WO2020067770A1 - 공기 정화에 이용되는 물 분산장치 - Google Patents

공기 정화에 이용되는 물 분산장치 Download PDF

Info

Publication number
WO2020067770A1
WO2020067770A1 PCT/KR2019/012595 KR2019012595W WO2020067770A1 WO 2020067770 A1 WO2020067770 A1 WO 2020067770A1 KR 2019012595 W KR2019012595 W KR 2019012595W WO 2020067770 A1 WO2020067770 A1 WO 2020067770A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
device used
diffusion
air purification
pipe shaft
Prior art date
Application number
PCT/KR2019/012595
Other languages
English (en)
French (fr)
Inventor
오문섭
박성배
이인근
Original Assignee
오문섭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190063402A external-priority patent/KR102239749B1/ko
Application filed by 오문섭 filed Critical 오문섭
Publication of WO2020067770A1 publication Critical patent/WO2020067770A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/26Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces

Definitions

  • the present invention relates to a water dispersing device used for air purification, and more specifically, a water dispersing device capable of increasing the adsorption rate of contaminants contained in contaminated air through a structure of diffusing and minimizing the introduced water. It is about.
  • the air purifier or air purifying device purifies the air in the room, and has a function of filtering dust and the like of fine particles.
  • Various methods such as dry, wet, electrostatic precipitator, and hybrid are applied to the air purifier.
  • the method using electrostatic dust collection is reported to be dangerous because it can generate a large amount of ozone harmful to the human body.
  • the hybrid method applies all the advantages applied in each method, but on the other hand, there is a problem in that it is not appropriate to apply to a narrow space because there is a problem in that the volume increases.
  • the present invention is to solve the problems of the prior art as described above, the object is to increase the adsorption rate with contaminants by minimizing water particles through a water diffusion structure in a wet air purification apparatus.
  • the water jet device is provided with an upper guide and a lower guide by forming a bar or plate with a predetermined width across the center in a shape formed in a circular or polygonal shape, and between the upper guide and the lower guide.
  • a support portion having a connecting shaft connected to the upper guide and the lower guide in a plurality of bars having a predetermined length connected to the upper guide and fixing the lower guide integrally; At least one impeller provided at a position spaced apart from the support to introduce contaminated air containing contaminants; At least one water diffusion part positioned inside the support part and supported and rotated by at least one of the upper guide and the lower guide; A water supply unit that moves water around the water diffusion unit to supply water to the water diffusion unit; And at least one driving motor connected to the water diffusion unit to provide rotational power; and wherein the water diffusion unit diffuses water supplied by the water supply unit when rotating, and refines water into water particles. do.
  • the water diffusion portion is located inside the support portion in the shape of a cylinder and is inserted into and coupled to the upper guide or the lower guide, and water supplied into the interior through the water supply pipe connected to the water supply portion is at least one surface A rotating pipe shaft that rotates so as to be discharged to the outside through the ejection hole formed in the; And a diffusion cap provided on at least one of the rotating pipe shafts to rotate and diffuse the water discharged to the outside through the ejection hole.
  • the diffusion cap is characterized in that it is installed in a funnel shape below each of the ejection holes to diffuse the water discharged through the ejection holes.
  • the diffusion cap is characterized in that at least one collision tip is formed in a polygonal shape at the end to further refine the water particles that are diffused.
  • the upper guide or the lower guide is provided with a sealing portion to prevent the sealing portion from shaking by fixing the rotating pipe, and to prevent moisture from penetrating the upper guide or the lower guide and the water diffusion portion. It is characterized by.
  • the sealing portion includes a bearing, a bearing case, and a moisture-prevention cap, and the bearing surrounds the rotating pipe shaft so that the rotating pipe shaft is inserted into the upper guide or the lower guide, and the bearing case is the upper guide or The bearing is fixed to the lower guide, and the moisture-prevention cap wraps the bearing case to prevent moisture from penetrating.
  • the rotary pipe shaft is formed of a taper so that the width of the inner diameter becomes narrower as it extends to the lower end, and a water supply fan is provided at the lower end of the rotary pipe shaft, so that the water supplied by the water supply fan to the rotary pipe shaft is centrifugal. It characterized in that it moves to the upper portion of the rotating pipe shaft.
  • a filter in the form of a sponge is provided at the bottom of the rotary pipe shaft to filter contaminants from water particles.
  • the connecting shaft is in the form of a bar of a predetermined length, and is connected in plurality between the upper guide and the lower guide, and is characterized in that the upper guide and the lower guide are fixed integrally.
  • At least one filter is provided on one side of the water supply unit, and the filter is characterized in that it filters contaminants adsorbed on the water particles.
  • an ultrasonic motor is provided at one side of the water supply unit, and the ultrasonic motor is periodically operated to wash the water supply unit through ultrasonic waves.
  • the water supply unit is provided with at least one of a flow rate sensor and a water level sensor, when at least one of the flow rate sensor and the water level sensor detects the water level and transmits the detected signal to the control unit, the control unit sends the signal Control the water supply unit to discharge water contained in the water supply unit based on the basis, and the control unit controls the water supply unit to periodically discharge water contained in the water supply unit, and when the water is discharged, the control unit controls the driving motor And controlling to stop the operation of the impeller.
  • the water diffusion portion is provided on the side of the connecting shaft in a plurality along the longitudinal length of the connecting shaft, the inner surface of the connecting shaft is formed in a number of protrusions along the longitudinal length of the connecting shaft, the It is characterized in that the water sprayed by the water diffusion unit collides with the protrusion and is refined to thereby spread water inside the support unit.
  • water diffusion portion and the protrusion are alternately provided along the longitudinal length of the connecting shaft.
  • the projecting portion is characterized in that it is provided with at least one of a multi-stage stacked form having a protruding circular shape, a multi-stage stacked form with a polygonal protrusion, and a grid-shaped form. do.
  • the water dispersing device used for air purification according to the present invention has the following effects.
  • the water dispersing device used for air purification according to the present invention can diffuse water by rotation and further refine the diffused water into water particles. Therefore, when the micronized water particles collide with the polluted air, the area in contact with the pollutants contained in the polluted air increases, so that the adsorption rate with the pollutants can be increased, and accordingly, the efficiency of air purification can be increased.
  • cooling or heating can be performed.
  • a heater and a cooler are provided on one side where purified air is discharged. Accordingly, when the heater or the cooler is operated by the user's selection, it is possible to help maintain the room temperature appropriately since the lower or higher temperature may be discharged when the purified air is discharged.
  • the method of spraying by forcibly increasing the water pressure in order to spray the water particles evenly requires a lot of energy to increase the water pressure.
  • the present invention since water particles can be finely sprayed evenly by rotation, less energy is used than to increase the water pressure. Therefore, it is possible to increase the adsorption rate while using less energy.
  • FIG. 1 is a perspective view of a water dispersion device used for air purification according to a first embodiment of the present invention.
  • FIG. 2 is a view schematically showing a cross-sectional view of a water dispersing device used for air purification according to a first embodiment of the present invention.
  • FIG. 3 is an enlarged view of the water diffusion unit in FIG. 2.
  • FIG. 4 is a view schematically showing the operation of the water dispersing device used for air purification according to the first embodiment of the present invention.
  • FIG. 5 is a view schematically showing a cross-sectional view of a water dispersing device used for air purification according to a second embodiment of the present invention.
  • FIG. 6 is a view schematically showing a cross-sectional view of a water dispersing device used for air purification according to a third embodiment of the present invention.
  • FIG. 7 is a view schematically showing a cross-sectional view of a water dispersing device used for air purification according to a fourth embodiment of the present invention.
  • FIG. 8 is a view schematically showing a plurality of water injection devices shown in FIG. 7.
  • FIG. 9 is a view schematically showing a cross-sectional view of a water dispersing device used for air purification according to a fifth embodiment of the present invention.
  • FIG. 10 is a view schematically showing a cross-sectional view of a water dispersing device used for air purification according to a sixth embodiment of the present invention.
  • FIG. 11 is a view schematically showing the shape of a circular protrusion in a water dispersion device used for air purification according to a sixth embodiment of the present invention.
  • FIG. 12 is a view schematically showing the shape of a rectangular protrusion in a water dispersion device used for air purification according to a sixth embodiment of the present invention.
  • FIG. 13 is a view schematically showing the shape of a lattice-shaped protrusion in a water dispersion device used for air purification according to a sixth embodiment of the present invention.
  • FIG. 14 is a view schematically showing a cross-sectional view of a water dispersing device used for air purification according to a seventh embodiment of the present invention.
  • FIG. 15 is a view schematically showing that a filter is provided under the rotary pipe shaft in FIG. 14.
  • FIG. 16 is a view schematically showing a cross-sectional view of a water dispersing device used for air purification according to an eighth embodiment of the present invention.
  • FIG. 1 is a perspective view of a water dispersion device used for air purification according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a water dispersion device used for air purification according to a first embodiment of the present invention
  • 2 is an enlarged view of the water diffusion unit 300 in FIG. 2.
  • the water dispersing device used for air purification according to the first embodiment of the present invention includes a support part 100, an impeller 200, and water It includes a diffusion unit 300, a water supply unit 400, a driving motor 500, a sealing unit 600, a sterilization unit 700, a heater 800, a cooler 900 and a control unit (not shown).
  • the support part 100 is a structure for fixing the water diffusion part 300 located inside, and further miniaturizing water particles.
  • the support 100 includes an upper guide 110, a lower guide 120 and a connecting shaft 130. Air containing contaminants may be introduced through the support portion 100.
  • the contaminants may include fine dust, ultrafine dust, and chemical gas.
  • the upper guide 110 is formed in a shape of a substantially circular or polygonal hollow interior, and a bar or plate is formed with a predetermined width across the center of the substantially circular or polygonal shape.
  • the upper guide 110 is positioned at the top of the water diffusion unit 300 to fix the upper portion of the water diffusion unit 300 or the driving motor 500.
  • the lower guide 120 is formed in the shape of a substantially circular or polygonal shape with an empty interior, and a bar or plate is formed at a predetermined width across the center of the circular or polygonal shape.
  • the lower guide 120 is positioned at the bottom of the water diffusion unit 300 to fix the lower portion of the water diffusion unit 300 or the driving motor 500.
  • the connecting shaft 130 is a bar of a predetermined length, and is connected in plurality between the top guide 110 and the bottom guide 120 to fix the top guide 110 and the bottom guide 120 integrally.
  • the impeller 200 is provided at a position spaced apart from the top of the support 100 or the support 100 to introduce air containing contaminants into the support 100 and remove the contaminants to purify the air. Discharge. At least one impeller 200 may be provided.
  • the water diffusion unit 300 is configured to diffuse water by being located in an inner space where the upper guide 110, the lower guide 120, and the connecting shaft 130 are integrally connected.
  • the water diffusion unit 300 includes a rotating pipe shaft 310, a jet hole 320, and a diffusion cap 330.
  • the rotating pipe shaft 310 is provided in a substantially cylindrical shape and is inserted into and coupled to the upper guide 110 or the lower guide 120, and is configured to perform the role of a passage through which the supplied water moves.
  • the rotating pipe shaft 310 may diffuse water flowing into the inside while rotating, and may be rotated by being directly inserted into the upper guide 110 or the lower guide 120.
  • the ejection hole 320 is formed to be at least one along the surface of the rotary pipe shaft 310 so that water introduced into the rotary pipe shaft 310 is ejected to the outside according to the rotation of the rotary pipe shaft 310. It is a composition.
  • the diffusion cap 330 is configured to further diffuse and refine water sprayed out through the ejection hole 320.
  • the diffusion cap 330 is provided in a form surrounding the ejection hole 320 at a position below the ejection hole 320 on the surface of the rotating pipe shaft 310, and a collision tip 331 is formed at the end. Water ejected through the ejection hole 320 may collide with the collision tip 331 and be diffused into finer water particles.
  • the moisture prevention member 332 is configured to prevent water particles from penetrating the drive motor 500 provided on one side of the rotating pipe shaft 310 when water is diffused.
  • the water supply unit 400 is configured to move the stored water and supply water to the water diffusion unit 300.
  • the water supply unit 400 includes a water supply pipe 410, a storage tank 420, a pump 430, a filter 440, a sensor 450 and a timer (not shown).
