WO2020071167A1 - 光軸調整用装置 - Google Patents
光軸調整用装置Info
- Publication number
- WO2020071167A1 WO2020071167A1 PCT/JP2019/037227 JP2019037227W WO2020071167A1 WO 2020071167 A1 WO2020071167 A1 WO 2020071167A1 JP 2019037227 W JP2019037227 W JP 2019037227W WO 2020071167 A1 WO2020071167 A1 WO 2020071167A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical axis
- plate
- unit
- adjustment
- optical
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
Definitions
- the present invention relates to a technique for adjusting an optical axis of an optical device.
- Patent Literature 1 discloses a method in which an aiming jig is installed in front of a vehicle by a predetermined distance on a front-rear axis and a reference reflector of the aiming jig is detected to perform aiming in a vertical direction.
- Patent Literature 1 does not disclose any aiming in a direction other than the vertical direction.
- the present invention has been made in order to solve the above-described problems, and has as its main object to provide an optical axis adjusting device capable of suitably performing optical axis adjustment.
- the invention according to the claims is an optical axis adjusting apparatus, wherein a pedestal on which information of an optical axis as a target of an optical device to be adjusted is indicated, and a hole having a predetermined shape supported on the pedestal.
- a first plate provided, and a second plate provided parallel to the first plate and behind the first plate with respect to the optical device and having a shape similar to the hole.
- the invention according to the claims is an optical axis adjusting apparatus, and a pedestal indicating information of an optical axis to be a target of an optical device to be adjusted, and a pedestal supported on the pedestal, having a predetermined shape.
- FIG. 1 is a schematic configuration of an optical axis adjustment system. It is a schematic perspective view of the apparatus for optical axis adjustment.
- FIG. 5 is an XZ plan view showing a positional relationship between the lidar unit and the optical axis adjusting device when detecting and adjusting the optical axis deviation of the lidar unit.
- FIG. 4 is an XY plan view showing a positional relationship between the lidar unit and the optical axis adjustment device when detecting and adjusting the optical axis deviation of the lidar unit. 4 shows a configuration example of a rider unit.
- FIG. 6 is a diagram illustrating an optical axis shift of a rider unit represented by six parameters.
- FIG. 3 is an XY plan view showing a positional relationship among an ideal light source position, an actual light source position, and an optical axis adjusting device.
- 5 shows a measurement image representing the presence or absence of a position shift.
- 5 shows a measurement image when a posture shift has occurred.
- 5 shows a measurement image when both a position shift and a posture shift have occurred.
- 5 is a flowchart relating to detection and adjustment of an optical axis shift in the first embodiment.
- FIG. 7 shows a perspective view of an optical axis adjusting device in a second embodiment. It is an XY plan view of the optical axis adjusting device in the second embodiment.
- 5 shows a measurement image representing the presence or absence of a position shift.
- 5 shows a measurement image when a posture shift has occurred.
- FIG. 10 is a cross-sectional view of an optical axis adjusting device according to a modification in the XZ plane. It is an XY plan view of a pedestal in a modification.
- an apparatus for adjusting an optical axis includes a pedestal on which information of an optical axis to be adjusted of an optical device to be adjusted is indicated, and a hole having a predetermined shape supported on the pedestal. And a second plate provided parallel to the first plate and behind the first plate with respect to the optical device and having a shape similar to the hole.
- the “information on the optical axis” may be marked by a mark, a figure, or the like, or may be marked by characters.
- the optical axis adjusting device has such a configuration, and when the optical device to be adjusted is installed according to the information of the optical axis indicated on the pedestal, the first plate and the second plate are preferably used. Measured. Therefore, in this case, it is possible to appropriately detect the optical axis shift based on the measurement data of the optical device.
- a line indicating a position of the optical axis on a horizontal plane is written on the pedestal as information on the optical axis. According to this aspect, it is possible to suitably provide the operator with a mark necessary for adjusting the position of the optical axis adjustment device and the optical device before the optical axis adjustment.
- the optical axis indicated by the information of the optical axis passes through the center of the hole and the center of the second plate.
- the second plate can be suitably measured through the hole of the first plate.
- the optical axis adjustment device adjusts at least one of the inclination and the height of the first plate and the second plate to support the first plate.
- a mechanism is further provided.
- the first plate and the second plate can be appropriately installed in consideration of the height of the light source of the optical device.
- the optical axis adjustment device further includes a fixing member that fixes the second plate to the first plate in a state in which the second plate is parallel to the first plate. . According to this aspect, even when the inclination and the like of the first plate and the second plate are adjusted, the first plate and the second plate can be suitably maintained in an appropriate positional relationship.
- the first plate and the second plate are retroreflective plates.
- the first plate and the second plate are suitably measured by the optical device.
- a similarity ratio between the hole and the second plate is a distance between a target position of a light source of the optical device and the first plate when the optical axis is adjusted. It is equal to the ratio of the distance and the distance between the target position and the second plate.
- the second plate is preferably measured by the optical device so as to supplement the space of the hole of the first plate.
- a mark indicating a reference position for measuring a distance to the optical device or a vehicle on which the optical device is mounted is written on the pedestal.
- the operator sets the optical axis adjusting device to a predetermined predetermined optical device.
- the optical axis adjusting device can be accurately arranged so as to have a positional relationship.
- an apparatus for adjusting an optical axis includes a pedestal on which information of an optical axis to be adjusted of an optical device to be adjusted is indicated, and a pedestal supported on the pedestal and having a predetermined shape.
- the optical axis adjusting device also suitably measures the first plate and the second plate when the optical device to be adjusted is installed according to the information on the optical axis indicated on the pedestal. Therefore, in this case, it is possible to appropriately detect the optical axis shift based on the measurement data of the optical device.
- FIG. 1 is a schematic configuration of an optical axis adjustment system 100 according to the first embodiment.
- the optical axis adjustment system 100 is a system that detects and adjusts an optical axis shift of a lidar (Light Detection and Ranging or Laser Illuminated Detection And Ranging) unit 2, and is an information processing apparatus 10 including the lidar unit 2. And an optical axis adjusting device 20.
- a lidar Light Detection and Ranging or Laser Illuminated Detection And Ranging
- the information processing apparatus 10 includes the input unit 1, the lidar unit 2, the storage unit 3, the display unit 4, and the control unit 6.
- the control unit 6 and other elements are configured to perform data communication based on a predetermined communication protocol.
- the input unit 1 is a button for a user to operate, a touch panel, a remote controller, a voice input device, or the like, and receives various inputs.
- the lidar unit 2 is mounted on a vehicle and emits a pulse laser that is an electromagnetic wave with respect to a predetermined angle range in a horizontal direction and a vertical direction, thereby discretely measuring a distance to an object existing in the outside world,
- the three-dimensional measurement point group information indicating the position of the object is generated.
- FIG. 1 shows a measurement range “Rg” which is a range that can be measured by the rider unit 2 and an optical axis “Ag” of the rider unit 2.
- the optical axis Ag extends in the horizontal direction and the vertical direction in a direction regarded as a reference (assumed as an angle of 0 degree) in the horizontal direction and the vertical direction, and serves as a rotation target axis of the measurement range Rg.
- the rider unit 2 is an example of an optical device and a distance measuring device.
- the storage unit 3 stores a program executed by the control unit 6 and information necessary for the control unit 6 to execute a predetermined process.
- the display unit 4 is a display or the like that performs display based on the control of the control unit 6.
- the control unit 6 includes a CPU that executes a program, and controls the entire information processing apparatus 10.
- the control unit 6 may be an ECU (Electronic Control Unit) that controls the vehicle, or may be a CPU or the like of a vehicle-mounted device that transmits a control signal to the ECU. In another example, the control unit 6 may be configured as a part of the rider unit 2.
- the input unit 1, the storage unit 3, the display unit 4, and the control unit 6 may be general-purpose terminals such as a personal computer connected to the lidar unit 2 for detecting and adjusting optical axis deviation.
- the optical axis adjusting device 20 is a device to be measured by the lidar unit 2 when detecting and adjusting the optical axis deviation of the lidar unit 2.
- the optical axis adjusting device 20 is placed at a position within a measurement range Rg that has a predetermined positional relationship with the rider unit 2 at the time of detecting and adjusting the optical axis shift of the rider unit 2.
- FIG. 2 is a schematic perspective view of the optical axis adjusting device 20.
- the optical axis adjusting device 20 mainly includes a pedestal 7, a front plate (first plate) 8 and a rear plate (second plate) 9 to be measured by the rider unit 2. And a fixing member 11 for fixing the front plate 8 and the rear plate 9, a height angle adjustment mechanism 13, and a support member 14.
- the pedestal 7 functions as a base of the optical axis adjusting device 20, and the scribe line LN is drawn.
- the score line LN is a line indicating an ideal position on the horizontal plane of the optical axis Ax at the time of detecting and adjusting the optical axis shift of the rider unit 2.
- the operator determines the relative position between the rider unit 2 and the optical axis adjusting device 20 at the time of detecting and adjusting the deviation of the optical axis of the rider unit 2 with reference to the score line LN.
- the support member 14 extends perpendicular to the pedestal 7 and supports the front plate 8 and the rear plate 9.
- the support member 14 and the front plate 8 are connected via the elevation angle adjustment mechanism 13.
- the elevation angle adjustment mechanism 13 is configured to be able to adjust the height and the inclination angle of the front plate 8 and the rear plate 9 respectively.
- the elevation angle adjustment mechanism 13 is movable along the support member 14 by a predetermined length with respect to the support member 14, and the front plate 8 and the rear plate 9 are moved in accordance with the movement distance of the elevation angle adjustment mechanism 13. Height fluctuates.
- the elevation angle adjustment mechanism 13 also functions as a joint, and for example, has a hinge-type configuration, so that the angle of the front plate 8 around the Y axis (that is, the pitch direction) can be adjusted.
- the front plate 8 has a hole 12 for passing the laser light emitted from the rider unit 2 toward the rear plate 9. Further, the front plate 8 supports the rear plate 9 via four fixing members 11. Here, the relative positions of the front plate 8 and the rear plate 9 are fixed by four fixing members 11 in a parallel state, and the height or angle of the front plate 8 is adjusted by the elevation angle adjustment mechanism 13. In this case, the height and angle of the rear plate 9 change accordingly.
- FIG. 3 is an XZ plan view showing a positional relationship between the rider unit 2 and the optical axis adjusting device 20 at the time of detecting and adjusting the optical axis shift of the rider unit 2.
- the rider unit 2 is typically mounted on a vehicle, and the vehicle on which the rider unit 2 is mounted is positioned at a predetermined position (in a work area where detection and adjustment of an optical axis shift of the rider unit 2 is performed). For example, it is placed at a position where the front wheels of the vehicle are aligned on a previously drawn white line). Since the installation position of the rider unit 2 in the vehicle and the type of the rider unit 2 are different for each vehicle type, the worker arranges the optical axis adjusting device 20 at a position designated for each vehicle type of the target vehicle. I do.
- the other end of the cord-shaped member The position adjustment (including the posture adjustment) of the optical axis adjusting device 20 is performed so that the position of the optical axis adjustment device 20 matches a predetermined position of the rider unit 2 (for example, a mark provided in advance).
- the optical axis adjusting device 20 is arranged at a position designated for each type of target vehicle.
- FIG. 4A is an XY plan view showing a positional relationship between the ideal light source position 31 and the optical axis adjusting device 20 at the time of optical axis adjustment.
- the ideal light source position 31 is an ideal light source position of the lidar unit 2 in which the optical axis is not shifted during the optical axis adjustment (that is, on the installation design).
- the “light source position” refers to a position serving as a starting point for determining a light emission direction, and in the case where the lidar unit 2 includes a scanner for distributing laser light, refers to the position of the scanner.
- the ideal light source position 31 overlaps an extension of the score line LN.
- the horizontal direction of the front plate 8 and the rear plate 9 is perpendicular to the score line LN, and the center of the front plate 8 and the rear plate 9 in the horizontal direction exists on the score line LN in the XY plane view. I do.
- the laser light emitted from the ideal light source position 31 toward the rear plate 9 passes through the hole 12 without being blocked by the front plate 8 and irradiates the rear plate 9.
- the length of the hole 12 in the lateral direction is “Lah”
- the length of the rear plate 9 in the lateral direction is “Lbh”
- the distance between the ideal light source position 31 and the front plate 8 on the XY plane is “Dah”.
- XY plane the distance between the ideal light source position 31 and the rear plate 9 is “Dbh”
- the length Lbh satisfies the following equation (1).
- Lbh (Lah / Dah) ⁇ Dbh (1)
- FIG. 4B is an XZ plan view showing the positional relationship between the ideal light source position 31 and the optical axis adjusting device 20.
- the front plate 8 and the rear plate 9 are respectively perpendicular to the optical axis Ax with the ideal light source position 31 as a reference, and the vertical center of the hole 12 and the rear plate The vertical centers of 9 are respectively on the optical axis Ax.
- the laser light emitted from the ideal light source position 31 toward the rear plate 9 passes through the hole 12 without being blocked by the front plate 8 and irradiates the rear plate 9.
- the vertical length of the hole 12 is “Lav”
- the vertical length of the rear plate 9 is “Lbv”
- the distance between the ideal light source position 31 and the front plate 8 on the XZ plane is “Dav”.
- XZ plane the distance between the ideal light source position 31 and the rear plate 9 is “Dbv”
- the length Lbv satisfies the following equation (2).
- Lbv (Lav / Dav) ⁇ Dbv (2)
- the rear plate 9 has a width Lbh and a length Lbv satisfying the above-described formulas (1) and (2), and has a shape similar to the hole 12.
- FIG. 5 shows a configuration example of the lidar unit 2.
- the rider unit 2 includes a rider main body 21 in which a light source and the like are accommodated, and a holding device 22 that holds the rider main body 21.
- the lidar body 21 has a rectangular parallelepiped housing, and includes a light source unit such as a laser diode, a scanning unit (scanner), a light receiving unit, a signal processing unit, and the like.
- the scanning unit emits pulsed laser light in a predetermined horizontal angle and vertical angle range while changing the irradiation direction, and guides reflected light (scattered light) of the irradiated laser light to the light receiving unit.
- the light receiving unit outputs to the signal processing unit a signal related to the light receiving intensity of each segment generated by receiving the reflected light within a predetermined period after the emission of the light pulse.
- the signal processing unit outputs, based on a signal output by the light receiving unit, point group information indicating a set of a distance and an angle (horizontal angle / vertical angle) with respect to each point of the object irradiated with the light pulse.
- point group information indicating a set of a distance and an angle (horizontal angle / vertical angle) with respect to each point of the object irradiated with the light pulse.
