7.89%)
The toluene solution of the compound thus obtained showed a maximum absorption at 890.5 nm, and the gram extinction coefficient was 1.30 × 10 5 mL / g · cm. FIG. 20 shows this absorption spectrum chart.
[実施例21] フタロシアニン系化合物、具体例(2-21)の製造
 実施例20における三塩化バナジウムの代わりに塩化第一銅0.25gを使用した以外は実施例20と同様にして具体例(2-21)~具体例(2-24)で示される構造の異性体混合物より具体例(2-21)のみをさらにカラムクロマトグラフィーにより単離精製し、緑色物質1.80gを得た。 
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z 1417M+)
・元素分析値:実測値(C:81.30%、H:6.28%、N:7.95%);
理論値(C:81.35%、H:6.26%、N:7.91%)
 このようにして得られた化合物のトルエン溶液は824.5nmに極大吸収を示し、グラム吸光係数は1.58×10mL/g・cmであった。この吸収スペクトルチャートを図21に示す。
[Example 21] Preparation of phthalocyanine-based compound, specific example (2-21) A specific example (Example 21) was repeated in the same manner as in Example 20 except that 0.25 g of cuprous chloride was used instead of vanadium trichloride. Only the specific example (2-21) was further isolated and purified by column chromatography from the isomer mixture having the structure shown in the specific examples (2-21) to (2-24) to obtain 1.80 g of a green substance.
The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1417M +)
Elemental analysis value: actual measurement value (C: 81.30%, H: 6.28%, N: 7.95%);
Theoretical value (C: 81.35%, H: 6.26%, N: 7.91%)
The toluene solution of the compound thus obtained showed a maximum absorption at 824.5 nm, and the gram extinction coefficient was 1.58 × 10 5 mL / g · cm. FIG. 21 shows this absorption spectrum chart.
[実施例22] フタロシアニン系化合物、具体例(2-25)の製造
実施例20における4-ヘキシル-9-フェニル-1H-ベンゾ[f]イソインドール-1,3(2H)-ジイミン3.55gの代わりに4-(6-エトキシヘキシル)-9-フェニル-1H-ベンゾ[f]イソインドール-1,3-(2H)-ジイミン4.00gおよび三塩化バナジウム0.39gの代わりに塩化第一銅使用0.25gを使用した以外は実施例20と同様にして具体例(2-25)~具体例(2-28)で示される構造の異性体混合物より具体例(2-25)のみをさらにカラムクロマトグラフィーにより単離精製し、緑色物質2.79gを得た。
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z 1593M+)
・元素分析値:実測値(C:78.50%、H:6.63%、N:7.08%);
理論値(C:78.39%、H:6.58%、N:7.03%)
 このようにして得られた化合物のトルエン溶液は824.5nmに極大吸収を示し、グラム吸光係数は1.37×10mL/g・cmであった。この吸収スペクトルチャートを図22に示す。
Example 22 Preparation of a Phthalocyanine Compound, Specific Example (2-25) 3.55 g of 4-hexyl-9-phenyl-1H-benzo [f] isoindole-1,3 (2H) -diimine in Example 20 Was replaced by 4.00 g of 4- (6-ethoxyhexyl) -9-phenyl-1H-benzo [f] isoindole-1,3- (2H) -diimine and 0.39 g of vanadium trichloride. Except that 0.25 g of copper was used, only the specific example (2-25) was prepared from the mixture of isomers having the structures shown in the specific examples (2-25) to (2-28) in the same manner as in Example 20. Further isolation and purification were performed by column chromatography to obtain 2.79 g of a green substance.
The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1593M +)
Elemental analysis value: actual measurement value (C: 78.50%, H: 6.63%, N: 7.08%);
Theoretical value (C: 78.39%, H: 6.58%, N: 7.03%)
The toluene solution of the compound thus obtained showed a maximum absorption at 824.5 nm, and the gram extinction coefficient was 1.37 × 10 5 mL / g · cm. FIG. 22 shows this absorption spectrum chart.
[実施例23] フタロシアニン系化合物、具体例(2-29)~具体例(2-32)異性体混合物の製造
 実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに4-エトキシ-7-ヘキシル-1,3-ジイミノイソインドリン2.73gを使用した以外は実施例1と同様にして具体例(2-29)~具体例(2-32)で示される構造の異性体混合物として深緑色物質2.15gを得た。
 得られた化合物は、LC-MSにて各成分の m/zの一致より目的の化合物であることを確認した。
 このようにして得られた化合物のトルエン溶液は751.0nmに極大吸収を示し、グラム吸光係数は1.48×10mL/g・cmであった。この吸収スペクトルチャートを図23に示す。
Example 23 Production of Phthalocyanine Compounds, Specific Examples (2-29) to Specific Examples (2-32) Isomeric Mixtures 4,7-bis (4- (2-phenoxyethoxy) butyl)-in Example 1 Specific Example (2-) was conducted in the same manner as in Example 1 except that 2.73 g of 4-ethoxy-7-hexyl-1,3-diiminoisoindoline was used instead of 5.30 g of 1,3-diiminoisoindoline. 29) to 2.15 g of a dark green substance were obtained as an isomer mixture having the structure shown in Examples (2-32).
The obtained compound was confirmed by LC-MS to be the target compound from the agreement of m / z of each component.
The toluene solution of the compound thus obtained showed a maximum absorption at 751.0 nm, and the gram extinction coefficient was 1.48 × 10 5 mL / g · cm. FIG. 23 shows this absorption spectrum chart.
[実施例24] フタロシアニン系化合物、具体例(2-33)~具体例(2-36)異性体混合物の製造
実施例23における三塩化バナジウム0.39gの代わりに塩化第一銅0.25gを使用した以外は実施例23と同様にして具体例(2-33)~具体例(2-36)で示される構造の異性体混合物として緑色物質2.12gを得た。 
得られた化合物は、LC-MSにて各成分の m/zの一致より目的の化合物であることを確認した。
 このようにして得られた化合物のトルエン溶液は720.0nmに極大吸収を示し、グラム吸光係数は2.00×10mL/g・cmであった。この吸収スペクトルチャートを図24に示す。
[Example 24] Preparation of phthalocyanine-based compound, specific examples (2-33) to specific examples (2-36) Isomer mixture: Instead of 0.39 g of vanadium trichloride in Example 23, 0.25 g of cuprous chloride was used. A green substance (2.12 g) was obtained as a mixture of isomers having the structures shown in Specific Examples (2-33) to (2-36) in the same manner as in Example 23 except for using it.
The obtained compound was confirmed by LC-MS to be the target compound from the agreement of m / z of each component.
The toluene solution of the compound thus obtained showed a maximum absorption at 720.0 nm, and the gram extinction coefficient was 2.00 × 10 5 mL / g · cm. FIG. 24 shows the absorption spectrum chart.
[比較例1] 比較例化合物(a)の合成
Figure JPOXMLDOC01-appb-C000054
Comparative Example 1 Synthesis of Comparative Example Compound (a)
Figure JPOXMLDOC01-appb-C000054
 実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに4,7-ビス(4-メトキシメチル)-1,3-ジイミノイソインドリン2.33gを使用した以外は実施例1と同様にして深緑色物質1.63gを得た。 
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z 931M+)
・元素分析値:実測値(C:61.85%、H:5.16%、N:11.99%);
理論値(C:61.87%、H:5.19%、N:12.02%)
 このようにして得られた化合物のトルエン溶液は733.0nmに極大吸収を示し、グラム吸光係数は1.30×10mL/g・cmであった。この吸収スペクトルチャートを図25に示す。
4.7-bis (4-methoxymethyl) -1,3 was used instead of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1. 1.63 g of a dark green substance was obtained in the same manner as in Example 1 except that 2.33 g of diiminoisoindoline was used.
The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 931M +)
Elemental analysis value: actual measurement value (C: 61.85%, H: 5.16%, N: 11.99%);
Theoretical value (C: 61.87%, H: 5.19%, N: 12.02%)
The toluene solution of the compound thus obtained showed a maximum absorption at 733.0 nm, and the gram extinction coefficient was 1.30 × 10 5 mL / g · cm. FIG. 25 shows this absorption spectrum chart.
[比較例2] 比較例化合物(b)の合成
Figure JPOXMLDOC01-appb-C000055
Comparative Example 2 Synthesis of Comparative Example Compound (b)
Figure JPOXMLDOC01-appb-C000055
 実施例1における4,7-ビス(4-(2-フェノキシエトキシ)ブチル)-1,3-ジイミノイソインドリン5.30gの代わりに4,7-ビス(4-メトキシオクチル)-1,3-ジイミノイソインドリン4.30を使用した以外は実施例1と同様にして緑色物質15.8gを得た。 
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z 1716M+)
・元素分析値:実測値(C:72.70%、H:9.35%、N:6.55%);
理論値(C:72.73%、H:9.39%、N:6.52%)
 このようにして得られた化合物のトルエン溶液は737.5nmに極大吸収を示し、グラム吸光係数は1.05×10mL/g・cmであった。この吸収スペクトルチャートを図26に示す。
4,7-bis (4-methoxyoctyl) -1,3 was used in place of 5.30 g of 4,7-bis (4- (2-phenoxyethoxy) butyl) -1,3-diiminoisoindoline in Example 1. 15.8 g of a green substance was obtained in the same manner as in Example 1 except that 4.30 of diiminoisoindoline was used.
The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1716M +)
Elemental analysis value: actual measurement value (C: 72.70%, H: 9.35%, N: 6.55%);
Theoretical value (C: 72.73%, H: 9.39%, N: 6.52%)
The toluene solution of the compound thus obtained showed a maximum absorption at 737.5 nm, and the gram extinction coefficient was 1.05 × 10 5 mL / g · cm. FIG. 26 shows this absorption spectrum chart.
[比較例3] 比較例化合物(d)の合成
Figure JPOXMLDOC01-appb-C000056
Comparative Example 3 Synthesis of Comparative Example Compound (d)
Figure JPOXMLDOC01-appb-C000056
 特開1999-152413号の比較例1に記載の化合物(d)を得た。具体的には上記化合物(c)を10.0g、塩化銅(I)0.921g、DBU 4.63mL、アミルアルコール100mLを混合した後、150℃で10時間撹拌し、メタノール300mLを添加、析出物をろ取、乾燥して茶色粉末0.32gを得た。
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS:(EI)m/z 1352M+)
 このようにして得られた化合物のトルエン溶液は847.0nmに極大吸収を示し、グラム吸光係数は1.57×10mL/g・cmであった。この吸収スペクトルチャートを図27に示す
Compound (d) described in Comparative Example 1 of JP-A-1999-152413 was obtained. Specifically, 10.0 g of the above compound (c), 0.921 g of copper (I) chloride, 4.63 mL of DBU, and 100 mL of amyl alcohol were mixed, and the mixture was stirred at 150 ° C. for 10 hours. The substance was collected by filtration and dried to obtain 0.32 g of brown powder.
The obtained compound was confirmed to be the target compound from the following analysis results.
MS: (EI) m / z 1352M +)