  • the water supply pipe 410 is configured to provide a moving space so that water can be supplied to the water diffusion unit 300 by moving, and the outlet 411 of the water supply pipe 410 is provided below or above the water diffusion unit 300. You can.
  • the storage tank 420 is a structure in which water used for air purification is stored at a lower side of the water diffusion unit 300.
  • the storage tank 420 is provided with a drain port 421 on one side to drain the used water at regular intervals.
  • the pump 430 is configured to pump water stored in the storage tank 420 to move it.
  • the pump 430 is located inside or outside the storage tank 420 to be connected to the water supply pipe 410 so that the water stored in the storage tank 420 can be moved along the water supply pipe 410.
  • the filter 440 is provided inside the storage tank 420 to filter contaminants from fine water particles containing contaminants to purify contaminated water.
  • the sensor 450 senses the water level in the storage tank 420 and sends a signal to a control unit (not shown) when the amount of water is insufficient or high at a predetermined reference level to replenish or drain the water.
  • the sensor 450 may be a flow rate sensor or a water level sensor.
  • the sensor 450 may operate periodically to transmit a signal to drain or replenish water through the drain hole 421. When the sensor 450 is operated in this way, the components of the water injection device are temporarily stopped.
  • the timer (not shown) is installed on one side of the storage tank 420 and is configured to start or stop air purification according to a predetermined time. Therefore, the user can reserve the use time of the water jet device using the timer.
  • the driving motor 500 is configured to transmit rotational power to the water diffusion unit 300.
  • the driving motor 500 is connected to the lower end of the rotary pipe shaft 310, and the position can be fixed by being coupled to the lower guide 120 or the upper guide 110.
  • the sealing part 600 is provided at a position at which water is supplied from the top or bottom of the rotating pipe shaft 310 so that water or moisture supplied does not penetrate around the rotating pipe shaft 310 to enhance water tightness. It is noted that the sealing part 600 includes a bearing 610, a bearing case 620, and a moisture prevention cap 630, and may be provided in all embodiments described later according to use.
  • the bearing 610 is positioned between the upper guide 110 or the lower guide 120 and the rotating pipe shaft 310 to facilitate rotation of the rotating pipe shaft 310.
  • the rotary pipe shaft 310 may be inserted into the upper guide 110 or the lower guide 120 and rotated even when the bearing 610 is not provided according to the implementation.
  • the bearing case 620 is provided on the outer surface of the bearing 610 and is coupled to the upper guide 110 or the lower guide 120 to support the bearing 610 and the rotating pipe shaft 310.
  • the moisture prevention cap 630 is provided in a form surrounding the bearing 610 and the bearing case 620 to block moisture that can penetrate the bearing 610 to enhance water tightness.
  • the sterilization unit 700 is provided inside the storage tank 420 to sterilize water to which contaminants are adsorbed.
  • the sterilization unit 700 includes an electrolysis device (not shown), an ultraviolet sterilizer 710, and an ultrasonic motor 720.
  • the electrolysis device 710 is located in the water inside the storage tank 420 to sterilize contaminated water through electrolysis.
  • the ultraviolet sterilizer 710 is configured to sterilize contaminated water by irradiating ultraviolet rays into the storage tank 420 and irradiating the water entering the storage tank.
  • the ultrasonic motor 720 is provided outside the lower end of the storage tank 420 to sterilize water introduced into the storage tank through ultrasonic vibration.
  • the ultrasonic motor 720 attached to the bottom of the storage tank 420 generates ultrasonic waves, bubbles are formed and extinguished repeatedly while the pressure-reducing force and the compressive force alternately act in water. Accordingly, the formed bubbles can be cleaned by dispersing, separating or removing bacteria and foreign substances with the sterilizing power of energy generated while the bubbles are contracted and exploded.
  • the heater 800 is provided around the air movement passage 30 through which the purified air is discharged, so that when the purified air is discharged to the outside, the temperature of the purified air is increased to be discharged as warm air.
  • the cooler 900 is provided around the air movement passage 30 through which the purified air is discharged in the same manner as the heater 800 so that when the purified air is discharged to the outside, the temperature of the purified air is reduced to be discharged as cool air. It is a configuration.
  • the control unit (not shown) is configured to control the impeller 200, the driving motor 500, and the sterilizing unit 700 by receiving the signal from the sensor 450.
  • FIG. 4 is a view schematically showing the operation of the water dispersing device used for air purification according to the first embodiment of the present invention.
  • impellers 200 are operated so that the air existing outside by rotation of the impeller 200 flows into the water injection device. Can be introduced. That is, the impeller 200 is located inside the housing 10, and when operated, air containing contaminants is introduced into the air passage inside through an air inlet (not shown) provided on one side of the housing 10.
  • the pump 430 When air inflow is detected by the air flow sensor (not shown) while air containing contaminants is introduced, the pump 430 may be operated by the control unit (not shown). The pump 430 pumps the water stored in the storage tank 420 to move it to the water supply pipe 410, and the water moves along the inside of the water supply pipe 410, and then the outlet formed at the end of the water supply pipe 410 ( 411) is discharged to the rotating pipe shaft (310).
  • the outlet 411 of the water supply pipe 410 is located at the closest distance to the upper end of the rotating pipe shaft 310, and accordingly, the water discharged through the outlet 411 goes into the empty interior of the rotating pipe shaft 310. Can be moved.
  • the rotating pipe shaft 310 When water moves along the water supply pipe 410 by the operation of the pump 430, the rotating pipe shaft 310 is rotated by the rotational power of the driving motor 500. As the rotation pipe shaft 310 rotates, water introduced into the rotation pipe shaft 310 rotates on the inner circumferential surface of the rotation pipe shaft 310 by centrifugal force, and in this state, rotates on the surface of the rotation pipe shaft 310. Water may be diffused in all directions and discharged through the formed at least one ejection hole 320. At this time, water is reduced and discharged into small droplets according to the inner diameter of the ejection hole 320.
  • the rotating pipe shaft 310 is provided with a diffusion cap 330 in a form surrounding the ejection hole 320 at a position below the ejection hole 320.
  • the diffusion cap 330 is substantially funnel-shaped, and the side surface is inclined, and is installed in a form to wrap the rotary pipe shaft 310 along the periphery of the rotary pipe shaft 310, and rotates the rotary pipe shaft 310. It is rotated integrally according to. Therefore, the water discharged and diffused through the ejection hole 320 collides with the diffusion cap 330, whereby water droplets are refined into water particles.
  • the diffusion cap 330 is formed with a plurality of impact tips 331 protruding.
  • the collision tip 331 is formed along the rim at the end of the diffusion cap 330.
  • the shape of the collision tip 331 may be formed of a polygon extending in a direction perpendicular to the ground. That is, the edge of the diffusion cap 330 may protrude in the form of a triangle, may protrude in the form of a square, or protrude in the form of an octagon. Therefore, the water droplets discharged and diffused through the ejection hole 320 collide with the diffusion cap 330 and the collision tip 331, whereby the water droplets can be refined and diffused into water particles.
  • the fine particles of water colliding with the diffusion cap 330 and the collision tip 331 may also collide with a plurality of connecting shafts 130.
  • the connecting shaft 130 is provided in a plurality between the upper guide 110 and the lower guide 120, and each of the connecting shafts 130 is maintained at a constant interval. Accordingly, the water particles can be diffused in the form of finer water particles by colliding with the connecting shaft 130, and passing through the gap between the connecting shaft 130 according to the collision direction, the other connecting shaft 130 It can be further refined by hitting it again.
  • connection shaft 130 may be additionally installed between the upper guide 110 and the lower guide 120 according to the user's selection, and the number of times the water particles can collide depending on the number of installed connection shafts 130 Can be increased.
  • the water is diffused into micronized water particles to fill the air movement passage 30 in the form of a water film. Accordingly, when the air containing the contaminants flows into the air movement passage 30, the contaminants collide with the micronized water particles so that the water particles adsorb to the contaminants. At this time, the adsorption rate of water particles and contaminants increases as the adsorption area increases through the refinement action.
  • the contaminants and the adsorbed water particles descend by gravity and flow into the storage tank 420 again, and the contaminants are removed and the purified air is formed in a U shape due to the suction action of the impeller 200.
  • the air movement passage 30 of the can be discharged to the outside through the air outlet 210 provided on one side.
  • the air outlet 210 may be described as a configuration for discharging purified air, but the air may be sucked and discharged in the reverse direction according to the operation of the impeller 200. Therefore, it is revealed that the air outlet 210 can also be used as an air intake according to practice.
  • the storage tank 420 is provided with a plurality of filters 440 on one side.
  • a wet filter is used as the filter 440. Accordingly, the contaminants and water particles introduced into the storage tank 420 may be filtered by a wet filter to separate the contaminants and water particles, and the water formed by collecting the water particles is again supplied by a pump 430 to the water supply pipe. By moving and discharging along 410, it may collide with air containing newly introduced pollutants.
  • FIG. 4 only one of the water diffusion unit 300, the support unit 100 supporting the water diffusion unit 300, and the water supply unit 400 for supplying water to the water diffusion unit 300 are illustrated. In view of the amount of processing of the included air, it is revealed that it can be provided in a large number along the air movement passage 30.
  • the center of the U-shaped housing 10 is provided with a lid 20 for parts replacement that can be opened and closed. Therefore, when the operation of the water jetting device is stopped, the user can perform maintenance of the water jetting device, such as replacing the parts by opening the lid 20 for parts replacement.
  • FIG. 5 is a view schematically showing a cross-sectional view of a water dispersing device used for air purification according to a second embodiment of the present invention.
  • the water dispersing device used for air purification according to the second embodiment of the present invention may be provided with a structure smaller in size than the first embodiment. For convenience, a description overlapping with the first embodiment will be omitted.
  • the impeller 200 and the driving motor 500 are provided at the top of the water diffusion unit 300, the storage tank 420 and the pump 430 are located at the bottom of the rotating pipe shaft 310, The pump 430 is connected to a water supply pipe 410.
  • an air outlet 210 is formed in one air movement passage 30 in the direction toward the bottom.
  • the operation process is described, and after the contaminant air containing contaminants is sucked from the top by the impeller 200, the driving motor 500 provided on the top of the rotating pipe shaft 310 operates to operate the rotating pipe shaft ( 310) to transmit the rotational power. Accordingly, the rotating pipe shaft 310 may be rotated, and the diffusion cap 330 integrally installed on the rotating pipe shaft 310 may also be rotated.
  • water may be supplied from the water supply pipe 410 provided at the bottom of the rotating pipe shaft 310 to the inside of the rotating pipe shaft 310 while moving.
  • the inner portion of the inlet portion into which the water flows into the rotating pipe shaft 310 has a small inner diameter, and the inner diameter of the rotating pipe shaft 310 is relatively larger than the inlet portion into which the water flows, so that the inside of the rotating pipe shaft 310 is centrifugally applied. Water can move to the top.
  • the rotating pipe shaft 310 has a shape in which the circumference increases toward the top, the supplied water is rotated while rising along the inner circumferential surface of the rotating pipe shaft 310 by centrifugal force, and partly as it rises, the ejection hole 320 ).
  • the water droplets discharged as described above may collide with the diffusion cap 330 and the collision tip 331 in the same manner as in the first embodiment, and may be differentiated into fine water particles.
  • the micronized water particles are adsorbed with the air descending along the air movement passage 30 and flows into the storage tank 420, and the purified air has a plurality of air outlets 210 provided on one side of the air movement passage 30 It can be discharged through.
  • the water introduced into the storage tank 420 may be filtered through the filter 440 and then discharged toward the air containing contaminants introduced into the air movement passage 30.
  • the water diffusion unit 300 and the water supply unit 400 are installed in a straight structure in a single air movement passage 30, the size and volume are reduced, thereby purifying air even in a narrow space. Can be done.
  • the third embodiment schematically shows a structure in which the rotating pipe shaft 310 and the impeller 200 are simultaneously connected to the rotating shaft of the driving motor 500 in the second embodiment. This will be described with reference to FIG. 6.
  • FIG. 6 is a view schematically showing a cross-sectional view of a water dispersing device used for air purification according to a third embodiment of the present invention.
  • the impeller 200 may be connected to the upper end of the driving motor 500 and the rotary pipe shaft 310 may be connected to the lower end of the driving motor 500. Accordingly, when the impeller 200 is rotated, the rotating pipe shaft 310 is also rotated.
  • the pump 430 operates to operate the water supply pipe 410 connected to the bottom of the rotating pipe shaft 310. ), The water is moved, and the moved water is discharged to the ejection hole 320 by centrifugal force on the inner circumferential surface of the rotating pipe shaft 310, and water droplets can be refined into water particles.