- the rider body 21 may include a plurality of scanning units that perform scanning in the horizontal direction, and these scanning units may be arranged in the vertical direction.
- the holding device 22 has a base portion 23 provided with a cross-shaped groove 25 and a grip portion 24.
- the grip portion 24 has a position adjusting mechanism 26, a column 27, a yaw angle adjusting mechanism 28, a first arm 29, a roll angle adjusting mechanism 30, a pitch angle adjusting mechanism 31, and a second arm 32. .
- the position adjusting mechanism 26 is slidable along the cross-shaped groove 25, and thereby adjusts the position of the rider body 21 in the XY plane.
- the position adjusting mechanism 26 is capable of extending and retracting or slidably supporting the column 27 in the height direction, thereby adjusting the position of the rider body 21 in the Z-axis direction.
- a yaw angle adjusting mechanism 28 that supports the rider body 21 from the bottom is provided on the upper portion of the column 27.
- the yaw angle adjusting mechanism 28 rotates the rider main body 21 around the Z axis (that is, the yaw direction) by rotating around the column 27 extending in the Z axis direction.
- the yaw angle adjusting mechanism 28 supports a roll angle adjusting mechanism 30 via a first arm 29.
- the roll angle adjusting mechanism 30 is provided on the back surface opposite to the laser emission surface of the rider main body 21, and rotates with the second arm 32 that grips the rider main body 21, so that the roll angle of the rider main body 21 can be adjusted.
- the pitch angle adjusting mechanism 31 is provided on a side surface of the rider main body 21, and is capable of adjusting the pitch angle of the rider main body 21 by rotating together with the second arm 32 that grips the rider main body 21.
- each of the position adjustment mechanism 26, the yaw angle adjustment mechanism 28, the roll angle adjustment mechanism 30, and the pitch angle adjustment mechanism 31 is electrically connected to the control unit 6, and the control signal supplied from the control unit 6 The operation of adjusting the position / posture of the rider body 21 is performed based on this.
- the position adjustment mechanism 26, the yaw angle adjustment mechanism 28, the roll angle adjustment mechanism 30, and the pitch angle adjustment mechanism 31 can be manually operated. The adjustment amount for adjusting the position / posture may be determined.
- FIG. 6 is a diagram in which the optical axis shift of the lidar unit 2 is represented by six parameters (dx, dy, dz, ⁇ , ⁇ , ⁇ ).
- the actual light source position 32 indicates the actual light source position of the rider unit 2 in which the displacement has occurred.
- the actual light source position 32 is shifted from the ideal light source position 31 by “dx” in the X-axis direction, “dy” in the Y-axis direction, and “dz” in the Z-axis direction.
- the rider unit 2 is shifted by “ ⁇ ” around the Y axis (that is, the pitch direction).
- the rider unit 2 is shifted by “ ⁇ ” around the X-axis (ie, the roll direction) and shifted by “ ⁇ ” around the Z-axis (ie, the yaw direction).
- the deviation amounts dx, dy, dz, ⁇ , ⁇ , and ⁇ of the six axes shown in FIG. 6 can be all set to 0 by adjusting the holding device 22 shown in FIG. .
- the control unit 6 detects the shift amounts dx, dy, and dz by the optical axis shift detection process of the lidar unit 2 described later, the control unit 6 determines the moving direction and the shift according to the detected shift amounts dx, dy, and dz.
- a control signal specifying the amount is transmitted to the position adjustment mechanism 26.
- the control unit 6 transmits a control signal corresponding to the detected shift amount ⁇ to the pitch angle adjusting mechanism 31 to detect the shift amount ⁇ in the roll direction.
- a control signal corresponding to the detected shift amount ⁇ is transmitted to the roll angle adjusting mechanism 30, and when a yaw direction shift amount ⁇ ⁇ is detected, a control signal corresponding to the detected shift amount ⁇ is transmitted to the roll angle adjusting mechanism 30. It is transmitted to the adjusting mechanism 28.
- the control unit 6 controls the front plate 8 and the rear plate based on an image (also referred to as a “measurement image”) drawn based on the measurement point group measured by the lidar unit 2 in a state where the optical axis adjustment device 20 is correctly installed.
- an image also referred to as a “measurement image”
- the shift amounts dx, dy, dz, ⁇ , ⁇ , and ⁇ of the six axes are respectively detected.
- FIG. 7 is an XY plan view showing the positional relationship among the ideal light source position 31, the actual light source position 32, and the optical axis adjusting device 20.
- the ideal light source position 31 exists on an extension of the score line LN as described with reference to FIGS. 4A and 4B.
- the actual light source position 32 indicating the actual light source position of the rider unit 2 is dx, dy, and dz in the X-axis direction, the Y-axis direction, and the Z-axis direction with respect to the ideal light source position 31. Since the displacement has occurred, it is off the extension of the scored line LN.
- FIGS. 8A and 8C show optical axis shifts in the Y direction and the Z direction.
- 5 shows a measurement image based on the point cloud information output by the lidar unit 2 in which the occurrence occurs.
- each pixel of the measurement images shown in FIGS. 8A to 8C corresponds to each measurement point measured by the lidar unit 2
- the position of each pixel in the measurement image corresponds to the measurement of the corresponding measurement point.
- the vertical and horizontal positions in the range Rg that is, the laser emission angles in the vertical and horizontal directions
- the value of each pixel indicates the distance to the rider unit 2.
- the pixels in the direction in which neither the front plate 8 or the rear plate 9 are measured are represented by black, and the centers of the pixels in the direction in which either the front plate 8 or the rear plate 9 are measured are represented by white. ing. It is assumed that no object other than the optical axis adjusting device 20 exists in the measurement range Rg.
- a gap having a width corresponding to the amount of displacement is generated between the front plate 8 and the front plate 8, and between the side of the rear plate 9 on the Y axis negative side and the front plate 8.
- the distance between the upper side of the rear plate 9 and the front plate 8 is increased.
- a gap having a width corresponding to the amount of displacement is generated between the side of the rear plate 9 on the Y axis positive direction side and the front plate 8. Note that gaps are generated between the four sides of the rear plate 9 and the front plate 8 when they are shifted in the X-axis positive direction.
- the optical axis shifts between the front plate 8 and the rear plate 9 according to the shift direction and the shift amount.
- the control unit 6 sets the sensor body 21 in the X-axis direction, the Y-axis direction, and / or in accordance with the position and width of the gap generated between the front plate 8 and the rear plate 9 in the measurement image.
- Position adjustment in the Z-axis direction is performed.
- the control unit 6 refers to the latest measurement image while moving the position of the sensor main body 21 by the position adjustment mechanism 26 shown in FIG.
- the control of the position adjustment mechanism 26 is repeatedly performed so that the gap of.
- the control unit 6 stores in advance a map or the like in which the position and width of the gap of the rear plate 9 are associated with the direction and amount of movement of the sensor body 21 by the position adjustment mechanism 26. deep. Then, the control unit 6 refers to the map based on the position and width of the gap of the rear plate 9 detected from the measurement image, and determines a moving direction and a moving amount for moving the sensor main body 21 by the position adjusting mechanism 26.
- the control unit 6 moves the sensor main body 21 in the positive direction of the X-axis, for example, even when there is no gap on each side of the rear plate 9 on the measurement image, so that the control unit 6 A gap is intentionally formed between the front plate 8 and the rear plate 9. Thereafter, the control unit 6 adjusts the position of the sensor main body 21 by the position adjusting mechanism 26 so as to eliminate the formed gap.
- the control unit 6 sets a virtual frame serving as a reference in the measurement image (also referred to as an “in-image reference frame Fref”), and sets the in-image reference frame Fref, the front plate 8 and the rear plate.
- a deviation from the outer frame (also referred to as “actual board outline”) of the display area in the measurement image 9 is detected as a posture deviation.
- FIGS. 9A to 9C show measurement images generated based on the point cloud information output by the lidar unit 2 when the posture shift occurs.
- FIGS. 9A to 9C each clearly show the reference frame Fref in the image.
- the in-image reference frame Fref indicates the position of the outer frame of the front plate 8 in the measurement image when the front plate 8 is measured in an ideal state in which no optical axis shift occurs.
- the outer frame of the front plate 8 is shifted with respect to the in-image reference frame Fref due to the respective positional shifts.
- the deviation amount ( The external shape of the actual plate is distorted in a trapezoidal shape in accordance with the shift amount ⁇ ) in FIG.
- the example of FIG. 9A since the actual optical axis of the lidar unit 2 is displaced from the target optical axis in the pitch direction (specifically, the direction in which the elevation angle increases), the deviation amount ( The external shape of the actual plate is distorted in a trapezoidal shape in accordance with the shift amount ⁇ ) in FIG.
- the shift amount (the shift amount in FIG. 6)
- the outline of the actual plate is distorted in a trapezoidal shape in accordance with ⁇ ), and is shifted to the left from the reference frame Fref in the image.
- the shift amount (the shift amount in FIG. 6)
- the outer shape of the actual plate is inclined according to ( ⁇ ).
- the reference frame Fref between the image and the outer shape of the actual plate is changed according to the direction and amount of the shift. Differences appear in shape, position, size, etc.
- the control unit 6 determines that a posture shift has occurred, and determines that the reference frame Fref in the image matches the outer shape of the actual plate.
- the pitch direction, yaw direction, and roll direction of the sensor body 21 are adjusted.
- the control unit 6 refers to the latest measurement image while changing the attitude of the sensor body 21 by the yaw angle adjustment mechanism 28, the roll angle adjustment mechanism 30, and the pitch angle adjustment mechanism 31 illustrated in FIG.
- the control of the yaw angle adjustment mechanism 28, the roll angle adjustment mechanism 30, and the pitch angle adjustment mechanism 31 is repeated so that the actual plate outer shape in the measurement image approximates the in-image reference frame Fref.
- control unit 6 analyzes the index values of a plurality of indices (for example, the degree of trapezoidal distortion, the direction of trapezoidal distortion, the inclination angle, and the like) indicating the deviation of the outer shape of the actual plate with respect to the in-image reference frame Fref by a known analysis.
- the adjustment direction and the adjustment amount to be adjusted by the yaw angle adjustment mechanism 28, the roll angle adjustment mechanism 30, and the pitch angle adjustment mechanism 31 are determined based on the calculated index values of the respective indexes.
- the control unit 6 stores in advance a map or the like in which an adjustment direction and an adjustment amount necessary for each combination of index values of each index are determined, and refers to the map and the like to set the adjustment direction and the adjustment direction. Determine the adjustment amount.
- FIG. 10A is measured when the actual optical axis of the lidar unit 2 is shifted from the target optical axis in the yaw direction (right direction) and the position is shifted in the upper left direction.
- 4 shows a measurement image based on a measurement point cloud.
- FIG. 10B shows a case where the actual optical axis of the lidar unit 2 is shifted from the target optical axis in the yaw direction (right direction) and the position is shifted in the lower right direction. 4 shows a measurement image based on the measured measurement point group.
- the control unit 6 adjusts the position of the sensor main body 21 so that a gap between the front plate 8 and the rear plate 9 does not occur, and matches the outer shape of the actual plate with the reference frame Fref in the image.
- the posture of the sensor body 21 is adjusted as described above.
- the control unit 6 controls the front plate 8 until a gap between the front plate 8 and the rear plate 9 does not occur and a measurement image in which the outer shape of the actual plate matches the reference frame Fref in the image is obtained.
- the process of adjusting the position of the sensor main body 21 so as not to generate a gap between the sensor body 21 and the rear plate 9 and the process of adjusting the attitude of the sensor main body 21 so that the actual plate outer shape matches the reference frame Fref in the image are alternately performed. May be repeated.
- FIG. 11 is a flowchart relating to detection and adjustment of optical axis shift.
- the worker installs the vehicle on which the rider unit 2 is mounted at a predetermined position in a work area suitable for adjusting the optical axis (step S101). Then, the worker refers to the score line LN drawn on the pedestal 7 of the optical axis adjusting device 20, and arranges the optical axis adjusting device 20 at a position specified in advance for each vehicle type (step S102). In this case, the optical axis adjusting device 20 does not generate a gap between the front plate 8 and the rear plate 9 in the measurement image when the optical axis deviation of the lidar unit 2 does not occur, and The front plate 8 and the rear plate 9 are arranged such that their outer shapes (actual plate outer shapes) overlap with the in-image reference frame Fref.
- step S102 the control unit 6 shifts to the optical axis adjustment mode by detecting, for example, a user input to start detection and adjustment of the optical axis deviation to the input unit 1, and the like.
- the processing of steps S103 to S115 is started.
- the control unit 6 acquires measurement data from the lidar unit 2 (step S103).
- the optical axis adjustment device 20 is installed at a predetermined position in the measurement range Rg of the lidar unit 2, and measurement data indicating the measurement point group of the front plate 8 and the rear plate 9 of the optical axis adjustment device 20. Is supplied from the rider unit 2 to the control unit 6.
- the control unit 6 generates a measurement image from the measurement data acquired in Step S103 (Step S104).
- the control unit 6 refers to the generated measurement image and determines whether or not there is a gap between the front plate 8 and the rear plate 9 (Step S105).
- Step S105 determines that there is a gap between the front plate 8 and the rear plate 9 in the measurement image
- the position and width of the gap between the front plate 8 and the rear plate 9 are determined.
- the control unit 6 performs at least adjustment of the X coordinate (step S107), adjustment of the Y coordinate (step S108), or adjustment of the Z coordinate (step S109) of the sensor body 21. Do one of them.
- control unit 6 may perform control to repeatedly perform the adjustments in steps S107 to S109 so as to reduce the above-described gap while referring to the latest measurement image, and may perform a predetermined control based on the analysis result in step S106.
- the adjustment necessity and the adjustment amount in steps S107-S109 may be determined by referring to the map of FIG. 7, and the adjustment necessity and the adjustment amount in steps S107-S109 are determined based on a user input to the input unit 1. You may. Then, the control unit 6 repeatedly executes the processing of steps S105 to S109 as necessary until there is no gap between the front plate 8 and the rear plate 9 in the measurement image.
- Step S105 when determining that there is no gap between the front plate 8 and the rear plate 9 in the measurement image (Step S105; No), the control unit 6 determines that the position adjustment of the rider unit 2 does not need to be performed. Then, it is determined whether or not the outer shape of the front plate 8 and the outer shape of the rear plate 9 in the measurement image matches the virtual in-image reference frame Fref in the measurement image (step S110). Thereby, the control unit 6 determines whether or not the attitude adjustment of the optical axis of the rider unit 2 is necessary.
