WO2020071235A1 - 移動体の制御装置、移動体の制御方法及びプログラム - Google Patents

移動体の制御装置、移動体の制御方法及びプログラム

Info

Publication number
WO2020071235A1
WO2020071235A1 PCT/JP2019/037853 JP2019037853W WO2020071235A1 WO 2020071235 A1 WO2020071235 A1 WO 2020071235A1 JP 2019037853 W JP2019037853 W JP 2019037853W WO 2020071235 A1 WO2020071235 A1 WO 2020071235A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
target area
robot
sound
moving body
Prior art date
Application number
PCT/JP2019/037853
Other languages
English (en)
French (fr)
Inventor
一生 本郷
津崎 亮一
ウィリアム アレクサンドル コヌス
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP19869130.5A priority Critical patent/EP3862838B1/en
Priority to US17/280,647 priority patent/US20210339401A1/en
Publication of WO2020071235A1 publication Critical patent/WO2020071235A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0217Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with energy consumption, time reduction or distance reduction criteria
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/003Controls for manipulators by means of an audio-responsive input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0003Home robots, i.e. small robots for domestic use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices

Definitions

  • the present disclosure relates to a moving body control device, a moving body control method, and a program.
  • Patent Literature 1 relates to a control device of a mobile robot that can perform voice recognition without being disturbed by an operation sound generated by the user. Is described.
  • Patent Document 1 does not consider optimizing the operation of the robot in consideration of these.
  • a noise estimating unit that estimates noise in a target region for suppressing noise based on a position of a sound source and a volume generated by the sound source, and reduces noise in the target region based on the estimated noise. Therefore, there is provided a control device for a moving object, comprising a control unit for controlling the operation of the moving object.
  • a control method of a moving object which includes controlling the operation of the moving object.
  • a means for estimating noise in the target region for suppressing noise, and for reducing noise in the target region based on the estimated noise based on the position of the sound source and the volume generated by the sound source.
  • a program is provided for controlling the operation of a mobile object and for causing a computer to function as the computer.
  • FIG. 1 is a schematic diagram illustrating a schematic configuration of hardware of a robot to which a system according to an embodiment of the present disclosure is applied. It is a schematic diagram which shows the structure of a control apparatus and its periphery.
  • FIG. 9 is a schematic diagram illustrating an attenuation amount A during which sound is transmitted from a point P1 separated by r0 [m] from a point sound source to a point P2 [m] separated by r [m]. It is a schematic diagram which shows the example of the operation
  • FIG. 9 is a schematic diagram for explaining a method of suppressing the maximum value of noise when the robot performs an operation of moving both arms.
  • FIG. 9 is a schematic diagram for explaining a method of suppressing the maximum value of noise when the robot performs an operation of moving both arms.
  • FIG. 9 is a schematic diagram for explaining a method of suppressing the maximum value of noise when the robot performs an operation of moving both arms.
  • FIG. 5 is a schematic diagram for explaining a method of suppressing the maximum value of noise when the robot is located near the baby from the beginning in FIG. 4.
  • FIG. 5 is a schematic diagram for explaining a method of suppressing the maximum value of noise when the robot is located near the baby from the beginning in FIG. 4.
  • FIG. 4 is a schematic diagram illustrating a case where a noise source is outside the window and a door is provided between an indoor robot and an infant.
  • FIG. 9 is a schematic view showing an example in which a cover is attached to the robot in order to suppress the degree to which noise generated from the robot itself is transmitted. It is a schematic diagram which shows cooperation of a some apparatus. Similar to FIG. 9, a schematic diagram showing an example of canceling noise when communication is not possible or when task priority is set high and it is difficult to reduce noise when there are multiple devices.
  • FIG. FIG. 3 is a schematic
  • FIG. 1 illustrates a robot 600 that can move on the ground as a moving object
  • the present disclosure is applicable to various moving objects such as a drone, a robot cleaner, and a communication robot.
  • the robot 600 includes wheels 500 for movement, a body 510, arms 520 and 530, and a head 540.
  • the wheel 500 is driven by the actuator 550.
  • the robot 600 moves.
  • the arms 520 and 530 have multiple joints, and each joint is provided with an actuator 552.
  • the arms 520 and 530 are bent by driving the actuator 552.
  • Each joint of the arms 520 and 530 is provided with an encoder for detecting the angle of the joint.
  • an encoder that detects the rotation angle of the wheel 500 is provided near the wheel 500.
  • a hand 560 is provided at the tip of the arms 520 and 530.
  • the hand 560 is driven by the drive of the actuator 554, and applies a force such as gripping an object and pressing the object.
  • the force sensor 570 is provided at the tip of the hand 560, and detects a gripping force when the hand 560 grips an object and a pressure when the hand 560 presses an object.
  • the torque sensor 580 is provided for each joint and detects the torque of each joint.
  • the force sensor 570 may be provided in each of the hands 560 of both hands.
  • the body 510 includes a control device 400, a RAM 402, a ROM 404, an external storage device 406, a bus 408, and a bus interface (bus I / F) 409.
  • the external storage device 406 is a storage device connected from outside the robot 600.
  • the control device 400, the RAM 402, the ROM 404, the external storage device 406, and the bus I / F 409 are connected via a bus 408.
  • the head 540 is provided with an image input device 418, a sound input device 420, a sound output device 422, and a communication device 426. These devices are also connected to the control device 400 of the body 510 via the bus I / F 409.
  • the image input device 418 may include a camera
  • the sound input device 420 may include an auditory sensor, a microphone, and the like.
  • the sound output device 422 includes a speaker.
  • the communication device 426 performs wireless communication with another device. Note that the method of wireless communication is not particularly limited.
  • the image input device 418, the sound input device 420, the sound output device 422, and the communication device 426 may be provided other than on the head.
  • FIG. 2 is a schematic diagram illustrating a configuration of the control device 400 and its peripherals.
  • the control device 400 includes a target region setting unit 432 that sets a target region, a noise estimation unit 434 that estimates noise in the target region, a noise model 435, and a noise estimated by the noise estimation unit 434.
  • An actuator control unit 436 for controlling the actuator by means of a controller, an operation input unit 438 for inputting operation information by a user from a user interface (UI) 424, a position information acquisition unit (GPS) 440 for acquiring position information, and an output from the sound output device 422
  • UI user interface
  • GPS position information acquisition unit
  • a sound output control unit 442 for controlling a sound to be played, a communication command unit 444, and a route planning unit 446 are provided.
  • Each component of the control device 400 shown in FIG. 2 can be composed of a central processing unit such as a CPU and a program (software) or a circuit (hardware) for causing the CPU to function.
  • the target area setting unit 432 sets a target area for reducing noise.
  • the target area setting unit 432 sets the target area based on the operation information input to the operation input unit 438, the image information input from the image input device 418, the position information acquired by the position information acquisition unit 440, and the like.
  • the noise estimation unit 434 estimates the noise in the target area set by the target area setting unit 432 based on the noise model 435.
  • the noise estimation unit 434 estimates the volume (dB), frequency, and the like of noise in the target area.
  • the noise model 435 is a model of the noise generated when each actuator included in the robot 600 is driven.
  • the actuator control section 436 controls the actuator based on the noise estimated by the noise estimation section 434.
  • the actuator control unit 436 performs control such that the noise of the actuator is equal to or less than an allowable upper limit value in the target area.
  • the upper limit value may be different depending on the day of the week (Sunday, national holiday, weekday), or may be different depending on the time zone, location, and the like. These upper limit values may be stored in the ROM 404 or the external storage device 406 in advance, or may be set by the user from the user interface (UI) 424.
  • the sound input device 420 it is possible to measure how much noise is generated when each part of the robot 600 is driven. For example, when the robot 600 is a life-size humanoid, the shoulder is separated from the sound input device 420 by about 200 mm. If it is an elbow, it is separated from the sound input device 420 by about 400 mm. These distances depend on the structure of the robot 600, and it is possible to grasp as a model how long the robot 600 itself will be in accordance with the current posture.
  • a noise model 450 is constituted by the data of the distance between the actuator and the sound input device 420 and the noise amount obtained in this manner. These data may be stored in a data table or the like of the ROM 404 and used for calculations, or may be provided with a machine learning unit and used for estimating noise generation using machine learning.