The toluene solution of the compound thus obtained showed a maximum absorption at 847.0 nm, and the gram extinction coefficient was 1.57 × 10 5 mL / g · cm. This absorption spectrum chart is shown in FIG.
[溶解度]
 上記実施例で製造した本発明のフタロシアニン化合物は芳香族有機溶媒(例えば、ベンゼン、トルエン、キシレン、メシチレン等)に対する溶解度が高い。また極性有機溶媒(アセトン、酢酸エチル、炭酸プロピレン、シクロペンタノン等)に対する溶解度も高い。
シクロペンタノンに対する溶解度を下記方法で測定した。結果を表2に示す。
[solubility]
The phthalocyanine compound of the present invention produced in the above examples has high solubility in aromatic organic solvents (for example, benzene, toluene, xylene, mesitylene, etc.). It also has high solubility in polar organic solvents (acetone, ethyl acetate, propylene carbonate, cyclopentanone, etc.).
The solubility in cyclopentanone was measured by the following method. Table 2 shows the results.
(溶解度測定法) 
 フタロシアニン化合物約1gに、総重量が約5gになるようにシクロペンタノンを加え、超音波を約30分照射し、その後室温で二時間撹拌して、約20wt%の分散液を調製した。この分散液をメンブランフィルタ(0.2μm)で濾過し、得られた濾物を60℃の乾燥器で1時間乾燥後、濾物の重量を測定した。
 フタロシアニン化合物の溶剤に対する溶解度を、以下の式で表した。 
溶解度(wt%)=(W0-W1)/W0
 なお、W0:処理前のフタロシアニン化合物の正確な重量、W1:乾燥後の濾物(フタロシアニン系化合物の溶解残分)の重量である。フィルタに濾物が残余しなかった場合は、溶解度は 20wt%以上とした。
 実施例の化合物はいずれも比較例の化合物と比較してシクロペンタノンに対する溶解性が高かった。
(Solubility measurement method)
Cyclopentanone was added to about 1 g of the phthalocyanine compound so that the total weight became about 5 g, and the mixture was irradiated with ultrasonic waves for about 30 minutes, and then stirred at room temperature for 2 hours to prepare a dispersion of about 20 wt%. This dispersion was filtered with a membrane filter (0.2 μm), and the obtained residue was dried in a dryer at 60 ° C. for 1 hour, and the weight of the residue was measured.
The solubility of the phthalocyanine compound in the solvent was represented by the following formula.
Solubility (wt%) = (W0−W1) / W0
W0 is the exact weight of the phthalocyanine compound before the treatment, and W1 is the weight of the filter cake (dissolution residue of the phthalocyanine compound) after the drying. When no residue was left on the filter, the solubility was set to 20 wt% or more.
Each of the compounds of the examples had higher solubility in cyclopentanone than the compound of the comparative example.
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
[可視光透過率] 
 本発明のフタロシアニン系化合物及び比較例化合物の可視光透過率を、下記測定法により測定した。結果を表3に示す。
 また、実施例6、実施例12、実施例15、実施例16で製造した本発明のフタロシアニン系化合物および比較例1の化合物の透過スペクトルの比較を図28、実施例20、実施例22で製造した本発明のナフタロシアニン系化合物および比較例3の化合物の透過スペクトルの比較を図29に示す。
[Visible light transmittance]
The visible light transmittance of the phthalocyanine compound of the present invention and the comparative compound was measured by the following measurement method. Table 3 shows the results.
In addition, the transmission spectra of the phthalocyanine-based compound of the present invention produced in Example 6, Example 12, Example 15, and Example 16 and the compound of Comparative Example 1 were compared in FIG. 28, Example 20, and Example 22. FIG. 29 shows a comparison of the transmission spectra of the naphthalocyanine compound of the present invention and the compound of Comparative Example 3 obtained.
(可視光透過率測定法) 
 100mLメスフラスコに、各フタロシアニン系化合物1.000mgと約90mLのクロロホルムを入れ、超音波を30分間照射した後、室温で2時間静置した。その後、溶液のメニスカスがメスフラスコの標線と一致するようにクロロホルムを添加して10mg/Lのフタロシアニン溶液を調製した。このように調製した溶液を 1cm角の石英製セルに入れ、分光光度計( 日立製作所社製:Spectrophotometer U-3500)を用いて吸収スペクトルを測定した。
 このようにして測定した吸収スペクトルより、近赤外領域の吸収極大波長における吸光度が1.0、すなわち透過率が10%となるように換算をおこない透過スペクトルを得た。この透過スペクトルの460nmおよび610nmにおける透過率を表3に示す。比較例 1・2と本発明のフタロシアニン系化合物(実施例1~19、実施例23および実施例24)を比較して、460nmにおける透過率はほぼ同等であるが、610nmにおける透過率は向上した。
 また、比較例3と本発明のナフタロシアニン系化合物(実施例21および実施例22)を比較していずれの波長における透過率についても改善した。
(Visible light transmittance measurement method)
1.000 mg of each phthalocyanine compound and about 90 mL of chloroform were put into a 100 mL volumetric flask, irradiated with ultrasonic waves for 30 minutes, and allowed to stand at room temperature for 2 hours. Thereafter, chloroform was added so that the meniscus of the solution coincided with the marked line of the volumetric flask to prepare a 10 mg / L phthalocyanine solution. The solution thus prepared was placed in a 1 cm square quartz cell, and the absorption spectrum was measured using a spectrophotometer (Spectrophotometer U-3500, manufactured by Hitachi, Ltd.).
From the absorption spectrum thus measured, conversion was performed so that the absorbance at the absorption maximum wavelength in the near infrared region was 1.0, that is, the transmittance was 10%, and a transmission spectrum was obtained. Table 3 shows the transmittance at 460 nm and 610 nm of this transmission spectrum. Comparing Comparative Examples 1 and 2 with the phthalocyanine compounds of the present invention (Examples 1 to 19, Example 23 and Example 24), the transmittance at 460 nm is almost the same, but the transmittance at 610 nm is improved. .
Further, the transmittance at any wavelength was improved by comparing Comparative Example 3 with the naphthalocyanine-based compound of the present invention (Example 21 and Example 22).
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
[実施例25] 熱線遮蔽フィルムの製造
 実施例1で製造したフタロシアニン系化合物、具体例(1-167)5g、アクリル樹脂LP-45M(製品名、綜研化学株式会社製)50g、メチルエチルケトン20g、トルエン20gを混合撹拌して、樹脂組成物を製造した。
 透明基材としての厚さ100μmのポリエチレンテレフタレートフィルム(PETフィルム)に、上記樹脂組成物を厚さ2.5μmとなるようにバー塗布し、その後100℃で3分間乾燥した。
さらに、PETフィルムの他方の面(樹脂組成物を塗布していない面)に、透明なアクリル共重合系の粘着剤を厚さが20μmとなるようバー塗布し、100℃で3分間乾燥硬化させた後、粘着剤面に剥離フィルムを貼着し、熱線遮蔽フィルムを製造した。
[Example 25] Production of heat ray shielding film 5 g of phthalocyanine-based compound produced in Example 1, specific example (1-167), 50 g of acrylic resin LP-45M (product name, manufactured by Soken Chemical Co., Ltd.), 20 g of methyl ethyl ketone, toluene 20 g was mixed and stirred to produce a resin composition.
The above resin composition was applied to a 100 μm thick polyethylene terephthalate film (PET film) as a transparent substrate by a bar so as to have a thickness of 2.5 μm, and then dried at 100 ° C. for 3 minutes.
Further, a transparent acrylic copolymer-based pressure-sensitive adhesive was applied to the other surface of the PET film (the surface to which the resin composition was not applied) so as to have a thickness of 20 μm, and dried and cured at 100 ° C. for 3 minutes. After that, a release film was attached to the surface of the pressure-sensitive adhesive to produce a heat ray shielding film.
[実施例26] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例2で製造した化合物、具体例(1-178)を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[実施例27] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例3で製造した化合物、具体例(1-165)を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[Example 26] Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 2 and the specific example (1-178) Was used in the same manner as in Example 25 to produce a heat ray shielding film.
[Example 27] Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 3 and the specific example (1-165) Was used in the same manner as in Example 25 to produce a heat ray shielding film.
[実施例28] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例4で製造した化合物、具体例(2-37)~具体例(2-40)混合物を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[実施例29] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例5で製造した化合物、具体例(1-170)を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[Example 28] Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 4 and the specific example (2-37) -Specific Example (2-40) A heat ray shielding film was produced in the same manner as in Example 25 except that the mixture was used.
[Example 29] Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 5 and the specific example (1-170) Was used in the same manner as in Example 25 to produce a heat ray shielding film.
[実施例30] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例6で製造した化合物、具体例(1-171)を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[実施例31] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例7で製造した化合物、具体例(1-174)を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[Example 30] Production of heat ray shielding film In Example 25, the phthalocyanine-based compound produced in Example 1, the compound produced in Example 6 instead of the specific example (1-167), and the specific example (1-171) Was used in the same manner as in Example 25 to produce a heat ray shielding film.
[Example 31] Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 7 and the specific example (1-174) Was used in the same manner as in Example 25 to produce a heat ray shielding film.
[実施例32] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例8で製造した化合物、具体例(1-175)を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。