- step S110 If the reference frame Fref in the image does not match the outer shape of the actual plate (step S110; No), the controller 6 analyzes the difference between the reference frame Fref in the image and the outer shape of the actual plate (step S111). Then, the control unit 6 adjusts the yaw angle by the yaw angle adjustment mechanism 28 (step S112), the pitch angle adjustment by the pitch angle adjustment mechanism 31 (step S113), and the roll angle adjustment mechanism 30 based on the analysis result in step S111. (Step S114). In this case, the control unit 6 may perform the control of repeatedly adjusting the steps S112 to S114 so that the outer shape of the actual plate approaches the reference frame Fref in the image while referring to the latest measurement image.
- the necessity of adjustment and the amount of adjustment in steps S112 to S114 may be determined with reference to a predetermined map based on the analysis result, and the necessity of adjustment and adjustment in steps S112 to S114 based on a user input to the input unit 1. The amount may be determined. Then, the control unit 6 repeatedly executes the processing of steps S111 to S114 as necessary until the in-image reference frame Fref and the actual board outline match in the measurement image.
- step S115 determines whether the optical axis adjustment is completed. For example, the control unit 6 refers to the latest measurement image and determines that there is no gap between the front plate 8 and the rear plate 9 and that the actual plate outline matches the reference frame Fref in the image. In this case, it is determined that the optical axis adjustment has been completed.
- step S115 determines that the optical axis adjustment has been completed.
- the processing of the flowchart ends. This ends the optical axis adjustment mode.
- Step S115; No the process returns to Step S105.
- the optical axis adjusting device 20 includes the pedestal 7 on which the marking line LN which is the information of the optical axis to be adjusted of the lidar unit 2 to be adjusted is indicated.
- a front plate 8 supported on the front plate 7 and having a hole 12 of a predetermined shape; and a rear plate provided parallel to the front plate 8 and behind the front plate 8 with respect to the rider unit 2 and having a shape similar to the hole 12. 9 is provided.
- the optical axis adjustment method according to the first embodiment is a control method for detecting a deviation of a current optical axis from an ideal optical axis of the lidar unit 2 that performs measurement.
- the method includes an acquisition step of acquiring a measurement image obtained by measuring the optical axis adjusting device 20 placed at a predetermined position, and a detection step of detecting a deviation of the optical axis based on the measurement image.
- an optical axis adjusting device 20 including a plate capable of measuring substantially the entire surface at equal distances without optical axis deviation is used.
- the configuration and the like of the information processing apparatus 10 are the same as those of the first embodiment, the description thereof will be omitted as appropriate.
- FIG. 12 is a perspective view of an optical axis adjusting device 20A in the second embodiment.
- a curved plate 8R having a curved surface shape is supported by a height angle adjusting mechanism 13 on a pedestal 7 on which a score line LN is drawn.
- the curved plate 8R has a constant curvature along the horizontal scanning direction of the laser light of the lidar unit 2 in a state where the optical axis adjusting device 20A is correctly installed with respect to the lidar unit 2 having no optical axis deviation. It is curved by.
- FIG. 13A is an XY plan view of the optical axis adjusting device 20A.
- the irradiated surface of the curved plate 8R has an arc shape with a constant curvature in XY plane view.
- the tangent (see the broken line 40) at the center of the irradiated surface of the curved plate 8R in the Y-axis direction (that is, the direction in which the curved plate 8R is curved) is perpendicular to the score line LN.
- FIG. 13B is an XY plan view showing a positional relationship between the actual light source position 32 of the lidar unit 2 in which the optical axis shift has occurred and the optical axis adjusting device 20.
- the actual light sources of the rider unit 2 have shift amounts dx, dy, and dz in the X-axis direction, the Y-axis direction, and the Z-axis direction, respectively.
- the actual light source position 32 is off the extension of the score line LN, and does not coincide with the center of curvature of the circular arc formed by the irradiated surface of the curved plate 8R.
- the optical path length LL of the light incident on the left side of the curved plate 8R, the optical path length LC of the light incident on the center of the curved plate 8R, and the optical path length LR of the light incident on the right side of the curved plate 8R are: Each has a different value (LL> LC> LR).
- the rider unit 2 has a configuration in which a plurality of light sources (scanners) that scan only in the horizontal direction (Y-axis direction) are arranged in the vertical direction (Z-axis direction). Is preferred. In such a lidar unit 2, since each light source (scanner) does not scan in the vertical direction, the measurement distance of the irradiated surface of the curved plate 8R is uniform even in the vertical direction.
- the control unit 6 determines that the displacement of the optical axis of the lidar unit 2 has occurred when the pixel value of each pixel representing the curved plate 8R of the measurement image is not uniform. Then, the position of the sensor body 21 is adjusted so that the pixel values become uniform.
- FIG. 14A shows a measurement image based on the point cloud data output by the lidar unit 2 in which no optical axis deviation has occurred
- FIGS. 14B and 14C show an optical axis deviation in the Y direction
- 4 shows a measurement image based on the point cloud data output by the lidar unit 2.
- each pixel of the measurement image shown in FIGS. 14A to 14C corresponds to each measurement point measured by the lidar unit 2
- the position of each pixel in the measurement image corresponds to the corresponding measurement point.
- each pixel is color-coded such that it is yellow when the ideal distance to be measured is red, red when the distance is shorter than the yellow pixel, and green when the distance is longer than the yellow pixel. I have.
- the optical axis shift occurs in the paramount unit 2 as in the state shown in FIG. 13B
- different distances are measured depending on the positions of the measurement points on the irradiated surface of the rear plate 9.
- the distance between the measurement points on the irradiated surface of the curved plate 8R on the Y axis positive direction side is short. That is, the distance of each measurement point on the irradiated surface of the curved plate 8R on the Y-axis negative direction side is longer.
- FIG. 14B since the optical axis shift occurs on the Y axis positive direction side (left side), the distance between the measurement points on the irradiated surface of the curved plate 8R on the Y axis positive direction side is short. That is, the distance of each measurement point on the irradiated surface of the curved plate 8R on the Y-axis negative direction side is longer.
- FIG. 14B since the optical axis shift occurs on the Y axis positive direction side (left side), the distance between the
- the distance between the measurement points on the irradiated surface of the curved plate 8R on the Y axis negative direction side is short. That is, the distance of each measurement point on the irradiated surface of the curved plate 8R on the Y axis positive direction side is longer.
- the distance between the measurement points on the irradiated surface of the curved plate 8R is, as a whole, separated from the ideal distance to be measured according to the shift amount. Go.
- the control unit 6 previously stores, for example, information of an ideal distance to be measured, and calculates a distance indicated by the information and a distance corresponding to a pixel value of each pixel in the measurement image. By comparing, a shift in the X-axis direction can be detected.
- the control unit 6 may detect and adjust the optical axis shift in the Z-axis direction by a method for detecting the attitude shift described below.
- control unit 6 sets a virtual in-image reference frame Fref to be a reference in the measurement image, and performs the measurement with the in-image reference frame Fref, similarly to the posture shift detection method in the first embodiment.
- FIGS. 15A to 15C show measurement images generated based on the point group information output by the lidar unit 2 in which the posture shift has occurred.
- FIGS. 15A to 15C clearly show the reference frame Fref in the image.
- the in-image reference frame Fref indicates the position of the outer frame of the curved plate 8R in the measurement image when the curved plate 8R is measured in an ideal state in which no optical axis shift has occurred.
- each pixel representing the curved plate 8R in the measurement image has the same pixel value.
- a posture shift cannot be detected by the method described in the position shift detection.
- the actual board outer shape which is the outer frame of the curved board 8R, is shifted with respect to the in-image reference frame Fref due to the respective positional shifts.
- the shift amount The external shape of the actual plate is distorted in a trapezoidal shape in accordance with the shift amount ⁇ in FIG.
- the example of FIG. 15A since the actual optical axis of the lidar unit 2 is shifted from the target optical axis in the pitch direction (specifically, the direction in which the elevation angle increases), the shift amount ( The external shape of the actual plate is distorted in a trapezoidal shape in accordance with the shift amount ⁇ ) in FIG.
- the shift amount (the shift amount in FIG. 6)
- the outline of the actual plate is distorted in a trapezoidal shape in accordance with ⁇ ), and is shifted to the left from the reference frame Fref in the image.
- the shift amount (the shift amount in FIG. 6) is used.
- the outer shape of the actual plate is inclined according to ( ⁇ ).
- the control unit 6 determines that the posture shift has occurred, and the sensor 6 determines that the reference frame Fref in the image matches the outer shape of the actual plate.
- the pitch direction, yaw direction, and roll direction of the main body 21 are adjusted.
- the control unit 6 determines that the optical axis is displaced in the Z-axis direction, and the reference frame Fref in the image and the actual plate are shifted. It is preferable to adjust the sensor body 21 in the Z-axis direction so that the outer shape matches the outer shape.
- FIG. 16 is a flowchart relating to the detection and adjustment of the optical axis shift. Note that the processing in steps S201 to S204 is the same as that in steps S101 to S104 in FIG. 11, and a description thereof will be omitted.
- the control unit 6 determines whether the distance between the measurement points of the curved plate 8R in the measurement image (that is, the pixel value of each pixel representing the curved plate 8R) is uniform (step S204). Step S205). For example, when the variance of the pixel values of each pixel of the curved plate 8R in the measurement image is equal to or smaller than a predetermined value, the control unit 6 determines that the distances at each measurement point of the curved plate 8R in the measurement image are uniform. I do.
- Step S205 if the distance between the measurement points of the curved plate 8R in the measurement image is uniform (Step S205; Yes), the control unit 6 proceeds to Step S210.
- the control unit 6 analyzes the distribution of the distance between the measurement points on the curved plate 8R in the measurement image. (Step S206). Then, the control unit 6 executes at least one of the adjustment of the X coordinate (Step S207) and the adjustment of the Y coordinate (Step S208) of the sensor main body 21 based on the analysis result in Step S206.
- control unit 6 may repeatedly perform the control of adjusting the steps S207 and S208 so that the distribution of the distances of the measurement points approaches uniformly while referring to the latest measurement image.
- the necessity of adjustment and the amount of adjustment in steps S207 and S208 may be determined, and based on the user input to the input unit 1, the adjustment in steps S207 and S208 The necessity of adjustment and the amount of adjustment may be determined.
- the control unit 6 repeatedly executes the processing of steps S206 to S208 as necessary until the distances at the respective measurement points of the curved surface plate 8R in the measurement image become uniform.
- step S210 the control unit 6 determines whether or not the actual plate outline, which is the outline of the curved plate 8R in the measurement image, matches the virtual in-image reference frame Fref in the measurement image (step S210). Thereby, the control unit 6 determines whether or not the attitude adjustment of the optical axis of the rider unit 2 and the position adjustment in the Z-axis direction are necessary.
- Step S210 the control unit 6 analyzes the difference between the reference frame Fref in the image and the actual board outline (Step S211). Then, the control unit 6 adjusts the yaw angle by the yaw angle adjustment mechanism 28 (step S212), the pitch angle adjustment by the pitch angle adjustment mechanism 31 (step S213), and the roll angle adjustment mechanism based on the analysis result and the like in step S211. At least one of the roll angle adjustment by the S30 (step S214) and the Z coordinate adjustment by the position adjustment mechanism 26 (step S215) is executed. Then, the control section 6 repeatedly executes the processing of steps S211 to S215 as necessary until the in-image reference frame Fref and the actual board outline match in the measurement image.
- Step S216 determines whether or not the optical axis adjustment has been completed. Then, when the control unit 6 determines that the optical axis adjustment is completed (Step S216; Yes), the processing of the flowchart ends. This ends the optical axis adjustment mode. On the other hand, when the controller 6 determines that the optical axis adjustment has not been completed (step S216; No), the process returns to step S205.
- the optical axis adjusting device 20A includes the pedestal 7 on which the score line LN indicating the position of the optical axis of the lidar unit 2 to be adjusted is drawn, and the pedestal 7 supported on the pedestal. And a curved plate 8R fixed in a predetermined positional relationship to the optical axis indicated by the score line LN and having a curved shape with a predetermined curvature.
- the optical axis adjustment method according to the second embodiment is a control method for detecting a deviation of a current optical axis from an ideal optical axis of the lidar unit 2 that performs measurement.
- the method includes an acquisition step of acquiring a measurement image obtained by measuring the optical axis adjustment device 20A placed at a predetermined position, and a detection step of detecting an optical axis shift based on the measurement image.
- the control unit 6 adjusts the position and orientation of the sensor body 21 by controlling the holding device 22 when detecting the displacement or orientation shift of the optical axis of the lidar unit 2. Alternatively, when the rider unit 2 does not have a position and posture adjustment mechanism, the control unit 6 corrects the point cloud information output by the rider unit 2 in consideration of the detected position deviation and posture deviation. May be.
- the point group information output by the lidar unit 2 is represented by a local coordinate system (lider coordinate system) based on the position and orientation of the lidar unit 2, so that a predetermined coordinate conversion formula is used. Needs to be converted to a coordinate system (vehicle coordinate system) based on the position and orientation of the vehicle.
- This coordinate conversion formula generally depends on the relative position and orientation of the sensor main body 21 with respect to the vehicle, and six coordinates (X coordinate, Y coordinate, Z coordinate, yaw angle, pitch angle, (Roll angle).
- the control unit 6 when converting the point cloud information output by the lidar unit 2 into the vehicle coordinate system, the control unit 6 sets the relative position and posture of the sensor main body 21 with respect to the vehicle in a state where no deviation occurs. The information of these six parameters is stored in advance, and the shift amounts of the six axes detected in the first or second embodiment are added to the parameters. Then, the control unit 6 determines the above coordinate conversion formula based on the six parameters after the addition, and based on the determined coordinate conversion formula, converts the point group information output by the rider unit 2 into the point group information of the vehicle coordinate system. Convert to
- control unit 6 accurately converts the point cloud information output by the lidar unit 2 into the point cloud information of the vehicle coordinate system while allowing the optical axis of the rider unit 2 to shift in position or attitude. It can be suitably used for various processes such as obstacle detection and landmark detection for position estimation.
- FIG. 8A illustrates a measurement image (also referred to as an “ideal measurement image”) measured by the lidar unit 2 in which the optical axis adjustment device 20 is correctly installed and the optical axis is not shifted. ),
- the rear plate 9 is displayed so as to overlap the hole 12 of the front plate 8 without any gap. Instead, an intentional gap may be provided between the front plate 8 and the rear plate 9 in the ideal measurement image.
- FIG. 17 is an example of an ideal measurement image in the present modification.
- the rear plate 9 is designed to be shorter in width and length than the rear plate 9 of FIG. 4 having the horizontal width Lbh and the vertical width Lbv.
- a gap is generated by a predetermined pixel from the rear plate 9.