  • the air may move from the bottom to the top as shown by the arrow. Therefore, the pollutants and water particles contained in the air rising from the bottom collide, and the water particles and the pollutants are adsorbed, and the purified air can be discharged by rising.
  • the existing air outlet 210 may be used as an air intake according to the suction direction of the impeller 200 as described above.
  • This process can be applied to the descending air flow rather than rising according to the operation of the impeller 200.
  • the structure in which the water supply pipe 410 is positioned at the upper end of the rotary pipe shaft 310 in the third embodiment is not shown. This will be described with reference to FIG. 7.
  • FIG. 7 is a view schematically showing a cross-sectional view of a water dispersing device used for air purification according to a fourth embodiment of the present invention.
  • the water supply pipe 410 is positioned above the rotating pipe shaft 310 to supply water to the rotating pipe shaft 310.
  • a motor that transmits rotational power to the impeller 200 and a drive motor 500 that transmits rotational power to the rotational pipe shaft 310 are respectively provided. Accordingly, when water is supplied through the water supply pipe 410 from the top of the rotating pipe shaft 310, water droplets are discharged and diffused through the ejection hole 320, through the diffusion cap 330 and the collision tip 331 Water droplets can be refined and adsorbed to contaminants.
  • FIG. 8 is a view schematically showing a plurality of water jet devices shown in FIG. 7.
  • a plurality of water diffusion units 300 are provided in the air movement passage 30 to increase the processing speed when the amount of air containing contaminants is large. This can be selectively used by additionally installing the water diffusion unit 300 where the processing capacity is large depending on the environment of the application.
  • the diffusion cap 330 is removed from the water diffusion unit 300 to form a plurality of ejection holes 320 on the rotating pipe shaft 310. This will be described with reference to FIG. 9.
  • FIG. 9 is a view schematically showing a cross-sectional view of a water dispersing device used for air purification according to a fifth embodiment of the present invention.
  • the diffusion cap 330 is not provided on the rotating pipe shaft 310, and a plurality of ejection holes 320 are formed in all regions of the surface. Accordingly, the water droplets discharged and diffused through the ejection hole 320 may collide with the diffusing water droplets, and may be finely divided by colliding with the connecting shaft 130 as in the previous embodiment.
  • the water supply pipe 410 may be located at the top of the rotating pipe shaft 310 to supply water to the rotating pipe shaft 310.
  • the water diffusion unit 300 may be provided in plural, and a plurality of water jetting devices may be provided in the air movement passage 30 to increase the processing speed when the amount of air containing contaminants is large.
  • the water diffusion part 300 is provided on one side of the connecting shaft 130 to show that water is injected into the support part 100 inside. This will be described with reference to FIGS. 10 to 13.
  • FIG. 10 is a view schematically showing a cross-sectional view of a water dispersing device used for air purification according to a sixth embodiment of the present invention
  • FIG. 11 is a water dispersing device used for air purification according to a sixth embodiment of the present invention
  • It is a diagram schematically showing the shape of a circular protrusion 131
  • FIG. 12 is a diagram schematically showing the shape of a rectangular protrusion 131 in a water dispersion device used for air purification according to a sixth embodiment of the present invention
  • 13 is a view schematically showing the shape of the lattice-shaped protrusion 131 in the water dispersion device used for air purification according to the sixth embodiment of the present invention.
  • the water diffusion unit 300 is provided in plural along the longitudinal length of the connecting shaft 130 on one side of the connecting shaft 130.
  • the connecting shaft 130 is located in plurality between the upper guide 110 and the lower guide 120. Accordingly, a water diffusion unit 300 may be provided on each of the connecting shafts 130.
  • each water diffusion unit 300 is connected to the water supply pipe 400, the water supply pipe 400 is connected to the pump 430, the water stored in the storage tank 420 is water diffusion unit 300 ).
  • the pump 430 may be connected to each water supply pipe 400, or a plurality of pumps may be connected to the water supply pipe 400, respectively. Accordingly, water may be sprayed through the ejection hole 320 formed in the diffusion cap 330 of the water diffusion unit 300, and the diffusion cap 330 may also rotate and spray.
  • the ejection hole 320 formed in the diffusion cap 330 is provided in the direction of the air movement passage 30 inside the support part 100, and water may be sprayed toward the inside of the support part 100.
  • a plurality of protrusions 131 are provided inside the connecting shaft 130 along the longitudinal length of the connecting shaft 130.
  • the protrusion 131 may be provided in various forms.
  • the protrusion 131 may be formed in a multi-stage stacked in a circular shape, and the height may be formed between 1 cm and 10 cm, which may also be applied to other shapes of the protrusion 131.
  • the protrusion 131 may be stacked in a multi-stage shape protruding in a square shape.
  • the shape of the square may be possible in the form of another polygon, such as a triangle or pentagon.
  • the protrusion 131 may have a shape protruding in a grid shape.
  • the protrusion 131 allows the water particles to collide and spread without slipping, and may be used in various combinations rather than only being used in any one form along the longitudinal length of the connecting shaft 130.
  • circular, polygonal, and lattice shapes may be alternately provided along the longitudinal length of the connecting shaft 130, and may be provided in combination in each of the same positions.
  • water is supplied from the diffusion cap 330 of the water diffusion unit 300 in a state in which the water diffusion unit 300 and the protrusion 131 are alternately provided along the longitudinal length of the connecting shaft 130.
  • the sprayed water is directed to the air movement passage 30 inside the support part 100 and may collide with pollutants of contaminated air introduced into the air movement passage 30.
  • some water may collide with the corresponding protrusions 131 at the same position as the diffusion cap 330 and be refined into water particles, and the refined water is dispersed inside the support part 100 and collides with contaminants, thereby spraying It can increase the adsorption rate of water and pollutants.
  • the protrusion 131 may not only be stacked in multiple stages, but also may be provided in multiple stages by forming gaps therein.
  • the shape of the protrusion 131 may be provided in a circular, polygonal and lattice form.
  • the circumference of the circle protrudes from the inside, and a smaller diameter than the circumference of the outermost shape in the empty shape.
  • the circumference of the circle protrudes.
  • the circumference of the circle may be provided in multiple stages to form the protrusion 131, and the distance between the circumferences of the circle may be constant, or may be provided so that the gap is gradually increased or decreased.
  • the outermost part of the polygon is formed with the same diameter as the outermost polygon, and the innermost part is formed with the same diameter as the outermost polygon.
  • the circumference of the second polygon protrudes.
  • the circumference of the polygon may be provided in multiple stages to form the two protruding portions 131, and the spacing between the circumferences of the polygon may be constant, or may be provided such that the spacing is gradually increased or decreased.
  • each lattice type a part of each lattice may be protruded arbitrarily, and between each lattice may be formed at regular or arbitrary intervals.
  • water particles may collide with the spaces formed between the gaps and bounce out of the protruding parts, thereby further spreading the water.
  • the seventh embodiment shows that water is supplied to the rotating pipe shaft by providing a water supply fan instead of a pump at the bottom of the rotating pipe shaft. This will be described with reference to FIG. 14.
  • FIG. 14 is a view schematically showing a cross-sectional view of a water dispersing device used for air purification according to a seventh embodiment of the present invention.
  • the impeller 200 is installed on the upper guide 110, and water is formed inside the upper guide 110, the lower guide 120, and the connecting shaft 130.
  • the diffusion unit 300 is located.
  • the rotary pipe shaft 310 is formed in a substantially cylindrical shape, and extends to the storage tank 420 through the lower guide 120.
  • the upper end of the rotating pipe shaft 310 is coupled to the impeller 200 through the bearing 610 to rotate together with the impeller 200, and the bearing 610 is surrounded by the bearing case 610.
  • the bearing case 610 may be surrounded by a moisture barrier cap 630 to block contact with water sprayed inside the housing.
  • the circumference of the upper end of the rotating pipe shaft 310 may be fixed and supported by the upper guide 110, and the middle portion may be fixed and supported by the lower support 120.
  • the rotating pipe shaft 310 is formed to be narrower as it extends from the middle portion to the bottom. That is, looking at the cross-section, the inner diameter of the rotary pipe shaft 310 is such that a slope is formed in a tapered shape.
  • a spray hole 320 may be formed around the middle of the rotating pipe shaft 310 from the middle to the top, and a plurality of diffusion caps 330 may be rotated around the spray hole 320. It is provided sequentially around the shaft 310 can be rotated together with the rotating pipe shaft (310).
  • a water supply fan 460 is provided at the bottom of the rotating pipe shaft 310.
  • the water supply fan 460 may rotate together when the rotating pipe shaft 310 rotates to supply the water stored in the storage tank 420 to the rotating pipe shaft 310 through centrifugal force.
  • external contaminated air may be introduced from the bottom of the housing.
  • the introduced contaminated air is moved from the lower part of the housing 10 to the upper part by the impeller 200.
  • the rotating pipe shaft 310 and the diffusion cap 330 connected to the impeller 200 are also rotated, and as the rotating pipe shaft 310 is rotated, the rotating pipe shaft 310 is rotated.
  • the water supply fan 460 provided at the bottom also rotates to rotate along the rotating pipe shaft 310. Since the water supply fan 460 is located in the storage tank 420 and is in contact with water, the water supply fan 460 rotates to allow water to flow into the rotating pipe shaft 310.
  • the rotating pipe shaft 310 is formed in a tapered shape in which the inner diameter increases toward the top, water introduced into the rotating pipe shaft 310 by the water supply fan 460 rotates water by centrifugal force. It gradually moves to the upper portion of the pipe shaft (310). That is, as the inner diameter increases as the upper portion of the rotating pipe shaft 310 increases, and as the inner diameter increases, the centrifugal force is greater, so that the water moves toward the upper side where the centrifugal force is larger.
  • the water raised from the inside of the rotating pipe shaft 310 may be fined by being ejected from the ejection hole 320 and colliding with at least one diffusion cap 330 as in the above-described embodiments.
  • water particles may collide again by the protruding portion 131 formed on the connecting shaft 130 and the collision jaw 11 formed along the inner wall of the housing 10 to further refine the water particles.
  • the collision jaw 11 is formed in plural on the inner wall of the housing 10, and the plurality of collision jaws 11 may be disposed at regular intervals, respectively.
  • the air can be purified by increasing the adsorption rate with pollutants due to the refined water particles, and the purified air can be discharged through the air movement passage 30.
  • a filter is provided below the rotating pipe shaft 310 to further filter contaminants. This will be described with reference to FIG. 15.
  • FIG. 15 is a view schematically showing that a filter is provided under the rotary pipe shaft 310 in FIG. 14.
  • a filter 1000 is provided under the rotary pipe shaft 310.
  • the filter 1000 is manufactured in the form of a sponge that can float on water and is provided around the rotating pipe shaft 310. Therefore, when the contaminants and the adsorbed water particles fall inside the housing 10, the contaminants are filtered in the filter 1000 and the water may flow back into the storage tank 420. The user can wash the filter 1000 to remove contaminants from the filter 1000 and then install it on the rotating pipe shaft 310 to use it.
  • the eighth embodiment shows that the rotating pipe shaft is not provided and only the diffusion cap 330 is connected to the impeller 200. This will be described with reference to FIG. 16.
  • FIG. 16 is a view schematically showing a cross-sectional view of a water dispersing device used for air purification according to an eighth embodiment of the present invention.
  • At least one diffusion cap 330 is provided without the rotating pipe shaft 310 as compared with the seventh embodiment. That is, the impeller 200 is installed on the upper guide 110, the inside formed of the upper guide 110, the lower guide 120 and the connecting shaft 130 has a diffusion cap 330 connected to the impeller 200 There is, a plurality of diffusion caps 330 are sequentially provided underneath.
  • the diffusion cap 330 may be integrally formed with the bearing 610 to be connected to the impeller 200 through the bearing 610, and the bearing 610 may be protected by the bearing case 620.
  • the bearing 610 and the bearing case 620 are surrounded by a moisture prevention cap 630, so that moisture can be prevented from coming into contact.
  • external contaminated air may be introduced from the bottom of the housing.
  • the introduced contaminated air is moved from the lower part of the housing 10 to the upper part by the impeller 200.
  • the diffusion cap 330 also rotates.
  • the water is moved from the storage tank 420 provided in the lower portion of the housing 10 to the pump 410 by the action of the pump 430, and the water moves from the water supply pipe 410 extending upwards to the diffusion cap 330. It can be sprayed toward.
  • the water sprayed by the diffusion cap 330 collides with the rotating diffusion cap 330 to be refined into water particles, and collides with the collision shaft 11 formed on the inner wall of the connecting shaft 130 and the housing 10 to be further refined. You can.
  • the air can be purified by increasing the adsorption rate with pollutants due to the refined water particles, and the purified air can be discharged through the air movement passage 30.
  • the water and contaminant adsorption rates can be increased. Accordingly, it is possible to increase the efficiency of air purification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Separation Of Particles Using Liquids (AREA)

