WO2020069008A1 - Methods and compositions for treating aging-associated impairments using ccr3-inhibitors - Google Patents

Methods and compositions for treating aging-associated impairments using ccr3-inhibitors Download PDF

Info

Publication number
WO2020069008A1
WO2020069008A1 PCT/US2019/052995 US2019052995W WO2020069008A1 WO 2020069008 A1 WO2020069008 A1 WO 2020069008A1 US 2019052995 W US2019052995 W US 2019052995W WO 2020069008 A1 WO2020069008 A1 WO 2020069008A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
optionally substituted
group
residues selected
phenyl
Prior art date
Application number
PCT/US2019/052995
Other languages
French (fr)
Inventor
Steven P. Braithwaite
S. Sakura Minami
Karoly Nikolich
Arnaud E.J. TEICHERT
Sanket V. Rege
Original Assignee
Alkahest, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EA202190463A priority Critical patent/EA202190463A1/en
Application filed by Alkahest, Inc. filed Critical Alkahest, Inc.
Priority to KR1020217008493A priority patent/KR20210065950A/en
Priority to AU2019346456A priority patent/AU2019346456A1/en
Priority to BR112021004938-0A priority patent/BR112021004938A2/en
Priority to JP2021517342A priority patent/JP2022502441A/en
Priority to CA3111433A priority patent/CA3111433A1/en
Priority to SG11202102105VA priority patent/SG11202102105VA/en
Priority to EP19867321.2A priority patent/EP3856195A4/en
Priority to CN201980063258.7A priority patent/CN112789044A/en
Priority to MX2021002967A priority patent/MX2021002967A/en
Publication of WO2020069008A1 publication Critical patent/WO2020069008A1/en
Priority to IL281578A priority patent/IL281578A/en
Priority to CONC2021/0003713A priority patent/CO2021003713A2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings

Definitions

  • Aging is an important risk factor for multiple human diseases including cognitive impairment, cancer, arthritis, vision loss, osteoporosis, diabetes, cardiovascular disease, and stroke.
  • synapse loss is an early pathological event common to many neurodegenerative conditions and is the best correlate to the neuronal and cognitive impairment associated with these conditions.
  • AD Alzheimer’s disease
  • aging remains the single most dominant risk factor for dementia-related neurodegenerative diseases such as Alzheimer’s disease (AD) (Bishop, N.A. et al., Neural mechanisms of ageing and cognitive decline. Nature 464(7288), 529-535 (2010); Heeden, T. et al., Insights into the ageing mind: a view from cognitive neuroscience. Nat. Rev.
  • Alzheimer’s disease As a result, therapies for neurodegenerative diseases, such as Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS), are limited; in fact, Alzheimer’ s has one of the highest failure rates for clinical development of any disease area (99.6% failure in the last 20 years).
  • ALS amyotrophic lateral sclerosis
  • the present invention overcomes these drawbacks.
  • Compound 1 a compound of the invention, has exhibited resistance in crossing the BBB in significant concentrations yet unexpectedly results in improvement of symptoms associated with age-related neurodegeneration and age-related motor decline.
  • the present invention can act in a peripheral manner, forgoing what was considered to be a requirement for effective cognitive-acting pharmaceuticals, i.e. to work directly on central nervous system.
  • certain embodiments of the invention may cross the BBB in significant concentrations, their ability to antagonize the CCL11/CCR3 pathway offers an alternative mechanism of action to current therapy for cognitive and motor defects.
  • the compounds of the invention act as antagonists of c-c motif chemokine receptor 3 (CCR3), the receptor for Eotaxin-l.
  • Eotaxin-l CCL11
  • CCR3 c-c motif chemokine receptor 3
  • Eotaxin-l CCL11
  • CCR3 c-c motif chemokine receptor 3
  • Eotaxin/CCl l acts primarily on the G-protein coupled receptor CCR3 which is expressed on eosinophils in the periphery and on neurons and glial cells in the central nervous system.
  • Methods of treating patients for aging-associated impairments, neurodegenerative disease and associated cognitive and motor decline are provided, including by way of example and not limitation, Alzheimer's disease, Parkinson's disease, Dementia with Lewy Bodies, frontotemporal dementia, Huntington disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, vascular dementia, progressive supranuclear palsy, and the like.
  • aspects of the methods include modulation of CCR3, the principal receptor of CCLl l/eotaxin-l through the administration of a therapeutically effective amount of CCR3 antagonists of the invention.
  • the methods include administering an effective therapeutic dose of CCR3 antagonists to subjects or patients as well as monitoring for specific clinical endpoints. Also included are methods of treating neurodegenerative disease and associated cognitive and motor decline with an agent that acts peripherally, i.e. does not cross the blood-brain barrier in significant concentrations, yet exhibits improvement in the disease, such as improved cognition or motor activity.
  • diagnostics or companion diagnostics include devices that can determine or detect the presence of a subset of white blood cells from a subject.
  • the diagnostic or companion diagnostic device may also determine or detect the presence, relative or absolute concentration, relative or absolute number of eosinophils from a subject’s blood or tissues.
  • diagnostic or companion diagnostic devices may be used in conjunction with
  • Data shown are the mean ⁇ s.e.m., where *P ⁇ 0.05, ***P ⁇ 0.00l.
  • Figure 2A depicts the effect of Compound 1 on the time spent by young and old C57B1/6 mice in the novel (N) versus familiar/old (“F” or“O”) arm during a Y-maze test.
  • Data shown are the mean ⁇ s.e.m., where **P ⁇ 0.05, ***P ⁇ 0.0l
  • Figure 2B depicts the effect of Compound 1 on the total number of visits made by young and old C57B1/6 mice into the novel (N) versus familiar (F) arm during a Y-maze test.
  • Data shown are the mean ⁇ s.e.m., where *P ⁇ 0.05, **P ⁇ 0.0l, ***P ⁇ 0.00l.
  • Figure 4A depicts the effect of Compound 1 on average time taken by C57B1/6 mice to find the target hole in the Barnes Maze test. Average times were plotted for each treatment group.
  • Figure 5 depicts the effect of Compound 1 on neurogenesis in C57B 1/6 mice by detection of BrdU positive cells from all sections in the dentate gyrus.
  • the number of cells positive for BrdU from the dentate gyrus were plotted for each treatment group and the data subjected to an unpaired t-test between the 16.5- month-old groups.
  • Figure 7 depicts the distribution (measured as area under the curve (AUC)) of Compound 1 in C57BL/6JOlaHsd mouse tissues over a time course. Compound was tagged with carbon-l4 label, and measurements taken at 1, 24, and 168 hours.
  • AUC area under the curve
  • Figure 8 depicts the pharmacokinetic profiles of Compound 1 after per os (P.O.) dosing.
  • Blood plasma from male 2-month-old C57B1/6 mice receiving either 30 mg/kg or 150 mg/kg by oral gavage was measured for Compound 1 at 20 minutes, 2 hours, 8 hours, and 12 hours after administration. Plasma concentration after drug administration was plotted over time.
  • Figure 10A depicts the effect of Compound 1 on the time spent in the novel versus familiar arms of the Y-maze test in young C57B1/6 mice.
  • the time spent in the novel versus familiar arms were plotted for each treatment group and data was subjected to a paired t-test.
  • Figure 12A depicts the effect of Compound 1 on memory for the novel arm in the Y maze, by number of entries made into the novel arm over the total entries. 24 month old mice were treated with Compound 1 p.o. b.i.d. 30 mg/kg or vehicle. Data shown are mean ⁇ s.e.m.; **P ⁇ 0.0l.
  • Figure 12B depicts the effect of Compound 1 on total distance travelled in the Y maze, as a measure of locomotor activity. 24 month old mice were treated with Compound 1 p.o. b.i.d. 30 mg/kg or vehicle. Data shown are mean ⁇ s.e.m.; *P ⁇ 0.05.
  • Figure 13A depicts the effect of Compound 1 on bouts of entry (“number of visits”) into the novel and familiar arms by C57B1/6 mice in the Y-maze test in 24-month-old mice.
  • the number of visits to each arm was plotted for each treatment group and subjected to a paired t-test.
  • Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Three weeks later, mice were subjected to Y-maze testing. All mice received 5 consecutive days of BrdU injection at 50 mg/kg IP immediately prior to start of treatment. Data shown are mean ⁇ s.e.m.; *P ⁇ 0.05, **P ⁇ 0.0l, ***P ⁇ 0.00l novel vs familiar arm by paired student’s t-test.
  • Figure 13B depicts the effect of Compound 1 on the ratio of number of entries made into the novel versus familiar arm of the Y-maze test in 24-month-old mice. Ratios were plotted for each treatment group and data was subject to a t-test between vehicle and Compound 1 treatment. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Three weeks later, mice were subjected to Y-maze testing. All mice received 5 consecutive days of BrdU injection at 50 mg/kg IP immediately prior to start of treatment. Data shown are mean ⁇ s.e.m. ; */ , ⁇ 0.05, **R ⁇ 0.01 , ***P ⁇ 0.00l compared to control by student’s t-test.
  • Figure 13C depicts the effect of Compound 1 on the time spent in the novel versus familiar arms of the Y-maze test in 24-month-old C57B1/6 mice.
  • the time spent in the novel versus familiar arms were plotted for each treatment group and data was subjected to a paired t-test.
  • Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Three weeks later, mice were subjected to Y-maze testing. All mice received 5 consecutive days of BrdU injection at 50 mg/kg IP immediately prior to start of treatment. Data shown are mean ⁇ s.e.m.; *P ⁇ 0.05, **P ⁇ 0.0l, ***P ⁇ 0.00l novel vs familiar arm by paired student’s t-test.
  • Figure 13D depicts the effect of Compound 1 on the ratio of time spent (“duration”) in the novel versus familiar arm of the Y-maze test in 24-month-old C57B 1/6 mice. Ratios were plotted for each treatment group and data was subjected to a t-test. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Three weeks later, mice were subjected to Y-maze testing. All mice received 5 consecutive days of BrdU injection at 50 mg/kg IP immediately prior to start of treatment. Data shown are mean ⁇ s.e.m.; *P ⁇ 0.05, **/ , ⁇ 0.0l, ***/ , ⁇ 0.00l compared to control by student’ s t-test.
  • Figure 13E depicts the effect of Compound 1 on the average velocity during the Y-Maze test of 24-month-old C57B 1/6 mice. Average velocities were plotted for each treatment group and data was subject to a t-test. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Three weeks later, mice were subjected to Y-maze testing. All mice received 5 consecutive days of BrdU injection at 50 mg/kg IP immediately prior to start of treatment. Data shown are mean ⁇ s.e.m.; *P ⁇ 0.05, **/ , ⁇ 0.0l, ***/ , ⁇ 0.00l compared to control by student’ s t-test.
  • Figure 14A depicts the effect of Compound 1 on average time taken by 24-month-old C57B1/6 mice to find the target hole in the Barnes Maze test. Average times were plotted for each treatment group. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Three weeks later, mice were subjected to Barnes Maze testing. Data shown are mean ⁇ s.e.m.; *P ⁇ 0.05 compared to control by student’s t-test.
  • Figure 14B depicts the effect of Compound 1 on velocity in 24-month-old C57B1/6 mice in Barnes Maze test, averaged over all trials for each treatment group. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Three weeks later, mice were subjected to Barnes Maze testing. Data shown are mean ⁇ s.e.m.; */ , ⁇ 0.05 compared to control by student’ s t-test.
  • Figure 15A depicts the effect of Compound 1 on distance traveled in the Open Field test in 24- month-old C57B 1/6 mice. Average distance traveled was plotted for each treatment group. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Three weeks later, mice were subjected to Open Field testing. Data shown are mean ⁇ s.e.m.
  • Figure 15B depicts the effect of Compound 1 on velocity in the Open Field test in 24-month-old C57B 1/6 mice. Average velocity of the mice was plotted for each treatment group. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Three weeks later, mice were subjected to Open Field testing. Data shown are mean ⁇ s.e.m.
  • Figure 16A depicts the effect of Compound 1 on TNFalpha cytokine levels in the plasma of 24- month-old C57B1/6 mice. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Levels of the inflammatory cytokine trend lower in Compound 1 treated mice than in vehicle treated mice.
  • Figure 16B depicts the effect of Compound 1 on IL6 cytokine levels in the plasma of 24-month- old C57BI/6 mice. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Levels of the inflammatory cytokine trend lower in Compound 1 treated mice than in vehicle treated mice.
  • Figure 16C depicts the effect of Compound 1 on ILlbeta cytokine levels in the plasma of 24- month-old C57B1/6 mice. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Levels of the inflammatory cytokine trend lower in Compound 1 treated mice than in vehicle treated mice.
  • Figure 16D depicts the effect of Compound 1 on IL5 cytokine levels in the plasma of 24-month- old C57BI/6 mice. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Levels of the inflammatory cytokine trend lower in Compound 1 treated mice than in vehicle treated mice.
  • Figure 16E depicts the effect of Compound 1 on IL17 cytokine levels in the plasma of 24-month- old C57BI/6 mice. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Levels of the inflammatory cytokine trend lower in Compound 1 treated mice than in vehicle treated mice.
  • Figure 17 depicts the effect of Compound 1 on activated microglia in 24-month-old C57B1/6 mice. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Levels of CD68+ activated microglia trend lower in Compound 1 treated mice than in vehicle treated mice.
  • Figure 18 depicts the effect of Compound 1 on the percentage of eosinophils in complete white blood cell (WBC) count, in 24-month-old C57BI/6 mice treated with control saline or 30 mg/kg of Compound 1 for 3 weeks BID, SQ. Compound 1 decreased an endogenous age-related increase in blood eosinophils.
  • WBC white blood cell
  • Figure 19 depicts the effect of Compound 1 on the percentage of eosinophils in complete white blood cell (WBC) count, in 3-month-old hairless mice treated with control saline or 30 mg/kg of Compound 1 for 2 weeks BID, PO.
  • Compound 1 decreased an oxazolone-induced increase in blood eosinophils.
  • Figure 20 shows the results of Compound 1 on a rotarod test for motor coordination. Twenty-four- month-old C57 mice were treated for 4 weeks with continuous infusion of Compound 1 or vehicle by osmotic pump. Treated mice succeeded more than vehicle-treated mice in a binomial test, *P ⁇ 0.05.
  • Figure 21 shows the results of Compound 1 on the T maze test for memory. Twenty-four-month- old C57 mice were treated for 4 weeks with continuous infusion of Compound 1 or vehicle by osmotic pump. Treated mice succeeded more than vehicle-treated mice in a binomial test, *P ⁇ 0.05.
  • Figure 22A shows the results of Compound 1 on fecal output overnight. Twenty-four-month-old C57 mice were treated for 4 weeks with continuous infusion of Compound 1 or vehicle by osmotic pump. The weight of fecal pellets was measured overnight. Compound 1 treated mice had significantly lower fecal output compared to vehicle treated mice by student’s t-test, *P ⁇ 0.05.
  • Figure 22B shows the results of Compound 1 on water drinking overnight. Twenty-four-month- old C57 mice were treated for 4 weeks with continuous infusion of Compound 1 or vehicle by osmotic pump. The total water drank was measured overnight. Compound 1 treated mice drank significantly more water compared to vehicle treated mice by student’s t-test, *P ⁇ 0.05.
  • Figure 22C shows the results of Compound 1 on food intake overnight. Twenty-four-month-old C57 mice were treated for 4 weeks with continuous infusion of Compound 1 or vehicle by osmotic pump. The total food eaten was measured overnight. There were no differences in total food intake overnight between the two groups.
  • Figure 23 depicts the effect of Compound 1 (Cmpd 1) on the numbers of CD68-positive (CD68+) activated microglia within the brains of three-month-old mice treated with LPS and treated with Compound 1 for 18 days.
  • Compound 1 -treated mice exhibited decreased CD68+ immunoreactivity, and thus decreased gliosis.
  • Figures 24A and 24B depict the effect of Compound 1 on anxiety in the Open Field test in three- month-old mice treated with LPS IP for 4 weeks and treated with Compound 1 per orally BID (twice daily) for 1 week.
  • LPS treatment increased the preference for the periphery of the Open Field, indicating increased anxiety.
  • Compound 1 treatment decreased the LPS-induced anxiety in the Open Field. Data shown are mean ⁇ s.e.m; *P ⁇ 0.05 by student’s t-test.
  • Figures 25A and 25B depict the effect of Compound 1 on number of entries into the novel and familiar arm in the Y-maze test by 3-month-old C57B1/6 mice treated with LPS.
  • mice 3 months-old were dosed with either vehicle or LPS IP for 6 weeks and dosed with vehicle control or Compound 1 per orally BID (twice daily) for 3 weeks.
  • Compound 1 -treated mice showed a significant preference for the novel arm while vehicle -treated mice did not.
  • Data shown are mean ⁇ s.e.m.; **R ⁇ 0.01, *P ⁇ 0.05, novel vs familiar arm by paired student’ s t-test.
  • Figures 26A and 26B depict the effect of Compound 1 on ILlbeta mRNA in the brains from 3- month-old C57B1/6 mice treated with LPS and/or Compound 1.
  • Mice were dosed with either vehicle control or LPS IP for 7 weeks and dosed with vehicle or Compound 1 per orally BID (twice daily) for 4 weeks.
  • Tissues were harvested, and RNA was prepared from cortical brain tissues.
  • Levels of ILlbeta mRNA were measured by qPCR and data are presented relative to vehicle control. There was a trend towards increased levels of ILlbeta mRNA with LPS treatment and a significant decrease with Compound 1 treatment. Data shown are mean ⁇ s.e.m; *P ⁇ 0.05 by student’s t-test.
  • Figures 27A, 27B and 27C depict the effect of Compound 1 on microglia activation in the hippocampus from 3-month-old C57B 1/6 mice treated with LPS and/or Compound 1.
  • Mice were dosed with either vehicle control or LPS IP for 7 weeks and dosed with vehicle or Compound 1 per orally BID (twice daily) for 4 weeks.
  • Tissues were harvested, and brain sections were subjected to immunohistochemistry for CD68, a marker for activated microglia. There was a trend towards increased levels of CD68 with LPS treatment and a robust trend towards decrease with Compound 1 treatment. Data shown are mean ⁇ s.e.m.
  • Figures 28A, 28B and 28C depict the effect of Compound 1 on total microglia in the hippocampus from 3-month-old C57B1/6 mice treated with LPS and/or Compound 1.
  • Mice were dosed with either vehicle control or LPS IP for 7 weeks and dosed with vehicle or Compound 1 per orally BID (twice daily) for 4 weeks.
  • Tissues were harvested, and brain sections were subjected to immunohistochemistry for Ibal, a marker for microglia.
  • Ibal a marker for microglia.
  • Data shown are mean ⁇ s.e.m.; ***/ , ⁇ 0.00l, *P ⁇ 0.05, by student’s t-test.
  • Figures 29A and 29B depict the effect of Compound 1 on total astrocytes in the hippocampus from 3-month-old C57B1/6 mice treated with LPS and/or Compound 1.
  • Mice were dosed with either vehicle control or LPS IP for 7 weeks and dosed with vehicle or Compound 1 per orally BID (twice daily) for 4 weeks.
  • Tissues were harvested, and brain sections were subjected to immunohistochemistry for GFAP, a marker for astrocytes. There was a trend towards decrease with Compound 1 treatment. Data shown are mean ⁇ s.e.m.
  • Figure 30 depicts the dosing regimen for three groups of C57BL/6 mice treated with: (1) controls for both LPS and Compound 1 ; (2) LPS plus vehicle control for Compound 1 ; or (3) LPS plus Compound 1. All three groups were treated with controls, LPS, or Compound 1 for three consecutive, simultaneous days.
  • the graph shows the results of histological analysis of the mouse brains in an acute model of LPS- induced inflammation. Microgliosis was measured by determining the percentage of Iba-l positive area in the hippocampi. Data shown are mean ⁇ s.e.m; *P ⁇ 0.05, ***P ⁇ 0.001 ; ordinary one-way ANOVA was used to test for statistical significance, with Dunnett’s multiple comparisons test post-hoc between treatment groups.
  • Figure 31 depicts the dosing regimen for three groups of C57BL/6 mice treated with: vehicle controls; vehicle treated LPS; or Compound 1.
  • the graph shows the results of histological analysis of the mouse brains in an acute model of LPS-induced inflammation. Microgliosis was measured by determining the percentage of Iba-l positive area in the hippocampi. Data shown are mean ⁇ s.e.m; *P ⁇ 0.05, ****P ⁇ 0.0001 ; ordinary one-way ANOVA was used to test for statistical significance, with Dunnett’s multiple comparisons test post-hoc between treatment groups.
  • Figure 32 depicts the treatment study timeline for a mouse MPTP model of Parkinson’s Disease. There were two arms of the study; the first arm tested gait and fine kinematic motor function after 10 days of treatment, while the second arm tested immune cell infiltration after 3 days of treatment.
  • Figure 33A displays a correlation heat map describing the degree of correlation for ninety-seven walking parameters in a gait and fine motor kinematic test of C57B1/6J mice after ten days of Compound 1 treatment on study day 11.
  • Ten principal components are presented, showing how the original parameters are correlated in datasets. The more intensity there is for each parameter, the more strongly the parameter is implicated in the corresponding principal component. Red is a positive correlation and blue is a negative correlation in relation to the 10 individual principal components (x-axis).
  • the left-side y-axis shows overall groupings for the individual variables on the right-side y-axis.
  • E.g.,“ILC” refers to intralimb coordination
  • “Tail B” refers to tail base.
  • Figure 33B shows the fine motor skills and gait properties of C57B1/6J mice at study day 11 after 10 days of Compound 1 treatment. It is illustrated as an overall gait analysis score of MPTP treated C57B1/6J mice. Differences between treatment groups in each of the 10 principal components were combined in a composite score, and difference to vehicle-treated control group is shown. There was a significant difference in overall gait with MPTP treatment (* p ⁇ 0.05), and there was no longer a significant difference with Compound 1 treatment.
  • Figure 34 depicts forepaw toe clearance (one of the gait properties assessed in the principle component analysis) of C57B1/6J mice at study day 11 after 10 days of Compound 1 treatment.
  • Statistical significances * p ⁇ 0.05, Group 2: MPTP + Vehicle vs.
  • Group 1 Vehicle + Vehicle (unpaired t-test).
  • Figure 37 reports the acute effects of MPTP and Compound 1 on T-cell trafficking into the brain after 3 days of Compound 1 treatment.
  • the total number of CD3 positive T-cells counted in the substantia nigra from 3 sections of 30 pm for each mouse are presented. Data shown are mean ⁇ s.e.m; ***P ⁇ 0.001; one-way ANOVA, Sidak’s multiple comparison test post-hoc.
  • Figures 38A and 38B report the acute effects of MPTP and Compound 1 on microgliosis after 3 days of Compound 1 treatment.
  • Data shown are mean ⁇ s.e.m; **P ⁇ 0.01, ***P ⁇ 0.001, ****P ⁇ 0.0001; one-way ANOVA, Sidak’s multiple comparison test post-hoc.
  • Figure 39 depicts plasma eotaxin-1 levels in 6-month-old Line 61 synuclein-overexpressing transgenic mice. Eotaxin-1 levels (CCL11) in Non-transgenic (NTg) versus transgenic Line 61 synuclein mice (Tg) were plotted at pg/mL concentrations.
  • Figure 40 reports the results from a wire suspension test on Line 61 synuclein mice (transgenic (Tg) and non-transgenic (nTg) aged-matched littermates.) The mean wire suspension times per group are shown, with animals from group C (non-transgenic, vehicle -treated) exhibiting a significantly higher wire suspension time. Animals from group A (transgenic, Compound- 1 treated) exhibited a significantly higher wire suspension time compared to group B (transgenic, vehicle -treated). Data are displayed as mean + SEM of all animals per group; ***P ⁇ 0.001; Dunn’s post-test; *P ⁇ 0.05 Mann Whitney test for group A vs. group B).
  • Figure 41 reports the results from a grip strength test on Line 61 synuclein mice (transgenic (Tg) and non-transgenic (nTg) aged-matched littermates.) The mean maximum grip force [g] per group is shown. Animals from group A and C (transgenic, Compound 1 -treated and non-transgenic, vehicle-treated, respectively) showed a significantly higher grip force compared to group B (transgenic, vehicle -treated). Data are displayed as mean + SEM of all animals per group. Groups were compared to vehicle -treated transgenic animals (group B); one-way ANOVA followed by Bonferroni’s post-test.
  • Figure 42 reports the number of mice from each treatment group that were successfully able to traverse the beam in a beam walk test.
  • N 15 mice in Group A, 14 mice in Group B, and 15 mice in Group C (groups described in Figure 40). All mice were able to traverse the easiest beam in Trial 1, whereas no mice from Treatment Group B were able to traverse the most difficult beam in Trial 5.
  • Figure 43 reports the results of five trials for beam walk slips for three groups of mice (group A, transgenic Compound 1 -treated; group B, transgenic vehicle-treated; and group C, non-transgenic vehicle- treated). Only mice that traversed the beam entirely were included in the analysis. Graphs represent the mean number of slips [n] per group, and each graph represents one trial (1-5). Data are mean + SEM of all animals per group. Groups were compared to group B; one-way ANOVA followed by Bonferroni’s post test. Statistics for Trial 5 could not be performed, as no mice from Group B were able to traverse the beam.
  • Figures 44A and 44B report eosinophil count from peripheral blood.
  • Figures 45A to 45G report the effect of Compound 1 on neuroinflammation.
  • Figure 45G reports the Iba-lpositive area quantified in the pars compacta of the substantia nigra of non-transgenic, vehicle -treated mice; transgenic, vehicle treated mice; and transgenic, Compound l-treated mice. Data are mean +/- s.e.m.; *P ⁇ 0.05.
  • Figure 46A reports the levels of IL-4 measured in terminal cardiac plasma of all three groups.
  • Figure 46B reports the levels of IL-6 measured in terminal cardiac plasma of all three groups. Data shown are mean +/- s.e.m; *P ⁇ 0.05, **P ⁇ 0.0l ; one-way ANOVA, Dunnett’s multiple comparison test post-hoc.
  • Figures 47A to 47D show the effects of Compound 1 on EAE-induced markers in the cerebella of C57BL/6 mice.
  • EAE resulted in an increase in CD3 and CD8-positive infiltrating T-cells in the cerebellum.
  • Figure 47A shows an increase in CD3 positive infiltrating T-cells in the cerebellum which is significantly reduced following treatment with Compound 1 for 9 days.
  • Figure 47B shows an increase in CD8 positive infiltrating cytotoxic T-cells in the cerebellum which is significantly reduced following treatment with Compound 1 for 9 days.
  • Figure 47C shows a significant increase Iba-l positive area in the cerebellum after EAE, which was significantly reduced in the cerebellum after 9 days of treatment.
  • Figure 47D shows a significant increase CD68 positive area in the cerebellum after EAE, which was significantly reduced in the cerebellum after 9 days of treatment. Data shown are mean +/- s.e.m; *P ⁇ 0.05, **P ⁇ 0.0l ; one-way ANOVA, Dunnett’s multiple comparison test post-hoc.
  • Figure 48 depicts the concentrations of human eotaxin-l in a proteomic screen. Relative concentrations of human eotaxin-l were measured in a commercially-available affinity-based assay (SomaLogic). Plasma samples from each of 18, 30, 45, 55, and 66-year-old donors were plotted.
  • SomaLogic affinity-based assay
  • Figure 49A depicts the effect of Compound 1 on inhibition of eosinophil shape change.
  • Whole blood from humans treated with Compound 1 was incubated with recombinant eotaxin to trigger eosinophil shape change. Inhibition of shape change was plotted against plasma Compound 1 concentrations.
  • Figure 49B depicts the effect of Compound 1 on CCR3 internalization.
  • Whole blood from humans treated with Compound 1 was incubated with recombinant eotaxin to trigger CCR3 internalization and labeled with anti-CCR3 antibody.
  • Inhibition of CCR3 internalization by Compound 1 was plotted against plasma Compound 1 concentrations.
  • aspects of the invention include methods of treating aging-associated impairments/neurodegenerative diseases.
  • the aging-associated impairment may manifest in a number of different ways, e.g., as aging-associated cognitive impairment and/or physiological impairment, e.g., in the form of damage to central or peripheral organs of the body, such as but not limited to: cell injury, tissue damage, organ dysfunction, aging-associated lifespan shortening and carcinogenesis, where specific organs and tissues of interest include, but are not limited to skin, neuron, muscle, pancreas, brain, kidney, lung, stomach, intestine, spleen, heart, adipose tissue, testes, ovary, uterus, liver and bone; in the form of decreased neurogenesis, etc.
  • the aging-associated impairment is an aging-associated impairment in cognitive ability in an individual, i.e., an aging-associated cognitive impairment.
  • cognitive ability or “cognition” it is meant the mental processes that include attention and concentration, learning complex tasks and concepts, memory (acquiring, retaining, and retrieving new information in the short and/or long term), information processing (dealing with information gathered by the five senses), visuospatial function (visual perception, depth perception, using mental imagery, copying drawings, constructing objects or shapes), producing and understanding language, verbal fluency (word-finding), solving problems, making decisions, and executive functions (planning and prioritizing).
  • cognitive decline it is meant a progressive decrease in one or more of these abilities, e.g., a decline in memory, language, thinking, judgment, etc.
  • Aging-associated cognitive impairments include impairments in cognitive ability that are typically associated with aging, including, for example, cognitive impairment associated with the natural aging process, e.g., mild cognitive impairment (M.C.I.); and cognitive impairment associated with an aging-associated disorder, that is, a disorder that is seen with increasing frequency with increasing senescence, e.g., a neurodegenerative condition such as Alzheimer’s disease, Parkinson’s disease, Dementia with Lewy Bodies, frontotemporal dementia, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, vascular dementia, and the like.
  • cognitive impairment associated with the natural aging process e.g., mild cognitive impairment (M.C.I.)
  • cognitive impairment associated with an aging-associated disorder that is, a disorder that is seen with increasing frequency with increasing senescence, e.g., a neurodegenerative condition such as Alzheimer’s disease, Parkinson’s disease, Dement
  • treatment it is meant that at least an amelioration of one or more symptoms associated with an aging-associated impairment afflicting the subject is achieved, where amelioration is used in a broad sense to refer to at least a reduction in the magnitude of a parameter, e.g., a symptom associated with the impairment being treated.
  • amelioration also includes situations where a pathological condition, or at least symptoms associated therewith, are completely inhibited, e.g., prevented from happening, or stopped, e.g., terminated, such that the adult mammal no longer suffers from the impairment, or at least the symptoms that characterize the impairment.
  • “treatment”, “treating” and the like refer to obtaining a desired pharmacologic and/or physiologic effect.
  • the effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of a partial or complete cure for a disease and/or adverse effect attributable to the disease.
  • Treatment may be any treatment of a disease in a subject, and includes: (a) preventing the disease from occurring in a subject which may be predisposed to the disease but has not yet been diagnosed as having it; (b) inhibiting the disease, i.e., arresting its development; or (c) relieving the disease, i.e., causing regression of the disease. Treatment may result in a variety of different physical manifestations, e.g., modulation in gene expression, increased neurogenesis, rejuvenation of tissue or organs, etc.
  • Treatment of ongoing disease where the treatment stabilizes or reduces the undesirable clinical symptoms of the patient, occurs in some embodiments. Such treatment may be performed prior to complete loss of function in the affected tissues.
  • the subject therapy may be administered during the symptomatic stage of the disease, and in some cases after the symptomatic stage of the disease.
  • treatment by methods of the present disclosure slows, or reduces, the progression of aging-associated cognitive decline.
  • cognitive abilities in the individual decline more slowly, if at all, following treatment by the disclosed methods than prior to or in the absence of treatment by the disclosed methods.
  • treatment by methods of the present disclosure stabilizes the cognitive abilities of an individual.
  • the progression of cognitive decline in an individual suffering from aging- associated cognitive decline is halted following treatment by the disclosed methods.
  • cognitive decline in an individual e.g., an individual 40 years old or older, that is projected to suffer from aging-associated cognitive decline, is prevented following treatment by the disclosed methods. In other words, no (further) cognitive impairment is observed.
  • treatment by methods of the present disclosure reduces, or reverses, cognitive impairment, e.g., as observed by improving cognitive abilities in an individual suffering from aging-associated cognitive decline.
  • the cognitive abilities of the individual suffering from aging-associated cognitive decline following treatment by the disclosed methods are better than they were prior to treatment by the disclosed methods, i.e., they improve upon treatment.
  • treatment by methods of the present disclosure abrogates cognitive impairment.
  • the cognitive abilities of the individual suffering from aging-associated cognitive decline are restored, e.g., to their level when the individual was about 40 years old or less, following treatment by the disclosed methods, e.g., as evidenced by improved cognitive abilities in an individual suffering from aging-associated cognitive decline.
  • treatment by methods of the present disclosure slows, or reduces, the progression of aging- associated impairment or decline.
  • motor abilities in the individual decline more slowly, if at all, following treatment by the disclosed methods than prior to or in the absence of treatment by the disclosed methods.
  • treatment by methods of the present disclosure stabilizes the motor abilities of an individual.
  • the progression of motor decline in an individual suffering from aging-associated motor decline is halted following treatment by the disclosed methods.
  • motor decline in an individual e.g., an individual 40 years old or older, that is projected to suffer from aging-associated motor decline, is prevented following treatment by the disclosed methods.
  • treatment by methods of the present disclosure reduces, or reverses, motor impairment, e.g., as observed by improving motor coordination or abilities in an individual suffering from aging-associated motor decline.
  • the motor abilities of the individual suffering from aging-associated motor decline following treatment by the disclosed methods are better than they were prior to treatment by the disclosed methods, i.e., they improve upon treatment.
  • treatment by methods of the present disclosure abrogates motor impairment.
  • the motor coordination or abilities of the individual suffering from aging-associated motor decline are restored, e.g., to their level when the individual was about 40 years old or less, following treatment by the disclosed methods, e.g., as evidenced by improved motor coordination or abilities in an individual suffering from aging-associated motor decline.
  • treatment of an adult mammal in accordance with the methods results in a change in a central organ, e.g., a central nervous system organ, such as the brain, spinal cord, etc., where the change may manifest in a number of different ways, e.g., as described in greater detail below, including but not limited to molecular, structural and/or functional, e.g., in the form of enhanced neurogenesis.
  • a central organ e.g., a central nervous system organ, such as the brain, spinal cord, etc.
  • the change may manifest in a number of different ways, e.g., as described in greater detail below, including but not limited to molecular, structural and/or functional, e.g., in the form of enhanced neurogenesis.
  • An embodiment of the invention comprises a method of improving cognition or motor activity in subjects with brain-associated, cognitive- associated, or motor disease, the method comprising administering a therapeutically effective amount of a compound from the chemical formulae discussed below. Additional embodiments of the invention comprise a method of increasing neurogenesis in subjects with brain- or cognitive-associated disease, the method comprising administering a therapeutically effective amount of a compound from the chemical formulae discussed below. Additional embodiments of the invention comprise a method of alleviating or treating symptoms of brain- or cognitive-associated disease, the method comprising administering a therapeutically effective amount of a compound from the chemical formulae below.
  • Additional embodiments of the invention include methods of alleviating symptoms of central nervous system- associated disease, the method comprising administering a therapeutically effective amount of a primarily peripheral-acting agent from the chemical formulae below. Further additional embodiments of the invention include methods of improving motor activity in a subject with age-related motor dysfunction, the method comprising administering a therapeutically effective amount of a compound from the chemical formulae discussed below. The methods of the invention may also comprise monitoring improvement in age-related disease, including for example, improvement in cognition, motor activity, neurogenesis and the like in a subject diagnosed with one or more such disease or dysfunction.
  • Additional embodiments of the invention include administering a therapeutically effective amount of a compound wherein the compound is in the form of the co-crystals or salts of the formulae discussed below. Further embodiments of the invention include administering a therapeutically effective amount of a compound wherein the compound is in the form of individual optical isomers, a mixture of the individual enantiomers, a racemate or enantiomerically pure compounds. Additional embodiments of the invention also include administering a therapeutically effective amount of a compound wherein the compound is in the form of the pharmaceutical compositions and formulations further discussed below.
  • Additional embodiments of the invention that treat aging-associated motor impairment or decline include modifying agents which inhibit the eotaxin/CCR3 pathway.
  • modifying agents include not only compounds from the formulae discussed below, but other eotaxin and CCR3 inhibiting agents.
  • Modifying agents that are contemplated include by way of example and not of limitation: the compounds of the formulae discussed below and other CCR3 small molecule inhibitors (e.g. bipiperdine derivatives described for example in U.S. Patent No. 7,705,153, cyclic amine derivatives described for example in U.S.
  • diagnostic test or companion diagnostic test Methods of using a diagnostic test or companion diagnostic test in connection with the described aging-associated impairments are also provided.
  • diagnostic or companion diagnostic test is an in vitro diagnostic test.
  • An embodiment of the in vitro diagnostic test is a companion device used with a particular therapeutic.
  • Embodiments of the particular therapeutic include for example and not limitation a CCR3 small molecular inhibitor, an anti-CCR3 antibody, small molecule inhibitors to the CCR3 ligand Eotaxin- 1, an anti-Eotaxin-l antibody, and antisense RNA to either Eotaxin- 1 or CCR3.
  • diagnostics or companion diagnostics include determination or detection of the presence of a subset of white blood cells from a subject.
  • the diagnostics or companion diagnostics may also be the determination of presence, relative or absolute concentration, relative or absolute number of eosinophils from a subject’s blood, tissues, or other such samples.
  • Blood may be obtained for example, by venipuncture or other similar methods.
  • Other samples may include by way of example and not limitation, sputum, cerebrospinal fluid or tissue biopsies.
  • the diagnostic or companion diagnostic devices may incorporate such methods to determine the presence, absolute or relative concentration, or relative or absolute number of eosinophils.
  • the devices may be used with other methods of the invention.
  • such other methods may include the methods of treating aging-associated impairments/neurodegenerative disease recited herein.
  • the aging-associated impairment is an aging-associated impairment in cognitive ability in an individual, i.e., an aging-associated impairment.
  • Such aging-associated impairments may include by way of example and not limitation a neurodegenerative condition such as Alzheimer’s disease, Parkinson’s disease, Dementia with Lewy Bodies, frontotemporal dementia, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, vascular dementia, and the like.
  • a neurodegenerative condition such as Alzheimer’s disease, Parkinson’s disease, Dementia with Lewy Bodies, frontotemporal dementia, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, vascular dementia, and the like.
  • Such aging-associated impairments can include cognitive impairments and/or motor impairment or decline.
  • An embodiment of the invention includes treating a subject diagnosed with an aging-associated impairment with a therapeutically effective amount of at least one of the compounds of the invention disclosed herein in conjunction with a diagnostic or companion diagnostic device. Another embodiment of the invention includes treating said subject with a therapeutically effective amount of Compound 1 disclosed herein in conjunction with a diagnostic device. Said embodiments of the devices may be used for example to determine or detect the eosinophil presence, absolute or relative concentration, or absolute or relative number in a blood or tissue sample of a subject. Another embodiment performs a step of detecting or determining the eosinophil presence, absolute or relative concentration, or absolute or relative number in a blood or tissue sample of a subject before, during, or after treatment.
  • Parkinson’s Disease mammalian model of synuclein overexpression results in decreased eosinophils, which are restored to levels in non-transgenic mice with Compound 1 treatment, suggesting beneficial immune modulation in this model of Parkinson’s disease.
  • determining eosinophil levels in Parkinson’s Disease patients treated with Compound 1 can be a biomarker for the disease, including determining the level of progression, stasis, or regression of the disease, as well as treatment efficacy. (See, e.g. Figures 44A and 44B).
  • Another embodiment performs the step of detecting or determining the eosinophil presence, absolute or relative concentration, or absolute or relative number in a blood or tissue sample of a subject diagnosed with Parkinson’s Disease before, during, or after treatment.
  • a further embodiment comprises determining the presence, absolute or relative concentration, or absolute or relative number in a blood or tissue sample of a subject diagnosed with Parkinson’s Disease before being treated with a compound of the invention such as Compound 1 in order to obtain a baseline concentration or number.
  • a further embodiment subsequently performs a step of detecting or determining levels of eosinophils after treatment in order to compare such levels to the baseline concentration or number of eosinophils so as to monitor the efficacy of treatment.
  • Comparison of such levels may show an increase or decrease in the number or concentration of eosinophils compared to baseline.
  • Another embodiment of the invention comprises a step of monitoring the progress of the disease or impairment by comparing the number or concentration of eosinophils, where if the number is increased after treatment, there is improvement in the progression of the disease.
  • improvement may comprise a 1-5% increase over baseline in the number or concentration of eosinophils in a subject’s blood or tissue, a 5-10% increase; a 11-15% increase; a 16-20% increase; a 21- 25% increase; a 26-30% increase; a 31-35% increase; a 36-40% increase; a 41-45% increase; 46-50% increase; a 51-55% increase; a 56-60% increase; a 61-65% a 66-70% increase; a 71-75% increase; a 76- 80% increase; an 81-85% increase; an 86-90% increase; a 91-95% increase; a 96-100% increase; and increases of 1-1.5x, l.5-2x, 2-2.5x, 2.5-3x, 3-3.5x, 3.5-4x, 4-4.5x, 4.5-5x, 5-5.5x, 5.5-6x, 6-6.5x, 6.5-7x, 7-7.5x, 7.5-8x, 8-8.5x, 8.5-9x, 9-9.5x, 9.5-
  • Another embodiment of the invention includes diagnosing Parkinson’s Disease by determining the baseline in the number or concentration of eosinophils in a subject’s blood or tissue and comparing that to standard numbers or concentrations of eosinophils in a population without Parkinson’s Disease who have normal eosinophil counts.
  • an eosinophil count is the number of eosinophils in the body.
  • a normal eosinophil count is between 30 and 350 but can be up to 500 cubic millimeters (mm 3 ) in the blood. (See Medical News Today, Dec 2018 available at: https://www.medicalnewstoday.com/articles/323868.php which is herein incorporated by reference in its entirety).
  • a count of more than 500 mm 3 in the blood is considered eosinophilia.
  • Lower than normal counts of eosinophils occur in some diseases such as alcoholism and overprotection of cortisol.
  • An aspect of the invention detects or determines the numbers or concentrations of eosinophils in a subject suspected of having Parkinson’s Disease. If the numbers or concentrations of eosinophils in the subject is lower than normal (e.g. 30 mm 3 in the blood), then the result may be used by a care-giver to determine the diagnosis of the disease. a.
  • the methods of the invention further comprise administration to a subject of the compounds that follow.
  • the number of carbon atoms is often specified preceding the group, for example, Ci- 6 alkyl means an alkyl group or radical having 1 to 6 carbon atoms.
  • the last-named group is the radical attachment point, for example, "thioalkyl” means a monovalent radical of the formula HS-Alk-.
  • An embodiment of the invention further comprises administration to a subject of the compounds of formula 1, wherein
  • A is CH2, O or N-Ci- 6 -alkyl
  • R 1 is selected from
  • R 1 ⁇ 1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Ci- 6 -alkyl, C 2 6 -alkenyl, C 2 6 -alkynyl, Ci- 6 -haloalkyl, Ci-e-alkylene-OH, C 2 e-alkenylene-OH, C 2 6 -alkynylcnc-OH, CH2CON(Ci-6-alkyl)2,
  • R 1 ⁇ 2 is selected from
  • heteroaryl optionally substituted with one or two residues selected from the group consisting of Ci- 6 -alkyl, C2 6-alkenyl, C2 6-alkynyl, C3 6 -cycloalkyl, CH2COO-C1 e-alkyl, CONR 1 2 'R 1 2 2 , COR 1 2 3 , COO-Ci e-alkyl, CONH 2 , O-Ci e-alkyl, halogen, CN, S0 2 N(Ci- 6 -alkyl) 2 or heteroaryl optionally substituted with one or two residues selected from the group consisting of Ci- 6 -alkyl;
  • heteroaryl optionally substituted with a five- or six-membered carbocyclic non aromatic ring containing independently from each other two N, O, S, or SO2, replacing a carbon atom of the ring;
  • R 1 2 1 H, Ci- 6 -alkyl, Ci-6-alkylene-C3 6 -cycloalkyl, Ci-4-alkylene -phenyl, Ci-4-alkylene- furanyl, C3 6-cycloalkyl, Ci-4-alkylene-0-Ci-4-alkyl, Ci-6-haloalkyl or a five- or six-membered carbocyclic non-aromatic ring, optionally containing independently from each other one or two N, O, S, or SO2, replacing a carbon atom of the ring, optionally substituted with 4-cyclopropylmethyl-piperazinyl
  • R 1 2 3 a five- or six-membered carbocyclic non-aromatic ring, optionally containing independently from each other one or two N, O, S, or SO2, replacing a carbon atom of the ring;
  • R 1 ⁇ 3 is selected from phenyl, heteroaryl or indolyl, each optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C3 6-cycloalkyl, O-Ci-6-alkyl, O-Ci-6-haloalkyl, phenyl, heteroaryl;
  • R 2 is selected from the group consisting of Ci- 6 -alkylene-phenyl, Ci- 6 -alkylene -naphthyl, and Ci- 6 -alkylene -heteroaryl; each optionally substituted with one, two or three residues selected from the group consisting of Ci- 6 -alkyl, Ci- 6 -haloalkyl, O-Ci- 6 -alkyl, O-Ci- 6 -haloalkyl, halogen;
  • R 3 is H, Ci- 6 -alkyl
  • R 4 is H, Ci- 6 -alkyl; or R 3 and R 4 together are forming a CH2-CH2 group.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 (above), wherein
  • A is CH 2 , O or N-Ci- 4 -alkyl
  • R 1 is selected from
  • R 1 ⁇ 1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Ci- 6 -alkyl, C2 6-alkenyl, C2 6-alkynyl, Ci- 6 -haloalkyl, Ci e-alkylene-OH, C2 6 -alkenylene-OH, C2 e-alkynylene-OH, CH2CON(Ci-6-alkyl)2, CH 2 NHCONH-C 3 6 -cycloalkyl, CN, CO-pyridinyl, CONR' " R" 2 , COO-C , e-alkyl, N(S0 2 -Ci- 6 -alkyl)(CH 2 C0N(Ci- 4 -alkyl) 2 ) O-C , e-alkyl, O-pyridinyl, S0 2 -C, e-alkyl, S0 2 -Ci- 6 -alkylen-0H,
  • R 1 ⁇ 2 is selected from
  • heteroaryl optionally substituted with one or two residues selected from the group consisting of Ci- 6 -alkyl, C 2 6 -alkenyl, C 2 6 -alkynyl, C3 6 -cycloalkyl, CH 2 COO-C 1 e-alkyl, CONR 1 2 'R 1 2 2 , COR 1 2 3 , COO-Ci e-alkyl, CONH 2 , O-Ci e-alkyl, halogen, CN, S0 2 N(Ci- 4 -alkyl) 2 or heteroaryl optionally substituted with one or two residues selected from the group consisting of Ci- 6 -alkyl;
  • heteroaryl optionally substituted with a five- or six-membered carbocyclic non aromatic ring containing independently from each other two N, O, S, or S0 2 , replacing a carbon atom of the ring;
  • R 1 2 1 H, Ci-6-alkyl, Ci- 6 -alkylene-C 3 6-cycloalkyl, Ci- 4 -alkylene -phenyl, Ci- 4 -alkylene- furanyl, C 3 6 -cycloalkyl, Ci- 4 -alkylene-0-Ci- 4 -alkyl, Ci- 6 -haloalkyl or a five- or six-membered carbocyclic non-aromatic ring, optionally containing independently from each other one or two N, O, S, or SO 2 , replacing a carbon atom of the ring, optionally substituted with 4-cyclopropylmethyl-piperazinyl
  • R 1 2 3 a fj ve _ or six-membered carbocyclic non-aromatic ring, optionally containing independently from each other one or two N, O, S, or SO 2 , replacing a carbon atom of the ring;
  • R 1 ⁇ 3 is selected from phenyl, heteroaryl or indolyl, each optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C 3 6-cycloalkyl, O-Ci-6-alkyl, O-Ci-6-haloalkyl, phenyl, heteroaryl; where in some instances R 1 3 is selected from phenyl, pyrazolyl, isoxazolyl, pyridinyl, pyrimidinyl, indolyl or oxadiazolyl, each optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C 3 -6 -cycloalkyl, O-Ci-6-alkyl, O-Ci-6-haloalkyl, phenyl, pyrrolidinyl;
  • R 2 is selected from the group consisting of Ci-6-alkylene-phenyl, Ci-6-alkylene -naphthyl, and Ci-6-alkylene-thiophenyl; each optionally substituted with one, two or three residues selected from the group consisting of Ci-6-alkyl, Ci-6-haloalkyl, O-Ci-6-alkyl, O-Ci-6-haloalkyl, halogen;
  • R 3 is H, Ci- 4 -alkyl
  • R 4 is H, Ci- 4 -alkyl; or R 3 and R 4 together are forming a CH 2 -CH 2 group.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 (above), wherein
  • A is CH 2 , O or N-Ci- 4 -alkyl
  • R 1 is selected from
  • R 1 ⁇ 1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C 2 6 -alkenyl, C 2 6 -alkynyl, Ci-6-haloalkyl, Ci e-alkylene-OH, C 2 6-alkenylene-OH, C 2 e-alkynylene-OH, CH 2 CON(Ci- 6 -alkyl) 2 , CH 2 NHCONH-C 3 6 -cycloalkyl, CN, CO-pyridinyl, CONR ' " R " 2 , COO-C i r, -alkyl, N(S0 2 -Ci- 6 -alkyl)(CH 2 C0N(Ci- 4 -alkyl) 2 ) O-C , r, -alkyl, O-pyridinyl, S0 2 -C , f ,-alkyl, S0 2 -Ci- 6
  • R 2 is selected from the group consisting of Ci- 6 -alkylene-phenyl, Ci- 6 -alkylene -naphthyl, and Ci- 6 -alkylene-thiophenyl; each optionally substituted with one, two or three residues selected from the group consisting of Ci- 6 -alkyl, Ci- 6 -haloalkyl, O-Ci- 6 -alkyl, O-Ci- 6 -haloalkyl, halogen;
  • R 3 is H, Ci- 4 -alkyl
  • R 4 is H, Ci- 4 -alkyl; or R 3 and R 4 together are forming a CH 2 -CH 2 group.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
  • A is CH 2 , O or N-Ci- 4 -alkyl; R 1 is selected from
  • R 1 2 is selected from
  • heteroaryl optionally substituted with one or two residues selected from the group consisting of Ci- 6 -alkyl, C2 6-alkenyl, C2 6-alkynyl, C3 6 -cycloalkyl, CH2COO-C1 e-alkyl, CONR 1 2 'R 1 2 2 , COR 1 2 3 , COO-Ci e-alkyl, CONH 2 , O-Ci e-alkyl, halogen, CN, SC>2N(Ci-4-alkyl)2 or heteroaryl optionally substituted with one or two residues selected from the group consisting of Ci- 6 -alkyl;
  • heteroaryl optionally substituted with a five- or six-membered carbocyclic non aromatic ring containing independently from each other two N, O, S, or SO2, replacing a carbon atom of the ring;
  • R 1 2 3 a five- or six-membered carbocyclic non-aromatic ring, optionally containing independently from each other one or two N, O, S, or SO2, replacing a carbon atom of the ring;
  • R 2 is selected from the group consisting of Ci- 6 -alkylene-phenyl, Ci- 6 -alkylene -naphthyl, and Ci- 6 -alkylene-thiophenyl; each optionally substituted with one, two or three residues selected from the group consisting of Ci- 6 -alkyl, Ci- 6 -haloalkyl, O-Ci- 6 -alkyl, O-Ci- 6 -haloalkyl, halogen;
  • R 3 is H, Ci-4-alkyl
  • R 4 is H, Ci- 4 -alkyl
  • R 3 and R 4 together are forming a CH 2 -CH 2 group.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 (above), wherein
  • A is CH 2 , O or N-Ci- 4 -alkyl
  • R 1 is selected from
  • R 1 2 is selected from
  • heteroaryl optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C 2 6 -alkenyl, C 2 6 -alkynyl, C3 6-cycloalkyl, CH 2 COO-C 1 e-alkyl, CONR 1 2 'R 1 2 2 , COR 1 2 3 , COO-Ci e-alkyl, CONH 2 , O-Ci e-alkyl, halogen, CN, SC> 2 N(Ci- 4 -alkyl) 2 or heteroaryl optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl;
  • heteroaryl optionally substituted with a five- or six-membered carbocyclic non aromatic ring containing independently from each other two N, O, S, or SO 2 , replacing a carbon atom of the ring;
  • R 1 2 3 a fj ve _ or six-membered carbocyclic non-aromatic ring, optionally containing independently from each other one or two N, O, S, or SO 2 , replacing a carbon atom of the ring;
  • R 2 is selected from the group consisting of Ci-6-alkylene-phenyl, Ci-6-alkylene -naphthyl, and Ci-6-alkylene-thiophenyl; each optionally substituted with one, two or three residues selected from the group consisting of Ci-6-alkyl, Ci-6-haloalkyl, O-Ci-6-alkyl, O-Ci-6-haloalkyl, halogen;
  • R 3 is H, Ci- 4 -alkyl
  • R 4 is H, Ci- 4 -alkyl
  • R 3 and R 4 together are forming a CH 2 -CH 2 group.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
  • A is CH 2 , O or N-Ci- 4 -alkyl
  • R 1 is selected from
  • R 1 3 is selected from phenyl, pyrazolyl, isoxazolyl, pyridinyl, pyrimidinyl, indolyl or oxadiazolyl, each optionally substituted with one or two residues selected from the group consisting of Ci- 6 -alkyl, C3 6 -cycloalkyl, O-Ci- 6 -alkyl, O-Ci- 6 -haloalkyl, phenyl, pyrrolidinyl;
  • R 2 is selected from the group consisting of Ci- 6 -alkylene-phenyl, Ci- 6 -alkylene -naphthyl, and Ci- 6 -alkylene-thiophenyl; each optionally substituted with one, two or three residues selected from the group consisting of Ci- 6 -alkyl, Ci- 6 -haloalkyl, O-Ci- 6 -alkyl, O-Ci- 6 -haloalkyl, halogen;
  • R 3 is H, Ci- 4 -alkyl
  • R 4 is H, Ci- 4 -alkyl; or R 3 and R 4 together are forming a CH 2 -CH 2 group.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
  • A is CH 2 , O or N-Ci- 4 -alkyl
  • R 1 is selected from
  • R 1 ⁇ 1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Ci- 6 -alkyl, Ci- 6 -haloalkyl, CH2CON(Ci-6-alkyl)2,
  • R 1 1 2 H, Ci- 6 -alkyl, SOzCi-e-alkyl; or R 1 1 1 and R 1 1 2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of CH2OH
  • R 1 ⁇ 2 is selected from
  • R 1 3 is selected from phenyl, pyrazolyl, isoxazolyl, pyrimidinyl, indolyl or oxadiazolyl, each optionally substituted with one or two residues selected from the group consisting of Ci- 6 -alkyl, C 3 6 -cycloalkyl, O-Ci- 6 -alkyl, O-Ci- 6 -haloalkyl;
  • R 2 is selected from Ci- 6 -alkylene -phenyl or Ci- 6 -alkylene-naphthyl, both optionally substituted with one or two residues selected from the group consisting of Ci- 6 -alkyl, Ci- 6 -haloalkyl, O-Ci- 6 -alkyl, O-Ci- 6 -haloalkyl, halogen; or Cth-thiophenyl, optionally substituted with one or two residues selected from the group consisting of halogen;
  • R 3 is H, Ci- 4 -alkyl
  • R 4 is H, Ci- 4 -alkyl; or R 3 and R 4 together are forming a CH 2 -CH 2 group.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
  • A is CH 2 , O or NMe
  • R 1 is selected from
  • NH-pyrrolidinyl optionally substituted with one or two residues selected from the group consisting of SCh-Ci r-alkyl, COO-Ci- 4 -alkyl; • piperidinyl, optionally substituted with one or two residues selected from the group consisting of NHS0 2 -Ci- 4 -alkyl, m-methoxyphenyl;
  • dihydro-indolyl dihydro-isoindolyl, tetrahydro-quinolinyl or tetrahydro-isoquinolinyl, optionally substituted with one or two residues selected from the group consisting of Ci- 4 -alkyl, COO-Ci- 4 -alkyl, Ci- 4 -haloalkyl, O-Ci- 4 -alkyl, NO 2 , halogen;
  • R 1 ⁇ 1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Ci- 4 -alkyl, Ci- 4 -haloalkyl, CH 2 CON(Ci- 4 -alkyl) 2 ,
  • R 1 1 2 H, Ci- 4 -alkyl, SChCi ⁇ -alkyl; or R 1 1 1 and R 1 1 2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of CH 2 OH
  • R 1 ⁇ 2 is selected from
  • R 1 ⁇ 3 is selected from phenyl, pyrazolyl, isoxazolyl, pyrimidinyl, indolyl or oxadiazolyl, each optionally substituted with one or two residues selected from the group consisting of Ci- 4 -alkyl, C 3 6 -cycloalkyl, O-Ci- 4 -alkyl, O-Ci- 4 -haloalkyl;
  • R 2 is selected from Ci- 6 -alkylene -phenyl or Ci- 6 -alkylene-naphthyl, both optionally substituted with one or two residues selected from the group consisting of Ci- 4 -alkyl, Ci- 4 -haloalkyl, O-Ci- 4 -haloalkyl, halogen; or CFb-thiophenyl, optionally substituted with one or two residues selected from the group consisting of halogen;
  • R 3 is H
  • R 4 is H; or R 3 and R 4 together are forming a CH 2 -CH 2 group.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
  • A is CH 2 , O or NMe
  • R 1 is selected from
  • NH-cyclohexyl optionally substituted with one or two residues selected from the group consisting of t-Bu, NHSCh-phenyl, NHCONH -phenyl, F; • NH-pyrrolidinyl, optionally substituted with one or two residues selected from the group consisting of S0 2 Me, COO-t-Bu;
  • R 1 ⁇ 1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, t-Bu, CF 3 , CFl2CONMe2, CFFNFlCONFl-cyclohexyl, CN, CONR 1 1 R 1 1 2 , COOMe, COOEt, OMe, S0 2 Me, S0 2 CH 2 CH 2 0H, S0 2 Et, S0 2 -cyclopropyl, S0 2 -piperidinyl, S0 2 NFlEt, S0 2 NMeEt, F, Cl, CO-morpholinyl, CFF-pyridinyl, or imidazolidinyl, piperidinyl, oxazinanyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyridinyl, pyrimidinyl, each optionally substituted with
  • R 1 1 1 H, Me, Et, t-Bu, i-Pr, cyclopropyl, CH 2 -i-Pr, CH 2 -t-Bu, CH(CH 3 )CH 2 CH 3 , CFFCFh ⁇ , C]3 ⁇ 4CONMe2, CFl2CO-azetindinyl, CFl2-cyclopropyl, CFl2-cyclobutyl, CFl2-pyranyl, CFb-tetrahydrofuranyl, CFl2-furanyl, CF1 2 CF1 2 0F1 or thiadiazolyl, optionally substituted with Me;
  • R 1 1 2 H, Me, Et, S0 2 Me, S0 2 Et or R 1 1 1 and R 1 1 2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of CFFOFl
  • R 1 ⁇ 2 is selected from
  • R 1 ⁇ 3 is selected from phenyl, pyrazolyl, isoxazolyl, pyrimidinyl, indolyl or oxadiazolyl, each optionally substituted with one or two residues selected from the group consisting of Me, Et, Pr, cyclopentyl, OMe, OCHF2;
  • R 2 is selected from Ctb-phenyl or CIE-naphthyl, both optionally substituted with one or two residues selected from the group consisting of CH 3 , CF 3 , OCF 3 , F, Cl, Br, Et; or CIF-thiophenyl, optionally substituted with one or two residues selected from the group consisting of Cl, Br;
  • R 3 is H
  • R 4 is H; or R 3 and R 4 together are forming a CH2-CH2 group.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
  • A is CH2, O or NMe
  • R 1 is selected from
  • R 1 ⁇ 1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, Pr, Bu, CF 3 , CH2CONMe2, CH2NHCONH-cyclohexyl, CN, CONR 1 1 'R 1 1 2 , COOMe, COOEt, OMe, S0 2 Me, S0 2 CH 2 CH 2 0H, S0 2 Et, S0 2 -cyclopropyl, S0 2 -piperidinyl, S0 2 NHEt, S0 2 NMeEt, F, Cl, CO-morpholinyl, CH2-pyridinyl, or imidazolidinyl, piperidinyl, oxazinanyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyridinyl, pyrimidinyl, each optionally substituted with one or two residues selected
  • R 1 1 2 H, Me, Et, S0 2 Me, S0 2 Et or R 1 1 1 and R 1 1 2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of CH 2 OH
  • R 1 ⁇ 2 is selected from
  • R 2 is selected from CH 2 -phenyl or CH 2 -naphthyl, both optionally substituted with one or two residues selected from the group consisting of CH 3 , CF 3 , OCF 3 , F, Cl, Br, Et
  • R 3 is H
  • R 4 is H.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
  • A is CH 2 , O or NMe
  • R 1 is selected from
  • R 1 ⁇ 1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, Pr, Bu, CF 3 , CH2CONMe2, CH2NHCONH-cyclohexyl, CN, CONR 1 1 'R 1 1 2 , COOMe, COOEt, OMe, S0 2 Me, S0 2 CH 2 CH 2 0H, S0 2 Et, SCE-cyclopropyl, S0 2 -piperidinyl, S0 2 NHEt, S0 2 NMeEt, F, Cl, CO-morpholinyl, Ctb-pyridinyl, or imidazolidinyl, piperidinyl, oxazinanyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyridinyl, pyrimidinyl, each optionally substituted with one or two residues selected
  • R 1 1 1 H, Me, Et, Pr, Bu, cyclopropyl, CH 2 -Pr, CH 2 -Bu, CH(CH 3 )CH 2 CH 3 , CH 2 CHF 2 , CH2CONMe2, CPECO-azetindinyl, CPE-cyclopropyl, CH2-cyclobutyl, CH2-pyranyl, CH2-tetrahydrofuranyl, CH2-furanyl, CH2CH2OH or thiadiazolyl, optionally substituted with Me;
  • R 1 1 2 H, Me, Et, S0 2 Me, S0 2 Et or R 1 1 1 and R 1 1 2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of CH2OH
  • R 1 ⁇ 2 is selected from
  • R 1 3 is selected from phenyl, pyrazolyl, isoxazolyl, pyrimidinyl, indolyl or oxadiazolyl, each optionally substituted with one or two residues selected from the group consisting of Me, Et, Pr, cyclopentyl, OMe, OCHF2;
  • R 2 is selected from Ctb-phenyl or CPE-naphthyl, both optionally substituted with one or two residues selected from the group consisting of CH 3 , CF 3 , OCF 3 , F, Cl, Br, Et; or CIF-thiophenyl, optionally substituted with one or two residues selected from the group consisting of Cl, Br;
  • R 3 is H
  • R 4 is H; or R 3 and R 4 together are forming a CH2-CH2 group.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
  • A is CH2, O or NMe
  • R 1 is selected from
  • R 1 ⁇ 1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, t-Bu, CF 3 , CH2CONMe2, CH2NHCONH-cyclohexyl, CN, CONR 1 1 'R 1 1 2 , COOMe, COOEt, OMe, S0 2 Me, S0 2 CH 2 CH 2 0H, S0 2 Et, S0 2 -cyclopropyl, S0 2 -piperidinyl, S0 2 NHEt, S0 2 NMeEt, F, Cl, CO-morpholinyl, Ctb-pyridinyl, or imidazolidinyl, piperidinyl, oxazinanyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyridinyl, pyrimidinyl, each optionally substituted with one or two
  • R 1 1 1 H, Me, Et, Bu, Pr, cyclopropyl, CH 2 -Pr, CH 2 -Bu, CH(CH 3 )CH 2 CH 3 , CH 2 CHF 2 , CH2CONMe2, CPECO-azetindinyl, CPE-cyclopropyl, CPE-cyclobutyl, CPE-pyranyl, CPp-tetrahydrofuranyl, Ctp-furanyl, CH2CH2OH or thiadiazolyl, optionally substituted with Me;
  • R 1 ⁇ 1 ⁇ 2 H, Me, Et, S0 2 Me, S0 2 Et or R 1 ⁇ 1 ⁇ 1 and R 1 ⁇ 1 ⁇ 2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of CH2OH;
  • R 2 is selected from CFb-phenyl or CFF-naphthyl, both optionally substituted with one or two residues selected from the group consisting of CH 3 , CF 3 , OCF 3 , F, Cl, Br, Et; or CFF-thiophenyl, optionally substituted with one or two residues selected from the group consisting of Cl, Br;
  • R 3 is H
  • R 4 is H; or R 3 and R 4 together are forming a CFF-CFF group.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
  • A is CFb, O or NMe
  • R 1 is selected from
  • R 1 ⁇ 1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, t-Bu, CF3, CFl2CONMe2, CFFNFlCONFl-cyclohexyl, CN, CONR 1 1 'R 1 1 2 , COOMe, COOEt, OMe, S0 2 Me, S0 2 CH 2 CH 2 0H, S0 2 Et, SCh-cyclopropyl, SCh-piperidinyl, SChNFlEt, SChNMeEt, F, Cl, CO-morpholinyl, CFF-pyridinyl, or imidazolidinyl, piperidinyl, oxazinanyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyridinyl, pyrimidinyl, each optionally substituted with one or two residues selected from the
  • R 1 1 1 H, Me, Et, Bu, Pr, cyclopropyl, CH 2 -Pr, CH 2 -Bu, CH(CH 3 )CH 2 CH 3 , CH 2 CHF 2 , C]3 ⁇ 4CONMe2, CFFCO-azetindinyl, CFF-cyclopropyl, CFF-cyclobutyl, CFF-pyranyl, CFb-tetrahydrofuranyl, CFb-furanyl, CFbCFbOFl or thiadiazolyl, optionally substituted with Me;
  • R 2 is defined as in Table 1 shown below;
  • R 3 is H
  • R 4 is H
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
  • A is CH2, O or NMe
  • R 1 is selected from
  • R 1 ⁇ 1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, t-Bu, CF 3 , CH2CONMe2, CH2NHCONH-cyclohexyl, CN, CONR 1 1 'R 1 1 2 , COOMe, COOEt, OMe, S0 2 Me, S0 2 CH 2 CH 2 0H, S0 2 Et, SCE-cyclopropyl, S0 2 -piperidinyl, S0 2 NHEt, SCENMeEt, F, Cl, CO-morpholinyl, CH2-pyridinyl, or imidazolidinyl, piperidinyl, oxazinanyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyridinyl, pyrimidinyl, each optionally substituted with one or two residues selected from the group
  • R 2 is defined as in Table 1 shown below;
  • R 3 is H
  • R 4 is H
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
  • A is CH2, O or NMe
  • R 1 is selected from
  • R 1 ⁇ 1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, t-Bu, CF 3 , CH 2 CONMe 2 , CH 2 NHCONH-cyclohexyl, CN, CONR 1 1 'R 1 1 2 , COOMe, COOEt, OMe, F, Cl;
  • R 1 1 1 H, Me, Et, Bu, Pr, cyclopropyl, CH 2 -Pr, CH 2 -Bu, CH(CH 3 )CH 2 CH 3 , CH 2 CHF 2 , CH 2 CONMe 2 , CPECO-azetindinyl, CH 2 -cyclopropyl, CH 2 -cyclobutyl, CH 2 -pyranyl, CH 2 -tetrahydrofuranyl, CIE-furanyl, CH 2 CH 2 OH or thiadiazolyl, optionally substituted with Me;
  • R 2 is defined as in Table 1 shown below;
  • R 3 is H
  • R 4 is H
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
  • A is CH 2 , O or NMe
  • R 1 is selected from
  • R 1 ⁇ 1 is phenyl, optionally substituted with one or two residues selected from the group consisting of SCEMe, SO 2 CH 2 CH 2 OH, SCEEt, SCE-cyclopropyl, SCE-piperidinyl, S0 2 NHEt, S0 2 NMeEt;
  • R 1 1 1 H, Me, Et, Bu, Pr, cyclopropyl, CH 2 -Pr, CH 2 -Bu, CH(CH 3 )CH 2 CH 3 , CH 2 CHF 2 , CH 2 CONMe 2 , CH 2 CO-azetindinyl, CH 2 -cyclopropyl, CH 2 -cyclobutyl, CIE-pyranyl, CH 2 -tetrahydrofuranyl, CH 2 -furanyl, CH 2 CH 2 OH or thiadiazolyl, optionally substituted with Me;
  • R 2 is defined as in Table 1 shown below;
  • R 3 is H
  • R 4 is H; Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
  • A is CH2, O or NMe
  • R 1 is selected from
  • R 1 ⁇ 1 is phenyl, optionally substituted with one residue selected from the group consisting of Me, Et, t-Bu, CF 3 , CH 2 CONMe 2 , CH 2 NHCONH-cyclohexyl, CN, CONR 1 1 'R 1 1 2 , COOMe, COOEt, OMe, S0 2 Me, S0 2 CH 2 CH 2 0H, S0 2 Et, S0 2 -cyclopropyl, S0 2 -piperidinyl, S0 2 NHEt, S0 2 NMeEt, F, Cl, and additionally with one residue selected from the group consiting of CO-morpholinyl, CH 2 -pyridinyl, or imidazolidinyl, piperidinyl, oxazinanyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyridinyl, pyrimi
  • R 1 1 1 H, Me, Et, Bu, Pr, cyclopropyl, CH 2 -Pr, CH 2 -Bu, CH(CH 3 )CH 2 CH 3 , CH 2 CHF 2 , CH 2 CONMe 2 , CH 2 CO-azetindinyl, CH 2 -cyclopropyl, CH 2 -cyclobutyl, CH 2 -pyranyl, CH 2 -tetrahydrofuranyl, CH 2 -furanyl, CH 2 CH 2 OH or thiadiazolyl, optionally substituted with Me;
  • R 2 is defined as in Table 1 shown below;
  • R 3 is H
  • R 4 is H
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
  • A is CH 2 , O or NMe
  • R 1 is selected from
  • NHR 1 2 , NMeR 1 2 ; R 1 2 is selected from
  • R 2 is selected from CH 2 -phenyl or CH 2 -naphthyl, both optionally substituted with one or two residues selected from the group consisting of CH 3 , CF 3 , OCF 3 , F, Cl, Br, Et; or CH 2 -thiophenyl, optionally substituted with one or two residues selected from the group consisting of Cl, Br;
  • R 3 is H
  • R 4 is H; or R 3 and R 4 together are forming a CH 2 -CH 2 group.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
  • A is CH 2 , O or NMe
  • R 1 is selected from
  • R 1 2 is selected from pyridinyl, pyridazinyl, pyrrolyl, pyrazolyl, isoxazolyl, thiazolyl, thiadiazolyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, n-Pr, i-Pr, Bu, cyclopropyl, CH 2 COOEt, CONR l 2 l R 1 2 2 , COOMe, COOEt, CONH 2 , OMe, Cl, Br CO-pyrrolidinyl, CO-morpholinyl or pyrazolyl, triazolyl, tetrazolyl, isoxazolyl, oxadiazolyl, each optionally substituted Me;
  • R 2 is selected from CFF-phenyl or CFF-naphthyl, both optionally substituted with one or two residues selected from the group consisting of CH 3 , CF 3 , OCF 3 , F, Cl, Br, Et; or CFF-thiophenyl, optionally substituted with one or two residues selected from the group consisting of Cl, Br;
  • R 3 is H
  • R 4 is H; or R 3 and R 4 together are forming a CFF-CFF group.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
  • A is CFb, O or NMe
  • R 1 is selected from
  • R 1 ⁇ 3 is selected from phenyl, pyrazolyl, isoxazolyl, pyrimidinyl, indolyl or oxadiazolyl, each optionally substituted with one or two residues selected from the group consisting of Me, Et, Pr, cyclopentyl, OMe, OCF1F 2 ;
  • R 2 is selected from CFF-phenyl or CFF-naphthyl, both optionally substituted with one or two residues selected from the group consisting of CFF, CF3, OCF3, F, Cl, Br, Et; or CFF-thiophenyl, optionally substituted with one or two residues selected from the group consisting of Cl, Br;
  • R 3 is H
  • R 4 is H; or R 3 and R 4 together are forming a CH 2 -CH 2 group.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
  • A is CFb, O or NMe
  • R 1 is selected from
  • R 2 is selected from CFF-phenyl or CFF-naphthyl, both optionally substituted with one or two residues selected from the group consisting of CH 3 , CF 3 , OCF 3 , F, Cl, Br, Et; or CFF-thiophenyl, optionally substituted with one or two residues selected from the group consisting of Cl, Br;
  • R 3 is H
  • R 4 is H; or R 3 and R 4 together are forming a CH2-CH2 group.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1, wherein A is CFF, O or NMe, R 1 is selected from NHR 1 2 , NMeR 1 2 ; R 2 is defined as in Table 1 shown below; R 3 is H; R 4 is and R 1 2 is selected from
  • pyridinyl optionally substituted with one or two residues selected from the group consisting of Me, Et, i-Pr, n-Bu, cyclopropyl, CONR 1 2 'R 1 2 2 , COOMe, COOEt, CONFF, OMe, Cl, Br CO-pyrrolidinyl, CO-morpholinyl or pyrazolyl, triazolyl, tetrazolyl, isoxazolyl, oxadiazolyl, each optionally substituted Me;
  • R 1 2 1 is H or Me
  • R 1 2 2 is H or Me.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1, wherein A is CH 2 , O or NMe, R 1 is selected from NHR 1 2 , NMeR 1 2 ; R 2 is defined as in Table 1 shown below; R 3 is H; R 4 is and R 1 2 is selected from
  • R 1 ⁇ 2 ⁇ 2 is H or Me.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
  • A is CH2, O or NMe, R 1 is selected from NHR 1 2 , NMeR 1 2 ; R 2 is defined as in Table 1 shown below;
  • R 3 is H;
  • R 4 is H;
  • R 1 2 is pyridinyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, i-Pr, n-Bu, CONR 1 2 'R 1 2 2 , COOMe, COOEt, CONH2, OMe, Cl, Br;
  • R 1 2 1 is H or Me and R 1 2 2 is H or Me.
  • A is CH2, O or NMe, R 1 is selected from NHR 1 2 , NMeR 1 2 ; R 2 is defined as in Table 1 shown below;
  • A is CH2, O or NMe, R 1 is selected from NHR 1 2 , NMeR 1 2 ; R 2 is defined as in Table 1 shown below;
  • A is CH2, O or NMe, R 1 is selected from NHR 1 2 , NMeR 1 2 ; R 2 is defined as in Table 1 shown below;
  • A is CH2, O or NMe, R 1 is selected from NHR 1 2 , NMeR 1 2 ; R 2 is defined as in Table 1 shown below;
  • R 3 is H;
  • R 4 is H;
  • R 1 2 is thiazolyl, optionally substituted with one or two residues selected from the group consisting of Me, n-Pr, i-Pr, Bu, COOMe, COOEt, CONR 1 2 'R 1 2 2 ;
  • R 1 2 1 is H or Me and
  • R 1 2 2 is H or Me.
  • A is CH2, O or NMe, R 1 is selected from NHR 1 2 , NMeR 1 2 ; R 2 is defined as in Table 1 shown below;
  • A is CH2, O or NMe, R 1 is selected from NHR 1 2 , NMeR 1 2 ; R 2 is defined as in Table 1 shown below;
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1, wherein all groups are defined as above except R 1 3 is selected from
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1, wherein all groups are defined as above except A is CH2.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein all groups are defined as above except A is O.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein all groups are defined as above except A is NMe.
  • Another embodiment of the present invention are compounds of formula 1, wherein A is CH2, O or NMe;
  • R 1 is selected from
  • R 2 is selected from
  • R 3 is H
  • R 4 is H; or R 3 and R 4 together are forming a CH2-CH2 group.
  • Another embodiment of the present invention are compounds of formula 1, wherein A is defined as above; R 3 is H; R 4 is H; and R 2 is defined as in Table 1 shown below; and R 1 is selected from
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1, wherein A is defined as above; R 3 is H; R 4 is H; and R 2 is defined as in Table 1 shown below; and R 1 is selected from
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1, wherein A is defined as above; R 3 is H; R 4 is H; and R 2 is defined as in Table 1 shown below; R 1 is selected from
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1, wherein A is defined as above; R 3 is H; R 4 is H; and R 2 is defined as in Table 1 shown below; and R 1 is selected from
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1, wherein A is defined as above; R 3 is H; R 4 is H; and R 2 is defined as in Table 1 shown below; R 1 is selected from
  • R 2 is defined as one of the groups shown below in the definitions 1 to 4:
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein the compounds of formula 1 are present in the form of the individual optical isomers, mixtures of the individual enantiomers or racemates, e.g., in the form of the enantiomerically pure compounds.
  • Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein the compounds of formula 1 are present in the form of the acid addition salts thereof with pharmacologically acceptable acids as well as optionally in the form of the solvates and/or hydrates.
  • Additional embodiments of the present invention further comprise administration to a subject of the co-crystals of the compounds of formula 2 (below).
  • the first named subgroup is the radical attachment point, for example, the substituent "Ci-3-alkyl-aryl” means an aryl group which is bound to a Cl-3-alkyl-group, the latter of which is bound to the core or to the group to which the substituent is attached.
  • R 1 is Ci-6-alkyl, Ci-6-haloalkyl, O-Ci-6-haloalkyl, halogen; m is 1, 2 or 3; and in some instances 1 or 2;
  • R 2a and R 2b are each independently selected from H, Ci-6-alkyl, Ci-6-alkenyl, Ci-6-alkynyl, C3 6-cycloalkyl, COO-Ci-6-alkyl, O-Ci-e-alkyl, CONR 2h l R 2h 2 , halogen;
  • R 2b 1 is H, Ci- 6 -alkyl, Co 4-alkyl-C3 6 -cycloalkyl, Ci- 6 -haloalkyl;
  • R 2b 2 is H, Ci-e-alkyl; or R 2b 1 and R 2b 2 are together a C3 6-alkylene group forming with the nitrogen atom a heterocyclic ring, wherein optionally one carbon atom or the ring is replaced by an oxygen atom R 3 is H, Ci- 6 -alkyl;
  • X is an anion selected from the group consisting of chloride, bromide, iodide, sulphate, phosphate, methanesulphonate, nitrate, maleate, acetate, benzoate, citrate, salicylate, fumarate, tartrate, dibenzoyltartrate, oxalate, succinate, benzoate and p-toluenesulphonate; and in some instances chloride or dibenzoyltartrate j is 0, 0.5, 1, 1.5 or 2; and in some instances 1 or 2; with a co-crystal former selected from the group consisting of orotic acid, hippuric acid, L-pyroglutamic acid, D-pyroglutamic acid, nicotinic acid, L-(+)-ascorbic acid, saccharin, piperazine, 3-hydroxy-2- naphtoic acid, mucic (galactaric) acid, pamoic (embonic) acid, stearic acid, cholic acid
  • Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein
  • R 2a is H, Ci-6-alkyl, Ci-6-alkenyl, Ci-6-alkynyl, C3 6-cycloalkyl, O-Ci-6-alkyl, CONR 2a 'R 2a 2 ;
  • R 2a 1 is H, Ci- 6 -alkyl, Ci- 6 -haloalkyl;
  • R 2a 2 is H, Ci-e-alkyl
  • R 2b is H, Ci-6-alkyl, Ci-6-alkenyl, Ci-6-alkynyl, C3 6-cycloalkyl, COO-Ci-6-alkyl, O-Ci-6-alkyl,
  • R 2b 1 is H, Ci-6-alkyl, Co 4-alkyl-C3 6-cycloalkyl, Ci-6-haloalkyl;
  • R 2b 2 is H, Ci- 6 -alkyl; or R 2b 1 and R 2b 2 are together a C3 6-alkylene group forming with the nitrogen atom a heterocyclic ring, wherein optionally one carbon atom or the ring is replaced by an oxygen atom and the remaining residues are defined as above.
  • Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein
  • R 2a is H, Ci-6-alkyl, Ci-6-alkynyl, C3 6-cycloalkyl, O-Ci-6-alkyl, CONR 2a 'R 2a 2 ;
  • R 2a l is Ci- 6 -alkyl; R 2a 2 is H;
  • R 2b is H, C , 6 -alkyl, O-C , rule-alkyl, CONR 2h l R 2h 2 ;
  • R 2b 1 is Ci-6-alkyl, Co 4 -alkyl -C 3 6-cycloalkyl, Ci-6-haloalkyl;
  • R 2b 2 is H, Ci-6-alkyl; or R 2b 1 and R 2b 2 are together a C 3 6 -alkylene group forming with the nitrogen atom a heterocyclic ring, wherein optionally one carbon atom or the ring is replaced by an oxygen atom and the remaining residues are defined as above.
  • Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein
  • R 2a is H, Ci- 4 -alkyl, Ci- 4 -alkynyl, C 3 6 -cycloalkyl, O-Ci- 4 -alkyl, CONR 2a 'R 2a 2 ;
  • R 2a 1 is Ci- 4 -alkyl
  • R 2a 2 is H
  • R 2b is H, C , 4 -alkyl, O-C , 4 -alkyl, CONR 2h l R 2h 2 ;
  • R 2b 1 is Ci- 4 -alkyl, Co 4 -alkyl -C 3 6-cycloalkyl, Ci- 4 -haloalkyl;
  • R 2b 2 is H, Ci- 4 -alkyl; or R 2b 1 and R 2b 2 are together a C 3 6 -alkylene group forming with the nitrogen atom a heterocyclic ring, wherein optionally one carbon atom or the ring is replaced by an oxygen atom and the remaining residues are defined as above.
  • Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein
  • R 2a is H, Ci- 4 -alkyl
  • R 2b is H, CONR 2h l R 2h 2 ;
  • R 2b 1 is Ci- 4 -alkyl, Co 4 -alkyl -C3 6-cycloalkyl, Ci- 4 -haloalkyl;
  • R 2b - 2 is H, Ci- 4 -alkyl; or R 2b 1 and R 2b 2 are together a C 3 6 -alkylene group forming with the nitrogen atom a heterocyclic ring, wherein optionally one carbon atom or the ring is replaced by an oxygen atom and the remaining residues are defined as above.
  • Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein
  • R 1 is Ci- 6 -alkyl, Ci- 6 -haloalkyl, O-Ci- 6 -haloalkyl, halogen; m is 1 or 2;
  • R 2a is H, C, 4 -alkyl
  • R 2b is H, CONR 2h l R 2h 2 ;
  • R 2b 1 is Ci- 4 -alkyl, Co 4 -alkyl -C3 6 -cycloalkyl, Ci- 4 -haloalkyl;
  • R 2b 2 is H, Ci- 4 -alkyl; or R 2b 1 and R 2b 2 are together a C 3 6 -alkylene group forming with the nitrogen atom a heterocyclic ring, wherein optionally one carbon atom or the ring is replaced by an oxygen atom
  • R 3 is H, Ci- 6 -alkyl
  • X is an anion selected from the group consisting of chloride or dibenzoyltartrate j is 1 or 2.
  • Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein
  • R 2a is H, Ci- 4 -alkyl; in some instances Methyl, Ethyl, Propyl;
  • R 2b is H, CONR 2h l R 2h 2 ;
  • R 2b 1 is Ci- 4 -alkyl; in some instances Methyl, Ethyl, Propyl;
  • R 2b 2 is Ci- 4 -alkyl; in some instances Methyl, Ethyl, Propyl; and the remaining residues are defined as above.
  • Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein
  • R 2a is H, Ci- 4 -alkyl; in some instances Methyl, Ethyl, Propyl; R 2b is H, CONR 2b 'R 2b 2 ;
  • R 2b 1 is Co 4 -alkyl-C 3 6 -cycloalkyl
  • R 2b 2 is H, Ci- 4 -alkyl; in some instances H, Methyl, Ethyl, Propyl; and the remaining residues are defined as above.
  • Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein
  • R 2a is H, Ci- 4 -alkyl; in some instances Methyl, Ethyl, Propyl;
  • R 2b is H, CONR 2h l R 2h 2 ;
  • R 2b 1 is Ci- 4 -haloalkyl
  • R 2b 2 is H, Ci- 4 -alky; in some instances H, Methyl, Ethyl, Propyl; and the remaining residues are defined as above.
  • Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein
  • R 2b 1 and R 2b 2 are together a C 3 6 -alkylene group forming with the nitrogen atom a heterocyclic ring, wherein optionally one carbon atom or the ring is replaced by an oxygen atom and the remaining residues are defined as above.
  • Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein R 1 , m, R 2a , R 2b , R 3 , X and j are defined as above and the co-crystal former is selected from the group consisting of ascorbic acid, mucic acid, pamoic acid, succinamide, nicotinic acid, nicotinamide, isonicotinamide, 1-lysine, 1-proline, or hydrates or
  • Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2a, wherein R 2a , R 2b , R 3 , X and j are defined as above
  • Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2a, wherein
  • R 2a is H, Ci- 4 -alkyl; in some instances Methyl, Ethyl, Propyl;
  • R 2b is H, CONR 2h l R 2h 2 ;
  • R 2b 1 is Ci- 4 -alkyl; in some instances Methyl, Ethyl, Propyl;
  • R 2b 2 is Ci- 4 -alkyl; in some instances Methyl, Ethyl, Propyl; and the remaining residues are defined as above.
  • Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2a, wherein
  • R 2a is H, Ci- 4 -alkyl; in some instances Methyl, Ethyl, Propyl;
  • R 2b is H, CONR 2h l R 2h 2 ;
  • R 2b 1 is Co 4 -alkyl-C 3 6-cycloalkyl
  • R 2b 2 is H, Ci- 4 -alkyl; in some instances H, Methyl, Ethyl, Propyl; and the remaining residues are defined as above.
  • Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2a, wherein
  • R 2a is H, Ci- 4 -alkyl; in some instances Methyl, Ethyl, Propyl;
  • R 2b is H, CONR 2h l R 2h 2 ;
  • R 2b 1 is Ci- 4 -haloalkyl
  • R 2b 2 is H, Ci- 4 -alky; in some instances H, Methyl, Ethyl, Propyl; and the remaining residues are defined as above.
  • Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2a, wherein
  • R 2b 1 and R 2b 2 are together a C 3 6 -alkylene group forming with the nitrogen atom a heterocyclic ring, wherein optionally one carbon atom or the ring is replaced by an oxygen atom and the remaining residues are defined as above.
  • X is an anion selected from the group consisting of chloride, bromide, iodide, sulphate, phosphate, methanesulphonate, nitrate, maleate, acetate, benzoate, citrate, salicylate, fumarate, tartrate, dibenzoyltartrate, oxalate, succinate, benzoate and p-toluenesulphonate; in some instances chloride, or dibenzoyltartrate j is 0, 0.5, 1, 1.5 or 2; in some instances 1 or 2.
  • Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein R 1 , m, R 2a , R 2b , R 3 are defined as for the co-crystals above and
  • X is an anion selected from the group consisting of chloride or dibenzoyltartrate j is 1 or 2.
  • Another aspect of the present invention further comprises administration to a subject of the salts of the compounds of formula 2, wherein R 1 , m, R 2a , R 2b , R 3 are defined as for the salts above and X is chloride and j is 2.
  • Another aspect of the present invention further comprises administration to a subject of the salts of the compounds of formula 2, wherein R 1 , m, R 2a , R 2b , R 3 are defined as for the salts above and X is dibenzoyltartrate and j is 1.
  • Another aspect of the present invention further comprises administration to a subject of the salts of the compounds of formula 2a, wherein R 2a , R 2b , R 3 , X and j are defined as above
  • Another aspect of the present invention further comprises administration to a subject of the salts of the compounds of formula 2a, wherein
  • R 2a is H, Ci- 4 -alkyl; in some instances Methyl, Ethyl, Propyl;
  • R 2b is H, CONR 2h l R 2h 2 ;
  • R 2b 1 is Ci- 4 -alkyl; in some instances Methyl, Ethyl, Propyl;
  • R 2b 2 is Ci- 4 -alkyl; in some instances Methyl, Ethyl, Propyl; and the remaining residues are defined as above.
  • Another aspect of the present invention further comprises administration to a subject of the salts of the compounds of formula 2a, wherein
  • R 2a is H, Ci- 4 -alkyl; in some instances Methyl, Ethyl, Propyl;
  • R 2b is H, CONR 2h l R 2h 2 ;
  • R 2b 1 is Co 4 -alkyl-C 3 6-cycloalkyl
  • R 2b 2 is H, Ci- 4 -alkyl; in some instances H, Methyl, Ethyl, Propyl; and the remaining residues are defined as above.
  • Another aspect of the present invention further comprises administration to a subject of the salts of the compounds of formula 2a, wherein
  • R 2a is H, Ci- 4 -alkyl; in some instances Methyl, Ethyl, Propyl;
  • R 2b is H, CONR 2h l R 2h 2 ;
  • R 2b l is Ci- 4 -haloalkyl
  • R 2b 2 is H, Ci-4-alky
  • the remaining residues are defined as above.
  • Another aspect of the present invention further comprises administration to a subject of the salts of the compounds of formula 2a, wherein
  • R 2b 1 and R 2b 2 are together a C3 6-alkylene group forming with the nitrogen atom a heterocyclic ring, wherein optionally one carbon atom or the ring is replaced by an oxygen atom and the remaining residues are defined as above.
  • Another aspect of the present invention further comprises administration to a subject of the salts of the compounds of formula 2a, wherein R 1 , m, R 2a , R 2b , R 3 are defined as for the salts above and X is chloride and j is 2.
  • Another aspect of the present invention further comprises administration to a subject of the salts of the compounds of formula 2a, wherein R 1 , m, R 2a , R 2b , R 3 are defined as for the salts above and X is dibenzoyltartrate and j is 1.
  • Another aspect of the invention are salts of compounds of formula 2a, wherein R 1 , m, R 2a , R 2b , R 3 are defined as for the salts above and X is (S)-(S)-(+)-2, 3-dibenzoyl -tartrate andj is 1.
  • Additional embodiments of the present invention further comprise administration to a subject of a pharmaceutical composition containing compounds of formula 3
  • R 1 is H, Ci-6-alkyl, Co 4-alkyl-C3 6-cycloalkyl, Ci-6-haloalkyl;
  • R 2 is H, Ci-6-alkyl
  • X is an anion selected from the group consisting of chloride or 1 ⁇ 2 dibenzoyltartrate J is 1 or 2.
  • An embodiment of the present invention further comprises administration to a subject of a pharmaceutical composition containing compounds of formula 3 wherein
  • R 1 is H, Ci- 6 -alkyl
  • R 2 is H, Ci- 6 -alkyl
  • X is an anion selected from the group consisting of chloride or 1 ⁇ 2 dibenzoyltartrate j is 1 or 2.
  • An embodiment of the present invention further comprises administration to a subject of a pharmaceutical composition containing compounds of formula 3 wherein
  • R 1 is H, Methyl, Ethyl, Propyl, Butyl;
  • R 2 is H, Methyl, Ethyl, Propyl, Butyl;
  • X is an anion selected from the group consisting of chloride or 1 ⁇ 2 dibenzoyltartrate, such as chloride; j is 1 or 2, in some instances 2.
  • An embodiment of the present invention further comprises administration to a subject of a pharmaceutical composition containing compounds of formula 3 wherein
  • R 1 is H, Methyl, Ethyl, Propyl, Butyl;
  • R 2 is H, Methyl
  • X is an anion selected from the group consisting of chloride or 1 ⁇ 2 dibenzoyltartrate, such as chloride; j is 1 or 2, in some instances 2.
  • An embodiment of the present invention further comprises administration to a subject of a pharmaceutical composition containing compounds of formula 3 wherein
  • R 1 is H, Methyl
  • R 2 is H, Methyl
  • X is an anion selected from the group consisting of chloride or 1 ⁇ 2 dibenzoyltartrate, such as chloride;
  • An embodiment of the present invention further comprises administration to a subject of a pharmaceutical composition containing compounds described in Table 2 as a hydrochloride.
  • An additional embodiment of the present invention further comprises administration to a subject of a pharmaceutical composition containing compounds describe in Table 2 as a di-hydrochloride.
  • Another object of the present invention is administration to a subject of a pharmaceutical dosage form of the compounds described above, wherein the dosage is an orally deliverable dosage form.
  • Another object of the present invention is administration to a subject of a pharmaceutical dosage form of the compounds described above, which is in the form of a tablet, capsule, pellets, powder or granules.
  • Another object of the present invention is administration to a subject of the pharmaceutical dosage forms described above for use as medicament.
  • Another object of the present invention is the use of the above pharmaceutical dosage forms for the preparation of a medicament for the treatment of a neurodegenerative disease or condition selected from Alzheimer's disease, Parkinson's disease, frontotemporal dementia, Huntington disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, vascular dementia, and progressive supranuclear palsy.
  • a neurodegenerative disease or condition selected from Alzheimer's disease, Parkinson's disease, frontotemporal dementia, Huntington disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, vascular dementia, and progressive supranuclear palsy.
  • Another object of the present invention is a process for the treatment and/or prevention of a disease or condition selected from neurodegenerative disease such as Al heimer's disease, Parkinson's disease, frontotemporal dementia, Huntington disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, vascular dementia, and progressive supranuclear palsy, characterized in that an effective amount of the above defined pharmaceutical dosage form is administered orally to a subject or patient once, twice, thrice or several times daily.
  • a disease or condition selected from neurodegenerative disease such as Al heimer's disease, Parkinson's disease, frontotemporal dementia, Huntington disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, vascular dementia, and progressive supranuclear palsy, characterized in that an effective amount of the above defined pharmaceutical dosage form is administered orally to a subject or patient once, twice, thrice or several times daily.
  • Solid pharmaceutical compositions ready for use/ingestion made from a compound of formula 3 comprise powders, granules, pellets, tablets, capsules, chewable tablets, dispersible tables, troches and lozenges.
  • Capsule formulations according to the invention comprise the powdery intermediate of a compound of formula 3, an intermediate blend comprising the powdery intermediate, pellets or granules obtained by conventional wet-, dry or hot-melt granulation or hot-melt extrusion or spray-drying of a suitable intermediate blend, filled in conventional capsules, e.g. hard gelatin or HPMC capsules.
  • Capsule formulations from above may also comprise the powdery intermediate of a compound of formula 3 in a compacted form.
  • Capsule formulations according to the invention comprise the compound of formula 3 suspended or diluted in a liquid or mixture of liquids.
  • Tablet formulations according to the invention comprise such tablets obtained by direct compression of a suitable final blend or by tableting of pellets or granules obtained by conventional wet-, dry or hot- melt granulation or hot-melt extrusion or spray-drying of a suitable intermediate blend.
  • the pH-adjusting / buffering agent may be a basic amino acid, which has an amino group and alkaline characteristics (isoelectric point, pi: 7.59— 10.76), such as e.g. L-arginine, L-lysine or L-histidine.
  • a buffering agent within the meaning of this invention is L-arginine.
  • L-arginine has a particular suitable stabilizing effect on the compositions of this invention, e.g. by suppressing chemical degradation of compounds of formula 3.
  • the present invention is directed to a pharmaceutical composition (e.g. an oral solid dosage form, particularly a tablet) comprising a compound of formula 3 and L-arginine for stabilizing the composition, particularly against chemical degradation; as well as one or more pharmaceutical excipients.
  • the pharmaceutical excipients used within this invention are conventional materials such as cellulose and its derivates, D-mannitol, corn starch, pregelatinized starch as a filler, copovidone as a binder, crospovidone as disintegrant, magnesium stearate as a lubricant, colloidal anhydrous silica as a glidant, hypromellose as a film-coating agent, polyethylene glycol as a plasticizer, titanium dioxide, iron oxide red/yellow as a pigment, and talc, etc.
  • conventional materials such as cellulose and its derivates, D-mannitol, corn starch, pregelatinized starch as a filler, copovidone as a binder, crospovidone as disintegrant, magnesium stearate as a lubricant, colloidal anhydrous silica as a glidant, hypromellose as a film-coating agent, polyethylene glycol as a plasticizer, titanium dioxide,
  • pharmaceutical excipients can be a first and second diluent, a binder, a disintegrant and a lubricant; an additional disintegrant and an additional glidant are a further option.
  • Diluents suitable for a pharmaceutical composition according to the invention are cellulose powder, microcrystalline cellulose, lactose in various crystalline modifications, dibasic calcium phosphate anhydrous, dibasic calcium phosphate dihydrate, erythritol, low substituted hydroxypropyl cellulose, mannitol, starch or modified starch (e.g. pregelatinized or partially hydrolyzed) or xylitol.
  • mannitol and microcrystalline cellulose are employed in some instances.
  • Diluents that find use as the second diluent are the above-mentioned diluents mannitol and microcrystalline cellulose.
  • Lubricants suitable for a pharmaceutical composition according to the invention are talc, polyethyleneglycol, calcium behenate, calcium stearate, sodium stearylfumarate, hydrogenated castor oil or magnesium stearate.
  • the lubricant in some instances is magnesium stearate.
  • Binders suitable for a pharmaceutical composition according to the invention are copovidone (copolymerisates of vinylpyrrolidon with other vinylderivates), hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose (HPC), polyvinylpyrrolidon (povidone), pregelatinized starch, stearic -palmitic acid, low-substituted hydroxypropylcellulose (L-HPC), copovidone and pregelatinized starch being employed in some formulations.
  • the above mentioned binders pregelatinized starch and L-HPC show additional diluent and disintegrant properties and can also be used as the second diluent or the disintegrant.
  • Disintegrants suitable for a pharmaceutical composition according to the present invention are corn starch, crospovidone, polacrilin potassium, croscarmellose sodium, low-substituted hydroxypropylcellulose (L-HPC) or pregelatinized starch; such as croscarmellose sodium.
  • An exemplary composition according to the present invention comprises the diluent mannitol, microcrystalline cellulose as a diluent with additional disintegrating properties, the binder copovidone, the disintegrant croscarmellose sodium, and magnesium stearate as the lubricant.
  • Typical pharmaceutical compositions comprise (% by weight)
  • compositions according to some embodiments comprise (% by weight)
  • compositions according to some embodiments comprise (% by weight)
  • compositions according to some embodiments comprise (% by weight)
  • compositions according to some embodiments comprise (% by weight)
  • compositions containing 10-90% of active ingredient such as 30-70 % active ingredient (% by weight) are employed in some instances.
  • a tablet formulation according to the invention may be uncoated or coated, e.g. film-coated, using suitable coatings known not to negatively affect the dissolution properties of the final formulation.
  • the tablets can be provided with a seal coat for protection of the patients environment and clinical staff as well as for moisture protection purposes by dissolving a high molecular weight polymer as polyvinylpyrrolidone or hydroxypropyl-methylcellulose together with plasticizers, lubricants and optionally pigments and tensides in water or organic solvent as acetone and spraying this mixture on the tablet cores inside a coating equipment as a pan coater or a fluidized bed coater with wurster insert.
  • agents such as beeswax, shellac, cellulose acetate phthalate, polyvinyl acetate phthalate, zein, film forming polymers such as hydroxypropyl cellulose, ethylcellulose and polymeric methacrylates can be applied to the tablets, provided that the coating has no substantial effect on the disintegration/dissolution of the dosage form and that the coated dosage form is not affected in its stability.
  • a sugar coating may be applied onto the sealed pharmaceutical dosage form.
  • the sugar coating may comprise sucrose, dextrose, sorbitol and the like or mixtures thereof. If desired, colorants or opacifiers may be added to the sugar solution.
  • Solid formulations of the present invention tend to be hygroscopic. They may be packaged using PVC-blisters, PVDC-blisters or a moisture-proof packaging material such as aluminum foil blister packs, alu/alu blister, transparent or opaque polymer blister with pouch, polypropylene tubes, glass bottles and HDPE bottles optionally containing a child-resistant feature or may be tamper evident.
  • the primary packaging material may comprise a desiccant such as molecular sieve or silica gel to improve chemical stability of the API.
  • Opaque packaging such as colored blister materials, tubes, brown glass bottles or the like can be used to prolong shelf life of the API by reduction of photo degradation.
  • a dosage range of the compound of formula 3 is usually between 100 and 1000 mg, in particular between 200 and 900 mg, 300 and 900 mg or 350 and 850 mg or 390 and 810 mg. It is possible to give one or two tablets, where in some instances two tablets for a daily oral dosage of 100, 200, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900 mg, and in some instances 350, 400, 450, 750, 800, 850 are employed.
  • the dosages range can be achieved by one tablet or by two tablets; in some instances two tablets are administered, each containing half of the dosage.
  • the application of the active ingredient may occur up to three times a day, such as one or two times a day.
  • Particular dosage strengths are 400 mg or 800 mg.
  • a given chemical formula or name shall encompass tautomers and all stereo, optical and geometrical isomers (e.g. enantiomers, diastereomers, E/Z isomers etc%) and racemates thereof as well as mixtures in different proportions of the separate enantiomers, mixtures of diastereomers, or mixtures of any of the foregoing forms where such isomers and enantiomers exist, as well as salts, including pharmaceutically acceptable salts thereof and solvates thereof such as for instance hydrates including solvates of the free compounds or solvates of a salt of the compound.
  • substituted means that any one or more hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valence is not exceeded, and that the substitution results in a stable compound.
  • the above-mentioned group optionally substituted by a lower-molecular group.
  • lower-molecular groups regarded as chemically meaningful are groups consisting of 1-200 atoms. Of interest are such groups that have no negative effect on the pharmacological efficacy of the compounds.
  • the groups may comprise: • Straight-chain or branched carbon chains, optionally interrupted by heteroatoms, optionally substituted by rings, heteroatoms or other common functional groups. • Aromatic or non-aromatic ring systems consisting of carbon atoms and optionally heteroatoms, which may in turn be substituted by functional groups.
  • a number of aromatic or non-aromatic ring systems consisting of carbon atoms and optionally heteroatoms which may be linked by one or more carbon chains, optionally interrupted by heteroatoms, optionally substituted by heteroatoms or other common functional groups.