- the control unit 6 previously stores information on the width (for example, the number of pixels) of the gap between each side of the front plate 8 and the rear plate 9 in the ideal measurement image shown in FIG.
- the width of the gap between each side of the front plate 8 and the rear plate 9 in the measurement image is calculated, and there is a difference from the width indicated by the information stored in advance. Is determined.
- the control unit 6 determines that there is no displacement.
- the control unit 6 adjusts the position of the sensor main body 21 so that the difference is eliminated. I do.
- the front plate 8 and the rear plate 9 do not overlap, so even if the optical axis is shifted to the negative side of the X-axis, the four sides of the rear plate 9 and the front Omission of detection of optical axis shift due to the absence of a gap between the plate 8 can be suitably suppressed.
- the second embodiment may be applied to a rider unit 2 configured to perform both the horizontal direction (Y-axis direction) and the vertical direction (Z-axis direction).
- the pixel value of the pixel of the curved plate 8R in the ideal measurement image varies depending on the position in the vertical direction.
- the control unit 6 extracts only the pixel value of each pixel of a predetermined row located at the center in the vertical direction of the measurement image in the displacement adjustment processing of steps S205 to S208 in FIG. Is determined to be a uniform pixel value indicating an ideal distance to be measured. This also makes it possible to appropriately detect the displacement in the X-axis direction and the Y-axis direction and adjust the displacement.
- the curved plate 8R in the second embodiment may be curved at a predetermined curvature in the vertical direction in addition to the horizontal direction.
- FIG. 18 is a cross-sectional view of the optical axis adjusting device 20B in the present modification on the XZ plane.
- the irradiated surface of the curved plate 8RB has a spherical shape curved in the vertical and horizontal directions.
- the center of curvature of the irradiated surface of the curved plate 8RB matches the ideal light source position 31.
- the control unit 6 uses the optical axis adjusting device 20B shown in FIG. 18 to detect the presence or absence of the position shift when detecting the position shift based on the acquired measurement image, and to determine whether or not the position shift exists in the curved plate 8RB in the measurement image. May be determined based on the uniformity of the pixel value of each pixel.
- the pixel value of each pixel representing the curved plate 8R in the measurement image becomes uniform, and therefore, the pixel value is determined based on the uniformity of the pixel values. It has not been possible to detect and adjust the optical axis shift in the Z-axis direction. However, when the optical axis adjusting device 20B of this modification is used, when an optical axis shift occurs in the Z-axis direction, the pixel value of each pixel representing the curved plate 8RB in the measurement image is changed in the vertical direction. It becomes uneven.
- control unit 6 also suitably detects and adjusts the optical axis shift in the Z-axis direction based on the uniformity of the pixel values of each pixel of the curved plate 8RB in the measurement image. be able to.
- the score line LN drawn on the base 7 may be drawn on a sticker attached to the base 7. In this case, for example, a line similar to the score line LN is drawn on the seal, and is attached to a predetermined position of the base 7.
- the object for detecting and adjusting the optical axis shift is not limited to the distance measuring device such as the lidar unit 2 and is any optical device that needs to detect and adjust the optical axis shift. Is also good.
- the detection and adjustment of the optical axis shift of the camera mounted on the vehicle may be executed based on the first embodiment. In this case, the camera is held by the holding device 22 whose position and orientation can be adjusted based on the control signal of the control unit 6 as in the lidar unit 2 shown in FIG. 5, for example. And a posture adjustment process are executed.
- the optical axis adjusting devices 20, 20A are installed in addition to the score line LN.
- a mark serving as a reference for the distance from the vehicle or the rider unit 2 may be provided.
- FIG. 19A is an XY plan view of the pedestal 7A in this modification.
- a line segment 70 orthogonal to the score line LN is drawn on the base 7A shown in FIG.
- the worker uses a string-shaped member or the like to make the distance along the score line LN from the line segment 70 to a predetermined position of the vehicle or the rider unit 2 a predetermined distance predetermined for each vehicle type.
- the position adjustment of the optical axis adjusting devices 20 and 20A is performed. Thereby, the worker can accurately arrange the optical axis adjusting devices 20 and 20A at positions designated for each type of target vehicle.
- FIG. 19B is an XY plan view of the pedestal 7B in this modification.
- a mark 71 is drawn at a predetermined position on the score line LN.
- the worker sets the optical axis adjusting device 20 so that the distance along the score line LN from the mark 71 to a predetermined position of the vehicle or the rider unit 2 is a predetermined distance predetermined for each vehicle type.
- 20A FIG. 19C is an XY plan view of the pedestal 7C in this modification.
- the pedestal 7C shown in FIG. 19C is provided with an arrow 72 that clearly indicates that the front end 73 (the end on the near side of the vehicle) of the pedestal 7C is used as a reference.
- the worker adjusts the optical axis adjusting device 20 so that the distance along the score line LN from the front end 73 to a predetermined position of the vehicle or the lidar unit 2 is a predetermined distance predetermined for each vehicle type. , 20A.
- the worker when installing the optical axis adjustment devices 20 and 20A, the worker can use the optical axis adjustment devices 20 and 20A on the basis of the landmarks that serve as references for the distance to the vehicle or the lidar unit 2. , 20A can be accurately arranged at positions designated for each type of target vehicle.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
第1実施例に係る光軸調整用装置20は、調整対象となるライダユニット2の目標となる光軸の情報である罫書き線LNが示された台座7と、台座7上において支持され、所定形状の孔12が設けられた前方板8と、前方板8と平行かつライダユニット2に対して前方板8の後方に設けられ、孔12と相似形状となる後方板9と、を備える。また、第1実施例に係る光軸調整方法は、計測を行うライダユニット2の理想の光軸に対する現在の光軸のずれを検出する制御方法であって、ライダユニット2の計測範囲Rg内の所定位置に置かれた光軸調整用装置20を計測した計測画像を取得する取得工程と、計測画像に基づいて、光軸のずれを検出する検出工程と、を有する。
Description
本発明は、光学機器の光軸を調整する技術に関する。
従来から、センサのエイミング(光軸調整)に関する技術が知られている。例えば、特許文献1には、車両の前後軸線上の所定距離前方にエイミング冶具を設置し、エイミング冶具の基準反射体を検出することで上下方向のエイミングを行う方法が開示されている。
車両に取り付けたセンサの検出結果を用いて自動運転やその他のADAS(Advanced Driver Assistance System)を行う場合、それぞれのセンサには高精度な検出精度が求められ、これらのセンサの取り付けは正確に行われる必要がある。そして、ある検出装置が所望の位置からずれて配置されてしまった場合には、当該検出装置の光軸方向が理想的な方向からずれてしまい、検出装置を含むシステム全体を最適な状態で稼働することができなくなる可能性がある。一方、特許文献1には、上下方向以外の方向におけるエイミングについては何ら開示されていない。
本発明は、上記のような課題を解決するためになされたものであり、光軸調整を好適に実行可能な光軸調整用装置を提供することを主な目的とする。
請求項に記載の発明は、光軸調整用装置であって、調整対象となる光学機器の目標となる光軸の情報が示された台座と、前記台座上において支持され、所定形状の孔が設けられた第1板と、前記第1板と平行かつ前記光学機器に対して前記第1板の後方に設けられ、前記孔と相似形状となる第2板と、を備える。
また、請求項に記載の発明は、光軸調整用装置であって、調整対象となる光学機器の目標となる光軸の情報が示された台座と、前記台座上において支持され、所定形状の孔が設けられた第1板と、前記第1板と平行かつ前記光学機器に対して前記第1板の後方に設けられ、前記光学機器が前記孔を介して全体を検出可能な第2板と、を備える。