  • the input values include “on / off status of each actuator, current position of each actuator, distance information from the sound input device 420 for each actuator, current position and orientation of the robot, position of the target area, Using at least one of the current speed of each actuator, the current acceleration of each actuator, and load information such as luggage held by the robot, the output value is "noise information reaching the sound input device 420 of the robot, Any one or more of the noise information that has reached the region and the noise information (such as frequency conversion) extracted by performing processing from the noise information can be used.
  • the noise estimation unit 434 can estimate the noise in the target area using the noise model 450.
  • the distance to the source can be obtained by the same method.
  • an object (tool) held by the robot 600 is a source of noise
  • the state of holding the object is photographed by the image input device 418 or the like in addition to the current model of the robot 600 itself.
  • the approximate size of the object and the position where the sound is generated can be roughly specified, and the approximate distance can be obtained.
  • the distance to the sound source can be measured by capturing the sound source with the image input device 418, for example.
  • the principle of FIG. 3 is used to determine the noise level that can be heard at the current position (point P1) and the position where the robot 600 has voluntarily moved a known distance from the current position (point P1). Since the amount of attenuation is determined by comparing the noise levels at the point P2), the position of the noise source can be determined using Expression (1).
  • the noise may be detected by focusing on a specific frequency band by Fourier transform so as not to be disturbed by noise from other sources.
  • FIG. 4 is a schematic diagram illustrating an example of an operation performed by the robot 600.
  • the target region represents a region that is a target for suppressing noise when the robot 600 performs an operation.
  • the target area is an area near the baby 10.
  • the target area setting unit 432 of the robot 600 sets an area near the baby 10 as the target area.
  • the target area includes living objects such as people and animals (especially sleeping people, sleeping animals, people reading and watching videos, and people calling), rooms, and specific spaces.
  • home appliances such as telephones and smart speakers, and specific coordinates (positions) may be set.
  • the robot 600 moves to the target area near the baby 10 and then moves the arms 520 and 530 to grasp the object 20, the baby 10 may be woken up by the operation sound of the arms 520 and 530.
  • the noise estimating unit 434 of the robot 600 estimates the noise at the position of the baby 10 when the arms 520 and 530 are moved.
  • the actuator control unit 436 controls the operation of the robot 600 based on the noise estimated by the noise estimation unit 434.
  • the robot 600 uses the sound input device 420 attached to the head 540 to link the operation sound of the hand or each part with its own operation. Furthermore, since the approximate distance to the noise source can be estimated by the operation unit, how much sound is actually obtained by the sound input device 420 and how much noise is generated at a distance from the sound input device 420 Is derived.
  • FIGS. 5A and 5B are schematic diagrams for explaining a method of suppressing the maximum value of noise when the robot 600 performs an operation of moving both arms.
  • the vertical axis represents the volume of noise in the target area
  • the horizontal axis represents time.
  • the solid line indicates the noise of the arm (arms 520 and 530) of the robot 600
  • the broken line indicates the noise of the tire (wheel 500) of the robot 600. It is assumed that the robot 600 approaches the target area before time t1, the arm of the robot 600 grips the object 20 between time t1 and time t2, and moves away from the target area after time t2.
  • 5A and 5B show the upper limit value of the noise in the target area near the baby 10.
  • the upper limit is set in advance as a sound level at which the baby 10 will wake up if the noise in the target area near the baby 10 exceeds that value.
  • the upper limit can be set to 50 to 60 dB.
  • the case where the upper limit is not exceeded only by the noise of the tire is shown.
  • the noise at the position of the baby can be set to the upper limit or less.
  • the calculation is equivalent to solving a constrained optimization problem, and the calculation is to solve a calculation in which an upper limit value of noise is set as a constraint and the operation time of the robot is minimized within the constraint condition.
  • a known Lagrange multiplier method can be used as a method of solving the calculation.
  • FIGS. 6A and 6B are schematic diagrams for explaining a method of suppressing the maximum value of noise when the robot 600 is located near the baby 10 from the beginning.
  • the vertical axis indicates the volume of noise in the target area
  • the horizontal axis indicates time.
  • the noise is transmitted to the baby 10 with almost no attenuation. Therefore, if the robot 600 generates a loud sound near the target area, the sound will be heard as it is by the infant 10 in the target area.
  • noise for movement such as rotation of the wheel 100 is small, it is possible to suppress the maximum value of the noise acting on the target area by performing an operation with noise after the robot 600 has once left the target area. it can.
  • the robot 600 once moves to a position distant from the target region by driving the tires, drives each part of the arm to a position where the object 20 can be grasped, and then returns to the target region. Try to get closer.
  • the robot 600 when the robot 600 reaches a position away from the target area at time t3, the left arm is moved between time t3 and t4, and the right arm is moved between time t5 and t6. Thereby, the noise when the arm is moved can be suppressed below the upper limit. Then, after the time t6, the tire is driven, and after the robot 600 approaches the target area again, the robot 600 performs an operation of moving the tip of the elbow and grasping the object 20. Even if the movement beyond the elbow is performed near the target area, the noise can be suppressed to the upper limit or less. As described above, after the robot 600 approaches the target area again, only the operation of grasping the object 20 may be performed, so that the noise generated in the target area can be suppressed to the upper limit or less.
  • the robot 600 since the robot 600 achieves the intended operation after approaching the target area again, it is possible to drive only the part where noise is generated as little as possible when approaching the target area again. Have a plan to achieve Then, the arm is driven to the posture according to the plan outside the target area so that the noise due to the posture change does not exceed the upper limit.
  • the noise in the target region is set to be equal to or less than the upper limit value with respect to the noise of each part such as the arm of the robot 600 itself.
  • the sound input device 420 attached to the robot 600 not only the noise of the hand and each part but also the noise of an object such as a tool operated by the robot 600 can be acquired and associated with the operation of the robot 600.
  • the robot 600 is holding the tool, and the sound generated when the tool is used is acquired on the robot 600 side by a method such as learning.
  • the content can be reused. For example, in an object such as a musical instrument that emits sound positively in response to an operation, a more silent effect can be exhibited.
  • musical instruments include maracas and tambourines.
  • the position of the noise source is first specified. For example, by using a 3D camera or the like as the image input device 418, the source of noise can be recognized and the distance to the source can be estimated. Furthermore, since the noise level can be acquired with respect to the speed and acceleration at the time of the movement of the tool, the sound obtained by the sound input device 420 is generated by what kind of operation, how much sound is generated, and It can be calculated whether the noise level is low.
  • the distance between the area designated as the target area and the robot 600 is obtained, so that the noise level in the target area can be estimated by using the above-described formula (1).
  • the robot 600 “closes the door”, “closes the window”, and “between the noise source and the target area”. By performing a physical operation such as “the robot 600 stands”, the noise level to the target area can be suppressed.
  • FIG. 7 is a schematic diagram showing a case where the noise source 32 is outside the window 30 outside, the robot 600 and the baby 10 are indoors, and the door 34 is between the robot 600 and the baby 10.
  • the operation purpose of the robot 600 is an operation such as “open the window 30”, and when the noise source 32 is located outside the window, It is assumed that the level of the noise transmitted from the surroundings to the target area increases due to the opening.
  • the transfer function of noise from the source 32 to the target area can be reduced.
  • the robot 600 is configured to suppress the noise more than necessary in advance. Perform the operation. As a result, it is possible to suppress the noise to the target area from exceeding the upper limit.
  • equation (2) if the difference between the sound of A decibel [dB] and the sound of B decibel [dB] is 10 [dB] or more, the amount of increase (or decrease) in the loudness of the noise determined from the left side Is 0.
  • FIG. 8 is a schematic diagram showing an example in which the cover 40 is attached to the robot 600 in order to suppress the degree to which noise generated from the robot 600 itself is transmitted.
  • the cover 40 is preferably made of a sound-absorbing material, but any material can be used as long as a sound insulating effect is obtained. For example, in order to suppress the sound of the wheels 500, it is preferable to attach the cover 40 as long as possible to the ground.
  • FIG. 9 is a schematic diagram showing the cooperation of a plurality of devices.
  • FIG. 9 illustrates a case where one device 610 (for example, a robot cleaner) is a noise source and another device 620 (for example, a smart speaker) is present near a target area when a plurality of devices are present. Is shown.
  • the device 620 includes components such as the sound input device 420, the communication device 426, and the control device 400, like the robot 600, and can estimate the noise level of the target area.
  • the device 610 includes a communication device that communicates with the device 620.
  • the device 620 may send an instruction to the device 610 by wireless communication to lower the noise level.
  • the device 610 that has received the instruction suppresses the noise by, for example, reducing the rotation speed of the actuator.
  • any method such as WiFi, infrared rays, Bluetooth (registered trademark), ZigBee, and 5G may be used. Accordingly, even if the noise source (robot cleaner 610) does not have a function of estimating noise in the target area, it can reduce noise as long as it has a communication function and a function of receiving a remote control operation. Can be.
  • FIG. 10 illustrates a case where a plurality of devices exist as in FIG. 9, when communication cannot be performed, or when the task priority of the device 620 is set high and it is difficult to reduce noise
  • FIG. 14 is a schematic diagram showing an example of canceling the operation.
  • the device 620 having the same configuration as the robot 600 has a digital noise canceling function and reduces noise to a target area.
  • the sound output control unit 442 controls the sound output device 422 on the basis of the noise in the target area estimated by the noise estimation unit 434, so that the sound output device 422 generates a sound and the digital noise canceling is performed. I do.
  • FIG. 11 is a schematic diagram illustrating an example of a walking robot 630.
  • the robot 630 includes a communication device that communicates with the device 620.
  • the walking method can be devised so that the noise is reduced.
  • quadrupedal walking includes galloping, crawling, and trot walking, and a crawl can move quietly but relatively slowly.
  • the device 620 issues an instruction to the robot 630 to change the walking method of the robot 630.
  • communication instruction section 444 causes communication apparatus 426 to transmit an instruction to change the walking method.
  • the robot 630 changes the walking method based on the received command.
  • discomfort can be reduced by emitting a sound of 2 kHz or less from the smart speaker 620 so as to have a noise level similar to that of the device 610.
  • the sound output control unit 442 controls the sound output device 422 based on the frequency band of the target area estimated by the noise estimation unit 434, so that the sound output device 422 generates a sound of 2 kHz or less.
  • the clutch is released in the case of the linear motion while the robot 600 is moving on the wheel 500, the forward movement can be continued only by inertia, and the driving sound of the actuator 550 can be prevented from being generated. , Noise can be reduced.
  • the robot 600 may be a robot having a movement function, a manipulator, or any other type.
  • the present disclosure is applicable to a wide variety of robots such as a cleaning robot, a drone, a mobile manipulator, an industrial manipulator, personal mobility, and a communication robot.
  • the settings for the robot 600 may be set in advance in a shipping state, or may be changed by inputting operation information from a user interface (UI) 424 as desired by an individual. Specifically, it is possible to make settings for reducing noise for individuals or individual animals, or for reducing noise near a specific room.
  • the setting information can be stored in the ROM 404.
  • the information to be set includes the maximum noise level in the target area, information on the target area for which noise must be taken into consideration, operations that must not be performed, frequency information to be concerned about, and the like.
  • instructing the setting it may be input by a tablet, smartphone, PC, or the like equipped with a dedicated application, or may be performed by a dedicated device, voice, gesture, or brain wave. That is, as a setting method, an instruction method for a generally existing robot can be used. Further, when the target person makes an utterance showing discomfort with respect to noise, this is recognized by the sound input device 420, and the upper limit of the target noise level can be set lower. In this way, the settings for the robot 600 can be learned by observing the movements of the person. For example, the user does not care how much noise the user actually pays so as to reduce the noise. The robot 600 may learn based on whether or not the user is trying to suppress noise in such a situation.
  • the constraint condition of the operation of the robot 600 is that the user does not drop the baggage that he or she holds (when the user holds the baggage with both hands, he / she cannot move both hands independently), or does not tilt the baggage he / she holds (liquid (Including a cup) or a constraint condition is given according to the state of the robot.
  • the operation of suppressing noise is performed while maintaining these constraint conditions.
  • target area include the following. ⁇ Sleeping people, babies, animals, people in meetings and conversations (including video conferences, telephone conferences, etc.), robots, people recording and recording, people experimenting with vibration measurement, etc. People watching, playing or singing musical instruments, working, studying, and places: spaces where ceremonial occasions are held, historical, cultural, religious, etc. Spaces with ritual values, etc .: Includes people, animals, and places designated by the person who has the authority to direct the robot, which are conditioned by factors such as time of day, day of the week, season, year, month, and weather. Is also good.
  • the setting of these target areas may be set by the user from a user interface (UI) 424, or may be set on the robot 600 side based on the position information obtained from the position information acquisition unit 440. For example, since the ceremonial hall where the ceremonial occasion is held and the position information are linked, it is possible to set the target area in the ceremonial hall based on the positional information.
  • UI user interface
  • Various methods can be applied for measuring the actual distance to the target area or the noise source. There are various methods, such as a method using the image input device 418 (visible light camera or infrared camera), a ToF sensor, an ultrasonic sensor, a laser sensor, a distance measuring sensor, a GPS, an encoder mounted on a wheel, and the like.
  • the measurement of noise may be linked to devices such as a PC with a microphone, a smart speaker, a smartphone, a tablet, and a robot that are usually installed in a room.
  • devices such as a PC with a microphone, a smart speaker, a smartphone, a tablet, and a robot that are usually installed in a room.
  • a network such as WiFi or BlueTooth (registered trademark) and use the acquired audio data for learning.
  • WiFi registered trademark
  • BlueTooth registered trademark
  • the user can turn his or her body into a wall by operating the part where the sound is generated in the opposite direction to the target area. If it is an arm, only the arm may be turned rearward, or the body may be turned rearward.
  • the sound to be suppressed differs depending on the type of animal in the target area. Animals bought as pets have different frequencies that they are not good at. When these frequencies reach the target area, it is possible to cope with the above-described white noise.
  • a frequency band in which a dog is not good is about 18 KHz
  • a frequency band in which a cat is not good is about 19 KHz
  • a frequency band in which a mouse is not good is about 20 KHz.
  • the noise in the target area is estimated and the robot 600 is controlled based on the estimated noise, no noise is given to a target that does not want to give noise. It is possible to do so.
  • a noise estimating unit that estimates noise in a target area for suppressing noise based on a position of the sound source and a volume generated by the sound source; Based on the estimated noise, to reduce the noise in the target area, a control unit that controls the operation of the moving body,
  • a control device for a moving body comprising: (2) The control device for a moving body according to (1), further including a handling area setting unit configured to set the target area for suppressing noise. (3) Comprising an actuator serving as the sound source, The control unit controls the operation of the actuator based on the estimated noise.
  • the control unit controls the operation at a point separated from the target area and at a point where the noise in the target area is equal to or less than the upper limit,
  • the moving body according to (1) or (2) wherein the control unit controls an operation of arranging a shield that blocks sound between the target area and the sound source based on noise in the target area.
  • Control device controls an operation of arranging a shield that blocks sound between the target area and the sound source based on noise in the target area.
  • Control device controls an operation of arranging a shield that blocks sound between the target area and the sound source based on noise in the target area.
  • Control device (8)
  • the control device for a moving body according to (1) or (2) further including a sound output control unit configured to perform control for outputting a sound for canceling the noise based on the noise in the target area.
  • the control device for a moving body according to (1) or (2), further including a transmission command unit configured to transmit a command to change a walking method of the walking robot, which is the sound source, based on noise in the target area.
  • (11) Estimating noise in a target area for suppressing noise based on a position of the sound source and a volume generated by the sound source; Based on the estimated noise, to control the movement of the moving body to reduce the noise in the target area,
  • a method for controlling a moving object comprising: (12) Means for estimating noise in a target area for suppressing noise based on a position of the sound source and a volume generated by the sound source, Means for controlling the operation of the moving body to reduce the noise in the target area based on the estimated noise, Program to make a computer function as a computer.
  • Control device 432 Target area setting unit 434
  • Noise estimation unit 436 Actuator control unit 442 Sound output control unit 444 Communication command unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulator (AREA)

Abstract

騒音を与えたくない対象に対して、騒音を与えないようにする。本開示によれば、音源の位置と音源が発生する音量に基づいて、騒音を抑制する対象領域における騒音を推定する騒音推定部(434)と、推定した騒音に基づいて、前記対象領域における騒音を低減するため、移動体の動作を制御する制御部(436)と、を備える、移動体の制御装置が提供される。この構成により、騒音を与えたくない対象に対して、騒音を与えないようにすることが可能となる。

Description

移動体の制御装置、移動体の制御方法及びプログラム
 本開示は、移動体の制御装置、移動体の制御方法及びプログラムに関する。
 従来、例えば下記の特許文献1には、自身の発する作動音に阻害されずに音声認識を行うことのできる移動ロボットの制御装置に関し、人間と話す際には作動音が減少するように可動部の動作を制御することが記載されている。
特開2006-95635号公報
 上記特許文献に記載された技術によれば、単に動作速度を遅くするといったことによって、近傍への音量を減らすことができる。しかしながら、全方向、全空間に対して騒音を下げる必要がある状況は稀であり、多くの場合には、騒音を与えたくないと思う対象者や対象空間が存在する。
 そこで、ロボットなどの移動体には、対象へ騒音が届く伝達関数を考慮した上で、騒音を対象へ与えないことと、行うべき作業を全うすることの双方を達成することが求められる。上記特許文献は、これらの課題に対して何ら考慮していない。
 また、騒音として、移動体自身が発生するものの他、移動体の周辺に騒音の発生源が多数存在する場合がある。これらを意識してロボットの動作を最適化することも、上記特許文献1には何ら考慮されていない。
 そこで、騒音を与えたくない対象に対して、騒音を与えないようにすることが求められていた。
 本開示によれば、音源の位置と音源が発生する音量に基づいて、騒音を抑制する対象領域における騒音を推定する騒音推定部と、推定した騒音に基づいて、前記対象領域における騒音を低減するため、移動体の動作を制御する制御部と、を備える、移動体の制御装置が提供される。
 また、本開示によれば、音源の位置と音源が発生する音量に基づいて、騒音を抑制する対象領域における騒音を推定することと、推定した騒音に基づいて、前記対象領域における騒音を低減するため、移動体の動作を制御することと、を備える、移動体の制御方法が提供される。
 また、本開示によれば、音源の位置と音源が発生する音量に基づいて、騒音を抑制する対象領域における騒音を推定する手段、推定した騒音に基づいて、前記対象領域における騒音を低減するため、移動体の動作を制御することと、としてコンピュータを機能させるためのプログラムが提供される。
 以上説明したように本開示によれば、騒音を与えたくない対象に対して、騒音を与えないようにすることができる。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の一実施形態に係るシステムが適用されるロボットのハードウェアの概略構成を示す模式図である。 制御装置とその周辺の構成を示す模式図である。 点音源からr0[m]離れた点P1から、r[m]離れた点P2[m]まで音が伝わる間の減衰量Aを示す模式図である。 ロボットが行う動作の例を示す模式図である。 ロボットが両腕を動かす動作を行う場合に、騒音の最大値を抑制する方法を説明するための模式図である。 ロボットが両腕を動かす動作を行う場合に、騒音の最大値を抑制する方法を説明するための模式図である。 図4において、ロボットが最初から乳児の近くに位置している場合に、騒音の最大値を抑制する方法を説明するための模式図である。 図4において、ロボットが最初から乳児の近くに位置している場合に、騒音の最大値を抑制する方法を説明するための模式図である。 窓の外の屋外に騒音の発生源があり、屋内のロボットと乳児の間に扉がある場合を示す模式図である。 ロボット自身から発生される騒音が伝達される程度を抑制するために、ロボットにカバーを取り付けた例を示す模式図である。 複数の装置の連携を示す模式図である。 図9と同様に複数の装置が存在していた場合に、通信ができないような場合や、タスク優先度が高く設定され、騒音を低減させることが難しい場合に、騒音をキャンセルする例を示す模式図である。 歩行するロボットの例を示す模式図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.ロボットの構成例
 2.制御装置の構成例と動作例
 3.ロボットの動作の例
 4.対象領域での騒音を抑制する具体例
 4.1.周囲の騒音の影響を抑制する例
 4.2.周囲の騒音が大きい場合
 4.3.カバーによる消音
 4.4.複数の装置の連携
 4.5.歩行ロボットの例
 4.6.路面の状態に応じた経路選択
 4.7.騒音のホワイトノイズ化
 4.8.駆動方式による消音
 5.変形例について
 1.ロボットの構成例
 まず、図1を参照して、本開示の一実施形態に係るシステムが適用されるロボット(移動体)600のハードウェアの概略構成について説明する。なお、図1では、移動体として地上を移動可能なロボット600を例示するが、本開示はドローン、ロボット掃除機、コミュニケーションロボットなど様々な移動体に適用可能である。図1に示すように、ロボット600は、移動のための車輪500、胴体部510、アーム520,530、頭部540、を有して構成される。
 車輪500は、アクチュエータ550により駆動される。車輪500が駆動されるとロボット600が移動する。アーム520,530は多関節を有し、各関節にはアクチュエータ552が設けられている。アーム520,530は、アクチュエータ552の駆動により屈曲する。アーム520,530の各関節には、関節の角度を検出するエンコーダが設けられている。同様に、車輪500の近辺には、車輪500の回転角を検出するエンコーダが設けられている。
 アーム520,530の先端には、ハンド560が設けられている。ハンド560は、アクチュエータ554の駆動により駆動され、物体を把持し、また物体を押圧するなどの力を作用させる。
 力センサ570は、ハンド560の先端に設けられ、ハンド560が物体を把持した際の把持力、ハンド560が物体を押す際の圧力を検出する。トルクセンサ580は、各関節に設けられ、各関節のトルクを検出する。力センサ570は、両手のハンド560のそれぞれに設けられていても良い。
 胴体部510には、制御装置400、RAM402、ROM404、外部記憶装置406、バス408、バスインタフェース(バスI/F)409が備えられている。外部記憶装置406は、ロボット600の外部から接続される記憶装置である。制御装置400、RAM402、ROM404、外部記憶装置406、バスI/F409は、バス408を介して接続されている。
 頭部540には、画像入力装置418、音入力装置420、音出力装置422、通信装置426が備えられている。これらの装置も、バスI/F409を介して胴体部510の制御装置400等と接続されている。一例として、画像入力装置418はカメラから構成されていても良く、音入力装置420は聴覚センサ、マイクロフォン等から構成されていても良い。また、音出力装置422はスピーカから構成される。通信装置426は、他の装置と無線で通信を行う。なお、無線通信の方式については、特に限定されるものではない。画像入力装置418、音入力装置420、音出力装置422、通信装置426は、頭部以外に設けられていても良い。
 2.制御装置の構成例と動作例
 図2は、制御装置400とその周辺の構成を示す模式図である。図2に示すように、制御装置400は、対象領域を設定する対象領域設定部432、対象領域での騒音を推定する騒音推定部434、騒音モデル435、騒音推定部434が推定した騒音に基づいてアクチュエータを制御するアクチュエータ制御部436、ユーザインタフェース(UI)424からユーザによる操作情報が入力される操作入力部438、位置情報を取得する位置情報取得部(GPS)440、音出力装置422から出力する音を制御する音出力制御部442、通信指令部444、経路計画部446を有している。なお、図2に示す制御装置400の各構成要素は、CPUなどの中央演算処理装置とこれを機能させるためのプログラム(ソフトウェア)、または回路(ハードウェア)から構成することができる。
 対象領域設定部432は、騒音を低減する対象領域を設定する。対象領域設定部432は、操作入力部438に入力された操作情報、画像入力装置418から入力された画像情報、位置情報取得部440が取得した位置情報等に基づいて、対象領域を設定する。
 騒音推定部434は、騒音モデル435に基づき、対象領域設定部432が設定した対象領域における騒音を推定する。騒音推定部434は、対象領域における騒音の音量(dB)、周波数などを推定する。騒音モデル435は、ロボット600が備える各アクチュエータが駆動した場合に発生する騒音のモデルである。アクチュエータ制御部436は、騒音推定部434が推定した騒音に基づいてアクチュエータを制御する。アクチュエータ制御部436は、対象領域において、アクチュエータの騒音が許容される上限値以下となるように制御を行う。ここで、上限値は、曜日(日曜日、祝祭日、平日)に応じて異ならせても良いし、時間帯、場所などに応じて異ならせても良い。これらの上限値は、ROM404または外部記憶装置406に予め記憶されていても良いし、ユーザインタフェース(UI)424からユーザが設定しても良い。
 音入力装置420を用いて、ロボット600の各部を駆動した際に、どの程度の騒音を発しているかを測定することができる。例えば、ロボット600が等身大ヒューマノイドである場合、肩は音入力装置420から200mm程度離れている。肘であれば音入力装置420から400mm程度離れている。これらの距離はロボット600の構造に依存し、ロボット600自身が現在の姿勢に応じてどの程度の距離になるのかをモデルとして把握しておくことができる。
 また、ロボット600のアクチュエータ毎に動作をさせて音入力装置420で騒音量を計測することによって、部位毎の騒音量としてデータを収集することができる。騒音量の取得のためにキャリブレーション動作を行っても良いし、動作中に時々刻々と変化する状況に合せて騒音量をリアルタイムに取得しても良い。このようにして得られる、アクチュエータと音入力装置420の距離と、騒音量のデータによって騒音モデル450が構成される。これらのデータは、ROM404のデータテーブル等に保管して計算に活用しても良いし、機械学習部を備えることで機械学習を用いて騒音発生の推定に用いても良い。
 機械学習としてはニューラルネットワークを用いることができ、深層学習も有効な手法となる。入出力の具体例としては、入力値として「アクチュエータ毎のオン/オフの状況、アクチュエータ毎の現在位置、アクチュエータ毎の音入力装置420との距離情報、ロボットの現在位置姿勢、対象領域の位置、アクチュエータ毎の現在速度、アクチュエータ毎の現在加速度、ロボットの有している荷物等の負荷情報」のいずれか1つ以上を用い、出力値として「ロボットの音入力装置420に到達した騒音情報、対象領域に到達した騒音情報、これらから処理を行って抽出された騒音情報(周波数変換等)」のいずれか1つ以上を用いることができる。
 騒音量は、遠くに伝わる間に減衰する。図3に示すような点音源50の場合、点音源50からr[m]離れた点P1から、点音源50からr[m]離れた点P2[m]まで音が伝わる間の減衰量A[dB]は、以下の式(1)で表すことができる。
減衰量A[dB]=20×Log10(r/r)   ・・・(1)
 式(1)によれば、例えば音入力装置420(点P1)からr=0.4[m]の距離にある肘関節モータ(点音源50)を駆動した際に音入力装置420で検出される騒音が50[dB]である場合、r=5[m]先の対象領域(点P2)へ作用する騒音は21[dB]程度減衰し、29[dB]となる。以上の原理により、騒音推定部434は、騒音モデル450を用いて対象領域における騒音を推定することができる。
 ロボット600の内部を発生源としない騒音であっても、同様の手法で発生源までの距離を求めることができる。例えば、ロボット600が把持している物体(道具)が騒音の発生源である場合、ロボット600自身の現在のモデルに加え、物体を把持している状態を画像入力装置418等で撮影することによって、物体のサイズや音の発生位置を概ね特定し、距離の概算を求めることができる。
 また、ロボット600と直接関係のない離れた場所で音が発生している場合は、例えば音の発生源を画像入力装置418で捉えることによって音の発生源までの距離を計測することができる。音の発生源が見えない場所にある場合は、図3の原理を利用し、現在の位置(点P1)で聞こえる騒音レベルと、そこから既知の距離だけ自発的にロボット600が移動した場所(点P2)における騒音レベル比較することによって減衰量が求まるため、式(1)を用いて騒音の発生源の位置を求めることができる。この場合に、その他の発生源からの騒音に邪魔されないように、フーリエ変換によって特定の周波数帯に絞って騒音を検出しても良い。
 3.ロボットの動作の例
 図4は、ロボット600が行う動作の例を示す模式図である。図4に示すように、乳児10が寝ている横にロボット600が運びたい物20がある場合を想定する。ここで、本実施形態において、対象領域とは、ロボット600が動作を行う場合の騒音を抑制する対象となる領域を表す。図4に示す例では、対象領域は乳児10の近くの領域である。図4に示す例の場合、ロボット600の対象領域設定部432は、乳児10の近くの領域を対象領域に設定する。なお、後述するが、対象領域として、人や動物(特に寝ている人や、寝ている動物、読書や映像鑑賞している人、電話している人)といった生命体、部屋、特定の空間、電話やスマートスピーカーといった家電製品、特定の座標(位置)といったものを設定しても良い。
 例えば、ロボット600が乳児10の近くの対象領域に移動した後、物20を掴むためにアーム520,530を動かすと、アーム520,530の動作音によって乳児10が起きてしまう可能性がある。
 このため、ロボット600の騒音推定部434は、アーム520,530を動かした場合に、乳児10の位置での騒音を推定する。アクチュエータ制御部436は、騒音推定部434が推定した騒音に基づいて、ロボット600の動作を制御する。
 ロボット600は、頭部540に取り付けた音入力装置420を用いて、手先や各部の動作音を、自身の動作と紐づける。更に、動作部によっておおよその騒音発生源との距離が推定できるため、音入力装置420によって得た音が、実際にはどの程度の音で、どの程度離れた位置ではどの程度の騒音になるのか、ということを導出する。
 図5A及び図5Bは、ロボット600が両腕を動かす動作を行う場合に、騒音の最大値を抑制する方法を説明するための模式図である。図5A及び図5Bにおいて、縦軸は対象領域における騒音の音量を、横軸は時間を示している。また、実線はロボット600の腕(アーム520,530)の騒音を示しており、破線はロボット600のタイヤ(車輪500)の騒音を示している。時刻t1までの間にロボット600が対象領域に近づき、時刻t1から時刻t2の間でロボット600の腕が物20を掴み、時刻t2以降にロボット600が対象領域から遠ざかるものとする。
 図5A及び図5Bの縦軸には、乳児10の近くの対象領域における騒音の上限値を示している。上限値は、乳児10の近くの対象領域における騒音がその値を超えた場合に乳児10が起きてしまう程度の音量として予め設定されている。この場合、例えば上限値を50~60dBに設定することができる。なお、タイヤの騒音のみでは、上限値を超えることはない場合を示している。
 図5Aに示すように、ロボット600が動作を行う際に、対象領域に近づいた後、対象領域で一斉に腕を動かすと、騒音レベルが大きくなり、騒音が上限を超えてしまう。一方、図5Bに示すように、腕の各部位(「肩」、「肘から先」など)を順番に動かすことで、騒音の最大値を抑制することができる。
 また、図5Bに示すように、ロボット600が対象領域に到達する前から、ロボット600の移動中に腕の各部位を駆動することによって、ロボット600が対象領域から遠い地点に位置している際に、騒音を発生させることができる。この場合、対象領域から遠い地点から対象領域に音が伝わる間に騒音が減衰するため、乳児の位置での騒音を上限値以下にすることができる。
 従って、計算としては制約付き最適化問題を解くことに相当し、制約としては騒音の上限値が設定され、ロボットの動作時間を制約の条件内で最小化するという計算を解くことになる。計算の解き方としては公知のラグランジュ乗数法を用いることができる。
 図6A及び図6Bは、ロボット600が最初から乳児10の近くに位置している場合に、騒音の最大値を抑制する方法を説明するための模式図である。図5A及び図5Bと同様、図6A及び図6Bにおいても、縦軸は対象領域における騒音の音量を、横軸は時間を示している。
 ロボット600が対象領域の近くに位置していると、騒音は殆ど減衰することなく乳児10に伝達される。このため、ロボット600が対象領域の近くで大きい音を発生させると、音が対象領域の乳児10にそのまま聞こえてしまう。一方、車輪100の回転など、移動のための騒音は小さいため、ロボット600が対象領域から一旦離れた後に騒音を伴う動作を行うことによって、対象領域に作用する騒音の最大値を抑制することができる。
 図6Aに示すように、ロボット600が対象領域の近くに位置している状態で腕を動かすと、対象領域における騒音は上限値を超えてしまう。このため、図6Bに示すように、タイヤを駆動して対象領域から離れた位置までロボット600が一旦移動し、腕の各部位を駆動して物20を掴める体勢にした後、対象領域に再び近づくようにする。
 具体的には、時刻t3でロボット600が対象領域から離れた位置に到達すると、時刻t3からt4の間に左腕を動かし、時刻t5からt6の間に右腕を動かす。これにより、腕を動かした際の騒音を上限値以下に抑制できる。そして、時刻t6以降にタイヤを駆動し、ロボット600が対象領域に再び近づいた後、肘から先を動かして物20を掴む動作を行う。肘から先の動作は、対象領域の近くで行ったとしても、その騒音を上限値以下に抑えることができる。このように、ロボット600が対象領域に再び近づいた後は、物20を掴む動作のみ行えば良いので、対象領域で発生する騒音を上限値以下に抑えることができる。
 図6Bに示す例の場合、ロボット600が対象領域に再度近づいた後に目的としていた動作を達成することになるため、対象領域に再度近づいた際になるべく騒音の発生が小さい部位のみの駆動で目的を達成できるように計画を立てておく。そして、対象領域の外で計画に合わせた姿勢に腕を駆動するようにして、姿勢の変化による騒音が上限値を超えないようにする。
 上述した例では、ロボット600自身の腕などの各部の騒音について、対象領域での騒音を上限値以下にする例について説明した。一方、ロボット600に取り付けた音入力装置420を用いて、手先や各部の騒音だけでなく、ロボット600が操作する道具などの物体の騒音をも取得し、自身の動作と紐づけることができる。
 この際、ロボット600が道具を把持しており、その道具を使用した時に発する音をロボット600側で学習などの手法で取得しておく。一度、学習した内容は再利用できる。例えば、楽器など動作に応じて積極的に音を発する物体において、より静音効果を発揮することができる。なお、楽器の例として、マラカスやタンバリンなどを挙げることができる。
 道具などが騒音の発生源となる場合、ロボット600自身のアクチュエータが騒音の発生源である場合と異なり、先ず騒音の発生源の位置を特定する。例えば、画像入力装置418として3Dカメラなどを用いることによって、騒音の発生源を認識し、発生源との距離を推定できる。更に、道具の移動時の速度や加速度に対して騒音レベルを取得できるため、音入力装置420によって得た音が、どのような動作によってどの程度の音が発生し、どの程度離れた位置ではどの程度の騒音になるのか算出できる。
 4.対象領域での騒音を抑制する具体例
 4.1.周囲の騒音の影響を抑制する例
 上述した例では、ロボット600自身のアクチュエータ、またはロボット600が把持する道具が騒音の発生源になる場合について説明した。一方、騒音の発生源はこれらに限られるものではなく、ロボット600とは完全に別の発生源であっても良い。この場合においても、ロボット600に取り付けた音入力装置420を用いて周囲の騒音を測定し、ロボット600の移動時に、移動に応じて騒音のレベルが変化した際に、騒音源との距離を導出することができる。具体的には、ロボット600が図3の点P1から点P2に移動する際に各点での騒音レベルを取得することで、減衰量Aが求まる。また、ロボット600の移動により移動距離(r-r)が求まるため、式(1)から騒音源との距離rを求めることができる。
 距離rが求まると、対象領域として指定したエリアとロボット600との距離を取得することで、上述した式(1)を用いた手法により、対象領域における騒音レベルを推定することができる。この時、対象領域の騒音レベルが大きく、上述した上限値を超えると判断した際には、ロボット600が「ドアを閉める」、「窓を閉める」、「騒音発生源と対象領域との間にロボット600が立つ」などの物理的動作を行うことで、対象領域への騒音レベルを抑制することができる。
 図7は、窓30の外の屋外に騒音の発生源32があり、屋内にロボット600と乳児10が存在し、ロボット600と乳児10の間に扉34がある場合を示す模式図である。上記と同様に周囲に騒音があると判断された場合に、ロボット600の動作目的が「窓30を開ける」といった動作であり、窓の外に騒音の発生源32がある場合には、窓30を開けたことにより、周囲から対象領域へ伝達される騒音のレベルが上昇することが想定される。この時、対象領域として指定したエリアとの間に扉34(または窓等)があれば、これらを予め閉じることによって、発生源32から対象領域への騒音の伝達関数を削減することができる。換言すれば、騒音が既に大きい時だけでなく、自己の動作や他者の動作等によって対象領域への騒音が増大することが見込まれる場合に、予め騒音を必要以上に抑えるようにロボット600が動作を行っておく。これにより、結果的に対象領域への騒音が上限値を超えることを抑制できる。
 4.2.周囲の騒音が大きい場合
 周囲の騒音が大きすぎて、それに比較してロボット自身の騒音が所定値(10dB)以上小さい場合は、以下の式(2)から明らかなように、騒音の増幅はほとんど起きない。このため、騒音を気にせずにロボット600が動作を行うことができる。すなわち、自身の動作をゆっくり行うなどして騒音を抑えるべきか否かは、周辺の騒音レベルにも左右される要素である。
 例えば、Aデシベル[dB]の音とBデシベル[dB]の音がある場合、騒音の大きさは以下の式(2)から求まる。
騒音の大きさ[dB]=10×Log10(10A/10±10B/10)   ・・・(2)
 式(2)によれば、Aデシベル[dB]の音とBデシベル[dB]の音の差が10[dB]以上であれば、左辺から求まる騒音の大きさの増加量(または減少量)は0である。
 また、式(2)より、騒音の増加分は、同一レベルの騒音が複数音源からあった場合も、1か所につき3dB程度ということが分かる。しかし、例えばロボット600のアーム520,530の全体で動作させた場合には複数個所のアクチュエータが動作するので、更に大きく騒音が増加するため、騒音の上昇量は懸念するべき程度には大きくなる。従って、図5Bで説明したように、各アクチュエータをなるべく同期させずに、順番に動作させることは、騒音レベルを下げる上で重要といえる。
 4.3.カバーによる消音
 図8は、ロボット600自身から発生される騒音が伝達される程度を抑制するために、ロボット600にカバー40を取り付けた例を示す模式図である。カバー40は吸音性の素材であることが好ましいが、遮音効果が得られればどのような材質のものでも同様に活用できる。例えば、車輪500の音を抑制するためには、なるべく地面スレスレまでの長さのカバー40を取り付けると良い。
 4.4.複数の装置の連携
 図9は、複数の装置の連携を示す模式図である。図9は、複数の装置が存在していた場合に、一方の装置610(例えばロボット掃除機)が騒音源であり、もう一方の装置620(例えばスマートスピーカー)が対象領域付近に存在する場合を示している。装置620は、ロボット600と同様に、音入力装置420、通信装置426、制御装置400などの各構成要素を備え、対象領域の騒音レベルを推定することができる。また、装置610は、装置620と通信を行う通信装置を備えている。
 この場合に、装置620が装置610に対して、騒音レベルを下げるように無線通信で指示を送っても良い。指示を受けた装置610は、アクチュエータの回転数を下げるなどして、騒音を抑制する。通信の手法としては、WiFi、赤外線、Bluetooth(登録商標)、ZigBee、5Gなど、どのような手法でも良い。これによって、騒音源(ロボット掃除機610)が対象領域における騒音を推定する機能を有していなくても、通信機能やリモコン操作などを受信する機能さえ有していれば、騒音を低減することができる。
 図10は、図9と同様に複数の装置が存在していた場合に、通信ができないような場合や、装置620のタスク優先度が高く設定され、騒音を低減させることが難しい場合に、騒音をキャンセルする例を示す模式図である。図10に示す例では、ロボット600と同様の構成を有する装置620が、デジタルノイズキャンセリング機能を有しており、対象領域への騒音を低減する。具体的には、騒音推定部434が推定した対象領域の騒音に基づいて、音出力制御部442が音出力装置422を制御することで、音出力装置422から音を発生させてデジタルノイズキャンセリングを行う。
 4.5.歩行ロボットの例
 図11は、歩行するロボット630の例を示す模式図である。ロボット630は、装置620と通信を行う通信装置を備えている。歩行するロボット630の場合、歩行によって発生する騒音、特に接地によって発生する騒音が大きい場合には、騒音が小さくなるように歩行方法を工夫することができる。例えば4足歩行としてはギャロップ、クロール、トロットといった歩行があり、クロールであれば速度は比較的遅いが静かに移動することができる。図11に示す例では、装置620がロボット630に対して指示を出すことにより、ロボット630の歩行方法を変更させる。具体的には、騒音推定部434が推定した対象領域の騒音に基づいて、通信指令部444が歩行方法を変更させるための指令を通信装置426に送信させる。ロボット630は、受け取った指令に基づいて歩行方法を変更する。
 4.6.路面の状態に応じた経路選択
 ロボット600が移動する際に、硬い床の上では動いた際に接触部で騒音がするため、クッションの上を動いた方が騒音発生は小さい場合がある。音入力装置420が取得したこれらの騒音についての情報を、位置情報取得部440から得られる位置情報とともに記憶し、騒音が発生しづらい軌道を選択的に選定することによって、騒音発生を抑えた状態で目的とする動作を達成することができる。また、絨毯の上を歩く、崩れたら音が発生してしまう物体(例えばおもちゃなど)を避けて移動する、といったことによって騒音を低減することができる。このような経路に関する情報をROM404または外部記憶装置406に予め記憶しておくことで、経路計画部446が経路計画を立案する。そして、アクチュエータ制御部436が経路計画に基づいてアクチュエータ550を制御することで、騒音を低減した経路の移動が実現される。
 4.7.騒音のホワイトノイズ化
 人間が苦手とする周波数帯が多く含まれる騒音が届いている場合には、積極的に騒音を増やしてホワイトノイズ化することで、人間にとって不快な音を低減することができる。黒板をひっかく音に代表されるような2kHz~4kHz程度の音、コンビニエンスストアで若者除けに使われるような15kHz程度の音に対して人間は嫌悪感を持つため、この周波数を大きく含んだ騒音である場合は、異なる騒音を発生させることで不快感を低減することができる。具体的には、図10に示す例において、装置610が不快な音の発生源である場合は、スマートスピーカー620が不快な音と異なる音を発生させることで、対象領域への騒音を低減することができる。この場合に、2kHz以下の音を装置610と同程度の騒音レベルとなるようにスマートスピーカー620から発することによって、不快感を軽減することができる。具体的には、騒音推定部434が推定した対象領域の周波数帯域に基づいて、音出力制御部442が音出力装置422を制御することで、音出力装置422から2kHz以下の音を発生させる。
 4.8.駆動方式による消音
 ロボット600のアクチュエータによる駆動音が問題になる場合に、アーム520,530の姿勢をサーボモータで位置制御すると振動音等が生じることがある。一方、機械的なブレーキによってアーム520,530の関節の角度を固定することで、騒音を抑制することができる。同様に、車輪500においても位置を固定する場合にブレーキを用いることで、騒音を抑制することができる。
 ロボット600が車輪500で移動している最中には、直線運動の場合においてクラッチを解放すると、慣性のみによって前進を継続することができ、アクチュエータ550の駆動音を生じさせないようにすることができ、騒音を低減できる。
 5.変形例について
 ロボット600は移動機能を持つロボットであったり、マニピュレータであったり、いかなるものでも構わない。本開示は、掃除ロボットやドローン、モバイルマニピュレータ、産業用マニピュレータ、パーソナルモビリティ、コミュニケーションロボットなど、多岐に渡るロボットに適用可能である。
 ロボット600への設定は、あらかじめ出荷状態において設定されていても良いし、個々人の希望に合わせてユーザインタフェース(UI)424から操作情報を入力することで、設定を変更しても良い。具体的には、個人や個々の動物に対しての騒音であったり、特定の部屋近傍での騒音を低減する設定などを行うことができる。設定情報は、ROM404に格納することができる。設定する情報には、対象領域での最大騒音レベル、騒音に気を付けなければいけない対象領域に関する情報、行ってはいけない動作、気にすべき周波数情報等が含まれる。
 設定を指示する方法としては、専用のアプリを搭載したタブレット・スマートフォン・PC等によって入力されても良いし、専用のデバイス、声や身振り、脳波による指示によって行われても良い。つまり、設定方法として、一般的に存在するロボットへの指示方法を用いることができる。更に、対象としている人が騒音に対して不快感を示す発話を行った場合には、音入力装置420によりこれを認識し、目標とする騒音レベルの上限値をさらに低く設定することもできる。このように、ロボット600への設定は、人の動作を見て学習することができ、例えば人がどの程度の騒音以下となるように実際に注意しているか、どこに対しての騒音を気にしているか、どういう状況で騒音を抑えようとしているか等に基づいてロボット600が学習しても良い。
 ロボット600の動作の拘束条件としては、持っている荷物を落とさない(両手で把持している場合は、両手をそれぞれ独立には動かせない)ことであったり、持っている荷物を傾けない(液体入りコップ等)ことであったり、ロボットの状況に応じて拘束条件が付与される。これらの拘束条件は維持しながら騒音を抑制する動作が行われる。
 対象領域の具体例としては、下記のようなものが含まれる。
・寝ている人、赤ちゃん、動物、会議や会話中(テレビ会議、電話会議等も含む)の人、ロボット、録画・録音中の人、振動測定等の実験中の人・ロボット、映像・音声を視聴中の人、楽器演奏中または歌唱中の人、仕事をしている人、勉強している人
・場所:冠婚葬祭などを行っている空間、歴史的・文化的・宗教的など何らかの儀式的な価値といったものを持つ空間
・その他:ロボットに指示権限を持つ人が指定した人・動物・場所を含み、これらは時間帯・曜日・季節・年月・天候といった要素によって条件付けされていても良い。
 例えば、「雨の日は隣の家に騒音が聞こえづらくなるので、より遅い時間帯まで掃除をしていても良い。」、「13時~15時は隣の家の子供が昼寝する時間帯なので、静かにしなければならない。」といった条件付けが可能となる。
 これらの対象領域に関する設定は、ユーザがユーザインタフェース(UI)424から設定しても良いし、位置情報取得部440から得られる位置情報に基づいてロボット600側で設定しても良い。例えば、冠婚葬祭を行う式場と位置情報が紐付けられていることにより、位置情報に基づいて対象領域を当該式場に設定することが可能である。
 対象領域や騒音の発生源に対する実際の距離の測定は、様々な方法が適用されうる。画像入力装置418(可視光カメラや赤外線カメラ)による方法や、ToFセンサ、超音波センサ、レーザーセンサ、測距センサ、GPS、車輪等に搭載されたエンコーダなど、多種の方法が存在する。
 騒音の測定については、普段から部屋に設置されているマイク付きPCやスマートスピーカー、スマートフォン、タブレット、ロボット、といった装置と連動しても良い。また、WiFi、BlueTooth(登録商標)等のネットワークで接続し、取得した音声データを学習に用いることができる。あるいは、実際にその位置での騒音を減らすようにリアルタイムに活用することも同時にできる。
 ロボットの騒音が対象領域に届きにくくする方法としては、音が発生する部位を対象領域に対して逆方向へ向けて動作をすることで、自分の身体を壁にすることができる。腕であれば腕だけを後ろに向けるだけでも良いし、身体ごと後ろに向けて作業を行っても良い。
 対象領域にいる動物の種類によって、抑制すべき音は異なってくる。ペットとして買われている動物では、それぞれ苦手とする周波数が異なる。対象領域にこれらの周波数が届いている場合には、上述したホワイトノイズ化することによって対応することができる。一例として、犬が苦手な周波数帯は18KHz程度であり、猫が苦手な周波数帯は19KHzであり、鼠が苦手な周波数帯は20KHz程度である。
 また、音の種類によっては、抑制しようとしなくても良い。例えば、火災時や地震などに伴う非常警報、救急車両による音、眠っていた子供が泣き出した場合にその親に届く声。また、そもそも対象領域にいる生物や人間にとって可聴域では無い音は抑制しなくて良い。ヘッドホンをしている人など、対象領域の状態によっては、音を抑制しなくても良い。
 以上説明したように本実施形態によれば、対象領域における騒音を推定し、推定した騒音に基づいてロボット600の制御を行うようにしたため、騒音を与えたくない対象に対して、騒音を与えないようにすることが可能となる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 音源の位置と音源が発生する音量に基づいて、騒音を抑制する対象領域における騒音を推定する騒音推定部と、
 推定した騒音に基づいて、前記対象領域における騒音を低減するため、移動体の動作を制御する制御部と、
 を備える、移動体の制御装置。
(2)
 騒音を抑制する前記対象領域を設定する対処領域設定部を更に備える、前記(1)に記載の移動体の制御装置。
(3)
 前記音源となるアクチュエータを備え、
 前記制御部は、推定した騒音に基づいて、前記アクチュエータの動作を制御する、
前記(1)又は(2)に記載の移動体の制御装置。
(4)
 前記制御部は、前記対象領域における騒音が上限値を超える場合は、前記対象領域から離隔した地点であって、前記対象領域における騒音が前記上限値以下となる地点で前記動作を制御する、前記(1)~(3)のいずれかに記載の移動体の制御装置。
(5)
 前記制御部は、前記対象領域から離隔した地点で複数の前記動作を順次に制御する、前記(1)~(4)のいずれかに記載の移動体の制御装置。
(6)
 移動するための移動機構を備え、
 前記制御部は、前記対象領域における騒音に基づいて、前記対象領域から離れるように前記移動機構の動作を制御する、
前記(1)~(3)のいずれかに記載の移動体の制御装置。
(7)
 前記制御部は、前記対象領域における騒音に基づいて、前記対象領域と前記音源との間に音を遮る遮蔽物を配置する動作を制御する、前記(1)又は(2)に記載の移動体の制御装置。
(8)
 前記対象領域における騒音に基づいて、前記音源に対して騒音を低下させる指令を送信する送信指令部を備える、前記(1)又は(2)に記載の移動体の制御装置。
(9)
 前記対象領域における騒音に基づいて、騒音をキャンセルする音を出力する制御を行う音出力制御部を備える、前記(1)又は(2)に記載の移動体の制御装置。
(10)
 前記対象領域における騒音に基づいて、前記音源である歩行ロボットの歩行方法を変更する指令を送信する送信指令部を備える、前記(1)又は(2)に記載の移動体の制御装置。
(11)
 音源の位置と音源が発生する音量に基づいて、騒音を抑制する対象領域における騒音を推定することと、
 推定した騒音に基づいて、前記対象領域における騒音を低減するため、移動体の動作を制御することと、
 を備える、移動体の制御方法。
(12)
 音源の位置と音源が発生する音量に基づいて、騒音を抑制する対象領域における騒音を推定する手段、
 推定した騒音に基づいて、前記対象領域における騒音を低減するため、移動体の動作を制御する手段、
 としてコンピュータを機能させるためのプログラム。
 400  制御装置
 432  対象領域設定部
 434  騒音推定部
 436  アクチュエータ制御部
 442  音出力制御部
 444  通信指令部

Claims (12)

  1.  音源の位置と音源が発生する音量に基づいて、騒音を抑制する対象領域における騒音を推定する騒音推定部と、
     推定した騒音に基づいて、前記対象領域における騒音を低減するため、移動体の動作を制御する制御部と、
     を備える、移動体の制御装置。
  2.  騒音を抑制する前記対象領域を設定する対処領域設定部を更に備える、請求項1に記載の移動体の制御装置。
  3.  前記音源となるアクチュエータを備え、
     前記制御部は、推定した騒音に基づいて、前記アクチュエータの動作を制御する、
    請求項1に記載の移動体の制御装置。
  4.  前記制御部は、前記対象領域における騒音が上限値を超える場合は、前記対象領域から離隔した地点であって、前記対象領域における騒音が前記上限値以下となる地点で前記動作を制御する、請求項1に記載の移動体の制御装置。
  5.  前記制御部は、前記対象領域から離隔した地点で複数の前記動作を順次に制御する、請求項1に記載の移動体の制御装置。
  6.  移動するための移動機構を備え、
     前記制御部は、前記対象領域における騒音に基づいて、前記対象領域から離れるように前記移動機構の動作を制御する、
    請求項1に記載の移動体の制御装置。
  7.  前記制御部は、前記対象領域における騒音に基づいて、前記対象領域と前記音源との間に音を遮る遮蔽物を配置する動作を制御する、請求項1に記載の移動体の制御装置。
  8.  前記対象領域における騒音に基づいて、前記音源に対して騒音を低下させる指令を送信する送信指令部を備える、請求項1に記載の移動体の制御装置。
  9.  前記対象領域における騒音に基づいて、騒音をキャンセルする音を出力する制御を行う音出力制御部を備える、請求項1に記載の移動体の制御装置。
  10.  前記対象領域における騒音に基づいて、前記音源である歩行ロボットの歩行方法を変更する指令を送信する送信指令部を備える、請求項1に記載の移動体の制御装置。
  11.  音源の位置と音源が発生する音量に基づいて、騒音を抑制する対象領域における騒音を推定することと、
     推定した騒音に基づいて、前記対象領域における騒音を低減するため、移動体の動作を制御することと、
     を備える、移動体の制御方法。
  12.  音源の位置と音源が発生する音量に基づいて、騒音を抑制する対象領域における騒音を推定する手段、
     推定した騒音に基づいて、前記対象領域における騒音を低減するため、移動体の動作を制御する手段、
     としてコンピュータを機能させるためのプログラム。
PCT/JP2019/037853 2018-10-03 2019-09-26 移動体の制御装置、移動体の制御方法及びプログラム WO2020071235A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19869130.5A EP3862838B1 (en) 2018-10-03 2019-09-26 Control device for mobile unit, control method for mobile unit, and program
US17/280,647 US20210339401A1 (en) 2018-10-03 2019-09-26 Mobile unit control device, mobile unit control method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018188222 2018-10-03
JP2018-188222 2018-10-03

Publications (1)

Publication Number Publication Date
WO2020071235A1 true WO2020071235A1 (ja) 2020-04-09

Family

ID=70054537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037853 WO2020071235A1 (ja) 2018-10-03 2019-09-26 移動体の制御装置、移動体の制御方法及びプログラム

Country Status (3)

Country Link
US (1) US20210339401A1 (ja)
EP (1) EP3862838B1 (ja)
WO (1) WO2020071235A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022102061A (ja) * 2020-12-25 2022-07-07 トヨタ自動車株式会社 制御装置、タスクシステム、制御方法及び制御プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001095314A1 (fr) * 2000-06-09 2001-12-13 Japan Science And Technology Corporation Dispositif et systeme acoustiques robotises
JP2006095635A (ja) 2004-09-29 2006-04-13 Honda Motor Co Ltd 移動ロボットの制御装置
JP2018017997A (ja) * 2016-07-29 2018-02-01 株式会社ソニー・インタラクティブエンタテインメント 移動体
JP2018111154A (ja) * 2017-01-11 2018-07-19 富士ゼロックス株式会社 ロボット装置及びプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7840308B2 (en) * 2004-09-10 2010-11-23 Honda Motor Co., Ltd. Robot device control based on environment and position of a movable robot
KR100619786B1 (ko) * 2005-05-17 2006-09-06 엘지전자 주식회사 로봇 청소기의 미끄럼 방지 장치
CN205121334U (zh) * 2015-04-15 2016-03-30 小米科技有限责任公司 智能清洁设备
US9595251B2 (en) * 2015-05-08 2017-03-14 Honda Motor Co., Ltd. Sound placement of comfort zones
KR102521493B1 (ko) * 2015-10-27 2023-04-14 삼성전자주식회사 청소 로봇 및 그 제어방법
US10987804B2 (en) * 2016-10-19 2021-04-27 Fuji Xerox Co., Ltd. Robot device and non-transitory computer readable medium
EP3588489A1 (en) * 2018-06-29 2020-01-01 Helmut-Schmidt-Universität, Universität der Bundeswehr Hamburg Active noise cancellation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001095314A1 (fr) * 2000-06-09 2001-12-13 Japan Science And Technology Corporation Dispositif et systeme acoustiques robotises
JP2006095635A (ja) 2004-09-29 2006-04-13 Honda Motor Co Ltd 移動ロボットの制御装置
JP2018017997A (ja) * 2016-07-29 2018-02-01 株式会社ソニー・インタラクティブエンタテインメント 移動体
JP2018111154A (ja) * 2017-01-11 2018-07-19 富士ゼロックス株式会社 ロボット装置及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3862838A4

Also Published As

Publication number Publication date
EP3862838A4 (en) 2021-08-25
EP3862838B1 (en) 2022-08-17
EP3862838A1 (en) 2021-08-11
US20210339401A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
JP7320239B2 (ja) 音源の方向を認識するロボット
JP7400923B2 (ja) 情報処理装置および情報処理方法
JP7120254B2 (ja) 情報処理装置、情報処理方法、およびプログラム
JP7259843B2 (ja) 情報処理装置、情報処理方法、およびプログラム
US20230266767A1 (en) Information processing apparatus, information processing method, and program
JP2024023193A (ja) 情報処理装置及び情報処理方法
WO2020071235A1 (ja) 移動体の制御装置、移動体の制御方法及びプログラム
EP3893215A1 (en) Information processing device, information processing method, and program
JP2010010857A (ja) 音声入力ロボット、遠隔会議支援システム、遠隔会議支援方法
US11986959B2 (en) Information processing device, action decision method and program
US11938625B2 (en) Information processing apparatus, information processing method, and program
TW201006635A (en) In situ robot which can be controlled remotely
WO2021085175A1 (ja) 自律移動体、情報処理方法、プログラム、及び、情報処理装置
JP4307177B2 (ja) 在宅者支援システム
JP2004045591A (ja) 音声認識方法及び特定話者音響辞書の提供方法
WO2021090704A1 (ja) 自律移動体、情報処理方法、プログラム、及び、情報処理装置
JP7434635B1 (ja) 情報処理装置、情報処理方法及びプログラム
WO2023037608A1 (ja) 自律移動体、情報処理方法、及び、プログラム
WO2023037609A1 (ja) 自律移動体、情報処理方法、及び、プログラム
JP2004046400A (ja) ロボットの発話方法
JP2008197381A (ja) スピーカ制御装置、ロボット、スピーカ制御方法、およびスピーカ制御プログラム
JP2017174151A (ja) サービス提供ロボットシステム
JP4161490B2 (ja) 音響信号出力制御装置および音響信号出力制御方法、並びに記録媒体
JP1625074S (ja) ロボット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019869130

Country of ref document: EP

Effective date: 20210503

NENP Non-entry into the national phase

Ref country code: JP