  • the compounds disclosed herein can exist as therapeutically acceptable salts.
  • the present invention includes compounds listed above in the form of salts, including acid addition salts. Suitable salts include those formed with both organic and inorganic acids. Such acid addition salts will normally be pharmaceutically acceptable. However, salts of non-pharmaceutically acceptable salts may be of utility in the preparation and purification of the compound in question. Basic addition salts may also be formed and be pharmaceutically acceptable.
  • Pharmaceutical Salts Properties, Selection, and Use (Stahl, P. Heinrich. Wiley- VCHA, Zurich, Switzerland, 2002).
  • terapéuticaally acceptable salt represents salts or zwitterionic forms of the compounds disclosed herein which are water or oil-soluble or dispersible and therapeutically acceptable as defined herein.
  • the salts can be prepared during the final isolation and purification of the compounds or separately by reacting the appropriate compound in the form of the free base with a suitable acid.
  • Representative acid addition salts include acetate, adipate, alginate, L- ascorbate, aspartate, benzoate, benzenesulfonate (besylate), bisulfate, butyrate, camphorate, camphorsulfonate, citrate, digluconate, formate, fumarate, gentisate, glutarate, glycerophosphate, glycolate, hemisulfate, heptanoate, hexanoate, hippurate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethansulfonate (isethionate), lactate, maleate, malonate, DL-mandelate, mesitylenesulfonate, methanesulfonate, naphthylenesulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, pamoate, pectinate, persulfate, 3-phenylprop
  • basic groups in the compounds disclosed herein can be quaternized with methyl, ethyl, propyl, and butyl chlorides, bromides, and iodides; dimethyl, diethyl, dibutyl, and diamyl Sulfates; decyl, lauryl, myristyl, and steryl chlorides, bromides, and iodides; and benzyl and phenethyl bromides.
  • acids which can be employed to form therapeutically acceptable addition salts include inorganic acids such as hydrochloric, hydrobromic, sulfuric, and phosphoric, and organic acids such as oxalic, maleic, succinic, and citric.
  • Salts can also be formed by coordination of the compounds with an alkali metal or alkaline earth ion.
  • the present invention contemplates sodium, potassium, magnesium, and calcium salts of the compounds disclosed herein, and the like.
  • Basic addition salts can be prepared during the final isolation and purification of the compounds by reacting a carboxy group with a suitable base such as the hydroxide, carbonate, or bicarbonate of a metal cation or with ammonia or an organic primary, secondary, or tertiary amine.
  • the cations of therapeutically acceptable salts include lithium, sodium, potassium, calcium, magnesium, and aluminum, as well as nontoxic quaternary amine cations such as ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, diethylamine, ethylamine, tributylamine, pyridine, N,N-dimethylaniline, N-methylpiperidine, N-methylmorpholine, dicyclohexylamine, procaine, dibenzylamine, N, N-dibenzylphenethylamine, l-ephenamine, and N,R-dibenzylethylenediamine.
  • Other representative organic amines useful for the formation of base addition salts include ethylenediamine, ethanolamine, diethanolamine, piperidine, and piperazine.
  • compositions which comprise one or more of certain compounds disclosed herein, or one or more pharmaceutically acceptable salts, esters, prodrugs, amides, or solvates thereof, together with one or more pharmaceutically acceptable carriers thereof and optionally one or more other therapeutic ingredients.
  • the carrier(s) must be "acceptable” in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. Proper formulation is dependent upon the route of administration chosen. Any of the well-known techniques, carriers, and excipients may be used as suitable and as understood in the art; e.g., in Remington's Pharmaceutical Sciences.
  • compositions disclosed herein may be manufactured in any manner known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or compression processes.
  • Heterocyclic rings include five-, six- or seven-membered, saturated or unsaturated heterocyclic rings or 5-10 membered, bicyclic hetero rings which may contain one, two or three heteroatoms, selected from among oxygen, sulphur and nitrogen; the ring may be linked to the molecule by a carbon atom or, if present, by a nitrogen atom.
  • heterocyclic ring may be provided with a keto group.
  • examples include:
  • 5-l0-membered bicyclic hetero rings examples include pyrrolizine, indole, indolizine, isoindole, indazole, purine, quinoline, isoquinoline, benzimidazole, benzofurane, benzopyrane, benzothiazole, benzoisothiazole, pyridopyrimidine, pteridine, pyrimidopyrimidine,
  • heterocyclic rings includes heterocyclic aromatic groups
  • heterocyclic aromatic groups denotes five- or six-membered heterocyclic aromatic groups or 5-10 membered, bicyclic hetaryl rings which may contain one, two or three heteroatoms, selected from among oxygen, sulphur and nitrogen, which contain sufficient conjugated double bonds that an aromatic system is formed.
  • the ring may be linked to the molecule through a carbon atom or if present through a nitrogen atom.
  • 5-l0-membered bicyclic hetaryl rings examples include pyrrolizine, indole, indolizine, isoindole, indazole, purine, quinoline, isoquinoline, benzimidazole, benzofuran, benzopyrane, benzothiazole, benzoisothiazole, pyridopyrimidine, pteridine, pyrimidopyrimidine.
  • halogen as used herein means a halogen substituent selected from fluoro, chloro, bromo or iodo.
  • Ci- 6 -alkyl (including those which are part of other groups) are meant branched and unbranched alkyl groups with 1 to 6 carbon atoms, and by the term “C 1-4 -alkyl” are meant branched and unbranched alkyl groups with 1 to 4 carbon atoms.
  • Alkyl groups with 1 to 4 carbon atoms are present in some instances. Examples of these include: methyl, ethyl, «-propyl, /iso-propyl, «-butyl, /.s -butyl, sec-butyl, ZerZ-butyl, «-pentyl, iso-pentyl, «co-pentyl or hexyl.
  • Me, Et, «-Pr, /-Pr, «-Bu, /-Bu, Z-Bu, etc. may optionally also be used for the above-mentioned groups.
  • the definitions propyl, butyl, pentyl and hexyl include ah the possible isomeric forms of the groups in question.
  • propyl includes «-propyl and iso-propyl
  • butyl includes iso-butyl, sc -butyl and tert- butyl etc.
  • Ci- 6 -alkylene (including those which are part of other groups) are meant branched and unbranched alkylene groups with 1 to 6 carbon atoms and by the term “Ci-4-alkylene” are meant branched and unbranched alkylene groups with 1 to 4 carbon atoms. Alkylene groups with 1 to 4 carbon atoms are present in some instances.
  • Examples include: methylene, ethylene, propylene, l-methylethylene, butylene, l-methylpropylene, 1,1 -dime thylethylene, l,2-dimethylethylene, pentylene, 1,1- dimethylpropylene, 2,2-dimethylpropylene, 1 ,2-dimethylpropylene, 1,3 -dime thy lpropylene or hexylene.
  • propylene, butylene, pentylene and hexylene also include all the possible isomeric forms of the relevant groups with the same number of carbons.
  • propyl also includes l-methylethylene and butylene includes l-methylpropylene, l,l-dimethylethylene, 1,2- dimethylethylene.
  • C2 6 -alkenyl (including those which are part of other groups) denotes branched and unbranched alkenyl groups with 2 to 6 carbon atoms and the term “C2 4-alkenyl” denotes branched and unbranched alkenyl groups with 2 to 4 carbon atoms, provided that they have at least one double bond.
  • alkenyl groups with 2 to 4 carbon atoms examples include: ethenyl or vinyl, propenyl, butenyl, pentenyl, or hexenyl. Unless otherwise stated, the definitions propenyl, butenyl, pentenyl and hexenyl include all possible isomeric forms of the groups in question.
  • propenyl includes 1 -propenyl and 2-propenyl
  • butenyl includes 1-, 2- and 3-butenyl, 1 -methyl- 1 -propenyl, 1 -methyl -2 -propenyl etc.
  • C2 6 -alkenylene (including those which are part of other groups) are meant branched and unbranched alkenylene groups with 2 to 6 carbon atoms and by the term “C2 4-alkenylene” are meant branched and unbranched alkylene groups with 2 to 4 carbon atoms. Alkenylene groups with 2 to 4 carbon atoms are present in some instances.
  • Examples include: ethenylene, propenylene, l-methylethenylene, butenylene, l-methylpropenylene, l,l-dimethylethenylene, 1 ,2-dimethylethenylene, pentenylene, 1,1- dimethylpropenylene, 2,2-dimethylpropenylene, l,2-dimethylpropenylene, l,3-dimethylpropenylene or hexenylene.
  • the definitions propenylene, butenylene, pentenylene and hexenylene include all the possible isomeric forms of the respective groups with the same number of carbons.
  • propenyl also includes l-methylethenylene and butenylene includes l-methylpropenylene, 1,1- dimethylethenylene, 1 ,2-dimethylethenylene.
  • C2 6 -alkynyl (including those which are part of other groups) are meant branched and unbranched alkynyl groups with 2 to 6 carbon atoms and by the term “C2 4-alkynyl” are meant branched and unbranched alkynyl groups with 2 to 4 carbon atoms, provided that they have at least one triple bond.
  • Alkynyl groups with 2 to 4 carbon atoms are present in some instances. Examples include: ethynyl, propynyl, butynyl, pentynyl, or hexynyl.
  • propynyl, butynyl, pentynyl and hexynyl include all the possible isomeric forms of the respective groups.
  • propynyl includes l-propynyl and 2-propynyl
  • butynyl includes 1-, 2- and 3-butynyl, 1 -methyl- l-propynyl, 1 -methyl -2 -propynyl etc.
  • C 2 6 -alkynylene (including those which are part of other groups) are meant branched and unbranched alkynylene groups with 2 to 6 carbon atoms and by the term “C 2 4 -alkynylene” are meant branched and unbranched alkylene groups with 2 to 4 carbon atoms. Alkynylene groups with 2 to 4 carbon atoms are present in some instances.
  • Examples include: ethynylene, propynylene, l-methylethynylene, butynylene, l-methylpropynylene, 1,1 -dime thylethynylene, l,2-dimethylethynylene, pentynylene, 1,1- dimethylpropynylene, 2,2-dimethylpropynylene, 1 ,2-dimethylpropynylene, 1,3-dimethylpropynylene or hexynylene.
  • the definitions propynylene, butynylene, pentynylene and hexynylene include all the possible isomeric forms of the respective groups with the same number of carbons.
  • propynyl also includes l-methylethynylene and butynylene includes l-methylpropynylene, 1,1- dimethylethynylene, 1 ,2-dimethylethynylene.
  • C 3 6 -cycloalkyl (including those which are part of other groups) as used herein means cyclic alkyl groups with 3 to 8 carbon atoms, where in some instances such groups are cyclic alkyl groups with 5 to 6 carbon atoms. Examples include: cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
  • Ci- 4 -haloalkyl (including those which are part of other groups) are meant branched and unbranched alkyl groups with 1 to 6 carbon atoms wherein one or more hydrogen atoms are replaced by a halogen atom selected from among fluorine, chlorine or bromine, such as fluorine and chlorine, e.g., fluorine.
  • a halogen atom selected from among fluorine, chlorine or bromine, such as fluorine and chlorine, e.g., fluorine.
  • Ci- 4 -haloalkyl are meant correspondingly branched and unbranched alkyl groups with 1 to 4 carbon atoms, wherein one or more hydrogen atoms are replaced analogously to what was stated above. Ci- 4 -haloalkyl is presentin some instances. Examples include: CH 2 F, CHF 2 , CF 3 .
  • Ci- n -alkyl wherein n is an integer from 2 to n, either alone or in combination with another radical denotes an acyclic, saturated, branched or linear hydrocarbon radical with 1 to n C atoms.
  • C i 5 -alkyl embraces the radicals H 3 C-, H 3 C-CH 2 -, H 3 C-CH 2 -CH 2 -, H 3 C-CH(CH 3 )-, H3C-CH 2 -CH 2 -CH 2 -, H 3 C-CH 2 -CH(CH 3 )-, H 3 C-CH(CH 3 )-CH 2 -, H 3 C-C(CH 3 ) 2 -, H3C-CH 2 -CH 2 -CH 2 -CH 2 -, H 3 C-CH 2 -CH 2 -CH(CH 3 )-, H 3 C-CH 2 -CH(CH 3 )-CH 2 -, H 3 C-CH(CH 3 )-CH 2 -, H 3 C-CH(CH 3 )-CH 2 -CH 2 -, H 3 C-CH(CH 3 )-CH 2 -CH 2 -, H 3 C-CH 2 -C(CH 3 ) 2 -, H 3 C
  • Ci- n -haloalkyl wherein n is an integer from 2 to n, either alone or in combination with another radical denotes an acyclic, saturated, branched or linear hydrocarbon radical with 1 to n C atoms wherein one or more hydrogen atoms are replaced by a halogen atom selected from among fluorine, chlorine or bromine, such as fluorine and chlorine, e.g., fluorine. Examples include: CH 2 F, CHF 2 , CF 3 .
  • Ci n -alkylene wherein n is an integer 2 to n, either alone or in combination with another radical, denotes an acyclic, straight or branched chain divalent alkyl radical containing from 1 to n carbon atoms.
  • Ci-4-alkylene includes -CH 2 -, -CH2-CH2-, -CH(CH 3 )-, -CH 2 -CH 2 -CH 2 -, -C(CH 3 ) 2 -,
  • C2 -alkenyl is used for a group as defined in the definition for "Ci- n -alkyl” with at least two carbon atoms, if at least two of those carbon atoms of said group are bonded to each other by a double bond.
  • C2 -alkynyl is used for a group as defined in the definition for "Ci- n -alkyl” with at least two carbon atoms, if at least two of those carbon atoms of said group are bonded to each other by a triple bond.
  • C 3-n -cycloalkyl wherein n is an integer from 4 to n, either alone or in combination with another radical denotes a cyclic, saturated, unbranched hydrocarbon radical with 3 to n C atoms.
  • C 3- 7-cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.
  • an individual suffering from or at risk of suffering from an aging-associated cognitive impairment is meant an individual that is about more than 50% through its expected lifespan, such as more than 60%, e.g., more than 70%, such as more than 75%, 80%, 85%, 90%, 95% or even 99% through its expected lifespan.
  • the age of the individual will depend on the species in question. Thus, this percentage is based on the predicted life-expectancy of the species in question.
  • such an individual is 50 year old or older, e.g., 60 years old or older, 70 years old or older, 80 years old or older, 90 years old or older, and usually no older than 100 years old, such as 90 years old., i.e., between the ages of about 50 and 100, e.g., 50 . . . 55 . . . 60 . . . 65 . . . 70 . . . 75 . . . 80 . . . 85 . . . 90 . . . 95 . . .
  • an aging-associated condition e.g., cognitive impairment
  • the corresponding ages for non-human subjects are known and are intended to apply herein.
  • the subject is a mammal.
  • Mammalian species that may be treated with the present methods include canines and felines; equines; bovines; ovines; etc., and primates, including humans.
  • the subject methods, compositions, and reagents may also be applied to animal models, including small mammals, e.g., murine, lagomorpha, etc., for example, in experimental investigations.
  • treatment refers to any of (i) the prevention of the disease or disorder, or (ii) the reduction or elimination of symptoms of the disease or disorder. Treatment may be effected prophylactically (prior to the onset of disease) or therapeutically (following the onset of the disease). The effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of a partial or complete cure for a disease and/or adverse effect attributable to the disease.
  • treatment covers any treatment of an aging-related disease or disorder in a mammal, and includes: (a) preventing the disease from occurring in a subject which may be predisposed to the disease but has not yet been diagnosed as having it; (b) inhibiting the disease, i.e., arresting its development; or (c) relieving the disease, i.e., causing regression of the disease.
  • Treatment may result in a variety of different physical manifestations, e.g., modulation in gene expression, rejuvenation of tissue or organs, etc.
  • the therapeutic agent may be administered before, during or after the onset of disease.
  • the treatment of ongoing disease where the treatment stabilizes or reduces the undesirable clinical symptoms of the patient, is of particular interest. Such treatment may be performed prior to complete loss of function in the affected tissues.
  • the subject therapy may be administered during the symptomatic stage of the disease, and in some cases after the symptomatic stage of the disease.
  • the condition that is treated is an aging-associated impairment in cognitive ability in an individual.
  • cognitive ability or “cognition,” it is meant the mental processes that include attention and concentration, learning complex tasks and concepts, memory (acquiring, retaining, and retrieving new information in the short and/or long term), information processing (dealing with information gathered by the five senses), visuospatial function (visual perception, depth perception, using mental imagery, copying drawings, constructing objects or shapes), producing and understanding language, verbal fluency (word-finding), solving problems, making decisions, and executive functions (planning and prioritizing).
  • cognitive decline it is meant a progressive decrease in one or more of these abilities, e.g., a decline in memory, language, thinking, judgment, etc.
  • an impairment in cognitive ability and “cognitive impairment” it is meant a reduction in cognitive ability relative to a healthy individual, e.g., an age-matched healthy individual, or relative to the ability of the individual at an earlier point in time, e.g., 2 weeks, 1 month, 2 months, 3 months, 6 months, 1 year, 2 years, 5 years, or 10 years or more previously.
  • aging-associated cognitive impairment an impairment in cognitive ability that is typically associated with aging, including, for example, cognitive impairment associated with the natural aging process, e.g., mild cognitive impairment (M.C.I.); and cognitive impairment associated with an aging- associated disorder, that is, a disorder that is seen with increasing frequency with increasing senescence, e.g., a neurodegenerative condition such as Alzheimer's disease, Parkinson's disease, frontotemporal dementia, Huntington disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, vascular dementia, progressive supranuclear palsy, ataxia, associated frailty, and the like
  • cognitive impairment associated with the natural aging process e.g., mild cognitive impairment (M.C.I.)
  • cognitive impairment associated with an aging- associated disorder that is, a disorder that is seen with increasing frequency with increasing senescence, e.g., a neurodegenerative condition such as Alzheimer's disease, Parkinson's
  • the compounds of general formula 1 may be used on their own or combined with other active substances of formula 1 according to the invention.
  • the compounds of general formula 1 may optionally also be combined with other pharmacologically active substances. These include, h2-adrenoceptor-agonists (short and long-acting), anti-cholinergics (short and long-acting), anti-inflammatory steroids (oral and topical corticosteroids), cromoglycate, methylxanthine, dissociated-glucocorticoidmimetics, PDE3 inhibitors, PDE4- inhibitors, PDE7- inhibitors, LTD4 antagonists, EGFR- inhibitors, Dopamine agonists, PAF antagonists, Lipoxin A4 derivatives, FPRL1 modulators, LTB4-receptor (BLT1, BLT2) antagonists, Histamine Hl receptor antagonists, Histamine H4 receptor antagonists, dual Histamine H1/H3 -receptor antagonists, PI3-kinase inhibitors, inhibitor
  • the other active substances are betamimetics, anticholinergics, corticosteroids, PDE4-inhibitors, ETD4-antagonists, EGFR-inhibitors, CRTH2 inhibitors, 5-EO-inhibitors, Histamine receptor antagonists and SYK-inhibitors, but also combinations of two or three active substances, i.e.:
  • the compounds that make up the combination are co-administered to a subject.
  • co-administration and “in combination with” include the administration of two or more therapeutic agents either simultaneously, concurrently or sequentially within no specific time limits.
  • the agents are present in the cell or in the subject's body at the same time or exert their biological or therapeutic effect at the same time.
  • the therapeutic agents are in the same composition or unit dosage form. In other embodiments, the therapeutic agents are in separate compositions or unit dosage forms.
  • a first agent can be administered prior to (e.g., minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks before), concomitantly with, or subsequent to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after) the administration of a second therapeutic agent.
  • Conscomitant administration of a known therapeutic drug with a pharmaceutical composition of the present disclosure means administration of the compound and second agent at such time that both the known drug and the composition of the present invention will have a therapeutic effect. Such concomitant administration may involve concurrent (i.e. at the same time), prior, or subsequent administration of the drug with respect to the administration of a subject compound. Routes of administration of the two agents may vary, where representative routes of administration are described in greater detail below. A person of ordinary skill in the art would have no difficulty determining the appropriate timing, sequence and dosages of administration for particular drugs and compounds of the present disclosure.
  • the compounds are administered to the subject within twenty- four hours of each other, such as within 12 hours of each other, within 6 hours of each other, within 3 hours of each other, or within 1 hour of each other. In certain embodiments, the compounds are administered within 1 hour of each other. In certain embodiments, the compounds are administered substantially simultaneously. By administered substantially simultaneously is meant that the compounds are administered to the subject within about 10 minutes or less of each other, such as 5 minutes or less, or 1 minute or less of each other.
  • A“companion diagnostic” or“companion diagnostic device” means an in vitro diagnostic device or an imaging tool that provides information that is essential for the safe and effective use of a corresponding therapeutic product.
  • the use of an in vitro diagnostic companion device with a particular therapeutic product is stipulated in the instructions for use in the labeling of both the device and the corresponding therapeutic product, as well as in the labeling of any generic equivalents and biosimilar equivalents of the therapeutic product.
  • Companion diagnostic testing can be in several forms, including by way of example and not limitation: test that screen for familial genetic patterns and difficult to diagnose conditions; prognosis tests predicting the future course of a disease; theranostic test to indicate a patient’s response to a prescribed therapy; monitoring tests that evaluate the effectiveness and appropriate dosing of a prescribed therapy; and recurrence tests analyzing the patient’s risk for a recurrence of the disease.
  • test that screen for familial genetic patterns and difficult to diagnose conditions prognosis tests predicting the future course of a disease
  • theranostic test to indicate a patient’s response to a prescribed therapy
  • recurrence tests analyzing the patient’s risk for a recurrence of the disease.
  • Suitable preparations for administering the compounds of formula 1 and the co-crystal or salt forms of formulae 2 and 2a include for example tablets, capsules, suppositories, solutions and powders etc.
  • the content of the pharmaceutically active compound(s) should be in the range from 0.05 to 90 wt.-%, such as 0.1 to 50 wt.-% of the composition as a whole.
  • Suitable tablets may be obtained, for example, by mixing the active substance(s) with known excipients, for example inert diluents such as calcium carbonate, calcium phosphate or lactose, disintegrants such as corn starch or alginic acid, binders such as starch or gelatine, lubricants such as magnesium stearate or talc and/or agents for delaying release, such as carboxymethyl cellulose, cellulose acetate phthalate, or polyvinyl acetate.
  • excipients for example inert diluents such as calcium carbonate, calcium phosphate or lactose, disintegrants such as corn starch or alginic acid, binders such as starch or gelatine, lubricants such as magnesium stearate or talc and/or agents for delaying release, such as carboxymethyl cellulose, cellulose acetate phthalate, or polyvinyl acetate.
  • excipients for example inert dilu
  • Coated tablets may be prepared accordingly by coating cores produced analogously to the tablets with substances normally used for tablet coatings, for example collidone or shellac, gum arabic, talc, titanium dioxide or sugar.
  • the core may also consist of a number of layers.
  • the tablet coating may consist of a number or layers to achieve delayed release, possibly using the excipients mentioned above for the tablets.
  • Syrups or elixirs containing the active substances or combinations thereof according to the invention may additionally contain a sweetener such as saccharine, cyclamate, glycerol or sugar and a flavour enhancer, e.g. a flavouring such as vanillin or orange extract. They may also contain suspension adjuvants or thickeners such as sodium carboxymethyl cellulose, wetting agents such as, for example, condensation products of fatty alcohols with ethylene oxide, or preservatives such as p-hydroxybenzoates.
  • a sweetener such as saccharine, cyclamate, glycerol or sugar
  • a flavour enhancer e.g. a flavouring such as vanillin or orange extract.
  • suspension adjuvants or thickeners such as sodium carboxymethyl cellulose, wetting agents such as, for example, condensation products of fatty alcohols with ethylene oxide, or preservatives such as p-hydroxybenzoates.
  • Solutions are prepared in the usual way, e.g. with the addition of isotonic agents, preservatives such as p-hydroxybenzoates or stabilisers such as alkali metal salts of ethylenediaminetetraacetic acid, optionally using emulsifiers and/or dispersants, while if water is used as diluent, for example, organic solvents may optionally be used as solubilisers or dissolving aids, and the solutions may be transferred into injection vials or ampoules or infusion bottles.
  • isotonic agents e.g. with the addition of isotonic agents, preservatives such as p-hydroxybenzoates or stabilisers such as alkali metal salts of ethylenediaminetetraacetic acid, optionally using emulsifiers and/or dispersants, while if water is used as diluent, for example, organic solvents may optionally be used as solubilisers or dissolving aids, and the solutions may be transferred into
  • Capsules containing one or more active substances or combinations of active substances may for example be prepared by mixing the active substances with inert carriers such as lactose or sorbitol and packing them into gelatine capsules.
  • Suitable suppositories may be made for example by mixing with carriers provided for this purpose, such as neutral fats or polyethyleneglycol or the derivatives thereof.
  • Excipients which may be used include, for example, water, pharmaceutically acceptable organic solvents such as paraffins (e.g. petroleum fractions), vegetable oils (e.g. groundnut or sesame oil), mono- or polyfunctional alcohols (e.g. ethanol or glycerol), carriers such as e.g. natural mineral powders (e.g. kaolins, clays, talc, chalk), synthetic mineral powders (e.g. highly dispersed silicic acid and silicates), sugars (e.g. cane sugar, lactose and glucose), emulsifiers (e.g.
  • pharmaceutically acceptable organic solvents such as paraffins (e.g. petroleum fractions), vegetable oils (e.g. groundnut or sesame oil), mono- or polyfunctional alcohols (e.g. ethanol or glycerol), carriers such as e.g. natural mineral powders (e.g. kaolins, clays, talc, chalk), synthetic mineral powders (e.g. highly disper
  • lignin e.g. lignin, spent sulphite liquors, methylcellulose, starch and polyvinylpyrrolidone
  • lubricants e.g. magnesium stearate, talc, stearic acid and sodium lauryl sulphate.
  • the tablets may obviously contain, in addition to the carriers specified, additives such as sodium citrate, calcium carbonate and dicalcium phosphate together with various additional substances such as starch, e.g., potato starch, gelatine and the like.
  • Lubricants such as magnesium stearate, sodium laurylsulphate and talc may also be used to produce the tablets.
  • the active substances may be combined with various flavor enhancers or colorings in addition to the abovementioned excipients.
  • Tnha1ah1e preparations include inhalable powders, propellant-containing metered-dose aerosols or propellant-free inhalable solutions.
  • propellant-free inhalable solutions also include concentrates or sterile inhalable solutions ready for use.
  • the inhalable powders which may be used according to the invention may contain a compound of formula 1 or a co-crystal or salt form of formulae 2 and 2a either on their own or in admixture with suitable physiologically acceptable excipients.
  • physiologically acceptable excipients may be used to prepare these inhalable powders according to the invention: monosaccharides (e.g. glucose or arabinose), disaccharides (e.g. lactose, saccharose, maltose), oligo- and polysaccharides (e.g. dextrans), polyalcohols (e.g. sorbitol, mannitol, xylitol), salts (e.g. sodium chloride, calcium carbonate) or mixtures of these excipients.
  • mono- or disaccharides are used, such as lactose or glucose, e.g., in the form of their hydrates, e.g., lactose, such as lactose monohydrate.
  • the excipients have a maximum average particle size of up to 250 pm, such as between 10 and 150 pm, and including between 15 and 80 pm. It may sometimes seem appropriate to add finer excipient fractions with an average particle size of 1 to 9 pm to the excipient mentioned above. These finer excipients are also selected from the group of possible excipients listed hereinbefore.
  • micronized active substance of the compounds of formula 1 or the co-crystal or salt forms of formulae 2 and 2a such as with an average particle size of 0.5 to 10 pm, including from 1 to 5 pm, is added to the excipient mixture. Processes for producing the inhalable powders according to the invention by grinding and micronising and finally mixing the ingredients together are known from the prior art.
  • the inhalable powders according to the invention may be administered using inhalers known from the prior art.
  • the inhalation aerosols containing propellant gas according to the invention may contain a compound of formula 1 or a co-crystal or salt form of formulae 2 and 2a dissolved in the propellant gas or in dispersed form.
  • the compounds of formula 1 or the co-crystal or salt forms of formulae 2 and 2a may be contained in separate formulations or in a common formulation, in which they are either both dissolved, both dispersed or in each case only one component is dissolved and the other is dispersed.
  • the propellant gases which may be used to prepare the inhalation aerosols are known from the prior art.
  • Suitable propellant gases are selected from among hydrocarbons such as n-propane, n-butane or isobutane and halohydrocarbons such as fluorinated derivatives of methane, ethane, propane, butane, cyclopropane or cyclobutane.
  • hydrocarbons such as n-propane, n-butane or isobutane
  • halohydrocarbons such as fluorinated derivatives of methane, ethane, propane, butane, cyclopropane or cyclobutane.
  • propellant gases may be used on their own or mixed together.
  • propellant gases are halogenated alkane derivatives selected from TGI 34a and TG227 and mixtures thereof.
  • the propellant-driven inhalation aerosols may also contain other ingredients such as co-solvents, stabilisers, surfactants, antioxidants, lubricants and pH adjusters. All these ingredients are known in the art.
  • the active substances of the compounds of formula 1 or the co-crystal or salt forms of formulae 2 and 2a according to the invention may be administered in the form of propellant-free inhalable solutions and suspensions.
  • the solvent used may be an aqueous or alcoholic, such as an ethanolic solution.
  • the solvent may be water on its own or a mixture of water and ethanol.
  • the relative proportion of ethanol compared with water is not limited but the maximum is in some instances up to 70 percent by volume, such as up to 60 percent by volume and including up to 30 percent by volume. The remainder of the volume is made up of water.
  • the solutions or suspensions containing a compound of formula 1 or a co-crystal or salt form of formulae 2 and 2a are adjusted to a pH of 2 to 7, such as 2 to 5, using suitable acids.
  • the pH may be adjusted using acids selected from inorganic or organic acids.
  • inorganic acids include hydrochloric acid, hydrobromic acid, nitric acid, sulphuric acid and/or phosphoric acid.
  • particularly suitable organic acids include ascorbic acid, citric acid, malic acid, tartaric acid, maleic acid, succinic acid, fumaric acid, acetic acid, formic acid and/or propionic acid etc.
  • the inorganic acids are hydrochloric and sulphuric acids.
  • acids which have already formed an acid addition salt with one of the active substances.
  • organic acids ascorbic acid, fumaric acid and citric acid are employed in some instances.
  • mixtures of the above acids may be used, particularly in the case of acids which have other properties in addition to their acidifying qualities, e.g. as flavourings, antioxidants or complexing agents, such as citric acid or ascorbic acid, for example.
  • hydrochloric acid is employed to adjust the pH.
  • edetic acid or one of the known salts thereof, sodium edetate, as stabilizer or complexing agent may be omitted in these formulations.
  • Other embodiments may contain this compound or these compounds.
  • the content based on sodium edetate is less than 100 mg/lOOml, such as less than 50mg/100ml, and including less than 20mg/100ml.
  • Inhalable solutions in which the content of sodium edetate is from 0 to lOmg/lOOml are employed in some instances.
  • Co-solvents and/or other excipients may be added to the propellant-free inhalable solutions, such as those which contain hydroxyl groups or other polar groups, e.g.
  • excipients and additives in this context denote any pharmacologically acceptable substance which is not an active substance but which can be formulated with the active substance or substances in the physiologically suitable solvent in order to improve the qualitative properties of the active substance formulation. In some embodiments, these substances have no pharmacological effect or, in connection with the desired therapy, no appreciable or at least no undesirable pharmacological effect.
  • the excipients and additives include, for example, surfactants such as soya lecithin, oleic acid, sorbitan esters, such as polysorbates, polyvinylpyrrolidone, other stabilizers, complexing agents, antioxidants and/or preservatives which guarantee or prolong the shelf life of the finished pharmaceutical formulation, flavourings, vitamins and/or other additives known in the art.
  • the additives also include pharmacologically acceptable salts such as sodium chloride as isotonic agents.
  • excipients include antioxidants such as ascorbic acid, for example, provided that it has not already been used to adjust the pH, vitamin A, vitamin E, tocopherols and similar vitamins and provitamins occurring in the human body.
  • Preservatives may be used to protect the formulation from contamination with pathogens. Suitable preservatives are those which are known in the art, particularly acetyl pyridinium chloride, benzalkonium chloride or benzoic acid or benzoates such as sodium benzoate in the concentration known from the prior art. The preservatives mentioned above may be present in concentrations of up to 50 mg/lOO ml, such as between 5 and 20 mg/lOO ml.
  • the formulations contain, in addition to the solvent water and the compounds of formula 1 or the co-crystal or salt forms of formulae 2 and 2a, only benzalkonium chloride and sodium edetate. In an embodiment, no sodium edetate is present.
  • the dosage of the compounds according to the invention is naturally highly dependent on the method of administration and the complaint which is being treated.
  • the compounds of formula 1 or the co-crystal or salt forms of formulae 2 and 2a are characterized by a high potency even at doses in the pg range.
  • the compounds of formula 1 or the co-crystal or salt forms of formulae 2 and 2a may also be used effectively above the pg range.
  • the dosage may then be in the gram range, for example.
  • the present invention relates to the above-mentioned pharmaceutical formulations as such which are characterized in that they contain a compound of formula 1 or a co-crystal or salt form of formulae 2 and 2a, particularly the above-mentioned pharmaceutical formulations which can be administered by inhalation.
  • the finely ground active substance, lactose and some of the maize starch are mixed together.
  • the mixture is screened, then moistened with a solution of polyvinylpyrrolidone in water, kneaded, wet granulated and dried.
  • the granules, the remaining maize starch and the magnesium stearate are screened and mixed together.
  • the mixture is pressed into tablets of suitable shape and size.
  • the finely ground active substance, some of the corn starch, lactose, microcrystalline cellulose and polyvinylpyrrolidone are mixed together, the mixture is screened and worked with the remaining corn starch and water to form a granulate which is dried and screened.
  • the sodium carboxymethyl starch and the magnesium stearate are added and mixed in and the mixture is compressed to form tablets of a suitable size.
  • the active substance is dissolved in water at its own pH or optionally at pH 5.5 to 6.5 and sodium chloride is added to make the solution isotonic.
  • the resulting solution is filtered to remove pyrogens and the filtrate is transferred under aseptic conditions into ampoules which are then sterilized and heat-sealed.
  • the ampoules contain 5 mg, 25 mg and 50 mg of active substance.
  • the suspension is transferred into a conventional aerosol container with metering valve.
  • Preferably 50 pl suspension are released on each actuation.
  • the active substance may also be released in higher doses if desired (e.g. 0.02 wt.-%).
  • This solution can be prepared in the usual way.
  • the inhalable powder is prepared in the usual way by mixing the individual ingredients. j. Indications
  • Methods of improving cognition or other symptoms of cognitive disease through treating a subject/patient diagnosed with cognitive-associated disease are provided. Aspects of the methods include modulating CCR3, e.g. with a CCR3 modulating agent, in a manner sufficient to treat the patient for the cognitive-associated disease.
  • the methods include treating the cognitive-associated disease with an orally administrable and bioavailable composition, including a composition of compound of formula 1, a co crystal or salt of formulae 2 or 2a, or a formulation of formula 3, described above.
  • an orally administrable and bioavailable composition including a composition of compound of formula 1, a co crystal or salt of formulae 2 or 2a, or a formulation of formula 3, described above.
  • the target condition is a cognitive-associated disease condition that is associated with neurodegeneration, e.g., as evidenced by neural compromise, such as one of more of, reduced neurogeneration, e.g., as manifested by decreased numbers of BrdU or EdU positive cells, Ki67 positive cells, and Dcx positive cells when compared to non- diseased tissue.
  • a cognitive-associated disease condition that is associated with neurodegeneration, e.g., as evidenced by neural compromise, such as one of more of, reduced neurogeneration, e.g., as manifested by decreased numbers of BrdU or EdU positive cells, Ki67 positive cells, and Dcx positive cells when compared to non- diseased tissue.
  • the composition, which modulates CCR3, can be administered to a patient/subject diagnosed with the cognitive-associated disease, such as (by way of example and not limitation): mild cognitive impairment (MCI); Alzheimer’s disease; Parkinson’s disease; frontotemporal dementia (FTD); Huntington’s disease; amyotrophic lateral sclerosis (ALS); multiple sclerosis (MS); glaucoma; myotonic dystrophy; dementia; progressive supranuclear palsy (PSP); ataxia; multiple-system atrophy; and frailty; which are further described below.
  • the methods of the invention can further comprise monitoring improvement in the progression of the neurodegenerative disease through measuring cognitive or physical improvement.
  • Methods of improving motor coordination, function, or other symptoms of motor disorders through treating a subject/patient diagnosed with motor disorders are provided. Aspects of the methods include modulating CCR3, e.g. with a CCR3 modulating agent, in a manner sufficient to treat the patient for the motor disorder.
  • the methods include treating the motor disorder with an orally administrable and bioavailable composition, including a composition of compound of formula 1, a co-crystal or salt of formulae 2 or 2a, or a formulation of formula 3, described above.
  • an orally administrable and bioavailable composition including a composition of compound of formula 1, a co-crystal or salt of formulae 2 or 2a, or a formulation of formula 3, described above.
  • the target condition is a motor disorder that is associated with neurodegeneration, e.g., as evidenced by neural compromise, such as one of more of, reduced neurogeneration, e.g., as manifested by decreased numbers of BrdU or EdU positive cells, Ki67 positive cells, and Dcx positive cells when compared to non-diseased tissue.
  • composition which modulates CCR3, can be administered to a patient/subject diagnosed with the motor disorder, such as (by way of example and not limitation): Parkinson’s disease; Parkinsonism; Dementia with Lewy Bodies; ataxia; dystonia; cervical dystonia; chorea; Huntington’s disease, multiple system atrophy; spasticity; progressive supranuclear palsy; Tardive dyskinesia; Tourette syndrome; and tremor; which are further described below.
  • the methods of the invention can further comprise monitoring improvement in the progression of the neurodegenerative disease through measuring cognitive or physical improvement.
  • Mild cognitive impairment is a modest disruption of cognition that manifests as problems with memory or other mental functions such as planning, following instructions, or making decisions that have worsened over time while overall mental function and daily activities are not impaired.
  • M.C.I. Mild cognitive impairment
  • neurons in the aging brain are vulnerable to sub-lethal age-related alterations in structure, synaptic integrity, and molecular processing at the synapse, all of which impair cognitive function.
  • Individuals suffering from or at risk of developing an aging-associated cognitive impairment who will benefit from treatment with the subject compounds of the invention, e.g., by the methods disclosed herein, also include individuals of any age that are suffering from a cognitive impairment due to an aging-associated disorder; and individuals of any age that have been diagnosed with an aging- associated disorder that is typically accompanied by cognitive impairment, where the individual has not yet begun to present with symptoms of cognitive impairment.
  • Examples of such aging-associated disorders include by way of not of limitation, those listed below.
  • Alzheimer's disease is characterized by a progressive, inexorable loss of cognitive function associated with an excessive number of senile plaques in the cerebral cortex and subcortical gray matter, in addition to excessive b-amyloid and neurofibrillary tangles consisting of tau protein.
  • the common form affects persons >60 years old, and its incidence increases as age advances. It accounts for more than 65% of the dementias in the elderly.
  • Alzheimer's disease The cause of Alzheimer's disease is not known.
  • the disease runs in families in about 15 to 20% of cases.
  • the remaining, so-called sporadic cases have some genetic associations.
  • the disease has an autosomal dominant genetic pattern in most early-onset and some late-onset cases but a variable late-life penetrance.
  • Environmental factors are the focus of active investigation.
  • Cerebral glucose use and perfusion is reduced in some areas of the brain (parietal lobe and temporal cortices in early-stage disease, prefrontal cortex in late-stage disease).
  • Neuritic or senile plaques (composed of neurites, astrocytes, and glial cells around an amyloid core) and neurofibrillary tangles (composed of paired helical filaments) play a role in the pathogenesis of Alzheimer's disease.
  • Senile plaques and neurofibrillary tangles occur with normal aging, but they are much more prevalent in persons with Alzheimer's disease.
  • Parkinson's Disease is an idiopathic, slowly progressive, degenerative CNS disorder characterized by slow and decreased movement (bradykinesia), muscular rigidity, resting tremor (dystonia), muscle freezing, and postural instability. Originally considered primarily a motor disorder, PD is now recognized to also cause depression and emotional changes. PD also can affect cognition, behavior, sleep, autonomic function, and sensory function. The most common cognitive impairments include an impairment in attention and concentration, working memory, executive function, producing language, and visuospatial function. A characteristic of PD is symptoms related to reduced motor function usually precede those related to cognitive impairment, which aids in diagnosis of the disease.
  • the pigmented neurons of the substantia nigra, locus coeruleus, and other brain stem dopaminergic cell groups degenerate. The cause is not known.
  • Parkinson’ s disease is newly diagnosed in about 60,000 Americans each year and currently affects approximately one million Americans. Even though PD is not fatal in itself, its complications are the fourteenth leading cause of death in the United States. At present, PD cannot be cured, and treatment is generally prescribed to control symptoms, with surgery prescribed in later, severe cases.
  • Treatment options for PD include administration of pharmaceuticals to help manage motor deficits. These options increase or substitute for the neurotransmitter, dopamine, of which PD patients have low brain concentrations.
  • Such medications include: carbidopa/levodopa (which create more dopamine in the brain); apomorphine, pramipexolole, ropinirole, and rotingotine (dopamine agonists); selegiline and rasagiline (MAO-B inhibitors which prevent breakdown of dopamine); entacapone and tolcapone (Catechol-O-methyltransferase [COMT] inhibitors which make more levodopa available in the brain); benztropine and trihexyphenidyl (anticholinergics); and amantadine (controls tremor and stiffness).
  • Exercise/physical therapy is also commonly prescribed to help maintain physical and mental function.
  • Secondary parkinsonism results from loss of or interference with the action of dopamine in the basal ganglia due to other idiopathic degenerative diseases, drugs, or exogenous toxins.
  • the most common cause of secondary parkinsonism is ingestion of antipsychotic drugs or reserpine, which produce parkinsonism by blocking dopamine receptors.
  • Less common causes include carbon monoxide or manganese poisoning, hydrocephalus, structural lesions (tumors, infarcts affecting the midbrain or basal ganglia), subdural hematoma, and degenerative disorders, including nigrostriatal degeneration.
  • Certain disorders like Progressive Supranuclear Palsy (PSP), Multiple System Atrophy (MSA), Corticobasal degeneration (CBD) and Dementia with Lewy Bodies (DLB) can exhibit Parkinsonism symptoms before the cardinal symptoms necessary to the specific diagnosis can be made, and thus may be labeled as“Parkinsonism.”
  • the UPDRS scale evaluates 31 items that contributed to three subscales: (1) mentation, behavior, and mood; (2) activities of daily living; and (3) motor examination.
  • the Hoehn and Yahr scale classifies PD into five stages with discreet substages: 0 - no signs of disease; 1 - symptoms on one side only; 1.5 - symptoms on one side but also involving neck and spine; 2 - symptoms on both sides with no balance impairment; 2.5 - mild symptoms on both sides, with recovery when the‘pull’ test is given; 3 - balance impairment with mild to moderate disease; 4 - severe disability, but ability to walk or stand unassisted; and 5 - need a wheelchair or bedridden without assistance.
  • the Schwab and England scale classifies PD into several percentages (from 100% - complete independent to 10% - total dependent).
  • Frontotemporal dementia is a condition resulting from the progressive deterioration of the frontal lobe of the brain. Over time, the degeneration may advance to the temporal lobe. Second only to Alzheimer's disease (AD) in prevalence, FTD accounts for 20% of pre-senile dementia cases. Symptoms are classified into three groups based on the functions of the frontal and temporal lobes affected:
  • FTD Behavioral variant FTD
  • bvFTD Behavioral variant FTD
  • symptoms including lethargy and aspontaneity on the one hand, and disinhibition on the other
  • progressive nonfluent aphasia PNFA
  • SD semantic dementia
  • Other cognitive symptoms common to all FTD patients include an impairment in executive function and ability to focus.
  • Other cognitive abilities, including perception, spatial skills, memory and praxis typically remain intact.
  • FTD can be diagnosed by observation of frontal lobe and/or anterior temporal lobe atrophy in structural MRI scans.
  • SD Semantic Dementia
  • a frontotemporal dementia is Semantic Dementia (SD).
  • SD is characterized by a loss of semantic memory in both the verbal and non-verbal domains.
  • Clinical signs include fluent aphasia, anomia, impaired comprehension of word meaning, and associative visual agnosia (the inability to match semantically related pictures or objects).
  • Structural MRI imaging shows a characteristic pattern of atrophy in the temporal lobes (predominantly on the left), with inferior greater than superior involvement and anterior temporal lobe atrophy greater than posterior.
  • Pd Pick's disease
  • a defining characteristic of the disease is build-up of tau proteins in neurons, accumulating into silver- staining, spherical aggregations known as "Pick bodies.” Symptoms include loss of speech (aphasia) and dementia. Patients with orbitofrontal dysfunction can become aggressive and socially inappropriate.
  • Patients with dorsomedial or dorsolateral frontal dysfunction may demonstrate a lack of concern, apathy, or decreased spontaneity. Patients can demonstrate an absence of self-monitoring, abnormal self-awareness, and an inability to appreciate meaning.
  • Patients with gray matter loss in the bilateral posterolateral orbitofrontal cortex and right anterior insula may demonstrate changes in eating behaviors, such as a pathologic sweet tooth. Patients with more focal gray matter loss in the anterolateral orbitofrontal cortex may develop hyperphagia. While some of the symptoms can initially be alleviated, the disease progresses and patients often die within two to ten years.
  • Huntington's disease is a hereditary progressive neurodegenerative disorder characterized by the development of emotional, behavioral, and psychiatric abnormalities; loss of intellectual or cognitive functioning; and movement abnormalities (motor disturbances).
  • the classic signs of HD include the development of chorea - involuntary, rapid, irregular, jerky movements that may affect the face, arms, legs, or trunk - as well as cognitive decline including the gradual loss of thought processing and acquired intellectual abilities.
  • symptoms typically become evident during the fourth or fifth decades of life, the age at onset is variable and ranges from early childhood to late adulthood (e.g., 70s or 80s).
  • HD is transmitted within families as an autosomal dominant trait.
  • the disorder occurs as the result of abnormally long sequences or "repeats" of coded instructions within a gene on chromosome 4 (4pl6.3).
  • the progressive loss of nervous system function associated with HD results from loss of neurons in certain areas of the brain, including the basal ganglia and cerebral cortex.
  • Amyotrophic lateral sclerosis Amyotrophic lateral sclerosis.
  • ALS Amyotrophic lateral sclerosis
  • Muscular weakness and atrophy and signs of anterior horn cell dysfunction are initially noted most often in the hands and less often in the feet.
  • the site of onset is random, and progression is asymmetric. Cramps are common and may precede weakness. Rarely, a patient survives 30 years; 50% die within 3 years of onset, 20% live 5 years, and 10% live 10 years.
  • Diagnostic features include onset during middle or late adult life and progressive, generalized motor involvement without sensory abnormalities. Nerve conduction velocities are normal until late in the disease. Recent studies have documented the presentation of cognitive impairments as well, particularly a reduction in immediate verbal memory, visual memory, language, and executive function.
  • MS Multiple Sclerosis.
  • Multiple Sclerosis is characterized by various symptoms and signs of CNS dysfunction, with remissions and recurring exacerbations. The most common presenting symptoms are paresthesias in one or more extremities, in the trunk, or on one side of the face; weakness or clumsiness of a leg or hand; or visual disturbances, e.g., partial blindness and pain in one eye (retrobulbar optic neuritis), dimness of vision, or scotomas.
  • Common cognitive impairments include impairments in memory (acquiring, retaining, and retrieving new information), attention and concentration (particularly divided attention), information processing, executive functions, visuospatial functions, and verbal fluency.
  • Glaucoma is a common neurodegenerative disease that affects retinal ganglion cells (RGCs). Evidence supports the existence of compartmentalized degeneration programs in synapses and dendrites, including in RGCs. Recent evidence also indicates a correlation between cognitive impairment in older adults and glaucoma (Yochim BP, et al. Prevalence of cognitive impairment, depression, and anxiety symptoms among older adults with glaucoma. J Glaucoma. 20l2;2l(4):250-254).
  • Myotonic dystrophy is an autosomal dominant multisystem disorder characterized by dystrophic muscle weakness and myotonia.
  • the molecular defect is an expanded trinucleotide (CTG) repeat in the 3' untranslated region of the myotonin protein kinase gene on chromosome l9q. Symptoms can occur at any age, and the range of clinical severity is broad. Myotonia is prominent in the hand muscles, and ptosis is common even in mild cases.
  • peripheral muscular weakness occurs, often with cataracts, premature balding, hatchet facies, cardiac arrhythmias, testicular atrophy, and endocrine abnormalities (e.g., diabetes mellitus).
  • Mental retardation is common in severe congenital forms, while an aging-related decline of frontal and temporal cognitive functions, particularly language and executive functions, is observed in milder adult forms of the disorder. Severely affected persons die by their early 50s.
  • Dementia describes a class of disorders having symptoms affecting thinking and social abilities severely enough to interfere with daily functioning.
  • Other instances of dementia in addition to the dementia observed in later stages of the aging-associated disorders discussed above include vascular dementia, and dementia with Lewy bodies, described below.
  • vascular dementia In vascular dementia, or "multi -infarct dementia", cognitive impairment is caused by problems in supply of blood to the brain, typically by a series of minor strokes, or sometimes, one large stroke preceded or followed by other smaller strokes.
  • vascular lesions can be the result of diffuse cerebrovascular disease, such as small vessel disease, or focal lesions, or both.
  • Patients suffering from vascular dementia present with cognitive impairment, acutely or subacutely, after an acute cerebrovascular event, after which progressive cognitive decline is observed.
  • Cognitive impairments are similar to those observed in Alzheimer's disease, including impairments in language, memory, complex visual processing, or executive function, although the related changes in the brain are not due to AD pathology but to chronic reduced blood flow in the brain, eventually resulting in dementia.
  • Single photon emission computed tomography (SPECT) and positron emission tomography (PET) neuroimaging may be used to confirm a diagnosis of multi-infarct dementia in conjunction with evaluations involving mental status examination.
  • SPECT single photon
  • Lewy body dementia also known under a variety of other names including Lewy body dementia, diffuse Lewy body disease, cortical Lewy body disease, and senile dementia of Lewy type
  • Lewy body dementia is a type of dementia characterized anatomically by the presence of Lewy bodies (clumps of alpha-synuclein and ubiquitin protein) in neurons, detectable in post mortem brain histology. Its primary feature is cognitive decline, particularly of executive functioning. Alertness and short-term memory will rise and fall. Persistent or recurring visual hallucinations with vivid and detailed pictures are often an early diagnostic symptom.
  • DLB it is often confused in its early stages with Alzheimer's disease and/or vascular dementia, although, where Alzheimer's disease usually begins quite gradually, DLB often has a rapid or acute onset. DLB symptoms also include motor symptoms similar to those of Parkinson's. DLB is distinguished from the dementia that sometimes occurs in Parkinson's disease by the time frame in which dementia symptoms appear relative to Parkinson symptoms. Parkinson's disease with dementia (PDD) would be the diagnosis when dementia onset is more than a year after the onset of Parkinson's. DLB is diagnosed when cognitive symptoms begin at the same time or within a year of Parkinson symptoms.
  • PDD Parkinson's disease with dementia
  • Treating DLB is a complex process and requires a multifaceted approach.
  • Typical Parkinsonism therapies like dopaminergic and anticholinergic drugs can exacerbate cognition and behavior symptoms.
  • Optimal treatment commonly utilizes both pharmacologic (exercise, cognitive training, and caregiver-oriented training) and non-pharmacologic approaches.
  • acetylcholinesterase inhibitors can be administered (e.g. rivastigmine, donepezil) as can the NMDA receptor antagonist, memantine.
  • acetylcholinesterase inhibitors can improve apathy and hallucinations.
  • Antipsychotics unfortunately increase mortality risk in DLB patients. Motor symptoms are less responsive to dopaminergic treatments in DLB patients and can exacerbate the risk of psychosis. Levodopa can be used, but only a low threshold doses, hence a distinct need in the field for new agents to treat DLB.
  • Progressive supranuclear palsy is a brain disorder that causes serious and progressive problems with control of gait and balance, along with complex eye movement and thinking problems.
  • One of the classic signs of the disease is an inability to aim the eyes properly, which occurs because of lesions in the area of the brain that coordinates eye movements. Some individuals describe this effect as a blurring.
  • Affected individuals often show alterations of mood and behavior, including depression and apathy as well as progressive mild dementia.
  • the disorder's long name indicates that the disease begins slowly and continues to get worse (progressive) and causes weakness (palsy) by damaging certain parts of the brain above pea-sized structures called nuclei that control eye movements (supranuclear).
  • PSP was first described as a distinct disorder in 1964, when three scientists published a paper that distinguished the condition from Parkinson's disease. It is sometimes referred to as Steele - Richardson-Olszewski syndrome, reflecting the combined names of the scientists who defined the disorder. Although PSP gets progressively worse, no one dies from PSP itself.
  • Ataxia People with ataxia have problems with coordination because parts of the nervous system that control movement and balance are affected. Ataxia may affect the fingers, hands, arms, legs, body, speech, and eye movements.
  • the word ataxia is often used to describe a symptom of incoordination which can be associated with infections, injuries, other diseases, or degenerative changes in the central nervous system.
  • Ataxia is also used to denote a group of specific degenerative diseases of the nervous system called the hereditary and sporadic ataxias which are the National Ataxia Foundation's primary emphases.
  • MSA Multiple-system atrophy
  • MSA is a degenerative neurological disorder. MSA is associated with the degeneration of nerve cells in specific areas of the brain. This cell degeneration causes problems with movement, balance, and other autonomic functions of the body such as bladder control or blood-pressure regulation.
  • MSA MSA neurodegenerative disease
  • Dystonia is a condition which involves sustained involuntary muscle contractions. Such contracts can exhibit twisting, repetitive movements. This disorder may affect the entire body or specific parts of the body, referred to as generalized dystonia or focal dystonia (respectively). Cervical dystonia can cause long-lasting or intermittent contractions in the neck muscles. There is no cure for dystonia.
  • Current therapies include carbidopa-levodopa, trihexyphenidyl, benztropine, tetrabenazine, diazepam, clonazepam, baclofen, physical therapy, speech therapy, stretching, massage, and invasive surgery.
  • Frailty. Frailty Syndrome (“Frailty”) is a geriatric syndrome characterized by functional and physical decline including decreased mobility, muscle weakness, physical slowness, poor endurance, low physical activity, malnourishment, and involuntary weight loss. Such decline is often accompanied and a consequence of diseases such as cognitive dysfunction and cancer. However, Frailty can occur even without disease. Individuals suffering from Frailty have an increased risk of negative prognosis from fractures, accidental falls, disability, comorbidity, and premature mortality. (C. Buigues, et al. Effect of a Prebiotic Formulation on Frailty Syndrome: A Randomized, Double-Blind Clinical Trial, Int. J. Mol. Sci. 2016, 17, 932). Additionally, individuals suffering from Frailty have an increased incidence of higher health care expenditure. (Id.)
  • unintentional weight loss involves a loss of at least 10 lbs. or greater than 5% of body weight in the preceding year; muscle weakness can be determined by reduced grip strength in the lowest 20% at baseline (adjusted for gender and BMI); physical slowness can be based on the time needed to walk a distance of 15 feet; poor endurance can be determined by the individual’s self-reporting of exhaustion; and low physical activity can be measured using a standardized questionnaire.
  • the subject methods and compositions find use in slowing the progression of aging-associated cognitive, motor or other age-related impairment.
  • cognitive, motor, or other abilities in the individual will decline more slowly following treatment by the disclosed methods than prior to or in the absence of treatment by the disclosed methods.
  • the subject methods of treatment include measuring the progression of cognitive, motor or other age-related ability decline after treatment, and determining that the progression of decline is reduced.
  • the determination is made by comparing to a reference, e.g., the rate of decline in the individual prior to treatment, e.g., as determined by measuring cognitive, motor, or other age-related abilities prior at two or more time points prior to administration of the subject blood product.
  • the subject methods and compositions also find use in stabilizing the cognitive, motor or other abilities of an individual, e.g., an individual suffering from aging-associated cognitive decline or an individual at risk of suffering from aging-associated cognitive decline.
  • the individual may demonstrate some aging-associated cognitive impairment, and progression of cognitive impairment observed prior to treatment with the disclosed methods will be halted following treatment by the disclosed methods.
  • the individual may be at risk for developing an aging-associated cognitive decline (e.g., the individual may be aged 50 years old or older, or may have been diagnosed with an aging- associated disorder), and the cognitive abilities of the individual are substantially unchanged, i.e., no cognitive decline can be detected, following treatment by the disclosed methods as compared to prior to treatment with the disclosed methods.
  • the subject methods and compositions also find use in reducing cognitive, motor, or other age- related impairment in an individual suffering from an aging-associated impairment.
  • the affected ability is improved in the individual following treatment by the subject methods.
  • the cognitive ability in the individual is increased, e.g., by 2-fold or more, 5-fold or more, 10-fold or more, 15- fold or more, 20-fold or more, 30-fold or more, or 40-fold or more, including 50-fold or more, 60-fold or more, 70-fold or more, 80-fold or more, 90-fold or more, or 100-old or more, following treatment by the subject methods relative to the cognitive ability that is observed in the individual prior to treatment by the subject methods.
  • treatment by the subject methods and compositions restores the cognitive, motor, or other ability in the individual suffering from aging-associated cognitive or motor decline, e.g., to their level when the individual was about 40 years old or less. In other words, cognitive or motor impairment is abrogated.
  • k Methods of Diagnosing and Monitoring for Improvement of Neurodegenerative- Associated Disease
  • the methods of the invention further comprise methods of monitoring the effect of a medication or treatment on a subject for treating cognitive impairment and/or age-related dementia, the method comprising comparing cognitive function before and after treatment.
  • the method may comprise evaluation of cognitive function based on medical history, family history, physical and neurological examinations by clinicians who specialize dementia and cognitive function, laboratory tests, and neuropsychological assessment. Additional embodiments which are contemplated by the invention include: the assessment of consciousness, such as using the Glasgow Coma Scale (EMV); mental status examination, including the abbreviated mental test score (AMTS) or mini mental state examination (MMSE) (Folstein et al., J. Psychiatr. Res 1975; 12: 1289-198); global assessment of higher functions; estimation of intracranial pressure such as by fundoscopy.
  • EMV Glasgow Coma Scale
  • AMD abbreviated mental test score
  • MMSE mini mental state examination
  • examinations of peripheral nervous system may be used to evaluate cognitive function, including any one of the followings: sense of smell, visual fields and acuity, eye movements and pupils (sympathetic and parasympathetic), sensory function of face, strength of facial and shoulder girdle muscles, hearing, taste, pharyngeal movement and reflex, tongue movements, which can be tested individually (e.g. the visual acuity can be tested by a Snellen chart; a reflex hammer used testing reflexes including masseter, biceps and triceps tendon, knee tendon, ankle jerk and plantar (i.e. Babinski sign); Muscle strength often on the MRC scale 1 to 5; Muscle tone and signs of rigidity.
  • monitoring can be performed using techniques well-known to those having ordinary skill in the art.
  • monitoring can be performed through techniques such as: cerebrospinal fluid (CSF) monitoring; magnetic resonance imaging (MRI) to detect lesions and development of demyelinating plaques; evoked potential studies; and gait monitoring.
  • CSF cerebrospinal fluid
  • MRI magnetic resonance imaging
  • CSF analysis may be performed, for example, through lumbar puncture to obtain pressure, appearance, and CSF content.
  • Normal values typically range as follows: pressure (70-180 mm FFO); appearance is clear and colorless; total protein (15 - 60 mg/lOOmL); IgG is 3-12% of the total protein; glucose is 50 - 80 mg/lOO mL; cell count is 0-5 white blood cells and no red blood cells; chloride (110 - 125 mEq/L).
  • Abnormal results may indicate the presence or progression of MS.
  • MRI is another technique that may be performed to monitor disease progression and improvement.
  • Typical criteria for monitoring MS with MRI include the appearance of patchy areas of abnormal white matter in cerebral hemisphere and in paraventricular areas, lesions present in the cerebellum and/or brain stem as well as in the cervical or thoracic regions of the spinal cord.
  • Evoked potentials may be used to monitor the progression and improvement of MS in subjects. Evoked potentials measure slowing of electrical impulses such as in Visual Evoked Response (VER), Brain Stem Auditory Evoked Responses (BAER), and Somatosensory Evoked Responses (SSER). Abnormal responses help to indicate that there is a decrease in the speed of conduction in central sensory pathways.
  • VER Visual Evoked Response
  • BAER Brain Stem Auditory Evoked Responses
  • SSER Somatosensory Evoked Responses
  • Gait monitoring can also be used to monitor disease progression and improvement in MS subjects.
  • MS is often accompanied by an impairment in mobility and an abnormal gait due in part to fatigue. Monitoring may be performed, for example, with the use of mobile monitoring devices worn by subjects. (Moon, Y., et al. , Monitoring gait in multiple sclerosis with novel wearable motion sensors, PLOS One, 12(2):e0171346 (2017)).
  • monitoring can be performed using techniques well-known to those having ordinary skill in the art.
  • monitoring can be performed through techniques such as: motor function; behavior; functional assessment; and imaging.
  • Examples of motor function that may be monitored as an indication of disease progression or improvement include chorea and dystonia, rigidity, bradykinesia, oculomotor dysfunction, and gait/balance changes. Techniques for performing the monitoring of these metrics are well-known to those having ordinary skill in the art. ( See Tang C, et al. , Monitoring Huntington’s disease progression through preclinical and early stages, Neurodegener Dis Manag 2(4):421-35 (2012)).
  • psychiatric diagnoses may be performed in order to determine whether the subject suffers from depression, irritability, agitation, anxiety, apathy and psychosis with paranoia. (Id.)
  • Functional assessment may also be employed to monitor disease progression or improvement.
  • Total functional score techniques have been reported (Id.), and often declines by one point per year in some HD groups.
  • MRI or PET may be employed also to monitor disease progression or improvement. For example, there is a loss of striatal projection neurons in HD, and change in number of these neurons may be monitored in subjects. Techniques to determine neuronal change in HD subjects include imaging Dopamine D2 receptor binding. (Id.)
  • ALS Amyotrophic Lateral Sclerosis
  • monitoring can be performed through techniques such as: functional assessment; determining muscle strength; measuring respiratory function; measuring lower motor neuron (LMN) loss; and measuring upper motor neuron (UMN) dysfunction.
  • LDN lower motor neuron
  • UPN upper motor neuron
  • Functional assessment can be performed using a functional scale well-known to those having ordinary skill in the art, such as the ALS Functional Rating Scale (ALSFRS-R), which evaluates symptoms related to bulbar, limb, and respiratory function. The rate of change is useful in predicting survival as well as disease progression or improvement. Another measure includes the Combined Assessment of Function and Survival (CAFS), ranking subjects’ clinical outcomes by combining survival time with change in ALSFRS-R. (Simon NG, et al. , Quantifying Disease Progression in Amyotrophic Lateral Sclerosis, Ann Neurol 76:643-57 (2014)).
  • CAFS Combined Assessment of Function and Survival
  • Muscle strength may be tested and quantified through use of composite Manual Muscle Testing (MMT) scoring. This entails averaging measures acquired from several muscle groups using the Medical Research Council (MRC) muscle strength grading scale.
  • MMT Manual Muscle Testing
  • MRC Medical Research Council
  • HHD Hand-held dynamometry
  • Respiratory function can be performed using portable spirometry units, used to obtain Forced Vital Capacity (FVC) at baseline to predict the progression or improvement of the disease. Additionally, maximal inspiratory pressure, sniff nasal inspiratory pressure (SNIP), and supping FVC may be determined and used to monitor disease progression/improvement. (Id.)
  • the Neurophysiological Index may be determined by measuring compound muscle action potentials (CMAPs) on motor nerve conduction studies, of which parameters include CMAP amplitude and F-wave frequency. (Id. and de Carvalho M, et al. , Nerve conduction studies in amyotrophic lateral sclerosis. Muscle Nerve 23:344-352, (2000)). Lower motor neuron unit numbers (MUNE) may be estimated as well. In MUNE, the number of residual motor axons supplying a muscle through estimation of the contribution of individual motor units to the maximal CMAP response is estimated, and used to determine disease progression or improvement.
  • CMAPs compound muscle action potentials
  • F-wave frequency F-wave frequency
  • LMN LMN-derived neurotrophic factor
  • Additional techniques for determining loss of LMN include testing nerve excitability, electrical impedance myography, and using muscle ultrasound to detect changes in thickness in muscles.
  • Dysfunction of upper motor neurons is another metric which can be utilized to monitor disease progression or improvement in ALS.
  • Techniques for determining dysfunction include performing MRI or PET scans on the brain and spinal cord, transcranial magnetic stimulation; and determining levels of biomarkers in the cerebrospinal fluid (CSF).
  • CSF cerebrospinal fluid
  • monitoring can be performed using techniques well- known to those having ordinary skill in the art.
  • monitoring can be performed through techniques such as: determining intraocular pressure; assessment of the optic disc or optic nerve head for damage; visual field testing for peripheral vision loss; and imaging of the optic disc and retina for topographic analysis.
  • PGP Progressive Supranuclear Palsy
  • monitoring can be performed through techniques such as: functional assessment (activities of daily living, or ADL); motor assessment; determination of psychiatric symptoms; and volumetric and functional magnetic resonance imaging (MRI).
  • functional assessment activities of daily living, or ADL
  • motor assessment determination of psychiatric symptoms
  • MRI volumetric and functional magnetic resonance imaging
  • the level of function of a subject in terms of independence, partial dependence upon others, or complete dependence can be useful for determining the progression or improvement in the disease.
  • the Progressive Supranuclear Palsy Rating Scale is a rating scale that comprises twenty-eight metrics in six categories: daily activities (by history); behavior; bulbar, ocular motor, limb motor and gait/midline. The result is a score ranging from 0 - 100. Six items are graded 0 - 2 and twenty-two items graded 0-4 for a possible total of 100.
  • the PSPRS scores are practical measures, and robust predictors of patient survival. They are also sensitive to disease progression and useful in monitoring disease progression or improvement. ( Golbe LI, et al. , A clinical rating scale for progressive supranuclear palsy, Brain 130: 1552-65, (2007)).
  • the ADL section from the UPDRS can also be used to quantify functional activity in subjects with PSP. (Duff K, et al. , supra). Similarly, the Schwab & England Activities Daily Living Score (SE-ADL) can be used for evaluate independence. (Id.) Additionally, the motor function sections of the UPDRS are useful as a reliable measure for assessing disease progression in PSP patients.
  • the motor section may contain, for example, 27 different measures for quantifying motor function in PSP patients. Examples of these include resting tremor, rigidity, finger tapping, posture, and gait).
  • a subject’s disease progression or improvement may also be assessed by performing a baseline neuropsychological evaluation completed by trained medical personnel, the assessment using the Neuropsychiatric Inventory (NPI) to determine the frequency and severity of behavior abnormalities (e.g. delusions, hallucinations, agitation, depression, anxiety, euphoria, apathy, disinhibition, irritability, and aberrant motor behavior).
  • NPI Neuropsychiatric Inventory
  • fMRI Functional MRI
  • fMRI Functional MRI
  • fMRI is a technique using MRI to measure changes in brain activity in certain regions of the brain, usually based on blood flow to those regions. Blood flow is considered to correlate with brain region activation.
  • Patients with neurodegenerative disorders like PSP can be subjected to physical or mental tests before or during being scanned in an MRI scanner.
  • tests can be a well- established force control paradigm where patients as asked to produce force with the hand most affected by PSP and maximum voluntary contraction (MVC) is measured by fMRI immediately after the test takes place.
  • MVC maximum voluntary contraction
  • Volumetric MRI is a technique where MRI scanners determine volume differences in regional brain volume. This may be done, for example, by contrasting different disorders, or by determining differences in volume of a brain region in a patient over time. Volumetric MRI may be employed to determine disease progression or improvement in neurodegenerative disorders like PSP. The technique is well-known to those having ordinary skill in the art. (Messina D, et al , Patterns of brain atrophy in Parkinson’s disease, progressive supranuclear palsy and multiple system atrophy, Parkinsonism and Related Disorders, 17(3): 172-76 (2011)).
  • cerebral regions which may be measured include, but are not limited to, intracranial volume, cerebral cortex, cerebellar cortex, thalamus, caudate, putamen, pallidum, hippocampus, amygdala, lateral ventricles, third ventricle, fourth ventricle, and brain stem.
  • PET Positron emission tomography
  • the UPDRS scale evaluates 31 items that contributed to three subscales: (1) mentation, behavior, and mood; (2) activities of daily living; and (3) motor examination.
  • the Hoehn and Yahr scale classifies PD into five stages with discreet substages: 0 - no signs of disease; 1 - symptoms on one side only; 1.5 - symptoms on one side but also involving neck and spine; 2 - symptoms on both sides with no balance impairment; 2.5 - mild symptoms on both sides, with recovery when the‘pull’ test is given; 3 - balance impairment with mild to moderate disease; 4 - severe disability, but ability to walk or stand unassisted; and 5 - need a wheelchair or bedridden without assistance.
  • the Schwab and England scale classifies PD into several percentages (from 100% - complete independent to 10% - total dependent).
  • General motor function can be evaluated using widely-used scales including the General Motor Function Scale (GMF). This tests three components: dependence, pain, and insecurity. (Aberg A.C., et al. (2003) Disabil. Rehabil. 2003 May 6;25(9):462-72.). Motor function can also be assessed using home monitoring or wearable sensors.
  • GMF General Motor Function Scale
  • gait speed of locomotion, variability, leg rigidity
  • posture tilt inclination
  • tremor amplitude, frequency, duration, asymmetry
  • reagents, devices, and kits thereof for practicing one or more of the above- described methods.
  • the subject reagents, devices, and kits thereof may vary greatly.
  • Reagents and devices of interest include those mentioned above with respect to the methods of administering the compounds for formula 1 in the subject.
  • the subject kits will further include instructions for practicing the subject methods. These instructions may be present in the subject kits in a variety of forms, one or more of which may be present in the kit.
  • One form in which these instructions may be present is as printed information on a suitable medium or substrate, e.g., a piece or pieces of paper on which the information is printed, in the packaging of the kit, in a package insert, etc.
  • Yet another means would be a computer readable medium, e.g. diskette, CD, portable flash drive, etc., on which the information has been recorded.
  • Yet another means that may be present is a website address which may be used via the internet to access the information at a remote site. Any convenient means may be present in the kits. VII. Examples
  • compositions that are administered to subjects with cognitive or neurodegenerative disease that are comprised of the compounds, co-crystals, and salts described above can be synthesized, made, and formulated using the examples disclosed in U.S. Patent Application Publication Nos. 2013/0266646, 2016/0081998, U.S. Patent Nos. 8,278,302, 8,653,075, RE 45323, 8,742,115, 9,233,950, and 8,680,280, which are herein incorporated by reference in their entirety. Further, the pharmaceutical compositions may be prepared as described in the examples below:
  • Copovidone is dissolved in ethanol at ambient temperature to produce a granulation liquid.
  • An active CCR3 antagonist ingredient, lactose and part of the crospovidone are blended in a suitable mixer, to produce a pre-mix.
  • the pre-mix is moistened with the granulation liquid and subsequently granulated.
  • the moist granulate is optionally sieved through a sieve with a mesh size of 1.6-3.0 mm.
  • the granulate is dried at 45 °C in a suitable dryer to a residual moisture content corresponding to 1-3 % loss on drying.
  • the dried granulate is sieved through a sieve with a mesh size of 1.0 mm.
  • the granulate is blended with part of the crospovidone and microcrystalline cellulose in a suitable mixer.
  • Magnesium stearate is added to this blend after passing through a 1.0 mm sieve for delumping.
  • the final blend is produced by final blending in a suitable mixer and compressed into tablets.
  • the following tablet composition can be obtained:
  • An active CCR3 antagonist ingredient, lactose, part of the mcc, polyethylene glycole, lactose and part of the crospovidone are blended in a suitable mixer, to produce a pre-mix.
  • the pre-mix is heated in a high shear mixer and subsequently granulated.
  • the hot granulate is cooled down to room temperature and sieved through a sieve with a mesh size of 1.0 mm.
  • the granulate is blended with part of the crospovidone and microcrystalline cellulose in a suitable mixer.
  • Magnesium stearate is added to this blend after passing through a 1.0 mm sieve for delumping.
  • the final blend is produced by final blending in a suitable mixer and compressed into tablets.
  • the following tablet composition can be obtained:
  • An active CCR3 antagonist ingredient, mannit, polyethylene glycole and part of the crospovidone are blended in a suitable mixer, to produce a pre-mix.
  • the pre-mix is heated in a high shear mixer and subsequently granulated.
  • the hot granulate is cooled down to room temperature and sieved through a sieve with a mesh size of 1.0 mm.
  • the granulate is blended with part of the crospovidone and mannit in a suitable mixer.
  • Magnesium stearate is added to this blend after passing through a 1.0 mm sieve for delumping.
  • the final blend is produced by final blending in a suitable mixer and compressed into tablets.
  • the following tablet composition can be obtained:
  • An active CCR3 antagonist ingredient and stearic-palmitic acid are blended in a suitable mixer, to produce a pre-mix.
  • the pre-mix is extruded in a twin-screw-extruder and subsequently granulated.
  • the granulate is sieved through a sieve with a mesh size of 1.0 mm.
  • the granulate is blended with mannit and crospovidone in a suitable mixer.
  • Magnesium stearate is added to this blend after passing through a 1.0 mm sieve for delumping.
  • the final blend is produced by final blending in a suitable mixer and compressed into tablets.
  • the following tablet composition can be obtained:
  • An active CCR3 antagonist ingredient and stearic-palmitic acid are blended in a suitable mixer, to produce a pre-mix.
  • the pre-mix is extruded in a twin-screw-extruder and subsequently granulated.
  • the granulate is sieved through a sieve with a mesh size of 1.0 mm.
  • the granulate is directly filled into hard capsules.
  • the following capsule composition can be obtained:
  • An active CCR3 antagonist ingredient, part of mannit and crospovidone and magnesium stearate are blended in a suitable mixer, to produce a pre-mix.
  • the pre-mix is compacted with a roller compactor and subsequently granulated.
  • the granulate is sieved through a sieve with a mesh size of 0.8 mm.
  • the granulate is blended with part of mannit and crospovidone in a suitable mixer.
  • Magnesium stearate is added to this blend after passing through a 1.0 mm sieve for delumping.
  • the final blend is produced by final blending in a suitable mixer and compressed into tablets.
  • the following tablet composition can be obtained:
  • An active CCR3 antagonist ingredient and magnesium stearate are blended in a suitable mixer, to produce a pre-mix.
  • the pre-mix is compacted with a roller compactor and subsequently granulated.
  • the granulate is sieved through a sieve with a mesh size of 0.8 mm.
  • the granulate is blended with mannit and croscarmellose sodium in a suitable mixer.
  • Magnesium stearate is added to this blend after passing through a 1.0 mm sieve for delumping. Subsequently the final blend is produced by final blending in a suitable mixer and compressed into tablets.
  • the following tablet composition can be obtained:
  • An active CCR3 antagonist ingredient and magnesium stearate are blended in a suitable mixer, to produce a pre-mix.
  • the pre-mix is compacted with a roller compactor and subsequently granulated.
  • the granulate is sieved through a sieve with a mesh size of 0.8 mm.
  • the granulate is blended with microcrystalline cellulose and crospovidone in a suitable mixer.
  • Magnesium stearate is added to this blend after passing through a 1.0 mm sieve for de-lumping. Subsequently the final blend is produced by final blending in a suitable mixer and compressed into tablets.
  • the following tablet composition can be obtained:
  • Tablet cores according above mentioned formulations can be used to produce film-coated tablets. Hydroxypropyl methylcellulose, polyethylene glycol, talc, titanium dioxide and iron oxide are suspended in purified water in a suitable mixer at ambient temperature to produce a coating suspension. The tablet cores are coated with the coating suspension to a weight gain of about 3 % to produce film-coated tablets.
  • the following film coating composition can be obtained:
  • Compound 1 was made available as 100 mg, 200 mg, and 400 mg film-coated tablets with a biconvex, round or oval shape and a dull red color.
  • the tablets were produced by a dry granulation process and contained microcrystalline cellulose, hydrogen phosphate, croscarmellose sodium, magnesium stearate, polyvinyl alcohol, titanium dioxide, polyethylene glycol, talc, iron oxide red and iron oxide yellow as inactive ingredients.
  • Placebo tablets matching the investigational product were produced by a direct compression process and contained the same inactive ingredients. c. Pre-Clinical Examples
  • Alzet mini-pumps were filled, prepared, p and numbered by mouse ID the day previous to implantation to allow for priming at 37°C and to allow for blindedness of treatment.
  • Pumps were implanted on the back, slightly posterior to the scapulae and slightly lateral to the midline. Mice were anesthetized with 3-5% isoflurane using a vaporizer and regulator in an induction chamber, then moved to the procedure area and fitted with a nose cone to maintain anesthesia at 1-3% isoflurane. An ophthalmic ointment was applied to the eyes to prevent drying. Mice were injected with meloxicam 5mg/kg subcutaneously.
  • All surgical tools were autoclaved prior to first use on a surgery day. Subsequently, instruments were sterilized with a glass bead sterilizer between animals. Mice were placed in a clean recovery cage placed partially atop a warming pad until full recovery and ambulation. Mice were tested for anesthesia induction by toe pinch method and monitoring of respiration. Mice were monitored post-operatively every 15 minutes until recovery. Mice were administered a second dose of meloxicam the following day. If signs of infection were observed, mice received 5mg/kg Baytril subcutaneously per day until infection cleared.
  • Open Field is used to evaluate general locomotor activity and exploratory behavior in a novel environment. Mice are brought to the experimental room for at least 30 min for acclimation to the experimental room conditions (dim lighting) prior to testing.
  • the testing arena consists of a 50cm x 50cm square arena. Mice are placed in the center of an arena and tracked for 15 minutes. Time spent in the peripheral and centers zones is analyzed, along with rearing behavior. 70% ethanol is used to clean all surfaces between trials.
  • a large Y-maze test assesses short-term memory of the familiarity of a specific context. Mice are brought to the experimental room for at least 30 min of acclimation to the experimental room conditions (dim lighting) prior to testing.
  • the mouse is placed at the end of one arm of a large Y-maze designated“start arm” (arm length: 15 inches).
  • the third arm of the maze is blocked off, allowing the mouse to explore two of the three arms freely (“start arm” and“familiar arm”) for 5 min. Each arm contains spatial cues.
  • the mouse is placed back into the maze in the“start arm” and allowed to explore all three arms with the third arm unblocked (“novel arm”). Movements in and out of each arm are tracked using automated tracking software (CleverSys). Testing is performed under dim lighting, and the apparatus is cleaned with 70% ethanol between trials.
  • a modified Barnes maze was used to assess spatial working/episodic like learning and memory.
  • the Barnes maze apparatus consists of a 122cm diameter circular platform with 40 escape holes, each with a diameter of 5cm placed along three rings of varying distances from the center of the platform.
  • An escape box is attached to one of the holes and all holes are left uncovered.
  • Bright lights and a fan are trained on the maze to provide adverse stimuli to encourage escape.
  • Visual cues are placed on all four sides of the maze. Mice are given a series of 4 or 5 trials with inter-trial intervals of approximately 10 min, and the maximum duration of each trial is 90 or 120 sec. For each trial, mice are placed in the center of the maze.
  • mice After 10 seconds, mice are allowed to explore, and the trial is ended if the mouse has found and entered an escape box before the end of the trial. Mice that cannot find the escape box are led to it and allowed to enter and given 30 sec to remain before being returned to its home cage. Training is done for 4 days. Data that is recorded and analyzed include velocity, escape latency, and distance moved.
  • mice are divided into groups of 4-5 mice each, with balanced treatment groups. For example, Group 1 mice are run for 4 trials, then Group 2 mice are run for 4 trials, and so on until all groups finish testing. 70% ethanol is used to clean the arenas between trials.
  • the Water Maze was filled with water at least 24 hours prior to the test to allow it to reach room temperature.
  • the water was dyed with white latex paint to make the animals visible for tracking and to allow for the use of a hidden platform.
  • Two distinct visual cues were placed at the end of both T-arms of the T-Maze insert.
  • animals On day 1 animals were given 4 trials each with a visible platform and a 30 min inter trial interval. Animals were given 60 seconds to reach the platform. If they did not reach the platform in that time they were guided to it and allowed to remain for 5 seconds before being removed from the tank.
  • the goal arm was switched after every third mouse and both treatment groups had equal numbers of right and left turn goal arms.
  • mice After each trial the mice were placed in an empty cage with blue pads and allowed to dry off under a red light lamp before being placed back into their home cage.
  • Day 2 is the testing day, where animals are subjected to the same test of 4 trials each and a 30 min inter trial interval, but with a hidden platform. Animals were scored for right or wrong choice and for latency to reach the platform, and a binomial test was conducted to compare success rates between control and compound-treated mice. All trials were recorded using TopScan.
  • CCL11 protein levels were measured from mouse plasma by sandwich ELISA Plasma was diluted 1 : 10 for the assay. (Mouse CCL1 l/Eotaxin Duo Set ELISA kit, R&D Systems, Minneapolis, MN).
  • Luminex Assay Service performed by Eve Technologies (Calgary, Alberta, Canada).
  • the ESC determines the shape change of human eosinophils activated by human eotaxin-l (PreProTech, Rocky Hill, New Jersey) compared to native eosinophils. The change is detected as the change in the forward-scatter measured by FACS (fluorescence activated cell sorter). The mean forward scatter of the autofluorescence (eosinophil) population for each sample was determined in conjunction with the mean of each set of sample triplicates. Methods of determining ESC have been previously described and are known in the art.
  • the CCR3 receptor internalization assay is FACS-based and uses human Eotaxin-l (PreProTech, Rocky Hill, New Jersey) and an anti-human CCR3 antibody labeled with APC (R&D Systems,
  • mice were taken down on the day following the end of behavior testing. Anesthesia was induced by 2,2,2-tribromoethanol and mice were subsequently perfused with 0.9% saline trans-cardially. The brains were dissected and cut sagitally in two even halves. One half was snap frozen for later use in dry ice, and the other was fixed in 4% paraformaldehyde in PBS for use in immunohistochemistry. After two days of fixation, the hemibrains were transferred to a 30% sucrose in PBS solution and changed after two days. Hemibrains were sectioned at 30um on a microtome at -22°C. Brain sections were stored in cryoprotectant media at -20°C until needed for staining.
  • Blocking was done on free floating sections in the appropriate serum at 10% serum in PBST 0.5%. Primary antibodies were incubated overnight at 4C. For light microscopy, the following antibodies were used in the given concentrations: DCX, 1 :200, Santa Cruz BioTech, CD68, 1: 1000. AbD Serotec. Secondary biotinylated antibodies were applied the next day at a concentration of 1:300. Staining visualization was achieved by reaction with the ABC kit (Vector) and diaminobenzidine (Sigma). Dehydration of the mounted slides was achieved using ethanol and xylene dips. Images were acquired on a Leica light microscope at 5x magnification.
  • mice Two-month-old or 18-month-old C57B1/6 mice were dosed with either IgG antibody control by IP injection or Compound 1 subcutaneously by Alzet osmotic pump for either 2 or 4 weeks. During the last week of treatment, mice were subjected to behavior testing prior to perfusion on the last day of treatment. All mice received 5 consecutive days of BrdU injection at 150mg/kg IP immediately prior to treatment start.
  • Control rat IgG2A clone 54447 (MAB006, R&D Systems) was administered at 50ug/kg in sterile saline.
  • Compound 1 was formulated in 40% HR-b-cyclodextrin, and adjusted to pH 6.5 with NaOH (1M). Solutions were prepared fresh weekly and stored at 4°C.
  • Compound 1 increased the number of Dcx and BrdU positive cells, which indicates that Compound 1 increased neurogenesis and cell survival, respectively.
  • Compound 1 was able to improve memory (cognition) as evidenced by performance in the Y-Maze test.
  • Second Experimental Group Three -month-old or l6.5-month-old C57Bl/6 mice were dosed with either vehicle control or Compound 1 subcutaneously by Alzet osmotic pump for 4 weeks. During the last week of treatment, mice were subjected to behavior testing prior to perfusion on the last day of treatment. All mice received 5 consecutive days of BrdU injection at l50mg/kg IP immediately prior to treatment start.
  • Compound 1 was formulated in 40% HR-b-cyclodextrin, and adjusted to pH 6.5 with NaOH (1M). Vehicle solution was formulated and adjusted for pH similarly. Solutions were prepared fresh weekly and stored at 4°C.
  • CSF Cerebrospinal fluid from both the 2-month-old“young” and 16.5-month-old“old” groups was collected and levels of Compound 1 were determined by mass spectroscopy.
  • Figure 6 depicts the levels of the compound of the invention that were detected in mouse CSF for both the young and old groups (both below 10 nM). These CSF levels do not approach the Ki for the compound in mice (124 nM, determined by cell line receptor binding), and therefore do not cross the blood-brain barrier (BBB) in significant concentrations.
  • BBB blood-brain barrier
  • the levels of the compound of the invention that were measured in the plasma of young (2-month-old) and old (18-month-mice) perfused for 2 and 4 weeks respectively at 0.5 pL/hr of 50mg/mL solution were significantly higher (352 ⁇ 31 nM and 355 ⁇ 43 nM, respectively; values are mean ⁇ s.e.m.), further indicating that the compound of the invention fails to cross the BBB in significant amounts.
  • Compound 1 was administered at 10 mg/kg of body weight, corresponding to 17 pmol/kg.
  • LSC liquid scintillation counting
  • Tissue and organ concentrations were determined by whole body autoradiography technique (QWBA). Preparation of the whole-body animal sections was performed according to known techniques ( see S. Ullberg, et al, Autoradiography in Pharmacology in: The Int.
  • the following sections were taken at different levels through the embedded animal, and whole body sections selected at 5 - 7 levels in order to allow for quantitative evaluation of radioactivity: adrenal glands; blood; bone marrow; brain; eye (lens); epididymis; fat (white and brown); Harderian gland; heart; kidneys; liver; lung; muscle; pituitary; pancreas; prostate, spinal cord; spleen salivary gland; skin; testis; thyroid; thymus; uveal tract. Two sections of each chosen level were taken per animal, and those sections lyophilized in the microtome at -20 to -25°C for a minimum of 48 hours.