本発明の好適な実施形態によれば、光軸調整用装置は、調整対象となる光学機器の目標となる光軸の情報が示された台座と、前記台座上において支持され、所定形状の孔が設けられた第1板と、前記第1板と平行かつ前記光学機器に対して前記第1板の後方に設けられ、前記孔と相似形状となる第2板と、を備える。「光軸の情報」は、マークや図形などにより記されてもよく、文字により記されてもよい。光軸調整用装置は、このような構成を有することで、調整対象となる光学機器が台座に示された光軸の情報に従い設置された場合に、第1板と第2板とが好適に計測される。よって、この場合、光学機器の計測データに基づいて光軸ずれを好適に検出することが可能となる。
上記光軸調整用装置の一態様では、前記台座には、前記光軸の情報として、前記光軸の水平面上の位置を示す線が記されている。この態様によれば、光軸調整前の光軸調整用装置と光学機器との位置調整に必要な目印を作業者に好適に提供することができる。
上記光軸調整用装置の他の一態様では、水平面上において、前記光軸の情報が示す光軸は、前記孔の中心と、前記第2板の中心とを通る。これにより、光学機器に光軸ずれが生じていないときには、第2板を第1板の孔を介して好適に計測することができる。
上記光軸調整用装置の他の一態様では、光軸調整用装置は、前記第1板及び前記第2板の傾き又は高さの少なくともいずれかを調整自在に前記第1板を支持する調整機構をさらに備える。この態様により、光学機器の光源の高さを考慮して第1板及び第2板を適切に設置することができる。
上記光軸調整用装置の他の一態様では、光軸調整用装置は、前記第2板を、前記第1板と平行となる状態で前記第1板に対して固定する固定部材をさらに備える。この態様により、第1板及び第2板の傾き等を調整した場合においても、第1板と第2板とを適切な位置関係に好適に保つことができる。
上記光軸調整用装置の他の一態様では、前記第1板及び前記第2板は、再帰性反射板である。これにより、第1板と第2板とは、光学機器により好適に計測される。
上記光軸調整用装置の他の一態様では、前記孔と前記第2板との相似比は、前記光軸の調整時の前記光学機器の光源の目標位置と前記第1板との間の距離と、前記目標位置と前記第2板との距離との比に等しい。この態様により、光学機器の光軸ずれが生じていないときには、第2板は、第1板の孔のスペースを補完するように好適に光学機器により計測される。
上記光軸調整用装置の他の一態様では、前記台座には、前記光学機器又は前記光学機器を搭載する車両までの距離を計測する際の基準位置を示す目印が記されている。この態様によれば、作業者は、上述の目印を参照することで、光学機器により光軸調整用装置を計測する際に、光軸調整用装置が光学機器に対して予め定められた所定の位置関係となるように、光軸調整用装置を正確に配置することが可能となる。
本発明の他の好適な実施形態によれば、光軸調整用装置は、調整対象となる光学機器の目標となる光軸の情報が示された台座と、前記台座上において支持され、所定形状の孔が設けられた第1板と、前記第1板と平行かつ前記光学機器に対して前記第1板の後方に設けられ、前記光学機器が前記孔を介して全体を検出可能な第2板と、を備える。光軸調整用装置は、この構成によっても、調整対象となる光学機器が台座に示された光軸の情報に従い設置された場合に、第1板と第2板とが好適に計測される。よって、この場合、光学機器の計測データに基づいて光軸ずれを好適に検出することが可能となる。
以下、図面を参照して本発明の好適な第1及び第2実施例について説明する。
[第1実施例]
(1)システム構成
図1は、第1実施例に係る光軸調整システム100の概略構成である。光軸調整システム100は、ライダ(Lidar:Light Detection and Ranging、または、Laser Illuminated Detection And Ranging)ユニット2の光軸ずれの検出及び調整を行うシステムであって、ライダユニット2を含む情報処理装置10と、光軸調整用装置20と、を備える。
(1)システム構成
図1は、第1実施例に係る光軸調整システム100の概略構成である。光軸調整システム100は、ライダ(Lidar:Light Detection and Ranging、または、Laser Illuminated Detection And Ranging)ユニット2の光軸ずれの検出及び調整を行うシステムであって、ライダユニット2を含む情報処理装置10と、光軸調整用装置20と、を備える。
情報処理装置10は、入力部1と、ライダユニット2と、記憶部3と、表示部4と、制御部6と、を備える。制御部6と他の要素とは、所定の通信プロトコルに基づきデータ通信が可能に構成されている。
入力部1は、ユーザが操作するためのボタン、タッチパネル、リモートコントローラ、音声入力装置等であり、種々の入力を受け付ける。
ライダユニット2は、車両に搭載され、水平方向および垂直方向の所定の角度範囲に対して電磁波であるパルスレーザを出射することで、外界に存在する物体までの距離を離散的に測定し、当該物体の位置を示す3次元の計測点群情報を生成する。図1では、ライダユニット2により計測可能な範囲である計測範囲「Rg」とライダユニット2の光軸「Ag」とが示されている。ここで、光軸Agは、ライダユニット2が水平方向及び垂直方向において基準とみなす(角度0度とみなす)方向に延伸し、計測範囲Rgの回転対象軸となる。以後では、光軸Agの延伸方向を「X軸方向」、水平方向においてX軸と垂直な方向を「Y軸方向」、X軸及びY軸に垂直な方向を「Z軸方向」とし、それぞれの正方向を図示のように定める。ライダユニット2は、光学機器及び測距装置の一例である。
記憶部3は、制御部6が実行するプログラムや、制御部6が所定の処理を実行するのに必要な情報を記憶する。表示部4は、制御部6の制御に基づき表示を行うディスプレイなどである。制御部6は、プログラムを実行するCPUなどを含み、情報処理装置10の全体を制御する。制御部6は、車両を制御するECU(Electronic Control Unit)であってもよく、当該ECUに制御信号を送信する車載機のCPU等であってもよい。他の例では、制御部6は、ライダユニット2の一部として構成されてもよい。また、入力部1、記憶部3、表示部4、及び制御部6は、光軸ずれの検出及び調整を行うためにライダユニット2と接続されたパーソナルコンピュータなどの汎用端末であってもよい。
光軸調整用装置20は、ライダユニット2の光軸ずれの検出及び調整を行う際にライダユニット2により計測対象となる装置である。光軸調整用装置20は、ライダユニット2の光軸ずれの検出及び調整時には、ライダユニット2に対して所定の位置関係となる計測範囲Rg内の位置に載置される。
(2)光軸調整用装置の構成
まず、光軸調整用装置20の概略的な構成について、図1及び図2を参照して説明する。図2は、光軸調整用装置20の概略的な斜視図である。図1及び図2に示すように、光軸調整用装置20は、主に、台座7と、ライダユニット2の計測対象となる前方板(第1板)8及び後方板(第2板)9と、前方板8及び後方板9を固定する固定部材11と、高低角度調整機構13と、支持部材14と、を有する。
まず、光軸調整用装置20の概略的な構成について、図1及び図2を参照して説明する。図2は、光軸調整用装置20の概略的な斜視図である。図1及び図2に示すように、光軸調整用装置20は、主に、台座7と、ライダユニット2の計測対象となる前方板(第1板)8及び後方板(第2板)9と、前方板8及び後方板9を固定する固定部材11と、高低角度調整機構13と、支持部材14と、を有する。
台座7は、光軸調整用装置20の土台として機能し、罫書き線LNが描かれている。罫書き線LNは、ライダユニット2の光軸ずれの検出及び調整時での光軸Axの水平面上における理想的な位置を示した線である。作業者は、この罫書き線LNを参考として、ライダユニット2の光軸ずれの検出及び調整時におけるライダユニット2と光軸調整用装置20との相対位置を定める。
支持部材14は、台座7に対して垂直に延伸し、前方板8及び後方板9を支持している。支持部材14と前方板8とは、高低角度調整機構13を介して接続している。高低角度調整機構13は、前方板8及び後方板9の高さ及び傾き角をそれぞれ調整自在に構成される。例えば、高低角度調整機構13は、支持部材14に対して所定長だけ支持部材14に沿って移動自在となっており、高低角度調整機構13の移動距離に応じて前方板8及び後方板9の高さが変動する。同様に、高低角度調整機構13は、ジョイントとしても機能し、例えばヒンジ型の構成を有することにより、Y軸回り(即ちピッチ方向)における前方板8の角度を調整自在となっている。
前方板8は、ライダユニット2から後方板9に向けて出射されたレーザ光を通過させるための孔12を有している。また、前方板8は、4つの固定部材11を介して後方板9を支持している。ここで、前方板8と後方板9とは、平行となった状態で4つの固定部材11により相対位置が固定されており、前方板8が高低角度調整機構13により高さ又は角度が調整された場合には、それに伴って後方板9の高さ及び角度も変動する。
次に、光軸調整用装置20の配置について、図3及び図4を参照して説明する。
図3は、ライダユニット2の光軸ずれの検出及び調整時におけるライダユニット2と光軸調整用装置20との位置関係を示したX-Z平面図である。
図3に示すように、ライダユニット2は、典型的には車両に搭載され、ライダユニット2を搭載した車両は、ライダユニット2の光軸ずれの検出及び調整を行う作業エリア内の所定位置(例えば前もって描かれた白線上に車両の前輪が揃う位置)に置かれる。ライダユニット2の車両内での設置位置及びライダユニット2の種別等は、車種ごとに異なるため、作業員は、対象となる車両の車種毎に指定された位置に光軸調整用装置20を配置する。この場合、例えば、作業員は、車種ごとに長さが異なる紐状部材の一端を光軸調整用装置20に固定して罫書き線LNに沿って伸ばした場合に、紐状部材の他端がライダユニット2の所定の位置(例えば事前に設けられた目印)に合うように光軸調整用装置20の位置調整(姿勢調整も含む)を行う。これにより、光軸調整用装置20は、対象となる車両の車種毎に指定された位置に配置される。なお、ライダユニット2の光軸ずれの検出及び調整時には、計測範囲Rg内には、光軸調整用装置20以外の物が存在しないことが好ましい。
図4(A)は、光軸調整時における理想光源位置31と、光軸調整用装置20との位置関係を示したX-Y平面図である。理想光源位置31は、光軸調整時において、光軸ずれが生じていない理想的な(即ち設置設計上の)ライダユニット2の光源位置である。なお、以後において、「光源位置」とは、光の出射方向が定められる起点となる位置を指し、ライダユニット2がレーザ光を振り分けるスキャナを備える場合には、当該スキャナの位置を指す。
図4(A)の例では、罫書き線LNの延長線に理想光源位置31が重なる。また、前方板8及び後方板9の横手方向は、罫書き線LNに対して垂直であり、前方板8及び後方板9の横手方向における中心は、XY平面視において罫書き線LN上に存在する。
また、理想光源位置31から後方板9に向けて出射されるレーザ光は、前方板8により遮られることなく孔12を通過して後方板9に照射される。この場合、孔12の横手方向の長さを「Lah」、後方板9の横手方向の長さを「Lbh」、X-Y平面における理想光源位置31と前方板8との距離を「Dah」、X-Y平面における理想光源位置31と後方板9との距離を「Dbh」とすると、長さLbhは、以下の式(1)を満たす。
Lbh=(Lah/Dah)・Dbh (1)
Lbh=(Lah/Dah)・Dbh (1)
図4(B)は、理想光源位置31と、光軸調整用装置20との位置関係を示したX-Z平面図である。図4(B)に示すように、前方板8及び後方板9は、理想光源位置31を基準とする光軸Axに対してそれぞれ垂直となっており、孔12の縦方向の中心及び後方板9の縦方向の中心は、それぞれ光軸Ax上に存在している。
また、理想光源位置31から後方板9に向けて出射されたレーザ光は、前方板8により遮られることなく孔12を通過して後方板9に照射される。この場合、孔12の縦方向の長さを「Lav」、後方板9の縦方向の長さを「Lbv」、X-Z平面における理想光源位置31と前方板8との距離を「Dav」、X-Z平面における理想光源位置31と後方板9との距離を「Dbv」とすると、長さLbvは、以下の式(2)を満たす。
Lbv=(Lav/Dav)・Dbv (2)
Lbv=(Lav/Dav)・Dbv (2)
このように、後方板9は、上述の式(1)、(2)を満たす横幅Lbh及び縦幅Lbvを有し、かつ、孔12と相似形状をなしている。この場合の孔12と後方板9と相似比は、「Dah:Dbh」(=Dav:Dbv)となる。これにより、理想光源位置31からレーザ光が出射された場合には、後方板9の全面にレーザ光が照射され、かつ、孔12を通過したレーザ光は全て後方板9に照射される。従って、この場合、後述するように、ライダユニット2は、前方板8と後方板9との間に隙間がない計測点群を得ることが可能となる。
(3)ライダユニットの構成
図5は、ライダユニット2の構成例を示す。図5の例では、ライダユニット2は、光源などが収容されたライダ本体21と、ライダ本体21を保持する保持装置22と、を含む。
図5は、ライダユニット2の構成例を示す。図5の例では、ライダユニット2は、光源などが収容されたライダ本体21と、ライダ本体21を保持する保持装置22と、を含む。
ライダ本体21は、直方体の筐体を有し、筐体内には、レーザダイオードなどの光源部、走査部(スキャナ)、受光部、信号処理部などを有している。走査部は、照射方向を変えながら所定の水平角及び垂直角の範囲においてパルス状のレーザ光を出射し、かつ、照射したレーザ光の反射光(散乱光)を受光部へ導く。受光部は、光パルス出射後の所定期間内に反射光を受光することで生成したセグメントごとの受光強度に関する信号を、信号処理部へ出力する。信号処理部は、受光部が出力する信号に基づいて、光パルスが照射された物体の各点に対する距離及び角度(水平角・垂直角)の組を示した点群情報を出力する。なお、ライダ本体21は、水平方向の走査を行う複数の走査部を備え、これらの走査部が垂直方向に並べられた構成であってもよい。
保持装置22は、十字型の溝25が設けられた土台部23と、把持部24とを有する。把持部24は、位置調整機構26と、支柱部27と、ヨー角調整機構28と、第1アーム29と、ロール角調整機構30と、ピッチ角調整機構31と、第2アーム32とを有する。
位置調整機構26は、十字型の溝25に沿ってスライド自在であり、これによりライダ本体21のXY平面内での位置調整を行う。また、位置調整機構26は、高さ方向に支柱部27を伸縮又はスライド自在であり、これによりライダ本体21のZ軸方向での位置調整を行う。
また、支柱部27の上部には、ライダ本体21を底面から支持するヨー角調整機構28が設けられている。ヨー角調整機構28は、Z軸方向に延びた支柱27を軸として回転することで、ライダ本体21をZ軸回り(即ちヨー方向)に回転させる。ヨー角調整機構28は、第1アーム29を介してロール角調整機構30を支持している。
ロール角調整機構30は、ライダ本体21のレーザ出射面と反対の背面に設けられており、ライダ本体21を把持する第2アーム32と共に回転することで、ライダ本体21のロール角を調整自在となっている。ピッチ角調整機構31は、ライダ本体21の側面に設けられ、ライダ本体21を把持する第2アーム32と共に回転することで、ライダ本体21のピッチ角を調整自在となっている。
例えば、位置調整機構26、ヨー角調整機構28、ロール角調整機構30、及びピッチ角調整機構31は、それぞれ制御部6と電気的に接続しており、制御部6から供給される制御信号に基づいてライダ本体21の位置・姿勢を調整する動作を行う。他の例では、位置調整機構26、ヨー角調整機構28、ロール角調整機構30、及びピッチ角調整機構31は、手動操作が可能であって、手動操作による操作量に応じてライダ本体21の位置・姿勢を調整する調整量が決定されるものであってもよい。
図6は、ライダユニット2の光軸ずれを6個のパラメータ(dx、dy、dz、θ、φ、ψ)により表した図である。図6において、実光源位置32は、ずれが生じているライダユニット2の実際の光源位置を示している。ここでは、実光源位置32は、理想光源位置31に対し、X軸方向に「dx」、Y軸方向に「dy」、Z軸方向に「dz」だけずれている。また、ライダユニット2は、Y軸回り(即ちピッチ方向)において「θ」だけずれている。また、ライダユニット2は、X軸回り(即ちロール方向)において「φ」だけずれ、Z軸回り(即ちヨー方向)において「ψ」だけずれている。
そして、図6に示された6軸のずれ量dx、dy、dz、θ、φ、ψは、図5に示した保持装置22を調整することで、いずれも0にすることが可能である。例えば、制御部6は、後述するライダユニット2の光軸ずれの検出処理によりずれ量dx、dy、dzを検出した場合には、検出したずれ量dx、dy、dzに応じた移動方向及び移動量を指定した制御信号を位置調整機構26に送信する。同様に、制御部6は、ピッチ方向のずれ量θを検出した場合には、検出したずれ量θに応じた制御信号をピッチ角調整機構31へ送信し、ロール方向のずれ量φを検出した場合には、検出したずれ量φに応じた制御信号をロール角調整機構30へ送信し、ヨー方向のずれ量ψを検出した場合には、検出したずれ量ψに応じた制御信号をヨー角調整機構28へ送信する。