Abstract

본 발명은 공기 정화에 이용되는 물 분산장치에 관한 것으로, 소정의 길이로 상단에 상단 가이드 및 하단에 하단 가이드가 구비되고, 상기 상단 가이드 및 하단 가이드 사이에 연결되는 소정 길이의 바 형태로써 상기 상단 가이드와 상기 하단 가이드 사이에 복수로 연결되어 상기 상단 가이드 및 상기 하단 가이드를 일체로 고정시키는 연결 샤프트가 구비된 지지부, 상기 지지부 일측 또는 이격된 위치에 구비되어 오염물질을 포함된 오염공기를 유입시키는 적어도 하나 이상의 임펠러, 상기 지지부의 내측에 위치하여 상기 상단 가이드 및 상기 하단 가이드로부터 지지되어 회전하는 적어도 하나 이상의 물 확산부, 상기 물 확산부의 주위에서 물을 이동시켜 상기 물 확산부로 물을 공급하는 물 공급부 및 상기 물 확산부에 연결되어 회전 동력을 제공하는 적어도 하나 이상의 구동모터를 포함하고, 상기 물 확산부는 회전 시 상기 물 공급부가 공급하는 물을 확산시키고, 물을 물 입자로 미세화 하는 것을 특징으로 한다.

Description

공기 정화에 이용되는 물 분산장치
본 발명은 공기 정화에 이용되는 물 분산장치에 관한 것으로, 더욱 구체적으로는 유입된 물을 확산시키고, 미세화 하는 구조를 통해 오염된 공기에 포함된 오염물질의 흡착율을 증가시킬 수 있도록 하는 물 분산장치에 관한 것이다.
공기청정기 또는 공기정화장치는 실내의 공기를 청정하게 하는 것으로, 미소 입자의 분진 등을 여과하는 기능이 있다. 이러한 공기정화장치는 건식, 습식, 전기집진 및 하이브리드 등 다양한 방식이 적용되어 사용되고 있다.
종래에는 상대적으로 비용이 저렴한 건식의 비율이 높아서 트렌드로 자리 잡았으나, 주기적으로 필터를 교체해야 하는 등 유지보수의 문제점이 발견되었다.
아울러, 전기집진을 이용한 방식은 인체에 유해한 오존을 다량으로 발생시킬 수 있기 때문에 위험한 것으로 보고되고 있다.
또한, 하이브리드 방식은 각각의 방식에서 적용하는 장점들을 두루 적용하였지만, 한편으로는 부피가 커지는 문제점이 있기 때문에 협소한 공간에는 적용하기가 적절하지 않은 문제가 있다.
따라서 최근에는 습식과 같이 필터를 교체할 필요가 없고, 인체에 무해한 공기정화장치가 부상하고 있는 실정이고, 이에 따라 습식 공기정화장치에서 오염물질과 물 입자의 흡착율을 증가시키기 위한 연구가 활발히 진행되고 있다.
본 발명은 상술한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 습식 공기정화장치에서 물 확산 구조를 통해 물 입자를 미세화 하여 오염물질과의 흡착율을 증가시키는 데 그 목적이 있다.
상기 목적을 달성하기 위한 본 발명에 따른 물 분사장치는 원형 또는 다각형으로 형성된 형상에 중앙을 가로지르는 소정의 폭으로 바 또는 판이 형성되어 상단 가이드 및 하단 가이드가 구비되고, 상기 상단 가이드 및 하단 가이드 사이에 연결되는 소정 길이의 바 형태로써 상기 상단 가이드와 상기 하단 가이드 사이에 복수로 연결되어 상기 상단 가이드 및 상기 하단 가이드를 일체로 고정시키는 연결 샤프트가 구비된 지지부; 상기 지지부로부터 이격된 위치에 구비되어 오염물질을 포함된 오염공기를 유입시키는 적어도 하나 이상의 임펠러; 상기 지지부의 내측에 위치하여 상기 상단 가이드 및 상기 하단 가이드 중 적어도 하나에 지지되어 회전하는 적어도 하나 이상의 물 확산부; 상기 물 확산부의 주위에서 물을 이동시켜 상기 물 확산부로 물을 공급하는 물 공급부; 및 상기 물 확산부에 연결되어 회전 동력을 제공하는 적어도 하나 이상의 구동모터;를 포함하고, 상기 물 확산부는 회전 시 상기 물 공급부가 공급하는 물을 확산시키고, 물을 물 입자로 미세화 하는 것을 특징으로 한다.
여기서, 상기 물 확산부는, 원기둥의 형상으로 상기 지지부 내측에 위치하여 상기 상단 가이드 또는 상기 하단 가이드에 삽입되어 결합하고, 상기 물 공급부와 연결된 물 공급관을 통해 내부로 공급된 물이 적어도 하나 이상으로 표면에 형성된 분출홀을 통해 외부로 배출 가능하도록 회전하는 회전파이프축; 및 상기 회전파이프축에 적어도 하나 이상으로 구비되어 상기 분출홀을 통해 외부로 배출된 물을 회전하면서 확산시키는 확산캡;을 포함할 수 있다.
또한, 상기 확산캡은 깔때기 형상으로 각각의 상기 분출홀보다 아래의 위치에 설치되어 상기 분출홀을 통해 배출된 물을 확산시키는 것을 특징으로 한다.
또, 상기 확산캡은 끝단에 다각형으로 적어도 하나 이상의 충돌팁이 형성되어 확산되는 물 입자를 추가로 미세화 시키는 것을 특징으로 한다.
또한, 상기 상단 가이드 또는 하단 가이드에는 실링부가 구비되어 상기 실링부가 상기 회전파이프를 고정시켜 흔들림을 방지하고, 상기 상단 가이드 또는 상기 하단 가이드 및 상기 물 확산부의 결합 부위에 수분이 침투하는 것을 방지하는 것을 특징으로 한다.
또한, 상기 실링부는 베어링, 베어링 케이스, 수분 방지캡을 포함하고, 상기 베어링은 상기 회전파이프축을 감싸 상기 회전파이프축이 상기 상단 가이드 또는 상기 하단 가이드에 삽입되어 있고, 상기 베어링 케이스는 상기 상단 가이드 또는 상기 하단 가이드에 상기 베어링을 고정시키며, 상기 수분 방지캡은 상기 베어링 케이스를 감싸 수분이 침투하는 것을 방지하는 것을 특징으로 한다.
아울러, 상기 회전파이프축은 하단으로 연장될수록 내부 직경의 폭이 좁아지도록 테이퍼로 형성되고, 상기 회전파이프축의 하단에는 물 공급팬이 구비되어 상기 물 공급팬이 상기 회전파이프축에 공급하는 물은 원심력에 의해 상기 회전파이프축의 상부로 이동하는 것을 특징으로 한다.
또, 상기 회전파이프축의 하부에는 스펀지 형태의 필터가 구비되어 물 입자에서 오염물질을 필터링 하는 것을 특징으로 한다.
또한, 상기 연결 샤프트는 소정 길이의 바 형태로써, 상기 상단 가이드와 상기 하단 가이드 사이에 복수로 연결되어 상기 상단 가이드 및 상기 하단 가이드를 일체로 고정시키는 것을 특징으로 한다.
또한, 상기 물 공급부에는 일측에 필터가 적어도 하나 이상 구비되고, 상기 필터는 상기 물 입자에 흡착된 오염물질을 필터링하는 것을 특징으로 한다.
또한, 상기 물 공급부 일측에는 초음파 전동자가 구비되고, 상기 초음파 전동자는 주기적으로 작동하여 초음파를 통해 상기 물 공급부를 세척하는 것을 특징으로 한다.
또, 상기 물 공급부에는 유량감지 센서 및 수위센서 중 적어도 하나가 구비되고, 상기 유량감지 센서 및 수위센서 중 적어도 하나가 물의 수위를 감지하여 감지된 신호를 제어부에 전달하면, 상기 제어부는 상기 신호를 기반으로 상기 물 공급부에 담긴 물을 배출하도록 상기 물 공급부를 제어하고, 상기 제어부는 상기 물 공급부에 담긴 물이 주기적으로 배출되도록 상기 물 공급부를 제어하며, 물이 배출될 때는 상기 제어부가 상기 구동모터 및 상기 임펠러의 작동이 중단되도록 제어하는 것을 특징으로 한다.
아울러, 상기 물 확산부는 상기 연결 샤프트의 일측에 상기 연결 샤프트의 세로 길이를 따라 복수로 구비되어 있고, 상기 연결 샤프트의 내측면에는 상기 연결 샤프트의 세로 길이를 따라 돌출부가 다수로 형성되어 있으며, 상기 물 확산부가 분사하는 물이 상기 돌출부에 충돌하여 미세화 됨으로써 물이 상기 지지부 내측에서 확산하는 것을 특징으로 한다.
또한, 상기 물 확산부 및 상기 돌출부는 상기 연결 샤프트의 세로 길이를 따라 교대로 구비되어 있는 것을 특징으로 한다.
아울러, 상기 돌출부는 원형으로 돌출된 형태가 다단으로 적층되어 구비되는 것, 다각형으로 돌출된 형태가 다단으로 적층되어 구비되는 것 및 격자 형태로 구비되는 것 중 적어도 하나 이상으로 구비되어 있는 것을 특징으로 한다.
본 발명에 따른 공기 정화에 이용되는 물 분산장치는 다음과 같은 효과가 있다.
첫째, 오염물질의 흡착효율을 증가시킬 수 있다. 본 발명에 따른 공기 정화에 이용되는 물 분산장치는 회전에 의해 물을 확산시키고, 확산된 물을 추가적으로 물 입자로 미세화 시킬 수 있다. 따라서 미세화 된 물 입자는 오염공기와 충돌하였을 시 오염공기에 포함된 오염물질과 접촉하는 면적이 증가되기 때문에 오염물질과의 흡착율을 증가시킬 수 있고, 이에 따라 공기 정화의 효율이 증가될 수 있다.
둘째, 냉방 또는 난방을 실시할 수 있다. 본 발명에서는 정화된 공기가 배출되는 일측에 히터 및 냉각기가 구비되어 있다. 이에 따라, 사용자의 선택에 의해 히터 또는 냉각기를 작동시키면 정화된 공기가 배출될 때 온도가 낮거나 높아진 공기가 배출될 수 있기 때문에 실내 온도를 적절히 유지하는데 도움을 줄 수 있다.
셋째, 에너지를 절약할 수 있다. 일반적으로 물 입자를 고르게 분사하기 위해 강제로 수압을 증가시켜 분사하는 방식은 수압을 증가시키기 위해 많은 에너지를 필요로 한다. 하지만 본 발명에서는 회전에 의해 물 입자를 미세화 하여 고르게 분사할 수 있기 때문에 수압을 높이는 것보다 적은 에너지를 사용하게 된다. 따라서 에너지를 적게 쓰면서도 흡착율을 증가시킬 수 있다.
도1은 본 발명의 제1실시예에 따른 공기 정화에 이용되는 물 분산장치의 사시도이다.
도2는 본 발명의 제1실시예에 따른 공기 정화에 이용되는 물 분산장치의 단면도를 개략적으로 나타낸 도면이다.
도3은 도2에서 물 확산부를 확대하여 나타낸 도면이다.
도4는 본 발명의 제1실시예에 따른 공기 정화에 이용되는 물 분산장치의 동작을 개략적으로 나타낸 도면이다.
도5는 본 발명의 제2실시예에 따른 공기 정화에 이용되는 물 분산장치의 단면도를 개략적으로 나타낸 도면이다.
도6은 본 발명의 제3실시예에 따른 공기 정화에 이용되는 물 분산장치의 단면도를 개략적으로 나타낸 도면이다.
도7은 본 발명의 제4실시예에 따른 공기 정화에 이용되는 물 분산장치의 단면도를 개략적으로 나타낸 도면이다.
도8은 도7에 도시된 물 분사장치를 복수로 구비한 것을 개략적으로 나타낸 도면이다.
도9는 본 발명의 제5실시예에 따른 공기 정화에 이용되는 물 분산장치의 단면도를 개략적으로 나타낸 도면이다.
도10은 본 발명의 제6실시예에 따른 공기 정화에 이용되는 물 분산장치의 단면도를 개략적으로 나타낸 도면이다.
도11은 본 발명의 제6실시예에 따른 공기 정화에 이용되는 물 분산장치에서 원형의 돌출부 형태를 개략적으로 나타낸 도면이다.
도12는 본 발명의 제6실시예에 따른 공기 정화에 이용되는 물 분산장치에서 사각형의 돌출부 형태를 개략적으로 나타낸 도면이다.
도13은 본 발명의 제6실시예에 따른 공기 정화에 이용되는 물 분산장치에서 격자형태의 돌출부 형태를 개략적으로 나타낸 도면이다.
도14는 본 발명의 제7실시예에 따른 공기 정화에 이용되는 물 분산장치의 단면도를 개략적으로 나타낸 도면이다.
도15는 도14에서 회전파이프축의 하부에 필터가 구비된 것을 개략적으로 나타낸 도면이다.
도16은 본 발명의 제8실시예에 따른 공기 정화에 이용되는 물 분산장치의 단면도를 개략적으로 나타낸 도면이다.
<부호의 설명>
10 : 하우징
11 : 충돌턱
20 : 부품교체용 덮개
30 : 공기이동통로
100 : 지지부
110 : 상단 가이드
120 : 하단 가이드
130 : 연결 샤프트
131 : 돌출부
200 : 임펠러
210 : 공기배출구
300 : 물 확산부
310 : 회전파이프축
320 : 분출홀
330 : 확산캡
331 : 충돌팁
332 : 수분 방지부재
400 : 물 공급부
410 : 물 공급관
411 : 배출구
420 : 저장탱크
421 : 배수구
430 : 펌프
440 : 필터
450 : 센서
460 : 물 공급팬
500 : 구동모터
600 : 실링부
610 : 베어링
620 : 베어링 케이스
630 : 수분 방지캡
700 : 살균부
710 : 자외선 살균기
720 : 초음파 전동자
800 : 히터
900 : 냉각기
1000 : 필터
이하에서는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 다만 발명의 요지와 무관한 일부 구성은 생략 또는 압축할 것이나, 생략된 구성이라고 하여 반드시 본 발명에서 필요가 없는 구성은 아니며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 결합되어 사용될 수 있다.
<제1실시예>
도1은 본 발명의 제1실시예에 따른 공기 정화에 이용되는 물 분산장치의 사시도이고, 도2는 본 발명의 제1실시예에 따른 공기 정화에 이용되는 물 분산장치의 단면도이며, 도3은 도2에서 물 확산부(300)를 확대하여 나타낸 도면이다.
도1 내지 도3에 도시된 바와 같이, 본 발명의 제1실시예에 따른 공기 정화에 이용되는 물 분산장치(이하 '물 분산장치'라 함)는 지지부(100), 임펠러(200), 물 확산부(300), 물 공급부(400), 구동모터(500), 실링부(600), 살균부(700), 히터(800), 냉각기(900) 및 제어부(미도시)를 포함한다.
지지부(100)는 내측에 위치하는 물 확산부(300)를 고정시키고, 추가적으로 물 입자를 미세화 하기 위한 구성이다. 이러한 지지부(100)는 상단 가이드(110), 하단 가이드(120) 및 연결 샤프트(130)를 포함한다. 오염물질을 포함하는 공기는 지지부(100) 내부를 통해 유입될 수 있다. 여기서, 오염물질은 미세먼지, 초미세먼지 및 화학가스 등이 포함될 수 있다.
상단 가이드(110)는 내부가 비어있는 대략 원형 또는 다각형의 형상으로 형성되고, 대략 원형 또는 다각형의 중앙을 가로지르는 소정의 폭으로 바 또는 판이 형성되어 있다. 이러한 상단 가이드(110)는 물 확산부(300) 상단에 위치하여 물 확산부(300)의 상단 부분이나 구동모터(500)를 고정시키는 구성이다.
하단 가이드(120)는 상단 가이드(110)와 동일하게 내부가 비어있는 대략 원형 또는 다각형의 형상으로 형성되고, 대략 원형 또는 다각형의 중앙을 가로지르는 소정 폭으로 바 또는 판이 형성되어 있다. 이러한 하단 가이드(120)는 물 확산부(300) 하단에 위치하여 물 확산부(300)의 하단 부분이나 구동모터(500)를 고정시키는 구성이다.
연결 샤프트(130)는 소정 길이의 바 형태로써, 상단 가이드(110)와 하단 가이드(120) 사이에 복수로 연결되어 상단 가이드(110) 및 하단 가이드(120)를 일체로 고정시킨다.
임펠러(200)는 지지부(100)의 상단이나 지지부(100)와 이격된 위치에 구비되어 오염물질이 포함된 공기를 지지부(100) 내부로 유입시키고, 오염물질이 제거되어 정화된 공기를 외부로 배출시킨다. 이러한 임펠러(200)는 적어도 하나 이상으로 구비될 수 있다.
물 확산부(300)는 상단 가이드(110), 하단 가이드(120) 및 연결 샤프트(130)가 일체로 연결된 내측 공간에 위치하여 물을 확산시키는 구성이다. 이러한 물 확산부(300)는 회전파이프축(310), 분출홀(320) 및 확산캡(330)을 포함한다.
회전파이프축(310)은 대략 원기둥의 형상으로 구비되어 상단 가이드(110) 또는 하단 가이드(120)에 삽입되어 결합되며, 공급된 물이 이동하는 통로의 역할을 수행하는 구성이다. 이러한 회전파이프축(310)은 회전하면서 내부로 유입되는 물을 외부로 확산시킬 수 있고, 상단 가이드(110) 또는 하단 가이드(120)에 직접 삽입되어 회전될 수 있다.
분출홀(320)은 회전파이프축(310) 표면을 따라 적어도 하나 이상으로 형성되어 회전파이프축(310) 내부에 유입된 물이 회전파이프축(310)의 회전에 따라 외부로 분출될 수 있도록 형성된 구성이다.
확산캡(330)은 분출홀(320)을 통해 외부로 분출된 물을 더욱 확산시키고, 미세화 하는 구성이다. 이러한 확산캡(330)은 회전파이프축(310)의 표면에서 분출홀(320)보다 아래의 위치에 분출홀(320) 주위를 감싸는 형태로 구비되어 있으며, 끝단에 충돌팁(331)이 형성되어 분출홀(320)을 통해 분출된 물이 충돌팁(331)에 충돌하여 더욱 미세화 된 물 입자로 확산될 수 있다.
수분 방지부재(332)는 물이 확산될 시 회전파이프축(310) 일측에 구비된 구동모터(500)에 물 입자가 침투하지 않도록 방지하는 구성이다.
물 공급부(400)는 저장되어 있는 물을 이동시켜 물 확산부(300)로 물을 공급하는 구성이다. 이러한 물 공급부(400)는 물 공급관(410), 저장탱크(420), 펌프(430), 필터(440), 센서(450) 및 타이머(미도시)를 포함한다.
물 공급관(410)은 물 이동하여 물 확산부(300)로 공급될 수 있도록 이동공간을 마련하는 구성으로, 물 공급관(410)의 배출구(411)는 물 확산부(300) 아래 또는 위에 구비될 수 있다.
저장탱크(420)는 물 확산부(300) 하단 일측에 공기 정화에 사용되는 물이 저장되어 있는 구성이다. 이러한 저장탱크(420)에는 일측에 배수구(421)가 마련되어 일정 주기마다 사용된 물을 배수할 수 있다.
펌프(430)는 저장탱크(420)에 저장되어 있는 물을 이동시킬 수 있도록 펌핑하는 구성이다. 이러한 펌프(430)는 저장탱크(420) 내부 또는 외부에 위치하여 물 공급관(410)과 연결됨으로써 물 공급관(410)을 따라 저장탱크(420)에 저장된 물이 이동될수 있도록 한다.
필터(440)는 저장탱크(420) 내부에 구비되어 오염물질을 함유한 미세 물 입자에서 오염물질을 필터링함으로써 오염된 물을 정화하는 구성이다.
센서(450)는 저장탱크(420) 내부의 물의 수위를 감지하여 정해진 기준의 수위에서 일정량으로 물이 부족하거나 많게 되면 제어부(미도시)로 신호를 보내 물을 보충하거나 배수할 수 있도록 한다. 이러한 센서(450)는 유량감지 센서 또는 수위센서가 사용될 수 있다. 또한, 센서(450)는 주기적으로 작동하여 배수구(421)를 통해 물을 배수하거나 보충할 수 있도록 신호를 전송할 수 있다. 이렇게 센서(450)가 작동하게 되면, 물 분사장치의 구성들은 일시적으로 작동이 중단된다.
타이머(미도시)는 저장탱크(420) 일측에 설치되어 지정해놓은 시간에 따라 공기 정화가 이루어지는 것을 시작하거나 정지하도록 하는 구성이다. 따라서 사용자는 타이머를 이용하여 물 분사장치의 사용시간을 예약할 수 있다.
구동모터(500)는 물 확산부(300)에 회전 동력을 전달하는 구성이다. 이러한 구동모터(500)는 회전파이프축(310)의 하단에 연결되고, 하단 가이드(120) 또는 상단 가이드(110)에 결합하여 위치가 고정될 수 있다.
실링부(600)는 회전파이프축(310)의 상단 또는 하단에서 물이 공급되는 위치에 구비되어 공급되는 물이나 수분이 회전파이프축(310) 주변으로 침투하지 않도록 수밀성을 강화하기 위한 구성이다. 이러한 실링부(600)는 베어링(610), 베어링 케이스(620) 및 수분 방지캡(630)을 포함하며, 사용하기에 따라 추후 설명하는 모든 실시예에 구비될 수 있음을 밝혀둔다.
베어링(610)은 상단 가이드(110) 또는 하단 가이드(120)와 회전파이프축(310) 사이에 위치하여 회전파이프축(310)의 회전을 용이하게 하는 구성이다. 회전파이프축(310)은 실시하기에 따라 베어링(610)이 구비되지 않은 상태에서도 상단 가이드(110) 또는 하단 가이드(120)에 삽입되어 회전될 수 있다.
베어링 케이스(620)는 베어링(610)의 외측면에 구비되어 상단 가이드(110) 또는 하단 가이드(120)와 결합됨으로써 베어링(610) 및 회전파이프축(310)을 지지해주는 구성이다.
수분 방지캡(630)은 베어링(610) 및 베어링 케이스(620)를 감싸는 형태로 구비되어 베어링(610)으로 침투할 수 있는 수분을 차단하여 수밀성을 강화할 수 있도록 하는 구성이다.
살균부(700)는 저장탱크(420) 내부에 구비되어 오염물질이 흡착된 물을 살균하는 구성이다. 이러한 살균부(700)는 전기분해장치(미도시), 자외선 살균기(710) 및 초음파 전동자(720)를 포함한다.
전기분해장치(710)는 저장탱크(420) 내부 물속에 위치하여 전기분해를 통해 오염된 물을 살균하는 구성이다.
자외선 살균기(710)는 저장탱크(420) 내부 물 외부에 위치하여 자외선을 저장탱크에 유입된 물에 조사함으로써 오염된 물을 살균하는 구성이다.
초음파 전동자(720)는 저장탱크(420) 하단 외부에 구비되어 초음파 진동을 통해 저장탱크에 유입된 물을 살균하는 구성이다. 저장탱크(420) 밑바닥에 부착된 초음파 전동자(720)가 초음파를 발생하면 물속에서 감압력과 압축력이 교대로 반복 작용하는 사이에 기포가 형성되었다가 소멸되는 현상이 반복된다. 이에 따라, 형성된 기포들이 수축 및 폭발하면서 발생된 에너지의 살균력으로 세균 및 이물질을 분산, 분리시키거나 제거하여 세척이 이루어질 수 있다.
히터(800)는 정화된 공기가 배출되는 공기이동통로(30) 주변에 구비되어 정화된 공기가 외부로 배출될 시 정화된 공기의 온도를 증가시켜 따뜻한 공기로 배출되도록 하는 구성이다.
냉각기(900)는 히터(800)와 동일하게 정화된 공기가 배출되는 공기이동통로(30) 주변에 구비되어 정화된 공기가 외부로 배출될 시 정화된 공기의 온도를 감소시켜 시원한 공기로 배출되도록 하는 구성이다.
제어부(미도시)는 센서(450)의 신호를 받아 임펠러(200), 구동모터(500), 살균부(700) 등을 제어하는 구성이다.
이하에서는 도면을 참고하여 본 발명에 따른 공기 정화에 이용되는 물 분사장치의 작동을 자세히 살펴보기로 한다.
도4는 본 발명의 제1실시예에 따른 공기 정화에 이용되는 물 분산장치의 동작을 개략적으로 나타낸 도면이다.
도4에 도시된 바와 같이, 본 발명에 따른 공기 정화에 이용되는 물 분사장치는 적어도 하나 이상의 임펠러(200)가 작동하여 임펠러(200)의 회전에 의해 외부에 존재하는 공기가 물 분사장치 내측으로 유입될 수 있다. 즉, 임펠러(200)는 하우징(10) 내부에 위치하고, 작동 시 하우징(10) 일측에 마련된 공기유입구(미도시)를 통해 내부의 공기통로로 오염물질이 포함된 공기를 유입시킨다.
이렇게 오염물질이 포함된 공기가 유입된 상태에서 공기흐름센서(미도시)에 의해 공기 유입이 감지되면 제어부(미도시)에 의해 펌프(430)가 작동될 수 있다. 펌프(430)는 저장탱크(420)에 저장되어 있는 물을 펌핑하여 물 공급관(410)으로 이동시키고, 물은 물 공급관(410) 내부를 따라 이동하다가 물 공급관(410)의 끝단에 형성된 배출구(411)를 통해 회전파이프축(310)으로 배출된다.
이 때 물 공급관(410)의 배출구(411)는 회전파이프축(310)의 상단 지근거리에 위치하고 있고, 이에 따라 배출구(411)를 통해 배출된 물은 회전파이프축(310)의 비어있는 내부로 이동될 수 있다.
펌프(430)의 작동에 의해 물이 물 공급관(410)을 따라 이동하게 될 시 회전파이프축(310)은 구동모터(500)의 회전동력에 의해 회전하게 된다. 회전파이프축(310)의 회전에 따라 회전파이프축(310)의 내부로 유입된 물은 원심력에 의해 회전파이프축(310) 내주면을 타고 회전하게 되며, 이 상태에서 회전파이프축(310) 표면에 형성된 적어도 하나 이상의 분출홀(320)을 통해 물은 사방으로 확산되어 배출될 수 있다. 이 때 물은 분출홀(320)의 내경에 따라 작은 물방울로 축소되어 배출된다.
한편, 회전파이프축(310)에는 분출홀(320)보다 아래의 위치에서 분출홀(320)을 감싸는 형태로 확산캡(330)이 구비되어 있다. 이러한 확산캡(330)은 대략 깔때기 형상으로써, 측면이 경사진 형태이고, 회전파이프축(310)의 둘레를 따라 회전파이프축(310) 또한 감싸는 형태로 설치되며, 회전파이프축(310)의 회전에 따라 일체로 회전된다. 따라서 분출홀(320)을 통해 배출되어 확산된 물은 확산캡(330)에 충돌하여 물방울이 물 입자로 미세화 되는 작용을 거치게 된다.