Abstract

Methods of improving neurodegenerative disease with CCR3 modulating agents are provided. The methods include administering a therapeutically effective amount of the CCR3 modulating agent to the subject, with a concomitant improvement in cognition, motor, or other neurodegenerative-affected function. Cognitive and motor diseases upon which the methods of the invention can improve cognition include Alzheimer's disease, Parkinson's disease, frontotemporal dementia, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, vascular dementia, progressive supranuclear palsy.

Description

METHODS AND COMPOSITIONS FOR TREATING
AGING- ASSOCIATED IMPAIRMENTS USING CCR3-
INHIBITORS
I. Cross-Reference to Related Applications
Pursuant to 35 U.S.C. § 119 (e), this application claims priority to the filing date of United States Provisional Patent Application No. 62/737,017 filed on September 26, 2018, the disclosure of which is herein incorporated by reference.
II. Introduction
The following is offered as background information only and is not admitted to be prior art to the present invention.
Aging is an important risk factor for multiple human diseases including cognitive impairment, cancer, arthritis, vision loss, osteoporosis, diabetes, cardiovascular disease, and stroke. In addition to normal synapse loss during natural aging, synapse loss is an early pathological event common to many neurodegenerative conditions and is the best correlate to the neuronal and cognitive impairment associated with these conditions. As such, aging remains the single most dominant risk factor for dementia-related neurodegenerative diseases such as Alzheimer’s disease (AD) (Bishop, N.A. et al., Neural mechanisms of ageing and cognitive decline. Nature 464(7288), 529-535 (2010); Heeden, T. et al., Insights into the ageing mind: a view from cognitive neuroscience. Nat. Rev. Neurosci. 5(2), 87-96 (2004); Mattson, M.P., et al., Ageing and neuronal vulnerability. Nat. Rev. Neurosci. 7(4), 278-294 (2006)). Aging affects all tissues and functions of the body including the central nervous system, and a decline in functions such as cognition and motor activity can severely impact quality of life.
Treatment for cognitive and motor decline associated with neurodegeneration has achieved limited success in preventing and reversing impairment. It is therefore important to identify new treatments for maintaining cognitive integrity by protecting against, countering, or reversing the effects of aging. Unfortunately, drug treatments for cognitive and motor impairment face significant hurdles. For example, it is thought that for treatments such as small molecules to be effective in treating cognitive decline and motor activity, they must cross the blood-brain barrier (BBB). Transport across the BBB is the exception not the rule, and 98% of all small molecules do not cross it. (Pardridge, William M, The Blood-Brain Barrier: Bottleneck in Brain Drug Development, NeuroRx: The J. of the Am. Society for Experimental NeuroTherapeutics, 2:3-14, 2005). As a result, therapies for neurodegenerative diseases, such as Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS), are limited; in fact, Alzheimer’ s has one of the highest failure rates for clinical development of any disease area (99.6% failure in the last 20 years). (Id.; and Burke, M., Renewed focus on dementia checked by drug challenges, ChemistryWorld, Jul. 3, 2014). Those BBB-permeable drugs that are approved for treatment of cognitive disease like Alzheimer’s, such as donepezil, exhibit temporary effects and do not work on all patients. (Banks, W.A., Drug Delivery to the Brain in Alzheimer’s Disease: Consideration of the Blood- brain Barrier, Adv. Drug. Deliv. Rev. 64(7):629-39 (2012); and Burke, M. supra). Similarly, levodopa which treats Parkinson’s disease symptoms like motor deficits and crosses the BBB, eventually loses its efficacy. An additional hurdle for treatments that do cross the BBB is that making compounds more lipophilic (which tends to make them more BBB-penetrating) also often results in increased removal from the blood, leading to decreased bioavailability. Hence, the increase in lipophilicity offsets the plasma area under the curve (AUC), minimizing brain uptake. (Pardridge, William M, supra).
III. Summary
The present invention overcomes these drawbacks. For example, Compound 1, a compound of the invention, has exhibited resistance in crossing the BBB in significant concentrations yet unexpectedly results in improvement of symptoms associated with age-related neurodegeneration and age-related motor decline. Thus, the present invention can act in a peripheral manner, forgoing what was considered to be a requirement for effective cognitive-acting pharmaceuticals, i.e. to work directly on central nervous system. And although certain embodiments of the invention may cross the BBB in significant concentrations, their ability to antagonize the CCL11/CCR3 pathway offers an alternative mechanism of action to current therapy for cognitive and motor defects.
The compounds of the invention act as antagonists of c-c motif chemokine receptor 3 (CCR3), the receptor for Eotaxin-l. Eotaxin-l (CCL11) is a protein that is increased in levels in blood plasma with aging and which has been shown to cause decreases in cognitive function. (Villeda et al, The aging systemic milieu negatively regulates neurogenesis and cognitive function, Nature, 477(7362):90-94 (2011)). Eotaxin/CCl l acts primarily on the G-protein coupled receptor CCR3 which is expressed on eosinophils in the periphery and on neurons and glial cells in the central nervous system. (Xia, M, et al, Immunohistochemical Study of the b- Chemokine Receptors CCR3 and CCR5 and Their Ligands in the Normal and Alzheimer’ s Disease Brains, Am. J. Pathol. 153(1);31-37 (1998)). In Alzheimer’s disease, it has been observed that CCR3 levels are increased in the CNS. (Id.) The cognitive effects of antagonizing CCR3 in Alzheimer’s disease and related disorders would thus be expected to be mediated by centrally located eotaxin-l/CCR3 interaction. However, Compound 1 (a compound of the invention), unexpectedly resulted in improving cognitive function and stimulating neurogenesis despite its inability to cross the BBB in significant concentrations.
Methods of treating patients for aging-associated impairments, neurodegenerative disease and associated cognitive and motor decline are provided, including by way of example and not limitation, Alzheimer's disease, Parkinson's disease, Dementia with Lewy Bodies, frontotemporal dementia, Huntington disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, vascular dementia, progressive supranuclear palsy, and the like. Aspects of the methods include modulation of CCR3, the principal receptor of CCLl l/eotaxin-l through the administration of a therapeutically effective amount of CCR3 antagonists of the invention. The methods include administering an effective therapeutic dose of CCR3 antagonists to subjects or patients as well as monitoring for specific clinical endpoints. Also included are methods of treating neurodegenerative disease and associated cognitive and motor decline with an agent that acts peripherally, i.e. does not cross the blood-brain barrier in significant concentrations, yet exhibits improvement in the disease, such as improved cognition or motor activity.
Methods of using a diagnostic or companion diagnostic test in connection with the described aging- associated impairments are also provided. By way of example and not limitation, such diagnostics or companion diagnostics include devices that can determine or detect the presence of a subset of white blood cells from a subject. The diagnostic or companion diagnostic device may also determine or detect the presence, relative or absolute concentration, relative or absolute number of eosinophils from a subject’s blood or tissues. Such diagnostic or companion diagnostic devices may be used in conjunction with
IV. Incorporation by Reference
All publications, patents and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
V. Brief Description of the Figures
Figure 1A depicts the sum of doublecortin (DCX) positive cells in the hippocampus of: 2-month- old and 18-month-old C57B 1/6 mice treated with IgG (n=l8 for both groups); 18-month-old mice treated with Compound 1 for 2 weeks at either a high (n=l6) or low dose (n=3l); and l8-month-old mice treated with Compound 1 (“Cmpd 1”) for 4 weeks at a low dose (n=l6). Data shown are the mean ± s.e.m., where *P<0.05, ***P<0.00l.
Figure IB depicts the sum of 5-bromo-2’-deoxyuridine (BrdU) positive cells in the hippocampus of: 2-month-old and l8-month-old C57B1/6 mice treated with IgG (n=l9 for both groups); l8-month-old mice treated with Compound 1 for 2 weeks at either a high (n=l6) or low dose (n=24). Data shown are the mean ± s.e.m., where ***P<0.00l.
Figure 2A depicts the effect of Compound 1 on the time spent by young and old C57B1/6 mice in the novel (N) versus familiar/old (“F” or“O”) arm during a Y-maze test. 2-month-old mice were treated for 2 weeks with IgG (n=l8). 18-month-old mice were treated with: IgG for 2 weeks (n=l8); Compound 1 at a high dose for 2 weeks (n=l5); Compound 1 at a low dose for 2 weeks (n=3l); or Compound 1 at a low dose for 4 weeks (n=l6). Data shown are the mean ± s.e.m., where **P<0.05, ***P<0.0l
Figure 2B depicts the effect of Compound 1 on the total number of visits made by young and old C57B1/6 mice into the novel (N) versus familiar (F) arm during a Y-maze test. 2-month-old mice were treated for 2 weeks with IgG (n=l8). l8-month-old mice were treated with: IgG for 2 weeks (n=l8); Compound 1 at a high dose for 2 weeks (n=l5); Compound 1 at a low dose for 2 weeks (n=3l); or Compound 1 at a low dose for 4 weeks (n=l6). Data shown are the mean ± s.e.m., where *P<0.05, **P<0.0l, ***P<0.00l.
Figure 3 depicts the effect of Compound 1 on bouts of entry (“number of visits”) into the novel and familiar arms by C57B1/6 mice in the Y-maze test. The number of visits to each arm was plotted for each treatment group and subjected to paired t-test. 3-month-old mice (n=l5) received an infusion of vehicle (veh) subcutaneously by Alzet mini-pump (0.5pL/hour) for four weeks, with one replacement. 16.5-month-old mice were infused subcutaneously with either vehicle (veh, n=l6) or 50 mg/mL Compound 1 (n=l6) by Alzet mini-pump (0.5pL/hour) for four weeks with one replacement. Data shown are mean ± s.e.m.; *P<0.05.
Figure 4A depicts the effect of Compound 1 on average time taken by C57B1/6 mice to find the target hole in the Barnes Maze test. Average times were plotted for each treatment group. 3-month-old mice (n=l8) received an infusion of vehicle (veh) subcutaneously by Alzet mini-pump (0.5pL/hour) for four weeks, with one replacement. 16.5-month-old mice were infused subcutaneously with either vehicle (veh, n=l5) or 50 mg/mL Compound 1 (n=l5) by Alzet mini-pump (0.5pL/hour) for four weeks with one replacement. Data shown are mean ± s.e.m.
Figure 4B depicts the effect of Compound 1 on the difference in latency to find the target hole between the last and first trial of the last day of the Barnes Maze test in C57B1/6 mice. The differences were plotted for each treatment group and the data subjected to an unpaired t-test. 3-month-old mice (n=l8) received an infusion of vehicle (veh) subcutaneously by Alzet mini-pump (0.5pL/hour) for four weeks, with one replacement. 16.5 -month-old mice were infused subcutaneously with either vehicle (veh, n=l5) or 50 mg/mL Compound 1 (n=l5) by Alzet mini-pump (0.5pL/hour) for four weeks with one replacement. Data shown are mean ± s.e.m. Figure 5 depicts the effect of Compound 1 on neurogenesis in C57B 1/6 mice by detection of BrdU positive cells from all sections in the dentate gyrus. The number of cells positive for BrdU from the dentate gyrus were plotted for each treatment group and the data subjected to an unpaired t-test between the 16.5- month-old groups. 3-month-old mice (n=l7) received an infusion of vehicle (veh) subcutaneously by Alzet mini-pump (0.5pL/hour) for four weeks, with one replacement. 16.5 -month-old mice were infused subcutaneously with either vehicle (veh, n=l7) or 50 mg/mL Compound 1 (n=l7) by Alzet mini-pump (0.5pL/hour) for four weeks with one replacement. Data shown are mean ± s.e.m.; *P< 0.05.
Figure 6 depicts the levels of Compound 1 detected in the CSF of C57BL/6 mice in both young (n=2) and old groups (n=3) (levels were both below 10 nM). Levels of Compound 1 were detected using mass spectrometry.
Figure 7 depicts the distribution (measured as area under the curve (AUC)) of Compound 1 in C57BL/6JOlaHsd mouse tissues over a time course. Compound was tagged with carbon-l4 label, and measurements taken at 1, 24, and 168 hours.
Figure 8 depicts the pharmacokinetic profiles of Compound 1 after per os (P.O.) dosing. Blood plasma from male 2-month-old C57B1/6 mice receiving either 30 mg/kg or 150 mg/kg by oral gavage was measured for Compound 1 at 20 minutes, 2 hours, 8 hours, and 12 hours after administration. Plasma concentration after drug administration was plotted over time.
Figure 9 depicts the effect of Compound 1 on exploratory preference during the Open Field test in young C57B1/6 mice. Exploratory preference was plotted as the ratio of time spent in the periphery vs. center and data was subjected to a one-way ANOVA. 2-month-old mice were treated with: vehicle p.o. b.i.d. (n=l l); Compound 1 p.o. b.i.d. 30 mg/kg (n=l2); vehicle p.o. b.i.d. plus recombinant mouse CCL11 (eotaxin-l, or“rmE”) i.p. (n=l4); or Compound 1 p.o. b.i.d. 30 mg/kg plus recombinant mouse CCL11 (n=l4). Data shown are mean ± s.e.m.; **/,<0.0l.
Figure 10A depicts the effect of Compound 1 on the time spent in the novel versus familiar arms of the Y-maze test in young C57B1/6 mice. The time spent in the novel versus familiar arms were plotted for each treatment group and data was subjected to a paired t-test. 2-month-old mice were treated with: vehicle p.o. b.i.d. (n=l3); Compound 1 p.o. b.i.d. 30 mg/kg (n=l4); vehicle p.o. b.i.d. plus recombinant mouse CCL11 (eotaxin-l) i.p. (n=l5); or Compound 1 p.o. b.i.d. 30 mg/kg plus recombinant mouse CCL11 (n=l5). Data shown are mean ± s.e.m.; **/,<0.0l.
Figure 10B depicts the effect of Compound 1 on the ratio of time spent in the novel versus familiar arm of the Y-maze test in young C57B1/6 mice. Ratios were plotted for each treatment group and data was subjected to an ANOVA Kruskai -Wallis test post-hoc. 2-month-old mice were treated with: vehicle p.o. b.i.d. (n=l2); Compound 1 p.o. b.i.d. 30 mg/kg (n=l4); vehicle p.o. b.i.d. plus recombinant mouse CCL11 (eotaxin-l) i.p. (n=l5); or Compound 1 p.o. b.i.d. 30 mg/kg plus recombinant mouse CCL11 (n=l5). Data shown are mean ± s.e.m.; *P<0.05.
Figure 10C depicts the effect of Compound 1 on the ratio of number of entries made into the novel versus familiar arm of the Y-maze test in young C57B1/6 mice. Ratios were plotted for each treatment group and data was subject to a t-test between vehicle and recombinant mouse CCL11 treatment. 2-month- old mice were treated with: vehicle p.o. b.i.d. (n=l3); Compound 1 p.o. b.i.d. 30 mg/kg (n=l4); vehicle p.o. b.i.d. plus recombinant mouse CCL11 (eotaxin-l) i.p. (n=l5); or Compound 1 p.o. b.i.d. 30 mg/kg plus recombinant mouse CCL11 (n=l5). Data shown are mean ± s.e.m.; *P<0.05.
Figure 11A depicts the effect of Compound 1 on the average latency to find the target hole during the Barnes Maze test in young C57B1/6 mice. Average latencies were plotted as units of time for each treatment group on each trial. 2-month-old mice were treated with: vehicle p.o. b.i.d. (n=l3); Compound 1 p.o. b.i.d. 30 mg/kg (n=l4); vehicle p.o. b.i.d. plus recombinant mouse CCL11 (eotaxin-l) i.p. (n=l5); or Compound 1 p.o. b.i.d. 30 mg/kg plus recombinant mouse CCL11 (n=l5). Data shown are mean ± s.e.m.
Figure 11B depicts the effect of Compound 1 on the latency to find the target hole during the Barnes Maze test in young C57B1/6 mice. Latencies averaged over the last three trials for each treatment group were plotted and data was subjected to an unpaired t-test. 2-month-old mice were treated with: vehicle p.o. b.i.d. (n=l3); Compound 1 p.o. b.i.d. 30 mg/kg (n=l4); vehicle p.o. b.i.d. plus recombinant mouse CCL11 (eotaxin-l) i.p. (n=l5); or Compound 1 p.o. b.i.d. 30 mg/kg plus recombinant mouse CCL11 (n=l5). Data shown are mean ± s.e.m.; *P<0.05.
Figure 12A depicts the effect of Compound 1 on memory for the novel arm in the Y maze, by number of entries made into the novel arm over the total entries. 24 month old mice were treated with Compound 1 p.o. b.i.d. 30 mg/kg or vehicle. Data shown are mean ± s.e.m.; **P<0.0l.
Figure 12B depicts the effect of Compound 1 on total distance travelled in the Y maze, as a measure of locomotor activity. 24 month old mice were treated with Compound 1 p.o. b.i.d. 30 mg/kg or vehicle. Data shown are mean ± s.e.m.; *P<0.05.
Figure 13A depicts the effect of Compound 1 on bouts of entry (“number of visits”) into the novel and familiar arms by C57B1/6 mice in the Y-maze test in 24-month-old mice. The number of visits to each arm was plotted for each treatment group and subjected to a paired t-test. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Three weeks later, mice were subjected to Y-maze testing. All mice received 5 consecutive days of BrdU injection at 50 mg/kg IP immediately prior to start of treatment. Data shown are mean ± s.e.m.; *P<0.05, **P<0.0l, ***P<0.00l novel vs familiar arm by paired student’s t-test.
Figure 13B depicts the effect of Compound 1 on the ratio of number of entries made into the novel versus familiar arm of the Y-maze test in 24-month-old mice. Ratios were plotted for each treatment group and data was subject to a t-test between vehicle and Compound 1 treatment. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Three weeks later, mice were subjected to Y-maze testing. All mice received 5 consecutive days of BrdU injection at 50 mg/kg IP immediately prior to start of treatment. Data shown are mean ± s.e.m. ; */,<0.05, **R<0.01 , ***P<0.00l compared to control by student’s t-test.
Figure 13C depicts the effect of Compound 1 on the time spent in the novel versus familiar arms of the Y-maze test in 24-month-old C57B1/6 mice. The time spent in the novel versus familiar arms were plotted for each treatment group and data was subjected to a paired t-test. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Three weeks later, mice were subjected to Y-maze testing. All mice received 5 consecutive days of BrdU injection at 50 mg/kg IP immediately prior to start of treatment. Data shown are mean ± s.e.m.; *P<0.05, **P<0.0l, ***P<0.00l novel vs familiar arm by paired student’s t-test.
Figure 13D depicts the effect of Compound 1 on the ratio of time spent (“duration”) in the novel versus familiar arm of the Y-maze test in 24-month-old C57B 1/6 mice. Ratios were plotted for each treatment group and data was subjected to a t-test. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Three weeks later, mice were subjected to Y-maze testing. All mice received 5 consecutive days of BrdU injection at 50 mg/kg IP immediately prior to start of treatment. Data shown are mean ± s.e.m.; *P<0.05, **/,<0.0l, ***/,<0.00l compared to control by student’ s t-test.
Figure 13E depicts the effect of Compound 1 on the average velocity during the Y-Maze test of 24-month-old C57B 1/6 mice. Average velocities were plotted for each treatment group and data was subject to a t-test. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Three weeks later, mice were subjected to Y-maze testing. All mice received 5 consecutive days of BrdU injection at 50 mg/kg IP immediately prior to start of treatment. Data shown are mean ± s.e.m.; *P<0.05, **/,<0.0l, ***/,<0.00l compared to control by student’ s t-test.
Figure 14A depicts the effect of Compound 1 on average time taken by 24-month-old C57B1/6 mice to find the target hole in the Barnes Maze test. Average times were plotted for each treatment group. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Three weeks later, mice were subjected to Barnes Maze testing. Data shown are mean ± s.e.m.; *P<0.05 compared to control by student’s t-test.
Figure 14B depicts the effect of Compound 1 on velocity in 24-month-old C57B1/6 mice in Barnes Maze test, averaged over all trials for each treatment group. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Three weeks later, mice were subjected to Barnes Maze testing. Data shown are mean ± s.e.m.; */,<0.05 compared to control by student’ s t-test.
Figure 15A depicts the effect of Compound 1 on distance traveled in the Open Field test in 24- month-old C57B 1/6 mice. Average distance traveled was plotted for each treatment group. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Three weeks later, mice were subjected to Open Field testing. Data shown are mean ± s.e.m.
Figure 15B depicts the effect of Compound 1 on velocity in the Open Field test in 24-month-old C57B 1/6 mice. Average velocity of the mice was plotted for each treatment group. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Three weeks later, mice were subjected to Open Field testing. Data shown are mean ± s.e.m.
Figure 16A depicts the effect of Compound 1 on TNFalpha cytokine levels in the plasma of 24- month-old C57B1/6 mice. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Levels of the inflammatory cytokine trend lower in Compound 1 treated mice than in vehicle treated mice.
Figure 16B depicts the effect of Compound 1 on IL6 cytokine levels in the plasma of 24-month- old C57BI/6 mice. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Levels of the inflammatory cytokine trend lower in Compound 1 treated mice than in vehicle treated mice.
Figure 16C depicts the effect of Compound 1 on ILlbeta cytokine levels in the plasma of 24- month-old C57B1/6 mice. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Levels of the inflammatory cytokine trend lower in Compound 1 treated mice than in vehicle treated mice.
Figure 16D depicts the effect of Compound 1 on IL5 cytokine levels in the plasma of 24-month- old C57BI/6 mice. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Levels of the inflammatory cytokine trend lower in Compound 1 treated mice than in vehicle treated mice.
Figure 16E depicts the effect of Compound 1 on IL17 cytokine levels in the plasma of 24-month- old C57BI/6 mice. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Levels of the inflammatory cytokine trend lower in Compound 1 treated mice than in vehicle treated mice.
Figure 17 depicts the effect of Compound 1 on activated microglia in 24-month-old C57B1/6 mice. Mice 23 months-old were dosed with either vehicle control or Compound 1 subcutaneously BID (twice daily) for 21 days. Levels of CD68+ activated microglia trend lower in Compound 1 treated mice than in vehicle treated mice. Figure 18 depicts the effect of Compound 1 on the percentage of eosinophils in complete white blood cell (WBC) count, in 24-month-old C57BI/6 mice treated with control saline or 30 mg/kg of Compound 1 for 3 weeks BID, SQ. Compound 1 decreased an endogenous age-related increase in blood eosinophils.
Figure 19 depicts the effect of Compound 1 on the percentage of eosinophils in complete white blood cell (WBC) count, in 3-month-old hairless mice treated with control saline or 30 mg/kg of Compound 1 for 2 weeks BID, PO. Compound 1 decreased an oxazolone-induced increase in blood eosinophils.
Figure 20 shows the results of Compound 1 on a rotarod test for motor coordination. Twenty-four- month-old C57 mice were treated for 4 weeks with continuous infusion of Compound 1 or vehicle by osmotic pump. Treated mice succeeded more than vehicle-treated mice in a binomial test, *P < 0.05.
Figure 21 shows the results of Compound 1 on the T maze test for memory. Twenty-four-month- old C57 mice were treated for 4 weeks with continuous infusion of Compound 1 or vehicle by osmotic pump. Treated mice succeeded more than vehicle-treated mice in a binomial test, *P < 0.05.
Figure 22A shows the results of Compound 1 on fecal output overnight. Twenty-four-month-old C57 mice were treated for 4 weeks with continuous infusion of Compound 1 or vehicle by osmotic pump. The weight of fecal pellets was measured overnight. Compound 1 treated mice had significantly lower fecal output compared to vehicle treated mice by student’s t-test, *P < 0.05.
Figure 22B shows the results of Compound 1 on water drinking overnight. Twenty-four-month- old C57 mice were treated for 4 weeks with continuous infusion of Compound 1 or vehicle by osmotic pump. The total water drank was measured overnight. Compound 1 treated mice drank significantly more water compared to vehicle treated mice by student’s t-test, *P < 0.05.
Figure 22C shows the results of Compound 1 on food intake overnight. Twenty-four-month-old C57 mice were treated for 4 weeks with continuous infusion of Compound 1 or vehicle by osmotic pump. The total food eaten was measured overnight. There were no differences in total food intake overnight between the two groups.
Figure 23 depicts the effect of Compound 1 (Cmpd 1) on the numbers of CD68-positive (CD68+) activated microglia within the brains of three-month-old mice treated with LPS and treated with Compound 1 for 18 days. Compound 1 -treated mice exhibited decreased CD68+ immunoreactivity, and thus decreased gliosis.
Figures 24A and 24B depict the effect of Compound 1 on anxiety in the Open Field test in three- month-old mice treated with LPS IP for 4 weeks and treated with Compound 1 per orally BID (twice daily) for 1 week. LPS treatment increased the preference for the periphery of the Open Field, indicating increased anxiety. Compound 1 treatment decreased the LPS-induced anxiety in the Open Field. Data shown are mean ± s.e.m; *P < 0.05 by student’s t-test. Figures 25A and 25B depict the effect of Compound 1 on number of entries into the novel and familiar arm in the Y-maze test by 3-month-old C57B1/6 mice treated with LPS. The number of visits to each arm was plotted for each treatment group and subjected to a paired t-test. Mice 3 months-old were dosed with either vehicle or LPS IP for 6 weeks and dosed with vehicle control or Compound 1 per orally BID (twice daily) for 3 weeks. Compound 1 -treated mice showed a significant preference for the novel arm while vehicle -treated mice did not. Data shown are mean ± s.e.m.; **R<0.01, *P<0.05, novel vs familiar arm by paired student’ s t-test.
Figures 26A and 26B depict the effect of Compound 1 on ILlbeta mRNA in the brains from 3- month-old C57B1/6 mice treated with LPS and/or Compound 1. Mice were dosed with either vehicle control or LPS IP for 7 weeks and dosed with vehicle or Compound 1 per orally BID (twice daily) for 4 weeks. Tissues were harvested, and RNA was prepared from cortical brain tissues. Levels of ILlbeta mRNA were measured by qPCR and data are presented relative to vehicle control. There was a trend towards increased levels of ILlbeta mRNA with LPS treatment and a significant decrease with Compound 1 treatment. Data shown are mean ± s.e.m; *P < 0.05 by student’s t-test.
Figures 27A, 27B and 27C depict the effect of Compound 1 on microglia activation in the hippocampus from 3-month-old C57B 1/6 mice treated with LPS and/or Compound 1. Mice were dosed with either vehicle control or LPS IP for 7 weeks and dosed with vehicle or Compound 1 per orally BID (twice daily) for 4 weeks. Tissues were harvested, and brain sections were subjected to immunohistochemistry for CD68, a marker for activated microglia. There was a trend towards increased levels of CD68 with LPS treatment and a robust trend towards decrease with Compound 1 treatment. Data shown are mean ± s.e.m.
Figures 28A, 28B and 28C depict the effect of Compound 1 on total microglia in the hippocampus from 3-month-old C57B1/6 mice treated with LPS and/or Compound 1. Mice were dosed with either vehicle control or LPS IP for 7 weeks and dosed with vehicle or Compound 1 per orally BID (twice daily) for 4 weeks. Tissues were harvested, and brain sections were subjected to immunohistochemistry for Ibal, a marker for microglia. There was a significant increase in Ibal with LPS treatment and a trend towards decrease with Compound 1 treatment. Data shown are mean ± s.e.m.; ***/,<0.00l, *P<0.05, by student’s t-test.
Figures 29A and 29B depict the effect of Compound 1 on total astrocytes in the hippocampus from 3-month-old C57B1/6 mice treated with LPS and/or Compound 1. Mice were dosed with either vehicle control or LPS IP for 7 weeks and dosed with vehicle or Compound 1 per orally BID (twice daily) for 4 weeks. Tissues were harvested, and brain sections were subjected to immunohistochemistry for GFAP, a marker for astrocytes. There was a trend towards decrease with Compound 1 treatment. Data shown are mean ± s.e.m. Figure 30 depicts the dosing regimen for three groups of C57BL/6 mice treated with: (1) controls for both LPS and Compound 1 ; (2) LPS plus vehicle control for Compound 1 ; or (3) LPS plus Compound 1. All three groups were treated with controls, LPS, or Compound 1 for three consecutive, simultaneous days. The graph shows the results of histological analysis of the mouse brains in an acute model of LPS- induced inflammation. Microgliosis was measured by determining the percentage of Iba-l positive area in the hippocampi. Data shown are mean ± s.e.m; *P< 0.05, ***P< 0.001 ; ordinary one-way ANOVA was used to test for statistical significance, with Dunnett’s multiple comparisons test post-hoc between treatment groups.
Figure 31 depicts the dosing regimen for three groups of C57BL/6 mice treated with: vehicle controls; vehicle treated LPS; or Compound 1. The graph shows the results of histological analysis of the mouse brains in an acute model of LPS-induced inflammation. Microgliosis was measured by determining the percentage of Iba-l positive area in the hippocampi. Data shown are mean ± s.e.m; *P< 0.05, ****P< 0.0001 ; ordinary one-way ANOVA was used to test for statistical significance, with Dunnett’s multiple comparisons test post-hoc between treatment groups.
Figure 32 depicts the treatment study timeline for a mouse MPTP model of Parkinson’s Disease. There were two arms of the study; the first arm tested gait and fine kinematic motor function after 10 days of treatment, while the second arm tested immune cell infiltration after 3 days of treatment.
Figure 33A displays a correlation heat map describing the degree of correlation for ninety-seven walking parameters in a gait and fine motor kinematic test of C57B1/6J mice after ten days of Compound 1 treatment on study day 11. Ten principal components are presented, showing how the original parameters are correlated in datasets. The more intensity there is for each parameter, the more strongly the parameter is implicated in the corresponding principal component. Red is a positive correlation and blue is a negative correlation in relation to the 10 individual principal components (x-axis). The left-side y-axis shows overall groupings for the individual variables on the right-side y-axis. E.g.,“ILC” refers to intralimb coordination, “Tail B” refers to tail base.
Figure 33B shows the fine motor skills and gait properties of C57B1/6J mice at study day 11 after 10 days of Compound 1 treatment. It is illustrated as an overall gait analysis score of MPTP treated C57B1/6J mice. Differences between treatment groups in each of the 10 principal components were combined in a composite score, and difference to vehicle-treated control group is shown. There was a significant difference in overall gait with MPTP treatment (* p < 0.05), and there was no longer a significant difference with Compound 1 treatment.
Figure 34 depicts forepaw toe clearance (one of the gait properties assessed in the principle component analysis) of C57B1/6J mice at study day 11 after 10 days of Compound 1 treatment. C57 BI/6.1 mice at study day 11 after 10 days of Compound 1 treatment. Data are presented as mean + SEM (Group 1 : Vehicle + Vehicle, n = 15; Group 2: MPTP + Vehicle, n = 14; Group 3: MPTP + Compound 1 (30 mg/kg), n = 13). Statistical significances: * p < 0.05, Group 2: MPTP + Vehicle vs. Group 1 : Vehicle + Vehicle (unpaired t-test).
Figure 35 depicts forepaw swing speed (one of the gait properties assessed in the principle component analysis) of C57B1/6J mice at study day 11 after 10 days of Compound 1 treatment. Data are presented as mean + SEM (Group 1 : Vehicle + Vehicle, n = 15; Group 2: MPTP + Vehicle, n = 14; Group 3: MPTP + Compound 1 (30 mg/kg), n = 13). Statistical significances: * p < 0.05, Group 2: MPTP + Vehicle vs. Group 1 : Vehicle + Vehicle (unpaired t-test).
Figure 36 depicts ankle range of motion (one of the gait properties assessed in the principle component analysis) of C57B1/6J mice at study day 11 after 10 days of Compound 1 treatment. Data are presented as mean + SEM (Group 1 : Vehicle + Vehicle, n = 15; Group 2: MPTP + Vehicle, n = 14; Group 3: MPTP + Compound 1 (30 mg/kg), n = 13). Statistical significances: * p < 0.05, Group 2: MPTP + Vehicle vs. Group 1 : Vehicle + Vehicle (unpaired t-test).
Figure 37 reports the acute effects of MPTP and Compound 1 on T-cell trafficking into the brain after 3 days of Compound 1 treatment. The total number of CD3 positive T-cells counted in the substantia nigra from 3 sections of 30 pm for each mouse are presented. Data shown are mean ± s.e.m; ***P< 0.001; one-way ANOVA, Sidak’s multiple comparison test post-hoc.
Figures 38A and 38B report the acute effects of MPTP and Compound 1 on microgliosis after 3 days of Compound 1 treatment. Figure 38A presents the degree of CD68-positive area measured in the striatum (n=7 for saline + vehicle; n=8 for MPTP + vehicle; n=7 for MPTP + Compound 1). Figure 38B presents the degree of CD68-positive area measured in the substantia nigra pars compacta (n=7 for saline + vehicle; n=8 for MPTP + vehicle; n=8 for MPTP + Compound 1). Data shown are mean ± s.e.m; **P< 0.01, ***P< 0.001, ****P< 0.0001; one-way ANOVA, Sidak’s multiple comparison test post-hoc.
Figure 39 depicts plasma eotaxin-1 levels in 6-month-old Line 61 synuclein-overexpressing transgenic mice. Eotaxin-1 levels (CCL11) in Non-transgenic (NTg) versus transgenic Line 61 synuclein mice (Tg) were plotted at pg/mL concentrations.
Figure 40 reports the results from a wire suspension test on Line 61 synuclein mice (transgenic (Tg) and non-transgenic (nTg) aged-matched littermates.) The mean wire suspension times per group are shown, with animals from group C (non-transgenic, vehicle -treated) exhibiting a significantly higher wire suspension time. Animals from group A (transgenic, Compound- 1 treated) exhibited a significantly higher wire suspension time compared to group B (transgenic, vehicle -treated). Data are displayed as mean + SEM of all animals per group; ***P<0.001; Dunn’s post-test; *P<0.05 Mann Whitney test for group A vs. group B). Figure 41 reports the results from a grip strength test on Line 61 synuclein mice (transgenic (Tg) and non-transgenic (nTg) aged-matched littermates.) The mean maximum grip force [g] per group is shown. Animals from group A and C (transgenic, Compound 1 -treated and non-transgenic, vehicle-treated, respectively) showed a significantly higher grip force compared to group B (transgenic, vehicle -treated). Data are displayed as mean + SEM of all animals per group. Groups were compared to vehicle -treated transgenic animals (group B); one-way ANOVA followed by Bonferroni’s post-test.
Figure 42 reports the number of mice from each treatment group that were successfully able to traverse the beam in a beam walk test. N = 15 mice in Group A, 14 mice in Group B, and 15 mice in Group C (groups described in Figure 40). All mice were able to traverse the easiest beam in Trial 1, whereas no mice from Treatment Group B were able to traverse the most difficult beam in Trial 5. (Trial 1 = 13mm rectangular beam; Trial 2 = 10 mm rectangular beam; Trial 3 = 28 mm cylindrical beam; Trial 4 = 16 mm cylindrical beam; Trial 5 = 11 mm cylindrical beam).
Figure 43 reports the results of five trials for beam walk slips for three groups of mice (group A, transgenic Compound 1 -treated; group B, transgenic vehicle-treated; and group C, non-transgenic vehicle- treated). Only mice that traversed the beam entirely were included in the analysis. Graphs represent the mean number of slips [n] per group, and each graph represents one trial (1-5). Data are mean + SEM of all animals per group. Groups were compared to group B; one-way ANOVA followed by Bonferroni’s post test. Statistics for Trial 5 could not be performed, as no mice from Group B were able to traverse the beam.
Figures 44A and 44B report eosinophil count from peripheral blood. Figure 44A reports the percentage of eosinophils (of all white blood cells) in peripheral blood from three groups of mice (Tg Cmpd 1 = transgenic Compound 1 -treated; Tg Veh = transgenic vehicle-treated; nTG Veh = non-transgenic vehicle -treated). Data were compared by t-test. Figure 44B reports the absolute eosinophil count in peripheral blood from three groups of mice (Tg Cmpd 1 = transgenic Compound 1-treated; Tg Veh = transgenic vehicle-treated; nTG Veh = non-transgenic vehicle -treated). Data were compared by t-test.
Figures 45A to 45G report the effect of Compound 1 on neuroinflammation. Figure 45A reports the CD68 positive area quantified in the hippocampus of: non-transgenic, vehicle-treated mice; transgenic, vehicle treated mice; and transgenic, Compound 1-treated mice (n=14, 12, andl5, respectively). Figure 45B reports the CD68 positive area quantified in the striatum of: non-transgenic, vehicle -treated mice; transgenic, vehicle treated mice; and transgenic, Compound 1-treated mice (n=15, 11, and 16, respectively). Figure 45C reports the Iba-1 positive area quantified in the hippocampus of: non-transgenic, vehicle- treated mice; transgenic, vehicle treated mice; and transgenic, Compound 1-treated mice (n=14, 13, and 16, respectively). Figure 45D reports the Ibal positive area quantified in the striatum of: non-transgenic, vehicle -treated mice; transgenic, vehicle treated mice; and transgenic, Compound 1-treated mice (n=15, 11, and 16, respectively). Data are mean +/- s.e.m.; *P<0.05. Figure 45E reports the GFAP positive area quantified in the hippocampus of: non-transgenic, vehicle-treated mice; transgenic, vehicle treated mice; and transgenic, Compound l-treated mice (h=14, 13, and 15, respectively). Figure 45F reports the GFAP positive area quantified in the striatum of: non-transgenic, vehicle-treated mice; transgenic, vehicle treated mice; and transgenic, Compound l-treated mice (h=15, 13, and 15, respectively). Figure 45G reports the Iba-lpositive area quantified in the pars compacta of the substantia nigra of non-transgenic, vehicle -treated mice; transgenic, vehicle treated mice; and transgenic, Compound l-treated mice. Data are mean +/- s.e.m.; *P<0.05.
Figures 46A and 46B report the effect of Compound 1 on circulating levels of IL-4 and IL-6 cytokines in: non-transgenic, vehicle-treated mice; transgenic, vehicle treated mice; and transgenic, Compound l-treated mice (h=14, 15, and 17, respectively). Figure 46A reports the levels of IL-4 measured in terminal cardiac plasma of all three groups. Figure 46B reports the levels of IL-6 measured in terminal cardiac plasma of all three groups. Data shown are mean +/- s.e.m; *P<0.05, **P<0.0l ; one-way ANOVA, Dunnett’s multiple comparison test post-hoc.
Figures 47A to 47D show the effects of Compound 1 on EAE-induced markers in the cerebella of C57BL/6 mice. EAE resulted in an increase in CD3 and CD8-positive infiltrating T-cells in the cerebellum. Figure 47A shows an increase in CD3 positive infiltrating T-cells in the cerebellum which is significantly reduced following treatment with Compound 1 for 9 days. Figure 47B shows an increase in CD8 positive infiltrating cytotoxic T-cells in the cerebellum which is significantly reduced following treatment with Compound 1 for 9 days. Figure 47C shows a significant increase Iba-l positive area in the cerebellum after EAE, which was significantly reduced in the cerebellum after 9 days of treatment. Figure 47D shows a significant increase CD68 positive area in the cerebellum after EAE, which was significantly reduced in the cerebellum after 9 days of treatment. Data shown are mean +/- s.e.m; *P<0.05, **P<0.0l ; one-way ANOVA, Dunnett’s multiple comparison test post-hoc.
Figure 48 depicts the concentrations of human eotaxin-l in a proteomic screen. Relative concentrations of human eotaxin-l were measured in a commercially-available affinity-based assay (SomaLogic). Plasma samples from each of 18, 30, 45, 55, and 66-year-old donors were plotted.
Figure 49A depicts the effect of Compound 1 on inhibition of eosinophil shape change. Whole blood from humans treated with Compound 1 was incubated with recombinant eotaxin to trigger eosinophil shape change. Inhibition of shape change was plotted against plasma Compound 1 concentrations.
Figure 49B depicts the effect of Compound 1 on CCR3 internalization. Whole blood from humans treated with Compound 1 was incubated with recombinant eotaxin to trigger CCR3 internalization and labeled with anti-CCR3 antibody. Inhibition of CCR3 internalization by Compound 1 was plotted against plasma Compound 1 concentrations. VI. Detailed Description
Aspects of the invention include methods of treating aging-associated impairments/neurodegenerative diseases. The aging-associated impairment may manifest in a number of different ways, e.g., as aging-associated cognitive impairment and/or physiological impairment, e.g., in the form of damage to central or peripheral organs of the body, such as but not limited to: cell injury, tissue damage, organ dysfunction, aging-associated lifespan shortening and carcinogenesis, where specific organs and tissues of interest include, but are not limited to skin, neuron, muscle, pancreas, brain, kidney, lung, stomach, intestine, spleen, heart, adipose tissue, testes, ovary, uterus, liver and bone; in the form of decreased neurogenesis, etc.
In some embodiments, the aging-associated impairment is an aging-associated impairment in cognitive ability in an individual, i.e., an aging-associated cognitive impairment. By cognitive ability, or “cognition”, it is meant the mental processes that include attention and concentration, learning complex tasks and concepts, memory (acquiring, retaining, and retrieving new information in the short and/or long term), information processing (dealing with information gathered by the five senses), visuospatial function (visual perception, depth perception, using mental imagery, copying drawings, constructing objects or shapes), producing and understanding language, verbal fluency (word-finding), solving problems, making decisions, and executive functions (planning and prioritizing). By“cognitive decline”, it is meant a progressive decrease in one or more of these abilities, e.g., a decline in memory, language, thinking, judgment, etc. By“an impairment in cognitive ability” and“cognitive impairment”, it is meant a reduction in cognitive ability relative to a healthy individual, e.g., an age-matched healthy individual, or relative to the ability of the individual at an earlier point in time, e.g., 2 weeks, 1 month, 2 months, 3 months, 6 months, 1 year, 2 years, 5 years, or 10 years or more previously. Aging-associated cognitive impairments include impairments in cognitive ability that are typically associated with aging, including, for example, cognitive impairment associated with the natural aging process, e.g., mild cognitive impairment (M.C.I.); and cognitive impairment associated with an aging-associated disorder, that is, a disorder that is seen with increasing frequency with increasing senescence, e.g., a neurodegenerative condition such as Alzheimer’s disease, Parkinson’s disease, Dementia with Lewy Bodies, frontotemporal dementia, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, vascular dementia, and the like.
By "treatment" it is meant that at least an amelioration of one or more symptoms associated with an aging-associated impairment afflicting the subject is achieved, where amelioration is used in a broad sense to refer to at least a reduction in the magnitude of a parameter, e.g., a symptom associated with the impairment being treated. As such, treatment also includes situations where a pathological condition, or at least symptoms associated therewith, are completely inhibited, e.g., prevented from happening, or stopped, e.g., terminated, such that the adult mammal no longer suffers from the impairment, or at least the symptoms that characterize the impairment. In some instances, "treatment", "treating" and the like refer to obtaining a desired pharmacologic and/or physiologic effect. The effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of a partial or complete cure for a disease and/or adverse effect attributable to the disease. "Treatment" may be any treatment of a disease in a subject, and includes: (a) preventing the disease from occurring in a subject which may be predisposed to the disease but has not yet been diagnosed as having it; (b) inhibiting the disease, i.e., arresting its development; or (c) relieving the disease, i.e., causing regression of the disease. Treatment may result in a variety of different physical manifestations, e.g., modulation in gene expression, increased neurogenesis, rejuvenation of tissue or organs, etc. Treatment of ongoing disease, where the treatment stabilizes or reduces the undesirable clinical symptoms of the patient, occurs in some embodiments. Such treatment may be performed prior to complete loss of function in the affected tissues. The subject therapy may be administered during the symptomatic stage of the disease, and in some cases after the symptomatic stage of the disease.
In some instances where the aging-associated impairment is aging-associated cognitive decline, treatment by methods of the present disclosure slows, or reduces, the progression of aging-associated cognitive decline. In other words, cognitive abilities in the individual decline more slowly, if at all, following treatment by the disclosed methods than prior to or in the absence of treatment by the disclosed methods. In some instances, treatment by methods of the present disclosure stabilizes the cognitive abilities of an individual. For example, the progression of cognitive decline in an individual suffering from aging- associated cognitive decline is halted following treatment by the disclosed methods. As another example, cognitive decline in an individual, e.g., an individual 40 years old or older, that is projected to suffer from aging-associated cognitive decline, is prevented following treatment by the disclosed methods. In other words, no (further) cognitive impairment is observed. In some instances, treatment by methods of the present disclosure reduces, or reverses, cognitive impairment, e.g., as observed by improving cognitive abilities in an individual suffering from aging-associated cognitive decline. In other words, the cognitive abilities of the individual suffering from aging-associated cognitive decline following treatment by the disclosed methods are better than they were prior to treatment by the disclosed methods, i.e., they improve upon treatment. In some instances, treatment by methods of the present disclosure abrogates cognitive impairment. In other words, the cognitive abilities of the individual suffering from aging-associated cognitive decline are restored, e.g., to their level when the individual was about 40 years old or less, following treatment by the disclosed methods, e.g., as evidenced by improved cognitive abilities in an individual suffering from aging-associated cognitive decline. In some instances where the aging-associated impairment is aging-associated motor impairment or decline, treatment by methods of the present disclosure slows, or reduces, the progression of aging- associated impairment or decline. In other words, motor abilities in the individual decline more slowly, if at all, following treatment by the disclosed methods than prior to or in the absence of treatment by the disclosed methods. In some instances, treatment by methods of the present disclosure stabilizes the motor abilities of an individual. For example, the progression of motor decline in an individual suffering from aging-associated motor decline is halted following treatment by the disclosed methods. As another example, motor decline in an individual, e.g., an individual 40 years old or older, that is projected to suffer from aging-associated motor decline, is prevented following treatment by the disclosed methods. In other words, no (further) motor impairment is observed. In some instances, treatment by methods of the present disclosure reduces, or reverses, motor impairment, e.g., as observed by improving motor coordination or abilities in an individual suffering from aging-associated motor decline. In other words, the motor abilities of the individual suffering from aging-associated motor decline following treatment by the disclosed methods are better than they were prior to treatment by the disclosed methods, i.e., they improve upon treatment. In some instances, treatment by methods of the present disclosure abrogates motor impairment. In other words, the motor coordination or abilities of the individual suffering from aging-associated motor decline are restored, e.g., to their level when the individual was about 40 years old or less, following treatment by the disclosed methods, e.g., as evidenced by improved motor coordination or abilities in an individual suffering from aging-associated motor decline.
In some instances, treatment of an adult mammal in accordance with the methods results in a change in a central organ, e.g., a central nervous system organ, such as the brain, spinal cord, etc., where the change may manifest in a number of different ways, e.g., as described in greater detail below, including but not limited to molecular, structural and/or functional, e.g., in the form of enhanced neurogenesis.
Methods of treating dysfunction caused by neurodegenerative disease are provided, the method comprising administering compounds from the formulae discussed below. An embodiment of the invention comprises a method of improving cognition or motor activity in subjects with brain-associated, cognitive- associated, or motor disease, the method comprising administering a therapeutically effective amount of a compound from the chemical formulae discussed below. Additional embodiments of the invention comprise a method of increasing neurogenesis in subjects with brain- or cognitive-associated disease, the method comprising administering a therapeutically effective amount of a compound from the chemical formulae discussed below. Additional embodiments of the invention comprise a method of alleviating or treating symptoms of brain- or cognitive-associated disease, the method comprising administering a therapeutically effective amount of a compound from the chemical formulae below. Additional embodiments of the invention include methods of alleviating symptoms of central nervous system- associated disease, the method comprising administering a therapeutically effective amount of a primarily peripheral-acting agent from the chemical formulae below. Further additional embodiments of the invention include methods of improving motor activity in a subject with age-related motor dysfunction, the method comprising administering a therapeutically effective amount of a compound from the chemical formulae discussed below. The methods of the invention may also comprise monitoring improvement in age-related disease, including for example, improvement in cognition, motor activity, neurogenesis and the like in a subject diagnosed with one or more such disease or dysfunction.
Additional embodiments of the invention include administering a therapeutically effective amount of a compound wherein the compound is in the form of the co-crystals or salts of the formulae discussed below. Further embodiments of the invention include administering a therapeutically effective amount of a compound wherein the compound is in the form of individual optical isomers, a mixture of the individual enantiomers, a racemate or enantiomerically pure compounds. Additional embodiments of the invention also include administering a therapeutically effective amount of a compound wherein the compound is in the form of the pharmaceutical compositions and formulations further discussed below.
Additional embodiments of the invention that treat aging-associated motor impairment or decline include modifying agents which inhibit the eotaxin/CCR3 pathway. Such modifying agents include not only compounds from the formulae discussed below, but other eotaxin and CCR3 inhibiting agents. Modifying agents that are contemplated include by way of example and not of limitation: the compounds of the formulae discussed below and other CCR3 small molecule inhibitors (e.g. bipiperdine derivatives described for example in U.S. Patent No. 7,705,153, cyclic amine derivatives described for example in U.S. 7,576, 117, and the CCR3 antagonists described in Pease JE and Horuk R, Expert Opin Drug Discov (2014) 9(5):467-83, all herein incorporated by reference in their entirety); anti-eotaxin antibodies; anti-CCR3 antibodies; aptamers that inhibit either eotaxin or CCR3 expression or function (methods of producing such aptamers include U.S. Pat. Nos. 5,270,163, 5,840,867, 6,180,348); antisense oligonucleotides or siRNAs that inhibit expression or function of either eotaxin or CCR3 (e.g. described in U.S. Pat. No. 6,822,087); soluble CCR3 receptor protein (e.g. decoys); and the like.
Methods of using a diagnostic test or companion diagnostic test in connection with the described aging-associated impairments are also provided. One embodiment of such diagnostic or companion diagnostic test is an in vitro diagnostic test. An embodiment of the in vitro diagnostic test is a companion device used with a particular therapeutic. Embodiments of the particular therapeutic include for example and not limitation a CCR3 small molecular inhibitor, an anti-CCR3 antibody, small molecule inhibitors to the CCR3 ligand Eotaxin- 1, an anti-Eotaxin-l antibody, and antisense RNA to either Eotaxin- 1 or CCR3.
By way of example and not limitation, such diagnostics or companion diagnostics include determination or detection of the presence of a subset of white blood cells from a subject. The diagnostics or companion diagnostics may also be the determination of presence, relative or absolute concentration, relative or absolute number of eosinophils from a subject’s blood, tissues, or other such samples. Blood may be obtained for example, by venipuncture or other similar methods. Other samples may include by way of example and not limitation, sputum, cerebrospinal fluid or tissue biopsies.
Methods of detecting or determining the presence, absolute or relative concentration, or relative or absolute number of white blood cells such as eosinophils, neutrophils, lymphocytes, basophils, and monocytes are known to those having ordinary skill in the art. Methods to determine the presence, absolute or relative concentration, or relative or absolute number of eosinophils are also known to those having ordinary skill in the art. See Walsh GM, Eosinophils— Methods and Protocols ISBN:9781493910151, which is herein incorporated by reference in its entirety. Such methods include, by way of example and not limitation: (1) complete blood count with 5-part differential using a hematology analyzer (See, e.g. O’Neil et al., Laboratory Hematology 7: 116-124 (2001) and the U.S. Centers for Disease Control laboratory methods (available at https://wwwn.cdc.gov/nchs/data/nhanes/2013-2014/labmethods/CBC_H_MET_ COMPLETE_BLOOD_COUNT.pdf); (2) quantitative eosinophil count in sputum using smear preparation stained by hematoxylin and eosin (H and E) (See, e.g., Bandyopadhyay A, et al. Lung India. 2013 Apr-Jun; 30(2): 117-123); (3) flow cytometry quantification of eosinophils using antibodies specific to various immune cells such as CD45, CD125, CD193, F4/80, and Siglec-8 (Abeam, San Francisco, CA) ((See, e.g., Yu Y-R A et al., Am J Respir Cell Mol Biol. 2016 Jan; 54(1): 13-24 and Cossarizza A, et al., Eur. J. Immunol. 2017 47: 1584-1797); (4) eosinophil autofluorescence quantified using flow cytometry (See, e.g. Guenther G et al., J Immunol May 1, 2015, 194 (1 Supplement) 206.12 and Thurau AM et al., Cytometry 23: 159-58 (1996)); (5) Isolation of eosinophils from whole blood using Dextran 70, Ficoll-Paque and antibody-based magnetic colloid cell separation (See, e.g. Munoz NM, et al., Nature Protocols, 2613-20 (2006); Akuthota P, et al., Curr Protoc Immunol 98(1): pp. 7.31.1-7.31.8, 2012; and Akuthota P, et al., Methods Mol Biol 1178: 13-20 (2014)); (6) Histological staining by general stain (eosin or similar dye) or by antibody-based stain against eosinophil-specific protein (Major Basic Protein (MBP), Eosinophil Cationic Protein (ECP), Eosinophil Peroxidase (EPO), Eosinophil Derived Neurotoxin (EDN), SiglecF (or Siglec8) among others) (See, e.g. Roller DY et al., Allergy 54(10): 1094-9 (1999) and Akuthota P., Capron K., Weller P.F. (2014) Eosinophil Purification from Peripheral Blood. In: Walsh G. (eds) Eosinophils. Methods in Molecular Biology (Methods and Protocols), vol 1178. Humana Press, New York, NY); (7) Histological staining of processes associated spatially with eosinophils such as degranulation, Eosinophil Extracellular Traps (EETs) and/or specific proteins among those (Galectin 10 for example).
The diagnostic or companion diagnostic devices may incorporate such methods to determine the presence, absolute or relative concentration, or relative or absolute number of eosinophils. By determining the he presence, absolute or relative concentration, or relative or absolute number of eosinophils, the devices may be used with other methods of the invention. By way of example and not limitation, such other methods may include the methods of treating aging-associated impairments/neurodegenerative disease recited herein. In some embodiments, the aging-associated impairment is an aging-associated impairment in cognitive ability in an individual, i.e., an aging-associated impairment. Such aging-associated impairments may include by way of example and not limitation a neurodegenerative condition such as Alzheimer’s disease, Parkinson’s disease, Dementia with Lewy Bodies, frontotemporal dementia, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, vascular dementia, and the like. Such aging-associated impairments can include cognitive impairments and/or motor impairment or decline.
An embodiment of the invention includes treating a subject diagnosed with an aging-associated impairment with a therapeutically effective amount of at least one of the compounds of the invention disclosed herein in conjunction with a diagnostic or companion diagnostic device. Another embodiment of the invention includes treating said subject with a therapeutically effective amount of Compound 1 disclosed herein in conjunction with a diagnostic device. Said embodiments of the devices may be used for example to determine or detect the eosinophil presence, absolute or relative concentration, or absolute or relative number in a blood or tissue sample of a subject. Another embodiment performs a step of detecting or determining the eosinophil presence, absolute or relative concentration, or absolute or relative number in a blood or tissue sample of a subject before, during, or after treatment.
The experimental figures herein report that the Parkinson’s Disease mammalian model of synuclein overexpression results in decreased eosinophils, which are restored to levels in non-transgenic mice with Compound 1 treatment, suggesting beneficial immune modulation in this model of Parkinson’s disease. This also suggests that determining eosinophil levels in Parkinson’s Disease patients treated with Compound 1 can be a biomarker for the disease, including determining the level of progression, stasis, or regression of the disease, as well as treatment efficacy. (See, e.g. Figures 44A and 44B).
Another embodiment performs the step of detecting or determining the eosinophil presence, absolute or relative concentration, or absolute or relative number in a blood or tissue sample of a subject diagnosed with Parkinson’s Disease before, during, or after treatment. A further embodiment comprises determining the presence, absolute or relative concentration, or absolute or relative number in a blood or tissue sample of a subject diagnosed with Parkinson’s Disease before being treated with a compound of the invention such as Compound 1 in order to obtain a baseline concentration or number. A further embodiment subsequently performs a step of detecting or determining levels of eosinophils after treatment in order to compare such levels to the baseline concentration or number of eosinophils so as to monitor the efficacy of treatment. Comparison of such levels may show an increase or decrease in the number or concentration of eosinophils compared to baseline. Another embodiment of the invention comprises a step of monitoring the progress of the disease or impairment by comparing the number or concentration of eosinophils, where if the number is increased after treatment, there is improvement in the progression of the disease. In another embodiment, improvement may comprise a 1-5% increase over baseline in the number or concentration of eosinophils in a subject’s blood or tissue, a 5-10% increase; a 11-15% increase; a 16-20% increase; a 21- 25% increase; a 26-30% increase; a 31-35% increase; a 36-40% increase; a 41-45% increase; 46-50% increase; a 51-55% increase; a 56-60% increase; a 61-65% a 66-70% increase; a 71-75% increase; a 76- 80% increase; an 81-85% increase; an 86-90% increase; a 91-95% increase; a 96-100% increase; and increases of 1-1.5x, l.5-2x, 2-2.5x, 2.5-3x, 3-3.5x, 3.5-4x, 4-4.5x, 4.5-5x, 5-5.5x, 5.5-6x, 6-6.5x, 6.5-7x, 7-7.5x, 7.5-8x, 8-8.5x, 8.5-9x, 9-9.5x, 9.5-l0x, and greater than lOx.
Another embodiment of the invention includes diagnosing Parkinson’s Disease by determining the baseline in the number or concentration of eosinophils in a subject’s blood or tissue and comparing that to standard numbers or concentrations of eosinophils in a population without Parkinson’s Disease who have normal eosinophil counts. It is known in the art that an eosinophil count is the number of eosinophils in the body. For adults, a normal eosinophil count is between 30 and 350 but can be up to 500 cubic millimeters (mm3) in the blood. (See Medical News Today, Dec 2018 available at: https://www.medicalnewstoday.com/articles/323868.php which is herein incorporated by reference in its entirety). A count of more than 500 mm3 in the blood is considered eosinophilia. Lower than normal counts of eosinophils occur in some diseases such as alcoholism and overprotection of cortisol. (Id.) An aspect of the invention detects or determines the numbers or concentrations of eosinophils in a subject suspected of having Parkinson’s Disease. If the numbers or concentrations of eosinophils in the subject is lower than normal (e.g. 30 mm3 in the blood), then the result may be used by a care-giver to determine the diagnosis of the disease. a. Compounds
The methods of the invention further comprise administration to a subject of the compounds that follow. In the groups, radicals, or moieties defined in this“Compounds” section, the number of carbon atoms is often specified preceding the group, for example, Ci-6 alkyl means an alkyl group or radical having 1 to 6 carbon atoms. In general, for groups comprising two or more subgroups which are disclosed in this “Compounds” section, the last-named group is the radical attachment point, for example, "thioalkyl" means a monovalent radical of the formula HS-Alk-. Unless otherwise specified below, conventional definitions of terms control and conventional stable atom valences are presumed and achieved in all formulas and groups. An embodiment of the invention further comprises administration to a subject of the compounds of formula 1, wherein
Figure imgf000023_0001
A is CH2, O or N-Ci-6-alkyl;
R1 is selected from
• NHR1 *, NMeR1 1;
• NHR1 2, NMeR1 2;
• NHCH2-R1 3;
• NH-C3 6-cycloalkyl, whereas optionally one carbon atom is replaced by a nitrogen atom, whereas the ring is optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, O-Ci-6-alkyl, NHSCh-phenyl, NHCONH-phenyl, halogen, CN, S02-Ci-6-alkyl, COO-Ci-6-alkyl;
• a C9 or 10-bicyclic-ring, whereas one or two carbon atoms are replaced by nitrogen atoms and the ring system is bound via a nitrogen atom to the basic structure of formula 1 and whereas the ring system is optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, COO-Ci-6-alkyl, Ci-6-haloalkyl, O-Ci-6-alkyl, NO2, halogen, CN, NHS02-Ci-6-alkyl, methoxy-phenyl;
• a group selected from NHCH(pyridinyl)CH2COO-Ci-6-alkyl,
NHCH(CH20-Ci-6-alkyl)-benzoimidazolyl, optionally substituted with halogen or CN;
• or l-aminocyclopentyl, optionally substituted with methyl-oxadiazole
R1·1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C2 6-alkenyl, C2 6-alkynyl, Ci-6-haloalkyl, Ci-e-alkylene-OH, C2 e-alkenylene-OH, C2 6-alkynylcnc-OH, CH2CON(Ci-6-alkyl)2,
CH2NHCONH-C3 6-cycloalkyl, CN, CO-pyridinyl, CONR" ' R" 2, COO-Cw-alkyl, N(S02-Ci-6-alkyl)(CH2C0N(Ci-4-alkyl)2) O-C , r, -alkyl, O-pyridinyl, S02-C , 6-alkyl, SCh-Ci-e-alkylen-OH, SO2-C3 6-cycloalkyl, SCh-piperidinyl, SC NH-Ci-e-alkyl, S02N(Ci-6-alkyl)2, halogen, CN, CO-morpholinyl, CH2-pyridinyl or a heterocyclic ring optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, NHCi-e-alkyl and =0;
R1 1 1 H, Ci-6-alkyl, C3 6-cycloalkyl, Ci-6-haloalkyl, CH2CON(Ci-6-alkyl,)2, CthCO-azetindinyl, Ci-6-alkylen-C3 6-cycloalkyl, CH2-pyranyl, CH2-tetrahydro- furanyl, Cth-furanyl, Ci e-alkylen-OH or thiadiazolyl, optionally substituted with Ci-6-alkyl;
R1 1 2 H, Ci-6-alkyl, SChCi-e-alkyl; or R1 1 1 and R1 1 2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one N or O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, Ci 4-alkylene-OH, OH, =0; or
R1·1 is phenyl, wherein two adjacent residues are together forming a five- or six-membered carbocyclic aromatic or non-aromatic ring, optionally containing independently from each other one or two N, S, or SO2, replacing a carbon atom of the ring, wherein the ring is optionally substituted with Ci-4-alkyl or =0;
R1·2 is selected from
• heteroaryl, optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C2 6-alkenyl, C2 6-alkynyl, C3 6-cycloalkyl, CH2COO-C1 e-alkyl, CONR1 2 'R1 2 2, COR1 2 3, COO-Ci e-alkyl, CONH2, O-Ci e-alkyl, halogen, CN, S02N(Ci-6-alkyl)2 or heteroaryl optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl;
• heteroaryl, optionally substituted with a five- or six-membered carbocyclic non aromatic ring containing independently from each other two N, O, S, or SO2, replacing a carbon atom of the ring;
• a aromatic or non-aromatic C9 or 10-bicyclic-ring, whereas one or two carbon atoms are replaced by N, O or S each optionally substituted with one or two residues selected from the group consisting of N(Ci-6-alkyl)2, CONH-Ci 6-alkyl, =0;
• a heterocyclic non-aromatic ring, optionally substituted with pyridinyl; • 4,5-dihydro-naphtho[2,l-d]thiazole, optionally substituted with NHCO-C i 6-alkyl,
R1 2 1 H, Ci-6-alkyl, Ci-6-alkylene-C3 6-cycloalkyl, Ci-4-alkylene -phenyl, Ci-4-alkylene- furanyl, C3 6-cycloalkyl, Ci-4-alkylene-0-Ci-4-alkyl, Ci-6-haloalkyl or a five- or six-membered carbocyclic non-aromatic ring, optionally containing independently from each other one or two N, O, S, or SO2, replacing a carbon atom of the ring, optionally substituted with 4-cyclopropylmethyl-piperazinyl
R1 2 2 H, Ci-6-alkyl;
R1 2 3 a five- or six-membered carbocyclic non-aromatic ring, optionally containing independently from each other one or two N, O, S, or SO2, replacing a carbon atom of the ring;
R1·3 is selected from phenyl, heteroaryl or indolyl, each optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C3 6-cycloalkyl, O-Ci-6-alkyl, O-Ci-6-haloalkyl, phenyl, heteroaryl;
R2 is selected from the group consisting of Ci-6-alkylene-phenyl, Ci-6-alkylene -naphthyl, and Ci-6-alkylene -heteroaryl; each optionally substituted with one, two or three residues selected from the group consisting of Ci-6-alkyl, Ci-6-haloalkyl, O-Ci-6-alkyl, O-Ci-6-haloalkyl, halogen;
R3 is H, Ci-6-alkyl;
R4 is H, Ci-6-alkyl; or R3 and R4 together are forming a CH2-CH2 group.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 (above), wherein
A is CH2, O or N-Ci-4-alkyl;
R1 is selected from
• NHR1 ', NMeR1 ';
• NHR1 2, NMeR1 2;
• NHCH2-R1 3;
R1·1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C2 6-alkenyl, C2 6-alkynyl, Ci-6-haloalkyl, Ci e-alkylene-OH, C2 6-alkenylene-OH, C2 e-alkynylene-OH, CH2CON(Ci-6-alkyl)2, CH2NHCONH-C3 6-cycloalkyl, CN, CO-pyridinyl, CONR' " R" 2, COO-C , e-alkyl, N(S02-Ci-6-alkyl)(CH2C0N(Ci-4-alkyl)2) O-C , e-alkyl, O-pyridinyl, S02-C, e-alkyl, S02-Ci-6-alkylen-0H, SO2-C3 6-cycloalkyl, S02-piperidinyl, S02NH-Ci-6-alkyl, S02N(Ci-6-alkyl)2, halogen, CN, CO-morpholinyl, CH2-pyridinyl or a heterocyclic ring optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, NHCi 6-alkyl,, =0;
R1 1 1 H, Ci-6-alkyl, C3 6-cycloalkyl, Ci-6-haloalkyl, CH2CON(Ci-6-alkyl,)2, CH2CO-azetindinyl, Ci-6-alkylen-C3 6-cycloalkyl, CH2-pyranyl, CH2-tetrahydro- furanyl, CH2-furanyl, Ci e-alkylen-OH or thiadiazolyl, optionally substituted with Ci-6-alkyl;
R1 1 2 H, Ci-6-alkyl, SCkCi-e-alkyl; or R1 1 1 and R1 1 2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one N or O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, Ci 4-alkylene-OH, OH, =0; or
R1·1 is phenyl, wherein two adjacent residues are together forming a five- or six-membered carbocyclic aromatic or non-aromatic ring, optionally containing independently from each other one or two N, S, or S02, replacing a carbon atom of the ring, wherein the ring is optionally substituted with Ci-4-alkyl or =0;
R1·2 is selected from
• heteroaryl, optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C2 6-alkenyl, C2 6-alkynyl, C3 6-cycloalkyl, CH2COO-C1 e-alkyl, CONR1 2 'R1 2 2, COR1 2 3, COO-Ci e-alkyl, CONH2, O-Ci e-alkyl, halogen, CN, S02N(Ci-4-alkyl)2 or heteroaryl optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl;
• heteroaryl, optionally substituted with a five- or six-membered carbocyclic non aromatic ring containing independently from each other two N, O, S, or S02, replacing a carbon atom of the ring; R1 2 1 H, Ci-6-alkyl, Ci-6-alkylene-C3 6-cycloalkyl, Ci-4-alkylene -phenyl, Ci-4-alkylene- furanyl, C3 6-cycloalkyl, Ci-4-alkylene-0-Ci-4-alkyl, Ci-6-haloalkyl or a five- or six-membered carbocyclic non-aromatic ring, optionally containing independently from each other one or two N, O, S, or SO2, replacing a carbon atom of the ring, optionally substituted with 4-cyclopropylmethyl-piperazinyl
R1 2 2 H, Ci-6-alkyl;
R1 2 3 a fjve_ or six-membered carbocyclic non-aromatic ring, optionally containing independently from each other one or two N, O, S, or SO2, replacing a carbon atom of the ring;
R1·3 is selected from phenyl, heteroaryl or indolyl, each optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C3 6-cycloalkyl, O-Ci-6-alkyl, O-Ci-6-haloalkyl, phenyl, heteroaryl; where in some instances R1 3 is selected from phenyl, pyrazolyl, isoxazolyl, pyridinyl, pyrimidinyl, indolyl or oxadiazolyl, each optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C3 -6 -cycloalkyl, O-Ci-6-alkyl, O-Ci-6-haloalkyl, phenyl, pyrrolidinyl;
R2 is selected from the group consisting of Ci-6-alkylene-phenyl, Ci-6-alkylene -naphthyl, and Ci-6-alkylene-thiophenyl; each optionally substituted with one, two or three residues selected from the group consisting of Ci-6-alkyl, Ci-6-haloalkyl, O-Ci-6-alkyl, O-Ci-6-haloalkyl, halogen;
R3 is H, Ci-4-alkyl;
R4 is H, Ci-4-alkyl; or R3 and R4 together are forming a CH2-CH2 group.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 (above), wherein
A is CH2, O or N-Ci-4-alkyl;
R1 is selected from
• NHR1 ', NMeR1 1;
R1·1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C2 6-alkenyl, C2 6-alkynyl, Ci-6-haloalkyl, Ci e-alkylene-OH, C2 6-alkenylene-OH, C2 e-alkynylene-OH, CH2CON(Ci-6-alkyl)2, CH2NHCONH-C3 6-cycloalkyl, CN, CO-pyridinyl, CONR ' " R " 2, COO-C i r, -alkyl, N(S02-Ci-6-alkyl)(CH2C0N(Ci-4-alkyl)2) O-C , r, -alkyl, O-pyridinyl, S02-C , f,-alkyl, S02-Ci-6-alkylen-0H, SO2-C3 6-cycloalkyl, S02-piperidinyl, S02NH-Ci-6-alkyl, S02N(Ci-6-alkyl)2, halogen, CN, CO-morpholinyl, CH2-pyridinyl or a heterocyclic ring optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, NHC i 6-alkyl,, =0;
R1 1 1 H, Ci-6-alkyl, C3 6-cycloalkyl, Ci-6-haloalkyl, CH2CON(Ci-6-alkyl,)2, CH2CO-azetindinyl, Ci-6-alkylen-C3 6-cycloalkyl, CH2-pyranyl, CH2-tetrahydro- furanyl, CH2-furanyl, Ci e-alkylen-OH or thiadiazolyl, optionally substituted with Ci-6-alkyl;
R1 1 2 H, Ci-6-alkyl, SCkCi-e-alkyl; or R1 1 1 and R1 1 2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one N or O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, Ci 4-alkylene-OH, OH, =0; or
R1·1 is phenyl, wherein two adjacent residues are together forming a five- or six-membered carbocyclic aromatic or non-aromatic ring, optionally containing independently from each other one or two N, S, or S02, replacing a carbon atom of the ring, wherein the ring is optionally substituted with Ci-4-alkyl or =0;
R2 is selected from the group consisting of Ci-6-alkylene-phenyl, Ci-6-alkylene -naphthyl, and Ci-6-alkylene-thiophenyl; each optionally substituted with one, two or three residues selected from the group consisting of Ci-6-alkyl, Ci-6-haloalkyl, O-Ci-6-alkyl, O-Ci-6-haloalkyl, halogen;
R3 is H, Ci-4-alkyl;
R4 is H, Ci-4-alkyl; or R3 and R4 together are forming a CH2-CH2 group.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
A is CH2, O or N-Ci-4-alkyl; R1 is selected from
• NHR1 2, NMeR1 2;
R1 2 is selected from
• heteroaryl, optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C2 6-alkenyl, C2 6-alkynyl, C3 6-cycloalkyl, CH2COO-C1 e-alkyl, CONR1 2 'R1 2 2, COR1 2 3, COO-Ci e-alkyl, CONH2, O-Ci e-alkyl, halogen, CN, SC>2N(Ci-4-alkyl)2 or heteroaryl optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl;
• heteroaryl, optionally substituted with a five- or six-membered carbocyclic non aromatic ring containing independently from each other two N, O, S, or SO2, replacing a carbon atom of the ring;
• benzothiazolyl, indazolyl, dihydro-indolyl, indanyl, tetrahydro-quinolinyl, each optionally substituted with one or two residues selected from the group consisting of N(Ci-6-alkyl)2, CONH-C, 6-alkyl, =0;
• piperidinyl, optionally substituted with pyridinyl;
• 4,5-dihydro-naphtho[2,l-d]thiazole, optionally substituted with NHCO-Ci 6-alkyl,
R1·2·1 H, Ci-6-alkyl, Ci-6-alkylene-C3 6-cycloalkyl, Ci-4-alkylene -phenyl, Ci-4-alkylene- furanyl, C3 6-cycloalkyl, Ci-4-alkylene-0-Ci-4-alkyl, Ci-6-haloalkyl or a five- or six-membered carbocyclic non-aromatic ring, optionally containing independently from each other one or two N, O, S, or SO2, replacing a carbon atom of the ring, optionally substituted with 4-cyclopropylmethyl-piperazinyl
R1 2 2 H, Ci-6-alkyl;
R1 2 3 a five- or six-membered carbocyclic non-aromatic ring, optionally containing independently from each other one or two N, O, S, or SO2, replacing a carbon atom of the ring;
R2 is selected from the group consisting of Ci-6-alkylene-phenyl, Ci-6-alkylene -naphthyl, and Ci-6-alkylene-thiophenyl; each optionally substituted with one, two or three residues selected from the group consisting of Ci-6-alkyl, Ci-6-haloalkyl, O-Ci-6-alkyl, O-Ci-6-haloalkyl, halogen;
R3 is H, Ci-4-alkyl; R4 is H, Ci-4-alkyl; or R3 and R4 together are forming a CH2-CH2 group.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 (above), wherein
A is CH2, O or N-Ci-4-alkyl;
R1 is selected from
• NHR1 2, NMeR1·2;
R1 2 is selected from
• heteroaryl, optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C2 6-alkenyl, C2 6-alkynyl, C3 6-cycloalkyl, CH2COO-C1 e-alkyl, CONR1 2 'R1 2 2, COR1 2 3, COO-Ci e-alkyl, CONH2, O-Ci e-alkyl, halogen, CN, SC>2N(Ci-4-alkyl)2 or heteroaryl optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl;
• heteroaryl, optionally substituted with a five- or six-membered carbocyclic non aromatic ring containing independently from each other two N, O, S, or SO2, replacing a carbon atom of the ring;
R1·2·1 H, Ci-6-alkyl, Ci-6-alkylene-C3 6-cycloalkyl, Ci-4-alkylene -phenyl, Ci-4-alkylene- furanyl, C3 6-cycloalkyl, Ci-4-alkylene-0-Ci-4-alkyl, Ci-6-haloalkyl or a five- or six-membered carbocyclic non-aromatic ring, optionally containing independently from each other one or two N, O, S, or SO2, replacing a carbon atom of the ring, optionally substituted with 4-cyclopropylmethyl-piperazinyl
R1 2 2 H, Ci-e-alkyl;
R1 2 3 a fjve_ or six-membered carbocyclic non-aromatic ring, optionally containing independently from each other one or two N, O, S, or SO2, replacing a carbon atom of the ring;
R2 is selected from the group consisting of Ci-6-alkylene-phenyl, Ci-6-alkylene -naphthyl, and Ci-6-alkylene-thiophenyl; each optionally substituted with one, two or three residues selected from the group consisting of Ci-6-alkyl, Ci-6-haloalkyl, O-Ci-6-alkyl, O-Ci-6-haloalkyl, halogen;
R3 is H, Ci-4-alkyl; R4 is H, Ci-4-alkyl; or R3 and R4 together are forming a CH2-CH2 group.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
A is CH2, O or N-Ci-4-alkyl;
R1 is selected from
• NHCH2-R1 3;
R1 3 is selected from phenyl, pyrazolyl, isoxazolyl, pyridinyl, pyrimidinyl, indolyl or oxadiazolyl, each optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C3 6-cycloalkyl, O-Ci-6-alkyl, O-Ci-6-haloalkyl, phenyl, pyrrolidinyl;
R2 is selected from the group consisting of Ci-6-alkylene-phenyl, Ci-6-alkylene -naphthyl, and Ci-6-alkylene-thiophenyl; each optionally substituted with one, two or three residues selected from the group consisting of Ci-6-alkyl, Ci-6-haloalkyl, O-Ci-6-alkyl, O-Ci-6-haloalkyl, halogen;
R3 is H, Ci-4-alkyl;
R4 is H, Ci-4-alkyl; or R3 and R4 together are forming a CH2-CH2 group.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
A is CH2, O or N-Ci-4-alkyl;
R1 is selected from
• NHR1 ', NMeR1·1;
• NHR1 2, NMeR1 2;
• NHCH2-R1 3;
• NH-C3 6-cycloalkyl, whereas optionally one carbon atom is replaced by a nitrogen atom, whereas the ring is optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, O-Ci-6-alkyl, NHSCh-phenyl, NHCONH-phenyl, halogen, CN, S02-Ci-6-alkyl, COO-Ci-6-alkyl;
• a C9 or 10-bicyclic-ring, whereas one or two carbon atoms are replaced by nitrogen atoms and the ring system is bound via a nitrogen atom to the basic structure of formula 1 and whereas the ring system is optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, COO-Ci-6-alkyl, Ci-6-haloalkyl, O-Ci-6-alkyl, NO2, halogen, CN, NHS02-Ci-6-alkyl, m-methoxyphenyl;
• a group selected from NHCH(pyridinyl)CH2COO-Ci-6-alkyl,
NHCH(CH20-Ci-6-alkyl)-benzoimidazolyl, optionally substituted with Cl;
• or l-aminocyclopentyl, optionally substituted with methyl-oxadiazolyl;
R1·1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, Ci-6-haloalkyl, CH2CON(Ci-6-alkyl)2,
CH2NHCONH-C3 6-cycloalkyl, CN, CONR1 1R1 1 2, COO-Ci-e-alkyl, O-Cw-alkyl, S02-Ci-6-alkyl, SCh-Ci-e-alkylen-OH, SO2-C3 6-cycloalkyl, S02-piperidinyl, S02NH-Ci-6-alkyl, SC>2N(Ci-6-alkyl)2, halogen, CN, CO-morpholinyl, CH2-pyridinyl or a heterocyclic ring optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, NHC i 6-alkyl,, =0;
R1 1 1 H, Ci-6-alkyl, C3 6-cycloalkyl, Ci-6-haloalkyl, CH2CON(Ci-6-alkyl,)2, CH2CO-azetindinyl, Ci-6-alkylen-C3 6-cycloalkyl, CH2-pyranyl, Cth-tetrahydro- furanyl, CH2-furanyl, Ci e-alkylen-OH or thiadiazolyl, optionally substituted with Ci-6-alkyl;
R1 1 2 H, Ci-6-alkyl, SOzCi-e-alkyl; or R1 1 1 and R1 1 2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of CH2OH
R1·2 is selected from
• heteroaryl, optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C3 6-cycloalkyl, CthCOO-Ci-e-alkyl, CONR1 2 1R1 2 2, COO-Ci-6-alkyl, CONH2, O-Ci-6-alkyl, halogen, CN, CO-pyrrolidinyl, CO-morpholinyl or heteroaryl optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl; • benzothiazolyl, indazolyl, dihydro-indolyl, indanyl, tetrahydro-quinolinyl, each optionally substituted with one or two residues selected from the group consisting of N(Ci-6-alkyl)2> CONH-C, ,,-alkyk =0;
• piperidinyl, optionally substituted with pyridinyl;
• 4,5-dihydro-naphtho[2,l-d]thiazole, optionally substituted with NHCO-Ci 6-alkyl,
R1·2·1 H, Ci-e-alkyl;
R1 2 2 H, Ci-e-alkyl;
R1 3 is selected from phenyl, pyrazolyl, isoxazolyl, pyrimidinyl, indolyl or oxadiazolyl, each optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C3 6-cycloalkyl, O-Ci-6-alkyl, O-Ci-6-haloalkyl;
R2 is selected from Ci-6-alkylene -phenyl or Ci-6-alkylene-naphthyl, both optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, Ci-6-haloalkyl, O-Ci-6-alkyl, O-Ci-6-haloalkyl, halogen; or Cth-thiophenyl, optionally substituted with one or two residues selected from the group consisting of halogen;
R3 is H, Ci-4-alkyl;
R4 is H, Ci-4-alkyl; or R3 and R4 together are forming a CH2-CH2 group.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
A is CH2, O or NMe;
R1 is selected from
• NHR1 ', NMeR1 1;
• NHR1 2, NMeR1 2;
• NHCH2-R1 3;
• NH-cyclohexyl, optionally substituted with one or two residues selected from the group consisting of Ci-4-alkyl, NHSCh-phenyl, NHCONH-phenyl, halogen;
• NH-pyrrolidinyl, optionally substituted with one or two residues selected from the group consisting of SCh-Ci r-alkyl, COO-Ci-4-alkyl; • piperidinyl, optionally substituted with one or two residues selected from the group consisting of NHS02-Ci-4-alkyl, m-methoxyphenyl;
• dihydro-indolyl, dihydro-isoindolyl, tetrahydro-quinolinyl or tetrahydro-isoquinolinyl, optionally substituted with one or two residues selected from the group consisting of Ci-4-alkyl, COO-Ci-4-alkyl, Ci-4-haloalkyl, O-Ci-4-alkyl, NO2, halogen;
• a group selected from NHCH(pyridinyl)CH2COO-Ci-4-alkyl,
NHCH(CH20-Ci-4-alkyl)-benzoimidazolyl, optionally substituted with Cl;
• or l-aminocyclopentyl, optionally substituted with methyl-oxadiazolyl;
R1·1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Ci-4-alkyl, Ci-4-haloalkyl, CH2CON(Ci-4-alkyl)2,
CH2NHCONH-C3 6-cycloalkyl, CN, CONR' " R" 2, COO-C, 4-alkyl, O-C, 4-alkyl, S02-Ci-4-alkyl, S02-Ci-4-alkylen-0H, SO2-C3 6-cycloalkyl, S02-piperidinyl, S02NH-Ci-4-alkyl, SC>2N(Ci-4-alkyl)2, halogen, CO-morpholinyl, CH2-pyridinyl, or imidazolidinyl, piperidinyl, oxazinanyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyridinyl, pyrimidinyl, each optionally substituted with one or two residues selected from the group consisting of Ci-4-alkyl, NHCi-4-alkyl,, =0;
R1 1 1 H, Ci-6-alkyl, C3 6-cycloalkyl, Ci-4-haloalkyl, CH2CON(Ci-4-alkyl,)2, CH2CO-azetindinyl, Ci-4-alkylen-C3 6-cycloalkyl, CH2-pyranyl, Cth-tetrahydro- furanyl, CH2-furanyl, Ci-4-alkylen-OH or thiadiazolyl, optionally substituted with Ci-4-alkyl;
R1 1 2 H, Ci-4-alkyl, SChCi^-alkyl; or R1 1 1 and R1 1 2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of CH2OH
R1·2 is selected from
• pyridinyl, pyridazinyl, pyrrolyl, pyrazolyl, isoxazolyl, thiazolyl, thiadiazolyl, optionally substituted with one or two residues selected from the group consisting of Ci-4-alkyl, C3-6-cycloalkyl, CH2COO-Ci-4-alkyl, CONR1 2 1R1 2 2, COO-Ci-4-alkyl, CONH2, O-Ci-4-alkyl, halogen, CO-pyrrolidinyl, CO-morpholinyl or pyrazolyl, triazolyl, tetrazolyl, isoxazolyl, oxadiazolyl, each optionally substituted with one or two residues selected from the group consisting of Ci-4-alkyl; • benzothiazolyl, indazolyl, dihydro-indolyl, indanyl, tetrahydro-quinolinyl, each optionally substituted with one or two residues selected from the group consisting of N(Ci-4-alkyl)2, CONH-C, 4-alkyl, =0;
• piperidinyl, optionally substituted with pyridinyl;
• 4,5-dihydro-naphtho[2,l-d]thiazole, optionally substituted with NHCO-Ci-4-alkyl,
R1·2·1 H, Ci-4-alkyl;
R1 2 2 H, Ci-4-alkyl;
R1·3 is selected from phenyl, pyrazolyl, isoxazolyl, pyrimidinyl, indolyl or oxadiazolyl, each optionally substituted with one or two residues selected from the group consisting of Ci-4-alkyl, C3 6-cycloalkyl, O-Ci-4-alkyl, O-Ci-4-haloalkyl;
R2 is selected from Ci-6-alkylene -phenyl or Ci-6-alkylene-naphthyl, both optionally substituted with one or two residues selected from the group consisting of Ci-4-alkyl, Ci-4-haloalkyl, O-Ci-4-haloalkyl, halogen; or CFb-thiophenyl, optionally substituted with one or two residues selected from the group consisting of halogen;
R3 is H;
R4 is H; or R3 and R4 together are forming a CH2-CH2 group.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
A is CH2, O or NMe;
R1 is selected from
• NHR1 ', NMeR1 ';
• NHR1 2, NMeR1·2;
• NHCH2-R1 3;
• NH-piperidinyl, optionally substituted with pyridinyl;
• NH-cyclohexyl, optionally substituted with one or two residues selected from the group consisting of t-Bu, NHSCh-phenyl, NHCONH -phenyl, F; • NH-pyrrolidinyl, optionally substituted with one or two residues selected from the group consisting of S02Me, COO-t-Bu;
• piperidinyl, optionally substituted with one or two residues selected from the group consisting of NHSCh-n-Bu, m-methoxyphenyl;
• dihydro-indolyl, dihydro-isoindolyl, tetrahydro-quinolinyl or tetrahydro-isoquinolinyl, optionally substituted with one or two residues selected from the group consisting of Me, COOMe, CF3, OMe, N02, F, Br;
• a group selected from NFlCF[(pyridinyl)CF[2COOMe, NFlCF[(CF[20Me)-benzoimidazolyl, optionally substituted with Cl;
• or l-aminocyclopentyl, optionally substituted with methyl-oxadiazolyl;
R1·1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, t-Bu, CF3, CFl2CONMe2, CFFNFlCONFl-cyclohexyl, CN, CONR1 1R1 1 2, COOMe, COOEt, OMe, S02Me, S02CH2CH20H, S02Et, S02-cyclopropyl, S02-piperidinyl, S02NFlEt, S02NMeEt, F, Cl, CO-morpholinyl, CFF-pyridinyl, or imidazolidinyl, piperidinyl, oxazinanyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyridinyl, pyrimidinyl, each optionally substituted with one or two residues selected from the group consisting of Me, NFlMe, =0;
R1 1 1 H, Me, Et, t-Bu, i-Pr, cyclopropyl, CH2-i-Pr, CH2-t-Bu, CH(CH3)CH2CH3, CFFCFh^, C]¾CONMe2, CFl2CO-azetindinyl, CFl2-cyclopropyl, CFl2-cyclobutyl, CFl2-pyranyl, CFb-tetrahydrofuranyl, CFl2-furanyl, CF12CF120F1 or thiadiazolyl, optionally substituted with Me;
R1 1 2 H, Me, Et, S02Me, S02Et or R1 1 1 and R1 1 2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of CFFOFl
R1·2 is selected from
• pyridinyl, pyrrolyl, pyrazolyl, isoxazolyl, thiazolyl, thiadiazolyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, Pr, Bu, cyclopropyl, CH2COOEt, CONR1 2 'R1 2 2, COOMe, COOEt, CONH2, OMe, Cl, Br CO-pyrrolidinyl, CO-morpholinyl or pyrazolyl, triazolyl, tetrazolyl, isoxazolyl, oxadiazolyl, each optionally substituted Me; • benzothiazolyl, indazolyl, dihydro-indolyl, indanyl, tetrahydro-quinolinyl, each optionally substituted with one or two residues selected from the group consisting of NMe2, CONHMe, =0;
• 4,5-dihydro-naphtho[2,l-d]thiazole, optionally substituted with NHCOMe,
R1 2 1 H, Me;
R1 2 2 H, Me;
R1·3 is selected from phenyl, pyrazolyl, isoxazolyl, pyrimidinyl, indolyl or oxadiazolyl, each optionally substituted with one or two residues selected from the group consisting of Me, Et, Pr, cyclopentyl, OMe, OCHF2;
R2 is selected from Ctb-phenyl or CIE-naphthyl, both optionally substituted with one or two residues selected from the group consisting of CH3, CF3, OCF3, F, Cl, Br, Et; or CIF-thiophenyl, optionally substituted with one or two residues selected from the group consisting of Cl, Br;
R3 is H;
R4 is H; or R3 and R4 together are forming a CH2-CH2 group.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
A is CH2, O or NMe;
R1 is selected from
• NHR1 1
• NHR1 2,
R1·1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, Pr, Bu, CF3, CH2CONMe2, CH2NHCONH-cyclohexyl, CN, CONR1 1 'R1 1 2, COOMe, COOEt, OMe, S02Me, S02CH2CH20H, S02Et, S02-cyclopropyl, S02-piperidinyl, S02NHEt, S02NMeEt, F, Cl, CO-morpholinyl, CH2-pyridinyl, or imidazolidinyl, piperidinyl, oxazinanyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyridinyl, pyrimidinyl, each optionally substituted with one or two residues selected from the group consisting of Me, NHMe, =0; R1 1 1 H, Me, Et, t-Bu, i-Pr, cyclopropyl, CH2-i-Pr, CH2-t-Bu, CH(CH3)CH2CH3,
CH2CHF2, CH2CONMe2, CH2CO-azetindinyl, CH2-cyclopropyl, CH2-cyclobutyl, CH2-pyranyl, CH2-tetrahydrofuranyl, CH2-furanyl, CH2CH2OH or thiadiazolyl, optionally substituted with Me;
R1 1 2 H, Me, Et, S02Me, S02Et or R1 1 1 and R1 1 2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of CH2OH
R1·2 is selected from
• pyridinyl, pyrrolyl, pyrazolyl, isoxazolyl, thiazolyl, thiadiazolyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, Pr, Bu, cyclopropyl, CH2COOEt, CONR1 2 'R1 2 2, COOMe, COOEt, CONH2, OMe, Cl, Br CO-pyrrolidinyl, CO-morpholinyl or pyrazolyl, triazolyl, tetrazolyl, isoxazolyl, oxadiazolyl, each optionally substituted Me;
• benzothiazolyl, indazolyl, dihydro-indolyl, indanyl, tetrahydro-quinolinyl, each optionally substituted with one or two residues selected from the group consisting of NMe2, CONHMe, =0;
• 4,5-dihydro-naphtho[2,l-d]thiazole, optionally substituted with NHCOMe,
R1 2 1 H, Me;
R1 2 2 H, Me;
R2 is selected from CH2-phenyl or CH2-naphthyl, both optionally substituted with one or two residues selected from the group consisting of CH3, CF3, OCF3, F, Cl, Br, Et
R3 is H;
R4 is H.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
A is CH2, O or NMe;
R1 is selected from
• NHR1 ', NMeR1 1; • NHR1 2, NMeR1·2;
• NHCH2-R1 3;
R1·1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, Pr, Bu, CF3, CH2CONMe2, CH2NHCONH-cyclohexyl, CN, CONR1 1 'R1 1 2, COOMe, COOEt, OMe, S02Me, S02CH2CH20H, S02Et, SCE-cyclopropyl, S02-piperidinyl, S02NHEt, S02NMeEt, F, Cl, CO-morpholinyl, Ctb-pyridinyl, or imidazolidinyl, piperidinyl, oxazinanyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyridinyl, pyrimidinyl, each optionally substituted with one or two residues selected from the group consisting of Me, NHMe, =0;
R1 1 1 H, Me, Et, Pr, Bu, cyclopropyl, CH2-Pr, CH2-Bu, CH(CH3)CH2CH3, CH2CHF2, CH2CONMe2, CPECO-azetindinyl, CPE-cyclopropyl, CH2-cyclobutyl, CH2-pyranyl, CH2-tetrahydrofuranyl, CH2-furanyl, CH2CH2OH or thiadiazolyl, optionally substituted with Me;
R1 1 2 H, Me, Et, S02Me, S02Et or R1 1 1 and R1 1 2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of CH2OH
R1·2 is selected from
• pyridinyl, pyrrolyl, pyrazolyl, isoxazolyl, thiazolyl, thiadiazolyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, Pr, Bu, cyclopropyl, CH2COOEt, CONR1 2 'R1 2 2, COOMe, COOEt, CONH2, OMe, Cl, Br CO-pyrrolidinyl, CO-morpholinyl or pyrazolyl, triazolyl, tetrazolyl, isoxazolyl, oxadiazolyl, each optionally substituted Me;
• benzothiazolyl, indazolyl, dihydro-indolyl, indanyl, tetrahydro-quinolinyl, each optionally substituted with one or two residues selected from the group consisting of NMe2, CONHMe, =0;
• 4,5-dihydro-naphtho[2,l-d]thiazole, optionally substituted with NHCOMe,
R1 2 1 H, Me;
R1·2·2 H, Me; R1 3 is selected from phenyl, pyrazolyl, isoxazolyl, pyrimidinyl, indolyl or oxadiazolyl, each optionally substituted with one or two residues selected from the group consisting of Me, Et, Pr, cyclopentyl, OMe, OCHF2;
R2 is selected from Ctb-phenyl or CPE-naphthyl, both optionally substituted with one or two residues selected from the group consisting of CH3, CF3, OCF3, F, Cl, Br, Et; or CIF-thiophenyl, optionally substituted with one or two residues selected from the group consisting of Cl, Br;
R3 is H;
R4 is H; or R3 and R4 together are forming a CH2-CH2 group.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
A is CH2, O or NMe;
R1 is selected from
• NHR1 ', NMeR1 1;
R1·1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, t-Bu, CF3, CH2CONMe2, CH2NHCONH-cyclohexyl, CN, CONR1 1 'R1 1 2, COOMe, COOEt, OMe, S02Me, S02CH2CH20H, S02Et, S02-cyclopropyl, S02-piperidinyl, S02NHEt, S02NMeEt, F, Cl, CO-morpholinyl, Ctb-pyridinyl, or imidazolidinyl, piperidinyl, oxazinanyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyridinyl, pyrimidinyl, each optionally substituted with one or two residues selected from the group consisting of Me, NHMe, =0;
R1 1 1 H, Me, Et, Bu, Pr, cyclopropyl, CH2-Pr, CH2-Bu, CH(CH3)CH2CH3, CH2CHF2, CH2CONMe2, CPECO-azetindinyl, CPE-cyclopropyl, CPE-cyclobutyl, CPE-pyranyl, CPp-tetrahydrofuranyl, Ctp-furanyl, CH2CH2OH or thiadiazolyl, optionally substituted with Me;
R1·1·2 H, Me, Et, S02Me, S02Et or R1·1·1 and R1·1·2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of CH2OH;
R2 is selected from CFb-phenyl or CFF-naphthyl, both optionally substituted with one or two residues selected from the group consisting of CH3, CF3, OCF3, F, Cl, Br, Et; or CFF-thiophenyl, optionally substituted with one or two residues selected from the group consisting of Cl, Br;
R3 is H;
R4 is H; or R3 and R4 together are forming a CFF-CFF group.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
A is CFb, O or NMe;
R1 is selected from
• NHR1·1, NMeR1 1;
R1·1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, t-Bu, CF3, CFl2CONMe2, CFFNFlCONFl-cyclohexyl, CN, CONR1 1 'R1 1 2, COOMe, COOEt, OMe, S02Me, S02CH2CH20H, S02Et, SCh-cyclopropyl, SCh-piperidinyl, SChNFlEt, SChNMeEt, F, Cl, CO-morpholinyl, CFF-pyridinyl, or imidazolidinyl, piperidinyl, oxazinanyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyridinyl, pyrimidinyl, each optionally substituted with one or two residues selected from the group consisting of Me, NFlMe, =0;
R1 1 1 H, Me, Et, Bu, Pr, cyclopropyl, CH2-Pr, CH2-Bu, CH(CH3)CH2CH3, CH2CHF2, C]¾CONMe2, CFFCO-azetindinyl, CFF-cyclopropyl, CFF-cyclobutyl, CFF-pyranyl, CFb-tetrahydrofuranyl, CFb-furanyl, CFbCFbOFl or thiadiazolyl, optionally substituted with Me;
R1 1 2 H, Me, Et, S02Me, S02Et or R1 1 1 and R1 1 2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of CFFOFl; R2 is defined as in Table 1 shown below;
R3 is H;
R4 is H;
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
A is CH2, O or NMe;
R1 is selected from
• NHR1 NMeR1 1;
R1·1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, t-Bu, CF3, CH2CONMe2, CH2NHCONH-cyclohexyl, CN, CONR1 1 'R1 1 2, COOMe, COOEt, OMe, S02Me, S02CH2CH20H, S02Et, SCE-cyclopropyl, S02-piperidinyl, S02NHEt, SCENMeEt, F, Cl, CO-morpholinyl, CH2-pyridinyl, or imidazolidinyl, piperidinyl, oxazinanyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyridinyl, pyrimidinyl, each optionally substituted with one or two residues selected from the group consisting of Me, NHMe, =0; and R1 1 1 and R1 1 2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of CH2OH;
R2 is defined as in Table 1 shown below;
R3 is H;
R4 is H;
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
A is CH2, O or NMe;
R1 is selected from
• NHR1 ', NMeR1 1; R1·1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, t-Bu, CF3, CH2CONMe2, CH2NHCONH-cyclohexyl, CN, CONR1 1 'R1 1 2, COOMe, COOEt, OMe, F, Cl;
R1 1 1 H, Me, Et, Bu, Pr, cyclopropyl, CH2-Pr, CH2-Bu, CH(CH3)CH2CH3, CH2CHF2, CH2CONMe2, CPECO-azetindinyl, CH2-cyclopropyl, CH2-cyclobutyl, CH2-pyranyl, CH2-tetrahydrofuranyl, CIE-furanyl, CH2CH2OH or thiadiazolyl, optionally substituted with Me;
R1 1 2 H, Me, Et, S02Me, S02Et
R2 is defined as in Table 1 shown below;
R3 is H;
R4 is H;
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
A is CH2, O or NMe;
R1 is selected from
• NHR1 ', NMeR1 1;
R1·1 is phenyl, optionally substituted with one or two residues selected from the group consisting of SCEMe, SO2CH2CH2OH, SCEEt, SCE-cyclopropyl, SCE-piperidinyl, S02NHEt, S02NMeEt;
R1 1 1 H, Me, Et, Bu, Pr, cyclopropyl, CH2-Pr, CH2-Bu, CH(CH3)CH2CH3, CH2CHF2, CH2CONMe2, CH2CO-azetindinyl, CH2-cyclopropyl, CH2-cyclobutyl, CIE-pyranyl, CH2-tetrahydrofuranyl, CH2-furanyl, CH2CH2OH or thiadiazolyl, optionally substituted with Me;
R1 1 2 H, Me, Et, S02Me, S02Et
R2 is defined as in Table 1 shown below;
R3 is H;
R4 is H; Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
A is CH2, O or NMe;
R1 is selected from
• NHR1 NMeR1·1;
R1·1 is phenyl, optionally substituted with one residue selected from the group consisting of Me, Et, t-Bu, CF3, CH2CONMe2, CH2NHCONH-cyclohexyl, CN, CONR1 1 'R1 1 2, COOMe, COOEt, OMe, S02Me, S02CH2CH20H, S02Et, S02-cyclopropyl, S02-piperidinyl, S02NHEt, S02NMeEt, F, Cl, and additionally with one residue selected from the group consiting of CO-morpholinyl, CH2-pyridinyl, or imidazolidinyl, piperidinyl, oxazinanyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyridinyl, pyrimidinyl, each optionally substituted with one or two residues selected from the group consisting of Me, NHMe, =0;
R1 1 1 H, Me, Et, Bu, Pr, cyclopropyl, CH2-Pr, CH2-Bu, CH(CH3)CH2CH3, CH2CHF2, CH2CONMe2, CH2CO-azetindinyl, CH2-cyclopropyl, CH2-cyclobutyl, CH2-pyranyl, CH2-tetrahydrofuranyl, CH2-furanyl, CH2CH2OH or thiadiazolyl, optionally substituted with Me;
R1 1 2 H, Me, Et, S02Me, S02Et
R2 is defined as in Table 1 shown below;
R3 is H;
R4 is H;
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
A is CH2, O or NMe;
R1 is selected from
• NHR1 2, NMeR1 2; R1 2 is selected from
• pyridinyl, pyridazinyl, pyrrolyl, pyrazolyl, isoxazolyl, thiazolyl, thiadiazolyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, Pr, Bu, cyclopropyl, CH2COOEt, CONR1 2 'R1 2 2, COOMe, COOEt, CONH2, OMe, Cl, Br CO-pyrrolidinyl, CO-morpholinyl or pyrazolyl, triazolyl, tetrazolyl, isoxazolyl, oxadiazolyl, each optionally substituted Me;
• benzothiazolyl, indazolyl, dihydro-indolyl, indanyl, tetrahydro-quinolinyl, each optionally substituted with one or two residues selected from the group consisting of NMe2, CONHMe, =0;
• 4,5-dihydro-naphtho[2,l-d]thiazole, optionally substituted with NHCOMe,
R1 2 1 H, Me;
R1 2 2 H, Me;
R2 is selected from CH2-phenyl or CH2-naphthyl, both optionally substituted with one or two residues selected from the group consisting of CH3, CF3, OCF3, F, Cl, Br, Et; or CH2-thiophenyl, optionally substituted with one or two residues selected from the group consisting of Cl, Br;
R3 is H;
R4 is H; or R3 and R4 together are forming a CH2-CH2 group.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
A is CH2, O or NMe;
R1 is selected from
• NHR1 2, NMeR1 2;
R1 2 is selected from pyridinyl, pyridazinyl, pyrrolyl, pyrazolyl, isoxazolyl, thiazolyl, thiadiazolyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, n-Pr, i-Pr, Bu, cyclopropyl, CH2COOEt, CONR l 2 l R1 2 2, COOMe, COOEt, CONH2, OMe, Cl, Br CO-pyrrolidinyl, CO-morpholinyl or pyrazolyl, triazolyl, tetrazolyl, isoxazolyl, oxadiazolyl, each optionally substituted Me;
R1·2·1 H, Me; R1·2·2 H, Me;
R2 is selected from CFF-phenyl or CFF-naphthyl, both optionally substituted with one or two residues selected from the group consisting of CH3, CF3, OCF3, F, Cl, Br, Et; or CFF-thiophenyl, optionally substituted with one or two residues selected from the group consisting of Cl, Br;
R3 is H;
R4 is H; or R3 and R4 together are forming a CFF-CFF group.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
A is CFb, O or NMe;
R1 is selected from
• NHCH2-R1 3;
R1·3 is selected from phenyl, pyrazolyl, isoxazolyl, pyrimidinyl, indolyl or oxadiazolyl, each optionally substituted with one or two residues selected from the group consisting of Me, Et, Pr, cyclopentyl, OMe, OCF1F2;
R2 is selected from CFF-phenyl or CFF-naphthyl, both optionally substituted with one or two residues selected from the group consisting of CFF, CF3, OCF3, F, Cl, Br, Et; or CFF-thiophenyl, optionally substituted with one or two residues selected from the group consisting of Cl, Br;
R3 is H;
R4 is H; or R3 and R4 together are forming a CH2-CH2 group.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
A is CFb, O or NMe;
R1 is selected from
• NFl-piperidinyl, optionally substituted with pyridinyl; • NH-cyclohexyl, optionally substituted with one or two residues selected from the group consisting of t-Bu, NHSCh-phenyl, NHCONH -phenyl, F;
• NH-pyrrolidinyl, optionally substituted with one or two residues selected from the group consisting of S02Me, COO-t-Bu;
• piperidinyl, optionally substituted with one or two residues selected from the group consisting of NHSCh-n-Bu, m-methoxyphenyl;
• dihydro-indolyl, dihydro-isoindolyl, tetrahydro-quinolinyl or tetrahydro-isoquinolinyl, optionally substituted with one or two residues selected from the group consisting of Me, COOMe, CF3, OMe, N02, F, Br;
• a group selected from NFlCF[(pyridinyl)CF[2COOMe, NFlCF[(CF[20Me)-benzoimidazolyl, optionally substituted with Cl;
• or l-aminocyclopentyl, optionally substituted with Methyl-Oxadiazolyl;
R2 is selected from CFF-phenyl or CFF-naphthyl, both optionally substituted with one or two residues selected from the group consisting of CH3, CF3, OCF3, F, Cl, Br, Et; or CFF-thiophenyl, optionally substituted with one or two residues selected from the group consisting of Cl, Br;
R3 is H;
R4 is H; or R3 and R4 together are forming a CH2-CH2 group.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1, wherein A is CFF, O or NMe, R1 is selected from NHR1 2, NMeR1 2; R2 is defined as in Table 1 shown below; R3 is H; R4 is and R1 2 is selected from
• pyridinyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, i-Pr, n-Bu, cyclopropyl, CONR1 2 'R1 2 2, COOMe, COOEt, CONFF, OMe, Cl, Br CO-pyrrolidinyl, CO-morpholinyl or pyrazolyl, triazolyl, tetrazolyl, isoxazolyl, oxadiazolyl, each optionally substituted Me;
• pyrrolyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, COOMe, COOEt;
• pyrazolyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, cyclopropyl, COOEt, CO-pyrrolidinyl;
• isoxazolyl, optionally substituted with one or two residues selected from the group consisting of t-Bu, COOEt; • thiazolyl, optionally substituted with one or two residues selected from the group consisting of Me, n- Pr, i-Pr, Bu, COOMe, COOEt, CH2COOEt, CONR1 2 'R1 2 2;
• thiadiazolyl, optionally substituted with one or two residues selected from the group consisting of COOEt;
• benzothiazolyl, indazolyl, dihydro-indolyl, indanyl, tetrahydro-quinolinyl, each optionally substituted with one or two residues selected from the group consisting of NMe2, CONHMe, =0;
• 4,5-dihydro-naphtho[2,l-d]thiazole, optionally substituted with NHCOMe,
and
R1 2 1 is H or Me;
R1 2 2 is H or Me.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1, wherein A is CH2, O or NMe, R1 is selected from NHR1 2, NMeR1 2; R2 is defined as in Table 1 shown below; R3 is H; R4 is and R1 2 is selected from
• pyridinyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, i-Pr, n-Bu, CONR1 2 'R1 2 2, COOMe, COOEt, CONH2, OMe, Cl, Br;
• pyrrolyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, COOMe, COOEt;
• pyrazolyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, cyclopropyl, COOEt, CO-pyrrolidinyl;
• isoxazolyl, optionally substituted with one or two residues selected from the group consisting of t-Bu, COOEt;
• thiazolyl, optionally substituted with one or two residues selected from the group consisting of Me, n- Pr, i-Pr, Bu, COOMe, COOEt, CONR1 2 'R1 2 2;
• thiadiazolyl, optionally substituted with one or two residues selected from the group consisting of COOEt;
• benzothiazolyl, indazolyl, dihydro-indolyl, indanyl, tetrahydro-quinolinyl, each optionally substituted with one or two residues selected from the group consisting of NMe2, CONHMe, =0;
and
Figure imgf000048_0001
R1·2·2 is H or Me. Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein
• A is CH2, O or NMe, R1 is selected from NHR1 2, NMeR1 2; R2 is defined as in Table 1 shown below;
R3 is H; R4 is H; R1 2 is pyridinyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, i-Pr, n-Bu, CONR1 2 'R1 2 2, COOMe, COOEt, CONH2, OMe, Cl, Br; R1 2 1 is H or Me and R1 2 2 is H or Me.
• A is CH2, O or NMe, R1 is selected from NHR1 2, NMeR1 2; R2 is defined as in Table 1 shown below;
R3 is H; R4 is H; R1 2 is pyrrolyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, COOMe, COOEt; R1 2 1 is H or Me and R1 2 2 is H or Me.
• A is CH2, O or NMe, R1 is selected from NHR1 2, NMeR1 2; R2 is defined as in Table 1 shown below;
R3 is H; R4 is H; R1 2 is pyrazolyl, optionally substituted with one or two residues selected from the group consisting of Me, Et, cyclopropyl, COOEt, CO-pyrrolidinyl; R1 2 1 is H or Me and R1 2 2 is H or Me.
• A is CH2, O or NMe, R1 is selected from NHR1 2, NMeR1 2; R2 is defined as in Table 1 shown below;
R3 is H; R4 is H; R1 2 is isoxazolyl, optionally substituted with one or two residues selected from the group consisting of t-Bu, COOE; R1 2 1 is H or Me and R1 2 2 is H or Me.
• A is CH2, O or NMe, R1 is selected from NHR1 2, NMeR1 2; R2 is defined as in Table 1 shown below;
R3 is H; R4 is H; R1 2 is thiazolyl, optionally substituted with one or two residues selected from the group consisting of Me, n-Pr, i-Pr, Bu, COOMe, COOEt, CONR1 2 'R1 2 2; ; R1 2 1 is H or Me and R1 2 2 is H or Me.
• A is CH2, O or NMe, R1 is selected from NHR1 2, NMeR1 2; R2 is defined as in Table 1 shown below;
R3 is H; R4 is H; R1 2 is thiadiazolyl, optionally substituted with one or two residues selected from the group consisting of COOEt; R1 2 1 is H or Me and R1 2 2is H or Me.
• A is CH2, O or NMe, R1 is selected from NHR1 2, NMeR1 2; R2 is defined as in Table 1 shown below;
R3 is H; R4 is H; R1 2 is benzothiazolyl, indazolyl, dihydro-indolyl, indanyl, tetrahydro-quinolinyl, each optionally substituted with one or two residues selected from the group consisting of NMe2, CONHMe, =0; R1 2 1 is H or Me and R1 2 2 is H or Me.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1, wherein all groups are defined as above except R1 3 is selected from
• phenyl, optionally substituted with OCHF2;
• pyrazolyl, optionally substituted with Me or Et;
• isoxazolyl, optionally substituted with Pr; • pyrimidinyl, optionally substituted with two OMe;
• indolyl;
• oxadiazolyl, optionally substituted with cyclopentyl.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1, wherein all groups are defined as above except A is CH2.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein all groups are defined as above except A is O.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein all groups are defined as above except A is NMe.
Another embodiment of the present invention are compounds of formula 1, wherein A is CH2, O or NMe;
R1 is selected from
Figure imgf000050_0001
Figure imgf000051_0001
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000054_0001
Figure imgf000055_0001
Figure imgf000056_0001
Figure imgf000057_0001
Figure imgf000058_0001
R2 is selected from
Figure imgf000059_0001
R3 is H;
R4 is H; or R3 and R4 together are forming a CH2-CH2 group.
Another embodiment of the present invention are compounds of formula 1, wherein A is defined as above; R3 is H; R4 is H; and R2 is defined as in Table 1 shown below; and R1 is selected from
Figure imgf000059_0002
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000062_0001
Figure imgf000063_0001
Figure imgf000064_0001
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1, wherein A is defined as above; R3 is H; R4 is H; and R2 is defined as in Table 1 shown below; and R1 is selected from
Figure imgf000064_0002
Figure imgf000065_0001
Figure imgf000066_0001
Figure imgf000067_0001
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1, wherein A is defined as above; R3 is H; R4 is H; and R2 is defined as in Table 1 shown below; R1 is selected from
Figure imgf000068_0001
Figure imgf000069_0001
Figure imgf000070_0001
Figure imgf000071_0001
Figure imgf000072_0001
Figure imgf000073_0001
Figure imgf000074_0001
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1, wherein A is defined as above; R3 is H; R4 is H; and R2 is defined as in Table 1 shown below; and R1 is selected from
Figure imgf000074_0002
Figure imgf000075_0001
Figure imgf000076_0001
Figure imgf000077_0001
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1, wherein A is defined as above; R3 is H; R4 is H; and R2 is defined as in Table 1 shown below; R1 is selected from
Figure imgf000078_0001
Figure imgf000079_0001
Table 1: R2 is defined as one of the groups shown below in the definitions 1 to 4:
Figure imgf000080_0001
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein the compounds of formula 1 are present in the form of the individual optical isomers, mixtures of the individual enantiomers or racemates, e.g., in the form of the enantiomerically pure compounds.
Another embodiment of the present invention further comprises administration to a subject of the compounds of formula 1 , wherein the compounds of formula 1 are present in the form of the acid addition salts thereof with pharmacologically acceptable acids as well as optionally in the form of the solvates and/or hydrates.
b. Co-Crystals and Salts
Additional embodiments of the present invention further comprise administration to a subject of the co-crystals of the compounds of formula 2 (below). In general, for groups comprising two or more subgroups in this“Co-Crystals and Salts” section, the first named subgroup is the radical attachment point, for example, the substituent "Ci-3-alkyl-aryl" means an aryl group which is bound to a Cl-3-alkyl-group, the latter of which is bound to the core or to the group to which the substituent is attached.
Figure imgf000081_0001
wherein
R1 is Ci-6-alkyl, Ci-6-haloalkyl, O-Ci-6-haloalkyl, halogen; m is 1, 2 or 3; and in some instances 1 or 2;
R2a and R2b are each independently selected from H, Ci-6-alkyl, Ci-6-alkenyl, Ci-6-alkynyl, C3 6-cycloalkyl, COO-Ci-6-alkyl, O-Ci-e-alkyl, CONR2h l R2h 2, halogen;
R2b 1 is H, Ci-6-alkyl, Co 4-alkyl-C3 6-cycloalkyl, Ci-6-haloalkyl;
R2b 2 is H, Ci-e-alkyl; or R2b 1 and R2b 2 are together a C3 6-alkylene group forming with the nitrogen atom a heterocyclic ring, wherein optionally one carbon atom or the ring is replaced by an oxygen atom R3 is H, Ci-6-alkyl;
X is an anion selected from the group consisting of chloride, bromide, iodide, sulphate, phosphate, methanesulphonate, nitrate, maleate, acetate, benzoate, citrate, salicylate, fumarate, tartrate, dibenzoyltartrate, oxalate, succinate, benzoate and p-toluenesulphonate; and in some instances chloride or dibenzoyltartrate j is 0, 0.5, 1, 1.5 or 2; and in some instances 1 or 2; with a co-crystal former selected from the group consisting of orotic acid, hippuric acid, L-pyroglutamic acid, D-pyroglutamic acid, nicotinic acid, L-(+)-ascorbic acid, saccharin, piperazine, 3-hydroxy-2- naphtoic acid, mucic (galactaric) acid, pamoic (embonic) acid, stearic acid, cholic acid, deoxycholic acid, nicotinamide, isonicotinamide, succinamide, uracil, L-lysine, L-proline, D-valine, L-arginine, glycine, in some instances ascorbic acid, mucic acid, pamoic acid, succinamide, nicotinic acid, nicotinamide, isonicotinamide, l-lysine, l-proline.
Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein
R2a is H, Ci-6-alkyl, Ci-6-alkenyl, Ci-6-alkynyl, C3 6-cycloalkyl, O-Ci-6-alkyl, CONR2a 'R2a 2;
R2a 1 is H, Ci-6-alkyl, Ci-6-haloalkyl;
R2a 2 is H, Ci-e-alkyl;
R2b is H, Ci-6-alkyl, Ci-6-alkenyl, Ci-6-alkynyl, C3 6-cycloalkyl, COO-Ci-6-alkyl, O-Ci-6-alkyl,
CONR2h ' R2b 2, halogen;
R2b 1 is H, Ci-6-alkyl, Co 4-alkyl-C3 6-cycloalkyl, Ci-6-haloalkyl;
R2b 2 is H, Ci-6-alkyl; or R2b 1 and R2b 2 are together a C3 6-alkylene group forming with the nitrogen atom a heterocyclic ring, wherein optionally one carbon atom or the ring is replaced by an oxygen atom and the remaining residues are defined as above.
Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein
R2a is H, Ci-6-alkyl, Ci-6-alkynyl, C3 6-cycloalkyl, O-Ci-6-alkyl, CONR2a 'R2a 2;
R2a l is Ci-6-alkyl; R2a 2 is H;
R2b is H, C , 6-alkyl, O-C ,„-alkyl, CONR2h l R2h 2;
R2b 1 is Ci-6-alkyl, Co 4-alkyl -C3 6-cycloalkyl, Ci-6-haloalkyl;
R2b 2 is H, Ci-6-alkyl; or R2b 1 and R2b 2 are together a C3 6-alkylene group forming with the nitrogen atom a heterocyclic ring, wherein optionally one carbon atom or the ring is replaced by an oxygen atom and the remaining residues are defined as above.
Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein
R2a is H, Ci-4-alkyl, Ci-4-alkynyl, C3 6-cycloalkyl, O-Ci-4-alkyl, CONR2a 'R2a 2;
R2a 1 is Ci-4-alkyl;
R2a 2 is H;
R2b is H, C , 4-alkyl, O-C , 4-alkyl, CONR2h l R2h 2;
R2b 1 is Ci-4-alkyl, Co 4-alkyl -C3 6-cycloalkyl, Ci-4-haloalkyl;
R2b 2 is H, Ci-4-alkyl; or R2b 1 and R2b 2 are together a C3 6-alkylene group forming with the nitrogen atom a heterocyclic ring, wherein optionally one carbon atom or the ring is replaced by an oxygen atom and the remaining residues are defined as above.
Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein
R2a is H, Ci-4-alkyl,
R2b is H, CONR2h l R2h 2;
R2b 1 is Ci-4-alkyl, Co 4-alkyl -C3 6-cycloalkyl, Ci-4-haloalkyl;
R2b-2 is H, Ci-4-alkyl; or R2b 1 and R2b 2 are together a C3 6-alkylene group forming with the nitrogen atom a heterocyclic ring, wherein optionally one carbon atom or the ring is replaced by an oxygen atom and the remaining residues are defined as above.
Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein
R1 is Ci-6-alkyl, Ci-6-haloalkyl, O-Ci-6-haloalkyl, halogen; m is 1 or 2;
R2a is H, C, 4-alkyl ;
R2b is H, CONR2h l R2h 2;
R2b 1 is Ci-4-alkyl, Co 4-alkyl -C3 6-cycloalkyl, Ci-4-haloalkyl;
R2b 2 is H, Ci-4-alkyl; or R2b 1 and R2b 2 are together a C3 6-alkylene group forming with the nitrogen atom a heterocyclic ring, wherein optionally one carbon atom or the ring is replaced by an oxygen atom
R3 is H, Ci-6-alkyl;
X is an anion selected from the group consisting of chloride or dibenzoyltartrate j is 1 or 2.
Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein
R2a is H, Ci-4-alkyl; in some instances Methyl, Ethyl, Propyl;
R2b is H, CONR2h l R2h 2;
R2b 1 is Ci-4-alkyl; in some instances Methyl, Ethyl, Propyl;
R2b 2 is Ci-4-alkyl; in some instances Methyl, Ethyl, Propyl; and the remaining residues are defined as above.
Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein
R2a is H, Ci-4-alkyl; in some instances Methyl, Ethyl, Propyl; R2b is H, CONR2b 'R2b 2;
R2b 1 is Co 4-alkyl-C3 6-cycloalkyl;
R2b 2 is H, Ci-4-alkyl; in some instances H, Methyl, Ethyl, Propyl; and the remaining residues are defined as above.
Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein
R2a is H, Ci-4-alkyl; in some instances Methyl, Ethyl, Propyl;
R2b is H, CONR2h l R2h 2;
R2b 1 is Ci-4-haloalkyl;
R2b 2 is H, Ci-4-alky; in some instances H, Methyl, Ethyl, Propyl; and the remaining residues are defined as above.
Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein
R2b 1 and R2b 2 are together a C3 6-alkylene group forming with the nitrogen atom a heterocyclic ring, wherein optionally one carbon atom or the ring is replaced by an oxygen atom and the remaining residues are defined as above.
Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein R1, m, R2a, R2b, R3, X and j are defined as above and the co-crystal former is selected from the group consisting of ascorbic acid, mucic acid, pamoic acid, succinamide, nicotinic acid, nicotinamide, isonicotinamide, 1-lysine, 1-proline, or hydrates or
hydrochlorides of the same.
Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2a, wherein R2a, R2b, R3, X and j are defined as above
Figure imgf000086_0001
Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2a, wherein
R2a is H, Ci-4-alkyl; in some instances Methyl, Ethyl, Propyl;
R2b is H, CONR2h l R2h 2;
R2b 1 is Ci-4-alkyl; in some instances Methyl, Ethyl, Propyl;
R2b 2 is Ci-4-alkyl; in some instances Methyl, Ethyl, Propyl; and the remaining residues are defined as above.
Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2a, wherein
R2a is H, Ci-4-alkyl; in some instances Methyl, Ethyl, Propyl;
R2b is H, CONR2h l R2h 2;
R2b 1 is Co 4-alkyl-C3 6-cycloalkyl;
R2b 2 is H, Ci-4-alkyl; in some instances H, Methyl, Ethyl, Propyl; and the remaining residues are defined as above.
Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2a, wherein
R2a is H, Ci-4-alkyl; in some instances Methyl, Ethyl, Propyl;
R2b is H, CONR2h l R2h 2;
R2b 1 is Ci-4-haloalkyl;
R2b 2 is H, Ci-4-alky; in some instances H, Methyl, Ethyl, Propyl; and the remaining residues are defined as above.
Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2a, wherein
R2b 1 and R2b 2 are together a C3 6-alkylene group forming with the nitrogen atom a heterocyclic ring, wherein optionally one carbon atom or the ring is replaced by an oxygen atom and the remaining residues are defined as above.
The free bases of compounds of formula 2 (j = 0) are often amorphous and are used for a process of manufacturing co-crystal, nevertheless salts of compounds of formula 2 are employed in some instances for a process of manufacturing co-crystal. Thus, another aspect of the invention are salts of compounds of formula 2 wherein R1, m, R2a, R2b, R3 are defined as for the co-crystals above and
X is an anion selected from the group consisting of chloride, bromide, iodide, sulphate, phosphate, methanesulphonate, nitrate, maleate, acetate, benzoate, citrate, salicylate, fumarate, tartrate, dibenzoyltartrate, oxalate, succinate, benzoate and p-toluenesulphonate; in some instances chloride, or dibenzoyltartrate j is 0, 0.5, 1, 1.5 or 2; in some instances 1 or 2.
Another aspect of the present invention further comprises administration to a subject of the co crystals of the compounds of formula 2, wherein R1, m, R2a, R2b, R3 are defined as for the co-crystals above and
X is an anion selected from the group consisting of chloride or dibenzoyltartrate j is 1 or 2.
Another aspect of the present invention further comprises administration to a subject of the salts of the compounds of formula 2, wherein R1, m, R2a, R2b, R3 are defined as for the salts above and X is chloride and j is 2.
Another aspect of the present invention further comprises administration to a subject of the salts of the compounds of formula 2, wherein R1, m, R2a, R2b, R3 are defined as for the salts above and X is dibenzoyltartrate and j is 1.
Another aspect of the present invention further comprises administration to a subject of the salts of the compounds of formula 2a, wherein R2a, R2b, R3, X and j are defined as above
Figure imgf000088_0001
Another aspect of the present invention further comprises administration to a subject of the salts of the compounds of formula 2a, wherein
R2a is H, Ci-4-alkyl; in some instances Methyl, Ethyl, Propyl;
R2b is H, CONR2h l R2h 2;
R2b 1 is Ci-4-alkyl; in some instances Methyl, Ethyl, Propyl;
R2b 2 is Ci-4-alkyl; in some instances Methyl, Ethyl, Propyl; and the remaining residues are defined as above.
Another aspect of the present invention further comprises administration to a subject of the salts of the compounds of formula 2a, wherein
R2a is H, Ci-4-alkyl; in some instances Methyl, Ethyl, Propyl;
R2b is H, CONR2h l R2h 2;
R2b 1 is Co 4-alkyl-C3 6-cycloalkyl;
R2b 2 is H, Ci-4-alkyl; in some instances H, Methyl, Ethyl, Propyl; and the remaining residues are defined as above.
Another aspect of the present invention further comprises administration to a subject of the salts of the compounds of formula 2a, wherein
R2a is H, Ci-4-alkyl; in some instances Methyl, Ethyl, Propyl;
R2b is H, CONR2h l R2h 2;
R2b l is Ci-4-haloalkyl; R2b 2 is H, Ci-4-alky; in some instances H, Methyl, Ethyl, Propyl; and the remaining residues are defined as above.
Another aspect of the present invention further comprises administration to a subject of the salts of the compounds of formula 2a, wherein
R2b 1 and R2b 2 are together a C3 6-alkylene group forming with the nitrogen atom a heterocyclic ring, wherein optionally one carbon atom or the ring is replaced by an oxygen atom and the remaining residues are defined as above.
Another aspect of the present invention further comprises administration to a subject of the salts of the compounds of formula 2a, wherein R1, m, R2a, R2b, R3 are defined as for the salts above and X is chloride and j is 2.
Another aspect of the present invention further comprises administration to a subject of the salts of the compounds of formula 2a, wherein R1, m, R2a, R2b, R3 are defined as for the salts above and X is dibenzoyltartrate and j is 1. Another aspect of the invention are salts of compounds of formula 2a, wherein R1, m, R2a, R2b, R3 are defined as for the salts above and X is (S)-(S)-(+)-2, 3-dibenzoyl -tartrate andj is 1. c. Formulations
Additional embodiments of the present invention further comprise administration to a subject of a pharmaceutical composition containing compounds of formula 3
Figure imgf000089_0001
wherein
R1 is H, Ci-6-alkyl, Co 4-alkyl-C3 6-cycloalkyl, Ci-6-haloalkyl;
R2 is H, Ci-6-alkyl;
X is an anion selected from the group consisting of chloride or ½ dibenzoyltartrate J is 1 or 2.
An embodiment of the present invention further comprises administration to a subject of a pharmaceutical composition containing compounds of formula 3 wherein
R1 is H, Ci-6-alkyl;
R2 is H, Ci-6-alkyl;
X is an anion selected from the group consisting of chloride or ½ dibenzoyltartrate j is 1 or 2.
An embodiment of the present invention further comprises administration to a subject of a pharmaceutical composition containing compounds of formula 3 wherein
R1 is H, Methyl, Ethyl, Propyl, Butyl;
R2 is H, Methyl, Ethyl, Propyl, Butyl;
X is an anion selected from the group consisting of chloride or ½ dibenzoyltartrate, such as chloride; j is 1 or 2, in some instances 2.
An embodiment of the present invention further comprises administration to a subject of a pharmaceutical composition containing compounds of formula 3 wherein
R1 is H, Methyl, Ethyl, Propyl, Butyl;
R2 is H, Methyl;
X is an anion selected from the group consisting of chloride or ½ dibenzoyltartrate, such as chloride; j is 1 or 2, in some instances 2.
An embodiment of the present invention further comprises administration to a subject of a pharmaceutical composition containing compounds of formula 3 wherein
R1 is H, Methyl;
R2 is H, Methyl;
X is an anion selected from the group consisting of chloride or ½ dibenzoyltartrate, such as chloride;
J is 1 or 2, in some instances 2. An embodiment of the present invention further comprises administration to a subject of a pharmaceutical composition containing compounds described in Table 2 as a hydrochloride. An additional embodiment of the present invention further comprises administration to a subject of a pharmaceutical composition containing compounds describe in Table 2 as a di-hydrochloride.
TABLE 2
Figure imgf000091_0001
Figure imgf000092_0001
Figure imgf000093_0001
Another object of the present invention is administration to a subject of a pharmaceutical dosage form of the compounds described above, wherein the dosage is an orally deliverable dosage form.
Another object of the present invention is administration to a subject of a pharmaceutical dosage form of the compounds described above, which is in the form of a tablet, capsule, pellets, powder or granules.
Another object of the present invention is administration to a subject of the pharmaceutical dosage forms described above for use as medicament.
Another object of the present invention is the use of the above pharmaceutical dosage forms for the preparation of a medicament for the treatment of a neurodegenerative disease or condition selected from Alzheimer's disease, Parkinson's disease, frontotemporal dementia, Huntington disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, vascular dementia, and progressive supranuclear palsy.
Another object of the present invention is a process for the treatment and/or prevention of a disease or condition selected from neurodegenerative disease such as Al heimer's disease, Parkinson's disease, frontotemporal dementia, Huntington disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, vascular dementia, and progressive supranuclear palsy, characterized in that an effective amount of the above defined pharmaceutical dosage form is administered orally to a subject or patient once, twice, thrice or several times daily.
d. Dosage Forms/Ingredients
Solid pharmaceutical compositions ready for use/ingestion made from a compound of formula 3 comprise powders, granules, pellets, tablets, capsules, chewable tablets, dispersible tables, troches and lozenges. In detail:
• Capsule formulations according to the invention comprise the powdery intermediate of a compound of formula 3, an intermediate blend comprising the powdery intermediate, pellets or granules obtained by conventional wet-, dry or hot-melt granulation or hot-melt extrusion or spray-drying of a suitable intermediate blend, filled in conventional capsules, e.g. hard gelatin or HPMC capsules.
• The Capsule formulations from above may also comprise the powdery intermediate of a compound of formula 3 in a compacted form.
• Capsule formulations according to the invention comprise the compound of formula 3 suspended or diluted in a liquid or mixture of liquids.
• Tablet formulations according to the invention comprise such tablets obtained by direct compression of a suitable final blend or by tableting of pellets or granules obtained by conventional wet-, dry or hot- melt granulation or hot-melt extrusion or spray-drying of a suitable intermediate blend.
Another object of the present invention is a dosage form where a pH-adjusting or buffering agent is added for stability improvement of the active ingredient. The pH-adjusting / buffering agent may be a basic amino acid, which has an amino group and alkaline characteristics (isoelectric point, pi: 7.59— 10.76), such as e.g. L-arginine, L-lysine or L-histidine. A buffering agent within the meaning of this invention is L-arginine. L-arginine has a particular suitable stabilizing effect on the compositions of this invention, e.g. by suppressing chemical degradation of compounds of formula 3. Thus, in an embodiment, the present invention is directed to a pharmaceutical composition (e.g. an oral solid dosage form, particularly a tablet) comprising a compound of formula 3 and L-arginine for stabilizing the composition, particularly against chemical degradation; as well as one or more pharmaceutical excipients.
Suitably the pharmaceutical excipients used within this invention are conventional materials such as cellulose and its derivates, D-mannitol, corn starch, pregelatinized starch as a filler, copovidone as a binder, crospovidone as disintegrant, magnesium stearate as a lubricant, colloidal anhydrous silica as a glidant, hypromellose as a film-coating agent, polyethylene glycol as a plasticizer, titanium dioxide, iron oxide red/yellow as a pigment, and talc, etc.
In detail pharmaceutical excipients can be a first and second diluent, a binder, a disintegrant and a lubricant; an additional disintegrant and an additional glidant are a further option.
• Diluents suitable for a pharmaceutical composition according to the invention are cellulose powder, microcrystalline cellulose, lactose in various crystalline modifications, dibasic calcium phosphate anhydrous, dibasic calcium phosphate dihydrate, erythritol, low substituted hydroxypropyl cellulose, mannitol, starch or modified starch (e.g. pregelatinized or partially hydrolyzed) or xylitol. Among those diluents mannitol and microcrystalline cellulose are employed in some instances.
• Diluents that find use as the second diluent are the above-mentioned diluents mannitol and microcrystalline cellulose.
• Lubricants suitable for a pharmaceutical composition according to the invention are talc, polyethyleneglycol, calcium behenate, calcium stearate, sodium stearylfumarate, hydrogenated castor oil or magnesium stearate. The lubricant in some instances is magnesium stearate.
• Binders suitable for a pharmaceutical composition according to the invention are copovidone (copolymerisates of vinylpyrrolidon with other vinylderivates), hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose (HPC), polyvinylpyrrolidon (povidone), pregelatinized starch, stearic -palmitic acid, low-substituted hydroxypropylcellulose (L-HPC), copovidone and pregelatinized starch being employed in some formulations. The above mentioned binders pregelatinized starch and L-HPC show additional diluent and disintegrant properties and can also be used as the second diluent or the disintegrant.
• Disintegrants suitable for a pharmaceutical composition according to the present invention are corn starch, crospovidone, polacrilin potassium, croscarmellose sodium, low-substituted hydroxypropylcellulose (L-HPC) or pregelatinized starch; such as croscarmellose sodium.
• As an optional glidant colloidal silicon dioxide can be used. An exemplary composition according to the present invention comprises the diluent mannitol, microcrystalline cellulose as a diluent with additional disintegrating properties, the binder copovidone, the disintegrant croscarmellose sodium, and magnesium stearate as the lubricant.
Typical pharmaceutical compositions comprise (% by weight)
10-50 % active ingredient
20-88 % diluent 1,
5-50 % diluent 2,
1-5 % binder,
1-15 % disintegrant, and
0.1-5 % lubricant.
Pharmaceutical compositions according to some embodiments comprise (% by weight)
10-50 % active ingredient
20-75 % diluent 1,
5-30 % diluent 2,
2-30 % binder,
1-12 % disintegrant, and
0.1-3 % lubricant
Pharmaceutical compositions according to some embodiments comprise (% by weight)
10-90 % active ingredient
5-70 % diluent 1,
5-30 % diluent 2,
0-30 % binder,
1-12 % disintegrant, and
0.1-3 % lubricant
Pharmaceutical compositions according to some embodiments comprise (% by weight)
10-50 % active ingredient
20-75 % diluent 1,
5-30 % diluent 2,
2-30 % binder,
0,5-20 % buffering agent,
1-12 % disintegrant, and
0.1-3 % lubricant
Pharmaceutical compositions according to some embodiments comprise (% by weight)
30-70 % active ingredient 20-75 % diluent 1,
5-30 % diluent 2,
2-30 % binder,
0,5-20 % buffering agent,
1-12 % disintegrant, and
0.1-3 % lubricant
Pharmaceutical compositions containing 10-90% of active ingredient, such as 30-70 % active ingredient (% by weight) are employed in some instances.
A tablet formulation according to the invention may be uncoated or coated, e.g. film-coated, using suitable coatings known not to negatively affect the dissolution properties of the final formulation. For instance the tablets can be provided with a seal coat for protection of the patients environment and clinical staff as well as for moisture protection purposes by dissolving a high molecular weight polymer as polyvinylpyrrolidone or hydroxypropyl-methylcellulose together with plasticizers, lubricants and optionally pigments and tensides in water or organic solvent as acetone and spraying this mixture on the tablet cores inside a coating equipment as a pan coater or a fluidized bed coater with wurster insert.
Additionally, agents such as beeswax, shellac, cellulose acetate phthalate, polyvinyl acetate phthalate, zein, film forming polymers such as hydroxypropyl cellulose, ethylcellulose and polymeric methacrylates can be applied to the tablets, provided that the coating has no substantial effect on the disintegration/dissolution of the dosage form and that the coated dosage form is not affected in its stability.
After the dosage form is film-coated, a sugar coating may be applied onto the sealed pharmaceutical dosage form. The sugar coating may comprise sucrose, dextrose, sorbitol and the like or mixtures thereof. If desired, colorants or opacifiers may be added to the sugar solution.
Solid formulations of the present invention tend to be hygroscopic. They may be packaged using PVC-blisters, PVDC-blisters or a moisture-proof packaging material such as aluminum foil blister packs, alu/alu blister, transparent or opaque polymer blister with pouch, polypropylene tubes, glass bottles and HDPE bottles optionally containing a child-resistant feature or may be tamper evident. The primary packaging material may comprise a desiccant such as molecular sieve or silica gel to improve chemical stability of the API. Opaque packaging such as colored blister materials, tubes, brown glass bottles or the like can be used to prolong shelf life of the API by reduction of photo degradation.
e. Dosaees
A dosage range of the compound of formula 3 is usually between 100 and 1000 mg, in particular between 200 and 900 mg, 300 and 900 mg or 350 and 850 mg or 390 and 810 mg. It is possible to give one or two tablets, where in some instances two tablets for a daily oral dosage of 100, 200, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900 mg, and in some instances 350, 400, 450, 750, 800, 850 are employed.
The dosages range can be achieved by one tablet or by two tablets; in some instances two tablets are administered, each containing half of the dosage.
The application of the active ingredient may occur up to three times a day, such as one or two times a day. Particular dosage strengths are 400 mg or 800 mg.
Used Terms and Definitions
Terms not specifically defined herein should be given the meanings that would be given to them by one of skill in the art in light of the disclosure and the context. As used in the specification, however, unless specified to the contrary, the following terms have the meaning indicated and the following conventions are adhered to.
The term,“about” means 5% more or less of the specified value. Thus, about 100 minutes could also be read as from 95 to 105 minutes.
In case a compound of the present invention is depicted in form of a chemical name and as a formula in case of any discrepancy the formula shall prevail. An asterisk is may be used in sub-formulas to indicate the bond which is connected to the core molecule as defined.
Unless specifically indicated, throughout the specification and the appended claims, a given chemical formula or name shall encompass tautomers and all stereo, optical and geometrical isomers (e.g. enantiomers, diastereomers, E/Z isomers etc...) and racemates thereof as well as mixtures in different proportions of the separate enantiomers, mixtures of diastereomers, or mixtures of any of the foregoing forms where such isomers and enantiomers exist, as well as salts, including pharmaceutically acceptable salts thereof and solvates thereof such as for instance hydrates including solvates of the free compounds or solvates of a salt of the compound.
The term "substituted" as used herein, means that any one or more hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valence is not exceeded, and that the substitution results in a stable compound.
By the term "optionally substituted" is meant within the scope of the invention the above-mentioned group, optionally substituted by a lower-molecular group. Examples of lower-molecular groups regarded as chemically meaningful are groups consisting of 1-200 atoms. Of interest are such groups that have no negative effect on the pharmacological efficacy of the compounds. For example the groups may comprise: • Straight-chain or branched carbon chains, optionally interrupted by heteroatoms, optionally substituted by rings, heteroatoms or other common functional groups. • Aromatic or non-aromatic ring systems consisting of carbon atoms and optionally heteroatoms, which may in turn be substituted by functional groups.
• A number of aromatic or non-aromatic ring systems consisting of carbon atoms and optionally heteroatoms which may be linked by one or more carbon chains, optionally interrupted by heteroatoms, optionally substituted by heteroatoms or other common functional groups.
The compounds disclosed herein can exist as therapeutically acceptable salts. The present invention includes compounds listed above in the form of salts, including acid addition salts. Suitable salts include those formed with both organic and inorganic acids. Such acid addition salts will normally be pharmaceutically acceptable. However, salts of non-pharmaceutically acceptable salts may be of utility in the preparation and purification of the compound in question. Basic addition salts may also be formed and be pharmaceutically acceptable. For a more complete discussion of the preparation and selection of salts, refer to Pharmaceutical Salts: Properties, Selection, and Use (Stahl, P. Heinrich. Wiley- VCHA, Zurich, Switzerland, 2002).
The term "therapeutically acceptable salt," as used herein, represents salts or zwitterionic forms of the compounds disclosed herein which are water or oil-soluble or dispersible and therapeutically acceptable as defined herein. The salts can be prepared during the final isolation and purification of the compounds or separately by reacting the appropriate compound in the form of the free base with a suitable acid. Representative acid addition salts include acetate, adipate, alginate, L- ascorbate, aspartate, benzoate, benzenesulfonate (besylate), bisulfate, butyrate, camphorate, camphorsulfonate, citrate, digluconate, formate, fumarate, gentisate, glutarate, glycerophosphate, glycolate, hemisulfate, heptanoate, hexanoate, hippurate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethansulfonate (isethionate), lactate, maleate, malonate, DL-mandelate, mesitylenesulfonate, methanesulfonate, naphthylenesulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, pamoate, pectinate, persulfate, 3-phenylproprionate, phosphonate, picrate, pivalate, propionate, pyroglutamate, Succinate, Sulfonate, tartrate, L-tartrate, trichloroacetate, trifluoroacetate, phosphate, glutamate, bicarbonate, para- toluenesulfonate (p-tosylate), and undecanoate. Also, basic groups in the compounds disclosed herein can be quaternized with methyl, ethyl, propyl, and butyl chlorides, bromides, and iodides; dimethyl, diethyl, dibutyl, and diamyl Sulfates; decyl, lauryl, myristyl, and steryl chlorides, bromides, and iodides; and benzyl and phenethyl bromides. Examples of acids which can be employed to form therapeutically acceptable addition salts include inorganic acids such as hydrochloric, hydrobromic, sulfuric, and phosphoric, and organic acids such as oxalic, maleic, succinic, and citric. Salts can also be formed by coordination of the compounds with an alkali metal or alkaline earth ion. Hence, the present invention contemplates sodium, potassium, magnesium, and calcium salts of the compounds disclosed herein, and the like. Basic addition salts can be prepared during the final isolation and purification of the compounds by reacting a carboxy group with a suitable base such as the hydroxide, carbonate, or bicarbonate of a metal cation or with ammonia or an organic primary, secondary, or tertiary amine. The cations of therapeutically acceptable salts include lithium, sodium, potassium, calcium, magnesium, and aluminum, as well as nontoxic quaternary amine cations such as ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, diethylamine, ethylamine, tributylamine, pyridine, N,N-dimethylaniline, N-methylpiperidine, N-methylmorpholine, dicyclohexylamine, procaine, dibenzylamine, N, N-dibenzylphenethylamine, l-ephenamine, and N,R-dibenzylethylenediamine. Other representative organic amines useful for the formation of base addition salts include ethylenediamine, ethanolamine, diethanolamine, piperidine, and piperazine.
While it may be possible for the compounds of the subject invention to be administered as the raw chemical, it is also possible to present them as a pharmaceutical formulation. Accordingly, provided herein are pharmaceutical formulations which comprise one or more of certain compounds disclosed herein, or one or more pharmaceutically acceptable salts, esters, prodrugs, amides, or solvates thereof, together with one or more pharmaceutically acceptable carriers thereof and optionally one or more other therapeutic ingredients. The carrier(s) must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. Proper formulation is dependent upon the route of administration chosen. Any of the well-known techniques, carriers, and excipients may be used as suitable and as understood in the art; e.g., in Remington's Pharmaceutical Sciences. The pharmaceutical compositions disclosed herein may be manufactured in any manner known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or compression processes.
"Heterocyclic rings" ("het") include five-, six- or seven-membered, saturated or unsaturated heterocyclic rings or 5-10 membered, bicyclic hetero rings which may contain one, two or three heteroatoms, selected from among oxygen, sulphur and nitrogen; the ring may be linked to the molecule by a carbon atom or, if present, by a nitrogen atom. The following are examples of five-, six- or seven- membered, saturated or unsaturated heterocyclic rings:
Figure imgf000100_0001
Unless stated otherwise, a heterocyclic ring may be provided with a keto group. Examples include:
Figure imgf000101_0001
Examples of 5-l0-membered bicyclic hetero rings are pyrrolizine, indole, indolizine, isoindole, indazole, purine, quinoline, isoquinoline, benzimidazole, benzofurane, benzopyrane, benzothiazole, benzoisothiazole, pyridopyrimidine, pteridine, pyrimidopyrimidine,
Figure imgf000101_0002
Although the term heterocyclic rings includes heterocyclic aromatic groups, the term heterocyclic aromatic groups ("hetaryl") denotes five- or six-membered heterocyclic aromatic groups or 5-10 membered, bicyclic hetaryl rings which may contain one, two or three heteroatoms, selected from among oxygen, sulphur and nitrogen, which contain sufficient conjugated double bonds that an aromatic system is formed. The ring may be linked to the molecule through a carbon atom or if present through a nitrogen atom. The following are examples of five- or six-membered heterocyclic aromatic groups:
Figure imgf000101_0003
Examples of 5-l0-membered bicyclic hetaryl rings include pyrrolizine, indole, indolizine, isoindole, indazole, purine, quinoline, isoquinoline, benzimidazole, benzofuran, benzopyrane, benzothiazole, benzoisothiazole, pyridopyrimidine, pteridine, pyrimidopyrimidine.
The term "halogen" as used herein means a halogen substituent selected from fluoro, chloro, bromo or iodo.
By the term "Ci-6-alkyl" (including those which are part of other groups) are meant branched and unbranched alkyl groups with 1 to 6 carbon atoms, and by the term "C1-4 -alkyl" are meant branched and unbranched alkyl groups with 1 to 4 carbon atoms. Alkyl groups with 1 to 4 carbon atoms are present in some instances. Examples of these include: methyl, ethyl, «-propyl, /iso-propyl, «-butyl, /.s -butyl, sec-butyl, ZerZ-butyl, «-pentyl, iso-pentyl, «co-pentyl or hexyl. The abbreviations Me, Et, «-Pr, /-Pr, «-Bu, /-Bu, Z-Bu, etc. may optionally also be used for the above-mentioned groups. Unless stated otherwise, the definitions propyl, butyl, pentyl and hexyl include ah the possible isomeric forms of the groups in question. Thus, for example, propyl includes «-propyl and iso-propyl, butyl includes iso-butyl, sc -butyl and tert- butyl etc. By the term "Ci-6-alkylene" (including those which are part of other groups) are meant branched and unbranched alkylene groups with 1 to 6 carbon atoms and by the term "Ci-4-alkylene" are meant branched and unbranched alkylene groups with 1 to 4 carbon atoms. Alkylene groups with 1 to 4 carbon atoms are present in some instances. Examples include: methylene, ethylene, propylene, l-methylethylene, butylene, l-methylpropylene, 1,1 -dime thylethylene, l,2-dimethylethylene, pentylene, 1,1- dimethylpropylene, 2,2-dimethylpropylene, 1 ,2-dimethylpropylene, 1,3 -dime thy lpropylene or hexylene. Unless stated otherwise, the definitions propylene, butylene, pentylene and hexylene also include all the possible isomeric forms of the relevant groups with the same number of carbons. Thus for example propyl also includes l-methylethylene and butylene includes l-methylpropylene, l,l-dimethylethylene, 1,2- dimethylethylene.
The term " C2 6-alkenyl " (including those which are part of other groups) denotes branched and unbranched alkenyl groups with 2 to 6 carbon atoms and the term "C2 4-alkenyl" denotes branched and unbranched alkenyl groups with 2 to 4 carbon atoms, provided that they have at least one double bond. Employed in some instances are alkenyl groups with 2 to 4 carbon atoms. Examples include: ethenyl or vinyl, propenyl, butenyl, pentenyl, or hexenyl. Unless otherwise stated, the definitions propenyl, butenyl, pentenyl and hexenyl include all possible isomeric forms of the groups in question. Thus, for example, propenyl includes 1 -propenyl and 2-propenyl, butenyl includes 1-, 2- and 3-butenyl, 1 -methyl- 1 -propenyl, 1 -methyl -2 -propenyl etc.
By the term "C2 6 -alkenylene" (including those which are part of other groups) are meant branched and unbranched alkenylene groups with 2 to 6 carbon atoms and by the term "C2 4-alkenylene" are meant branched and unbranched alkylene groups with 2 to 4 carbon atoms. Alkenylene groups with 2 to 4 carbon atoms are present in some instances. Examples include: ethenylene, propenylene, l-methylethenylene, butenylene, l-methylpropenylene, l,l-dimethylethenylene, 1 ,2-dimethylethenylene, pentenylene, 1,1- dimethylpropenylene, 2,2-dimethylpropenylene, l,2-dimethylpropenylene, l,3-dimethylpropenylene or hexenylene. Unless stated otherwise, the definitions propenylene, butenylene, pentenylene and hexenylene include all the possible isomeric forms of the respective groups with the same number of carbons. Thus, for example, propenyl also includes l-methylethenylene and butenylene includes l-methylpropenylene, 1,1- dimethylethenylene, 1 ,2-dimethylethenylene.
By the term "C2 6-alkynyl" (including those which are part of other groups) are meant branched and unbranched alkynyl groups with 2 to 6 carbon atoms and by the term "C2 4-alkynyl" are meant branched and unbranched alkynyl groups with 2 to 4 carbon atoms, provided that they have at least one triple bond. Alkynyl groups with 2 to 4 carbon atoms are present in some instances. Examples include: ethynyl, propynyl, butynyl, pentynyl, or hexynyl. Unless stated otherwise, the definitions propynyl, butynyl, pentynyl and hexynyl include all the possible isomeric forms of the respective groups. Thus, for example, propynyl includes l-propynyl and 2-propynyl, butynyl includes 1-, 2- and 3-butynyl, 1 -methyl- l-propynyl, 1 -methyl -2 -propynyl etc.
By the term "C2 6-alkynylene" (including those which are part of other groups) are meant branched and unbranched alkynylene groups with 2 to 6 carbon atoms and by the term "C2 4-alkynylene" are meant branched and unbranched alkylene groups with 2 to 4 carbon atoms. Alkynylene groups with 2 to 4 carbon atoms are present in some instances. Examples include: ethynylene, propynylene, l-methylethynylene, butynylene, l-methylpropynylene, 1,1 -dime thylethynylene, l,2-dimethylethynylene, pentynylene, 1,1- dimethylpropynylene, 2,2-dimethylpropynylene, 1 ,2-dimethylpropynylene, 1,3-dimethylpropynylene or hexynylene. Unless stated otherwise, the definitions propynylene, butynylene, pentynylene and hexynylene include all the possible isomeric forms of the respective groups with the same number of carbons. Thus for example propynyl also includes l-methylethynylene and butynylene includes l-methylpropynylene, 1,1- dimethylethynylene, 1 ,2-dimethylethynylene.
The term "C3 6 -cycloalkyl" (including those which are part of other groups) as used herein means cyclic alkyl groups with 3 to 8 carbon atoms, where in some instances such groups are cyclic alkyl groups with 5 to 6 carbon atoms. Examples include: cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
By the term "Ci-6-haloalkyl" (including those which are part of other groups) are meant branched and unbranched alkyl groups with 1 to 6 carbon atoms wherein one or more hydrogen atoms are replaced by a halogen atom selected from among fluorine, chlorine or bromine, such as fluorine and chlorine, e.g., fluorine. By the term "Ci-4-haloalkyl" are meant correspondingly branched and unbranched alkyl groups with 1 to 4 carbon atoms, wherein one or more hydrogen atoms are replaced analogously to what was stated above. Ci-4-haloalkyl is presentin some instances. Examples include: CH2F, CHF2, CF3.
The term "Ci-n-alkyl”, wherein n is an integer from 2 to n, either alone or in combination with another radical denotes an acyclic, saturated, branched or linear hydrocarbon radical with 1 to n C atoms. For example the term C i 5-alkyl embraces the radicals H3C-, H3C-CH2-, H3C-CH2-CH2-, H3C-CH(CH3)-, H3C-CH2-CH2-CH2-, H3C-CH2-CH(CH3)-, H3C-CH(CH3)-CH2-, H3C-C(CH3)2-, H3C-CH2-CH2-CH2-CH2-, H3C-CH2-CH2-CH(CH3)-, H3C-CH2-CH(CH3)-CH2-, H3C-CH(CH3)-CH2-CH2-, H3C-CH2-C(CH3)2-, H3C-C(CH3)2-CH2-, H3C-CH(CH3)-CH(CH3)- and H3C-CH2-CH(CH2CH3)-.
The term "Ci-n-haloalkyl”, wherein n is an integer from 2 to n, either alone or in combination with another radical denotes an acyclic, saturated, branched or linear hydrocarbon radical with 1 to n C atoms wherein one or more hydrogen atoms are replaced by a halogen atom selected from among fluorine, chlorine or bromine, such as fluorine and chlorine, e.g., fluorine. Examples include: CH2F, CHF2, CF3.
The term "Ci n-alkylene" wherein n is an integer 2 to n, either alone or in combination with another radical, denotes an acyclic, straight or branched chain divalent alkyl radical containing from 1 to n carbon atoms. For example the term Ci-4-alkylene includes -CH2-, -CH2-CH2-, -CH(CH3)-, -CH2-CH2-CH2-, -C(CH3)2-,
-CH(CH2CH3)-, -CH(CH3)-CH2-, -CH2-CH(CH3)-, -CH2-CH2-CH2-CH2-, -CH2-CH2-CH(CH3)-, -CH(CH3 )-CH2-CH2-, -CH2-CH(CH3)-CH2-, -CH2-C(CH3)2-, -C(CH3)2-CH2-, -CH(CH3)-CH(CH3)-, -CH2-CH(CH2 CH3)-, -CH(CH2CH3)-CH2-, -CH(CH2CH2CH3)- , -CH(CH(CH3))2- and -C(CH3)(CH2CH3)-.
The term "C2 -alkenyl”, is used for a group as defined in the definition for "Ci-n-alkyl" with at least two carbon atoms, if at least two of those carbon atoms of said group are bonded to each other by a double bond.
The term "C2 -alkynyl”, is used for a group as defined in the definition for "Ci-n-alkyl" with at least two carbon atoms, if at least two of those carbon atoms of said group are bonded to each other by a triple bond.
The term "C3-n-cycloalkyl”, wherein n is an integer from 4 to n, either alone or in combination with another radical denotes a cyclic, saturated, unbranched hydrocarbon radical with 3 to n C atoms. For example the term C3-7-cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.
It must be noted that as used herein and in the appended claims, the singular forms“a,”“an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a cell” includes a plurality of such cells and reference to“the peptide” includes reference to one or more peptides and equivalents thereof, e.g. polypeptides, known to those having skill in the art, and so forth.