(4)光軸ずれの検出
次に、光軸ずれの検出方法について説明する。制御部6は、光軸調整用装置20が正しく設置された状態でライダユニット2が計測した計測点群に基づき描画した画像(「計測画像」とも呼ぶ。)に基づき、前方板8と後方板9の間の隙間及び計測画像中におけるこれらの表示範囲を特定することで、6軸のずれ量dx、dy、dz、θ、φ、ψをそれぞれ検出する。
次に、光軸ずれの検出方法について説明する。制御部6は、光軸調整用装置20が正しく設置された状態でライダユニット2が計測した計測点群に基づき描画した画像(「計測画像」とも呼ぶ。)に基づき、前方板8と後方板9の間の隙間及び計測画像中におけるこれらの表示範囲を特定することで、6軸のずれ量dx、dy、dz、θ、φ、ψをそれぞれ検出する。
(4-1)位置ずれ検出
まず、各座標軸に沿ったずれ光軸ずれ(「位置ずれ」とも呼ぶ。)の検出方法について説明する。概略的には、第1実施例に係る制御部6は、計測画像内で前方板8と後方板9との間に隙間が生じている場合にライダユニット2の光軸の位置ずれが生じていると判断し、上述の隙間が無くなるようにセンサ本体21の位置調整を行う。
まず、各座標軸に沿ったずれ光軸ずれ(「位置ずれ」とも呼ぶ。)の検出方法について説明する。概略的には、第1実施例に係る制御部6は、計測画像内で前方板8と後方板9との間に隙間が生じている場合にライダユニット2の光軸の位置ずれが生じていると判断し、上述の隙間が無くなるようにセンサ本体21の位置調整を行う。
図7は、理想光源位置31と実光源位置32と光軸調整用装置20との位置関係を示したX-Y平面図である。
光軸調整用装置20が正しく設置された状態では、図4(A)、(B)において説明したように、理想光源位置31は、罫書き線LNの延長線上に存在している。一方、図7の例では、ライダユニット2の実際の光源位置を示す実光源位置32は、X軸方向、Y軸方向、Z軸方向にそれぞれdx、dy、dzだけ理想光源位置31に対してずれが発生していることから、罫書き線LNの延長線上から外れている。そして、この場合、実光源位置32から出射されて孔12を通過したレーザ光の一部は、後方板9に入射しないため、計測画像上において前方板8と後方板9との間に隙間が生じることになる。図7の例では、実光源位置32が理想光源位置31に対してY軸負方向にずれていることから、計測画像上では、Y軸正方向側の後方板9の辺と前方板8との間に、計測点群がない隙間が生じることになる。
図8(A)は、光軸ずれが生じていないライダユニット2が出力する点群情報に基づく計測画像を示し、図8(B)、(C)は、Y方向及びZ方向に光軸ずれが生じているライダユニット2が出力する点群情報に基づく計測画像を示す。ここで、図8(A)~(C)に示す計測画像の各画素は、ライダユニット2が計測した各計測点に対応し、計測画像内の各画素の位置は、対応する計測点の計測範囲Rgにおける垂直方向及び水平方向の位置(即ち垂直方向及び水平方向のレーザ出射角度)を示し、各画素の値は、ライダユニット2に対する距離を示している。また、ここでは、前方板8と後方板9のいずれも計測されない方向に対する画素は黒色により表され、前方板8と後方板9のいずれかが計測された方向に対する画素の中心は白色により表されている。なお、計測範囲Rgには、光軸調整用装置20以外の物体は存在しないものとする。
光軸ずれが生じていないとき、即ち図4(A)、(B)に示す状態では、後方板9の全面にレーザ光が照射され、かつ、孔12を通過したレーザ光は全て後方板9に照射される。従って、この場合、計測画像には、図8(A)に示すように、前方板8と後方板9との間に計測点が存在しない空間(隙間)が生じない。なお、実際には、前方板8と後方板9はそれぞれ異なる距離が計測されるが、ここでは、説明の便宜上、前方板8と後方板9との計測点を同一画素値により示している。
一方、X軸方向、Y軸方向又はZ軸方向の少なくともいずれかに光軸ずれが生じているときには、孔12を通過したレーザ光の一部が後方板9に照射されないため、前方板8と後方板9との間に計測点が存在しない空間(隙間)が生じる。図8(B)の例では、目標とする光軸に対して実際のライダユニット2の光軸が左上(Y軸正方向かつZ軸正方向)にずれていることから、後方板9の底辺と前方板8との間及び後方板9のY軸負方向側の側辺と前方板8との間に、それぞれのずれ量に応じた幅の隙間がそれぞれ生じている。同様に、図8(C)の例では、目標とする光軸に対して実際のライダユニット2の光軸が右下にずれていることから、後方板9の上辺と前方板8との間及び後方板9のY軸正方向側の側辺と前方板8との間に、それぞれのずれ量に応じた幅の隙間がそれぞれ生じている。なお、X軸正方向側にずれたときには、後方板9の四辺と前方板8との間にそれぞれ隙間が生じる。
このように、X軸方向、Y軸方向又はZ軸方向の少なくともいずれかに光軸ずれが生じているときには、ずれの方向及びずれ量に応じて、前方板8と後方板9との間に計測点が存在しない空間(隙間)が生じる。
以上を勘案し、制御部6は、計測画像における前方板8と後方板9との間に生じた隙間の位置及び幅に応じて、センサ本体21のX軸方向、Y軸方向、又は/及びZ軸方向における位置調整を行う。例えば、制御部6は、図5に示した位置調整機構26によりセンサ本体21の位置を移動させつつ、最新の計測画像を参照することで、計測画像における前方板8と後方板9との間の隙間が減少するように、位置調整機構26の制御を繰り返し行う。他の例では、制御部6は、後方板9の隙間の位置及び幅と、位置調整機構26によりセンサ本体21を移動させるべき移動方向及び移動量とを対応付けたマップ等を予め記憶しておく。そして、制御部6は、計測画像から検出した後方板9の隙間の位置及び幅から当該マップを参照することで、位置調整機構26によるセンサ本体21を移動させる移動方向及び移動量を決定する。
なお、X軸負方向側に光軸がずれているときには、前方板8と後方板9の外周部分とが重なり、後方板9の四辺と前方板8との間に隙間が生じない場合がある。この場合、制御部6は、例えば、計測画像上において後方板9の各辺に隙間が生じていない場合であっても、センサ本体21をX軸正方向に移動させることで、計測画像上における前方板8と後方板9との間に意図的に隙間を形成する。その後、制御部6は、形成された隙間をなくすように位置調整機構26によるセンサ本体21の位置調整を行う。
(4-2)姿勢ずれ検出
次に、光軸の各軸回りのずれ(単に「姿勢ずれ」とも呼ぶ。)の検出方法について説明する。概略的には、制御部6は、計測画像中に基準となる仮想的な枠(「画像内基準枠Fref」とも呼ぶ。)を設定し、当該画像内基準枠Frefと前方板8及び後方板9の計測画像内の表示領域の外枠(「実板外形」とも呼ぶ。)とのずれを、姿勢ずれとして検出する。
次に、光軸の各軸回りのずれ(単に「姿勢ずれ」とも呼ぶ。)の検出方法について説明する。概略的には、制御部6は、計測画像中に基準となる仮想的な枠(「画像内基準枠Fref」とも呼ぶ。)を設定し、当該画像内基準枠Frefと前方板8及び後方板9の計測画像内の表示領域の外枠(「実板外形」とも呼ぶ。)とのずれを、姿勢ずれとして検出する。
図9(A)~(C)は、姿勢ずれが発生したときのライダユニット2が出力する点群情報に基づき生成した計測画像を示す。図9(A)~(C)では、それぞれ画像内基準枠Frefを明示している。ここで、画像内基準枠Frefは、光軸ずれが発生していない理想的な状態で前方板8が計測された場合の計測画像中における前方板8の外枠の位置を示している。
図9(A)~(C)に示すように、光軸に姿勢ずれのみが生じている場合には、計測画像中には前方板8と後方板9との間の隙間は発生しないため、上述した位置ずれ検出で述べた方法によっては姿勢ずれを検出することができない。
一方、図9(A)~(C)の例では、それぞれ姿勢ずれが生じたことにより、前方板8の外枠が画像内基準枠Frefに対してずれている。図9(A)の例では、目標とする光軸に対して実際のライダユニット2の光軸がピッチ方向(具体的には仰角が増加する方向)にずれていることから、そのずれ量(図6のずれ量θ)に応じて実板外形が台形状に歪み、かつ、画像内基準枠Frefよりも下にシフトしている。一方、図9(B)の例では、目標とする光軸に対して実際のライダユニット2の光軸がヨー方向(右方向)にずれていることから、そのずれ量(図6のずれ量ψ)に応じて実板外形が台形状に歪み、かつ、画像内基準枠Frefよりも左にシフトしている。また、図9(C)の例では、目標とする光軸に対して実際のライダユニット2の光軸がロール方向(時計回り)にずれていることから、そのずれ量(図6のずれ量φ)に応じて実板外形が傾いている。
このように、ピッチ方向、ヨー方向、ロール方向の少なくともいずれかの方向に光軸すれが生じているときには、そのずれの方向及びずれ量に応じて、画像内基準枠Frefと実板外形との形状、位置、大きさ等に違いが表れる。
以上を勘案し、制御部6は、画像内基準枠Frefと実板外形とが合致していないときには姿勢ずれが生じていると判断し、画像内基準枠Frefと実板外形とが合致するように、センサ本体21のピッチ方向、ヨー方向、ロール方向の調整を行う。例えば、制御部6は、図5に示したヨー角調整機構28、ロール角調整機構30、ピッチ角調整機構31によりセンサ本体21の姿勢を変更させつつ、最新の計測画像を参照することで、計測画像における実板外形が画像内基準枠Frefに近似するように、ヨー角調整機構28、ロール角調整機構30、ピッチ角調整機構31の制御を繰り返し行う。他の例では、制御部6は、画像内基準枠Frefに対する実板外形のずれを表す複数の指標(例えば台形歪みの度合、台形歪みの方向、傾き角等)の指標値をそれぞれ公知の解析手法により算出し、算出した各指標の指標値に基づきヨー角調整機構28、ロール角調整機構30、ピッチ角調整機構31により調整すべき調整方向及び調整量を決定する。この場合、制御部6は、例えば、各指標の指標値の組み合わせごとに必要な調整方向及び調整量を定めたマップ等を予め記憶しておき、当該マップ等を参照して上述の調整方向及び調整量を決定する。
図10(A)は、目標とする光軸に対して実際のライダユニット2の光軸がヨー方向(右方向)にずれ、かつ、左上方向に位置ずれが発生している場合に計測された計測点群に基づく計測画像を示す。また、図10(B)は、目標とする光軸に対して実際のライダユニット2の光軸がヨー方向(右方向)にずれ、かつ、右下方向に位置ずれが発生している場合に計測された計測点群に基づく計測画像を示す。
図10(A)、(B)に示すように、光軸の位置ずれと姿勢ずれの両方が発生している場合には、前方板8と後方板9との隙間が発生すると共に、実板外形と画像内基準枠Frefとの不一致が生じる。よって、この場合、制御部6は、例えば、前方板8と後方板9との隙間が発生しないようにセンサ本体21の位置調整を行うと共に、実板外形と画像内基準枠Frefとが一致するようにセンサ本体21の姿勢調整を行う。このとき、制御部6は、例えば、前方板8と後方板9との隙間が発生せず、かつ、実板外形と画像内基準枠Frefとが一致した計測画像が得られるまで、前方板8と後方板9との隙間が発生しないようにセンサ本体21の位置調整を行う処理と、実板外形と画像内基準枠Frefとが一致するようにセンサ本体21の姿勢調整を行う処理とを交互に繰り返してもよい。
(5)処理フロー
図11は、光軸ずれの検出及び調整に関するフローチャートである。
図11は、光軸ずれの検出及び調整に関するフローチャートである。
まず、作業員は、ライダユニット2を搭載した車両を、光軸を調整するのに好適な作業エリア内の所定の位置に設置する(ステップS101)。そして、作業員は、光軸調整用装置20の台座7に描かれた罫書き線LNを参照し、車種ごとに予め指定された位置に光軸調整用装置20を配置する(ステップS102)。この場合、光軸調整用装置20は、ライダユニット2の光軸ずれが発生していない場合には、計測画像内で前方板8と後方板9との間の隙間が発生せず、かつ、前方板8及び後方板9の外形(実板外形)が画像内基準枠Frefと重なるような位置となるように配置される。
そして、制御部6は、ステップS102の終了後、例えば、入力部1への光軸ずれの検出及び調整を開始する旨のユーザ入力などを検知することにより、光軸調整モードへ移行し、以下のステップS103~S115の処理を開始する。この場合、まず、制御部6は、ライダユニット2から計測データを取得する(ステップS103)。この場合、ライダユニット2の計測範囲Rgの所定位置には、光軸調整用装置20が設置されており、光軸調整用装置20の前方板8及び後方板9の計測点群を示す計測データがライダユニット2から制御部6へ供給される。そして、制御部6は、ステップS103で取得した計測データから計測画像を生成する(ステップS104)。
次に、制御部6は、生成した計測画像を参照し、前方板8と後方板9との間の隙間が存在するか否か判定する(ステップS105)。そして、制御部6は、計測画像中において前方板8と後方板9との間に隙間が存在すると判定した場合(ステップS105;Yes)、前方板8と後方板9との隙間の位置及び幅等を分析する(ステップS106)。そして、制御部6は、ステップS106での分析結果に基づいて、センサ本体21のX座標の調整(ステップS107)、Y座標の調整(ステップS108)、又はZ座標の調整(ステップS109)の少なくともいずれかを実行する。この場合、制御部6は、最新の計測画像を参照しつつ上述の隙間が減少するようにステップS107-S109の調整を繰り返し行う制御を行ってもよく、ステップS106での分析結果に基づいて所定のマップを参照することでステップS107-S109での調整要否及び調整量を決定してもよく、入力部1へのユーザ入力に基づきステップS107-S109での調整要否及び調整量を決定してもよい。そして、制御部6は、計測画像中において前方板8と後方板9との間の隙間がなくなるまで、ステップS105~ステップS109の処理を必要に応じて繰り返し実行する。
一方、制御部6は、計測画像中において前方板8と後方板9との間に隙間が存在しないと判断した場合(ステップS105;No)、ライダユニット2の位置調整を行う必要はないと判断し、計測画像中の仮想的な画像内基準枠Frefに対し、計測画像内での前方板8及び後方板9の外形である実板外形が合致するか否か判定する(ステップS110)。これにより、制御部6は、ライダユニット2の光軸の姿勢調整の要否を判定する。
そして、制御部6は、画像内基準枠Frefと実板外形とが合致していない場合(ステップS110;No)、画像内基準枠Frefと実板外形との差異を分析する(ステップS111)。そして、制御部6は、ステップS111での分析結果に基づいて、ヨー角調整機構28によるヨー角調整(ステップS112)、ピッチ角調整機構31によるピッチ角調整(ステップS113)、ロール角調整機構30によるロール角調整(ステップS114)の少なくともいずれかを実行する。この場合、制御部6は、最新の計測画像を参照しつつ、画像内基準枠Frefに実板外形が近づくようにステップS112-S114の調整を繰り返し行う制御を行ってもよく、ステップS111での分析結果に基づき所定のマップを参照してステップS112-S114での調整要否及び調整量を決定してもよく、入力部1へのユーザ入力に基づきステップS112-S114での調整要否及び調整量を決定してもよい。そして、制御部6は、計測画像中において画像内基準枠Frefと実板外形とが合致するまで、ステップS111~ステップS114の処理を必要に応じて繰り返し実行する。
そして、制御部6は、画像内基準枠Frefと実板外形とが合致したと判断した場合(ステップS110;Yes)、光軸調整が完了したか否か判定する(ステップS115)。例えば、制御部6は、最新の計測画像を参照し、前方板8と後方板9との間に隙間が存在せず、かつ、画像内基準枠Frefに実板外形が合致していると判断した場合、光軸調整が完了したと判断する。そして、制御部6は、光軸調整が完了したと判断した場合(ステップS115;Yes)、フローチャートの処理を終了する。これにより光軸調整モードを終了する。一方、制御部6は、光軸調整が完了していないと判断した場合(ステップS115;No)、ステップS105へ処理を戻す。
以上説明したように、第1実施例に係る光軸調整用装置20は、調整対象となるライダユニット2の目標となる光軸の情報である罫書き線LNが示された台座7と、台座7上において支持され、所定形状の孔12が設けられた前方板8と、前方板8と平行かつライダユニット2に対して前方板8の後方に設けられ、孔12と相似形状となる後方板9と、を備える。また、第1実施例に係る光軸調整方法は、計測を行うライダユニット2の理想の光軸に対する現在の光軸のずれを検出する制御方法であって、ライダユニット2の計測範囲Rg内の所定位置に置かれた光軸調整用装置20を計測した計測画像を取得する取得工程と、計測画像に基づいて、光軸のずれを検出する検出工程と、を有する。上記の光軸調整用装置20を用いて上述の制御方法を実行することで、ライダユニット2の理想の光軸に対する現在の光軸のずれを的確に検出することができる。