[実施例33] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例9で製造した化合物、具体例(2-1)~具体例(2-4)を含む混合物を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[Example 32] Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 8 and the specific example (1-175) Was used in the same manner as in Example 25 to produce a heat ray shielding film.

[Example 33] Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 9 and the specific example (2-1) A heat ray shielding film was manufactured in the same manner as in Example 25, except that a mixture containing the specific examples (2-4) was used.
[実施例34] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例10で製造した化合物、具体例(2-5)~具体例(2-8)を含む混合物を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[実施例35] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例11で製造した化合物、具体例(2-9)~具体例(2-12)を含む混合物を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[Example 34] Production of heat ray shielding film In Example 25, the phthalocyanine-based compound produced in Example 1, the compound produced in Example 10 instead of the specific example (1-167), and the specific example (2-5) A heat ray shielding film was produced in the same manner as in Example 25 except that a mixture containing the specific examples (2-8) was used.
Example 35 Production of Heat Shielding Film In Example 25, the phthalocyanine-based compound produced in Example 1 was replaced by the compound produced in Example 11 in place of Specific Example (1-167), and Specific Example (2-9) A heat ray shielding film was produced in the same manner as in Example 25, except that a mixture containing the specific examples (2-12) was used.
[実施例36] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例12で製造した化合物、具体例(2-13)~具体例(2-16)を含む混合物を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[実施例37] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例13で製造した化合物、具体例(1-156)を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
Example 36 Production of Heat Shielding Film In Example 25, the phthalocyanine-based compound produced in Example 1 was replaced with the compound produced in Example 12 instead of Specific Example (1-167), and Specific Example (2-13) A heat ray shielding film was produced in the same manner as in Example 25 except that a mixture containing the specific examples (2-16) was used.
[Example 37] Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 13 and the specific example (1-156) Was used in the same manner as in Example 25 to produce a heat ray shielding film.
[実施例38] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例14で製造した化合物、具体例(1-310)の化合物を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[Example 38] Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1, the compound produced in Example 14 instead of the specific example (1-167), specific example (1-310) A heat ray shielding film was produced in the same manner as in Example 25 except that the compound of the formula (1) was used.
[実施例39] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例15で製造した化合物、具体例(1-311)を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[Example 39] Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 15 and the specific examples (1-311) Was used in the same manner as in Example 25 to produce a heat ray shielding film.
[実施例40] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例16で製造した化合物、具体例(1-179)を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[実施例41] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例17で製造した化合物、具体例(1-182)を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[Example 40] Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 16 and the specific example (1-179) Was used in the same manner as in Example 25 to produce a heat ray shielding film.
[Example 41] Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 17 and the specific example (1-182) Was used in the same manner as in Example 25 to produce a heat ray shielding film.
[実施例42] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例18で製造した化合物、具体例(1-158)を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[実施例43] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例19で製造した化合物、具体例(1-183)を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[Example 42] Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 18 and the specific example (1-158) Was used in the same manner as in Example 25 to produce a heat ray shielding film.
[Example 43] Production of heat ray shielding film In Example 25, the compound prepared in Example 19 instead of the phthalocyanine-based compound produced in Example 1 and Specific Example (1-167), and specific example (1-183) Was used in the same manner as in Example 25 to produce a heat ray shielding film.
[実施例44] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例20で製造した化合物、具体例(2-17)を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[実施例45] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例21で製造した化合物、具体例(2-21)を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[Example 44] Production of heat ray shielding film In Example 25, the phthalocyanine-based compound produced in Example 1, the compound produced in Example 20 instead of the specific example (1-167), and the specific example (2-17) Was used in the same manner as in Example 25 to produce a heat ray shielding film.
[Example 45] Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1, the compound produced in Example 21 instead of the specific example (1-167), specific example (2-21) Was used in the same manner as in Example 25 to produce a heat ray shielding film.
[実施例46] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例22で製造した化合物、具体例(2-25)を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[実施例47] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例23で製造した化合物、具体例(2-29)~具体例(2-32)混合物を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[Example 46] Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1, the compound produced in Example 22 instead of the specific example (1-167), specific example (2-25) Was used in the same manner as in Example 25 to produce a heat ray shielding film.
Example 47 Production of Heat Shielding Film In Example 25, the phthalocyanine-based compound produced in Example 1 was replaced with the compound produced in Example 23 in place of Concrete Example (1-167), and Concrete Example (2-29) Specific Example (2-32) A heat ray shielding film was produced in the same manner as in Example 25 except that the mixture was used.
[実施例48] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに実施例24で製造した化合物、具体例(2-33)~具体例(2-36)混合物を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[比較例4] 熱線遮蔽フィルムの製造
 実施例25において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)の代わりに比較例1の化合物(a)を使用した以外は実施例25と同様に操作を行って、熱線遮蔽フィルムを製造した。
[Example 48] Production of heat ray shielding film In Example 25, instead of the phthalocyanine-based compound produced in Example 1 and the specific example (1-167), the compound produced in Example 24, and specific example (2-33) -Specific Example (2-36) A heat ray shielding film was produced in the same manner as in Example 25 except that the mixture was used.
[Comparative Example 4] Production of heat ray shielding film In Example 25, the compound (a) of Comparative Example 1 was used in place of the phthalocyanine-based compound produced in Example 1, specific example (1-167). By performing the same operation as in Example 25, a heat ray shielding film was produced.
 上記実施例25~48及び比較例4で製造した熱線遮蔽フィルムについて、以下の項目を評価した。結果を下記の表4に示す。
 なお、評価試験においては、製造した熱線遮蔽フィルムの剥離フィルムを剥がし、5cm×5cm×3mm厚のガラス板に圧着させて試験片を作成し、これを用いた。
The following items were evaluated for the heat ray shielding films manufactured in Examples 25 to 48 and Comparative Example 4. The results are shown in Table 4 below.
In addition, in the evaluation test, the peeling film of the manufactured heat ray shielding film was peeled off, and pressed against a glass plate having a thickness of 5 cm × 5 cm × 3 mm to prepare a test piece, which was used.
[Tts]
 測定機器として(株)日立製作所製、U-3500型自記分光光度計を使用し、JIS R3106「板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法」に準じ、合わせガラスサンプルのTtsを測定した。
なお、Tts(Total solar energy transmitted through a glazing)は、全日射透過率を表し、値が小さいほど熱遮蔽能力が高いことを示す。
[Tts]
Using a U-3500 type self-recording spectrophotometer manufactured by Hitachi, Ltd. as a measuring device, laminated glass according to JIS R3106 "Test method for transmittance, reflectance, emissivity and solar heat gain of flat glass" The Tts of the sample was measured.
In addition, Tts (Total solar energy transmitted through a glazing) represents the total solar transmittance, and a smaller value indicates a higher heat shielding ability.
[耐光・耐熱性] 
 耐光性試験は、試験片の吸収スペクトルを分光光度計(日立製作所(株)社製:Spectrophotometer U-3500で測定し、これを耐光性試験前スペクトルとした。次に、試験前スペクトルを測定した試験片を、キセノン耐光性試験機(東洋精機社製:サンテストXLS+)を用い550W/hの光を200時間照射した。光照射した試験片の吸収スペクトルを分光光度計にて測定し、耐光性試験後スペクトルとした。 
 耐熱性試験は、上記と同様にして試験前スペクトルを測定した試験片を、恒温器(ヤマト科学社製:IG400)で温度100℃にて200時間加熱処理した。この加熱処理した試験片の吸収スペクトルを分光光度計にて測定し、耐熱性試験後のスペクトルとした。
 このようにして測定した耐光・耐熱性試験前後の各スペクトルにおいて、400~900nmの範囲の吸光度値を積分し、耐光・耐熱試験前後でその値の差を算出した。 
 耐光・耐熱試験前後での吸光度の差ΔEを、下記の式で表した。
ΔΕ(%)={Σ(E1の400~900nm)-Σ(E2の400~900nm)}/Σ(E1の400~900nm)×100 
 なお、E1:試験前スペクトル、E2:試験後スペクトル、Σ:吸光度値の積分である。
ΔΕの値が大きいほど、耐光・耐熱試験前後でのスペクトル変化が大きい。 
表4示されるように、比較例4に比べて実施例の熱線遮蔽フィルムはいずれも熱遮蔽能力、耐光性ならびに耐熱性において優れた特性を示した。特に、耐光性、耐熱性において非常に優れていた。
[Light and heat resistance]
In the light fastness test, the absorption spectrum of the test piece was measured with a spectrophotometer (Spectrophotometer U-3500, manufactured by Hitachi, Ltd.), and this was used as the spectrum before the light fastness test. The test specimen was irradiated with 550 W / h light for 200 hours using a xenon light resistance tester (manufactured by Toyo Seiki: Suntest XLS +), and the absorption spectrum of the irradiated test specimen was measured with a spectrophotometer, and the light resistance was measured. The spectrum was taken after the sex test.