By“an individual suffering from or at risk of suffering from an aging-associated cognitive impairment” is meant an individual that is about more than 50% through its expected lifespan, such as more than 60%, e.g., more than 70%, such as more than 75%, 80%, 85%, 90%, 95% or even 99% through its expected lifespan. The age of the individual will depend on the species in question. Thus, this percentage is based on the predicted life-expectancy of the species in question. For example, in humans, such an individual is 50 year old or older, e.g., 60 years old or older, 70 years old or older, 80 years old or older, 90 years old or older, and usually no older than 100 years old, such as 90 years old., i.e., between the ages of about 50 and 100, e.g., 50 . . . 55 . . . 60 . . . 65 . . . 70 . . . 75 . . . 80 . . . 85 . . . 90 . . . 95 . . . 100 years old or older, or any age between 50 - 1000, that suffers from an aging-associated condition as further described below, e.g., cognitive impairment associated with the natural aging process; an individual that is about 50 years old or older, e.g., 60 years old or older, 70 years old or older, 80 years old or older, 90 years old or older, and usually no older than 100 years old, i.e., between the ages of about 50 and 100, e.g., 50 . . . 55 . . . 60 . . . 65 . . . 70 . . . 75 . . . 80 . . . 85 . . . 90 . . . 95 . . . 100 years old, that has not yet begun to show symptoms of an aging-associated condition e.g., cognitive impairment; an individual of any age that is suffering from a cognitive impairment due to an aging-associated disease, as described further below, and an individual of any age that has been diagnosed with an aging-associated disease that is typically accompanied by cognitive impairment, where the individual has not yet begun to show symptoms of cognitive impairment. The corresponding ages for non-human subjects are known and are intended to apply herein.
As summarized elsewhere, in some instances the subject is a mammal. Mammalian species that may be treated with the present methods include canines and felines; equines; bovines; ovines; etc., and primates, including humans. The subject methods, compositions, and reagents may also be applied to animal models, including small mammals, e.g., murine, lagomorpha, etc., for example, in experimental investigations.
As used herein and as described above,“treatment” refers to any of (i) the prevention of the disease or disorder, or (ii) the reduction or elimination of symptoms of the disease or disorder. Treatment may be effected prophylactically (prior to the onset of disease) or therapeutically (following the onset of the disease). The effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of a partial or complete cure for a disease and/or adverse effect attributable to the disease. Thus, the term“treatment” as used herein covers any treatment of an aging-related disease or disorder in a mammal, and includes: (a) preventing the disease from occurring in a subject which may be predisposed to the disease but has not yet been diagnosed as having it; (b) inhibiting the disease, i.e., arresting its development; or (c) relieving the disease, i.e., causing regression of the disease. Treatment may result in a variety of different physical manifestations, e.g., modulation in gene expression, rejuvenation of tissue or organs, etc. The therapeutic agent may be administered before, during or after the onset of disease. The treatment of ongoing disease, where the treatment stabilizes or reduces the undesirable clinical symptoms of the patient, is of particular interest. Such treatment may be performed prior to complete loss of function in the affected tissues. The subject therapy may be administered during the symptomatic stage of the disease, and in some cases after the symptomatic stage of the disease.
In some embodiments, the condition that is treated is an aging-associated impairment in cognitive ability in an individual. By cognitive ability, or "cognition," it is meant the mental processes that include attention and concentration, learning complex tasks and concepts, memory (acquiring, retaining, and retrieving new information in the short and/or long term), information processing (dealing with information gathered by the five senses), visuospatial function (visual perception, depth perception, using mental imagery, copying drawings, constructing objects or shapes), producing and understanding language, verbal fluency (word-finding), solving problems, making decisions, and executive functions (planning and prioritizing). By "cognitive decline", it is meant a progressive decrease in one or more of these abilities, e.g., a decline in memory, language, thinking, judgment, etc. By "an impairment in cognitive ability" and "cognitive impairment", it is meant a reduction in cognitive ability relative to a healthy individual, e.g., an age-matched healthy individual, or relative to the ability of the individual at an earlier point in time, e.g., 2 weeks, 1 month, 2 months, 3 months, 6 months, 1 year, 2 years, 5 years, or 10 years or more previously. By "aging-associated cognitive impairment," it is meant an impairment in cognitive ability that is typically associated with aging, including, for example, cognitive impairment associated with the natural aging process, e.g., mild cognitive impairment (M.C.I.); and cognitive impairment associated with an aging- associated disorder, that is, a disorder that is seen with increasing frequency with increasing senescence, e.g., a neurodegenerative condition such as Alzheimer's disease, Parkinson's disease, frontotemporal dementia, Huntington disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, vascular dementia, progressive supranuclear palsy, ataxia, associated frailty, and the like
g. Combinations
The compounds of general formula 1 may be used on their own or combined with other active substances of formula 1 according to the invention. The compounds of general formula 1 may optionally also be combined with other pharmacologically active substances. These include, h2-adrenoceptor-agonists (short and long-acting), anti-cholinergics (short and long-acting), anti-inflammatory steroids (oral and topical corticosteroids), cromoglycate, methylxanthine, dissociated-glucocorticoidmimetics, PDE3 inhibitors, PDE4- inhibitors, PDE7- inhibitors, LTD4 antagonists, EGFR- inhibitors, Dopamine agonists, PAF antagonists, Lipoxin A4 derivatives, FPRL1 modulators, LTB4-receptor (BLT1, BLT2) antagonists, Histamine Hl receptor antagonists, Histamine H4 receptor antagonists, dual Histamine H1/H3 -receptor antagonists, PI3-kinase inhibitors, inhibitors of non-receptor tyrosine kinases as for example LYN, LCK, SYK, ZAP-70, FYN, BTK or ITK, inhibitors of MAP kinases as for example p38, ERK1, ERK2, JNK1, JNK2, JNK3 or SAP, inhibitors of the NF-kB signalling pathway as for example IKK2 kinase inhibitors, iNOS inhibitors, MRP4 inhibitors, leukotriene biosynthese inhibitors as for example 5-Fipoxygenase (5- LO) inhibitors, cPFA2 inhibitors, Feukotriene A4 Hydrolase inhibitors or FFAP inhibitors, Non-steroidal anti-inflammatory agents (NSAIDs), CRTH2 antagonists, DPl-receptor modulators, Thromboxane receptor antagonists, additional CCR3 antagonists, CCR4 antagonists, CCR1 antagonists, CCR5 antagonists, CCR6 antagonists, CCR7 antagonists, CCR8 antagonists, CCR9 antagonists, CCR30 antagonists, , CXCR3 antagonists, CXCR4 antagonists, CXCR2 antagonists, CXCR1 antagonists, CXCR5 antagonists, CXCR6 antagonists, CX3CR3 antagonists, Neurokinin (NK1, NK2) antagonists, Sphingosine 1 -Phosphate receptor modulators, Sphingosine 1 phosphate lyase inhibitors, Adenosine receptor modulators as for example A2a-agonists, modulators of purinergic receptors as for example P2X7 inhibitors, Histone Deacetylase (HD AC) activators, Bradykinin (BK1, BK2) antagonists, TACE inhibitors, PPAR gamma modulators, Rho-kinase inhibitors, interleukin l-beta converting enzyme (ICE) inhibitors, Toll-Eike receptor (TLR) modulators, HMG-CoA reductase inhibitors, VLA-4 antagonists, ICAM-l inhibitors, SHIP agonists, GABAa receptor antagonist, ENaC -inhibitors, Melanocortin receptor (MC1R, MC2R, MC3R, MC4R, MC5R) modulators, CGRP antagonists, Endothelin antagonists, TNFa antagonists, anti-TNF antibodies, anti-GM-CSF antibodies, anti-CD46 antibodies, anti-IF-l antibodies, anti-IF-2 antibodies, anti- IF-4 antibodies, anti-IF-5 antibodies, anti-IF-l 3 antibodies, anti-IF-4/IF-l3 antibodies, anti-TSFP antibodies, anti-OX40 antibodies, mucoregulators, immunotherapeutic agents, compounds against swelling of the airways, compounds against cough, VEGF inhibitors, but also combinations of two or three active substances.
In some embodiments, the other active substances are betamimetics, anticholinergics, corticosteroids, PDE4-inhibitors, ETD4-antagonists, EGFR-inhibitors, CRTH2 inhibitors, 5-EO-inhibitors, Histamine receptor antagonists and SYK-inhibitors, but also combinations of two or three active substances, i.e.:
• Betamimetics with corticosteroids, PDE4-inhibitors, CRTH2-inhibitors or ETD4-antagonists,
• Anticholinergics with betamimetics, corticosteroids, PDE4-inhibitors, CRTH2-inhibitors or ETD4- antagonists,
• Corticosteroids with PDE4-inhibitors, CRTH2-inhibitors or ETD4-antagonists
• PDE4-inhibitors with CRTH2-inhibitors or ETD4-antagonists
• CRTH2-inhibitors with ETD4-antagonists.
In these embodiments, the compounds that make up the combination are co-administered to a subject. The terms "co-administration" and "in combination with" include the administration of two or more therapeutic agents either simultaneously, concurrently or sequentially within no specific time limits. In one embodiment, the agents are present in the cell or in the subject's body at the same time or exert their biological or therapeutic effect at the same time. In one embodiment, the therapeutic agents are in the same composition or unit dosage form. In other embodiments, the therapeutic agents are in separate compositions or unit dosage forms. In certain embodiments, a first agent can be administered prior to (e.g., minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks before), concomitantly with, or subsequent to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after) the administration of a second therapeutic agent. "Concomitant administration" of a known therapeutic drug with a pharmaceutical composition of the present disclosure means administration of the compound and second agent at such time that both the known drug and the composition of the present invention will have a therapeutic effect. Such concomitant administration may involve concurrent (i.e. at the same time), prior, or subsequent administration of the drug with respect to the administration of a subject compound. Routes of administration of the two agents may vary, where representative routes of administration are described in greater detail below. A person of ordinary skill in the art would have no difficulty determining the appropriate timing, sequence and dosages of administration for particular drugs and compounds of the present disclosure. In some embodiments, the compounds (e.g., a subject compound and the at least one additional compound) are administered to the subject within twenty- four hours of each other, such as within 12 hours of each other, within 6 hours of each other, within 3 hours of each other, or within 1 hour of each other. In certain embodiments, the compounds are administered within 1 hour of each other. In certain embodiments, the compounds are administered substantially simultaneously. By administered substantially simultaneously is meant that the compounds are administered to the subject within about 10 minutes or less of each other, such as 5 minutes or less, or 1 minute or less of each other.
A“companion diagnostic” or“companion diagnostic device” means an in vitro diagnostic device or an imaging tool that provides information that is essential for the safe and effective use of a corresponding therapeutic product. The use of an in vitro diagnostic companion device with a particular therapeutic product is stipulated in the instructions for use in the labeling of both the device and the corresponding therapeutic product, as well as in the labeling of any generic equivalents and biosimilar equivalents of the therapeutic product.
Companion diagnostic testing can be in several forms, including by way of example and not limitation: test that screen for familial genetic patterns and difficult to diagnose conditions; prognosis tests predicting the future course of a disease; theranostic test to indicate a patient’s response to a prescribed therapy; monitoring tests that evaluate the effectiveness and appropriate dosing of a prescribed therapy; and recurrence tests analyzing the patient’s risk for a recurrence of the disease. See Agarwal A, et al., Pharmgenomics Pers Med. 8:99-110 (2015) which is herein incorporated by reference in its entirety. h. Pharmaceutical Forms
Suitable preparations for administering the compounds of formula 1 and the co-crystal or salt forms of formulae 2 and 2a include for example tablets, capsules, suppositories, solutions and powders etc. The content of the pharmaceutically active compound(s) should be in the range from 0.05 to 90 wt.-%, such as 0.1 to 50 wt.-% of the composition as a whole. Suitable tablets may be obtained, for example, by mixing the active substance(s) with known excipients, for example inert diluents such as calcium carbonate, calcium phosphate or lactose, disintegrants such as corn starch or alginic acid, binders such as starch or gelatine, lubricants such as magnesium stearate or talc and/or agents for delaying release, such as carboxymethyl cellulose, cellulose acetate phthalate, or polyvinyl acetate. The tablets may also comprise several layers.
Coated tablets may be prepared accordingly by coating cores produced analogously to the tablets with substances normally used for tablet coatings, for example collidone or shellac, gum arabic, talc, titanium dioxide or sugar. To achieve delayed release or prevent incompatibilities the core may also consist of a number of layers. Similarly the tablet coating may consist of a number or layers to achieve delayed release, possibly using the excipients mentioned above for the tablets.
Syrups or elixirs containing the active substances or combinations thereof according to the invention may additionally contain a sweetener such as saccharine, cyclamate, glycerol or sugar and a flavour enhancer, e.g. a flavouring such as vanillin or orange extract. They may also contain suspension adjuvants or thickeners such as sodium carboxymethyl cellulose, wetting agents such as, for example, condensation products of fatty alcohols with ethylene oxide, or preservatives such as p-hydroxybenzoates.
Solutions are prepared in the usual way, e.g. with the addition of isotonic agents, preservatives such as p-hydroxybenzoates or stabilisers such as alkali metal salts of ethylenediaminetetraacetic acid, optionally using emulsifiers and/or dispersants, while if water is used as diluent, for example, organic solvents may optionally be used as solubilisers or dissolving aids, and the solutions may be transferred into injection vials or ampoules or infusion bottles.
Capsules containing one or more active substances or combinations of active substances may for example be prepared by mixing the active substances with inert carriers such as lactose or sorbitol and packing them into gelatine capsules.
Suitable suppositories may be made for example by mixing with carriers provided for this purpose, such as neutral fats or polyethyleneglycol or the derivatives thereof.
Excipients which may be used include, for example, water, pharmaceutically acceptable organic solvents such as paraffins (e.g. petroleum fractions), vegetable oils (e.g. groundnut or sesame oil), mono- or polyfunctional alcohols (e.g. ethanol or glycerol), carriers such as e.g. natural mineral powders (e.g. kaolins, clays, talc, chalk), synthetic mineral powders (e.g. highly dispersed silicic acid and silicates), sugars (e.g. cane sugar, lactose and glucose), emulsifiers (e.g. lignin, spent sulphite liquors, methylcellulose, starch and polyvinylpyrrolidone) and lubricants (e.g. magnesium stearate, talc, stearic acid and sodium lauryl sulphate).
For oral use the tablets may obviously contain, in addition to the carriers specified, additives such as sodium citrate, calcium carbonate and dicalcium phosphate together with various additional substances such as starch, e.g., potato starch, gelatine and the like. Lubricants such as magnesium stearate, sodium laurylsulphate and talc may also be used to produce the tablets. In the case of aqueous suspensions the active substances may be combined with various flavor enhancers or colorings in addition to the abovementioned excipients.
For administering the compounds of formula 1 or the co-crystal or salt forms of formulae 2 and 2a preparations or pharmaceutical formulations which are suitable for inhalation may be employed. Tnha1ah1e preparations include inhalable powders, propellant-containing metered-dose aerosols or propellant-free inhalable solutions. Within the scope of the present invention, the term propellant-free inhalable solutions also include concentrates or sterile inhalable solutions ready for use. The formulations which may be used within the scope of the present invention are described in more detail in the next part of the specification.
The inhalable powders which may be used according to the invention may contain a compound of formula 1 or a co-crystal or salt form of formulae 2 and 2a either on their own or in admixture with suitable physiologically acceptable excipients.
If the active substances of the compounds of formula 1 or the co-crystal or salt forms of formulae 2 and 2a are present in admixture with physiologically acceptable excipients, the following physiologically acceptable excipients may be used to prepare these inhalable powders according to the invention: monosaccharides (e.g. glucose or arabinose), disaccharides (e.g. lactose, saccharose, maltose), oligo- and polysaccharides (e.g. dextrans), polyalcohols (e.g. sorbitol, mannitol, xylitol), salts (e.g. sodium chloride, calcium carbonate) or mixtures of these excipients. In some instances, mono- or disaccharides are used, such as lactose or glucose, e.g., in the form of their hydrates, e.g., lactose, such as lactose monohydrate.
Within the scope of the inhalable powders according to the invention the excipients have a maximum average particle size of up to 250 pm, such as between 10 and 150 pm, and including between 15 and 80 pm. It may sometimes seem appropriate to add finer excipient fractions with an average particle size of 1 to 9 pm to the excipient mentioned above. These finer excipients are also selected from the group of possible excipients listed hereinbefore. Finally, in order to prepare the inhalable powders according to the invention, micronized active substance of the compounds of formula 1 or the co-crystal or salt forms of formulae 2 and 2a, such as with an average particle size of 0.5 to 10 pm, including from 1 to 5 pm, is added to the excipient mixture. Processes for producing the inhalable powders according to the invention by grinding and micronising and finally mixing the ingredients together are known from the prior art.
The inhalable powders according to the invention may be administered using inhalers known from the prior art.
The inhalation aerosols containing propellant gas according to the invention may contain a compound of formula 1 or a co-crystal or salt form of formulae 2 and 2a dissolved in the propellant gas or in dispersed form. The compounds of formula 1 or the co-crystal or salt forms of formulae 2 and 2a may be contained in separate formulations or in a common formulation, in which they are either both dissolved, both dispersed or in each case only one component is dissolved and the other is dispersed. The propellant gases which may be used to prepare the inhalation aerosols are known from the prior art. Suitable propellant gases are selected from among hydrocarbons such as n-propane, n-butane or isobutane and halohydrocarbons such as fluorinated derivatives of methane, ethane, propane, butane, cyclopropane or cyclobutane. The abovementioned propellant gases may be used on their own or mixed together. In some instances, propellant gases are halogenated alkane derivatives selected from TGI 34a and TG227 and mixtures thereof.
The propellant-driven inhalation aerosols may also contain other ingredients such as co-solvents, stabilisers, surfactants, antioxidants, lubricants and pH adjusters. All these ingredients are known in the art.
The propellant-driven inhalation aerosols according to the invention mentioned above may be administered using inhalers known in the art (MDIs = metered dose inhalers).
Moreover, the active substances of the compounds of formula 1 or the co-crystal or salt forms of formulae 2 and 2a according to the invention may be administered in the form of propellant-free inhalable solutions and suspensions. The solvent used may be an aqueous or alcoholic, such as an ethanolic solution. The solvent may be water on its own or a mixture of water and ethanol. The relative proportion of ethanol compared with water is not limited but the maximum is in some instances up to 70 percent by volume, such as up to 60 percent by volume and including up to 30 percent by volume. The remainder of the volume is made up of water. The solutions or suspensions containing a compound of formula 1 or a co-crystal or salt form of formulae 2 and 2a are adjusted to a pH of 2 to 7, such as 2 to 5, using suitable acids. The pH may be adjusted using acids selected from inorganic or organic acids. Examples of particularly suitable inorganic acids include hydrochloric acid, hydrobromic acid, nitric acid, sulphuric acid and/or phosphoric acid. Examples of particularly suitable organic acids include ascorbic acid, citric acid, malic acid, tartaric acid, maleic acid, succinic acid, fumaric acid, acetic acid, formic acid and/or propionic acid etc. In some instances, the inorganic acids are hydrochloric and sulphuric acids. It is also possible to use the acids which have already formed an acid addition salt with one of the active substances. Of the organic acids, ascorbic acid, fumaric acid and citric acid are employed in some instances. If desired, mixtures of the above acids may be used, particularly in the case of acids which have other properties in addition to their acidifying qualities, e.g. as flavourings, antioxidants or complexing agents, such as citric acid or ascorbic acid, for example. According to the invention, in some instances hydrochloric acid is employed to adjust the pH.
If desired, the addition of edetic acid (EDTA) or one of the known salts thereof, sodium edetate, as stabilizer or complexing agent may be omitted in these formulations. Other embodiments may contain this compound or these compounds. In an embodiment the content based on sodium edetate is less than 100 mg/lOOml, such as less than 50mg/100ml, and including less than 20mg/100ml. Inhalable solutions in which the content of sodium edetate is from 0 to lOmg/lOOml are employed in some instances. Co-solvents and/or other excipients may be added to the propellant-free inhalable solutions, such as those which contain hydroxyl groups or other polar groups, e.g. alcohols - particularly isopropyl alcohol, glycols - particularly propyleneglycol, polyethyleneglycol, polypropyleneglycol, glycolether, glycerol, polyoxyethylene alcohols and polyoxyethylene fatty acid esters. The terms excipients and additives in this context denote any pharmacologically acceptable substance which is not an active substance but which can be formulated with the active substance or substances in the physiologically suitable solvent in order to improve the qualitative properties of the active substance formulation. In some embodiments, these substances have no pharmacological effect or, in connection with the desired therapy, no appreciable or at least no undesirable pharmacological effect. The excipients and additives include, for example, surfactants such as soya lecithin, oleic acid, sorbitan esters, such as polysorbates, polyvinylpyrrolidone, other stabilizers, complexing agents, antioxidants and/or preservatives which guarantee or prolong the shelf life of the finished pharmaceutical formulation, flavourings, vitamins and/or other additives known in the art. The additives also include pharmacologically acceptable salts such as sodium chloride as isotonic agents.
In some embodiments excipients include antioxidants such as ascorbic acid, for example, provided that it has not already been used to adjust the pH, vitamin A, vitamin E, tocopherols and similar vitamins and provitamins occurring in the human body.
Preservatives may be used to protect the formulation from contamination with pathogens. Suitable preservatives are those which are known in the art, particularly acetyl pyridinium chloride, benzalkonium chloride or benzoic acid or benzoates such as sodium benzoate in the concentration known from the prior art. The preservatives mentioned above may be present in concentrations of up to 50 mg/lOO ml, such as between 5 and 20 mg/lOO ml.
In some embodiments, the formulations contain, in addition to the solvent water and the compounds of formula 1 or the co-crystal or salt forms of formulae 2 and 2a, only benzalkonium chloride and sodium edetate. In an embodiment, no sodium edetate is present.
The dosage of the compounds according to the invention is naturally highly dependent on the method of administration and the complaint which is being treated. When administered by inhalation the compounds of formula 1 or the co-crystal or salt forms of formulae 2 and 2a are characterized by a high potency even at doses in the pg range. The compounds of formula 1 or the co-crystal or salt forms of formulae 2 and 2a may also be used effectively above the pg range. The dosage may then be in the gram range, for example.
In another aspect the present invention relates to the above-mentioned pharmaceutical formulations as such which are characterized in that they contain a compound of formula 1 or a co-crystal or salt form of formulae 2 and 2a, particularly the above-mentioned pharmaceutical formulations which can be administered by inhalation.
The following examples of formulations illustrate the present invention without restricting its scope: i. Examples of Pharmaceutical Formulations A) Tablets per tablet
active substance 1, 2, or 2a 100 mg
lactose 140 mg
maize starch 240 mg
polyvinylpyrrolidone 15 mg
magnesium stearate 5 mg
500 mg
The finely ground active substance, lactose and some of the maize starch are mixed together. The mixture is screened, then moistened with a solution of polyvinylpyrrolidone in water, kneaded, wet granulated and dried. The granules, the remaining maize starch and the magnesium stearate are screened and mixed together. The mixture is pressed into tablets of suitable shape and size.
B) Tablets _ per tablet
active substance 1, 2, or 2a 80 mg
lactose 55 mg
maize starch 190 mg
microcrystalline cellulose 35 mg
polyvinylpyrrolidone 15 mg
sodium carboxymethyl starch 23 mg
magnesium stearate 2 mg
400 mg
The finely ground active substance, some of the corn starch, lactose, microcrystalline cellulose and polyvinylpyrrolidone are mixed together, the mixture is screened and worked with the remaining corn starch and water to form a granulate which is dried and screened. The sodium carboxymethyl starch and the magnesium stearate are added and mixed in and the mixture is compressed to form tablets of a suitable size.
C) Ampoule solution
active substance 1, 2, or 2a 50 mg sodium chloride 50 mg
water for inj. 5 ml
The active substance is dissolved in water at its own pH or optionally at pH 5.5 to 6.5 and sodium chloride is added to make the solution isotonic. The resulting solution is filtered to remove pyrogens and the filtrate is transferred under aseptic conditions into ampoules which are then sterilized and heat-sealed. The ampoules contain 5 mg, 25 mg and 50 mg of active substance.
D) Metering aerosol _
active substance 1, 2, or 2a 0.005
sorbitan trioleate 0.1
monofluorotrichloromethane and
TGl34a : TG227 2:1 ad 100
The suspension is transferred into a conventional aerosol container with metering valve. Preferably 50 pl suspension are released on each actuation. The active substance may also be released in higher doses if desired (e.g. 0.02 wt.-%).
E) Solutions tin mg/ 100ml ) _
active substance 1, 2, or 2a 333.3 mg
benzalkonium chloride 10.0 mg
EDTA 50.0 mg
HC1 (1N) ad pH 2.4
This solution can be prepared in the usual way.
F) Inhalable powder _
active substance 1, 2, or 2a 12 pg
lactose monohydrate ad 25 mg
The inhalable powder is prepared in the usual way by mixing the individual ingredients. j. Indications
Methods of improving cognition or other symptoms of cognitive disease through treating a subject/patient diagnosed with cognitive-associated disease are provided. Aspects of the methods include modulating CCR3, e.g. with a CCR3 modulating agent, in a manner sufficient to treat the patient for the cognitive-associated disease. The methods include treating the cognitive-associated disease with an orally administrable and bioavailable composition, including a composition of compound of formula 1, a co crystal or salt of formulae 2 or 2a, or a formulation of formula 3, described above. As summarized above and described below in greater detail, a variety of aging associated impairments, e.g., cognitive-associated diseases may be treated by embodiments of the invention. In some instances, the target condition is a cognitive-associated disease condition that is associated with neurodegeneration, e.g., as evidenced by neural compromise, such as one of more of, reduced neurogeneration, e.g., as manifested by decreased numbers of BrdU or EdU positive cells, Ki67 positive cells, and Dcx positive cells when compared to non- diseased tissue. The composition, which modulates CCR3, can be administered to a patient/subject diagnosed with the cognitive-associated disease, such as (by way of example and not limitation): mild cognitive impairment (MCI); Alzheimer’s disease; Parkinson’s disease; frontotemporal dementia (FTD); Huntington’s disease; amyotrophic lateral sclerosis (ALS); multiple sclerosis (MS); glaucoma; myotonic dystrophy; dementia; progressive supranuclear palsy (PSP); ataxia; multiple-system atrophy; and frailty; which are further described below. The methods of the invention can further comprise monitoring improvement in the progression of the neurodegenerative disease through measuring cognitive or physical improvement.
Methods of improving motor coordination, function, or other symptoms of motor disorders through treating a subject/patient diagnosed with motor disorders are provided. Aspects of the methods include modulating CCR3, e.g. with a CCR3 modulating agent, in a manner sufficient to treat the patient for the motor disorder. The methods include treating the motor disorder with an orally administrable and bioavailable composition, including a composition of compound of formula 1, a co-crystal or salt of formulae 2 or 2a, or a formulation of formula 3, described above. As summarized above and described below in greater detail, a variety of aging associated impairments, e.g., motor disorders may be treated by embodiments of the invention. In some instances, the target condition is a motor disorder that is associated with neurodegeneration, e.g., as evidenced by neural compromise, such as one of more of, reduced neurogeneration, e.g., as manifested by decreased numbers of BrdU or EdU positive cells, Ki67 positive cells, and Dcx positive cells when compared to non-diseased tissue. The composition, which modulates CCR3, can be administered to a patient/subject diagnosed with the motor disorder, such as (by way of example and not limitation): Parkinson’s disease; Parkinsonism; Dementia with Lewy Bodies; ataxia; dystonia; cervical dystonia; chorea; Huntington’s disease, multiple system atrophy; spasticity; progressive supranuclear palsy; Tardive dyskinesia; Tourette syndrome; and tremor; which are further described below. The methods of the invention can further comprise monitoring improvement in the progression of the neurodegenerative disease through measuring cognitive or physical improvement.
Mild cognitive impairment (M.C.I.) is a modest disruption of cognition that manifests as problems with memory or other mental functions such as planning, following instructions, or making decisions that have worsened over time while overall mental function and daily activities are not impaired. Thus, although significant neuronal death does not typically occur, neurons in the aging brain are vulnerable to sub-lethal age-related alterations in structure, synaptic integrity, and molecular processing at the synapse, all of which impair cognitive function. Individuals suffering from or at risk of developing an aging-associated cognitive impairment who will benefit from treatment with the subject compounds of the invention, e.g., by the methods disclosed herein, also include individuals of any age that are suffering from a cognitive impairment due to an aging-associated disorder; and individuals of any age that have been diagnosed with an aging- associated disorder that is typically accompanied by cognitive impairment, where the individual has not yet begun to present with symptoms of cognitive impairment. Examples of such aging-associated disorders include by way of not of limitation, those listed below.
Alzheimer's disease. Alzheimer's disease is characterized by a progressive, inexorable loss of cognitive function associated with an excessive number of senile plaques in the cerebral cortex and subcortical gray matter, in addition to excessive b-amyloid and neurofibrillary tangles consisting of tau protein. The common form affects persons >60 years old, and its incidence increases as age advances. It accounts for more than 65% of the dementias in the elderly.
The cause of Alzheimer's disease is not known. The disease runs in families in about 15 to 20% of cases. The remaining, so-called sporadic cases have some genetic associations. The disease has an autosomal dominant genetic pattern in most early-onset and some late-onset cases but a variable late-life penetrance. Environmental factors are the focus of active investigation.
In the course of the disease, synapses, and ultimately neurons are lost within the cerebral cortex, hippocampus, and subcortical structures (including selective cell loss in the nucleus basalis of Meynert), locus coeruleus, and nucleus raphae dorsalis. Cerebral glucose use and perfusion is reduced in some areas of the brain (parietal lobe and temporal cortices in early-stage disease, prefrontal cortex in late-stage disease). Neuritic or senile plaques (composed of neurites, astrocytes, and glial cells around an amyloid core) and neurofibrillary tangles (composed of paired helical filaments) play a role in the pathogenesis of Alzheimer's disease. Senile plaques and neurofibrillary tangles occur with normal aging, but they are much more prevalent in persons with Alzheimer's disease.
Parkinson's Disease. Parkinson's Disease (PD) is an idiopathic, slowly progressive, degenerative CNS disorder characterized by slow and decreased movement (bradykinesia), muscular rigidity, resting tremor (dystonia), muscle freezing, and postural instability. Originally considered primarily a motor disorder, PD is now recognized to also cause depression and emotional changes. PD also can affect cognition, behavior, sleep, autonomic function, and sensory function. The most common cognitive impairments include an impairment in attention and concentration, working memory, executive function, producing language, and visuospatial function. A characteristic of PD is symptoms related to reduced motor function usually precede those related to cognitive impairment, which aids in diagnosis of the disease.
In primary Parkinson's disease, the pigmented neurons of the substantia nigra, locus coeruleus, and other brain stem dopaminergic cell groups degenerate. The cause is not known. The loss of substantia nigra neurons, which project to the caudate nucleus and putamen, results in depletion of the neurotransmitter dopamine in these areas. Onset is generally after age 40, with increasing incidence in older age groups.
Parkinson’ s disease is newly diagnosed in about 60,000 Americans each year and currently affects approximately one million Americans. Even though PD is not fatal in itself, its complications are the fourteenth leading cause of death in the United States. At present, PD cannot be cured, and treatment is generally prescribed to control symptoms, with surgery prescribed in later, severe cases.
Treatment options for PD include administration of pharmaceuticals to help manage motor deficits. These options increase or substitute for the neurotransmitter, dopamine, of which PD patients have low brain concentrations. Such medications include: carbidopa/levodopa (which create more dopamine in the brain); apomorphine, pramipexolole, ropinirole, and rotingotine (dopamine agonists); selegiline and rasagiline (MAO-B inhibitors which prevent breakdown of dopamine); entacapone and tolcapone (Catechol-O-methyltransferase [COMT] inhibitors which make more levodopa available in the brain); benztropine and trihexyphenidyl (anticholinergics); and amantadine (controls tremor and stiffness). Exercise/physical therapy is also commonly prescribed to help maintain physical and mental function.
Current treatment options, however treat the symptoms of PD, are not curative, and fail to prevent disease progression. Additionally, current medications tend to lose efficacy in late stage PD. The most prescribed drug, levodopa, commonly results in adverse effects within 5 to 10 years after commencing the medication. These adverse effects can be severe and can result in motor fluctuations and unpredictable swings in motor control between doses as well as jerking/twitching (dyskinesia) which are difficult to manage and are even as disabling as PD’s own symptoms. Thus, there remains a need for new therapies with new mechanisms of action which can either be administrated along or in combination with current PD medications.
Parkinsonism. Secondary parkinsonism (also referred to as atypical Parkinson’s disease or Parkinson’ s plus) results from loss of or interference with the action of dopamine in the basal ganglia due to other idiopathic degenerative diseases, drugs, or exogenous toxins. The most common cause of secondary parkinsonism is ingestion of antipsychotic drugs or reserpine, which produce parkinsonism by blocking dopamine receptors. Less common causes include carbon monoxide or manganese poisoning, hydrocephalus, structural lesions (tumors, infarcts affecting the midbrain or basal ganglia), subdural hematoma, and degenerative disorders, including nigrostriatal degeneration. Certain disorders like Progressive Supranuclear Palsy (PSP), Multiple System Atrophy (MSA), Corticobasal degeneration (CBD) and Dementia with Lewy Bodies (DLB) can exhibit Parkinsonism symptoms before the cardinal symptoms necessary to the specific diagnosis can be made, and thus may be labeled as“Parkinsonism.”
Assessing Progression of PD
Several rating scales have been utilized for evaluating the progression of PD. The most widely- used scales include the Unified Parkinson’s Disease Rating Scale (UPDRS, which was introduced in 1987) (J. Rehabil Res. Dev., 2012 49(8): 1269-76), and the Hoehn and Yahr scale (Neruology, 1967 17(5): 427- 42). Additional scales include the Movement Disorder Society (MDS)’s updated UPDRS scale (MDS- UPDRS) as well as the Schwab and England Activities of Daily Living (ADL) Scale.
The UPDRS scale evaluates 31 items that contributed to three subscales: (1) mentation, behavior, and mood; (2) activities of daily living; and (3) motor examination. The Hoehn and Yahr scale classifies PD into five stages with discreet substages: 0 - no signs of disease; 1 - symptoms on one side only; 1.5 - symptoms on one side but also involving neck and spine; 2 - symptoms on both sides with no balance impairment; 2.5 - mild symptoms on both sides, with recovery when the‘pull’ test is given; 3 - balance impairment with mild to moderate disease; 4 - severe disability, but ability to walk or stand unassisted; and 5 - need a wheelchair or bedridden without assistance. The Schwab and England scale classifies PD into several percentages (from 100% - complete independent to 10% - total dependent).
Frontotemporal dementia. Frontotemporal dementia (FTD) is a condition resulting from the progressive deterioration of the frontal lobe of the brain. Over time, the degeneration may advance to the temporal lobe. Second only to Alzheimer's disease (AD) in prevalence, FTD accounts for 20% of pre-senile dementia cases. Symptoms are classified into three groups based on the functions of the frontal and temporal lobes affected:
Behavioral variant FTD (bvFTD), with symptoms including lethargy and aspontaneity on the one hand, and disinhibition on the other; progressive nonfluent aphasia (PNFA), in which a breakdown in speech fluency due to articulation difficulty, phonological and/or syntactic errors is observed but word comprehension is preserved; and semantic dementia (SD), in which patients remain fluent with normal phonology and syntax but have increasing difficulty with naming and word comprehension. Other cognitive symptoms common to all FTD patients include an impairment in executive function and ability to focus. Other cognitive abilities, including perception, spatial skills, memory and praxis typically remain intact. FTD can be diagnosed by observation of frontal lobe and/or anterior temporal lobe atrophy in structural MRI scans. A number of for s of FTD exist, any of which may be treated or prevented using the subject methods and compositions. For example, one form of frontotemporal dementia is Semantic Dementia (SD). SD is characterized by a loss of semantic memory in both the verbal and non-verbal domains. SD patients often present with the complaint of word-finding difficulties. Clinical signs include fluent aphasia, anomia, impaired comprehension of word meaning, and associative visual agnosia (the inability to match semantically related pictures or objects). As the disease progresses, behavioral and personality changes are often seen similar to those seen in frontotemporal dementia although cases have been described of 'pure' semantic dementia with few late behavioral symptoms. Structural MRI imaging shows a characteristic pattern of atrophy in the temporal lobes (predominantly on the left), with inferior greater than superior involvement and anterior temporal lobe atrophy greater than posterior.
As another example, another form of frontotemporal dementia is Pick's disease (PiD, also PcD). A defining characteristic of the disease is build-up of tau proteins in neurons, accumulating into silver- staining, spherical aggregations known as "Pick bodies.” Symptoms include loss of speech (aphasia) and dementia. Patients with orbitofrontal dysfunction can become aggressive and socially inappropriate.
They may steal or demonstrate obsessive or repetitive stereotyped behaviors. Patients with dorsomedial or dorsolateral frontal dysfunction may demonstrate a lack of concern, apathy, or decreased spontaneity. Patients can demonstrate an absence of self-monitoring, abnormal self-awareness, and an inability to appreciate meaning.
Patients with gray matter loss in the bilateral posterolateral orbitofrontal cortex and right anterior insula may demonstrate changes in eating behaviors, such as a pathologic sweet tooth. Patients with more focal gray matter loss in the anterolateral orbitofrontal cortex may develop hyperphagia. While some of the symptoms can initially be alleviated, the disease progresses and patients often die within two to ten years.
Huntington's disease. Huntington's disease (HD) is a hereditary progressive neurodegenerative disorder characterized by the development of emotional, behavioral, and psychiatric abnormalities; loss of intellectual or cognitive functioning; and movement abnormalities (motor disturbances). The classic signs of HD include the development of chorea - involuntary, rapid, irregular, jerky movements that may affect the face, arms, legs, or trunk - as well as cognitive decline including the gradual loss of thought processing and acquired intellectual abilities. There may be impairment of memory, abstract thinking, and judgment; improper perceptions of time, place, or identity (disorientation); increased agitation; and personality changes (personality disintegration). Although symptoms typically become evident during the fourth or fifth decades of life, the age at onset is variable and ranges from early childhood to late adulthood (e.g., 70s or 80s).
HD is transmitted within families as an autosomal dominant trait. The disorder occurs as the result of abnormally long sequences or "repeats" of coded instructions within a gene on chromosome 4 (4pl6.3). The progressive loss of nervous system function associated with HD results from loss of neurons in certain areas of the brain, including the basal ganglia and cerebral cortex.
Amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, invariably fatal, neurological disease that attacks motor neurons. Muscular weakness and atrophy and signs of anterior horn cell dysfunction are initially noted most often in the hands and less often in the feet. The site of onset is random, and progression is asymmetric. Cramps are common and may precede weakness. Rarely, a patient survives 30 years; 50% die within 3 years of onset, 20% live 5 years, and 10% live 10 years.
Diagnostic features include onset during middle or late adult life and progressive, generalized motor involvement without sensory abnormalities. Nerve conduction velocities are normal until late in the disease. Recent studies have documented the presentation of cognitive impairments as well, particularly a reduction in immediate verbal memory, visual memory, language, and executive function.
A decrease in cell body area, number of synapses and total synaptic length has been reported in even normal-appearing neurons of the ALS patients. It has been suggested that when the plasticity of the active zone reaches its limit, a continuing loss of synapses can lead to functional impairment. Promoting the formation or new synapses or preventing synapse loss may maintain neuron function in these patients.
Multiple Sclerosis. Multiple Sclerosis (MS) is characterized by various symptoms and signs of CNS dysfunction, with remissions and recurring exacerbations. The most common presenting symptoms are paresthesias in one or more extremities, in the trunk, or on one side of the face; weakness or clumsiness of a leg or hand; or visual disturbances, e.g., partial blindness and pain in one eye (retrobulbar optic neuritis), dimness of vision, or scotomas. Common cognitive impairments include impairments in memory (acquiring, retaining, and retrieving new information), attention and concentration (particularly divided attention), information processing, executive functions, visuospatial functions, and verbal fluency. Common early symptoms are ocular palsy resulting in double vision (diplopia), transient weakness of one or more extremities, slight stiffness or unusual fatigability of a limb, minor gait disturbances, difficulty with bladder control, vertigo, and mild emotional disturbances; all indicate scattered CNS involvement and often occur months or years before the disease is recognized. Excess heat may accentuate symptoms and signs.
The course is highly varied, unpredictable, and, in most patients, remittent. At first, months or years of remission may separate episodes, especially when the disease begins with retrobulbar optic neuritis. However, some patients have frequent attacks and are rapidly incapacitated; for a few the course can be rapidly progressive.
Glaucoma. Glaucoma is a common neurodegenerative disease that affects retinal ganglion cells (RGCs). Evidence supports the existence of compartmentalized degeneration programs in synapses and dendrites, including in RGCs. Recent evidence also indicates a correlation between cognitive impairment in older adults and glaucoma (Yochim BP, et al. Prevalence of cognitive impairment, depression, and anxiety symptoms among older adults with glaucoma. J Glaucoma. 20l2;2l(4):250-254).
Myotonic dystrophy. Myotonic dystrophy (DM) is an autosomal dominant multisystem disorder characterized by dystrophic muscle weakness and myotonia. The molecular defect is an expanded trinucleotide (CTG) repeat in the 3' untranslated region of the myotonin protein kinase gene on chromosome l9q. Symptoms can occur at any age, and the range of clinical severity is broad. Myotonia is prominent in the hand muscles, and ptosis is common even in mild cases. In severe cases, marked peripheral muscular weakness occurs, often with cataracts, premature balding, hatchet facies, cardiac arrhythmias, testicular atrophy, and endocrine abnormalities (e.g., diabetes mellitus). Mental retardation is common in severe congenital forms, while an aging-related decline of frontal and temporal cognitive functions, particularly language and executive functions, is observed in milder adult forms of the disorder. Severely affected persons die by their early 50s.
Dementia. Dementia describes a class of disorders having symptoms affecting thinking and social abilities severely enough to interfere with daily functioning. Other instances of dementia in addition to the dementia observed in later stages of the aging-associated disorders discussed above include vascular dementia, and dementia with Lewy bodies, described below.
In vascular dementia, or "multi -infarct dementia", cognitive impairment is caused by problems in supply of blood to the brain, typically by a series of minor strokes, or sometimes, one large stroke preceded or followed by other smaller strokes. Vascular lesions can be the result of diffuse cerebrovascular disease, such as small vessel disease, or focal lesions, or both. Patients suffering from vascular dementia present with cognitive impairment, acutely or subacutely, after an acute cerebrovascular event, after which progressive cognitive decline is observed. Cognitive impairments are similar to those observed in Alzheimer's disease, including impairments in language, memory, complex visual processing, or executive function, although the related changes in the brain are not due to AD pathology but to chronic reduced blood flow in the brain, eventually resulting in dementia. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) neuroimaging may be used to confirm a diagnosis of multi-infarct dementia in conjunction with evaluations involving mental status examination.
Dementia with Lewy bodies.
Dementia with Lewy bodies (DLB), also known under a variety of other names including Lewy body dementia, diffuse Lewy body disease, cortical Lewy body disease, and senile dementia of Lewy type, is a type of dementia characterized anatomically by the presence of Lewy bodies (clumps of alpha-synuclein and ubiquitin protein) in neurons, detectable in post mortem brain histology. Its primary feature is cognitive decline, particularly of executive functioning. Alertness and short-term memory will rise and fall. Persistent or recurring visual hallucinations with vivid and detailed pictures are often an early diagnostic symptom. DLB it is often confused in its early stages with Alzheimer's disease and/or vascular dementia, although, where Alzheimer's disease usually begins quite gradually, DLB often has a rapid or acute onset. DLB symptoms also include motor symptoms similar to those of Parkinson's. DLB is distinguished from the dementia that sometimes occurs in Parkinson's disease by the time frame in which dementia symptoms appear relative to Parkinson symptoms. Parkinson's disease with dementia (PDD) would be the diagnosis when dementia onset is more than a year after the onset of Parkinson's. DLB is diagnosed when cognitive symptoms begin at the same time or within a year of Parkinson symptoms.
Treating DLB is a complex process and requires a multifaceted approach. (Neurology, 2017 89: 1- 13). Typical Parkinsonism therapies like dopaminergic and anticholinergic drugs can exacerbate cognition and behavior symptoms. Optimal treatment commonly utilizes both pharmacologic (exercise, cognitive training, and caregiver-oriented training) and non-pharmacologic approaches. For cognitive symptoms, acetylcholinesterase inhibitors can be administered (e.g. rivastigmine, donepezil) as can the NMDA receptor antagonist, memantine. For neuropsychiatric symptoms, acetylcholinesterase inhibitors can improve apathy and hallucinations. Antipsychotics unfortunately increase mortality risk in DLB patients. Motor symptoms are less responsive to dopaminergic treatments in DLB patients and can exacerbate the risk of psychosis. Levodopa can be used, but only a low threshold doses, hence a distinct need in the field for new agents to treat DLB..
Progressive supranuclear palsy. Progressive supranuclear palsy (PSP) is a brain disorder that causes serious and progressive problems with control of gait and balance, along with complex eye movement and thinking problems. One of the classic signs of the disease is an inability to aim the eyes properly, which occurs because of lesions in the area of the brain that coordinates eye movements. Some individuals describe this effect as a blurring. Affected individuals often show alterations of mood and behavior, including depression and apathy as well as progressive mild dementia. The disorder's long name indicates that the disease begins slowly and continues to get worse (progressive) and causes weakness (palsy) by damaging certain parts of the brain above pea-sized structures called nuclei that control eye movements (supranuclear). PSP was first described as a distinct disorder in 1964, when three scientists published a paper that distinguished the condition from Parkinson's disease. It is sometimes referred to as Steele - Richardson-Olszewski syndrome, reflecting the combined names of the scientists who defined the disorder. Although PSP gets progressively worse, no one dies from PSP itself.
Ataxia. People with ataxia have problems with coordination because parts of the nervous system that control movement and balance are affected. Ataxia may affect the fingers, hands, arms, legs, body, speech, and eye movements. The word ataxia is often used to describe a symptom of incoordination which can be associated with infections, injuries, other diseases, or degenerative changes in the central nervous system. Ataxia is also used to denote a group of specific degenerative diseases of the nervous system called the hereditary and sporadic ataxias which are the National Ataxia Foundation's primary emphases.
Multiple-system atrophy. Multiple-system atrophy (MSA) is a degenerative neurological disorder. MSA is associated with the degeneration of nerve cells in specific areas of the brain. This cell degeneration causes problems with movement, balance, and other autonomic functions of the body such as bladder control or blood-pressure regulation.
The cause of MSA is unknown and no specific risk factors have been identified. Around 55% of cases occur in men, with typical age of onset in the late 50s to early 60s. MSA often presents with some of the same symptoms as Parkinson's disease. However, MSA patients generally show minimal if any response to the dopamine medications used for Parkinson's.
Dystonia. Dystonia is a condition which involves sustained involuntary muscle contractions. Such contracts can exhibit twisting, repetitive movements. This disorder may affect the entire body or specific parts of the body, referred to as generalized dystonia or focal dystonia (respectively). Cervical dystonia can cause long-lasting or intermittent contractions in the neck muscles. There is no cure for dystonia. Current therapies include carbidopa-levodopa, trihexyphenidyl, benztropine, tetrabenazine, diazepam, clonazepam, baclofen, physical therapy, speech therapy, stretching, massage, and invasive surgery.
Frailty. Frailty Syndrome (“Frailty”) is a geriatric syndrome characterized by functional and physical decline including decreased mobility, muscle weakness, physical slowness, poor endurance, low physical activity, malnourishment, and involuntary weight loss. Such decline is often accompanied and a consequence of diseases such as cognitive dysfunction and cancer. However, Frailty can occur even without disease. Individuals suffering from Frailty have an increased risk of negative prognosis from fractures, accidental falls, disability, comorbidity, and premature mortality. (C. Buigues, et al. Effect of a Prebiotic Formulation on Frailty Syndrome: A Randomized, Double-Blind Clinical Trial, Int. J. Mol. Sci. 2016, 17, 932). Additionally, individuals suffering from Frailty have an increased incidence of higher health care expenditure. (Id.)
Common symptoms of frailty can be determined by certain types of tests. For example, unintentional weight loss involves a loss of at least 10 lbs. or greater than 5% of body weight in the preceding year; muscle weakness can be determined by reduced grip strength in the lowest 20% at baseline (adjusted for gender and BMI); physical slowness can be based on the time needed to walk a distance of 15 feet; poor endurance can be determined by the individual’s self-reporting of exhaustion; and low physical activity can be measured using a standardized questionnaire. (Z. Palace et al., The Frailty Syndrome, Today’s Geriatric Medicine 7(1), at 18 (2014)).
In some embodiments, the subject methods and compositions find use in slowing the progression of aging-associated cognitive, motor or other age-related impairment. In other words, cognitive, motor, or other abilities in the individual will decline more slowly following treatment by the disclosed methods than prior to or in the absence of treatment by the disclosed methods. In some such instances, the subject methods of treatment include measuring the progression of cognitive, motor or other age-related ability decline after treatment, and determining that the progression of decline is reduced. In some such instances, the determination is made by comparing to a reference, e.g., the rate of decline in the individual prior to treatment, e.g., as determined by measuring cognitive, motor, or other age-related abilities prior at two or more time points prior to administration of the subject blood product.
The subject methods and compositions also find use in stabilizing the cognitive, motor or other abilities of an individual, e.g., an individual suffering from aging-associated cognitive decline or an individual at risk of suffering from aging-associated cognitive decline. For example, the individual may demonstrate some aging-associated cognitive impairment, and progression of cognitive impairment observed prior to treatment with the disclosed methods will be halted following treatment by the disclosed methods. As another example, the individual may be at risk for developing an aging-associated cognitive decline (e.g., the individual may be aged 50 years old or older, or may have been diagnosed with an aging- associated disorder), and the cognitive abilities of the individual are substantially unchanged, i.e., no cognitive decline can be detected, following treatment by the disclosed methods as compared to prior to treatment with the disclosed methods.
The subject methods and compositions also find use in reducing cognitive, motor, or other age- related impairment in an individual suffering from an aging-associated impairment. In other words, the affected ability is improved in the individual following treatment by the subject methods. For example, the cognitive ability in the individual is increased, e.g., by 2-fold or more, 5-fold or more, 10-fold or more, 15- fold or more, 20-fold or more, 30-fold or more, or 40-fold or more, including 50-fold or more, 60-fold or more, 70-fold or more, 80-fold or more, 90-fold or more, or 100-old or more, following treatment by the subject methods relative to the cognitive ability that is observed in the individual prior to treatment by the subject methods.
In some instances, treatment by the subject methods and compositions restores the cognitive, motor, or other ability in the individual suffering from aging-associated cognitive or motor decline, e.g., to their level when the individual was about 40 years old or less. In other words, cognitive or motor impairment is abrogated. k. Methods of Diagnosing and Monitoring for Improvement of Neurodegenerative- Associated Disease
One having ordinary skill in the art would recognize that among the variety of methods to diagnose and monitor disease progression and improvement in neurodegenerative-associated disease, the following types of assessments could be used alone or in combination with subjects suffering from neurodegenerative disease. The following types of methods are presented as examples and are not limited to the recited methods. One having ordinary skill in the art would recognize that other methods to monitor disease would be useful in practicing the invention. Those methods are also contemplated by the methods of the invention.
i. General Cognition
The methods of the invention further comprise methods of monitoring the effect of a medication or treatment on a subject for treating cognitive impairment and/or age-related dementia, the method comprising comparing cognitive function before and after treatment. Those having ordinary skill in the art recognize that there are well-known methods of evaluating cognitive function. For example, and not by way of limitation, the method may comprise evaluation of cognitive function based on medical history, family history, physical and neurological examinations by clinicians who specialize dementia and cognitive function, laboratory tests, and neuropsychological assessment. Additional embodiments which are contemplated by the invention include: the assessment of consciousness, such as using the Glasgow Coma Scale (EMV); mental status examination, including the abbreviated mental test score (AMTS) or mini mental state examination (MMSE) (Folstein et al., J. Psychiatr. Res 1975; 12: 1289-198); global assessment of higher functions; estimation of intracranial pressure such as by fundoscopy.
In one embodiment, examinations of peripheral nervous system may be used to evaluate cognitive function, including any one of the followings: sense of smell, visual fields and acuity, eye movements and pupils (sympathetic and parasympathetic), sensory function of face, strength of facial and shoulder girdle muscles, hearing, taste, pharyngeal movement and reflex, tongue movements, which can be tested individually (e.g. the visual acuity can be tested by a Snellen chart; a reflex hammer used testing reflexes including masseter, biceps and triceps tendon, knee tendon, ankle jerk and plantar (i.e. Babinski sign); Muscle strength often on the MRC scale 1 to 5; Muscle tone and signs of rigidity.
ii. Multiple Sclerosis
In addition to monitoring improvement for symptoms associated with cognition, the progression or improvement of neurodegeneration associated with multiple sclerosis (MS) can be monitored using techniques well-known to those having ordinary skill in the art. By way of example, and not limitation, monitoring can be performed through techniques such as: cerebrospinal fluid (CSF) monitoring; magnetic resonance imaging (MRI) to detect lesions and development of demyelinating plaques; evoked potential studies; and gait monitoring.
CSF analysis may be performed, for example, through lumbar puncture to obtain pressure, appearance, and CSF content. Normal values typically range as follows: pressure (70-180 mm FFO); appearance is clear and colorless; total protein (15 - 60 mg/lOOmL); IgG is 3-12% of the total protein; glucose is 50 - 80 mg/lOO mL; cell count is 0-5 white blood cells and no red blood cells; chloride (110 - 125 mEq/L). Abnormal results may indicate the presence or progression of MS.
MRI is another technique that may be performed to monitor disease progression and improvement. Typical criteria for monitoring MS with MRI include the appearance of patchy areas of abnormal white matter in cerebral hemisphere and in paraventricular areas, lesions present in the cerebellum and/or brain stem as well as in the cervical or thoracic regions of the spinal cord.
Evoked potentials may be used to monitor the progression and improvement of MS in subjects. Evoked potentials measure slowing of electrical impulses such as in Visual Evoked Response (VER), Brain Stem Auditory Evoked Responses (BAER), and Somatosensory Evoked Responses (SSER). Abnormal responses help to indicate that there is a decrease in the speed of conduction in central sensory pathways.
Gait monitoring can also be used to monitor disease progression and improvement in MS subjects. MS is often accompanied by an impairment in mobility and an abnormal gait due in part to fatigue. Monitoring may be performed, for example, with the use of mobile monitoring devices worn by subjects. (Moon, Y., et al. , Monitoring gait in multiple sclerosis with novel wearable motion sensors, PLOS One, 12(2):e0171346 (2017)).
iii. Huntington’s
In addition to monitoring improvement for symptoms associated with cognition, the progression or improvement of neurodegeneration associated with Huntington’s Disease (HD) can be monitored using techniques well-known to those having ordinary skill in the art. By way of example, and not limitation, monitoring can be performed through techniques such as: motor function; behavior; functional assessment; and imaging.
Examples of motor function that may be monitored as an indication of disease progression or improvement include chorea and dystonia, rigidity, bradykinesia, oculomotor dysfunction, and gait/balance changes. Techniques for performing the monitoring of these metrics are well-known to those having ordinary skill in the art. ( See Tang C, et al. , Monitoring Huntington’s disease progression through preclinical and early stages, Neurodegener Dis Manag 2(4):421-35 (2012)).
The psychiatric effects of HD present opportunities to monitor disease progression and improvement. For example, psychiatric diagnoses may be performed in order to determine whether the subject suffers from depression, irritability, agitation, anxiety, apathy and psychosis with paranoia. (Id.)
Functional assessment may also be employed to monitor disease progression or improvement. Total functional score techniques have been reported (Id.), and often declines by one point per year in some HD groups.
MRI or PET may be employed also to monitor disease progression or improvement. For example, there is a loss of striatal projection neurons in HD, and change in number of these neurons may be monitored in subjects. Techniques to determine neuronal change in HD subjects include imaging Dopamine D2 receptor binding. (Id.)
iv. ALS
In addition to monitoring improvement for symptoms associated with cognition, the progression or improvement of neurodegeneration associated with Amyotrophic Lateral Sclerosis (ALS) can be monitored using techniques well-known to those having ordinary skill in the art. By way of example, and not limitation, monitoring can be performed through techniques such as: functional assessment; determining muscle strength; measuring respiratory function; measuring lower motor neuron (LMN) loss; and measuring upper motor neuron (UMN) dysfunction.
Functional assessment can be performed using a functional scale well-known to those having ordinary skill in the art, such as the ALS Functional Rating Scale (ALSFRS-R), which evaluates symptoms related to bulbar, limb, and respiratory function. The rate of change is useful in predicting survival as well as disease progression or improvement. Another measure includes the Combined Assessment of Function and Survival (CAFS), ranking subjects’ clinical outcomes by combining survival time with change in ALSFRS-R. (Simon NG, et al. , Quantifying Disease Progression in Amyotrophic Lateral Sclerosis, Ann Neurol 76:643-57 (2014)).
Muscle strength may be tested and quantified through use of composite Manual Muscle Testing (MMT) scoring. This entails averaging measures acquired from several muscle groups using the Medical Research Council (MRC) muscle strength grading scale. (Id.) Hand-held dynamometry (HHD) may also be used, among other techniques. (Id.)
Respiratory function can be performed using portable spirometry units, used to obtain Forced Vital Capacity (FVC) at baseline to predict the progression or improvement of the disease. Additionally, maximal inspiratory pressure, sniff nasal inspiratory pressure (SNIP), and supping FVC may be determined and used to monitor disease progression/improvement. (Id.)
Loss in lower motor neurons is another metric which can be utilized to monitor disease progression or improvement in ALS. The Neurophysiological Index may be determined by measuring compound muscle action potentials (CMAPs) on motor nerve conduction studies, of which parameters include CMAP amplitude and F-wave frequency. (Id. and de Carvalho M, et al. , Nerve conduction studies in amyotrophic lateral sclerosis. Muscle Nerve 23:344-352, (2000)). Lower motor neuron unit numbers (MUNE) may be estimated as well. In MUNE, the number of residual motor axons supplying a muscle through estimation of the contribution of individual motor units to the maximal CMAP response is estimated, and used to determine disease progression or improvement. (Simon NG, et al., supra). Additional techniques for determining loss of LMN include testing nerve excitability, electrical impedance myography, and using muscle ultrasound to detect changes in thickness in muscles. (Id.) Dysfunction of upper motor neurons is another metric which can be utilized to monitor disease progression or improvement in ALS. Techniques for determining dysfunction include performing MRI or PET scans on the brain and spinal cord, transcranial magnetic stimulation; and determining levels of biomarkers in the cerebrospinal fluid (CSF).
v. Glaucoma
In addition to monitoring improvement for symptoms associated with cognition, the progression or improvement of neurodegeneration associated with glaucoma can be monitored using techniques well- known to those having ordinary skill in the art. By way of example, and not limitation, monitoring can be performed through techniques such as: determining intraocular pressure; assessment of the optic disc or optic nerve head for damage; visual field testing for peripheral vision loss; and imaging of the optic disc and retina for topographic analysis.
vi. Progressive Supranuclear Palsy (PSP)
In addition to monitoring improvement for symptoms associated with cognition, the progression or improvement of neurodegeneration associated with Progressive Supranuclear Palsy (PSP) can be monitored using techniques well-known to those having ordinary skill in the art. By way of example, and not limitation, monitoring can be performed through techniques such as: functional assessment (activities of daily living, or ADL); motor assessment; determination of psychiatric symptoms; and volumetric and functional magnetic resonance imaging (MRI).
The level of function of a subject in terms of independence, partial dependence upon others, or complete dependence can be useful for determining the progression or improvement in the disease. (See Duff, K, et al., Functional impairment in progressive supranuclear palsy, Neurology 80:380-84, (2013)). The Progressive Supranuclear Palsy Rating Scale (PSPRS) is a rating scale that comprises twenty-eight metrics in six categories: daily activities (by history); behavior; bulbar, ocular motor, limb motor and gait/midline. The result is a score ranging from 0 - 100. Six items are graded 0 - 2 and twenty-two items graded 0-4 for a possible total of 100. The PSPRS scores are practical measures, and robust predictors of patient survival. They are also sensitive to disease progression and useful in monitoring disease progression or improvement. ( Golbe LI, et al. , A clinical rating scale for progressive supranuclear palsy, Brain 130: 1552-65, (2007)).
The ADL section from the UPDRS (Unified Parkinson’s Disease Rating Scale) can also be used to quantify functional activity in subjects with PSP. (Duff K, et al. , supra). Similarly, the Schwab & England Activities Daily Living Score (SE-ADL) can be used for evaluate independence. (Id.) Additionally, the motor function sections of the UPDRS are useful as a reliable measure for assessing disease progression in PSP patients. The motor section may contain, for example, 27 different measures for quantifying motor function in PSP patients. Examples of these include resting tremor, rigidity, finger tapping, posture, and gait). A subject’s disease progression or improvement may also be assessed by performing a baseline neuropsychological evaluation completed by trained medical personnel, the assessment using the Neuropsychiatric Inventory (NPI) to determine the frequency and severity of behavior abnormalities (e.g. delusions, hallucinations, agitation, depression, anxiety, euphoria, apathy, disinhibition, irritability, and aberrant motor behavior). (Id.)
Functional MRI (fMRI) can be employed to monitor disease progression and improvement as well. fMRI is a technique using MRI to measure changes in brain activity in certain regions of the brain, usually based on blood flow to those regions. Blood flow is considered to correlate with brain region activation. Patients with neurodegenerative disorders like PSP can be subjected to physical or mental tests before or during being scanned in an MRI scanner. By way of example, and not limitation, tests can be a well- established force control paradigm where patients as asked to produce force with the hand most affected by PSP and maximum voluntary contraction (MVC) is measured by fMRI immediately after the test takes place. Burciu, RG, et al , Distinct patterns of brain activity in progressive supranuclear palsy and Parkinson’s disease, Mov. Disord. 30(9): 1248-58 (2015)).
Volumetric MRI is a technique where MRI scanners determine volume differences in regional brain volume. This may be done, for example, by contrasting different disorders, or by determining differences in volume of a brain region in a patient over time. Volumetric MRI may be employed to determine disease progression or improvement in neurodegenerative disorders like PSP. The technique is well-known to those having ordinary skill in the art. (Messina D, et al , Patterns of brain atrophy in Parkinson’s disease, progressive supranuclear palsy and multiple system atrophy, Parkinsonism and Related Disorders, 17(3): 172-76 (2011)). Examples of cerebral regions which may be measured include, but are not limited to, intracranial volume, cerebral cortex, cerebellar cortex, thalamus, caudate, putamen, pallidum, hippocampus, amygdala, lateral ventricles, third ventricle, fourth ventricle, and brain stem.
vii. Neurogenesis
Noninvasive techniques for evaluating neurogenesis have been reported. (Tamura Y. et al, J. Neurosci. (2016) 36(31):8123-31). Positron emission tomography (PET) used with the tracer, [18F]FLT, in combinations with the BBB transporter inhibitor probenecid, allows for accumulation of the tracer in neurogenic regions of the brain. Such imaging allows for an evaluation of neurogenesis in patients being treated for neurodegenerative disease.
viii. Parkinson’s Disease and Motor Function
Several rating scales have been utilized for evaluating the progression of PD. The most widely- used scales include the Unified Parkinson’s Disease Rating Scale (UPDRS, which was introduced in 1987) (J. Rehabil. Res. Dev., 2012 49(8): 1269-76), and the Hoehn and Yahr scale (Neurology, 1967 17(5): 427- 42). Additional scales include the Movement Disorder Society (MDS)’s updated UPDRS scale (MDS- UPDRS) as well as the Schwab and England Activities of Daily Living (ADL) Scale.