또, 확산캡(330)에는 다수로 돌출된 충돌팁(331)이 형성되어 있다. 이러한 충돌팁(331)은 확산캡(330)의 끝단에 테두리를 따라 형성된다. 충돌팁(331)의 형태는 지면과 수직인 방향으로 연장된 다각형으로 형성될 수 있다. 즉, 확산캡(330) 테두리에서 삼각형의 형태로 돌출될 수도 있고, 사각형의 형태로 돌출될 수도 있으며, 팔각형의 형태로 돌출될 수도 있다. 따라서 분출홀(320)을 통해 배출되어 확산된 물방울은 확산캡(330) 및 충돌팁(331)과 충돌하게 됨으로써, 물방울이 물 입자로 미세화 되어 확산될 수 있다.
아울러, 확산캡(330) 및 충돌팁(331)과 충돌하여 미세화 된 물 입자는 다수의 연결 샤프트(130)에도 충돌할 수 있다. 연결 샤프트(130)는 상단 가이드(110) 및 하단 가이드(120) 사이에 다수로 구비되고, 각각의 연결 샤프트(130) 사이는 일정하게 간격을 유지한 상태이다. 이에 따라, 물 입자는 연결 샤프트(130)에 충돌함으로써, 더욱 미세화 된 물 입자의 형태로 확산될 수 있고, 충돌방향에 따라 연결 샤프트(130) 사이의 간격을 지나서 다른 하나의 연결 샤프트(130)에 다시 충돌함으로써 추가적으로 미세화 될 수 있다.
이러한 연결 샤프트(130)는 사용자의 선택에 따라 추가적으로 상단 가이드(110) 및 하단 가이드(120) 사이에 설치될 수 있고, 설치된 연결 샤프트(130)에 수에 따라 물 입자가 충돌할 수 있는 횟수는 증가될 수 있다.
이처럼 물은 미세화 된 물 입자로 확산되어 일종의 수막의 형태로 공기이동통로(30)를 채우게 된다. 이에 따라, 오염물질이 포함된 공기가 공기이동통로(30)로 유입되면, 오염물질은 미세화 된 물 입자와 충돌하여 물 입자가 오염물질과 흡착하게 된다. 이 때 미세화 작용을 통해 흡착 면적이 증가됨에 따라 물 입자와 오염물질의 흡착율이 증가하게 된다.
이후 오염물질과 흡착된 물 입자는 중력에 의해 하강하여 다시 저장탱크(420)로 유입되며, 오염물질이 제거되어 정화된 공기는 임펠러(200)의 흡입작용으로 인해 U자형으로 형성된 하우징(10)의 공기이동통로(30)를 따라 화살표방향으로 이동하여 일측에 마련된 공기배출구(210)를 통해 외부로 배출될 수 있다.
여기서, 공기배출구(210)는 정화된 공기를 배출하는 구성으로 설명될 수 있으나, 임펠러(200)의 동작에 따라 공기는 역방향으로 흡입되어 배출될 수 있다. 따라서 공기배출구(210)는 실시하기에 따라 공기흡입구로도 사용될 수 있음을 밝혀둔다.
한편, 저장탱크(420)에는 일측에 다수의 필터(440)가 마련되어 있다. 이러한 필터(440)는 습식필터가 사용된다. 이에 따라, 저장탱크(420)로 유입된 오염물질 및 물 입자는 습식필터에 의해 필터링 되어 오염물질과 물 입자가 분리될 수 있으며, 물 입자가 모여 형성된 물은 펌프(430)에 의해 다시 물 공급관(410)을 따라 이동하여 배출됨으로써, 새로이 유입된 오염물질이 포함된 공기와 충돌할 수 있다.
도4에서는 물 확산부(300)와 물 확산부(300)를 지지하는 지지부(100) 및 물 확산부(300)에 물을 공급하는 물 공급부(400) 등을 한 개만 도시하였으나, 오염물질이 포함된 공기를 처리하는 양을 감안하여 공기이동통로(30)를 따라 다수로 구비될 수 있음을 밝혀둔다.
또한, U자형의 하우징(10) 중앙에는 개폐가 가능한 부품교체용 덮개(20)가 마련되어 있다. 따라서 물 분사장치의 작동이 중지되었을 시 사용자는 부품교체용 덮개(20)를 개방하여 부품을 교체하는 등 물 분사장치의 유지보수를 수행할 수 있다.
<제2실시예>
제2실시예에서는 도5를 참고하여 크기가 축소된 구조를 가진 물 분사장치를 설명하도록 한다.
도5는 본 발명의 제2실시예에 따른 공기 정화에 이용되는 물 분산장치의 단면도를 개략적으로 나타낸 도면이다.
도5에 도시된 바와 같이, 본 발명의 제2실시예에 따른 공기 정화에 이용되는 물 분산장치는 실시하기에 따라 제1실시예보다 크기가 작은 구조로 구비될 수 있다. 편의상 제1실시예와 중복된 구성은 그 설명을 생략하기로 한다.
제2실시예에서는 임펠러(200) 및 구동모터(500)가 물 확산부(300) 상단에 구비되어 있고, 회전파이프축(310) 하단에 저장탱크(420), 펌프(430)가 위치하며, 펌프(430)는 물 공급관(410)이 연결되어 있다. 또한, 하단으로 향하는 방향으로 일측 공기이동통로(30)에는 공기배출구(210)가 형성되어 있다.
구체적으로 작동과정을 설명하면, 임펠러(200)에 의해 오염물질이 포함된 오염공기가 상단에서 흡입되고 나서, 회전파이프축(310) 상단에 구비된 구동모터(500)가 작동하여 회전파이프축(310)에 회전동력을 전달한다. 이에 따라, 회전파이프축(310)은 회전될 수 있으며, 회전파이프축(310)에 일체로 설치된 확산캡(330) 또한 회전될 수 있다.
또한, 펌프(430)의 작용으로 인해 회전파이프축(310) 하단에 구비된 물 공급관(410)으로부터 물이 상승하여 이동되면서 회전파이프축(310) 내부로 물이 공급될 수 있다.
이 때 회전파이프축(310)로 물이 유입되는 입구 부분은 내경이 작고, 회전파이프축(310)의 내경은 물이 유입되는 입구 부분보다 상대적으로 크게 하여 원심력으로 회전파이프축(310) 내부의 상단까지 물이 이동될 수 있다.
아울러, 회전파이프축(310)은 그 둘레가 상단으로 갈수록 증가되는 형태이기 때문에 공급된 물은 원심력에 의해 회전파이프축(310)의 내주면을 따라 상승하면서 회전되고, 일부는 상승하면서 분출홀(320)을 통해 배출된다.
이렇게 배출된 물방울은 제1실시예와 동일하게 확산캡(330) 및 충돌팁(331)에 충돌하여 미세한 물 입자로 분화될 수 있다.
아울러, 미세화 된 물 입자는 공기이동통로(30)를 따라 하강된 공기와 흡착하여 저장탱크(420)로 유입되며, 정화된 공기는 공기이동통로(30) 일측에 마련된 다수의 공기배출구(210)를 통해 배출될 수 있다.
또, 저장탱크(420)로 유입된 물은 필터(440)에 의해 필터링을 거쳐 다시 공기이동통로(30)로 유입된 오염물질이 포함된 공기를 향해 배출될 수 있다.
이와 같이 제2실시예에서는 하나의 공기이동통로(30)에 물 확산부(300) 및 물 공급부(400)가 직선구조로 설치되어 크기 및 부피를 감소하였기 때문에 좁은 공간에서도 공기를 정화하는 역할을 수행할 수 있다.
<제3실시예>
제3실시예는 제2실시예에서 구동모터(500)의 회전축에 회전파이프축(310) 및 임펠러(200)가 동시에 연결되어 있는 구조를 개략적으로 나타낸다. 이를 도6을 통해 설명하기로 한다.
도6은 본 발명의 제3실시예에 따른 공기 정화에 이용되는 물 분산장치의 단면도를 개략적으로 나타낸 도면이다.
도6에 도시된 바와 같이, 구동모터(500)의 회전축에는 상단에 임펠러(200)가 연결되고, 하단에는 회전파이프축(310)이 연결될 수 있다. 이에 따라, 임펠러(200)가 회전하게 되면, 회전파이프축(310) 또한 회전하게 된다.
이러한 상태에서 임펠러(200)의 회전에 의해 오염물질이 포함된 공기가 상단에서 공기이동통로(30)로 유입되면, 펌프(430)가 작동하여 회전파이프축(310) 하단에 연결된 물 공급관(410)으로 물이 이동하며, 이동된 물은 회전파이프축(310) 내주면을 타고 원심력에 의해 분출홀(320)로 배출되어 물방울이 물 입자로 미세화될 수 있다.
이 때 공기는 화살표방향과 같이 아래에서 위로 이동할 수도 있다. 따라서 아래에서 위로 상승하는 공기에 포함된 오염물질과 물 입자가 충돌하여 물 입자와 오염물질은 흡착하고, 정화된 공기는 상승하여 배출될 수 있다.
여기서, 기존의 공기배출구(210)는 앞서 설명한 바와 같이 임펠러(200)의 흡입방향에 따라 공기흡입구로 사용될 수 있다.
이러한 과정은 임펠러(200)의 작동에 따라 상승하는 것이 아닌 하강하는 공기흐름에도 적용될 수 있다.
<제4실시예>
제4실시예에서는 제3실시예에서 물 공급관(410)이 회전파이프축(310)의 하단이 아닌 상단에 위치하는 구조를 개략적으로 나타낸다. 이를 도7을 통해 설명하기로 한다.
도7은 본 발명의 제4실시예에 따른 공기 정화에 이용되는 물 분산장치의 단면도를 개략적으로 나타낸 도면이다.
도7에 도시된 바와 같이, 제4실시예는 제3실시예와 다르게 물 공급관(410)이 회전파이프축(310) 상단에 위치하여 회전파이프축(310)에 물을 공급한다.
구체적으로, 임펠러(200)에 회전동력을 전달하는 모터 및 회전파이프축(310)에 회전동력을 전달하는 구동모터(500)가 각각 구비된다. 이에 따라, 회전파이프축(310)의 상단에서 물 공급관(410)을 통해 물이 공급되면 분출홀(320)을 통해 물방울이 배출되어 확산하고, 확산캡(330) 및 충돌팁(331)을 통해 물방울이 미세화 되어 오염물질과 흡착될 수 있다.
이는 이전 실시예들과 작동과정이 동일하기 때문에 자세한 설명은 생략하기로 한다.
또한, 도8은 도7에 도시된 물 분사장치를 복수로 구비한 것을 개략적으로 나타낸 도면이다.
도8에 도시된 바와 같이, 공기이동통로(30) 내에 물 확산부(300)를 복수로 구비함으로써 오염물질이 포함된 공기의 양이 많을 시 처리속도를 증가시킬 수 있다. 이는 용처의 환경에 따라 처리용량이 많은 곳에 물 확산부(300)를 추가적으로 설치함으로써, 선택적으로 사용될 수 있다.
<제5실시예>
제5실시예에서는 물 확산부(300)에서 확산캡(330)을 제거하여 회전파이프축(310)에 다수의 분출홀(320)을 형성되어 있다. 이를 도9를 통해 설명하기로 한다.
도9는 본 발명의 제5실시예에 따른 공기 정화에 이용되는 물 분산장치의 단면도를 개략적으로 나타낸 도면이다.
도9에 도시된 바와 같이, 제5실시예에서는 회전파이프축(310)에 확산캡(330)이 구비되어 있지 않고, 표면의 전 영역에 다수의 분출홀(320)이 형성되어 있다. 이에 따라, 분출홀(320)을 통해 배출되어 확산된 물방울은 확산된 물방울들끼리 충돌하여 미세화될 수 있으며, 이전 실시예와 동일하게 연결 샤프트(130)에 충돌하여 더욱 미세하게 분화될 수 있다.
아울러, 물 공급관(410)은 회전파이프축(310) 상단에 위치하여 회전파이프축(310)으로 물을 공급할 수 있다.
또한, 오염물질과 미세화된 물 입자가 흡착하여 공기가 정화되는 과정은 이전 실시예와 동일하기 때문에 자세한 설명은 생략하기로 한다.
또, 물 확산부(300)는 복수로 구비되어 공기이동통로(30) 내에 물 분사장치를 복수로 구비함으로써 오염물질이 포함된 공기의 양이 많을 시 처리속도를 증가시킬 수 있다.
<제6실시예>
제6실시예에서는 물 확산부(300)가 연결 샤프트(130)의 일측에 구비되어 지지부(100) 내측으로 물을 분사하는 것을 보여준다. 이를 도10 내지 도13을 통해 설명하기로 한다.
도10은 본 발명의 제6실시예에 따른 공기 정화에 이용되는 물 분산장치의 단면도를 개략적으로 나타낸 도면이고, 도11은 본 발명의 제6실시예에 따른 공기 정화에 이용되는 물 분산장치에서 원형의 돌출부(131) 형태를 개략적으로 나타낸 도면이며, 도12는 본 발명의 제6실시예에 따른 공기 정화에 이용되는 물 분산장치에서 사각형의 돌출부(131) 형태를 개략적으로 나타낸 도면이고, 도13은 본 발명의 제6실시예에 따른 공기 정화에 이용되는 물 분산장치에서 격자형태의 돌출부(131) 형태를 개략적으로 나타낸 도면이다.
도10 내지 도13에 도시된 바와 같이, 제6실시예에서는 물 확산부(300)가 연결 샤프트(130)의 일측에 연결 샤프트(130)의 세로 길이를 따라 복수로 구비되어 있다. 연결 샤프트(130)는 상단 가이드(110) 및 하단 가이드(120) 사이에 복수로 위치하고 있다. 이에 따라, 연결 샤프트(130)의 각각에 물 확산부(300)가 구비될 수 있다.
또한, 각각의 물 확산부(300)는 물 공급관(400)이 연결되어 있고, 물 공급관(400)은 펌프(430)와 연결되어 저장탱크(420)에 저장되어 있는 물이 물 확산부(300)로 이동될 수 있도록 한다. 펌프(430)는 각각의 물 공급관(400)에 연결되거나, 다수의 펌프가 각각 물 공급관(400)과 연결될 수도 있다. 이에 따라, 물 확산부(300)의 확산캡(330)에 형성된 분출홀(320)을 통해 물이 분사될 수 있고, 확산캡(330)은 회전하면서 분사하는 것 또한 가능하다.