[第2実施例]
第2実施例では、光軸の調整対象が測距装置であることを鑑み、光軸ずれがない状態において略全面を等距離により計測可能な板を備える光軸調整用装置20を用いる点で第1実施例と異なる。情報処理装置10の構成等は、第1実施例と同一であるため、適宜これらの説明を省略する。
第2実施例では、光軸の調整対象が測距装置であることを鑑み、光軸ずれがない状態において略全面を等距離により計測可能な板を備える光軸調整用装置20を用いる点で第1実施例と異なる。情報処理装置10の構成等は、第1実施例と同一であるため、適宜これらの説明を省略する。
(1)光軸調整用装置の構成
図12は、第2実施例における光軸調整用装置20Aの斜視図を示す。図12に示すように、光軸調整用装置20Aは、罫書き線LNが描かれた台座7上に、曲面形状を有する曲面板8Rが高低角度調整機構13により支持されている。曲面板8Rは、光軸ずれが生じていないライダユニット2に対して光軸調整用装置20Aが正しく設置された状態において、ライダユニット2のレーザ光の水平方向の走査方向に沿って一定の曲率により湾曲している。
図12は、第2実施例における光軸調整用装置20Aの斜視図を示す。図12に示すように、光軸調整用装置20Aは、罫書き線LNが描かれた台座7上に、曲面形状を有する曲面板8Rが高低角度調整機構13により支持されている。曲面板8Rは、光軸ずれが生じていないライダユニット2に対して光軸調整用装置20Aが正しく設置された状態において、ライダユニット2のレーザ光の水平方向の走査方向に沿って一定の曲率により湾曲している。
図13(A)は、光軸調整用装置20AのX-Y平面図である。図13(A)に示すように、曲面板8Rの被照射面は、X-Y平面視において曲率が一定の円弧形状となっている。また、曲面板8Rの被照射面のY軸方向(即ち曲面板8Rが湾曲する方向)における中心の接線(破線40参照)は、罫書き線LNと垂直となる。
また、図13(A)には、罫書き線LNの延長線上に、理想光源位置31が示されており、理想光源位置31は、曲面板8Rの被照射面がなす円弧の曲率中心(被照射面の接触円の中心)と一致している。従って、理想光源位置31から出射されて曲面板8Rに到達するレーザ光の光路長は、曲面板8R上の被照射点の位置によらずに一定となる。よって、図13(A)において曲面板8Rの左側に入射する光の光路長「LL」と、曲面板8Rの中央に入射する光の光路長「LC」と、曲面板8Rの右側に入射する光の光路長「LR」は、それぞれ等しい値(LL=LC=LR)となる。
図13(B)は、光軸ずれが生じたライダユニット2の実光源位置32と光軸調整用装置20との位置関係を示したX-Y平面図である。図13(B)に示すように、ライダユニット2の実際の光源は、X軸方向、Y軸方向、Z軸方向にそれぞれずれ量dx、dy、dzが発生している。この場合、実光源位置32は、罫書き線LNの延長線上から外れており、曲面板8Rの被照射面がなす円弧の曲率中心と一致していない。そして、この場合、曲面板8Rの左側に入射する光の光路長LLと、曲面板8Rの中央に入射する光の光路長LCと、曲面板8Rの右側に入射する光の光路長LRは、それぞれ異なる値(LL>LC>LR)となる。
なお、第2実施例では、好適には、ライダユニット2は、水平方向(Y軸方向)にのみ走査を行う複数の光源(スキャナ)が垂直方向(Z軸方向)に並べられた構成を有することが好ましい。このようなライダユニット2では、それぞれの光源(スキャナ)は垂直方向に走査を行わないため、垂直方向においても曲面板8Rの被照射面の計測距離が均一となる。
(2)光軸ずれの検出
まず、第2実施例における光軸の位置ずれの検出方法について説明する。概略的には、第2実施例に係る制御部6は、計測画像の曲面板8Rを表す各画素の画素値が均一でない場合にライダユニット2の光軸の位置ずれが生じていると判断し、画素値が均一となるようにセンサ本体21の位置調整を行う。
まず、第2実施例における光軸の位置ずれの検出方法について説明する。概略的には、第2実施例に係る制御部6は、計測画像の曲面板8Rを表す各画素の画素値が均一でない場合にライダユニット2の光軸の位置ずれが生じていると判断し、画素値が均一となるようにセンサ本体21の位置調整を行う。
図14(A)は、光軸ずれが生じていないライダユニット2が出力する点群データに基づく計測画像を示し、図14(B)、(C)は、Y方向に光軸ずれが生じたライダユニット2が出力する点群データに基づく計測画像を示す。ここで、図14(A)~(C)に示す計測画像の各画素は、ライダユニット2が計測した各計測点に対応しており、計測画像内の各画素の位置は、対応する計測点の計測範囲Rgにおける垂直方向及び水平方向の位置を示し、各画素の値は、対応する計測点の距離を示している。ここでは、各画素は、計測されるべき理想的な距離の場合に黄色、黄色の画素よりも距離が短い場合に赤色、黄色の画素よりも距離が長い場合に緑色となるように色分けされている。
ここで、光軸ずれが生じていないとき、即ち図13(A)に示す状態では、後方板9の被照射面の全ての計測点において等しい距離が計測される。よって、この場合、計測画像には、図14(A)に示すように、均一の画素値を有する画素からなる曲面板8Rの領域が表示される。
一方、図13(B)に示す状態のようにライダユニット2に光軸ずれが生じている場合、後方板9の被照射面の計測点の位置によって異なる距離が計測される。例えば、図14(B)の例では、Y軸正方向側(左側)に光軸ずれが発生したことから、Y軸正方向側の曲面板8Rの被照射面の各計測点の距離が短くなり、Y軸負方向側の曲面板8Rの被照射面の各計測点の距離が長くなっている。一方、図14(C)の例では、Y軸負方向側(右側)に光軸ずれが発生したことから、Y軸負方向側の曲面板8Rの被照射面の各計測点の距離が短くなり、Y軸正方向側の曲面板8Rの被照射面の各計測点の距離が長くなっている。なお、X軸方向に光軸ずれが発生した場合には、曲面板8Rの被照射面の各計測点の距離は、全体として、計測されるべき理想的な距離とはずれ量に応じて離れていく。具体的には、X軸方向のずれ量が多いほど、曲面板8Rを表す計測画像内の各画素は、赤又は緑に近づく。従って、この場合、制御部6は、例えば、計測されるべき理想的な距離の情報を予め記憶しておき、当該情報が示す距離と計測画像内の各画素の画素値に相当する距離とを比較することで、X軸方向のずれを検出することができる。
なお、水平方向にのみ走査を行う複数の光源が垂直方向に並べられた構成を有するライダユニット2において、Z軸方向にのみ光軸ずれが発生した場合には、計測画像内の曲面板8Rを表す各画素の画素値は均一となるため、上述の方法ではZ軸方向の光軸ずれの検出及び調整を行うことはできない。よって、制御部6は、この場合、以下に述べる姿勢ずれの検出方法によりZ軸方向の光軸ずれの検出及び調整を行うとよい。
次に、光軸の姿勢ずれの検出方法について説明する。
第2実施例では、制御部6は、第1実施例における姿勢ずれ検出方法と同様、計測画像中に基準となる仮想的な画像内基準枠Frefを設定し、当該画像内基準枠Frefと計測画像内の曲面板8Rの表示領域の外形である実板外形とのずれを、姿勢ずれとして検出する。
図15(A)~(C)は、姿勢ずれが発生したライダユニット2が出力する点群情報に基づき生成した計測画像を示す。図15(A)~(C)では、それぞれ画像内基準枠Frefを明示している。ここで、画像内基準枠Frefは、光軸ずれが発生していない理想的な状態で曲面板8Rが計測された場合の計測画像中における曲面板8Rの外枠の位置を示している。
図15(A)~(C)に示すように、光軸に姿勢ずれのみが生じている場合には、計測画像中の曲面板8Rを表す各画素は同一の画素値を示すため、上述した位置ずれ検出で述べた方法によっては姿勢ずれを検出することができない。
一方、図15(A)~(C)の例では、それぞれ姿勢ずれが生じたことにより、曲面板8Rの外枠である実板外形が画像内基準枠Frefに対してずれている。図15(A)の例では、目標とする光軸に対して実際のライダユニット2の光軸がピッチ方向(具体的には仰角が増加する方向)にずれていることから、そのずれ量(図6のずれ量θ)に応じて実板外形が台形状に歪み、かつ、画像内基準枠Frefよりも下にシフトしている。一方、図15(B)の例では、目標とする光軸に対して実際のライダユニット2の光軸がヨー方向(右方向)にずれていることから、そのずれ量(図6のずれ量ψ)に応じて実板外形が台形状に歪み、かつ、画像内基準枠Frefよりも左にシフトしている。また、図15(C)の例では、目標とする光軸に対して実際のライダユニット2の光軸がロール方向(時計回り)にずれていることから、そのずれ量(図6のずれ量φ)に応じて実板外形が傾いている。
このように、ピッチ方向、ヨー方向、ロール方向の少なくともいずれかの方向に光軸すれが生じているときには、そのずれの方向及びずれ量に応じて、画像内基準枠Frefと実板外形との形状、位置、大きさ等に違いが表れる。従って、制御部6は、画像内基準枠Frefと実板外形とが合致していないときには姿勢ずれが生じていると判断し、画像内基準枠Frefと実板外形とが合致するように、センサ本体21のピッチ方向、ヨー方向、ロール方向の調整を行う。
なお、Z軸方向に光軸ずれが発生した場合においても、実板外形は、画像内基準枠Frefに対して上下に変動するため、画像内基準枠Frefと実板外形とが合致しない。よって、制御部6は、画像内基準枠Frefと実板外形とが上下にずれている場合には、Z軸方向に光軸ずれが生じていると判断し、画像内基準枠Frefと実板外形とが合致するように、センサ本体21のZ軸方向の調整を行うとよい。
(3)処理フロー
図16は、光軸ずれの検出及び調整に関するフローチャートである。なお、ステップS201~ステップS204の処理は、図11のステップS101~S104と同一であるため、その説明を省略する。
図16は、光軸ずれの検出及び調整に関するフローチャートである。なお、ステップS201~ステップS204の処理は、図11のステップS101~S104と同一であるため、その説明を省略する。
制御部6は、ステップS204で計測画像の生成後、計測画像内の曲面板8Rの各計測点の距離(即ち曲面板8Rを表す各画素の画素値)が均一であるか否か判定する(ステップS205)。例えば、制御部6は、計測画像内の曲面板8Rの各画素の画素値の分散が所定値以下である場合、計測画像内の曲面板8Rの各計測点での距離が均一であると判定する。
そして、制御部6は、計測画像内の曲面板8Rの各計測点の距離が均一である場合(ステップS205;Yes)、ステップS210へ処理を進める。一方、制御部6は、計測画像内の曲面板8Rの各計測点の距離が均一ではない場合(ステップS205;No)、計測画像内の曲面板8Rの各計測点の距離の分布を分析する(ステップS206)。そして、制御部6は、ステップS206での分析結果に基づいて、センサ本体21のX座標の調整(ステップS207)又はY座標の調整(ステップS208)の少なくともいずれかを実行する。この場合、制御部6は、最新の計測画像を参照しつつ、各計測点の距離の分布が均一に近づくようにステップS207とステップS208の調整を行う制御を繰り返し行ってもよく、ステップS206での分析結果に基づいて所定のマップを参照することでステップS207とステップS208での調整要否及び調整量を決定してもよく、入力部1へのユーザ入力に基づきステップS207とステップS208での調整要否及び調整量を決定してもよい。そして、制御部6は、計測画像中において曲面板8Rの各計測点での距離が均一になるまで、ステップS206~ステップS208の処理を必要に応じて繰り返し実行する。
ステップS210では、制御部6は、計測画像中の仮想的な画像内基準枠Frefに計測画像内での曲面板8Rの外形である実板外形が合致するか否か判定する(ステップS210)。これにより、制御部6は、ライダユニット2の光軸の姿勢調整及びZ軸方向の位置調整の要否を判定する。
そして、制御部6は、画像内基準枠Frefに実板外形が合致していない場合(ステップS210;No)、画像内基準枠Frefと実板外形との差異を分析する(ステップS211)。そして、制御部6は、ステップS211での分析結果等に基づいて、ヨー角調整機構28によるヨー角調整(ステップS212)、ピッチ角調整機構31によるピッチ角調整(ステップS213)、ロール角調整機構30によるロール角調整(ステップS214)、位置調整機構26によるZ座標調整(ステップS215)の少なくともいずれかを実行する。そして、制御部6は、計測画像中において画像内基準枠Frefと実板外形とが合致するまで、ステップS211~ステップS215の処理を必要に応じて繰り返し実行する。
そして、制御部6は、光軸調整が完了したか否か判定する(ステップS216)。そして、制御部6は、光軸調整が完了したと判断した場合(ステップS216;Yes)、フローチャートの処理を終了する。これにより光軸調整モードを終了する。一方、制御部6は、光軸調整が完了していないと判断した場合(ステップS216;No)、ステップS205へ処理を戻す。
以上説明したように、第2実施例に係る光軸調整用装置20Aは、調整対象となるライダユニット2の光軸の位置を示す罫書き線LNが描かれた台座7と、台座上において支持され、罫書き線LNが示す光軸に対して所定の位置関係で固定され、所定の曲率で湾曲した形状を有する曲面板8Rと、を有する。また、第2実施例に係る光軸調整方法は、計測を行うライダユニット2の理想の光軸に対する現在の光軸のずれを検出する制御方法であって、ライダユニット2の計測範囲Rg内の所定位置に置かれた光軸調整用装置20Aを計測した計測画像を取得する取得工程と、計測画像に基づいて、光軸のずれを検出する検出工程と、を有する。上記の光軸調整用装置20Aを用いて上述の制御方法を実行することで、ライダユニット2の理想の光軸に対する現在の光軸のずれを的確に検出することができる。
[変形例]
次に、上述の第1及び第2実施例に好適な変形例について説明する。以下の変形例は、任意に組み合わせて上述の実施例に適用してもよい。
次に、上述の第1及び第2実施例に好適な変形例について説明する。以下の変形例は、任意に組み合わせて上述の実施例に適用してもよい。
(変形例1)
制御部6は、ライダユニット2の光軸の位置ずれ又は姿勢ずれを検出した場合に、保持装置22を制御することでセンサ本体21の位置及び姿勢を調整した。これに代えて、制御部6は、ライダユニット2に位置及び姿勢の調整機構が備わっていない場合などでは、検出した位置ずれ及び姿勢ずれを考慮してライダユニット2が出力する点群情報を補正してもよい。
制御部6は、ライダユニット2の光軸の位置ずれ又は姿勢ずれを検出した場合に、保持装置22を制御することでセンサ本体21の位置及び姿勢を調整した。これに代えて、制御部6は、ライダユニット2に位置及び姿勢の調整機構が備わっていない場合などでは、検出した位置ずれ及び姿勢ずれを考慮してライダユニット2が出力する点群情報を補正してもよい。
一般的に、ライダユニット2が出力する点群情報は、ライダユニット2の位置及び姿勢を基準としたローカル座標系(ライダ座標系)により表されていることから、所定の座標変換式を用いて、車両の位置及び姿勢を基準とした座標系(車両座標系)に変換する必要がある。この座標変換式は、一般的に、車両に対するセンサ本体21の相対的な位置及び姿勢に依存し、この位置及び姿勢を表す6個(X座標、Y座標、Z座標、ヨー角、ピッチ角、ロール角)のパラメータに基づき一意に定められる。
以上を勘案し、制御部6は、ライダユニット2が出力する点群情報を車両座標系に変換する場合には、ずれが生じていない状態でのセンサ本体21の車両に対する相対的な位置及び姿勢の6個のパラメータの情報を予め記憶しておき、当該パラメータに第1又は第2実施例で検出した6軸のずれ量を加算する。そして、制御部6は、加算後の6個のパラメータに基づき上述の座標変換式を決定し、決定した座標変換式に基づき、ライダユニット2が出力する点群情報を車両座標系の点群情報に変換する。
この態様によれば、制御部6は、ライダユニット2の光軸の位置ずれ又は姿勢ずれを許容しつつ、ライダユニット2が出力する点群情報を車両座標系の点群情報に的確に変換し、障害物検知や位置推定のためのランドマーク検知などの種々の処理に好適に用いることができる。
(変形例2)
第1実施例において、光軸調整用装置20が正しく設置された状態で光軸ずれが生じていないライダユニット2が計測した計測画像(「理想計測画像」とも呼ぶ。)では、図8(A)に示されるように、前方板8の孔12に隙間なく重なるように後方板9が表示されていた。これに代えて、理想計測画像において、前方板8と後方板9との間に意図的な隙間が設けられてもよい。
第1実施例において、光軸調整用装置20が正しく設置された状態で光軸ずれが生じていないライダユニット2が計測した計測画像(「理想計測画像」とも呼ぶ。)では、図8(A)に示されるように、前方板8の孔12に隙間なく重なるように後方板9が表示されていた。これに代えて、理想計測画像において、前方板8と後方板9との間に意図的な隙間が設けられてもよい。