The UPDRS scale evaluates 31 items that contributed to three subscales: (1) mentation, behavior, and mood; (2) activities of daily living; and (3) motor examination. The Hoehn and Yahr scale classifies PD into five stages with discreet substages: 0 - no signs of disease; 1 - symptoms on one side only; 1.5 - symptoms on one side but also involving neck and spine; 2 - symptoms on both sides with no balance impairment; 2.5 - mild symptoms on both sides, with recovery when the‘pull’ test is given; 3 - balance impairment with mild to moderate disease; 4 - severe disability, but ability to walk or stand unassisted; and 5 - need a wheelchair or bedridden without assistance. The Schwab and England scale classifies PD into several percentages (from 100% - complete independent to 10% - total dependent).
General motor function can be evaluated using widely-used scales including the General Motor Function Scale (GMF). This tests three components: dependence, pain, and insecurity. (Aberg A.C., et al. (2003) Disabil. Rehabil. 2003 May 6;25(9):462-72.). Motor function can also be assessed using home monitoring or wearable sensors. For example: gait (speed of locomotion, variability, leg rigidity) can be sensed with an accelerometer; posture (trunk inclination) by a gyroscope; leg movement by an accelerometer; hand movement by an accelerometer and gyroscope; tremor (amplitude, frequency, duration, asymmetry) by an accelerometer; falling by an accelerometer; gait freezing by an accelerometer; dyskinesia by an accelerometer, gyroscope, and inertial sensors; bradykinesia (duration and frequency) by an accelerometer plus gyroscope, and aphasia (pitch) using a microphone. (Pastorino M, et al., Journal of Physics: Conference Series 450 (2013) 012055).
1. Reagents, Devices, and Kits
Also provided are reagents, devices, and kits thereof for practicing one or more of the above- described methods. The subject reagents, devices, and kits thereof may vary greatly. Reagents and devices of interest include those mentioned above with respect to the methods of administering the compounds for formula 1 in the subject.
In addition to the above components, the subject kits will further include instructions for practicing the subject methods. These instructions may be present in the subject kits in a variety of forms, one or more of which may be present in the kit. One form in which these instructions may be present is as printed information on a suitable medium or substrate, e.g., a piece or pieces of paper on which the information is printed, in the packaging of the kit, in a package insert, etc. Yet another means would be a computer readable medium, e.g. diskette, CD, portable flash drive, etc., on which the information has been recorded. Yet another means that may be present is a website address which may be used via the internet to access the information at a remote site. Any convenient means may be present in the kits. VII. Examples
The following examples are provided by way of illustration and not by way of limitation a. Pharmaceutical Preparation
The pharmaceutical compositions that are administered to subjects with cognitive or neurodegenerative disease that are comprised of the compounds, co-crystals, and salts described above can be synthesized, made, and formulated using the examples disclosed in U.S. Patent Application Publication Nos. 2013/0266646, 2016/0081998, U.S. Patent Nos. 8,278,302, 8,653,075, RE 45323, 8,742,115, 9,233,950, and 8,680,280, which are herein incorporated by reference in their entirety. Further, the pharmaceutical compositions may be prepared as described in the examples below:
1. Tablet formulation - wet granulation
Copovidone is dissolved in ethanol at ambient temperature to produce a granulation liquid. An active CCR3 antagonist ingredient, lactose and part of the crospovidone are blended in a suitable mixer, to produce a pre-mix. The pre-mix is moistened with the granulation liquid and subsequently granulated. The moist granulate is optionally sieved through a sieve with a mesh size of 1.6-3.0 mm. The granulate is dried at 45 °C in a suitable dryer to a residual moisture content corresponding to 1-3 % loss on drying. The dried granulate is sieved through a sieve with a mesh size of 1.0 mm. The granulate is blended with part of the crospovidone and microcrystalline cellulose in a suitable mixer. Magnesium stearate is added to this blend after passing through a 1.0 mm sieve for delumping. Subsequently the final blend is produced by final blending in a suitable mixer and compressed into tablets. The following tablet composition can be obtained:
Figure imgf000131_0001
2. Tablet formulation - melt granulation
An active CCR3 antagonist ingredient, lactose, part of the mcc, polyethylene glycole, lactose and part of the crospovidone are blended in a suitable mixer, to produce a pre-mix. The pre-mix is heated in a high shear mixer and subsequently granulated. The hot granulate is cooled down to room temperature and sieved through a sieve with a mesh size of 1.0 mm. The granulate is blended with part of the crospovidone and microcrystalline cellulose in a suitable mixer. Magnesium stearate is added to this blend after passing through a 1.0 mm sieve for delumping. Subsequently the final blend is produced by final blending in a suitable mixer and compressed into tablets. The following tablet composition can be obtained:
Figure imgf000132_0001
3. Tablet formulation - hot melt granulation
An active CCR3 antagonist ingredient, mannit, polyethylene glycole and part of the crospovidone are blended in a suitable mixer, to produce a pre-mix. The pre-mix is heated in a high shear mixer and subsequently granulated. The hot granulate is cooled down to room temperature and sieved through a sieve with a mesh size of 1.0 mm. The granulate is blended with part of the crospovidone and mannit in a suitable mixer. Magnesium stearate is added to this blend after passing through a 1.0 mm sieve for delumping. Subsequently the final blend is produced by final blending in a suitable mixer and compressed into tablets. The following tablet composition can be obtained:
Figure imgf000133_0001
4. Tablet formulation - hot melt extrusion
An active CCR3 antagonist ingredient and stearic-palmitic acid are blended in a suitable mixer, to produce a pre-mix. The pre-mix is extruded in a twin-screw-extruder and subsequently granulated. The granulate is sieved through a sieve with a mesh size of 1.0 mm. The granulate is blended with mannit and crospovidone in a suitable mixer. Magnesium stearate is added to this blend after passing through a 1.0 mm sieve for delumping. Subsequently the final blend is produced by final blending in a suitable mixer and compressed into tablets. The following tablet composition can be obtained:
Figure imgf000133_0002
5. Tablet formulation - hot melt extrusion
An active CCR3 antagonist ingredient and stearic-palmitic acid are blended in a suitable mixer, to produce a pre-mix. The pre-mix is extruded in a twin-screw-extruder and subsequently granulated. The granulate is sieved through a sieve with a mesh size of 1.0 mm. The granulate is directly filled into hard capsules. The following capsule composition can be obtained:
Figure imgf000134_0001
6. Tablet formulation - roller compaction
An active CCR3 antagonist ingredient, part of mannit and crospovidone and magnesium stearate are blended in a suitable mixer, to produce a pre-mix. The pre-mix is compacted with a roller compactor and subsequently granulated. Optionally, the granulate is sieved through a sieve with a mesh size of 0.8 mm. The granulate is blended with part of mannit and crospovidone in a suitable mixer. Magnesium stearate is added to this blend after passing through a 1.0 mm sieve for delumping. Subsequently the final blend is produced by final blending in a suitable mixer and compressed into tablets. The following tablet composition can be obtained:
Figure imgf000134_0002
7. Tablet formulation - roller compaction
An active CCR3 antagonist ingredient and magnesium stearate are blended in a suitable mixer, to produce a pre-mix. The pre-mix is compacted with a roller compactor and subsequently granulated. Optionally, the granulate is sieved through a sieve with a mesh size of 0.8 mm. The granulate is blended with mannit and croscarmellose sodium in a suitable mixer. Magnesium stearate is added to this blend after passing through a 1.0 mm sieve for delumping. Subsequently the final blend is produced by final blending in a suitable mixer and compressed into tablets. The following tablet composition can be obtained:
Figure imgf000135_0001
8. Tablet formulation - roller compaction
An active CCR3 antagonist ingredient and magnesium stearate are blended in a suitable mixer, to produce a pre-mix. The pre-mix is compacted with a roller compactor and subsequently granulated. Optionally, the granulate is sieved through a sieve with a mesh size of 0.8 mm. The granulate is blended with microcrystalline cellulose and crospovidone in a suitable mixer. Magnesium stearate is added to this blend after passing through a 1.0 mm sieve for de-lumping. Subsequently the final blend is produced by final blending in a suitable mixer and compressed into tablets. The following tablet composition can be obtained:
Figure imgf000135_0002
9. Coated tablet formulation
Tablet cores according above mentioned formulations can be used to produce film-coated tablets. Hydroxypropyl methylcellulose, polyethylene glycol, talc, titanium dioxide and iron oxide are suspended in purified water in a suitable mixer at ambient temperature to produce a coating suspension. The tablet cores are coated with the coating suspension to a weight gain of about 3 % to produce film-coated tablets. The following film coating composition can be obtained:
Figure imgf000136_0002
b. Drug Formulation and Administration
The investigational product of the invention (Compound 1) conformed to the following chemical structure:
Figure imgf000136_0001
COMPOUND 1
Those having ordinary skill in the relevant art would recognize that the compounds, co-crystals, salts, and formulations described previously in the sections above could also be used in these examples.
Compound 1 was made available as 100 mg, 200 mg, and 400 mg film-coated tablets with a biconvex, round or oval shape and a dull red color. The tablets were produced by a dry granulation process and contained microcrystalline cellulose, hydrogen phosphate, croscarmellose sodium, magnesium stearate, polyvinyl alcohol, titanium dioxide, polyethylene glycol, talc, iron oxide red and iron oxide yellow as inactive ingredients. Placebo tablets matching the investigational product were produced by a direct compression process and contained the same inactive ingredients. c. Pre-Clinical Examples
1. Materials and Methods
(a) Subcutaneous Osmotic Pump Implantation
Alzet mini-pumps were filled, prepared, p and numbered by mouse ID the day previous to implantation to allow for priming at 37°C and to allow for blindedness of treatment. Pumps were implanted on the back, slightly posterior to the scapulae and slightly lateral to the midline. Mice were anesthetized with 3-5% isoflurane using a vaporizer and regulator in an induction chamber, then moved to the procedure area and fitted with a nose cone to maintain anesthesia at 1-3% isoflurane. An ophthalmic ointment was applied to the eyes to prevent drying. Mice were injected with meloxicam 5mg/kg subcutaneously. Fur was removed from the incision area using small sharp scissors, and the area was cleaned with alternating applications of 70% isopropanol and betadine. An incision 0.5-lcm was made, and a hemostat was inserted to spread the subcutaneous tissue to create a pocket for the pump. The pump was inserted into the pocket and the wound was closed with wound clips. All surgical tools were autoclaved prior to first use on a surgery day. Subsequently, instruments were sterilized with a glass bead sterilizer between animals. Mice were placed in a clean recovery cage placed partially atop a warming pad until full recovery and ambulation. Mice were tested for anesthesia induction by toe pinch method and monitoring of respiration. Mice were monitored post-operatively every 15 minutes until recovery. Mice were administered a second dose of meloxicam the following day. If signs of infection were observed, mice received 5mg/kg Baytril subcutaneously per day until infection cleared.
(b) Open Field Test
Open Field is used to evaluate general locomotor activity and exploratory behavior in a novel environment. Mice are brought to the experimental room for at least 30 min for acclimation to the experimental room conditions (dim lighting) prior to testing. The testing arena consists of a 50cm x 50cm square arena. Mice are placed in the center of an arena and tracked for 15 minutes. Time spent in the peripheral and centers zones is analyzed, along with rearing behavior. 70% ethanol is used to clean all surfaces between trials.
(c) Y-Maze
A large Y-maze test assesses short-term memory of the familiarity of a specific context. Mice are brought to the experimental room for at least 30 min of acclimation to the experimental room conditions (dim lighting) prior to testing. For the initial training trial, the mouse is placed at the end of one arm of a large Y-maze designated“start arm” (arm length: 15 inches). The third arm of the maze is blocked off, allowing the mouse to explore two of the three arms freely (“start arm” and“familiar arm”) for 5 min. Each arm contains spatial cues. One hour later, the mouse is placed back into the maze in the“start arm” and allowed to explore all three arms with the third arm unblocked (“novel arm”). Movements in and out of each arm are tracked using automated tracking software (CleverSys). Testing is performed under dim lighting, and the apparatus is cleaned with 70% ethanol between trials.
(d) Barnes Maze
A modified Barnes maze was used to assess spatial working/episodic like learning and memory. The Barnes maze apparatus consists of a 122cm diameter circular platform with 40 escape holes, each with a diameter of 5cm placed along three rings of varying distances from the center of the platform. An escape box is attached to one of the holes and all holes are left uncovered. Bright lights and a fan are trained on the maze to provide adverse stimuli to encourage escape. Visual cues are placed on all four sides of the maze. Mice are given a series of 4 or 5 trials with inter-trial intervals of approximately 10 min, and the maximum duration of each trial is 90 or 120 sec. For each trial, mice are placed in the center of the maze. After 10 seconds, mice are allowed to explore, and the trial is ended if the mouse has found and entered an escape box before the end of the trial. Mice that cannot find the escape box are led to it and allowed to enter and given 30 sec to remain before being returned to its home cage. Training is done for 4 days. Data that is recorded and analyzed include velocity, escape latency, and distance moved.
Mice are divided into groups of 4-5 mice each, with balanced treatment groups. For example, Group 1 mice are run for 4 trials, then Group 2 mice are run for 4 trials, and so on until all groups finish testing. 70% ethanol is used to clean the arenas between trials.
(e) Rotarod The mice were trained in the rotarod for 3 trials up to 100 seconds each, the rotarod being a test of motor coordination. Success or failure was recorded on the last trial, with success defined by a latency to fall of > 90 seconds. A binomial test was conducted to compare success rates between control and compound-treated mice.
(f) T maze
The Water Maze was filled with water at least 24 hours prior to the test to allow it to reach room temperature. The water was dyed with white latex paint to make the animals visible for tracking and to allow for the use of a hidden platform. Two distinct visual cues were placed at the end of both T-arms of the T-Maze insert. On day 1 animals were given 4 trials each with a visible platform and a 30 min inter trial interval. Animals were given 60 seconds to reach the platform. If they did not reach the platform in that time they were guided to it and allowed to remain for 5 seconds before being removed from the tank. The goal arm was switched after every third mouse and both treatment groups had equal numbers of right and left turn goal arms. After each trial the mice were placed in an empty cage with blue pads and allowed to dry off under a red light lamp before being placed back into their home cage. Day 2 is the testing day, where animals are subjected to the same test of 4 trials each and a 30 min inter trial interval, but with a hidden platform. Animals were scored for right or wrong choice and for latency to reach the platform, and a binomial test was conducted to compare success rates between control and compound-treated mice. All trials were recorded using TopScan.
(g) Protein quantification
CCL11 protein levels were measured from mouse plasma by sandwich ELISA Plasma was diluted 1 : 10 for the assay. (Mouse CCL1 l/Eotaxin Duo Set ELISA kit, R&D Systems, Minneapolis, MN).
Human CCL11 from human plasma was measured by a SomaLogic aptamer-based assay (SOMAscan from SomaLogic, Inc., Boulder, CO). (Gold L, et al. (2010). Aptamer-Based Multiplexed Proteomic Technology for Biomarker Discovery. PLOS ONE 5(12): el5004.
Panels of circulating cytokines from mouse plasma were analyzed by Luminex. Luminex Assay Service performed by Eve Technologies (Calgary, Alberta, Canada).
(h) mRNA quantification
Snap-frozen hemibrains were dissected out into cortex, hippocampus, striatum, and thalamus. The cortex was split into three homogeneous parts and one part was used for RNA isolation. RNA was isolated using the Prolink RNA Mini Kit (Thermo Fisher Scientific #12183025). cDNA was made using Taqman RT Kit (Thermo Fisher Sci #N8080234). qPCR was run on a Quant Studio 6 using custom made Taqman Multiplex Primers for IL-lbeta and GAPDH. All samples were run together on a single plate and analyzed for ddCT relative to their endogenous control first and then relative to the control group.
(i) HPLC/MS quantification of Compound 1
Compound levels were measured by MS/MS by Quintara (Hayward, CA).
(j) Flow analyses
Eosinophil Count
200uL of whole blood was collected during perfusion and shipped to Charles River Clinical Pathology Services (Shrewsbury, MA) for hematology analysis of eosinophil count by FACS (fluorescence activated cell sorter).
Eosinophil Shape Change (ESC)
The ESC determines the shape change of human eosinophils activated by human eotaxin-l (PreProTech, Rocky Hill, New Jersey) compared to native eosinophils. The change is detected as the change in the forward-scatter measured by FACS (fluorescence activated cell sorter). The mean forward scatter of the autofluorescence (eosinophil) population for each sample was determined in conjunction with the mean of each set of sample triplicates. Methods of determining ESC have been previously described and are known in the art.
CCR3 Receptor Internalization
The CCR3 receptor internalization assay is FACS-based and uses human Eotaxin-l (PreProTech, Rocky Hill, New Jersey) and an anti-human CCR3 antibody labeled with APC (R&D Systems,
Minneapolis, Minnesota) or isotype control IgG2A antibody to monitor CCR3 receptor internalization in human eosinophils induced by human eotaxin-l compared to naive eosinophils. The median APC fluorescent intensity units for each sample were determined along with the mean of each set of sample triplicates. Methods of monitoring CCR3 receptor internalization have been previously described and are known in the art.
(k) Histology
Mice were taken down on the day following the end of behavior testing. Anesthesia was induced by 2,2,2-tribromoethanol and mice were subsequently perfused with 0.9% saline trans-cardially. The brains were dissected and cut sagitally in two even halves. One half was snap frozen for later use in dry ice, and the other was fixed in 4% paraformaldehyde in PBS for use in immunohistochemistry. After two days of fixation, the hemibrains were transferred to a 30% sucrose in PBS solution and changed after two days. Hemibrains were sectioned at 30um on a microtome at -22°C. Brain sections were stored in cryoprotectant media at -20°C until needed for staining. Blocking was done on free floating sections in the appropriate serum at 10% serum in PBST 0.5%. Primary antibodies were incubated overnight at 4C. For light microscopy, the following antibodies were used in the given concentrations: DCX, 1 :200, Santa Cruz BioTech, CD68, 1: 1000. AbD Serotec. Secondary biotinylated antibodies were applied the next day at a concentration of 1:300. Staining visualization was achieved by reaction with the ABC kit (Vector) and diaminobenzidine (Sigma). Dehydration of the mounted slides was achieved using ethanol and xylene dips. Images were acquired on a Leica light microscope at 5x magnification.
For fluorescent microscopy, the following antibodies were used in the given concentrations: GFAP, 1 :500, DAKO; Ibal, 1 : 1000, Wako; and BrdU, 1 :500, AbCam. Antigen retrieval protocol was required for BrdU (2N HC1, 37C, 30min) prior to blocking. The appropriate fluorescent secondary antibodies were applied the next day at a concentration of 1:300 for one hour at room temperature. Prolong Gold Mounting Media was used to coverslip the slides. Images were acquired on a light microscope at 5x magnification.
2. Experimental Groups
First Experimental Group ( See Figures 1-2): Two-month-old or 18-month-old C57B1/6 mice were dosed with either IgG antibody control by IP injection or Compound 1 subcutaneously by Alzet osmotic pump for either 2 or 4 weeks. During the last week of treatment, mice were subjected to behavior testing prior to perfusion on the last day of treatment. All mice received 5 consecutive days of BrdU injection at 150mg/kg IP immediately prior to treatment start.
Drug Formulation. Control rat IgG2A clone 54447 (MAB006, R&D Systems) was administered at 50ug/kg in sterile saline. Compound 1 was formulated in 40% HR-b-cyclodextrin, and adjusted to pH 6.5 with NaOH (1M). Solutions were prepared fresh weekly and stored at 4°C.
Treatment Groups:
• Treatment Group 1. Young Controls: Young C57BL/6 mice (n=18), aged 1-2 months, received 5 injections of control IgG by intraperitoneal (IP) injection, one injection every 3 days, over a period of 14 days.
• Treatment Group 2, Old Controls: Aged C57BL/6 mice (n=18), aged 18 months, received 5 injections of control IgG by IP injection, one injection every 3 days, over a period of 14 days.
• Treatment Group 3. Compound 1 (dose 1) in Old: Aged C57BL/6 mice (n=16), aged 18 months, received infusion of ~50mg/ml Compound 1 by Alzet mini-pump, model 2001 (luL/hr), for two weeks with one replacement. • Treatment Group 4, Compound 1 (dose 2) in Old: Aged C57BL/6 mice (n=l6), aged 18 months, received infusion of ~50mg/ml Compound 1 by Alzet mini-pump, model 2002 (0.5uL/hr), for two weeks.
• Treatment Group 5. Compound 1 (dose 2) in Old: Aged C57BL/6 mice (n=l6), aged 18 months, received infusion of ~50mg/ml Compound 1 by Alzet mini-pump, model 2002 (0.5uL/hr), for four weeks with one replacement.
Four-week subcutaneous dosing of Compound 1 in 18-month-old mice increased the numbers of doublecortin-positive cells in the hippocampus, an indicator of neurogenesis (see Figure 1A). Higher dosing of Compound 1 for 2 weeks led to a trend in increased BrdU-positive cells in the hippocampus, a marker for cell proliferation (see Figure IB). Low or high infusion of Compound 1 for 2 or 4 weeks led to improvement in the cued Y-maze, a test for memory (see Figure 2 reporting percent of time normalized to total interaction time and number of visits— similar effects were also seen when evaluating total time spent). Comparisons are made to control groups (Treatment groups 1 & 2) which were treated with IgG antibody with no compound, and dosing and behavior were performed in parallel.
Thus, administration of Compound 1 increased the number of Dcx and BrdU positive cells, which indicates that Compound 1 increased neurogenesis and cell survival, respectively. Compound 1 was able to improve memory (cognition) as evidenced by performance in the Y-Maze test.
Second Experimental Group (See Figures 3-6): Three -month-old or l6.5-month-old C57Bl/6 mice were dosed with either vehicle control or Compound 1 subcutaneously by Alzet osmotic pump for 4 weeks. During the last week of treatment, mice were subjected to behavior testing prior to perfusion on the last day of treatment. All mice received 5 consecutive days of BrdU injection at l50mg/kg IP immediately prior to treatment start.
Drug Formulation. Compound 1 was formulated in 40% HR-b-cyclodextrin, and adjusted to pH 6.5 with NaOH (1M). Vehicle solution was formulated and adjusted for pH similarly. Solutions were prepared fresh weekly and stored at 4°C.
Treatment Groups :
• Treatment Group 1. Young Controls: Young C57BL/6 mice (n=l9), aged 3 months, received infusion of vehicle by Alzet mini-pump, model 2002 (0.5uL/hr), for four weeks with one replacement.
• Treatment Group 2, Old Controls: Aged C57BL/6 mice (n=l9), aged 16 months, received infusion of vehicle by Alzet mini-pump, model 2002 (0.5uL/hr), for four weeks with one replacement. • Treatment Group 3, Compound 1 (dose 2) in Old: Aged C57BL/6 mice (n=l9), aged 16 months, received infusion of ~50mg/ml Compound 1 by Alzet mini-pump, model 2002 (0.5uL/hr), for four weeks with one replacement.
Four-week subcutaneous dosing of Compound 1 in 16.5 -month-old mice improved cognitive performance in the cued Y-maze test for memory (see Figure 3). 4-week dosing of Compound 1 also trended towards improved performance in the Barnes maze, a test for hippocampus-dependent spatial memory (see Figure 4). Trends for improved memory were also observed upon analysis of the average of the latency for day 4 trials as well as in the difference between the latencies of trials 13 and 16. Four- week dosing of Compound 1 also significantly increased the number of BrdU-positive cells in the hippocampus, an indicator of neurogenesis (see Figure 5). Thus, Compound 1 was able to both improve cell survival and improve memory (cognition) as evidenced by the results obtained using the Y-Maze and Barnes Maze tests.
Compound Cerebrospinal Fluid Levels in Mice
Cerebrospinal fluid (CSF) from both the 2-month-old“young” and 16.5-month-old“old” groups was collected and levels of Compound 1 were determined by mass spectroscopy. Figure 6 depicts the levels of the compound of the invention that were detected in mouse CSF for both the young and old groups (both below 10 nM). These CSF levels do not approach the Ki for the compound in mice (124 nM, determined by cell line receptor binding), and therefore do not cross the blood-brain barrier (BBB) in significant concentrations. For comparison, the levels of the compound of the invention that were measured in the plasma of young (2-month-old) and old (18-month-mice) perfused for 2 and 4 weeks respectively at 0.5 pL/hr of 50mg/mL solution were significantly higher (352 ± 31 nM and 355 ± 43 nM, respectively; values are mean ± s.e.m.), further indicating that the compound of the invention fails to cross the BBB in significant amounts.
This data shows that Compound 1 does not act directly in the CNS, and therefore acts peripherally. Additionally, what does cross the BBB is insufficient in concentration to be effective.
Further, there is no difference in BBB penetration between young and old mice, indicating that the effects Compound 1 displays on cognition and neurodegeneration are not due to differences in the BBB between the two groups.
Compound Tissue Distribution Levels
The distribution of Compound 1 in mouse tissues was determined after oral administration of which was [14C] -radiolabeled (“Labeled Compound”) to male pigmented C57BL/6J01aHsd mice (Harlan Labs, BV). The Labeled Compound was administered at 10 mg/kg of body weight, corresponding to 17 pmol/kg. One animal was sacrificed after 1, 24, and 168 hours post-administration. Blood, plasma, and eye radioactivity concentrations were measured using liquid scintillation counting (LSC). Tissue and organ concentrations were determined by whole body autoradiography technique (QWBA). Preparation of the whole-body animal sections was performed according to known techniques ( see S. Ullberg, et al, Autoradiography in Pharmacology in: The Int. Encyclopedia of Pharmacology, J. Cohen (Ed.), l(78):22l- 39 (1971)), using a crystat microtome Reichert-Jung CRYO MACROCUT or a CRYO MACROCUT LEICA CM 36003.
The following sections were taken at different levels through the embedded animal, and whole body sections selected at 5 - 7 levels in order to allow for quantitative evaluation of radioactivity: adrenal glands; blood; bone marrow; brain; eye (lens); epididymis; fat (white and brown); Harderian gland; heart; kidneys; liver; lung; muscle; pituitary; pancreas; prostate, spinal cord; spleen salivary gland; skin; testis; thyroid; thymus; uveal tract. Two sections of each chosen level were taken per animal, and those sections lyophilized in the microtome at -20 to -25°C for a minimum of 48 hours.
Figure 7 depicts a chart of values reporting the area under the curve (AUC) for all three time points, and quantifies each tissue’s exposure to the Labeled POI after administration of the compound. Figure 7 shows that Compound 1 does not cross the blood-brain barrier (BBB) at significant levels.
Again, these results show that, because Compound 1 cannot cross the BBB at appreciable levels, it acts in a peripheral fashion. As such, Compound l’s effects do not directly act on the central nervous system, and it overcomes difficulties that have caused the failure of many CNS disease-targeting pharmaceutical candidates.
Pharmacokinetic Profiles in P.O. Dosing
Plasma from male 2-month-old C57B1/6 mice was measured for concentrations of Compound 1 at time points of 20 minutes, 2 hours, 8 hours, and 12 hours after oral gavage at 2 doses: 30 mg/kg and 150 mg/kg. A dose of 30 mg/kg was found to be sufficient to achieve a greater than 100 nM concentration of Compound 1 for 8 hours (Figure 8).
Third Experimental Group (See Figures 9-11): Two-month-old C57B1/6 mice were dosed with either vehicle control or Compound 1 by oral gavage twice daily for 18 days. During the last week of treatment, mice were subjected to behavior testing prior to perfusion on the last day of treatment. All mice received 5 consecutive days of BrdU injection at l50mg/kg IP immediately prior to treatment start.
Drug Formulation : Compound 1 was formulated in 40% HR-b-cyclodextrin, and adjusted to pH 6.5 with NaOH (1M). Vehicle solution was formulated and adjusted for pH similarly. Solutions were prepared fresh weekly and stored at 4°C. Treatment Groups:
• Treatment Group la. Vehicle treatment: Young C57BL/6 mice (n=l5), aged 7 weeks, received twice daily (BID) oral (PO) treatment of vehicle solution for 18 days, with only 1 injection on the last day, for a total of 35 injections.
• Treatment Group lb. Compound 1 treatment: Young C57BL/6 mice (n=l5), aged 7 weeks, received twice daily (BID) oral (PO) treatment of Compound 1, 30mg/kg, for 18 days, with only 1 injection on the last day for a total of 35 injections.
• Treatment Group 2a, Vehicle treatment with rmCCLl l: Young C57BL/6 mice (n=l5), aged 7 weeks, received twice daily (BID) oral (PO) treatment of vehicle solution for 18 days, with only 1 injection on the last day for a total of 35 injections. Mice concurrently received peripheral injections (IP) of rmCCLl l starting on day 1 of treatment, every 3 days, for a total of 5 injections.
• Treatment Group 2b. Compound 1 treatment with rmCCLll: Young C57BL/6 mice (n=15), aged 7 weeks, received twice daily (BID) oral (PO) treatment of Compound 1, 30mg/kg, for 18 days, with only 1 injection on the last day for a total of 35 injections. Mice concurrently received peripheral injections (IP) of rmCCLl 1 starting on day 1 of treatment, every 3 days, for a total of 5 injections.
Recombinant mouse CCL11 (“rmE”) treatment significantly worsened anxiety in the Open Field, but 2 weeks of treatment with Compound 1 twice daily orally improved anxiety (see Figure 9). rmCCLl 1 impaired memory in the Y-maze; however, mice treated with Compound 1 were no longer significantly different from control mice (see Figure 10). rmCCLl l also impaired memory in the Barnes maze, and treatment with Compound 1 significantly improved memory performance (see Figure 11). Thus, rmE worsened both anxiety via the Open Field test and memory as evidenced by performance measured in the Y-Maze and Barnes Maze tests. However, Compound 1 treatment was able to attenuate these effects.
Fourth Experimental Group (See Figure 12): 23-month-old C57B1/6 mice were dosed with either vehicle control or Compound 1 by oral gavage twice daily for 19 days. After 11 days of treatment, mice were subjected to Y maze testing.
Drug Formulation: Compound 1 was formulated in 40% HR-b-cyclodextrin, and adjusted to pH 6.5 with NaOH (1M). Vehicle solution was formulated and adjusted for pH similarly. Kolliphor was added to each solution at 10% every week and stored at 4°C.
Treatment Groups:
• Treatment Group 1, Vehicle treatment: Aged C57B1/6 mice (n=8), aged 23 months, received twice daily (BID) oral gavage (PO) treatment of vehicle solution for 19 days. • Treatment Group 2, Compound 1 treatment: Aged C57B 1/6 mice (n=l 1), aged 23 months, received twice daily (BID) oral gavage (PO) treatment of Compound 1, 30 mg/kg, for 19 days.
Compound 1 treatment significantly improved memory in the Y-maze. Mice treated with Compound 1 exhibited intact memory for the novel arm in the number of visits (Figures 12A). Treatment with Compound 1 also significantly increased the distance travelled of mice during the test (Figure 12B).
Fifth Experimental Group (See Figures 13-17): 23-month-old C57B1/6 mice were dosed with either vehicle control or Compound 1 subcutaneously twice daily for 21 days. Three weeks later, mice were subjected to behavior testing, and sacrificed the day following the last behavior test.
Drug Formulation : Compound 1 was formulated in 40% HR-b-cyclodextrin and adjusted to pH 6.5 with NaOH (1M). Vehicle solution was formulated and adjusted for pH similarly. Kolliphor was added to each solution at 10% every week and stored at 4°C.
Treatment Groups :
• Treatment Group lb. Vehicle treatment: Aged C57B1/6 mice (n=9), aged 23 months, received twice daily (BID) subcutaneous (SQ) treatment of vehicle solution for 21 days.
• Treatment Group 4. Compound 1 treatment: Aged C57B 1/6 mice (n=l7), aged 23 months, received twice daily (BID) subcutaneous (SQ) treatment of Compound 1, 30 mg/kg, for 21 days.
Compound 1 treatment significantly improved memory in the Y-maze and the Barnes Maze. Mice treated with Compound 1 exhibited intact memory for the novel arm in both the number of visits (Figures 13A-B) and in the duration of time spent in the novel arm (Figures 13C-D). Treatment with Compound 1 also significantly increased the velocity of mice during the test (Figure 13E). Mice treated with Compound 1 performed significantly better on the Barnes Maze for spatial memory (Figure 14A) and also exhibited increased velocity during the test (Figure 14B). Locomotor activity was also improved in the Open Field, where there were strong trends towards improvement in both distance travelled and velocity (Figures 15A and 15B, respectively).
Levels of inflammatory cytokines were measured by Luminex assay from the plasma of mice (Figure 16). There were strong trends in decrease in several inflammatory markers, including TNFa, IL6, ILlbeta, IL5, and IL17. Activated microglia was also quantified by IHC staining in the hippocampus of mice (Figure 17). Compound 1 treatment resulted in a strong trend towards decreased microgliosis. Sixth Experimental Group (See Figure 18): 23-month-old C57B1/6 mice were dosed with either vehicle control or Compound 1 subcutaneously twice daily for 30 days, and then sacrificed on the day of the last injection.
Drug Formulation : Compound 1 was formulated in 40% HR-b-cyclodextrin, and adjusted to pH 6.5 with NaOH (1M). Vehicle solution was formulated and adjusted for pH similarly. Kolliphor was added to each solution at 10% every week and stored at 4°C.
Treatment Groups :
• Treatment Group la. Vehicle treatment: Aged C57B1/6 mice (n=9), aged 23 months, received twice daily (BID) subcutaneous (SQ) treatment of vehicle solution for 30 days.
• Treatment Group 3, Compound 1 treatment: Aged C57B1/6 mice (n=l8), aged 23 months, received twice daily (BID) subcutaneous (SQ) treatment of Compound 1 , 30 mg/kg, for 30 days.
Compound 1 treatment resulted in a strong trend towards decreased blood eosinophils in the blood by FACS analysis in a subset of animals (n = 2, 5) (Figure 18).
Seventh Experimental Group (See Figure 19): 3-month-old hairless mice were treated with oxazolone (Ox) every other day and treated with control saline or 30 mg/kg Compound 1 for 2 weeks BID, PO.
Drug Formulation : Compound 1 was formulated in 40% HR-b-cyclodextrin, and adjusted to pH 6.5 with NaOH (1M). Vehicle solution was formulated and adjusted for pH similarly. Kolliphor was added to each solution at 10% every week and stored at 4°C.
Treatment Groups :
• Treatment Group 1, Vehicle treatment: 3-month-old Hairless mice (n=3) received twice daily (BID) oral gavage (PO) treatment of vehicle solution for 2 weeks.
• Treatment Group 2, Vehicle treatment and Oxazolone treatment: 3-month-old Hairless mice (n=6) received twice daily (BID) oral gavage (PO) treatment of vehicle solution for 2 weeks.
• Treatment Group 3. Compound 1 treatment and Oxazolone treatment: 3 -month-old Hairless mice (n=6) received twice daily (BID) oral gavage (PO) treatment of Compound 1, 30 mg/kg, for 2 weeks.
Compound 1 decreased the oxazolone-induced increase in blood eosinophils by complete blood count (CBC) analysis. N = 3, 6, 8. *p < 0.05, **p < 0.01. Compound 1 dramatically reduced numbers of blood eosinophils in an oxazolone-induced model of eosinophilia (Figure 19). This shows that inhibition of CCR3 can be sufficient to normali e eosinophil levels and function especially in diseased states, demonstrating a second mechanism (in addition to decreased brain inflammation) by which Compound 1 can be effective in treating neuronal loss and associated motor and cognitive deficits.
Eighth Experimental Group (See Figures 20-22): Twenty-four-month-old C57 mice were treated for 4 weeks with continuous infusion of Compound 1 or vehicle by Alzet osmotic pump, which were implanted to continuously deliver the two treatments.
Drug Formulation : Compound 1 was formulated in 40% HR-b-cyclodextrin, and adjusted to pH 6.5 with NaOH (1M). Vehicle solution was formulated and adjusted for pH similarly. Kolliphor was added to each solution at 10% every week and stored at 4°C.
Treatment Groups :
• Treatment Group 1. Old Controls: Aged C57BL/6 mice (n=l5), aged 23 months, received infusion of vehicle by Alzet mini-pump, model 2002 (0.5uL/hr), for four weeks with one replacement.
• Treatment Group 2, Compound 1 (dose 2) in Old: Aged C57BL/6 mice (n=l5), aged 23 months, received infusion of ~50mg/ml Compound 1 by Alzet mini-pump, model 2002 (0.5uL/hr), for four weeks with one replacement.
The mice were tested in the Rotarod for motor coordination. Success or failure was recorded on the last trial, with success defined by a latency to fall of > 90 seconds. Compound 1 -treated mice succeeded more than vehicle-treated mice by binomial test. N = 15 each, * p < 0.05. A greater proportion of mice treated with Compound 1, 47%, were able to stay on the rod for longer than 90 seconds, a threshold where only 20% of control-treated mice could stay on after 3 successive trials (Figure 20). These results suggest that there is a consistent effect of Compound 1 on motor function in models of eotaxin elevation.
Mice were tested in the T maze for cognitive function (Figure 21). The number of successes or failures to turn down the correct arm was recorded. Compound 1 -treated mice succeeded more than vehicle- treated mice by binomial test. * p < 0.05.
Fecal output was measured by weighing the dry weight of fecal pellets overnight (Figure 22). Gastric function is a well-known symptom of Parkinson’s disease. Water and food intake were measured over the same time period. Mice treated with Compound 1 had significantly lower fecal output compared to control mice. They also had significantly higher water intake overnight compared to control mice. * p < 0.05. These results indicate that deficits in gastric function may be altered by Compound 1 treatment.
Ninth Experimental Group (See Figure 23): Three -month-old C57 mice were given one dose of lipopolysaccharide (LPS) lOmg/kg IP to induce inflammation and treated with Compound 1 for 18 days. Drug Formulation : Compound 1 was formulated in 40% HR-b-cyclodextrin, and adjusted to pH 6.5 with NaOH (1M). Vehicle solution was formulated and adjusted for pH similarly. Kolliphor was added to each solution at 10% every week and stored at 4°C.
Treatment Groups :
• Treatment Group 1. Vehicle treatment: Young C57BL/6 mice (n=l5), aged 3 months, received a single injection of LPS and were treated with vehicle, BID, for 18 days by oral gavage.
• Treatment Group 2. Compound 1 treatment: Young C57BL/6 mice (n=l5), aged 3 months, received a single injection of LPS and were treated with Compound 1, 30 mg/kg, BID, for 18 days by oral gavage.
Brain sections were immunostained for detection of CD68+ activated microglia. Compound 1- treated mice exhibited significantly decreased CD68+ immunoreactivity (decreased activated microglia) in contrast to vehicle (saline)-treated mice (Figure 23). N = 9, 10, 8. *p < 0.05 by one-way ANOVA.
These data indicate a potent anti-neuroinflammatory effect of Compound 1, with therapeutic potential for reducing neuroinflammation-induced toxicity to neurons in diseases exhibiting neurodegeneration or cognitive or motor decline.
Tenth Experimental Group (See Figure 24-29): Three -month-old C57 mice were given daily doses of lipopolysaccharide (LPS) 0.5 mg/kg IP to induce inflammation and treated with Compound 1 chronically for up to 4 weeks.
Drug Formulation : Compound 1 was formulated in 40% HR-b-cyclodextrin and adjusted to pH 6.5 with NaOH (1M). Vehicle solution was formulated and adjusted for pH similarly. Kolliphor was added to each solution at 10% every week and stored at 4°C.
Treatment Groups :
• Treatment Group 1. Vehicle treatment: 3-month-old C57 mice (h=10) received daily IP injection of LPS for 7 weeks and twice daily (BID) oral gavage (PO) treatment of vehicle solution for up to 4 weeks.
• Treatment Group 2. Vehicle treatment and Oxazolone treatment: 3-month-old C57 mice (h=10) received daily IP injection of LPS for 7 weeks and twice daily (BID) oral gavage (PO) treatment of vehicle solution for up to 4 weeks.
• Treatment Group 3, Compound 1 treatment and Oxazolone treatment: 3-month-old C57 mice (n=9) received daily IP injection of LPS for 7 weeks and twice daily (BID) oral gavage (PO) treatment of Compound 1, 30 mg/kg, for up to 4 weeks. Figure 24A describes the dosing paradigm for the tenth experimental group. The section of the paradigm highlighted by the square represents the time points at which the assay in Figure 24B was performed. Anxiety was tested in the Open Field test after 1 week of Compound 1 treatment (Figure 24B). LPS treatment significantly increased anxiety in the Open Field, and Compound 1 strongly decreased the increased anxiety, * p < 0.05.
Figure 25A describes the dosing paradigm for the tenth experimental group. The section of the paradigm highlighted by the square represents the time points at which the assay in Figure 25B was performed. Cognition was tested in the Y maze after 3 weeks of Compound 1 treatment (Figure 25B). Mice treated with LPS did not show a significant preference for the novel arm. Flowever, mice treated with Compound 1 showed a significant preference for the novel arm, similar to vehicle treated mice, * p < 0.05, ** p < 0.0l.
Figure 26A describes the dosing paradigm for the tenth experimental group. The section of the paradigm highlighted by the square represents the time points at which the assay in Figure 26B was performed. mRNA levels of the inflammatory cytokine IL-lbeta were measured by quantitative PCR 4 weeks after Compound 1 treatment (Figure 26B). LPS treated mice showed a trend towards increased levels of IL-lbeta, and mice treated with Compound 1 showed a significant decrease in IL-lbeta expression, * p < 0.05.
Figure 27A describes the dosing paradigm for the tenth experimental group. The section of the paradigm highlighted by the square represents the time points at which the assay in Figure 27B was performed. Brain sections were immunostained for detection of CD68+ activated microglia. Compound 1- treated mice exhibited dramatically decreased CD68+ immunoreactivity (decreased activated microglia) in contrast to LPS-only-treated mice (Figure 27B).
Figure 28A describes the dosing paradigm for the tenth experimental group. The section of the paradigm highlighted by the square represents the time points at which the assay in Figure 28B was performed. Brain sections were immunostained for detection of Ibal -positive microglia. Compound 1- treated mice exhibited dramatically decreased Ibal-t- immunoreactivity (decreased total microglia) in contrast to LPS-only-treated mice (Figure 28B).
Figure 29A describes the dosing paradigm for the tenth experimental group. The section of the paradigm highlighted by the square represents the time points at which the assay in Figure 29B was performed. Brain sections were immunostained for detection of GFAP-positive astroglia. Compound 1- treated mice exhibited dramatically decreased GFAP+ immunoreactivity (decreased total astrocytes) in contrast to LPS-only-treated mice (Figure 29B). These data indicate a potent anti-neuroinflammatory effect of Compound 1, with therapeutic potential for reducing neuroinflammation-induced toxicity to neurons in diseases exhibiting neurodegeneration or cognitive or motor decline.
Eleventh Experimental Group (See Figure 30): Forty-five (42) 2-month-old C57BL/6 mice were allocated to three groups: vehicle treated controls, vehicle treated LPS mice, and Compoundl -treated LPS mice. Vehicle or compound was given twice a day orally (PO BID) for a total of 6 doses. Histological assessments were done on the hippocampus with microglia marker Iba-l.
Drug formulation: Compoundl was formulated in 40% HR-b-cyclodextrin and adjusted to pH 6.5 with NaOH (1M). Vehicle solution was formulated and adjusted for pH similarly. Solutions were prepared fresh weekly and stored at 4°C.
LPS formulation: LPS was formulated at 0.55mg/ml in saline and dosed at 5mg/kg.
Treatment Groups:
• Treatment Group 1, Vehicle treatment controls: young C57BL/6 mice (n=l3), aged 2 months, received a single IP injection of saline followed by vehicle PO BID for 3 days for a total of 6 injections.
• Treatment Group 2, Vehicle treatment LPS: young C57BL/6 mice (n=l9), aged 2 months, received a single IP injection of LPS (5mg/kg) followed by vehicle PO BID for 3 days for a total of 6 injections.
• Treatment Group 3. Compoundl treatment LPS: young C57BL/6 mice (n=!8), aged 2 months, received a single IP injection of LPS (5mg/kg) followed by Compoundl (30mg/kg) PO BID for 3 days for a total of 6 injections.
Tissue processing and histology: Mice Hemibrains were sectioned at 30pm on a microtome at - 22°C. Brain slices were collected sequentially into 12 tubes, so that every l2th section of the hippocampus was represented in a given tube. Brain sections were stored in cryoprotectant media at -20°C until needed for staining. Free floating sections were blocked in the appropriate serum at 10% serum in PBST 0.5%. Primary antibodies Ibal (Wako, 1 : 1000) was incubated overnight at 4°C. The appropriate fluorescent secondary antibodies was applied the next day at a concentration of 1 :300 for one hour at room temperature. Prolong Gold Mounting Media was used to coverslip the slides.
Neuroinflammation quantification: Iba-l positive area was quantified using thresholding on Image Pro Premier v9.2 software as a percentage of an ROI around the entire hippocampus. The Iba-l positive percent area was averaged from approximately 5 sections for each mouse. Ordinary one-way ANOVA was used to test for statistical significance, with Dunnett’s multiple comparisons test post-hoc between treatment groups.
Figure 30 shows the results of histological analysis of the mouse brains in an acute model of LPS- induced inflammation. It reveals a significant reduction of LPS-induced microgliosis in the hippocampi of mice treated with Compound 1 for three days, when both treatment with Compound 1 and LPS was commenced on the same day. Microgliosis was measured by determining the percentage of Iba-1 positive area in the hippocampi. Ordinary one-way ANOVA was used to test for statistical significance, with Dunnett’s multiple comparisons test post-hoc between treatment groups. (* P<.05; *** P<.001).
Twelfth Experimental Group (See Figure 31): Fifteen (15) 2-month-old C57BL/6 mice were allocated to three groups: vehicle treated controls, vehicle treated LPS mice, and Compound 1 treated LPS mice. Vehicle or compound was given twice a day orally (PO BID) for a total of 6 doses. Histological assessments were done on the hippocampus with microglia marker Iba-1.
Drug formulation: Compound 1 was formulated in 40% HR-b-cyclodextrin and adjusted to pH 6.5 with NaOH (1M). Vehicle solution was formulated and adjusted for pH similarly. Solutions were prepared fresh weekly and stored at 4°C.
LPS formulation: LPS was formulated at 0.55mg/ml in saline and dosed at 5mg/kg.
Treatment Groups:
• Treatment Group 1, Vehicle treatment controls: young C57BL/6 mice (n=13), aged 2 months, received a single IP injection of saline then 72 hours late were dosed vehicle PO BID for 3 days for a total of 6 injections.
• Treatment Group 2. Vehicle treatment LPS: young C57BL/6 mice (n=19), aged 2 months, received a single IP injection of LPS (5mg/kg) then 72 hours late were dosed with vehicle PO BID for 3 days for a total of 6 injections.
• Treatment Group 3, Compound 1 treatment LPS: young C57BL/6 mice (n=18), aged 2 months, received a single IP injection of LPS (5mg/kg) then 72 hours late were dosed with Compound 1 (30mg/kg) PO BID for 3 days for a total of 6 injections.
Tissue processing and histology: Mice Hemibrains were sectioned at 30pm on a microtome at - 22°C. Brain slices were collected sequentially into 12 tubes, so that every 12th section of the hippocampus was represented in a given tube. Brain sections were stored in cryoprotectant media at -20°C until needed for staining. Free floating sections were blocked in the appropriate serum at 10% serum in PBST 0.5%. Primary antibodies Ibal (Wako, 1 : 1000) was incubated overnight at 4°C. The appropriate fluorescent secondary antibodies were applied the next day at a concentration of 1 :300 for one hour at room temperature. Prolong Gold Mounting Media was used to coverslip the slides.
Neuroinflammation quantification : Iba-l positive area was quantified using thresholding on Image Pro Premier v9.2 software as a percentage of an ROI around the entire hippocampus. The Iba-l positive percent area was averaged from approximately 5 sections for each mouse. Ordinary one-way ANOVA was used to test for statistical significance, with Dunnett’s multiple comparisons test post-hoc between treatment groups.
Figure 31 shows the results of histological analysis of the mouse brains in an acute model of LPS- induced inflammation. It reveals a significant reduction of LPS-induced microgliosis in the hippocampi of mice treated with Compound 1 for three days, when Compound 1 administration commenced after LPS had been administered for three days prior. Microgliosis was measured by determining the percentage of Iba- 1 positive area in the hippocampi. Ordinary one-way ANOVA was used to test for statistical significance, with Dunnett’s multiple comparisons test post-hoc between treatment groups. (* P<.05; *** P<.001).
3. Mouse MPTP Model of Parkinson’s Disease
A mouse model using MPTP (l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine) was used to determine the level of improvement of MPTP-induced Parkinsonian deficits. MPTP is a prodrug of MPP+, which can cause permanent Parkinson’s symptoms. MPP+ works by killing dopaminergic neurons in the brain’ s substantia nigra region.
In total seventy-four (74) 8-week old male C57B1/6J mice were used in the experiment. Animals were divided into two separate study arms, a 12 day and 4 day study arm, and treated similarly in both arms. Mice were grouped into three groups within a study arm, so that one group worked as a control, receiving MPTP vehicle and compound vehicle, when the other two groups received MPTP twice a day on days 1 and 2, and in addition compound vehicle or Compound 1 daily (30 mg/kg) on days 1-12 with only one dose on Day 12 (Figure 32). After ten days of the treatment on study day 11 motor functions of the 12 day study arm mice were evaluated in the fine motor kinematic analysis. On study day 12 and on day 4 endpoint tissue processing was performed. Samples were processed for hematology, immunohistochemistry, and HPLC measurements. Striatal levels of dopamine (DA), 3,2-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were evaluated on day 12 by HPLC. Tyrosine hydroxylase (TH) immunoreactivity was evaluated from brain sections collected through the substantia nigra.
Due to the large number of ninety-seven individual parameters, principal component analysis (PCA) was performed. The PCA combined all the parameter data together and revealed correlations between different parameters, providing an overall view on the fine motor and gait characteristics. Figure 33A illustrates visualizations of the ten principal components or PCs, showing how the original parameters are correlated in datasets. The more intensity (blue or red) there is for each parameter, the more strongly the particular parameter is implicated in the corresponding PC. The heat map is formed from the PCA of all the parameter data available. The PC scores are presented as an overall gait analysis score in Figure 33B, based on differences between Group 2: MPTP + Vehicle and Group 1: Vehicle + Vehicle mice in all the PC scores.
Figure 34 shows the gait property of forepaw toe clearance at study day 11. The MPTP + vehicle- treated group exhibited a statistically significant change in forepaw toe clearance compared to the vehicle + vehicle -treated group. And the MPTP + Compound 1 -treated group exhibited a positive trend compared to the MPTP + vehicle -treated group. Data are presented as mean + SEM (Group 1: Vehicle + Vehicle, n = 15; Group 2: MPTP + Vehicle, n = 14; Group 3: MPTP + Compound 1 n = 13). Statistical significances: * p < 0.05, Group 2: MPTP + Vehicle vs. Group 1: Vehicle + Vehicle (unpaired t-test).
Figure 35 shows the gait property of forepaw swing speed at study day 11. The MPTP + vehicle- treated group exhibited a statistically significant change in forepaw swing speed compared to the vehicle + vehicle -treated group. And the MPTP + Compound 1 -treated group exhibited a positive trend compared to the MPTP + vehicle -treated group. Data are presented as mean + SEM (Group 1: Vehicle + Vehicle, n = 15; Group 2: MPTP + Vehicle, n = 14; Group 3: MPTP + Compound 1 (30 mg/kg), n = 13). Statistical significances: * p < 0.05, Group 2: MPTP + Vehicle vs. Group 1: Vehicle + Vehicle (unpaired t-test).
Figure 36 shows the gait property of ankle range of motion at study day 11. The MPTP + vehicle- treated group exhibited a statistically significant change in ankle range of motion compared to the vehicle + vehicle -treated group. And the MPTP + Compound 1 -treated group exhibited a positive trend compared to the MPTP + vehicle -treated group. Data are presented as mean + SEM (Group 1: Vehicle + Vehicle, n = 15; Group 2: MPTP + Vehicle, n = 14; Group 3: MPTP + Compound 1 (30 mg/kg), n = 13). Statistical significances: * p < 0.05, Group 2: MPTP + Vehicle vs. Group 1: Vehicle + Vehicle (unpaired t-test).
Figure 37 reports the short-term effects of MPTP and Compound 1 on T-cell infiltration into the brain. The total number of CD3 positive T-cells counted in the substantia nigra from three sections of 30 pm thickness for each mouse on Day 4 of the study are presented. Data shown are mean ± s.e.m; ***P< 0.001; one-way ANOVA, Sidak’s multiple comparison test post-hoc. Mice treated with MPTP + Compound 1 showed a trend towards less CD3-positive cells, indicating a trend towards less T-cell infiltration into the brain.
Figure 38 reports the short-term effects of MPTP and Compound 1 on microgliosis on study Day 4. Figure 38A depicts the degree of CD68-positive area measured in the striatum from three sections of 30 pm thickness for each mouse on Day 4 of the study. Figure 38B depicts the degree of CD68-positive area measured in the substantia nigra pars compacta from three sections of 30 pm thickness for each mouse from Day 4 of the study. These data demonstrate that there is marked microgliosis in the substantia nigra, the primary site of neuronal loss observed in Parkinson’s disease, but not in the striatum, the main brain region where neurons from the substantia nigra project— suggesting that treatment affects the central site of disease pathology but not secondary projection areas.
4. Synuclein Transgenic Mouse Model of Parkinson’s Disease
A synuclein transgenic mouse model was used to determine the effects of chronic CCR3 inhibition by Compound 1 and its ability to slow, halt, or reverse the progression of Parkinson’ s-like symptoms. This model over-expresses human a-synuclein can test whether an interventional treatment can prevent a- synuclein-induced behavioral and pathological effects. To select an optimal synuclein model for testing, plasma eotaxin levels were measured as a biomarker in multiple synuclein mouse models at different ages. The models included A53T, DxJ9M, and Line 61. Plasma from 6-month-old Line 61 synuclein transgenic mice were measured by ELISA assay to detect plasma eotaxin levels as a biomarker. Line 61 mice (QPS Neuro, Grambach, Austria) at 6 months of age exhibited a transgene-induced increase in eotaxin levels (Figure 39), showing that plasma eotaxin levels may serve as an appropriate clinical biomarker to select treatment populations.
Thirty-three (33) male 4.5-month-old alpha-synuclein transgenic mice (Line 61) were allocated into two groups (Group A, n=l7, Compound 1 1 mg/mL; Group B, n=l6, Vehicle) and a group of 15 non- transgenic age-matched littermates (Group C, Vehicle) were treated via their drinking water for 6 weeks. Animals received either vehicle or Compound 1. The animals’ behavior was evaluated at the end of the treatment period. Subsequently, tissue processing was performed.
Figure 40 reports the results from the wire suspension test. The mean wire suspension times per group are shown, with animals from Group C (non-transgenic, vehicle -treated) exhibiting a significantly higher wire suspension time. Animals from Group A (transgenic, Compound- 1 treated) exhibited a significantly higher wire suspension time compared to Group B (transgenic, vehicle -treated). Data are displayed as mean + SEM of all animals per group; ***P<0.00l ; Dunn’s post-test; *P<0.05 Mann Whitney test for group A vs. group B). These data demonstrate a dramatic loss of function in ability to hang on to the wire in synuclein mice, which was at least partially rescued by Compound 1 treatment.
Figure 41 reports the results from the grip strength test. The mean maximum grip force [g] per group is shown. Animals from Group A and Group C (transgenic, Compound 1 -treated and non-transgenic, vehicle -treated, respectively) showed a significantly higher grip force compared to Group B (transgenic, vehicle -treated). Data are displayed as mean + SEM of all animals per group. Groups were compared to vehicle -treated transgenic animals (group B); one-way ANOVA followed by Bonferroni’s post-test. These data demonstrate a statistically significant deficit in synuclein mice in forelimb strength, that was completely rescued by Compound 1 treatment. Figure 42 reports results from the beam walk test. The number of animals per group for each trial which were able to traverse the beam completely are shown. No animal from Group B (transgenic, vehicle- treated) was able to traverse the fifth beam (most difficult), indicating that Group A transgenic mice treated with Compound 1 performed better than Group B transgenic mice treated with vehicle, and improved performance on the beam walk test closer to non-transgenic controls.
Figure 43 reports the results of the five trials for beam walk in slips or footfalls made in each trial for three groups of mice (group A, transgenic Compound 1 -treated; group B, transgenic vehicle-treated; and group C, non-transgenic vehicle -treated). Graphs represent the mean number of slips [n] per group, and each graph represents one trial (1-5). Data are mean + SEM of all animals per group. Groups were compared to group B; one-way ANOVA followed by Bonferroni’s post-test. These data clearly show that synuclein overexpressing mice are highly impaired in their ability to traverse the beams, and treatment with Compound 1 at least partially rescues this effect, showing a dramatic improvement in motor function.
Figure 44 reports eosinophil count from peripheral blood. Figure 44A reports the percentage of eosinophils in peripheral blood from three groups of mice (Tg Cmpd 1 = transgenic Compound 1 -treated; Tg Veh = transgenic vehicle-treated; nTG Veh = non-transgenic vehicle -treated). Data were compared by t-test. Figure 44B reports the absolute eosinophil count in peripheral blood from three groups of mice (Tg Cmpd 1 = transgenic Compound 1-treated; Tg Veh = transgenic vehicle-treated; nTG Veh = non-transgenic vehicle -treated). Data were compared by t-test. These data demonstrate that the Parkinson’s Disease model of synuclein overexpression results in decreased eosinophils, which are restored to levels in non-transgenic mice with Compound 1 treatment, suggesting beneficial immune modulation in this model of Parkinson’s disease. This also suggests that determining eosinophil levels in Parkinson’s Disease patients treated with Compound 1 can be a biomarker for the disease, including determining the level of progression, stasis, or regression of the disease, as well as treatment efficacy.
Figure 45 reports the effect of Compound 1 on neuroinflammation. Figure 45A reports the CD68 positive area quantified in the hippocampus of: non-transgenic, vehicle-treated mice; transgenic, vehicle treated mice; and transgenic, Compound 1-treated mice (n=14, 12, and 15, respectively). Figure 45B reports the CD68 positive area quantified in the striatum of: non-transgenic, vehicle-treated mice; transgenic, vehicle treated mice; and transgenic, Compound 1-treated mice (n=15, 11, and 16, respectively). Figure 45C reports the Ibal positive area quantified in the hippocampus of: non-transgenic, vehicle -treated mice; transgenic, vehicle treated mice; and transgenic, Compound 1-treated mice (n=14, 13, and 16, respectively). Figure 45D reports the Ibal positive area quantified in the striatum of: non-transgenic, vehicle -treated mice; transgenic, vehicle treated mice; and transgenic, Compound 1-treated mice (n=15, 11, and 16, respectively). Data are mean +/- s.e.m.; *P<0.05. Figure 45E reports the GFAP positive astrocytes quantified in the hippocampus of: non-transgenic, vehicle-treated mice; transgenic, vehicle treated mice; and transgenic, Compound l-treated mice (h=14, 13, and 15, respectively). Figure 45F reports the GFAP positive area quantified in the striatum of: non-transgenic, vehicle-treated mice; transgenic, vehicle treated mice; and transgenic, Compound l-treated mice (h=15, 13, and 15, respectively). Data are mean +/- s.e.m.; *P<0.05. Figure 45G reports the Iba-l positive area quantified in the pars compacta of the substantia nigra of non-transgenic, vehicle-treated mice; transgenic, vehicle -treated mice; and transgenic, Compound 1- treated mice.
These data demonstrate that, while synuclein overexpression does not result in dramatic microgliosis evidenced by CD68 and Ibal, or astrocytosis evidenced by GFAP immunoreactivity, treatment with Compound 1 decreases microgliosis by both markers, and astrogliosis by GFAP, potentially having a global anti-inflammatory effect, i.e. not simply on one inflammatory cell type. Furthermore, the striatum was impacted more than the hippocampus, demonstrating that regions relevant for Parkinson’s disease are specifically reduced in microgliosis and astrogliosis markers. This is further evidenced by the effect of Compound 1 on reversing microgliosis on the pars compacta of the substantia nigra.
Figure 46 reports the effect of Compound 1 on circulating levels of IL-4 and IL-6 cytokines in: non- transgenic, vehicle-treated mice; transgenic, vehicle treated mice; and transgenic, Compound l-treated mice (h=14, 15, and 17, respectively). Figure 46A reports the levels of IL-4 measured in terminal cardiac plasma of all three groups. Figure 46B reports the levels of IL-6 measured in terminal cardiac plasma of all three groups. Data shown are mean +/- s.e.m; *P<0.05, **P<0.0l; one-way ANOVA, Dunnett’s multiple comparison test post-hoc. These alterations in key cytokines indicates a general effect of Compound 1 treatment on proteins involved in immune function and inflammation.
5. T-Cell Infiltration into The Brain
(a) Tissue processing and histology
Mice were sacrificed two hours after the last PO administration on the day following 9 days of dosing. Anesthesia was induced by 2,2,2-tribromoethanol. Mice were subsequently transcardially perfused with 1% EDTA in PBS followed by 4% PFA in PBS. The brains were dissected and cut sagitally in two even halves and drop fixed in 4% PFA in PBS. After two days of fixation, the hemibrains were transferred to a 30% sucrose in PBS solution and changed after two days. Plasma was collected and stored on dry ice.
Hemibrains were sectioned sagitally at 35pm on a microtome at -22°C. Brain slices were collected sequentially into 12 tubes, so that every l2th section of the brain was represented in a given tube. Brain sections were stored in cryoprotectant media at -20°C until needed for staining. Free floating sections were blocked in the appropriate serum at 10% serum in PBST 0.5%. Primary antibodies were incubated overnight at 4°C or room temperature as described below.
Rat anti-CD8a (63-0081-80, Thermo Fisher Scientific) was used at a concentration of 1: 100 at room temperature, rat anti-CD3 (555273, BD Biosciences) was used at a concentration of 1 : 100 at room temperature, rabbit anti-Iba-l (016-26721, Wako) was used at a concentration of 1 : 1000 at 4°C, rat anti- CD68 (MCA1957, Bio-Rad) was used at 1 : 1000 at 4°C , and Dylight 448/594 labeled Lycopersicon Esculentum (Tomato) Lectin (DL-1177, Fisher Scientific) was used at a concentration of 1:200 at room temperature. The appropriate fluorescent secondary antibodies (Alexa-488/555/647, Invitrogen) were applied the next day at a concentration of 1:300 for one hour at room temperature. Prolong Gold Mounting Media was used to coverslip the slides. Images were acquired on the Hamamatsu Nanozoomer 2.0HT slide- scanner at 20x.
(b) T-cell infiltration quantification
CD3 and CD8 positive cells were counted from images acquired on the Hamamatsu slide scanner from the cerebellum. The total number of CD3 and CD8 positive cells in the cerebellum was summed from approximately 5 sections of 35 Dm each. Ordinary one-way ANOVA was used to test for statistical significance, with Dunnett’s multiple comparisons test post-hoc between treatment groups.
(c) Neuroinflammation quantification
Iba-l and CD68 positive area was quantified using thresholding on Image Pro Premier v9.2 software as a percentage of an ROI around the entire cerebellum. The Iba-l and CD68 positive percent area was averaged from approximately 5 sections for each mouse. Ordinary one-way ANOVA was used to test for statistical significance, with Dunnett’s multiple comparisons test post-hoc between treatment groups.
Treatment Groups
Two-month-old C57B1/6 mice were divided into three treatment groups: vehicle controls, vehicle treated EAE (Experimental Autoimmune Encephalomyelitis, see Methods Mol Biol. 2012; 900: 381 -401, herein incorporated by reference in its entirety), and Compound 1 treated EAE . EAE was induced on day 0 with subcutaneous (SQ) injection of MOG+CFA emulsification and intravenous injection (IV) of Pertussis toxin (PT). An additional injection of PT occurred on day 2. Vehicle or Compound 1 dosing occurred via oral gavage (PO) on day 0 and continued twice daily (BID) till day 9. Mice were taken down 2 hours following the last PO dose.
Drug formulation: Compound 1 was formulated in 40% HR-b-cyclodextrin and adjusted to pH 6.5 with NaOH (1M). Vehicle solution was formulated and adjusted for pH similarly. Solutions were prepared fresh weekly and stored at 4°C.
EAE emulsion: MOG 35-55 (Anaspec AS-60130-5) was reconstituted in PBS at 4mg/ml. M. Tuberculosis H37 Ra (Fisher Scientific DF3114-33-8) was dissolved in Incomplete Freud’s adjuvant at 4mg/ml. These two solutions were then emulsified using glass syringes (Thermo Scientific Male Luer-LOK Priming Syringes 03-170-301) and 3-way stop cock (Cadence 6001). Solutions were prepared just before dosing. Pertussis toxin: Pertussis toxin (Sigma P7208-50UG) was dissolved at 0.002mg/ml in saline and injected lOOul IV on the day of induction and again two days later.
Treatment Groups:
• Treatment Group 1, Vehicle treatment: Young C57BL/6 mice (n=5), aged 2.5 months, received lOOul of Vehicle PO BID for 9 days, starting 2 hours after SQ saline injection and only 1 injection on the first and last days for a total of 19 treatment injections.
• Treatment Group 2, Vehicle treatment with EAE: Young C57BL/6 mice (h=10), aged 2.5 months, received lOOul of Vehicle PO BID for 9 days, starting 2 hours after EAE induction and only 1 injection on the first and last days for a total of 19 treatment injections.
• Treatment Group 3, Compound 1 treatment with EAE: Young C57BL/6 mice (h=10), aged 2.5 months, received lOOul of Compound 1 (30mg/kg) PO BID for 9 days, starting 2 hours after EAE induction and only 1 injection on the first and last days for a total of 19 treatment injections.
EAE induction resulted in an increase in CD3 and CD8-positive infiltrating T-cells in the cerebellum. These T-cells numbers were significantly reduced with treatment with Compound 1. EAE induction also resulted in a significant increase in microgliosis in the cerebellum, which was also significantly rescued with Compound 1 treatment after 9 days. Figure 47A shows an increase in CD3 positive infiltrating T-cell in the cerebellum which is significantly reduced following treatment with Compound 1 for 9 days. Figure 47B shows an increase in CD8 positive infiltrating T-cell in the cerebellum which is significantly reduced following treatment with Compound 1 for 9 days. Figure 47C shows a significant increase Iba-l positive area in the cerebellum after EAE, which was significantly reduced in the cerebellum after 9 days of treatment. Figure 47D shows a significant increase CD68 positive area in the cerebellum after EAE, which was significantly reduced in the cerebellum after 9 days of treatment. d. Examples in Humans
1. Eotaxin Levels and Aging
Levels of human eotaxin- 1 were determined using a commercially-available affinity-based assay (SOMAscan, SomaLogic, Inc., Boulder, Colorado). Blood plasma samples were collected from 18, 30, 45, 55, and 66-year-old donors and for testing by SomaLogic using a SOMAscan aptamer-based affinity assay that tested, among other things, for relative levels of human eotaxin- 1. Eotaxin- 1 levels were determined and plotted by age group (Figure 45). Eotaxin-l relative concentrations increased with age, indicating that the eotaxin-l pathway, including its primary receptor, CCR3, is a target to treat aging- associated disease such as neurodegenerative disease and cognitive decline.
2. Human Biomarker Assays Whole blood from humans treated with Compound 1 was incubated with human recombinant eotaxin-l to trigger eosinophil shape change (Figure 48A) or CCR3 receptor internalization (Figure 49B).
Both assays showed a robust concentration-dependent effect of Compound 1 on the respective functional biomarker readouts.
Together, the results obtained from the ESC and CCR3 receptor internalization assays confirm Compound 1 acts as an inhibitor of the human eotaxin-l pathway. In particular, Compound 1 can act as a potent inhibitor of CCR3 by binding to that receptor.
Further, the data obtained in Figure 44 shows that in a mammalian transgenic Parkinson’s Disease model, eosinophils were expressed at lower levels than non-transgenic animals, which was reversed with Compound 1 administration. This data, applied to a Parkinson’ s Disease patient could therefore help in diagnosing, monitoring, and determining the prognosis of the disease.
3. Treatment of Subjects with Parkinson’s Disease Using Compound 1
Subjects diagnosed with Parkinson’s Disease are given either 400 mg of Compound or placebo twice per day (BID) orally. Subjects are treated for 12 weeks and follow-up is performed for a subsequent 2 weeks. Subjects are assessed of the effects of Compound 1 on motor function in practically-defined off- medication state which is greater than or equal to 12 hours off of levodopa. Subjects are also assessed by flow cytometric, pharmacogenomic, and biomarker analyses that are conducted on blood and blood plasma samples, including eosinophil levels. Gait analysis is assessed using the Zeno Walkway. Bradykinesia, tremor, general activity, and sleep are assessed using a wearable device.
Changes in baseline (day 1) motor function during the practically defined off-medication state at week 12 is determined using Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), Part 3. Change in baseline (day 1) in clinical function, motor function, and activities of daily living at week 12 during the on-medication state is assessed by: MDS-UPDRS Parts 1-4; Montreal Cognitive Assessment (MoCA); Schwab and England Activities of Daily Living (SE-ADL) Scale; Clinical Impression of Severity Index - PD (CISI-PD); PD Quality of Life Questionnaire-39 (PDQ-39); Sheehan- Suicidality Tracking Scale (S-STS); and lO-meter timed walk (also assessed in off-medication state).
It is to be understood that this invention is not limited to particular aspects described, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, representative illustrative methods and materials are now described.
All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
It is noted that, as used herein and in the appended claims, the singular forms "a", "an", and "the" include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as "solely," "only" and the like in connection with the recitation of claim elements, or use of a "negative" limitation.
As will be apparent to those of skill in the art upon reading this disclosure, each of the individual aspects described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several aspects without departing from the scope or spirit of the present invention. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
Accordingly, the preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and aspects of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof.
Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary aspects shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.