In the heat resistance test, a test piece whose spectrum was measured in the same manner as above was subjected to a heat treatment at a temperature of 100 ° C. for 200 hours using a thermostat (IG400, manufactured by Yamato Scientific Co., Ltd.). The absorption spectrum of the heat-treated test piece was measured with a spectrophotometer, and was taken as the spectrum after the heat resistance test.
In each spectrum measured before and after the light resistance / heat resistance test, the absorbance value in the range of 400 to 900 nm was integrated, and the difference between the values before and after the light resistance / heat resistance test was calculated.
The difference ΔE in absorbance before and after the light resistance / heat resistance test was represented by the following equation.
ΔΕ (%) = {(400 to 900 nm of E1) − {(400 to 900 nm of E2)} / Σ (400 to 900 nm of E1) × 100
In addition, E1: spectrum before test, E2: spectrum after test, Δ: integration of absorbance value.
The larger the value of ΔΕ, the larger the spectrum change before and after the light and heat resistance test.
As shown in Table 4, all of the heat ray shielding films of the examples exhibited characteristics superior in heat shielding ability, light resistance and heat resistance as compared with Comparative Example 4. In particular, it was very excellent in light resistance and heat resistance.
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
[実施例49]合わせガラス用中間膜及び合わせガラスの作製
<合わせガラス用中間膜の作製>
 有機エステル可塑剤として、トリエチレングリコール-ジ-2-エチルヘキサノエート40gに、実施例1で製造したフタロシアニン系化合物、具体例(1-167)0.013gを溶解させ、この溶液を、ポリビニルブチラール樹脂(商品名:BH-3、積水化学工業社製)100gに添加し、ミキシングロールで充分に溶融混練した後、押出機を用いて押出して、厚み0.76mmの中間膜を得た。
 <合わせガラスの作製>
 上記中間膜を、100mm×100mmのサイズに切断し、JIS R3208 に準拠した熱線吸収板ガラス(縦100mm×横100mm×厚さ2.0mm)で挟み込み、ゴムバック内に入れ、2.6kPaの真空度で20分間脱気した後、脱気したままオーブン内に移し、更に90℃で30分間保持して真空プレスした。その後、オートクレーブにて温度130℃、圧力1.3MPaの条件で20分間圧着し、合わせガラスのサンプルを得た。
[Example 49] Production of interlayer film for laminated glass and production of laminated glass <Production of interlayer film for laminated glass>
As an organic ester plasticizer, 0.013 g of the phthalocyanine-based compound produced in Example 1 (specific example (1-167)) was dissolved in 40 g of triethylene glycol-di-2-ethylhexanoate, and this solution was treated with polyvinyl alcohol. It was added to 100 g of butyral resin (trade name: BH-3, manufactured by Sekisui Chemical Co., Ltd.), melted and kneaded sufficiently with a mixing roll, and extruded using an extruder to obtain an intermediate film having a thickness of 0.76 mm.
<Preparation of laminated glass>
The above intermediate film is cut into a size of 100 mm × 100 mm, sandwiched between heat ray absorbing plate glasses (100 mm long × 100 mm wide × 2.0 mm thick) according to JIS R3208, placed in a rubber bag, and vacuumed at 2.6 kPa. After being degassed for 20 minutes, it was transferred to an oven while being degassed, and further kept at 90 ° C. for 30 minutes and vacuum-pressed. Then, it was pressure-bonded in an autoclave at a temperature of 130 ° C. and a pressure of 1.3 MPa for 20 minutes to obtain a sample of laminated glass.
[実施例50]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例2で製造した化合物、具体例(1-178)に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[Example 50] Production of interlayer film for laminated glass and production of laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1 and the compound (1-167) produced in Example 2 were produced in Example 2, and the specific example (1 Except for changing to -178), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
[実施例51]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例3で製造した化合物、具体例(1-165)に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[実施例52]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例4で製造した化合物、具体例(2-37)~具体例(2-40)混合物に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[Example 51] Production of interlayer film for laminated glass and production of laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1, the specific example (1-167), the compound produced in Example 3, and the specific example (1 Except for changing to -165), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
[Example 52] Production of interlayer film for laminated glass and production of laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1, the specific example (1-167), the compound produced in Example 4 and the specific example (2) -37) to Specific Example (2-40) An intermediate film for laminated glass and a laminated glass were produced in the same manner as in Example 49 except that the mixture was changed to a mixture.
[実施例53]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例5で製造した化合物、具体例(1-170)に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[実施例54]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例6で製造した化合物、具体例(1-171)に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[Example 53] Preparation of interlayer film for laminated glass and production of laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1, concrete example (1-167), compound produced in Example 5 and concrete example (1 Except having changed to -170), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
[Example 54] Production of interlayer film for laminated glass and production of laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1 and the compound (1-167) produced in Example 6 were produced in Example 6; Except for changing to -171), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
[実施例55]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例7で製造した化合物、具体例(1-174)に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[実施例56]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例8で製造した化合物、具体例(1-175)に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[Example 55] Production of interlayer film for laminated glass and production of laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1, specific example (1-167) was produced in Example 7, and the compound produced in Example 7 was modified. Except for changing to -174), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
[Example 56] Production of interlayer film for laminated glass and production of laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1, specific example (1-167), the compound produced in Example 8, and specific example (1 Except for changing to -175), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
[実施例57]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例9製造した化合物、具体例(2-1)~具体例(2-4)に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[実施例58]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例10で製造した化合物、具体例(2-5)~具体例(2-8)を含む混合物に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[Example 57] Preparation of interlayer film for laminated glass and laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1, specific example (1-167) was prepared in Example 9; An interlayer film for laminated glass and a laminated glass were produced in the same manner as in Example 49 except that 1) to Specific Example (2-4) were changed.
[Example 58] Production of interlayer film for laminated glass and production of laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1, concrete example (1-167) was produced in Example 10 and compound (2). The same operation as in Example 49 was performed, except that the mixture was changed to a mixture containing -5) to specific examples (2-8), to produce an interlayer film for laminated glass and a laminated glass.
[実施例59]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例11で製造した化合物、具体例(2-9)~具体例(2-12)を含む混合物に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[実施例60]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例12で製造した化合物、具体例(2-13)~具体例(2-16)を含む混合物に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[Example 59] Production of interlayer film for laminated glass and production of laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1 and the compound (1-167) produced in Example 11 were produced in Example 11; The same operation as in Example 49 was carried out except that the mixture was changed to the mixture containing -9) to specific example (2-12), to produce an interlayer film for laminated glass and a laminated glass.
[Example 60] Preparation of interlayer film for laminated glass and production of laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1, the specific example (1-167), the compound produced in Example 12, and the specific example (2) An intermediate film for laminated glass and a laminated glass were produced in the same manner as in Example 49, except that the mixture was changed to a mixture containing -13) to specific examples (2-16).
[実施例61]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例13で製造した化合物、具体例(1-156)に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[実施例62]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例14で製造した化合物、具体例(1-310)に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[Example 61] Preparation of interlayer film for laminated glass and laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1, the specific example (1-167), the compound produced in Example 13, and the specific example (1 Except for changing to -156), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
[Example 62] Production of interlayer film for laminated glass and production of laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1, the specific example (1-167) was produced in Example 14 and the compound obtained in Example 14 was modified. Except for changing to -310), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
[実施例63]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例15で製造した化合物、具体例(1-311)に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[実施例64]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例16で製造した化合物、具体例(1-179)に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[Example 63] Preparation of interlayer film for laminated glass and production of laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1 was replaced with the compound (1-167) produced in Example 15 and the compound produced in Example 15 was produced. Except having changed to -311), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
[Example 64] Production of interlayer film for laminated glass and production of laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1, the specific example (1-167) was produced in Example 16 and the compound obtained in Example 16 was produced. Except for changing to -179), the same operation as in Example 49 was performed to produce an interlayer film for laminated glass and a laminated glass.
[実施例65]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例17で製造した化合物、具体例(1-182)に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[実施例66]合わせガラス用中間膜及び合わせガラスの作製
実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例18で製造した化合物、具体例(1-158)に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[Example 65] Production of interlayer film for laminated glass and production of laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1 was replaced with the compound (1-167) produced in Example 17 and the compound produced in Example 17 was produced. Except for changing to -182), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
[Example 66] Production of interlayer film for laminated glass and production of laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1 and the specific example (1-167) produced in Example 18 and the compound produced in Example 18 were produced. Except having changed to -158), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
[実施例67]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例19で製造した化合物、具体例(1-183)に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[実施例68]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例20で製造した化合物、具体例(2-17)に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[Example 67] Production of interlayer film for laminated glass and production of laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1, a specific example (1-167), a compound produced in Example 19, and a specific example (1 Except for changing to -183), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
[Example 68] Production of interlayer film for laminated glass and production of laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1, a specific example (1-167) produced in Example 20, and a compound obtained in Example 20 (2) An interlayer film for laminated glass and a laminated glass were produced in the same manner as in Example 49 except for changing to (-17).
[実施例69]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例21で製造した化合物、具体例(2-21)に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[実施例70]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例22で製造した化合物、具体例(2-25)に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[Example 69] Production of interlayer film for laminated glass and production of laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1, a specific example (1-167), a compound produced in Example 21 and a specific example (2) Except having changed to -21), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
[Example 70] Preparation of interlayer film and laminated glass for laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1, specific example (1-167) was produced in Example 22. Except having changed to -25), the same operation as in Example 49 was carried out to produce an interlayer film for laminated glass and a laminated glass.
[実施例71]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例23で製造した化合物、具体例(2-29)~具体例(2-32)混合物に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
 [実施例72]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を実施例24で製造した化合物、具体例(2-33)~具体例(2-36)混合物に変更した以外は実施例49と同様に操作を行って合わせガラス用中間膜及び合わせガラスを作製した。
[Example 71] Preparation of interlayer film for laminated glass and production of laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1, specific example (1-167) was produced in Example 23, and the compound was produced in Example 23. -29) to Specific Example (2-32) An intermediate film for laminated glass and a laminated glass were produced in the same manner as in Example 49 except that the mixture was changed to the mixture.
[Example 72] Production of interlayer film for laminated glass and production of laminated glass In Example 49, the phthalocyanine-based compound produced in Example 1, the specific example (1-167) was produced in Example 24, and the specific example (2) -33) to Specific Example (2-36) An intermediate film for laminated glass and a laminated glass were produced in the same manner as in Example 49, except that the mixture was changed to the mixture.
[比較例5]合わせガラス用中間膜及び合わせガラスの作製
 実施例49において、実施例1で製造したフタロシアニン系化合物、具体例(1-167)を比較例1の化合物(a)に変更した以外は実施例49と同様に操作を行って、合わせガラス用中間膜及び合わせガラスを作製した。
[Comparative Example 5] Production of interlayer film for laminated glass and laminated glass In Example 49, except that the phthalocyanine-based compound produced in Example 1 and specific example (1-167) were changed to compound (a) of Comparative Example 1 By performing the same operation as in Example 49, an interlayer film for laminated glass and a laminated glass were produced.
 上記実施例49~72及び比較例5で作製した合わせガラスのサンプルについて、以下の項目を評価した。結果を下記の表5に示す。
[Tts]
 測定機器として(株)日立製作所製、U-3500型自記分光光度計を使用し、JIS R3106「板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法」に準じ、合わせガラスサンプルのTtsを測定した。
The following items were evaluated for the laminated glass samples produced in Examples 49 to 72 and Comparative Example 5. The results are shown in Table 5 below.
[Tts]
Using a U-3500 type self-recording spectrophotometer manufactured by Hitachi, Ltd. as a measuring device, laminated glass according to JIS R3106 "Test method for transmittance, reflectance, emissivity and solar heat gain of flat glass" The Tts of the sample was measured.
[可視光線透過率]
 測定機器として(株)日立製作所製、U-3500型自記分光光度計を使用し、JIS R 3212「自動車用安全ガラス試験方法」に準じ、合わせガラスサンプルの波長380~780nmにおける可視光線透過率を測定した。
[Visible Light Transmittance]
Using a U-3500 self-recording spectrophotometer manufactured by Hitachi, Ltd. as a measuring device, the visible light transmittance of a laminated glass sample at a wavelength of 380 to 780 nm is measured in accordance with JIS R 3212 “Testing method for safety glass for automobiles”. It was measured.
[耐光・耐熱性] 
 耐光性試験は、合わせガラスの吸収スペクトルを分光光度計(日立製作所(株)社製:Spectrophotometer U-3500で測定し、これを耐光性試験前スペクトルとした。次に、試験前スペクトルを測定した合わせガラスをキセノン耐光性試験機(東洋精機社製:サンテストXLS+)を用い550W/hの光を200時間照射した。この光照射した後の合わせガラスの吸収スペクトルを分光光度計にて測定し、耐光性試験後スペクトルとした。 
 耐熱性試験は、上記と同様にして試験前スペクトルを測定した合わせガラスを、恒温器(ヤマト科学社製:IG400)で温度100℃にて200時間加熱処理した。この加熱処理した合わせガラスの吸収スペクトルを分光光度計にて測定し、耐熱性試験後のスペクトルとした。
 このようにして測定した耐光・耐熱性試験前後の各スペクトルにおいて、400~900nmの範囲の吸光度値を積分し、耐光・耐熱性試験前後でその値の差を算出した。 
 耐光・耐熱性試験前後での吸光度の差ΔEを、下記の式で表した。
ΔΕ(%)={Σ(E1の400~900nm)-Σ(E2の400~900nm)}/Σ(E1の400~900nm)×100 
なお、E1:試験前スペクトル、E2:試験後スペクトル、Σ:吸光度値の積分である。 
 ΔΕの値が大きいほど、耐光・耐熱試験前後でのスペクトル変化が大きい。 
表5に示されるように、比較例5に比べて本願発明のフタロシアニン化合物を用いた実施例49~72の合わせガラスは、いずれも熱遮蔽能力、可視光線透過率、耐光性ならびに耐熱性において優れた特性を示した。特に、耐光性、耐熱性において優れていた。
[Light and heat resistance]
In the light fastness test, the absorption spectrum of the laminated glass was measured with a spectrophotometer (Spectrophotometer U-3500, manufactured by Hitachi, Ltd.), and this was used as the spectrum before the light fastness test. The laminated glass was irradiated with 550 W / h light for 200 hours using a xenon light resistance tester (manufactured by Toyo Seiki Co., Ltd .: Suntest XLS +), and the absorption spectrum of the laminated glass after the light irradiation was measured with a spectrophotometer. And the spectrum after the light resistance test.
In the heat resistance test, the laminated glass for which the spectrum before the test was measured in the same manner as described above was subjected to a heat treatment at a temperature of 100 ° C. for 200 hours using a thermostat (IG400 manufactured by Yamato Scientific Co., Ltd.). The absorption spectrum of the heat-treated laminated glass was measured with a spectrophotometer, and the measured spectrum was taken as the spectrum after the heat resistance test.
In each spectrum measured before and after the light resistance / heat resistance test, the absorbance value in the range of 400 to 900 nm was integrated, and the difference between the values before and after the light resistance / heat resistance test was calculated.
The difference ΔE in absorbance before and after the light resistance / heat resistance test was represented by the following equation.
ΔΕ (%) = {(400 to 900 nm of E1) − {(400 to 900 nm of E2)} / Σ (400 to 900 nm of E1) × 100
In addition, E1: spectrum before test, E2: spectrum after test, Δ: integration of absorbance value.
The larger the value of ΔΕ, the larger the spectrum change before and after the light and heat resistance test.
As shown in Table 5, all of the laminated glasses of Examples 49 to 72 using the phthalocyanine compound of the present invention were superior to Comparative Example 5 in heat shielding ability, visible light transmittance, light resistance and heat resistance. Characteristics. In particular, it was excellent in light resistance and heat resistance.
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
本発明のフタロシアニン系化合物は、近赤外領域に強い吸収を有し、可視光領域の吸収が非常に小さく、有機溶剤や樹脂に対する溶解性が良好であり、また耐光性、耐熱性などにおいて非常に高い耐久性を有する。 
 そのため、近赤外線カットフィルター、セキュリティ用に用いられる透明インク、自動車や建物の窓などに用いられる熱線遮蔽フィルム、合わせガラス用中間膜、赤外線感熱記録材料、プラスチックのレーザー溶着などの用途に用いられる近赤外線吸収色素として非常に有用である。
The phthalocyanine-based compound of the present invention has strong absorption in the near-infrared region, very low absorption in the visible light region, good solubility in organic solvents and resins, and extremely low light resistance and heat resistance. Has high durability.
Therefore, near-infrared cut filters, transparent inks used for security, heat ray shielding films used for automobiles and building windows, interlayer films for laminated glass, infrared thermosensitive recording materials, laser welding plastics, etc. Very useful as an infrared absorbing dye.
 この出願は、2018年10月5日に出願された日本出願特願2018-190515号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims the priority based on Japanese Patent Application No. 2018-190515 filed on Oct. 5, 2018, the entire disclosure of which is incorporated herein.

Claims (26)

  1.  一般式(1)で表されるフタロシアニン系化合物。
    Figure JPOXMLDOC01-appb-C000001
    〔式(1)中、A1~A8は、それぞれ独立して、水素原子、置換基を有するもしくは非置換のアリール基、酸素原子を含有する置換基、硫黄原子を含有する置換基、窒素原子を含有する置換基を表し、X1~X8は、それぞれ独立して、水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基、置換基を有するもしくは非置換のアリールオキシ基、置換基を有するもしくは非置換のアルキルチオ基、置換基を有するもしくは非置換のアリールチオ基を表し、互いに結合して芳香環もしくは複素環を形成しても良い。Mは2個の水素原子、2価の金属または3価もしくは4価の金属の誘導体を表し、n1~n8はそれぞれ独立して、0~12の整数を表す。ただし、n1~n8がすべて0であることは無く、さらに全てのA1~A8がアルコキシ基である場合、n1~n8は、すべてが同時に1であることは無く、すべてが同時に8であることも無い。〕
    A phthalocyanine compound represented by the general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), A1 to A8 each independently represent a hydrogen atom, a substituted or unsubstituted aryl group, a substituent containing an oxygen atom, a substituent containing a sulfur atom, or a nitrogen atom. X1 to X8 each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted Represents an unsubstituted aryloxy group, a substituted or unsubstituted alkylthio group, or a substituted or unsubstituted arylthio group, which may be bonded to each other to form an aromatic ring or a heterocyclic ring. M represents two hydrogen atoms, a divalent metal or a derivative of a trivalent or tetravalent metal, and n1 to n8 each independently represent an integer of 0 to 12. However, when all of n1 to n8 are not 0 and all of A1 to A8 are alkoxy groups, all of n1 to n8 are not 1 at the same time and may be 8 at the same time. There is no. ]
  2.  A1~A8において置換基を有するもしくは非置換のアリール基が、フェニル基またはナフチル基である請求項1のフタロシアニン系化合物。 The phthalocyanine compound according to claim 1, wherein the substituted or unsubstituted aryl group in A1 to A8 is a phenyl group or a naphthyl group.
  3.  A1~A8において置換基を有するアリール基が、1~5個のアルコキシ基を有するフェニル基または1~5個のアルコキシ基を有するナフチル基である請求項1のフタロシアニン系化合物。 The phthalocyanine compound according to claim 1, wherein the aryl group having a substituent in A1 to A8 is a phenyl group having 1 to 5 alkoxy groups or a naphthyl group having 1 to 5 alkoxy groups.
  4.  A1~A8において置換基を有するアリール基が、1~5個のアルコキシ基を有するフェニル基または1~5個のアルコキシ基を有するナフチル基で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基、置換基を有するもしくは非置換のアリールオキシ基、置換基を有するもしくは非置換のアルキルチオ基もしくは置換基を有するもしくは非置換のアリールチオ基である請求項1のフタロシアニン系化合物。 In A1 to A8, the aryl group having a substituent is a phenyl group having 1 to 5 alkoxy groups or a naphthyl group having 1 to 5 alkoxy groups, and X1 to X8 are a hydrogen atom, a halogen atom, a substituent Or unsubstituted alkyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aryloxy group, substituted or unsubstituted alkylthio group or substituted or unsubstituted group 2. The phthalocyanine compound according to claim 1, which is an arylthio group.
  5.  A1~A8が水素原子、酸素原子を含有する置換基または置換基を有するもしくは非置換のフェニル基で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基で、かつn1~n8の4個が0である請求項1のフタロシアニン系化合物。 A1 to A8 represent a hydrogen atom, an oxygen atom-containing substituent or a substituted or unsubstituted phenyl group, and X1 to X8 represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, 2. The phthalocyanine compound according to claim 1, which is a substituted or unsubstituted alkoxy group, and wherein four of n1 to n8 are 0.
  6.  A1~A8が水素原子、酸素原子を含有する置換基または置換基を有するもしくは非置換のフェニル基で、かつX1とX5、X2とX6、X3とX7、X4とX8が互いに結合してベンゼン環を形成し、かつn1~n8の4個が0である請求項1のフタロシアニン系化合物。 A1 to A8 are a hydrogen atom, an oxygen atom-containing substituent or a substituted or unsubstituted phenyl group, and X1 and X5, X2 and X6, X3 and X7, X4 and X8 are bonded to each other to form a benzene ring. 2. The phthalocyanine-based compound according to claim 1, wherein 4 of n1 to n8 are 0.
  7.  A1~A8において酸素原子を含有する置換基が、置換基を有するもしくは非置換アルコキシ基、置換基を有するもしくは非置換のアリールオキシ基である請求項1のフタロシアニン系化合物。 The phthalocyanine compound according to claim 1, wherein the substituent containing an oxygen atom in A1 to A8 is a substituted or unsubstituted alkoxy group, or a substituted or unsubstituted aryloxy group.
  8.  A1~A8において酸素原子を含有する置換基が、1~5個のアルコキシ基を有するフェニルオキシ基または1~5個のアルコキシ基を有するナフチルオキシ基で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基、置換基を有するもしくは非置換のアリールオキシ基、置換基を有するもしくは非置換のアルキルチオ基もしくは置換基を有するもしくは非置換のアリールチオ基である請求項1のフタロシアニン系化合物。 In A1 to A8, the substituent containing an oxygen atom is a phenyloxy group having 1 to 5 alkoxy groups or a naphthyloxy group having 1 to 5 alkoxy groups, and X1 to X8 are a hydrogen atom or a halogen atom. Having a substituted or unsubstituted alkyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aryloxy group, substituted or unsubstituted alkylthio group or substituted group 2. The phthalocyanine compound according to claim 1, which is an unsubstituted arylthio group.
  9.  A1~A8において酸素原子を含有する置換基が、1~5個のアルコキシ基を有するフェニルオキシ基または1~5個のアルコキシ基を有するナフチルオキシ基で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基もしくは置換基を有するもしくは非置換のアリールオキシ基で、かつn1~n8が3~6である請求項1のフタロシアニン系化合物。 In A1 to A8, the substituent containing an oxygen atom is a phenyloxy group having 1 to 5 alkoxy groups or a naphthyloxy group having 1 to 5 alkoxy groups, and X1 to X8 are a hydrogen atom or a halogen atom. A substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group or a substituted or unsubstituted aryloxy group, and n1 to n8 are 3 to 6. Phthalocyanine compounds.
  10.  A1~A8において酸素原子を含有する置換基が、総炭素数3~8個のアルコキシアルコキシ基で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基、置換基を有するもしくは非置換のアリールオキシ基、置換基を有するもしくは非置換のアルキルチオ基、置換基を有するもしくは非置換のアリールチオ基である請求項1のフタロシアニン系化合物。 In A1 to A8, the substituent containing an oxygen atom is an alkoxyalkoxy group having a total of 3 to 8 carbon atoms, and X1 to X8 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group or a substituent. The phthalocyanine-based compound according to claim 1, which is a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted alkylthio group, or a substituted or unsubstituted arylthio group. Compound.
  11.  A1~A8において酸素原子を含有する置換基が、総炭素数3~6個のアルコキシアルコキシ基で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基もしくは置換基を有するもしくは非置換のアリールオキシ基で、かつn1~n8が3~6である請求項1のフタロシアニン系化合物。
    In A1 to A8, the substituent containing an oxygen atom is an alkoxyalkoxy group having a total of 3 to 6 carbon atoms, and X1 to X8 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group or a substituent. 2. The phthalocyanine compound according to claim 1, which is a substituted or unsubstituted alkoxy group or a substituted or unsubstituted aryloxy group, and wherein n1 to n8 are 3 to 6.
  12.  A1~A8において酸素原子を含有する置換基が、1~5個のアルキルチオ基を有するフェニルオキシ基または1~5個のアルキルチオ基を有するナフチルオキシ基で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基、置換基を有するもしくは非置換のアリールオキシ基、置換基を有するもしくは非置換のアルキルチオ基もしくは置換基を有するもしくは非置換のアリールチオ基である請求項1のフタロシアニン系化合物。 In A1 to A8, the substituent containing an oxygen atom is a phenyloxy group having 1 to 5 alkylthio groups or a naphthyloxy group having 1 to 5 alkylthio groups, and X1 to X8 are a hydrogen atom or a halogen atom. Having a substituted or unsubstituted alkyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aryloxy group, substituted or unsubstituted alkylthio group or substituted group 2. The phthalocyanine compound according to claim 1, which is an unsubstituted arylthio group.
  13.  A1~A8において酸素原子を含有する置換基が、1~5個のアルキルチオ基を有するフェニルオキシ基または1~5個のアルキルチオ基を有するナフチルオキシ基で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基もしくは置換基を有するもしくは非置換のアリールオキシ基で、かつn1~n8が2~6である請求項1のフタロシアニン系化合物。 In A1 to A8, the substituent containing an oxygen atom is a phenyloxy group having 1 to 5 alkylthio groups or a naphthyloxy group having 1 to 5 alkylthio groups, and X1 to X8 are a hydrogen atom or a halogen atom. A substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group or a substituted or unsubstituted aryloxy group, and n1 to n8 are 2 to 6. Phthalocyanine compounds.
  14.  A1~A8において硫黄原子を含有する置換基が、置換基を有するもしくは非置換のアルキルチオ基または、置換基を有するもしくは非置換のアリールチオ基である請求項1のフタロシアニン系化合物。 The phthalocyanine compound according to claim 1, wherein the substituent containing a sulfur atom in A1 to A8 is a substituted or unsubstituted alkylthio group or a substituted or unsubstituted arylthio group.
  15.  A1~A8において硫黄原子を含有する置換基が、1~5個のアルコキシ基を有するフェニルチオ基または1~5個のアルコキシ基を有するナフチルチオ基で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基、置換基を有するもしくは非置換のアリールオキシ基、置換基を有するもしくは非置換のアルキルチオ基もしく置換基を有するもしくは非置換のアリールチオ基である請求項1のフタロシアニン系化合物。 In A1 to A8, the substituent having a sulfur atom is a phenylthio group having 1 to 5 alkoxy groups or a naphthylthio group having 1 to 5 alkoxy groups, and X1 to X8 are a hydrogen atom, a halogen atom, A substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted alkylthio group or a substituted or The phthalocyanine compound according to claim 1, which is an unsubstituted arylthio group.
  16.  A1~A8において窒素原子を含有する置換基が、置換基を有するもしくは非置換のモノアルキルアミノ基、置換基を有するもしくは非置換のジアルキルアミノ基、置換基を有するもしくは非置換のモノアリールアミノ基、置換基を有するもしくは非置換のジアリールアミノ基もしくは置換基を有するもしくは非置換のアルキルアリールアミノ基である請求項1のフタロシアニン系化合物。 In A1 to A8, the substituent containing a nitrogen atom is a substituted or unsubstituted monoalkylamino group, a substituted or unsubstituted dialkylamino group, or a substituted or unsubstituted monoarylamino group. The phthalocyanine compound according to claim 1, which is a substituted or unsubstituted diarylamino group or a substituted or unsubstituted alkylarylamino group.
  17.  A1~A8が酸素原子を含む複素環、硫黄原子を含む複素環または窒素原子を含む複素環で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基、置換基を有するもしくは非置換のアリールオキシ基、置換基を有するもしくは非置換のアルキルチオ基もしくは置換基を有するもしくは非置換のアリールチオ基である請求項1のフタロシアニン系化合物。 A1 to A8 are a heterocycle containing an oxygen atom, a heterocycle containing a sulfur atom or a heterocycle containing a nitrogen atom, and X1 to X8 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group or a substituent 2. The phthalocyanine-based compound according to claim 1, which is a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted alkylthio group or a substituted or unsubstituted arylthio group. Compound.
  18.  A1~A8が置換基を有するもしくは非置換のフラン環、置換基を有するもしくは非置換のテトラヒドロフラン環、置換基を有するもしくは非置換の1,3-ジオキソラン環、置換基を有するもしくは非置換の1,3-ジオキサン環、置換基を有するもしくは非置換の1,4-ジオキサン環、置換基を有するもしくは非置換のチオフェン環、置換基を有するもしくは非置換のテトラヒドロチオフェン環、置換基を有するもしくは非置換のチアン環、置換基を有するもしくは非置換のピロール環、置換基を有するもしくは非置換のピロリジン環、置換基を有するもしくは非置換のピリジン環、置換基を有するもしくは非置換のピぺリジン環、置換基を有するもしくは非置換のイミダゾール環、置換基を有するもしくは非置換のオキサゾール環、置換基を有するもしくは非置換のピラジン環もしくは置換基を有するもしくは非置換のチアゾール環で、かつX1~X8が水素原子、ハロゲン原子、置換基を有するもしくは非置換のアルキル基、置換基を有するもしくは非置換のアルコキシ基、置換基を有するもしくは非置換のアリールオキシ基、置換基を有するもしくは非置換のアルキルチオ基もしくは置換基を有するもしくは非置換のアリールチオ基である請求項1のフタロシアニン系化合物。 A1 to A8 each have a substituted or unsubstituted furan ring, a substituted or unsubstituted tetrahydrofuran ring, a substituted or unsubstituted 1,3-dioxolane ring, a substituted or unsubstituted 1 , 3-dioxane ring, substituted or unsubstituted 1,4-dioxane ring, substituted or unsubstituted thiophene ring, substituted or unsubstituted tetrahydrothiophene ring, substituted or unsubstituted Substituted thiane ring, substituted or unsubstituted pyrrole ring, substituted or unsubstituted pyrrolidine ring, substituted or unsubstituted pyridine ring, substituted or unsubstituted pyridyl ring A substituted or unsubstituted imidazole ring, a substituted or unsubstituted oxazole ring A substituted or unsubstituted pyrazine ring or a substituted or unsubstituted thiazole ring, and X1 to X8 each have a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group or a substituted group; The phthalocyanine compound according to claim 1, which is an unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted alkylthio group or a substituted or unsubstituted arylthio group.
  19.  A1~A8が(a1)水素原子、(a2)置換基を有するもしくは非置換のアリール基、(a3)酸素原子を含有する置換基、(a4)硫黄原子を含有する置換基、(a5)窒素原子を含有する置換基から選択される2種の組み合わせであり、
     A1~A8が前記(a2)~(a5)のいずれか1つに含まれる2種の置換基の組み合わせである場合、2種の前記置換基は同一でも異なっていてもよい、請求項1~18のフタロシアニン系化合物。
    A1 to A8 each represent (a1) a hydrogen atom, (a2) a substituted or unsubstituted aryl group, (a3) a substituent containing an oxygen atom, (a4) a substituent containing a sulfur atom, (a5) a nitrogen atom. A combination of two selected from substituents containing atoms,
    When A1 to A8 are a combination of two types of substituents contained in any one of the above (a2) to (a5), the two types of the substituents may be the same or different. 18. A phthalocyanine compound of 18.
  20.  X1~X8がフッ素原子、塩素原子または臭素原子である請求項1のフタロシアニン系化合物。 2. The phthalocyanine compound according to claim 1, wherein X1 to X8 are a fluorine atom, a chlorine atom or a bromine atom.
  21.  X1とX5、X2とX6、X3とX7、X4とX8が互いに結合して複素環を形成した請求項1、2、3、7、14、16、19のいずれかに記載のフタロシアニン系化合物。 The phthalocyanine compound according to any one of claims 1, 2, 3, 7, 14, 16, and 19, wherein X1 and X5, X2 and X6, X3 and X7, and X4 and X8 are bonded to each other to form a heterocyclic ring.
  22.  Mが2個の水素原子、Pd、Cu、Zn、Pt、Ni、TiO、Co、Fe、Mn、Sn、SnCl、AlCl、AlOH、Si(OH)、VOまたはInClである、請求項1~21のいずれかに記載のフタロシアニン系化合物。 M is two hydrogen atoms, Pd, Cu, Zn, Pt , Ni, TiO, Co, Fe, Mn, Sn, SnCl 2, AlCl, a AlOH, Si (OH) 2, VO , or InCl, claim 1 22. The phthalocyanine compound according to any one of to 21.
  23.  請求項1~22のいずれかに記載のフタロシアニン系化合物の少なくとも1種を含有する近赤外線吸収材料。ただし、光学センサー用光学フィルター用途を除く。 A near-infrared absorbing material comprising at least one phthalocyanine compound according to any one of claims 1 to 22. However, this excludes the use of optical filters for optical sensors.
  24.  請求項1~22のいずれかに記載のフタロシアニン系化合物の少なくとも1種を含有する熱線遮蔽材。 A heat ray shielding material containing at least one of the phthalocyanine compounds according to any one of claims 1 to 22.
  25.  熱線遮蔽フィルムである、請求項24の熱線遮蔽材。 The heat ray shielding material according to claim 24, which is a heat ray shielding film.
  26.  合わせガラス用中間膜である、請求項25の熱線遮蔽材。 26. The heat ray shielding material according to claim 25, which is an interlayer film for laminated glass.
PCT/JP2019/039063 2018-10-05 2019-10-03 Phthalocyanine compound and use thereof WO2020071470A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020550531A JP7431744B2 (en) 2018-10-05 2019-10-03 Phthalocyanine compounds and their uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018190515 2018-10-05
JP2018-190515 2018-10-05

Publications (1)

Publication Number Publication Date
WO2020071470A1 true WO2020071470A1 (en) 2020-04-09

Family

ID=70055236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039063 WO2020071470A1 (en) 2018-10-05 2019-10-03 Phthalocyanine compound and use thereof

Country Status (2)

Country Link
JP (1) JP7431744B2 (en)
WO (1) WO2020071470A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022130773A1 (en) 2020-12-17 2022-06-23 富士フイルム株式会社 Composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor
WO2022131191A1 (en) 2020-12-16 2022-06-23 富士フイルム株式会社 Composition, membrane, optical filter, solid image pickup element, image display apparatus, and infrared ray sensor
WO2022172980A1 (en) * 2021-02-12 2022-08-18 東洋インキScホールディングス株式会社 Near-infrared absorbing pigment, near-infrared absorbing composition, and optical filter

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01269592A (en) * 1988-04-21 1989-10-27 Daicel Chem Ind Ltd Optical information recording medium
JPH02138382A (en) * 1988-04-01 1990-05-28 Mitsui Toatsu Chem Inc Alkylphthalocyanine near-infrared absorber, and display and recording material containing same
JPH02502099A (en) * 1987-02-13 1990-07-12 イギリス国 substituted phthalocyanine
JPH02296885A (en) * 1989-05-12 1990-12-07 Mitsui Toatsu Chem Inc Near infrared absorber, and displaying and recording material using the same absorber
JPH0362878A (en) * 1988-12-15 1991-03-18 Mitsui Toatsu Chem Inc Near-infrared ray absorbing agent and displaying and recording material using the same agent
WO2002096913A1 (en) * 2001-05-25 2002-12-05 Gentian As Substituted di(hydroxy/alkoxy)silicon phthalocyanines and their uses
JP2003516421A (en) * 1999-12-08 2003-05-13 ジェンシャン・アクティーゼルスカブ Substituted phthalocyanines and their precursors
WO2018186489A1 (en) * 2017-04-07 2018-10-11 山本化成株式会社 Phthalocyanine compound and use of same
JP2018180167A (en) * 2017-04-07 2018-11-15 Jsr株式会社 Composition for solid state image sensors, infrared-shielding film and solid state image sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502099A (en) * 1987-02-13 1990-07-12 イギリス国 substituted phthalocyanine
JPH02138382A (en) * 1988-04-01 1990-05-28 Mitsui Toatsu Chem Inc Alkylphthalocyanine near-infrared absorber, and display and recording material containing same
JPH01269592A (en) * 1988-04-21 1989-10-27 Daicel Chem Ind Ltd Optical information recording medium
JPH0362878A (en) * 1988-12-15 1991-03-18 Mitsui Toatsu Chem Inc Near-infrared ray absorbing agent and displaying and recording material using the same agent
JPH02296885A (en) * 1989-05-12 1990-12-07 Mitsui Toatsu Chem Inc Near infrared absorber, and displaying and recording material using the same absorber
JP2003516421A (en) * 1999-12-08 2003-05-13 ジェンシャン・アクティーゼルスカブ Substituted phthalocyanines and their precursors
WO2002096913A1 (en) * 2001-05-25 2002-12-05 Gentian As Substituted di(hydroxy/alkoxy)silicon phthalocyanines and their uses
WO2018186489A1 (en) * 2017-04-07 2018-10-11 山本化成株式会社 Phthalocyanine compound and use of same
JP2018180167A (en) * 2017-04-07 2018-11-15 Jsr株式会社 Composition for solid state image sensors, infrared-shielding film and solid state image sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131191A1 (en) 2020-12-16 2022-06-23 富士フイルム株式会社 Composition, membrane, optical filter, solid image pickup element, image display apparatus, and infrared ray sensor
WO2022130773A1 (en) 2020-12-17 2022-06-23 富士フイルム株式会社 Composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor
WO2022172980A1 (en) * 2021-02-12 2022-08-18 東洋インキScホールディングス株式会社 Near-infrared absorbing pigment, near-infrared absorbing composition, and optical filter

Also Published As

Publication number Publication date
JPWO2020071470A1 (en) 2021-09-02
JP7431744B2 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
JP7128803B2 (en) Phthalocyanine compound and use thereof
JP7431744B2 (en) Phthalocyanine compounds and their uses
US8758897B2 (en) Schiff base type color conversion layer, light absorbing layer, and filter
US20070293666A1 (en) Optical Filter and Its Applications, and Porphyrin Compound Used in Optical Filter
JP2010111750A (en) Light-absorbing composition
CN111684319A (en) Optical filter and imaging device
JP6306003B2 (en) Tetraphenylnaphthalocyanine compound, production method and use thereof
JP6866574B2 (en) Electrochromic compounds and electrochromic compositions
JP5484841B2 (en) Phthalocyanine compounds
JP2011094127A (en) Heat-absorbing material
JP5289813B2 (en) Phthalocyanine compounds
WO2006123786A1 (en) Cyanine coloring matter and optical recording medium
JP4798690B2 (en) Method for producing dithiolate-based metal complex
KR20110053981A (en) Phthalocyanine compound
JP3565071B2 (en) Phthalocyanine compound, intermediate thereof, method for producing the compound and use thereof
WO2005007753A1 (en) Cyanine dye
JP7128804B2 (en) Naphthalocyanine compound, production method and use thereof
JPWO2008035533A1 (en) Optical filter containing squarylium dye-metal complex compound and filter for display panel using the same
JP6486768B2 (en) Filter comprising phthalocyanine compound
JP7315442B2 (en) Squarylium compound and near-infrared absorbing material containing said compound
JP6634147B2 (en) Oxocarbon-based compound, resin composition and ink composition
JP3940786B2 (en) Infrared absorption filter and filter for plasma display panel
JP2007197492A (en) Immonium compound and use thereof
JP2016177090A (en) Near-infrared cut filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869792

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550531

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19869792

Country of ref document: EP

Kind code of ref document: A1