図17は、本変形例における理想計測画像の一例である。図17の例では、後方板9は、横幅Lbh、縦幅Lbvを有する図4の後方板9よりも横幅及び縦幅共に短く設計されていることにより、理想計測画像上には、前方板8の四辺それぞれに対し、後方板9と所定画素分だけ隙間が発生している。
この場合、制御部6は、図17に示す理想計測画像における前方板8の各辺と後方板9との隙間の幅(例えば画素数)の情報を予め記憶しておき、ライダユニット2の光軸ずれの検出及び調整において計測画像を取得した場合に、当該計測画像中における前方板8の各辺と後方板9との隙間の幅を算出し、予め記憶した情報が示す幅と差異があるか否か判定する。そして、制御部6は、算出した前方板8の各辺と後方板9との隙間の幅が予め記憶した情報が示す幅と差異がない場合、位置ずれが生じていないと判断する。一方、制御部6は、算出した前方板8の各辺と後方板9との隙間の幅が予め記憶した情報が示す幅と差異がある場合、当該差異が無くなるようにセンサ本体21の位置調整を行う。
この態様によれば、理想計測画像においては前方板8と後方板9とが重ならないため、仮にX軸負方向側に光軸がずれているときであっても、後方板9の四辺と前方板8との間に隙間が生じないことによる光軸ずれの検出漏れを好適に抑制することができる。
(変形例3)
第2実施例は、水平方向(Y軸方向)と垂直方向(Z軸方向)の両方を行うように構成されたライダユニット2に対しても適用してよい。
第2実施例は、水平方向(Y軸方向)と垂直方向(Z軸方向)の両方を行うように構成されたライダユニット2に対しても適用してよい。
このようなライダユニット2の場合、曲面板8Rには水平方向のみ湾曲しているため、理想計測画像における曲面板8Rの画素の画素値は、縦方向の位置によって異なる値となる。この場合、例えば、制御部6は、図16のステップS205~ステップS208の位置ずれ調整処理において、計測画像の縦方向の中央に位置する所定行分の各画素の画素値のみを抽出し、これらの画素値が計測されるべき理想的な距離を示す均一な画素値であるか否か判定する。これによっても、X軸方向及びY軸方向の位置ずれを好適に検出し、位置ずれの調整を行うことができる。
(変形例4)
第2実施例における曲面板8Rは、水平方向に加えて垂直方向に所定の曲率により湾曲してもよい。
第2実施例における曲面板8Rは、水平方向に加えて垂直方向に所定の曲率により湾曲してもよい。
図18は、本変形例における光軸調整用装置20BのX-Z平面における断面図を示す。図18の例では、曲面板8RBの被照射面は、垂直方向及び水平方向に湾曲した球面形状を有している。そして、曲面板8RBの被照射面の曲率中心は、理想光源位置31と一致している。
この態様によれば、水平方向(Y軸方向)と垂直方向(Z軸方向)の両方を行うように構成されたライダユニット2の光軸ずれの検出を行う場合に、理想計測画像内の曲面板8RBの各画素が均一の距離を示す画素値となる。よって、制御部6は、図18に示す光軸調整用装置20Bを用いることで、取得した計測画像に基づき位置ずれの検出を行う際に、位置ずれの有無を、計測画像内の曲面板8RBの各画素の画素値の均一性により判定すればよい。
なお、第2実施例では、Z軸方向に光軸ずれが発生した場合には、計測画像内の曲面板8Rを表す各画素の画素値は均一となるため、画素値の均一性に基づいたZ軸方向の光軸ずれの検出及び調整を行うことはできかった。しかしながら、本変形例の光軸調整用装置20Bを用いた場合には、Z軸方向に光軸ずれが発生したときに、計測画像内の曲面板8RBを表す各画素の画素値は縦方向に不均一となる。よって、本変形例によれば、制御部6は、Z軸方向の光軸ずれの検出及び調整についても、計測画像内の曲面板8RBの各画素の画素値の均一性に基づき好適に実行することができる。
(変形例5)
台座7に描かれた罫書き線LNは、台座7に貼り付けられたシールに描かれてもよい。この場合、例えば、シールには、罫書き線LNと同様の線が描かれ、台座7の所定位置に貼り付けられる。
台座7に描かれた罫書き線LNは、台座7に貼り付けられたシールに描かれてもよい。この場合、例えば、シールには、罫書き線LNと同様の線が描かれ、台座7の所定位置に貼り付けられる。
(変形例6)
第1実施例において、光軸ずれの検出及び調整を行う対象は、ライダユニット2などの測距装置に限定されず、光軸ずれの検出及び調整を行う必要がある任意の光学機器であってもよい。例えば、車両に搭載されるカメラの光軸ずれの検出及び調整を第1実施例に基づき実行してもよい。この場合、カメラは、例えば、図5に示すライダユニット2と同様、制御部6の制御信号に基づいて位置及び姿勢を調整自在な保持装置22により保持され、図11に示すフローチャートに基づいて位置及び姿勢の調整処理が実行される。
第1実施例において、光軸ずれの検出及び調整を行う対象は、ライダユニット2などの測距装置に限定されず、光軸ずれの検出及び調整を行う必要がある任意の光学機器であってもよい。例えば、車両に搭載されるカメラの光軸ずれの検出及び調整を第1実施例に基づき実行してもよい。この場合、カメラは、例えば、図5に示すライダユニット2と同様、制御部6の制御信号に基づいて位置及び姿勢を調整自在な保持装置22により保持され、図11に示すフローチャートに基づいて位置及び姿勢の調整処理が実行される。
(変形例7)
第1実施例の光軸調整用装置20及び第2実施例の光軸調整用装置20Aに用いられる台座7には、罫書き線LNに加えて、光軸調整用装置20、20Aを設置する際に車両又はライダユニット2との距離の基準となる目印が設けられてもよい。
第1実施例の光軸調整用装置20及び第2実施例の光軸調整用装置20Aに用いられる台座7には、罫書き線LNに加えて、光軸調整用装置20、20Aを設置する際に車両又はライダユニット2との距離の基準となる目印が設けられてもよい。
図19(A)は、本変形例における台座7AのX-Y平面図である。図19(A)に示す台座7Aには、罫書き線LNに直交する線分70が描かれている。この場合、作業員は、紐状部材などを用いて、線分70から車両又はライダユニット2の所定の位置までの罫書き線LNに沿った距離が車種ごとに予め定められた所定距離となるように、光軸調整用装置20、20Aの位置調整を行う。これにより、作業員は、光軸調整用装置20、20Aを、対象となる車両の車種毎に指定された位置に的確に配置することが可能となる。
図19(B)は、本変形例における台座7BのX-Y平面図である。図19(B)に示す台座7Bには、罫書き線LN上の所定位置にマーク71が描かれている。この場合、作業員は、マーク71から車両又はライダユニット2の所定の位置までの罫書き線LNに沿った距離が車種ごとに予め定められた所定距離となるように、光軸調整用装置20、20Aの位置調整を行う。図19(C)は、本変形例における台座7CのX-Y平面図である。図19(C)に示す台座7Cには、台座7Cの前端73(車両側手前の端)が基準となることを明示した矢印72が設けられている。この場合、作業員は、前端73から車両又はライダユニット2の所定の位置までの罫書き線LNに沿った距離が車種ごとに予め定められた所定距離となるように、光軸調整用装置20、20Aの位置調整を行う。
このように、本変形例によれば、作業員は、光軸調整用装置20、20Aを設置する際に車両又はライダユニット2との距離の基準となる目印に基づき、光軸調整用装置20、20Aを、対象となる車両の車種毎に指定された位置に的確に配置することが可能となる。
1 入力部
2 ライダユニット
3 記憶部
4 表示部
6 制御部
10 情報処理装置
20 光軸調整用装置
2 ライダユニット
3 記憶部
4 表示部
6 制御部
10 情報処理装置
20 光軸調整用装置
Claims (9)
- 調整対象となる光学機器の目標となる光軸の情報が示された台座と、
前記台座上において支持され、所定形状の孔が設けられた第1板と、
前記第1板と平行かつ前記光学機器に対して前記第1板の後方に設けられ、前記孔と相似形状となる第2板と、を備える光軸調整用装置。 - 前記台座には、前記光軸の情報として、前記光軸の水平面上の位置を示す線が記されている請求項1に記載の光軸調整用装置。
- 水平面上において、前記光軸の情報が示す光軸は、前記孔の中心と、前記第2板の中心とを通る請求項1または2に記載の光軸調整用装置。
- 前記第1板及び前記第2板の傾き又は高さの少なくともいずれかを調整自在に前記第1板を支持する調整機構をさらに備える請求項1~3のいずれか一項に記載の光軸調整用装置。
- 前記第2板を、前記第1板と平行となる状態で前記第1板に対して固定する固定部材をさらに備える請求項4に記載の光軸調整用装置。
- 前記第1板及び前記第2板は、再帰性反射板である請求項1~5のいずれか一項に記載の光軸調整用装置。
- 前記孔と前記第2板との相似比は、前記光軸の調整時の前記光学機器の光源の目標位置と前記第1板との間の距離と、前記目標位置と前記第2板との距離との比に等しい請求項1~6のいずれか一項に記載の光軸調整用装置。
- 前記台座には、前記光学機器又は前記光学機器を搭載する車両までの距離を計測する際の基準位置を示す目印が記されている請求項1~7のいずれか一項に記載の光軸調整用装置。
- 調整対象となる光学機器の目標となる光軸の情報が示された台座と、
前記台座上において支持され、所定形状の孔が設けられた第1板と、
前記第1板と平行かつ前記光学機器に対して前記第1板の後方に設けられ、前記光学機器が前記孔を介して全体を検出可能な第2板と、を備える光軸調整用装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-186977 | 2018-10-01 | ||
JP2018186977 | 2018-10-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020071167A1 true WO2020071167A1 (ja) | 2020-04-09 |
Family
ID=70054809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/037227 WO2020071167A1 (ja) | 2018-10-01 | 2019-09-24 | 光軸調整用装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020071167A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11133150A (ja) * | 1997-10-24 | 1999-05-21 | Fujitsu Ten Ltd | 車載用レーダ装置の軸合わせ方法 |
US20040049930A1 (en) * | 2002-09-17 | 2004-03-18 | Snap-On Technologies, Inc. | Apparatus for use with a 3D image wheel aligner for facilitating adjustment of an adaptive cruise control sensor on a motor vehicle |
JP2010151682A (ja) * | 2008-12-25 | 2010-07-08 | Topcon Corp | レーザスキャナ及びレーザスキャナ測定システム及びレーザスキャナ測定システムの較正方法及び較正用ターゲット |
JP2010190826A (ja) * | 2009-02-20 | 2010-09-02 | Toyota Motor Corp | 電波反射装置、及び、光軸調整方法 |
JP2014029318A (ja) * | 2012-06-29 | 2014-02-13 | Ricoh Co Ltd | レーザ装置の光軸調整装置及び光軸調整方法 |
-
2019
- 2019-09-24 WO PCT/JP2019/037227 patent/WO2020071167A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11133150A (ja) * | 1997-10-24 | 1999-05-21 | Fujitsu Ten Ltd | 車載用レーダ装置の軸合わせ方法 |
US20040049930A1 (en) * | 2002-09-17 | 2004-03-18 | Snap-On Technologies, Inc. | Apparatus for use with a 3D image wheel aligner for facilitating adjustment of an adaptive cruise control sensor on a motor vehicle |
JP2010151682A (ja) * | 2008-12-25 | 2010-07-08 | Topcon Corp | レーザスキャナ及びレーザスキャナ測定システム及びレーザスキャナ測定システムの較正方法及び較正用ターゲット |
JP2010190826A (ja) * | 2009-02-20 | 2010-09-02 | Toyota Motor Corp | 電波反射装置、及び、光軸調整方法 |
JP2014029318A (ja) * | 2012-06-29 | 2014-02-13 | Ricoh Co Ltd | レーザ装置の光軸調整装置及び光軸調整方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7280211B2 (en) | Method of adjusting monitor axis | |
JP2023101664A (ja) | 光軸調整用装置 | |
US8559704B2 (en) | Three-dimensional vision sensor | |
JP2004317507A (ja) | 監視装置の軸調整方法 | |
US7903261B2 (en) | Controlling a projected pattern | |
EP1903304A2 (en) | Position measuring system, position measuring method and position measuring program | |
US20190018142A1 (en) | Surveying System | |
JP2006252473A (ja) | 障害物検出装置、キャリブレーション装置、キャリブレーション方法およびキャリブレーションプログラム | |
CN114287827A (zh) | 清洁机器人系统及其清洁机器人和充电路径决定方法 | |
JP2008107194A (ja) | 車輌のホイールアライメント測定装置 | |
JP2004205398A (ja) | 車両用レーダ装置およびレーダの光軸調整方法 | |
EP0741857A4 (en) | OPTICAL MOTION SENSOR | |
US11971250B2 (en) | System and method for operator guided identification of vehicle reference locations for ADAS sensor alignment | |
JP2020176921A (ja) | 運転支援装置及びその運転支援装置の調整方法 | |
US20160170564A1 (en) | Input operation detection device, projection apparatus, interactive whiteboard, digital signage, and projection system | |
JP2021088003A (ja) | ロボット用の座標系アライメント方法及びアライメントシステム並びにアライメント装置 | |
US4760269A (en) | Method and apparatus for measuring distance to an object | |
JP2011185630A (ja) | シーラー塗布形状監視装置 | |
JP2020056891A (ja) | 制御方法及び光学機器 | |
JP2020056663A (ja) | 制御方法及び測距装置 | |
WO2020071167A1 (ja) | 光軸調整用装置 | |
CN114096369A (zh) | 控制装置及具备控制装置的激光加工系统、激光加工方法 | |
US11921409B2 (en) | Laser projector system | |
JP2010122045A (ja) | Pcsセンサの電波軸調整装置及びその方法 | |
JP6165069B2 (ja) | 罫書き作業支援システム、罫書き作業方法及び機械加工部品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19869012 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19869012 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |