WO2020067570A1 - 湿式紡糸繊維、湿式成膜フィルムおよびそれらの製造方法 - Google Patents

湿式紡糸繊維、湿式成膜フィルムおよびそれらの製造方法 Download PDF

Info

Publication number
WO2020067570A1
WO2020067570A1 PCT/JP2019/038576 JP2019038576W WO2020067570A1 WO 2020067570 A1 WO2020067570 A1 WO 2020067570A1 JP 2019038576 W JP2019038576 W JP 2019038576W WO 2020067570 A1 WO2020067570 A1 WO 2020067570A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
wet
flow rate
phase
film
Prior art date
Application number
PCT/JP2019/038576
Other languages
English (en)
French (fr)
Inventor
努 小野
貴一 渡邉
Original Assignee
国立大学法人 岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 岡山大学 filed Critical 国立大学法人 岡山大学
Priority to CN201980063750.4A priority Critical patent/CN112888813A/zh
Priority to JP2020549514A priority patent/JP7544377B2/ja
Priority to US17/279,947 priority patent/US20220154369A1/en
Publication of WO2020067570A1 publication Critical patent/WO2020067570A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/08Biaxial stretching during blow-moulding
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/02Spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/724Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged forming webs during fibre formation, e.g. flash-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/03Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random
    • D04H3/033Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random reorientation immediately after yarn or filament formation
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/20Cellulose-derived artificial fibres
    • D10B2201/22Cellulose-derived artificial fibres made from cellulose solutions
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/20Cellulose-derived artificial fibres
    • D10B2201/28Cellulose esters or ethers, e.g. cellulose acetate
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/04Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons
    • D10B2321/041Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons polyvinyl chloride or polyvinylidene chloride
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/06Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated alcohols, e.g. polyvinyl alcohol, or of their acetals or ketals
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/08Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated carboxylic acids or unsaturated organic esters, e.g. polyacrylic esters, polyvinyl acetate
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/12Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of cyclic compounds with one carbon-to-carbon double bond in the side chain
    • D10B2321/121Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of cyclic compounds with one carbon-to-carbon double bond in the side chain polystyrene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]

Definitions

  • the present invention relates to a fiber (nano fiber) having a nano-sized fiber diameter, a film-shaped molded article (nano film) having a nano-sized thickness, and a wet production method thereof, comprising various polymer materials (polymers). About. More specifically, the present invention relates to a wet production method of nanofibers and a nanofilm with improved molecular orientation using a double tube type micro nozzle device.
  • wet spinning methods have been widely used for fibers (nano fibers) formed of a polymer material having a fine fiber diameter of nano size.
  • a polymer fiber is obtained by discharging a polymer solution as a raw material from a nozzle to a coagulation bath in a stationary state.
  • a high-strength fiber is prepared by applying tension (pulling) to the generated fiber to physically stretch the fiber in the major axis direction to improve the orientation of the polymer.
  • Patent Document 1 discloses a biodegradable porous ultrafine hollow fiber (inner diameter not more than 500 ⁇ m, outer diameter less than 1 mm, for example) containing poly ⁇ -hydroxy acid (polylactic acid or the like) as a main component, and wet double A method for producing the hollow fiber by a spinning method is described.
  • a double wet spinning apparatus that has a nozzle having an outer diameter of 1.0 mm and an inner diameter of 0.6 mm and can extrude two different solutions is used.
  • Polylactic acid dissolved in dioxane is sent to the outer diameter part (sheath part) of the nozzle, and methanol is sent to the inner diameter part (core part).
  • the liquid is extruded into a stationary coagulation bath containing dry ice and methanol.
  • a stationary coagulation bath containing dry ice and methanol.
  • Patent Document 2 As a wet spinning method capable of obtaining fine fibers drawn by a simpler operation, as described in Patent Document 2, using a funnel-shaped manufacturing apparatus, the spinning stock solution is converted into a coagulation solution. There is also conventionally known a method of extruding and coagulating, and drawing the formed filamentous material while flowing down together with a coagulating liquid (flow-down tension spinning method). In recent years, several techniques for producing fibers in a shear flow have been reported. For example, in Patent Document 3, a technique of continuously introducing a polymer solution into a dispersion medium (a poor solvent for a polymer) in which a shear flow is generated, and stretching polymer droplets generated thereby to obtain nanofibers. Have been reported. Patent Document 4 reports a method (Rotary jet spinning) of obtaining a fiber by rotating a nozzle filled with a polymer solution and solidifying a jet stream ejected thereby.
  • a dispersion medium a poor solvent for a polymer
  • Patent Literature 5 discloses a dispersion in which carbon nanotubes are dispersed by a surfactant in only water or a mixed solvent containing an organic solvent and water (first solvent) without using a binder resin such as polyvinyl alcohol (PVA).
  • a method for producing an aggregated and spun structure which includes a step of injecting a liquid into an aggregated liquid that is a second solvent different from the first solvent and aggregately spinning carbon nanotubes is disclosed.
  • a method for producing a nano-sized film-shaped molded article (nanofilm) made of a polymer material is to extrude and stretch a molten polymer or a mixed solution obtained by adding a plasticizer to a polymer.
  • a general continuous film preparation method for forming by roll-to-roll has been put to practical use.
  • a method for producing a nanofilm from a polymer solution by a wet method a method combining a casting method and film formation using a spin coater is sometimes performed at a laboratory level.
  • the casting method is a method in which the solvent is evaporated from the polymer solution to dryness.
  • the solvent is quickly evaporated to dryness by expanding the surface area while stretching the solution thinly by centrifugal force using a spin coater.
  • Patent Document 6 discloses a reaction spinning method in which a polyurethane prepolymer is discharged into a reaction bath containing a reaction liquid flowing in the same direction as the polyurethane prepolymer, which is a reaction spinning instead of a wet spinning.
  • a manufactured polyurethane urea (PUU) continuous compact is described.
  • the outer phase is stationary, so the liquid resistance increases during take-off, and it is difficult to increase the spinning speed.Thus, thin fibers can be produced due to problems such as cutting and economy.
  • Patent Document 6 discloses a wet spinning method, "It is difficult to produce PUU elastic fibers having a fineness larger than 10 denier at an economical spinning speed because of a low solvent removal rate from a polymer solution.” On the contrary, it is also difficult to produce PUU elastic fibers having a thickness of less than 10 denier due to air resistance and liquid resistance, which are increasing in demand recently as the weight of products is reduced. "
  • Non-Patent Document 1 discloses that in a microdevice having a plurality of rectangular fine channels parallel to each other in a lateral direction, a cell solution or an alginate solution is passed through each channel, and the solution is placed in a gelatinized solution containing barium ions. It is described that a hydrogel sheet in which cells and alginic acid fibers are arranged in a stripe pattern can be produced by discharging and causing the alginate solution to gel.
  • Patent Document 7 a double-pipe type micro-nozzle device provided with a micro flow path having an orifice shape (suitable for producing a finer fiber diameter than the double wet spinning device described in Patent Document 1).
  • Oil-soluble low-block copolymer having a hydrophobic portion derived from an aliphatic polyester resin such as polylactic acid and a hydrophilic portion derived from a hydrophilic polymer such as PEG) using an improved device
  • Continuous single-strand nanofibers by a "micro wet spinning process” that performs wet spinning by extruding an internal phase containing an organic solvent into an external phase containing a surfactant and water at a high flow rate and a controlled flow rate It discloses a method for obtaining the target.
  • Patent Document 8 also discloses a method of extruding a cellulose nanofiber including extruding an internal phase containing cellulose and an ionic liquid (an ionic liquid solution of cellulose) into an external phase containing water, also using a double-tube micronozzle device.
  • a manufacturing method is disclosed.
  • Patent Document 7 does not specifically describe application to copolymers other than the above-mentioned special copolymer
  • Patent Document 8 discloses that cellulose other than the above-mentioned special solvent is used. The use of a good solvent is not specifically described.
  • neither of Patent Documents 7 and 8 describes that it is possible to improve the molecular orientation by a step of extruding the internal phase to the external phase alone.
  • neither Patent Document 7 nor Patent Document 8 describes obtaining a nanofilm (film-shaped molded product) instead of a nanofiber.
  • the spinning step of processing a polymer into a fiber form and the drawing step of a polymer that increases the strength of the fiber are separate processes. Means huge capital investment.
  • a fiber with improved molecular orientation can be obtained by a down-flow type tension spinning method or a production method of preparing fine polymer fibers in a shear flow field. Absent. If the preparation and improvement of the orientation of the polymer fiber can be realized in a one-step process, the conventional process can be greatly simplified. Since the molecular orientation is considered to affect the physical properties and functions of the obtained fiber, the improvement of the molecular orientation is extremely important in the development of high-performance fibers. Until now, fiber products with controlled molecular orientation have been developed by developing a drawing process that incorporates a lot of know-how. Since the strength is extremely low, the stretching step after spinning is extremely difficult.
  • the present invention is capable of obtaining fibers having a fine (preferably nano-sized) cross-sectional diameter with improved molecular orientation continuously at high speed in a simple wet process.
  • An object of the present invention is to provide a method for producing wet-spun fibers that can be performed.
  • the present invention provides a method for producing a wet-formed film capable of continuously obtaining a film having an extremely thin (preferably nano-sized) thickness at a high speed in a simple wet process.
  • the task is to provide.
  • the present inventors disclose various fiber materials dissolved in a good solvent in a wet spinning method (micro wet spinning process) using a double tube type micro nozzle apparatus described in Patent Documents 7 and 8 mentioned above.
  • a phase and an external phase containing a poor solvent for the fiber material spinning was performed while varying the ratio of the external phase flow rate to the internal phase flow rate (hereinafter referred to as “flow rate ratio”) in various ways.
  • flow rate ratio the ratio of the external phase flow rate to the internal phase flow rate
  • the present inventors further provide a method for producing nanofibers as described above, in which the orifice (cross-sectional structure of the double tube portion) of the micro nozzle is changed from a circular shape to a rectangular shape, so that the orifice can be reduced in a very short time.
  • a film having a high aspect ratio (width / thickness) stretched in one direction through the ability to produce a film (fiber in the form of a film) from a molecular solution and through the stretching effect of the solution flow of the internal phase and the external phase in the process. Have been continuously prepared at the millisecond level and found to be recoverable in solution, leading to the completion of the present invention.
  • the present invention includes the following items.
  • [1] A method for producing a wet-spun fiber using a double-pipe micro-nozzle device, In the step of linearly extruding an inner phase containing a fiber material and a good solvent thereof from the circular end of the inner tube of the device into an outer phase containing a poor solvent of the fiber material flowing through the outer tube of the device, Production of a wet-spun fiber wherein the linear velocity of the external phase at the orifice where the internal phase and the external phase join is 0.1 ms -1 or more, and the ratio of the flow rate of the external phase to the flow rate of the internal phase is 1 or more.
  • Method [2] Item 2.
  • Item 3 The wet-spun fiber according to item 2, wherein the fiber material is a polyamide resin, the external phase linear velocity is 0.1 ms -1 or more, and the ratio of the flow rate of the external phase to the flow rate of the internal phase is 10 or more. Manufacturing method.
  • Manufacturing method [5] Item 3.
  • the wet-spun fiber according to item 2 wherein the fiber material is a vinyl resin, the external phase linear velocity is 0.1 ms -1 or more, and the ratio of the flow rate of the external phase to the flow rate of the internal phase is 10 or more. Manufacturing method. [7] Item 3. The wet-spun fiber according to item 2, wherein the fiber material is a carbon material, the external phase linear velocity is 0.1 ms -1 or more, and the ratio of the flow rate of the external phase to the flow rate of the internal phase is 10 or more. Manufacturing method.
  • Item 10 The wet-spun fiber according to item 9, wherein the fiber material is a polyester resin, the fiber diameter is 100 ⁇ m or less, and the birefringence is 0.001 or more.
  • Item 10 The wet-spun fiber according to item 9, wherein the fiber material is cellulose or a derivative thereof, the fiber diameter is 50 ⁇ m or less, and the birefringence is 0.001 or more.
  • Item 10 The wet spun fiber according to item 9, wherein the fiber material is a vinyl resin, the fiber diameter is 100 ⁇ m or less, and the birefringence is 0.001 or more.
  • Item 10 The wet spun fiber according to item 9, wherein the fiber material is a vinyl resin, the fiber diameter is 100 ⁇ m or less, and the birefringence is 0.001 or more.
  • a method for producing a wet film formation film using a double tube type micro nozzle device In the step of extruding a film material and an internal phase containing a good solvent thereof from the rectangular end of the inner tube of the device into a sheet shape into an outer phase containing a poor solvent of the film material flowing through the outer tube of the device, A method for producing a wet-type film, wherein the ratio of the flow rate of the outer phase to the flow rate of the inner phase is 1 or more.
  • Item 16 The method for producing a wet-formed film according to Item 15, wherein the internal phase contains a polyester resin or a vinyl resin as a film material.
  • Item 16 The method according to Item 15, wherein the film material is a polyester resin, and the ratio of the flow rate of the external phase to the flow rate of the internal phase is 1 or more.
  • Item 16 The method according to Item 15, wherein the film material is a vinyl resin, and the ratio of the flow rate of the outer phase to the flow rate of the inner phase is 1 or more.
  • the molecular orientation is improved by the fluid flow (shear flow) during spinning.
  • the method for producing a wet-spun fiber according to the present invention is useful not only as a method for preparing a fine fiber having improved molecular orientation (for example, twice or more than the conventional one) in one step, but also as a method for preparing the molecular orientation. It is expected that fine fibers with improved mechanical strength and improved fiber performance will be obtained.
  • the present invention is highly advantageous as a production technique capable of improving the function of the fibers.
  • a wet-type film having a nano-size thickness similarly to the nano-fiber without using a large-sized drawing apparatus. It is possible to prepare an anisotropic film which is stretched in one direction by the flow of the external phase during film preparation (stretched almost in the short direction and stretched at a desired degree of stretching in the longitudinal direction).
  • a product having an asymmetric internal structure on the evaporation surface and the other surface can be obtained. Since the good solvent of the phase polymer is diffused and solidified, a symmetric internal structure can be formed.
  • the aspect ratio, thickness, and degree of stretching of the film can be controlled by the flow ratio of the internal phase and the external phase, and more preferably by the linear velocity of the external phase in the same manufacturing device.
  • FIG. 1 is a schematic view and the like relating to an embodiment for producing a wet-spun fiber in the present invention.
  • A Schematic diagram showing preparation of a wet-spun fiber composed of a polymer material using a double-tube micronozzle device.
  • B A schematic diagram showing the internal structure (around the orifice portion) of the double tube micro nozzle device. a is the inner pipe diameter, b is the orifice diameter, c is the pipe diameter, d is the orifice length, and the numerical values exemplified for each are those for the double-pipe micro nozzle apparatus for wet spinning used in the examples. is there.
  • FIG. 2 relates to Example 1 (see Table 2) in which a polyamic acid fiber was manufactured.
  • SEM scanning electron microscope
  • FIG. 3 relates to Example 2 (see Table 3) in which a PET fiber was manufactured.
  • FIG. 4 A plot showing the relationship between the flow ratio of the external phase and the internal phase (horizontal axis), the fiber diameter (right vertical axis), and the birefringence (left vertical axis).
  • FIG. 4 relates to Example 3 (see Table 4) in which a cellulose acetate fiber was manufactured.
  • [B] A plot showing the relationship between the flow ratio of the external phase and the internal phase (horizontal axis), the fiber diameter (right vertical axis), and the birefringence (left vertical axis).
  • FIG. 5 relates to Example 4 (see Table 5) in which a PLA fiber (No. 1) was manufactured.
  • FIG. 6 shows the flow ratio (horizontal axis), fiber diameter (right vertical axis), and birefringence (left vertical axis) of the external phase and the internal phase in Example 5 (see Table 6) in which a PLA fiber (No. 2) was manufactured.
  • FIG. 7 shows the flow ratio (horizontal axis), the fiber diameter (right vertical axis), and the birefringence (left vertical axis) of the external phase and the internal phase in Example 6 (see Table 7) in which the PS fiber (No. 1) was manufactured. (Axis).
  • FIG. 8 shows the flow ratio (horizontal axis), the fiber diameter (right vertical axis), and the birefringence (left vertical axis) of the external phase and the internal phase in Example 7 (see Table 8) in which the PS fiber (No. 2) was manufactured. (Axis).
  • FIG. 9 shows the relationship between the flow ratio of the external phase and the internal phase (horizontal axis), the fiber diameter (right vertical axis), and the birefringence (left vertical axis) in Example 8 (see Table 9) in which a PVA fiber was manufactured. It is a plot showing a relationship.
  • FIG. 10 shows the flow ratio (horizontal axis), the fiber diameter (right vertical axis) and the birefringence (left vertical axis) of the external phase and the internal phase in Example 9 (see Table 10) in which the CNT fiber (No. 1) was manufactured.
  • FIG. 11 shows the flow ratio (horizontal axis), fiber diameter (right vertical axis), and birefringence (left vertical axis) of the external phase and the internal phase in Example 10 (see Table 11) in which the CNT fiber (No. 2) was manufactured. (Axis).
  • FIG. 11 shows the flow ratio (horizontal axis), fiber diameter (right vertical axis), and birefringence (left vertical axis) of the external phase and the internal phase in Example 10 (see Table 11) in which the CNT fiber (No. 2) was manufactured.
  • FIG. 12 shows the relationship between [A] winding speed (horizontal axis), fiber diameter (right vertical axis), and Ih / Iv (left vertical axis) in Example 11 in which a CNT fiber (No. 3) was manufactured.
  • [B] a plot showing the relationship between the winding speed (horizontal axis), the fiber diameter (right vertical axis), and the stress (left vertical axis).