Claims

Claims What is claimed:
1. A method of treating neurodegenerative disease in a subject diagnosed with the
neurodegenerative disease, the method comprising administering a therapeutically effective amount of a compound of formula 1 ,
Figure imgf000163_0001
wherein
A is CH2, O or N-Ci-6-alkyl;
R1 is selected from
• NHR1 NMeR1·1;
• NHR1 2, NMeR1·2;
• NHCH2-R1 3;
• NH-C3 6-cycloalkyl, whereas optionally one carbon atom is replaced by a nitrogen atom, whereas the ring is optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, O-Ci-6-alkyl, NHSCh-phenyl, NHCONH-phenyl, halogen, CN, S02-Ci-6-alkyl, COO-Ci-6-alkyl;
• a C9 or 10-bicyclic-ring, whereas one or two carbon atoms are replaced by nitrogen atoms and the ring system is bound via a nitrogen atom to the basic structure of formula 1 and whereas the ring system is optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, COO-Ci-6-alkyl, Ci-6-haloalkyl, O-Ci-6-alkyl, NO2, halogen, CN, NHS02-Ci-6-alkyl, methoxy-phenyl;
• a group selected from NHCH(pyridinyl)CH2COO-Ci-6-alkyl,
NHCH(CH20-Ci-6-alkyl)-benzoimidazolyl, optionally substituted with halogen or CN;
• or 1-aminocyclopentyl, optionally substituted with methyl-oxadiazole; R1·1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C2 6-alkenyl, C2 -6-alkynyl, Ci-6-haloalkyl, Ci e-alkylene-OH,
C2 6-alkenylene-OH, C2 e-alkynylene-OH, CH2CON(Ci-6-alkyl)2,
CH2NHCONH-C3 6-cycloalkyl, CN, CO-pyridinyl, CONR' " R" 2, COO-C, 6-alkyl, N(S02-Ci-6-alkyl)(CH2C0N(Ci-4-alkyl)2) O-C , 6-alkyl, O-pyridinyl, S02-C, 6-alkyl, S02-Ci-6-alkylen-0H, SO2-C3 6-cycloalkyl, S02-piperidinyl, S02NH-Ci-6-alkyl, S02N(Ci-6-alkyl)2, halogen, CN, CO-morpholinyl, CH2-pyridinyl or a heterocyclic ring optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, NHCi 6-alkyl and =0;
R1·1·1 H, Ci-6-alkyl, C3 6-cycloalkyl, Ci-6-haloalkyl, CH2CON(Ci-6-alkyl,)2,
CH2CO-azetindinyl, Ci-6-alkylen-C3 6-cycloalkyl, CH2-pyranyl, CH2-tetrahydro- furanyl, CH2-furanyl, Ci e-alkylen-OH or thiadiazolyl, optionally substituted with Ci-6-alkyl;
R1 1 2 H, Ci-6-alkyl, SC Ci-e-alkyl; or R1 1 1 and R1 1 2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one N or O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl,
Ci 4-alkylene-OH, OH, =0; or
R1·1 is phenyl, wherein two adjacent residues are together forming a five- or six-membered carbocyclic aromatic or non-aromatic ring, optionally containing independently from each other one or two N, S, or SO2, replacing a carbon atom of the ring, wherein the ring is optionally substituted with Ci-4-alkyl or =0;
R1·2 is selected from
• heteroaryl, optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C2 6-alkenyl, C2 6-alkynyl, C3 6-cycloalkyl,
CH2COO-C1 e-alkyl, CONR1 2 'R1 2 2, COR1·2·3, COO-Ci e-alkyl, CONH2,
O-Ci-6-alkyl, halogen, CN, S02N(Ci-6-alkyl)2 or heteroaryl optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl; • heteroaryl, optionally substituted with a five- or six-membered carbocyclic non aromatic ring containing independently from each other two N, O, S, or SO2, replacing a carbon atom of the ring;
• a aromatic or non-aromatic C9 or 10-bicyclic-ring, whereas one or two carbon atoms are replaced by N, O or S each optionally substituted with one or two residues selected from the group consisting of N(Ci-6-alkyl)2, CONH-C i r, -alky I, =0;
• a heterocyclic non-aromatic ring, optionally substituted with pyridinyl;
• 4,5-dihydro-naphtho[2,l-d]thiazole, optionally substituted with NHCO-Ci 6-alkyl,
R1·2·1 H, Ci-6-alkyl, Ci-6-alkylene-C3 6-cycloalkyl, Ci-4-alkylene-phenyl, Ci-4-alkylene- furanyl, C3 6-cycloalkyl, Ci-4-alkylene-0-Ci-4-alkyl, Ci-6-haloalkyl or a five- or six-membered carbocyclic non-aromatic ring, optionally containing
independently from each other one or two N, O, S, or SO2, replacing a carbon atom of the ring, optionally substituted with 4-cyclopropylmethyl-piperazinyl
R1 2 2 H, Ci-e-alkyl;
R1 2 3 a fjve_ or six-membered carbocyclic non-aromatic ring, optionally containing independently from each other one or two N, O, S, or SO2, replacing a carbon atom of the ring;
R1 3 is selected from phenyl, heteroaryl or indolyl, each optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C3 6-cycloalkyl, O-Ci-6-alkyl,
O-Ci-6-haloalkyl, phenyl, heteroaryl;
R2 is selected from the group consisting of Ci-6-alkylene -phenyl, Ci-6-alkylene -naphthyl, and
Ci-6-alkylene -heteroaryl; each optionally substituted with one, two or three residues selected from the group consisting of Ci-6-alkyl, Ci-6-haloalkyl, O-Ci-6-alkyl, O-Ci-6-haloalkyl, halogen;
R3 is H, Ci-6-alkyl;
R4 is H, Ci-6-alkyl;
or R3 and R4 together are forming a CH2-CH2 group; to treat the subject for the neurodegenerative disease.
2. The method of claim 1 wherein the compound of formula 1 ,
A is CH2, O or N-Ci-4-alkyl;
R1 is selected from
• NHR1 NMeR1 1;
• NHR1 2, NMeR1·2;
• NHCH2-R1 3;
• NH-C3 6-cycloalkyl, whereas optionally one carbon atom is replaced by a nitrogen atom, whereas the ring is optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, O-Ci-6-alkyl, NHSCh-phenyl, NHCONH-phenyl, halogen, CN, S02-Ci-6-alkyl, COO-Ci-6-alkyl;
• a C9 or 10-bicyclic-ring, whereas one or two carbon atoms are replaced by nitrogen atoms and the ring system is bound via a nitrogen atom to the basic structure of formula 1 and whereas the ring system is optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, COO-Ci-6-alkyl, Ci-6-haloalkyl, O-Ci-6-alkyl, NO2, halogen, CN, NHS02-Ci-6-alkyl, m-methoxyphenyl;
• a group selected from NHCH(pyridinyl)CH2COO-Ci-6-alkyl,
NHCH(CH20-Ci-6-alkyl)-benzoimidazolyl, optionally substituted with Cl;
• or 1-aminocyclopentyl, optionally substituted with methyl-oxadiazolyl;
R1·1 is phenyl, optionally substituted with one or two residues selected from the group
consisting of Ci-6-alkyl, Ci-6-haloalkyl, CH2CON(Ci-6-alkyl)2,
CH2NHCONH-C3 6-cycloalkyl, CN, CONR ' " R " 2, COO-C , 6-alkyl, O-C , 6-alkyl, S02-Ci-6-alkyl, S02-Ci-6-alkylen-0H, SO2-C3 6-cycloalkyl, S02-piperidinyl,
SChNH-Ci-e-alkyl, S02N(Ci-6-alkyl)2, halogen, CN, CO-morpholinyl, Cth-pyridinyl or a heterocyclic ring optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, NHC i 6-alkyl,, =0;
R1 1 1 H, Ci-6-alkyl, C3 6-cycloalkyl, Ci-6-haloalkyl, CH2CON(Ci-6-alkyl,)2,
CthCO-azetindinyl, Ci-6-alkylen-C3 6-cycloalkyl, Cth-pyranyl, Cth-tetrahydro- furanyl, Cth-furanyl, C i ,-alkylen-OH or thiadiazolyl, optionally substituted with
Ci-6-alkyl;
R 1 1 2 H, Ci-6-alkyl, S02Ci-6-alkyl;
or R1·1 ·1 and R1·1 ·2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of CH2OH
R1 2 is selected from
• heteroaryl, optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C3 6-cycloalkyl, CH2COO-C1 6-alkyl, CONR l 2 l R 1 2 2, COO-Ci-6-alkyl, CONH2, O-Ci-6-alkyl, halogen, CN, CO-pyrrolidinyl,
CO-morpholinyl or heteroaryl optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl;
• benzothiazolyl, indazolyl, dihydro-indolyl, indanyl, tetrahydro-quinolinyl, each optionally substituted with one or two residues selected from the group consisting of N(Ci-6-alkyl)2, CONH-C , 6-alkyl, =0;
• piperidinyl, optionally substituted with pyridinyl;
• 4,5-dihydro-naphtho[2,l-d]thiazole, optionally substituted with NHCO-C i 6-alkyl,
R1 2 1 H, Ci-6-alkyl; R1 2 2 H, Ci-6-alkyl;
R1·3 is selected from phenyl, pyrazolyl, isoxazolyl, pyrimidinyl, indolyl or oxadiazolyl, each optionally substituted with one or two residues selected from the group consisting of Ci-6-alkyl, C3 6-cycloalkyl, O-Ci-6-alkyl, O-Ci-6-haloalkyl;
R2 is selected from Cth-phenyl or Cth-naphthyl, both optionally substituted with one or two
residues selected from the group consisting of Ci-6-alkyl, Ci-6-haloalkyl, O-Ci-6-alkyl, O-Ci-6-haloalkyl, halogen; or Cth-thiophenyl, optionally substituted with one or two residues selected from the group consisting of halogen;
R3 is H, Ci-4-alkyl;
R4 is H, Ci-4-alkyl;
or R3 and R4 together are forming a CH2-CH2 group.
3. The method of claim wherein the compound of formula 1 is A is CH2, O or NMe;
R1 is selected from
• NHR1 NMeR1·1;
• NHR1 2, NMeR1 2;
• NHCH2-R1 3;
• NH -cyclohexyl, optionally substituted with one or two residues selected from the group consisting of Ci-4-alkyl, NHSCh-phenyl, NHCONH-phenyl, halogen;
• NH-pyrrolidinyl, optionally substituted with one or two residues selected from the group consisting of S02-Ci-4-alkyl, COO-Ci-4-alkyl;
• piperidinyl, optionally substituted with one or two residues selected from the group consisting of NHS02-Ci-4-alkyl, m-methoxyphenyl;
• dihydro-indolyl, dihydro-isoindolyl, tetrahydro-quinolinyl or tetrahydro-isoquinolinyl,
optionally substituted with one or two residues selected from the group consisting of Ci-4-alkyl, COO-Ci-4-alkyl, Ci-4-haloalkyl, O-Ci-4-alkyl, NO2, halogen;
• a group selected from NHCH(pyridinyl)CH2COO-Ci-4-alkyl,
NHCH(CH20-Ci-4-alkyl)-benzoimidazolyl, optionally substituted with Cl;
• or l-aminocyclopentyl, optionally substituted with methyl-oxadiazolyl; R1·1 is phenyl, optionally substituted with one or two residues selected from the group consisting of Ci-4-alkyl, Ci-4-haloalkyl, CH2CON(Ci-4-alkyl)2,
CH2NHCONH-C3 6-cycloalkyl, CN, CONR' " R" 2, COO-C, 4-alkyl, O-C, 4-alkyl, S02-Ci-4-alkyl, S02-Ci-4-alkylen-0H, SO2-C3 6-cycloalkyl, S02-piperidinyl,
S02NH-Ci-4-alkyl, S02N(Ci-4-alkyl)2, halogen, CO-morpholinyl, Cth-pyridinyl, or imidazolidinyl, piperidinyl, oxazinanyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyridinyl, pyrimidinyl, each optionally substituted with one or two residues selected from the group consisting of Ci-4-alkyl, NHCi-4-alkyl,, =0;
R1·1·1 H, Ci-6-alkyl, C3 6-cycloalkyl, Ci-4-haloalkyl, CH2CON(Ci-4-alkyl,)2,
CH2CO-azetindinyl, Ci-4-alkylen-C3 6-cycloalkyl, CH2-pyranyl, Cth-tetrahydro- furanyl, CH2-furanyl, Ci-4-alkylen-OH or thiadiazolyl, optionally substituted with Ci-4-alkyl;
R1 1 2 H, Ci-4-alkyl, SC Ci r-alkyl;
or R1 1 1 and R1 1 2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of CH2OH
R1·2 is selected from
• pyridinyl, pyridazinyl, pyrrolyl, pyrazolyl, isoxazolyl, thiazolyl, thiadiazolyl,
optionally substituted with one or two residues selected from the group consisting of Ci-4-alkyl, C3-6 -cycloalkyl, CH .COO-C, 4-alkyl, CONR1 2 'R1 2 2, COO-C, 4-alkyl, CONH2, O-Ci-4-alkyl, halogen, CO-pyrrolidinyl, CO-morpholinyl or pyrazolyl, triazolyl, tetrazolyl, isoxazolyl, oxadiazolyl, each optionally substituted with one or two residues selected from the group consisting of Ci-4-alkyl;
• benzothiazolyl, indazolyl, dihydro-indolyl, indanyl, tetrahydro-quinolinyl, each optionally substituted with one or two residues selected from the group consisting of N(Ci-4-alkyl)2, CONH-C, 4-alkyl, =0;
• piperidinyl, optionally substituted with pyridinyl; 4,5-dihydro-naphtho[2,l-d]thiazole, optionally substituted with NHCO-Ci-4-alkyl,
R1·2·1 H, Ci-4-alkyl; R1 2 2 H, Ci-4-alkyl;
R1·3 is selected from phenyl, pyrazolyl, isoxazolyl, pyrimidinyl, indolyl or oxadiazolyl, each optionally substituted with one or two residues selected from the group consisting of Ci-4-alkyl, C3 6-cycloalkyl, O-Ci-4-alkyl, O-Ci-4-haloalkyl;
R2 is selected from CH2-phenyl or Cth-naphthyl, both optionally substituted with one or two residues selected from the group consisting of Ci-4-alkyl, Ci-4-haloalkyl, O-Ci-4-haloalkyl, halogen; or Cth-thiophenyl, optionally substituted with one or two residues selected from the group consisting of halogen;
R3 is H;
R4 is H;
or R3 and R4 together are forming a CH2-CH2 group.
4. The method of claim 1 wherein formula 1 is
A is CH2, O or NMe;
R1 is selected from
• NHR1 NMeR1 1;
• NHR1 2, NMeR1·2; • NHCH2-R1 3;
• NH-piperidinyl, optionally substituted with pyridinyl;
• NH -cyclohexyl, optionally substituted with one or two residues selected from the group
consisting of t-Bu, NHSCE-phenyl, NHCONH -phenyl, F;
• NH-pyrrolidinyl, optionally substituted with one or two residues selected from the group consisting of SCEMe, COO-t-Bu;
• piperidinyl, optionally substituted with one or two residues selected from the group consisting of NHSCE-n-Bu, m-methoxyphenyl;
• dihydro-indolyl, dihydro-isoindolyl, tetrahydro-quinolinyl or tetrahydro-isoquinolinyl,
optionally substituted with one or two residues selected from the group consisting of Me, COOMe, CF3, OMe, N02, F, Br;
• a group selected from NHCH(pyridinyl)CH2COOMe, NHCH(CH20Me)-benzoimidazolyl, optionally substituted with Cl;
• or l-aminocyclopentyl, optionally substituted with methyl-oxadiazolyl;
R1·1 is phenyl, optionally substituted with one or two residues selected from the group
consisting of Me, Et, t-Bu, CF3, CH2CONMe2, CH2NHCONH-cyclohexyl, CN,
CONR1 1 'R1 1 2, COOMe, COOEt, OMe, S02Me, S02CH2CH20H, S02Et,
S02-cyclopropyl, S02-piperidinyl, S02NHEt, SCENMeEt, F, Cl, CO-morpholinyl, CH2-pyridinyl, or imidazolidinyl, piperidinyl, oxazinanyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyridinyl, pyrimidinyl, each optionally substituted with one or two residues selected from the group consisting of Me, NHMe, =0;
R1 1 1 H, Me, Et, t-Bu, i-Pr, cyclopropyl, CH2-i-Pr, CH2-t-Bu, CH(CH3)CH2CH3,
CH2CHF2, CH2CONMe2, CPECO-azetindinyl, CH2-cyclopropyl, CH2-cyclobutyl, Ctp-pyranyl, CH2-tetrahydrofuranyl, CH2-furanyl, CH2CH2OH or thiadiazolyl, optionally substituted with Me;
R1 1 2 H, Me, Et, S02Me, S02Et or R1 1 1 and R1 1 2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of CH2OH
R1 2 is selected from
• pyridinyl, pyrrolyl, pyrazolyl, isoxazolyl, thiazolyl, thiadiazolyl, optionally
substituted with one or two residues selected from the group consisting of Me, Et, Pr, Bu, cyclopropyl, CH2COOEt, CONR1 2 'R1 2 2, COOMe, COOEt, CONH2, OMe, Cl, Br CO-pyrrolidinyl, CO-morpholinyl or pyrazolyl, triazolyl, tetrazolyl, isoxazolyl, oxadiazolyl, each optionally substituted Me;
• benzothiazolyl, indazolyl, dihydro-indolyl, indanyl, tetrahydro-quinolinyl, each
optionally substituted with one or two residues selected from the group consisting of NMe2, CONHMe, =0;
• 4,5-dihydro-naphtho[2,l-d]thiazole, optionally substituted with NHCOMe,
R1 2 1 H, Me;
R1 2 2 H, Me;
R1·3 is selected from phenyl, pyrazolyl, isoxazolyl, pyrimidinyl, indolyl or oxadiazolyl, each optionally substituted with one or two residues selected from the group consisting of Me, Et, Pr, cyclopentyl, OMe, OCHF2;
R2 is selected from CH2-phenyl or CH2-naphthyl, both optionally substituted with one or two
residues selected from the group consisting of CH3, CF3, OCF3, F, Cl, Br, Et; or CH2-thiophenyl, optionally substituted with one or two residues selected from the group consisting of Cl, Br;
R3 is H;
R4 is H; or R3 and R4 together are forming a CH2-CH2 group. 5. The method of claim 1 wherein formula 1 is A is CH2, O or NMe;
R1 is selected from • NHR1 1
• NHR1 2,
R1·1 is phenyl, optionally substituted with one or two residues selected from the group
consisting of Me, Et, Bu, CF3, CH2CONMe2, CH2NHCONH-cyclohexyl, CN,
CONR1 1 'R1 1 2, COOMe, COOEt, OMe, S02Me, S02CH2CH20H, S02Et, S02-cyclopropyl, S02-piperidinyl, S02NHEt, SCENMeEt, F, Cl, CO-morpholinyl, CH2-pyridinyl, or imidazolidinyl, piperidinyl, oxazinanyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyridinyl, pyrimidinyl, each optionally substituted with one or two residues selected from the group consisting of Me, NHMe, =0;
R1 1 1 H, Me, Et, t-Bu, i-Pr, cyclopropyl, CH2-i-Pr, CH2-t-Bu, CH(CH3)CH2CH3,
CH2CHF2, CH2CONMe2, CPECO-azetindinyl, CH2-cyclopropyl, CH2-cyclobutyl, CH2-pyranyl, CPE-tetrahydrofuranyl, CH2-furanyl, CH2CH2OH or thiadiazolyl, optionally substituted with Me;
R1 1 2 H, Me, Et, S02Me, S02Et
or R1 1 1 and R1 1 2 together are forming a four-, five- or six-membered carbocyclic ring, optionally containing one O, replacing a carbon atom of the ring, optionally substituted with one or two residues selected from the group consisting of CH2OH
R1·2 is selected from • pyridinyl, pyrrolyl, pyrazolyl, isoxazolyl, thiazolyl, thiadiazolyl, optionally
substituted with one or two residues selected from the group consisting of Me, Et, Pr, Bu, cyclopropyl, CH2COOEt, CONR1 2 'R1 2 2, COOMe, COOEt, CONH2, OMe, Cl, Br CO-pyrrolidinyl, CO-morpholinyl or pyrazolyl, triazolyl, tetrazolyl, isoxazolyl, oxadiazolyl, each optionally substituted Me;
• benzothiazolyl, indazolyl, dihydro-indolyl, indanyl, tetrahydro-quinolinyl, each
optionally substituted with one or two residues selected from the group consisting of NMe2, CONHMe, =0;
• 4,
5-dihydro-naphtho[2,l-d]thiazole, optionally substituted with NFlCOMe,
R1·2·1 H, Me; R1 2 2 H, Me;
R2 is selected from Cfh-phenyl or Cfh-naphthyl, both optionally substituted with one or two
residues selected from the group consisting of CH3, CF3, OCF3, F, Cl, Br, Et
R3 is H;
R4 is H.
6. The method of claim 1 wherein formula 1 is
A is CFb, O or NMe;
R1 is selected from
Figure imgf000175_0001
Figure imgf000176_0001
Figure imgf000177_0001
Figure imgf000178_0001
Figure imgf000179_0001
Figure imgf000180_0001
Figure imgf000181_0001
Figure imgf000182_0001
Figure imgf000183_0001
R3 is H;
R4 is H; or R3 and R4 together are forming a CH2-CH2 group.
7. The method of claim 1 wherein the compound is a co-crystal of formula
Figure imgf000184_0001
wherein
R1 is Ci-6-alkyl, Ci-6-haloalkyl, O-Ci-6-haloalkyl, halogene; m is 1, 2 or 3;
R2a and R2b are each independently selected from H, Ci-6-alkyl, Ci-6-alkenyl, Ci-6-alkynyl,
C3 -6 -cycloalkyl, COO-Ci-6-alkyl, O-Ci-6-alkyl, CONR2b 'R2b 2, halogene;
R2b l is H, Ci-6-alkyl, Co 4-alkyl-C3 6-cycloalkyl, Ci-6-haloalkyl;
R2b 2 is H, Ci-6-alkyl;
or R2b 1 and R2b 2 are together a C3 6-alkylene group forming with the nitrogen atom a heterocyclic ring, wherein optionally one carbon atom or the ring is replaced by an oxygen atom
R3 is H, Ci-6-alkyl;
X is an anion selected from the group consisting of chloride, bromide, iodide, sulphate, phosphate, methanesulphonate, nitrate, maleate, acetate, benzoate, citrate, salicylate, fumarate, tartrate, dibenzoyltartrate, oxalate, succinate, benzoate and p- toluenesulphonate ; j is 0, 0.5, 1, 1.5 or 2; with a co-crystal former selected from the group consisting of orotic acid, hippuric acid, L- pyroglutamic acid, D-pyroglutamic acid, nicotinic acid, L-(+) -ascorbic acid, saccharin, piperazine, 3-hydroxy-2-naphtoic acid, mucic (galactaric) acid, pamoic (embonic) acid, stearic acid, cholic acid, deoxycholic acid, nicotinamide, isonicotinamide, succinamide, uracil, L-lysine, L-proline, D-valine, L-arginine, glycine.
8. The method of claim 1 wherein the compound is a crystalline salt of the formula below,
Figure imgf000185_0001
9. The method of claim 1 wherein the compound comprises at least one co-crystal of a compound of the formula according to claim 7 and a pharmaceutically acceptable carrier.
10. The method of claim 1 wherein the compound of formula 1 is administered in the form of the individual optical isomers, a mixture of the individual enantiomers, a racemate or in the form of the enantiomerically pure compounds.
11. The method of claim 1 wherein the compound is a pharmaceutical composition comprising as an active ingredient one or more compounds of the formula below,
Figure imgf000185_0002
wherein R1 is H, Ci-6-alkyl, Co 4-alkyl-C3 6-cycloalkyl, Ci-6-haloalkyl;
R2 is H, Ci-6-alkyl;
X is an anion selected from the group consisting of chloride or ½ dibenzoyltartrate j is 1 or 2, a first diluent, a second diluent, a binder, a disintegrant and a lubricant.
12. The method of claim 11 wherein the pharmaceutical composition further comprises an additional disintegrant.
13. The method of claim 11 or 12 wherein the pharmaceutical composition further comprises an additional glidant.
14. The method of claim 11, 12 or 13 wherein the diluent of the pharmaceutical composition further comprises cellulose powder, dibasic calciumphosphatae anhydrous, dibasic calciumphosphate dehydrate, erythritol, low substituted hydroxypropyl cellulose, mannitol, pregelantinized starch, or xylitol.
15. The method of any of the preceding claims wherein the neurodegenerative disease is from the group consisting of Alzheimer's disease, Parkinson's disease, frontotemporal dementia,
Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, vascular dementia, progressive supranuclear palsy.
PCT/US2019/052995 2018-09-26 2019-09-25 Methods and compositions for treating aging-associated impairments using ccr3-inhibitors WO2020069008A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CA3111433A CA3111433A1 (en) 2018-09-26 2019-09-25 Methods and compositions for treating aging-associated impairments using ccr3-inhibitors
KR1020217008493A KR20210065950A (en) 2018-09-26 2019-09-25 Methods and compositions for the treatment of senescence-associated disorders using CCR3-inhibitors
AU2019346456A AU2019346456A1 (en) 2018-09-26 2019-09-25 Methods and compositions for treating aging-associated impairments using CCR3-inhibitors
BR112021004938-0A BR112021004938A2 (en) 2018-09-26 2019-09-25 methods and compositions for treating damage associated with aging using ccr3 inhibitors
JP2021517342A JP2022502441A (en) 2018-09-26 2019-09-25 Methods and compositions for treating age-related dysfunction with CCR3 inhibitors
EA202190463A EA202190463A1 (en) 2018-09-26 2019-09-25 METHODS AND COMPOSITIONS FOR TREATING AGING-ASSOCIATED DISORDERS USING CCR3-INHIBITORS
SG11202102105VA SG11202102105VA (en) 2018-09-26 2019-09-25 Methods and compositions for treating aging-associated impairments using ccr3-inhibitors
MX2021002967A MX2021002967A (en) 2018-09-26 2019-09-25 Methods and compositions for treating aging-associated impairments using ccr3-inhibitors.
CN201980063258.7A CN112789044A (en) 2018-09-26 2019-09-25 Methods and compositions for treating aging-related injuries using CCR 3-inhibitors
EP19867321.2A EP3856195A4 (en) 2018-09-26 2019-09-25 Methods and compositions for treating aging-associated impairments using ccr3-inhibitors
IL281578A IL281578A (en) 2018-09-26 2021-03-17 Methods and compositions for treating aging-associated impairments using ccr3-inhibitors
CONC2021/0003713A CO2021003713A2 (en) 2018-09-26 2021-03-24 Methods and compositions for treating deteriorations associated with aging using ccr3 inhibitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862737017P 2018-09-26 2018-09-26
US62/737,017 2018-09-26

Publications (1)

Publication Number Publication Date
WO2020069008A1 true WO2020069008A1 (en) 2020-04-02

Family

ID=69953286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2019/052995 WO2020069008A1 (en) 2018-09-26 2019-09-25 Methods and compositions for treating aging-associated impairments using ccr3-inhibitors

Country Status (16)

Country Link
EP (1) EP3856195A4 (en)
JP (1) JP2022502441A (en)
KR (1) KR20210065950A (en)
CN (1) CN112789044A (en)
AU (1) AU2019346456A1 (en)
BR (1) BR112021004938A2 (en)
CA (1) CA3111433A1 (en)
CL (1) CL2021000724A1 (en)
CO (1) CO2021003713A2 (en)
EA (1) EA202190463A1 (en)
IL (1) IL281578A (en)
MA (1) MA53743A (en)
MX (1) MX2021002967A (en)
SG (1) SG11202102105VA (en)
TW (1) TW202027752A (en)
WO (1) WO2020069008A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090330A1 (en) * 2004-03-22 2005-09-29 Astrazeneca Ab N-piperidine derivates as ccr3 modulators
WO2007102769A2 (en) * 2006-03-07 2007-09-13 Astrazeneca Ab Piperidine derivatives, their process for preparation, their use as therapeutic agents and pharmaceutical compositions containing them
US20120264729A1 (en) * 2010-10-07 2012-10-18 Boehringer Ingelheim International Gmbh Co-crystals and salts of ccr3-inhibitors
US20130266646A1 (en) * 2012-04-04 2013-10-10 Boehringer Ingelheim International Gmbh Pharmaceutical formulations comprising ccr3 antagonists
US20160208011A1 (en) * 2010-01-28 2016-07-21 The Board Of Trustees Of The Leland Stanford Junior University Ccr3 modulation in the treatment of aging-associated impairments, and compositions for practicing the same
US20170319567A1 (en) * 2012-04-03 2017-11-09 Alkahest, Inc. Use of CCR3-Inhibitors
WO2018187503A1 (en) * 2017-04-05 2018-10-11 Alkahest, Inc. Methods and compositions for treating aging-associated impairments using ccr3-inhibitors

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8278302B2 (en) * 2009-04-08 2012-10-02 Boehringer Ingelheim International Gmbh Substituted piperidines as CCR3 antagonists
CN110650740A (en) * 2017-04-05 2020-01-03 万能溶剂有限公司 Methods and compositions for treating retinal-related diseases using CCR3 inhibitors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090330A1 (en) * 2004-03-22 2005-09-29 Astrazeneca Ab N-piperidine derivates as ccr3 modulators
WO2007102769A2 (en) * 2006-03-07 2007-09-13 Astrazeneca Ab Piperidine derivatives, their process for preparation, their use as therapeutic agents and pharmaceutical compositions containing them
US20160208011A1 (en) * 2010-01-28 2016-07-21 The Board Of Trustees Of The Leland Stanford Junior University Ccr3 modulation in the treatment of aging-associated impairments, and compositions for practicing the same
US20120264729A1 (en) * 2010-10-07 2012-10-18 Boehringer Ingelheim International Gmbh Co-crystals and salts of ccr3-inhibitors
US20170319567A1 (en) * 2012-04-03 2017-11-09 Alkahest, Inc. Use of CCR3-Inhibitors
US20130266646A1 (en) * 2012-04-04 2013-10-10 Boehringer Ingelheim International Gmbh Pharmaceutical formulations comprising ccr3 antagonists
WO2018187503A1 (en) * 2017-04-05 2018-10-11 Alkahest, Inc. Methods and compositions for treating aging-associated impairments using ccr3-inhibitors

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3856195A4 *
ZHU ET AL.: "Targeting CCR3 to Reduce Amyloid-beta Production, Tau Hyperphosphorylation, and Synaptic Loss in a Mouse Model of Alzheimer's Disease", MOLECULAR NEUROBIOLOGY, vol. 54, no. 10, December 2017 (2017-12-01), pages 7964 - 7978, XP036362719, DOI: 10.1007/s12035-016-0269-5 *

Also Published As

Publication number Publication date
TW202027752A (en) 2020-08-01
EA202190463A1 (en) 2021-06-29
CL2021000724A1 (en) 2021-10-15
IL281578A (en) 2021-05-31
CO2021003713A2 (en) 2021-04-08
SG11202102105VA (en) 2021-04-29
AU2019346456A1 (en) 2021-04-15
EP3856195A4 (en) 2022-06-22
MX2021002967A (en) 2021-08-11
MA53743A (en) 2022-01-05
JP2022502441A (en) 2022-01-11
BR112021004938A2 (en) 2021-06-01
CN112789044A (en) 2021-05-11
CA3111433A1 (en) 2020-04-02
KR20210065950A (en) 2021-06-04
EP3856195A1 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
AU2018250214B2 (en) Methods and compositions for treating aging-associated impairments using CCR3-inhibitors
JP6560325B2 (en) Methods and compositions for promoting axonal regeneration and neural function
JP2021193124A (en) Pharmaceutical composition for prevention and/or treatment of atopic dermatitis containing il-31 antagonist as active ingredient
KR20180022792A (en) Diaryl and aryl heteroaryl urea derivatives useful for the prevention and treatment of sleep-disordered sleep disorders
JP2011513196A (en) Use of a KCNQ potassium channel opener to alleviate symptoms of or treat a disorder or condition in which the dopaminergic system is disrupted
JP6983945B2 (en) Treatment of autoimmune diseases
US20040208923A1 (en) Acute pharmacologic augmentation of psyschotherapy with enhancers of learning or conditioning
ES2950453T3 (en) Compounds and pharmaceutical compositions for use in the treatment of diseases associated with the retina using CCR3 inhibitors
US20200054622A1 (en) Methods and Compositions for Treating Aging-Associated Impairments Using CCR3-Inhibitors
CN113811296A (en) Methods of treating fibrotic diseases or disorders or interstitial lung disease with SRC kinase inhibitors
US20100247688A1 (en) Pirenzepine and derivatives thereof as anti-amyloid agents
WO2020069008A1 (en) Methods and compositions for treating aging-associated impairments using ccr3-inhibitors
JP2017533967A (en) Method for treating Huntington&#39;s disease using cysteamine composition
EA041892B1 (en) METHODS AND COMPOSITIONS FOR TREATMENT OF AGING-ASSOCIATED DISORDERS USING CCR3 INHIBITORS
CN113924087A (en) Prophylactic efficacy of serotonin 4receptor agonists against stress
KR102407982B1 (en) Use of buspirone to treat functional vertigo
RU2786476C2 (en) Composition containing antibody against abeta protofibrils and inhibitor of beta-secretase bace1 for treatment of alzheimer&#39;s disease
WO2022173334A2 (en) Methods, compositions and compounds for treating age-related diseases and conditions
EA041007B1 (en) USE OF BUSPIRONE FOR THE TREATMENT OF FUNCTIONAL VERTIGO
JP2017132742A (en) NOVEL PHARMACOLOGICAL APPLICATION OF Aβ OLIGOMER SPECIFIC ANTIBODY
US20100227844A1 (en) Cannabinoid-1 receptor modulators useful for the treatment of alzheimer&#39;s disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3111433

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021004938

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021517342

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2101001851

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019346456

Country of ref document: AU

Date of ref document: 20190925

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019867321

Country of ref document: EP

Effective date: 20210426

ENP Entry into the national phase

Ref document number: 112021004938

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210316