이 때 확산캡(330)에 형성된 분출홀(320)은 지지부(100) 내측인 공기이동통로(30)의 방향으로 구비되어 물은 지지부(100) 내측을 향해 분사될 수 있다.
또, 연결 샤프트(130)의 내측에는 연결 샤프트(130)의 세로 길이를 따라 다수의 돌출부(131)가 구비되어 있다. 이러한 돌출부(131)는 다양한 형태로 구비될 수 있다.
구체적으로 도11을 살펴보면, 돌출부(131)는 원형으로 돌출된 형태가 다단으로 적층될 수 있고, 그 높이는 1cm~10cm 사이로 형성될 수 있으며, 이는 다른 형태의 돌출부(131)에도 적용될 수 있다.
아울러, 도12와 같이 돌출부(131)는 사각형으로 돌출된 형태가 다단으로 적층될 수도 있다. 이러한 사각형의 형태는 삼각형 또는 오각형 등 다른 다각형의 형태로도 가능할 수 있다.
마지막으로, 도13과 같이 돌출부(131)는 격자 형태로 돌출된 형태일 수 있다.
이와 같은 돌출부(131)는 물 입자가 미끄러지지 않고 충돌되어 확산될 수 있도록 하며, 연결 샤프트(130)의 세로 길이를 따라 어느 하나의 형태로만 사용되는 것이 아니라 다양하게 조합되어 사용될 수도 있다.
즉, 원형, 다각형 및 격자 형태가 연결 샤프트(130)의 세로 길이를 따라 교대로 구비될 수 있고, 같은 위치에서도 각각 조합되어 구비될 수 있다.
결과적으로, 제6실시예에서는 연결 샤프트(130)의 세로 길이를 따라 물 확산부(300) 및 돌출부(131)가 교대로 구비된 상태에서 물 확산부(300)의 확산캡(330)으로부터 물이 분사되면, 분사된 물은 지지부(100) 내측인 공기이동통로(30)로 향하며, 공기이동통로(30)에 유입된 오염된 공기의 오염물질과 충돌할 수 있다.
또한, 일부 물은 확산캡(330)과 같은 위치에서 대응되는 돌출부(131)와 충돌하여 물 입자로 미세화될 수 있고, 미세화된 물은 지지부(100) 내측으로 분산되어 오염물질과 충돌함으로써, 분사되는 물과 오염물질의 흡착율을 증가시킬 수 있다.
아울러, 돌출부(131)는 다단으로 적층되는 것뿐만 아니라 내부에 간격을 형성하여 다단으로 구비될 수도 있다.
구체적으로, 돌출부(131)의 형태는 원형, 다각형 및 격자 형태로 구비될 수 있다.
원형인 경우, 내부는 비어있는 상태에서 원형의 둘레만 돌출되고, 비어있는 내부에는 최외곽 원형의 둘레보다 작은 직경으로 동일하게 내부는 비어있는 상태에서 최외곽 원형의 둘레와 간격을 형성하여 두 번째 원형의 둘레가 돌출되는 것이다. 이러한 방식으로 원형의 둘레는 다단으로 구비되어 돌출부(131)를 형성할 수 있으며, 원형 둘레 사이의 간격은 일정할 수도 있고, 점점 간격이 증가하거나 감소되도록 구비될 수도 있다.
또한, 다각형의 경우 원형과 동일하게 최외곽에는 내부는 비어있는 다각형의 둘레만 돌출되고, 비어 있는 내부에는 최외곽 다각형보다 직경으로 동일하게 내부는 비어있는 상태에서 최외곽 다각형의 둘레와 간격을 형성하여 두 번째 다각형의 둘레가 돌출되는 것이다.
원형과 마찬가지로 다각형의 둘레는 다단으로 구비되어 둘출부(131)를 형성할 수 있으며, 다각형의 둘레 사이의 간격은 일정할 수도 있고, 점점 간격이 증가하거나 감소되도록 구비될 수도 있다.
격자 형태의 경우, 각각의 격자 중에서 일부가 임의로 돌출될 수 있고, 각각의 격자 사이는 일정하거나 임의의 간격으로 형성될 수 있다.
이와 같이 원형, 다각형 및 격자 형태 사이에 형성된 간격으로 인해 간격 사이에 형성된 공간으로 물 입자가 부딪혀서 돌출된 부분으로 튀어오를 수 있고, 이에 따라 물의 확산이 더욱 이루어질 수 있다.
<제7실시예>
제7실시예에서는 회전파이프축의 하단에 펌프를 대신하여 물 공급팬을 구비함으로써 물을 회전파이프축으로 공급하는 것을 보여주고 있다. 이를 도14를 통해 설명하기로 한다.
도14는 본 발명의 제7실시예에 따른 공기 정화에 이용되는 물 분산장치의 단면도를 개략적으로 나타낸 도면이다.
도14에 도시된 바와 같이, 제7실시예에서는 상단 가이드(110)에 임펠러(200)가 설치되어 있고, 상단 가이드(110), 하단 가이드(120) 및 연결 샤프트(130)로 형성된 내부에는 물 확산부(300)가 위치한다. 물 확산부(300)에서 회전파이프축(310)은 대략 원기둥의 형상으로 형성되며, 하단 가이드(120)를 관통하여 저장탱크(420)까지 연장되어 있다. 회전파이프축(310)은 상단이 베어링(610)을 통해 임펠러(200)와 체결되어 임펠러(200)와 함께 회전할 수 있고, 베어링(610)은 베어링 케이스(610)에 둘러싸여 있다. 또한, 베어링 케이스(610)는 수분 방지캡(630)이 둘러싸서 하우징 내부에 분사되는 물과의 접촉을 차단할 수 있다. 회전파이프축(310) 상단의 둘레는 상단 가이드(110)에 고정되어 지지될 수 있으며, 중간 부분은 하단 지지대(120)에 고정되어 지지될 수 있다. 이러한 회전파이프축(310)은 중간 부분에서 하단으로 연장될수록 폭이 좁아지도록 형성되어 있다. 즉, 단면에서 살펴보면 회전파이프축(310)의 내부 직경은 테이퍼 형태로 경사가 형성되도록 하는 것이다.
또한, 회전파이프축(310)의 대략 중간에서부터 상단 부분에는 둘레에 분출홀(320)이 형성되어 물이 분사될 수 있으며, 분출홀(320)의 주변에는 복수의 확산캡(330)이 회전파이프축(310)의 둘레에 순차적으로 구비되어 회전파이프축(310)과 함께 회전할 수 있다.
아울러, 회전파이프축(310)의 하단에는 물 공급팬(460)이 구비되어 있다. 이러한 물 공급팬(460)은 회전파이프축(310)이 회전할 시 함께 회전하여 저장탱크(420)에 저장된 물을 원심력으로 통해 회전파이프축(310) 내부로 공급할 수 있다.
이와 같은 구조를 기반으로 물이 회전파이프축(310)으로 공급되어 하우징(10) 내부에서 분사되는 것을 설명하기로 한다.
최초에 임펠러(200)가 작동하여 회전함으로써, 하우징 하부로부터 외부의 오염공기가 유입될 수 있다. 유입된 오염공기는 임펠러(200)에 의해 하우징(10)의 하부에서 상부로 이동하게 된다. 또한, 임펠러(200)가 회전됨에 따라 임펠러(200)와 연결된 회전파이프축(310) 및 확산캡(330)도 함께 회전하게 되고, 회전파이프축(310)이 회전됨에 따라 회전파이프축(310) 하단에 구비된 물 공급팬(460) 또한 회전하여 회전파이프축(310)을 따라 회전하게 된다. 이러한 물 공급팬(460)은 저장탱크(420)에 위치하여 물과 접촉하고 있기 때문에 물 공급팬(460)은 회전하면서 물을 회전파이프축(310)의 내부로 유입시킬 수 있다.
회전파이프축(310)은 상부로 갈수록 내부 직경이 증가하는 테이퍼의 형상으로 형성되어 있기 때문에 물 공급팬(460)에 의해 회전파이프축(310)의 내부로 유입된 물은 원심력에 의해 물이 회전파이프축(310)의 상부로 점차 이동하게 된다. 즉, 회전파이프축(310)의 상부로 갈수록 내부 직경이 증가되고, 내부 직경이 증가될수록 원심력이 크기 때문에 물은 원심력이 큰 쪽인 상부 방향으로 이동하는 것이다.
이후 회전파이프축(310)의 내부에서 상승된 물은 앞서 설명한 실시예들과 동일하게 분출홀(320)에서 분출되어 적어도 하나 이상의 확산캡(330)과 충돌함으로써, 미세화 될 수 있다. 또한, 연결 샤프트(130)에 형성된 돌출부(131) 및 하우징(10) 내벽을 따라 연장되어 형성된 충돌턱(11)에 의해 물 입자가 다시 충돌하여 물 입자는 더욱 미세화 될 수 있다. 충돌턱(11)은 하우징(10) 내벽에서 복수로 형성되며, 복수의 충돌턱(11)은 각각 일정한 간격을 두고 배치될 수 있다.
여기서, 오염물질과 미세화된 물 입자가 흡착하여 공기가 정화되는 과정은 이전 실시예와 동일하기 때문에 자세한 설명은 생략하기로 한다. 따라서 미세화 된 물 입자로 인해 오염물질과의 흡착율을 증가시켜 공기를 정화할 수 있고, 정화된 공기는 공기이동통로(30)를 통해 배출될 수 있다.
한편, 제7실시예에서는 회전파이프축(310)의 하부에 필터를 구비하여 오염물질을 더욱 필터링할 수 있다. 이를 도15를 통해 살펴보기로 한다.
도15는 도14에서 회전파이프축(310)의 하부에 필터가 구비된 것을 개략적으로 나타낸 도면이다.
도15에 도시된 바와 같이, 회전파이프축(310)의 하부에 필터(1000)가 구비되어 있다. 이러한 필터(1000)는 물에 뜰 수 있는 재질의 스펀지 형태로 제작되어 회전파이프축(310)의 둘레에 구비되어 있다. 따라서 오염물질과 흡착된 물 입자가 하우징(10) 내부에서 하강할 시 필터(1000)에서 오염물질은 필터링 되고 물은 다시 저장탱크(420)로 유입될 수 있다. 사용자는 필터(1000)를 세척하여 필터(1000)에ㅓ 오염물질을 제거한 후 다시 회전파이프축(310)에 설치하여 사용할 수 있다.
<제8실시예>
제8실시예에서는 회전파이프축이 구비되어 있지 않고 확산캡(330)만이 임펠러(200)에 연결되어 있는 것을 보여주고 있다. 이를 도16을 통해 설명하기로 한다.
도16은 본 발명의 제8실시예에 따른 공기 정화에 이용되는 물 분산장치의 단면도를 개략적으로 나타낸 도면이다.
도16에 도시된 바와 같이, 제8실시예에서는 제7실시예와 비교하여 회전파이프축(310)이 없이 적어도 하나 이상의 확산캡(330)만이 구비되어 있다. 즉, 상단 가이드(110)에 임펠러(200)가 설치되어 있고, 상단 가이드(110), 하단 가이드(120) 및 연결 샤프트(130)로 형성된 내부에는 임펠러(200)와 연결된 확산캡(330)이 있고, 그 하부로 순차적으로 복수의 확산캡(330)이 구비되는 것이다. 이러한 확산캡(330)은 베어링(610)과 일체로 형성되어 베어링(610)을 통해 임펠러(200)와 연결될 수 있고, 베어링(610)은 베어링 케이스(620)에 보호될 수 있다. 또한, 베어링(610) 및 베어링 케이스(620)는 수분 방지캡(630)이 둘러싸서 수분이 닿는 것이 차단될 수 있다.
이와 같은 구조를 기반으로 물이 분사되는 것을 설명하기로 한다.
최초에 임펠러(200)가 작동하여 회전함으로써, 하우징 하부로부터 외부의 오염공기가 유입될 수 있다. 유입된 오염공기는 임펠러(200)에 의해 하우징(10)의 하부에서 상부로 이동하게 된다. 또한, 임펠러(200)가 회전함에 따라 확산캡(330)도 함께 회전하게 된다.
이 때 하우징(10) 하부에 구비된 저장탱크(420)에서 펌프(430)의 작용에 의해 펌프(410)와 연결되어 상부로 연장된 물 공급관(410)으로부터 물이 이동하여 확산캡(330)을 향해 분사될 수 있다.
확산캡(330)으로 분사된 물은 회전하는 확산캡(330)과 충돌하여 물 입자로 미세화 되고, 연결 샤프트(130) 및 하우징(10) 내벽에 형성된 충돌턱(11)에 충돌하여 더욱 미세화 될 수 있다.
여기서, 오염물질과 미세화된 물 입자가 흡착하여 공기가 정화되는 과정은 이전 실시예와 동일하기 때문에 자세한 설명은 생략하기로 한다. 따라서 미세화 된 물 입자로 인해 오염물질과의 흡착율을 증가시켜 공기를 정화할 수 있고, 정화된 공기는 공기이동통로(30)를 통해 배출될 수 있다.
본 발명에서는 이와 같이 다양한 실시예를 통해 물을 미세화 하거나 각각의 실시예를 서로 조합하는 것을 통해 물 분산장치의 구조를 구성하여 물을 미세화함으로써, 물과 오염물질의 흡착율을 증가시킬 수 있고, 이에 따라 공기 정화의 효율을 증가시킬 수 있다.
상기한 본 발명의 바람직한 실시예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대해 통상의 지식을 가진 당업자라면, 본 발명의 사상과 범위 안에서 다양한 수정, 변경 및 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 본 발명의 특허청구 범위에 속하는 것으로 보아야 할 것이다.

Claims (15)

  1. 원형 또는 다각형으로 형성된 형상에 중앙을 가로지르는 소정의 폭으로 바 또는 판이 형성되어 상단 가이드 및 하단 가이드가 구비되고, 상기 상단 가이드 및 하단 가이드 사이에 연결되는 소정 길이의 바 형태로써 상기 상단 가이드와 상기 하단 가이드 사이에 복수로 연결되어 상기 상단 가이드 및 상기 하단 가이드를 일체로 고정시키는 연결 샤프트가 구비된 지지부;
    상기 지지부로부터 이격된 위치에 구비되어 오염물질을 포함된 오염공기를 유입시키는 적어도 하나 이상의 임펠러;
    상기 지지부의 내측에 위치하여 상기 상단 가이드 및 상기 하단 가이드 중 적어도 하나에 지지되어 회전하는 적어도 하나 이상의 물 확산부;
    상기 물 확산부의 주위에서 물을 이동시켜 상기 물 확산부로 물을 공급하는 물 공급부; 및
    상기 물 확산부에 연결되어 회전 동력을 제공하는 적어도 하나 이상의 구동모터;를 포함하고,
    상기 물 확산부는 회전 시 상기 물 공급부가 공급하는 물을 확산시키고, 물을 물 입자로 미세화 하는 것을 특징으로 하는 공기 정화에 이용되는 물 분산장치.
  2. 제1항에 있어서,
    상기 물 확산부는,
    원기둥의 형상으로 상기 지지부 내측에 위치하여 상기 상단 가이드 또는 상기 하단 가이드에 삽입되어 결합하고, 상기 물 공급부와 연결된 물 공급관을 통해 내부로 공급된 물이 적어도 하나 이상으로 표면에 형성된 분출홀을 통해 외부로 배출 가능하도록 회전하는 회전파이프축; 및
    상기 회전파이프축에 적어도 하나 이상으로 구비되어 상기 분출홀을 통해 외부로 배출된 물을 회전하면서 확산시키는 확산캡;을 포함하는 공기 정화에 이용되는 물 분산장치.
  3. 제2항에 있어서,
    상기 확산캡은 깔때기 형상으로 각각의 상기 분출홀보다 아래의 위치에 설치되어 상기 분출홀을 통해 배출된 물을 확산시키는 것을 특징으로 하는 공기 정화에 이용되는 물 분산장치.
  4. 제2항에 있어서,
    상기 확산캡은 끝단에 다각형으로 적어도 하나 이상의 충돌팁이 형성되어 확산되는 물 입자를 추가로 미세화 시키는 것을 특징으로 하는 공기 정화에 이용되는 물 분산장치.
  5. 제2항에 있어서,
    상기 상단 가이드 또는 하단 가이드에는 실링부가 구비되어 상기 실링부가 상기 회전파이프를 고정시켜 흔들림을 방지하고, 상기 상단 가이드 또는 상기 하단 가이드 및 상기 물 확산부의 결합 부위에 수분이 침투하는 것을 방지하는 것을 특징으로 하는 공기 정화에 이용되는 물 분산장치.
  6. 제5항에 있어서,
    상기 실링부는 베어링, 베어링 케이스, 수분 방지캡을 포함하고,
    상기 베어링은 상기 회전파이프축을 감싸 상기 회전파이프축이 상기 상단 가이드 또는 상기 하단 가이드에 삽입되어 있고,
    상기 베어링 케이스는 상기 상단 가이드 또는 상기 하단 가이드에 상기 베어링을 고정시키며,
    상기 수분 방지캡은 상기 베어링 케이스를 감싸 수분이 침투하는 것을 방지하는 것을 특징으로 하는 공기 정화에 이용되는 물 분산장치.
  7. 제2항에 있어서,
    상기 회전파이프축은 하단으로 연장될수록 내부 직경의 폭이 좁아지도록 테이퍼로 형성되고, 상기 회전파이프축의 하단에는 물 공급팬이 구비되어 상기 물 공급팬이 상기 회전파이프축에 공급하는 물은 원심력에 의해 상기 회전파이프축의 상부로 이동하는 것을 특징으로 하는 공기 정화에 이용되는 물 분산장치.
  8. 제7항에 있어서,
    상기 회전파이프축의 하부에는 스펀지 형태의 필터가 구비되어 물 입자에서 오염물질을 필터링 하는 것을 특징으로 하는 공기 정화에 이용되는 물 분산장치.
  9. 제1항에 있어서,
    상기 연결 샤프트는 소정 길이의 바 형태로써, 상기 상단 가이드와 상기 하단 가이드 사이에 복수로 연결되어 상기 상단 가이드 및 상기 하단 가이드를 일체로 고정시키는 것을 특징으로 하는 공기 정화에 이용되는 물 분산장치
  10. 제1항에 있어서,
    상기 물 공급부에는 일측에 필터가 적어도 하나 이상 구비되고,
    상기 필터는 상기 물 입자에 흡착된 오염물질을 필터링하는 것을 특징으로 하는 공기 정화에 이용되는 물 분산장치.
  11. 제1항에 있어서,
    상기 물 공급부 일측에는 초음파 전동자가 구비되고,
    상기 초음파 전동자는 주기적으로 작동하여 초음파를 통해 상기 물 공급부를 세척하는 것을 특징으로 하는 공기 정화에 이용되는 물 분산장치.
  12. 제1항에 있어서,
    상기 물 공급부에는 유량감지 센서 및 수위센서 중 적어도 하나가 구비되고,
    상기 유량감지 센서 및 수위센서 중 적어도 하나가 물의 수위를 감지하여 감지된 신호를 제어부에 전달하면, 상기 제어부는 상기 신호를 기반으로 상기 물 공급부에 담긴 물을 배출하도록 상기 물 공급부를 제어하고,
    상기 제어부는 상기 물 공급부에 담긴 물이 주기적으로 배출되도록 상기 물 공급부를 제어하며,
    물이 배출될 때는 상기 제어부가 상기 구동모터 및 상기 임펠러의 작동이 중단되도록 제어하는 것을 특징으로 하는 공기 정화에 이용되는 물 분산장치.
  13. 제1항에 있어서,
    상기 물 확산부는 상기 연결 샤프트의 일측에 상기 연결 샤프트의 세로 길이를 따라 복수로 구비되어 있고,
    상기 연결 샤프트의 내측면에는 상기 연결 샤프트의 세로 길이를 따라 돌출부가 다수로 형성되어 있으며,
    상기 물 확산부가 분사하는 물이 상기 돌출부에 충돌하여 미세화 됨으로써 물이 상기 지지부 내측에서 확산하는 것을 특징으로 하는 공기 정화에 이용되는 물 분산장치.
  14. 제13항에 있어서,
    상기 물 확산부 및 상기 돌출부는 상기 연결 샤프트의 세로 길이를 따라 교대로 구비되어 있는 것을 특징으로 하는 공기 정화에 이용되는 물 분산장치.
  15. 제14항에 있어서,
    상기 돌출부는 원형으로 돌출된 형태가 다단으로 적층되어 구비되는 것, 다각형으로 돌출된 형태가 다단으로 적층되어 구비되는 것 및 격자 형태로 구비되는 것 중 적어도 하나 이상으로 구비되어 있는 것을 특징으로 하는 공기 정화에 이용되는 물 분산장치.
PCT/KR2019/012595 2018-09-27 2019-09-27 공기 정화에 이용되는 물 분산장치 WO2020067770A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0115183 2018-09-27
KR20180115183 2018-09-27
KR10-2019-0063402 2019-05-29
KR1020190063402A KR102239749B1 (ko) 2018-09-27 2019-05-29 공기 정화에 이용되는 물 분산장치

Publications (1)

Publication Number Publication Date
WO2020067770A1 true WO2020067770A1 (ko) 2020-04-02

Family

ID=69952362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012595 WO2020067770A1 (ko) 2018-09-27 2019-09-27 공기 정화에 이용되는 물 분산장치

Country Status (1)

Country Link
WO (1) WO2020067770A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125720U (ko) * 1987-02-09 1988-08-17
KR950012902B1 (ko) * 1993-09-10 1995-10-23 최기호 공기정화 기능을 갖는 냉풍기
JP2002295878A (ja) * 2001-03-28 2002-10-09 Oiles Ind Co Ltd 換気装置
JP2003343877A (ja) * 2002-05-23 2003-12-03 Shinmasuzawa Kogyo Kk 空気清浄装置
US20060102000A1 (en) * 2004-11-17 2006-05-18 Daewoo Electronics Corporation Wet type air cleaner
US20170122606A1 (en) * 2015-10-30 2017-05-04 Lg Electronics Inc. Air conditioner and control method thereof
KR20180001395A (ko) * 2016-06-25 2018-01-04 오문섭 습식형 공기청정기

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125720U (ko) * 1987-02-09 1988-08-17
KR950012902B1 (ko) * 1993-09-10 1995-10-23 최기호 공기정화 기능을 갖는 냉풍기
JP2002295878A (ja) * 2001-03-28 2002-10-09 Oiles Ind Co Ltd 換気装置
JP2003343877A (ja) * 2002-05-23 2003-12-03 Shinmasuzawa Kogyo Kk 空気清浄装置
US20060102000A1 (en) * 2004-11-17 2006-05-18 Daewoo Electronics Corporation Wet type air cleaner
US20170122606A1 (en) * 2015-10-30 2017-05-04 Lg Electronics Inc. Air conditioner and control method thereof
KR20180001395A (ko) * 2016-06-25 2018-01-04 오문섭 습식형 공기청정기

Similar Documents

Publication Publication Date Title
WO2016163598A1 (ko) 공기 정화장치
WO2018097560A1 (ko) 공기 청정기
WO2017074136A1 (ko) 가습청정장치
WO2016182253A1 (ko) 공기순환장치
WO2017074135A1 (ko) 가습청정장치
WO2017146356A1 (ko) 공기 청정기 및 그 제어방법
KR102017653B1 (ko) 습식 및 건식 혼합 전기집진기
WO2017146354A1 (ko) 공기 청정기
WO2015053511A1 (ko) 폐수 재생장치 및 이를 포함한 폐수 재활용 세척설비
WO2021215680A1 (en) Filter device and air cleaner having the same
WO2017074145A2 (ko) 공기청정장치
WO2019190167A1 (ko) 물입자 충돌 확산 구조를 가지는 습식형 집진 공기정화장치
WO2017078418A1 (ko) 축열연소방식을 이용한 베치타입 도장시스템
WO2020067770A1 (ko) 공기 정화에 이용되는 물 분산장치
KR100909211B1 (ko) 전기 집진기
WO2014084442A1 (ko) 전기변위장을 이용한 전기집진 장치
WO2018174529A1 (ko) 노즐블록, 노즐블록을 포함하는 습식 스크러버 장치 및 습식 스크러버 장치를 구비한 흄후드
WO2022181990A1 (ko) 공기청정기
WO2021256639A1 (ko) 물의 전기분해를 위한 탄소나노튜브 복합체로 제조된 전극판, 이를 포함하는 전극 조립체 및 미세먼지 포집 장치
WO2018021640A1 (ko) 미생물을 이용한 습식 스크러버 및 상기 스크러버를 이용한 유해공기 정화방법
WO2016036148A1 (ko) 에어워셔
WO2020085795A2 (ko) 공기청정기
WO2018105819A1 (ko) 전기집진장치 및 이를 포함하는 가습공기청정기
WO2022059925A1 (ko) 가습청정장치
WO2019045278A2 (ko) 전도성 필터 유닛, 전도성 필터 유닛을 포함하는 전도성 필터 모듈, 및 전도성 필터 모듈이 구비된 미세먼지 제거 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866769

Country of ref document: EP

Kind code of ref document: A1