  • FIG. 13 shows the flow ratio (horizontal axis), the fiber diameter (right vertical axis), and Ih / Iv (left vertical axis) of the external phase and the internal phase in Example 12 (see Table 12) in which the CNT fiber (No. 4) was manufactured. (Axis).
  • FIG. 1 shows the relationship between [A] winding speed (horizontal axis), fiber diameter (right vertical axis), and Ih / Iv (left vertical axis) in Example 11 in which a CNT fiber (No. 3) was manufactured.
  • [B] a plot showing the relationship between
  • FIG. 14 shows the flow ratio (horizontal axis) of the external phase and the internal phase, the fiber diameter (right vertical axis), and Ih / Iv (left vertical axis) in Example 13 (see Table 13) in which the CNT fiber (No. 5) was manufactured.
  • FIG. 15 shows the relationship between [A] winding speed (horizontal axis), fiber diameter (right vertical axis), and Ih / Iv (left vertical axis) in Example 14 in which a CNT fiber (No. 6) was manufactured.
  • [B] a plot showing the relationship between the winding speed (horizontal axis), the fiber diameter (right vertical axis), and the stress (left vertical axis).
  • FIG. 16 shows the flow ratio (horizontal axis), the fiber diameter (right vertical axis), and the birefringence (left vertical axis) of the external phase and the internal phase in Example 15 (see Table 14) in which the PBLG fiber (No. 1) was manufactured.
  • FIG. 17 shows the flow ratio (horizontal axis), the fiber diameter (right vertical axis), and the birefringence (left vertical axis) of the external phase and the internal phase in Example 16 (see Table 15) in which the PBLG fiber (No. 2) was manufactured. (Axis).
  • FIG. 17 shows the flow ratio (horizontal axis), the fiber diameter (right vertical axis), and the birefringence (left vertical axis) of the external phase and the internal phase in Example 16 (see Table 15) in which the PBLG fiber (No. 2) was manufactured.
  • FIG. 17 shows the flow ratio (horizontal axis), the fiber diameter (right vertical axis), and the birefringence (left vertical axis) of
  • FIG. 18 shows the flow rate ratio (horizontal axis), the fiber diameter (right vertical axis), and the birefringence (left vertical axis) of the external phase and the internal phase in Example 17 (see Table 16) in which the PBLG fiber (No. 3) was manufactured.
  • FIG. 19 shows the flow ratio (horizontal axis), the fiber diameter (right vertical axis), and the birefringence (left vertical axis) of the external phase and the internal phase in Example 18 (see Table 17) in which the PBLG fiber (No. 4) was manufactured.
  • FIG. 20 is a schematic diagram and the like relating to an embodiment of the present invention for manufacturing a wet film deposition film.
  • A A schematic diagram showing a double tube micro nozzle device for producing a wet film formed of a polymer material.
  • [B] A schematic diagram showing the internal structure (around the orifice portion) of the double tube micro nozzle device.
  • A is the short diameter of the inner pipe discharge port
  • B is the short diameter of the outer pipe discharge port
  • C is the orifice short diameter.
  • D is the inner tube outlet diameter
  • E is the outer tube outlet diameter
  • F is the orifice length
  • G is the orifice length
  • H H is the pipe diameter.
  • FIG. 21 relates to Samples # 17-1 to 17-5 of Example 19 (see Table 18) in which a PS film was manufactured.
  • the inner phase flow rate is 110 ⁇ L / min
  • the outer phase flow rate is (a) (b) 12,730 ⁇ L / min, (c) (d) 25,470 ⁇ L / min, (e) (f) 38,200 ⁇ L / min, (g) ( h) 50,930 ⁇ L / min, (i) (j) 63,660 ⁇ L / min.
  • FIG. 22 relates to Samples # 17-8 to 17-11 of Example 19 (see Table 18) in which a PS film was manufactured.
  • FIG. 23 is an SEM image of Sample # 18-1 in Example 20 (see Table 19) in which a PDLLA film was manufactured.
  • FIG. 24 is an SEM image of Sample # 18-2 in Example 20 (see Table 19) in which a PDLLA film was manufactured.
  • FIG. 25 relates to Samples # 18-3 to 18-7 of Example 20 (see Table 19) in which a PDLLA film was manufactured.
  • the inner phase flow rate is 110 ⁇ L / min
  • the outer phase flow rate is (a) (b) 12,730 ⁇ L / min
  • (c) (d) 25,470 ⁇ L / min
  • FIG. 26 relates to Samples # 19-1 to 19-5 of Example 21 (see Table 20) in which a PVA film was manufactured.
  • A SEM image. Inner phase flow rate is 57 ⁇ L / min, outer phase flow rate is (a) (b) 25,470 ⁇ L / min, (c) (d) 38,200 ⁇ L / min, (e) (f) 50,930 ⁇ L / min, (g) ( h) 63,660 ⁇ L / min.
  • the wet-spun fiber and the wet-formed film obtained by the production method of the present invention have, in a typical embodiment, a nano-sized fiber diameter and a nano-sized film thickness, respectively.
  • nanofibers and “nanofilms.”
  • the fiber diameter and the film thickness of the wet-spun fiber and the wet-formed film obtained by the production method of the present invention are not limited to those having a nano-size. Regardless of whether the fiber diameter and the film thickness are nano-sized, the wet-spun fiber and the wet-formed film obtained by the production method of the present invention are referred to as the “wet-spun fiber of the present invention” and the “wet-spun fiber of the present invention”, respectively. It is called "membrane film”.
  • the method for producing a wet-spun fiber of the present invention is carried out using a double-pipe type micro-nozzle apparatus. From the circular end of the inner tube of the apparatus, an internal phase containing a fiber material and its good solvent is passed through the apparatus. In the step of linearly extruding into the outer phase containing the poor solvent of the fibrous material flowing through the outer pipe (the extrusion step described later), the outer phase linear velocity is equal to or higher than a predetermined speed at the orifice portion where the inner phase and the outer phase merge. And the ratio of the flow rate of the external phase to the flow rate of the internal phase (external phase flow rate / internal phase flow rate; referred to as “flow rate ratio” in this specification) is equal to or more than a predetermined value.
  • the method for producing a wet film-forming film of the present invention is carried out using a double-pipe type micro-nozzle apparatus. From the rectangular end of the inner tube of the apparatus, an internal phase containing a film material and its good solvent is passed through the apparatus.
  • the ratio of the flow rate of the outer phase to the flow rate of the inner phase at the orifice portion where the inner phase and the outer phase merge (Flow rate ratio) is set to a predetermined value or more, and preferably, the external phase linear velocity is set to a predetermined speed or more.
  • the “double-pipe type micro-nozzle apparatus” used in the method for producing a wet-spun fiber of the present invention is similar to the double-pipe type micro-nozzle apparatus used in the inventions described in Patent Documents 7 and 8 described above and has a basic structure.
  • An example of the basic structure of a double-pipe micro-nozzle device for producing a wet-spun fiber is schematically shown in FIG. 1 ([A] [B] and [C]).
  • the double-pipe micro-nozzle device includes a double-pipe micro-flow path composed of an inner pipe (a micro-flow path for flowing an inner phase) and an outer pipe (a micro-flow path for flowing an outer phase).
  • the internal phase and the external phase can be sent at a desired flow rate by a liquid sending means (for example, a syringe pump) connected to the (micro flow path).
  • a liquid sending means for example, a syringe pump
  • One end (discharge port) of the inner pipe and the outer pipe has a nozzle shape (micro nozzle), and an inner phase and an outer phase are extruded (discharged), respectively.
  • the double-pipe type micro-nozzle apparatus used for producing the wet-spun fiber has a circular inner pipe outlet and a linear inner phase, as described in Patent Documents 7 and 8. Extruded.
  • the discharge port of the outer tube also has a circular shape surrounding the inner tube, and the inner tube and the outer tube have a circular cage shape (concentric shape) at the discharge portion.
  • a fiber having a desired fiber diameter and birefringence (orientation) is obtained from the fiber material contained in the inner phase by adjusting the linear velocity of the outer phase in the orifice portion by the flow rates of the inner phase and the outer phase. Can be formed.
  • each element is such that a wet spun fiber having a desired fiber diameter and polymer orientation can be obtained, that is, a desired external phase linear velocity can be achieved when the internal phase and the external phase are fed at a desired flow rate ratio.
  • it can be appropriately designed and is not particularly limited.
  • the inner pipe diameter (a) is 50 ⁇ m to 5000 ⁇ m (5 mm)
  • the orifice diameter (b) is 100 ⁇ m to 2000 ⁇ m (2 mm)
  • the pipe diameter (c) is 500 ⁇ m to 100000 ⁇ m (100 mm)
  • the orifice length (d) is 1 ⁇ m to It can be 100,000 ⁇ m (100 mm).
  • the term “circular” generally means a perfect circle or a substantially perfect circle, and a manufacturing tolerance (for example, 5% with respect to the diameter) is allowed, and the operation and effect of the present invention can be achieved.
  • a deformed circle such as an ellipse having a slight difference between the major axis and the minor axis (for example, the major axis is in the range of + 10% with respect to the minor axis) is acceptable within a range where the wet-spun fiber to be obtained is obtained.
  • FIG. 20 ([A] and [B]) schematically shows an example of a basic structure of a double-tube micro nozzle device used in the method for producing a wet film deposition film of the present invention.
  • the basic structure of a double-pipe type micro-nozzle apparatus for the production of a wet-formed film is the same as that of a double-pipe type micro-nozzle apparatus for the production of a wet-spun fiber.
  • the structure around the part is different.
  • the discharge port of the inner tube is rectangular, and the inner phase is extruded into a sheet.
  • the discharge port of the outer tube also has a rectangular shape surrounding the inner tube, and the inner tube and the outer tube have a rectangular cage shape in the discharge.
  • rectangular refers to a rectangle (rectangle) having a desired major axis and minor axis (aspect ratio), as well as a corner, within a range in which a wet-formed film having the advantageous effects of the present invention can be obtained.
  • a deformed rectangle such as a round one, is also allowed.
  • the orifice short diameter (C), the inner pipe discharge port long diameter (D), the outer pipe discharge port long diameter (E), the orifice long diameter (F), the orifice length (G), and the pipe diameter (H) are the internal and external phase flow rates. Along with the ratio, it is an element related to the internal phase linear velocity and the external phase linear velocity at the orifice.
  • each element is preferably set so as to obtain a wet-formed film having a desired film thickness, aspect ratio, and preferably a degree of stretching, that is, when the internal phase and the external phase are fed at a desired flow rate ratio.
  • the external phase linear velocity can be appropriately designed so as to achieve the above, and is not particularly limited.
  • the inner tube discharge port minor diameter (A) is 30 to 5000 ⁇ m
  • the inner tube outlet diameter (D) is 300 to 50,000 ⁇ m
  • Aspect ratio (D / A) is 10 or more
  • Outer tube discharge port minor diameter (B) is 50 ⁇ 10000 ⁇ m
  • the outer tube outlet diameter (E) is 500-100,000 ⁇ m
  • Aspect ratio (E / B) is 10 or more
  • the orifice minor diameter (C) is 30 to 5000 ⁇ m
  • the major diameter of the orifice (F) is 300 ⁇ 50,000 ⁇ m
  • Aspect ratio (F / C) is 10 or more
  • the orifice length (G) is 500-10000 ⁇ m
  • Pipe diameter (H) is 500-100,000 ⁇ m It can be.
  • the numerical values of the minor axis and major axis of the outer tube discharge port do not exclude the minor axis and major axis lengths of the inner tube discharge port in the form of a cage.
  • To find the minor axis and major axis (cross-sectional area) of the outlet subtract the minor axis and major axis (cross-sectional area) of the "inner tube outlet” from the minor axis and major axis (cross-sectional area) of the "outer tube outlet”. (Furthermore, if necessary, the cross-sectional area of the member forming the frame of the inner tube discharge port may be subtracted.)
  • the inner tube of the double-pipe type micro nozzle is used as a material for forming a fiber or a film produced by the production method of the present invention (hereinafter, referred to as a “fiber / film material”) as an internal phase. ), That is, a solution containing the fiber / film material and its good solvent.
  • a poor solvent of the fiber / film material or a solution containing the poor solvent is sent to the outer tube of the double tube type micro nozzle as the outer phase.
  • fiber / film material can be read as “fiber material and film material” or “fiber material or film material” as necessary.
  • the fiber / film material is not particularly limited as long as it can be formed into a fiber or a film by a wet production method using a double tube type micro nozzle device.
  • a fiber / film material can be selected from those used as materials in a known wet production method of a fiber or a film.
  • polyamide, polyester, cellulose or a derivative thereof, vinyl resin, carbon Materials are preferred film materials.
  • preferred film materials include polyester and vinyl resin.
  • One of these fiber / film materials may be used alone, or two or more thereof may be used in combination.
  • polyamide resin generally refers to a polymer (artificial synthetic resin) having a structure in which one or more monomers are bonded to each other via an amide bond.
  • artificial synthetic resins such as nylon having an aliphatic skeleton, aramid having an aromatic skeleton, and polyamic acid (polyamic acid) which is a precursor of polyimide are typical polyamide resins.
  • typical nylons include, for example, nylon 6, nylon 11, nylon 12, nylon 66, nylon 610, nylon 6T, nylon 6I, nylon 9T, nylon M5T, nylon 612, and the like.
  • Typical aramids include, for example, poly-p-phenylene terephthalamide (registered trademark "Kevlar", registered trademark “Twaron”), poly-m-phenylene isophthalamide (registered trademark "Nomex”) and the like.
  • a typical polyamic acid is, for example, a copolymer of pyromellitic dianhydride and 4,4′-diaminodiphenyl ether, which is an intermediate when synthesizing a polyimide “Kapton H” manufactured by DuPont by a two-step method. Polymers.
  • the polyamic acid is a general term for various compounds corresponding to respective precursors of polyimide synthesized from various tetracarboxylic dianhydrides and diamines as raw materials.
  • Aramid having an aromatic skeleton such as poly-p-phenylene terephthalamide is also known as a liquid crystal polymer.
  • sulfuric acid can be used as a good solvent in the present invention.
  • polyamide resin in the present invention is not limited to the above examples, and various polymers understood by those skilled in the art to correspond to the polyamide resin can be used.
  • Polyamide resin is not only a polyamide resin in a narrow sense where all the bonds in the molecule are amide bonds, but also the main body of the bond in the molecule is an amide bond. (Highest) also includes polyamide resins in a broad sense that include other bonds, so-called polyamide-based copolymers.
  • a polyamide resin in a narrow sense may be a homopolymer or a random copolymer constituted by amide bonds between specific polymers, or a block composed of amide bonds between specific polymers and another polymer.
  • polyamide-based copolymer it may be a block copolymer composed of blocks formed of amide bonds between each other.
  • the broadly-defined polyamide resin include a block corresponding to the above-described polyamide in a narrow sense and a block corresponding to a polyester resin and / or a vinyl resin in a narrow sense described separately in this specification.
  • the constituent block copolymer is mentioned.
  • one monomer has three or more functional groups and forms a crosslinked structure by two or more kinds of bonds mainly composed of amide bonds (a certain bond forms a main chain, and another bond forms a side chain).
  • Such a copolymer (forming a cross-link in a chain) is also exemplified as a polyamide resin (polyamide-based copolymer) in a broad sense.
  • polyamino acids known as liquid crystal polymers and the like, for example, polyglutamic acid such as poly ( ⁇ -benzyl-L-glutamic acid) (PBLG) and poly ( ⁇ -methyl-L-glutamic acid); polyaspartic acid; ⁇ -Polylysine and the like are also included in the polyamide resin of the present invention.
  • polyglutamic acid such as poly ( ⁇ -benzyl-L-glutamic acid) (PBLG) and poly ( ⁇ -methyl-L-glutamic acid); polyaspartic acid; ⁇ -Polylysine and the like are also included in the polyamide resin of the present invention.
  • PBLG poly ( ⁇ -benzyl-L-glutamic acid)
  • polyaspartic acid ⁇ -Polylysine and the like are also included in the polyamide resin of the present invention.
  • Such a polyamino acid may be any of those consisting only of the L-form, those consisting only of the D-form, and those consisting
  • the “polyester resin” generally refers to a polymer (artificial synthetic resin) having a structure in which one or more monomers are bonded by an ester bond.
  • Typical polyester resins include, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polybutylene naphthalate (PBN), Synthetic resins (polyester resins) such as lactic acid (PLA), polyglycolic acid, polycaproic acid, polyhydroxybutyric acid, polybutylene succinate, and polyhydroxyalkanoate can be given.
  • polyester resin in the present invention is not limited to these, and various polymers understood by those skilled in the art to correspond to the polyester resin can be used.
  • “Polyester resin” is not only a narrowly defined polyester resin in which all bonds in the molecule are ester bonds, but also a main component of the bond in the molecule is an ester bond. (Highest) but also includes polyester resins in a broad sense that also includes other bonds, so-called polyester copolymers. Polyester in a narrow sense may be a homopolymer or a random copolymer constituted by ester bonds between specific polymers, or a block composed of ester bonds between specific polymers and another polymer. And a block copolymer comprising an ester bond.
  • polyester resin in a broad sense
  • a block corresponding to the above-mentioned polyester in a narrow sense and a block corresponding to a polyamide resin and / or a vinyl resin in a narrow sense described separately in this specification are used.
  • the constituent block copolymer is mentioned.
  • one monomer has three or more functional groups, and forms a crosslinked structure by two or more kinds of bonds mainly composed of ester bonds (a certain bond forms a main chain, and another bond forms a side chain).
  • Such copolymers (which form crosslinks in chains) are also included as polyester resins (polyester-based copolymers) in a broad sense.
  • cellulose or a derivative thereof refers to cellulose, which is a natural polymer that is a main component of plant fiber or the like, or a semi-synthetic polymer obtained by subjecting cellulose to a raw material and subjecting it to a chemical treatment. Include. Typical cellulose derivatives include, for example, cellulose acetate, cellulose propionate, cellulose nitrate, ethylcellulose, carboxymethylcellulose, and the like, but the cellulose derivative in the present invention is not limited to these, and those skilled in the art Various polymers can be used which are understood to correspond to cellulose or derivatives thereof.
  • vinyl resin generally refers to a polymer having a structure in which one or more monomers (vinyl compounds) are bonded to each other by addition polymerization at a vinyl group.
  • Representative vinyl resins include, for example, polyethylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl alcohol, polyvinyl acetal, and polystyrene.
  • the vinyl resin includes, in addition to polystyrene (styrene resin in a narrow sense) which is a homopolymer containing styrene as a monomer, a copolymer of styrene and another vinyl compound (styrene (system) resin in a broad sense).
  • polystyrene styrene resin in a narrow sense
  • styrene-based resin other than polystyrene examples include, for example, a styrene-based thermoplastic elastomer (TPS) which is a block copolymer composed of polystyrene as a hard segment and polybutadiene or polyisoprene as a soft segment; a copolymer of styrene and acrylonitrile.
  • TPS thermoplastic elastomer
  • SAN AS resin
  • ABS resin which is a copolymer of acrylonitrile, butadiene, and styrene
  • vinyl resin is not only a narrowly defined vinyl resin in which all bonds in the molecule are formed by the addition polymerization of vinyl groups, but also the main body of the bond in the molecule is formed by the addition polymerization of vinyl groups. (The highest percentage of all types of bonds occupied by the addition polymerization of vinyl groups), but also includes vinyl resins in a broad sense that include other bonds, so-called vinyl copolymers. I do.
  • the vinyl resin in a narrow sense may be a homopolymer or a random copolymer formed by addition polymerization at a vinyl group of specific polymers, or a block formed by addition polymerization at a vinyl group of specific polymers. And a block copolymer composed of another polymer and a block formed by addition polymerization of a vinyl group of another polymer.
  • the vinyl resin (vinyl copolymer) in a broad sense includes, for example, a block corresponding to the vinyl resin in the narrow sense described above and a block corresponding to polyamide and / or polyester in the narrow sense described separately in this specification. Block copolymer.
  • one monomer has three or more functional groups and forms a crosslinked structure by two or more kinds of bonds mainly based on addition polymerization in a vinyl group (a certain bond forms a main chain and another A copolymer in which a bond forms a crosslink in a side chain) is also included as a vinyl resin (vinyl copolymer) in a broad sense.
  • the “carbon material” refers to a substance (compound) mainly composed of carbon atoms, such as carbon nanotubes (CNT), graphene, fullerene, and derivatives thereof, in addition to so-called carbon fibers.
  • a carbon material that can be used as a fiber material that is, a carbon material that can be fiberized by the manufacturing method of the present invention
  • what kind of manufacturing method is used is not particularly limited and can be used.
  • the carbon material alone can be dissolved in the internal phase and fiberized.
  • carbon fibers examples include PAN-based (Polyacrylonitrile) carbon fiber obtained from acrylic fiber and pitch-based (PITCH) carbon fiber obtained from pitch.
  • PAN-based (Polyacrylonitrile) carbon fiber obtained from acrylic fiber and pitch-based (PITCH) carbon fiber obtained from pitch.
  • PITCH pitch-based
  • the carbon nanotubes include, for example, single-walled CNTs (Single Wall Carbon Nanotubes: SWNTs) and multi-walled CNTs (Multi Wall Carbon Nanotubes: MWNTs) based on the number of peripheral walls, and classification based on the structure of graphene sheets.
  • Examples include CNTs such as a chiral (spiral) type, a zigzag type, and an armchair type. From the viewpoint of easy formation of fibers, SWNT having a large aspect ratio (for example, 1 ⁇ 10 2 or more) and a large intermolecular force is preferable.
  • the upper limit of the length of the CNT is not particularly limited, but is, for example, about 10 ⁇ m to several mm.
  • polyamic acid which is an example of a polyamide resin
  • polyethylene which is an example of a polyester resin Terephthalate (PET)
  • PET polyester resin Terephthalate
  • cellulose acetate as an example of cellulose or a derivative thereof
  • polylactic acid as an example of a polyester resin
  • polystyrene or polyvinyl alcohol as an example of a vinyl resin
  • carbon fiber as an example of a carbon material
  • Polyamic acid is a general term for a polymer (polyamide resin) having a chemical structure in which pyromellitic dianhydride and 4,4′-diaminodiphenyl ether are linked by an amide bond, as shown in the following structural formula (I), for example. It is. When such a polyamic acid undergoes a dehydration or cyclization (imidization) reaction by heating or using a catalyst, a polyimide resin is obtained.
  • the properties of the polyamic acid can vary depending on its monomer (synthetic raw material) and the average molecular weight or molecular weight distribution as an aggregate.
  • a polyamic acid having an appropriate property according to the embodiment may be used.
  • the polyamic acid can be synthesized in various properties by a known method, and various properties can be commercially obtained. How the polyamic acid used in the present invention is prepared It is not particularly limited whether it has been performed.
  • Polyethylene terephthalate is a polymer (a kind of polyester resin) having a chemical structure in which ethylene glycol and terephthalic acid are linked by an ester bond, as shown in the following structural formula (II).
  • the properties of polyethylene terephthalate may vary depending on the average molecular weight or molecular weight distribution as an aggregate thereof, but in the present invention, polyethylene terephthalate having appropriate properties according to the embodiment may be used.
  • Various properties of polyethylene terephthalate can be synthesized by a known method, and various properties can be obtained commercially. It is not particularly limited whether or not the material is prepared.
  • cellulose acetate is a polymer (a kind of cellulose derivative) having a chemical structure in which hydroxyl groups (three per repeating unit) of cellulose are partially acetic esterified.
  • Cellulose acetate is a degree of polymerization (for example, 6% viscosity is used as an index) or an acetylation degree (a degree of acetic acid esterified hydroxyl group) as an aggregate, and the degree of substitution or percentage is used as an index. ),
  • the properties may vary, but in the present invention, cellulose acetate having appropriate properties according to the embodiment may be used.
  • Cellulose acetate can be synthesized in various properties by a known method, and various properties can be commercially obtained. How cellulose acetate used in the present invention is prepared It is not particularly limited whether it has been performed.
  • Polylactic acid is a polymer (a kind of polyester resin) having a chemical structure in which lactic acid is linked by an ester bond, as shown in the following structural formula (IV).
  • the properties of polylactic acid may vary depending on the average molecular weight or molecular weight distribution as an aggregate thereof.
  • polylactic acid having an appropriate property according to the embodiment may be used.
  • Polylactic acid can be synthesized in various properties by a known method, and various properties can be commercially obtained. How the polylactic acid used in the present invention is prepared It is not particularly limited whether it has been performed.
  • the good solvent contained in the internal phase a solvent that can sufficiently dissolve the fiber / film material can be appropriately selected and used.
  • the good solvent is generally an organic solvent, and may be a non-polar solvent or a polar solvent (aprotic solvent, protic solvent).
  • Examples of good solvents include aliphatic hydrocarbons (hexane, octane, etc.), aromatic hydrocarbons (benzene, toluene, xylene, etc.), esters (methyl acetate, ethyl acetate, etc.), and ethers (including cyclic ethers; diethyl ether.
  • a good solvent may be used alone or as a mixture of two or more.
  • a good solvent in the present invention a good solvent used for dissolving various fiber / film materials in a known wet production method can be used in the same manner.
  • substances other than the fiber / film material and the good solvent may be added to the internal phase.
  • a surfactant, a salt, a metal compound, a physiologically active substance such as a drug, a nanoparticle, a catalyst, a monomer, a non-solvent (a solvent component that does not diffuse into an external phase), and the like are dissolved in a good solvent.
  • the solution can be used as the internal phase.
  • Nonionic surfactants include, for example, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, sorbitan fatty acid ester, sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, glycerin fatty acid ester, polyoxyethylene Examples include ethylene fatty acid esters and polyoxyethylene polyoxypropylene block copolymers.
  • anionic surfactant examples include sodium cholate, sodium deoxycholate, sodium alkyl benzene sulfonate, alkyl alcohol sulfate, sodium alkyl diphenyl ether disulfonate, sodium polyoxyethylene alkyl ether sulfate, sodium dialkyl sulfosuccinate, and alkyl.
  • examples thereof include sodium allyl sulfosuccinate, sodium N-lauroyl sarcosine, sodium polyoxyethylene alkyl phenyl ether sulfate, sodium (meth) acryloyl polyoxyalkylene sulfate, alkyl alcohol phosphate, and bile salts.
  • the cationic surfactant examples include a tetraalkylammonium halide, an alkylpyridinium halide, and an alkylimidazoline halide.
  • the poor solvent contained in the external phase can be appropriately selected and used according to the fiber / film material and the good solvent, a solvent capable of diffusing the good solvent and precipitating the fiber / film material.
  • Representative poor solvents include water (pure water) and organic solvents. One of the poor solvents may be used alone, or two or more may be used as a mixture.
  • a poor solvent used for forming various fiber / film materials coagulating a solution in which the fiber / film material is dissolved
  • a known wet production method is also used. It can be used.
  • water and another solvent having high compatibility with water can be mixed and used as a poor solvent.
  • a mixed solvent of water and a solvent eg, N-methyl-2-pyrrolidone
  • a good solvent for the internal aqueous phase that is, a good solvent diluted with water to such an extent that the diffusion rate of the fiber / film material is controlled.
  • a poor solvent for the external aqueous phase can be used as a poor solvent for the external aqueous phase.
  • a nonionic surfactant (trade name “Tween 80” (generic name: polyoxyethylene sorbitan monooleate), “Acridic” (DIC Corporation), etc.) or another surfactant (having a surfactant effect) Compound) can be incorporated into the external phase.
  • a surfactant by reducing the tension at the interface between the good solvent contained in the internal phase and the poor solvent contained in the external phase, or by increasing the saturation solubility of the good solvent contained in the internal phase in the external phase.
  • there is an effect that the good solvent is easily diffused (transferred) into the external phase.
  • the non-ionic it is preferable to use a surfactant added.
  • concentration of the surfactant in the external phase can be appropriately adjusted in consideration of the action of the surfactant as described above.
  • the surfactant may not be required. It is 10% by weight, preferably 0-5% by weight.
  • the fiber / film material can be, for example, any of the eight types shown in the following table. In the present specification, embodiments using these eight types of fiber / film materials are referred to as first to eighth embodiments, respectively.
  • the good solvent and the poor solvent used for the fiber / film material of each embodiment can be, for example, combinations as shown in the following table. However, those skilled in the art can understand that other combinations of good solvents and poor solvents may be used for the fiber / film materials shown in the table, and other fibers / film materials not shown in the table. Appropriate combinations of good and poor solvents for the film material can also be understood.
  • the internal phase and the external phase may be prepared by mixing and dissolving each of the internal phase and the external phase according to a conventional method using the above-mentioned fiber / film material, a good solvent, a poor solvent, etc., before being subjected to the production method of the present invention. Good.
  • the concentration of the fiber / film material in the internal phase may be necessary depending on the type of the fiber / film material and the good solvent used, and the type of the poor solvent and other components (surfactant, etc.) contained in the external phase. For example, it can be appropriately adjusted so that the viscosity of the internal phase is in an appropriate range, and in consideration of the properties (fiber diameter, film thickness, and birefringence) of the fiber / film to be obtained and applications. For example, depending on the type of the fiber / film material, the fiber diameter and the birefringence and the film thickness of the obtained fiber are determined by the concentration of the fiber / film material in the internal phase and the flow ratio of the external phase and the internal phase. Can be adjusted.
  • the concentration in the internal phase is generally 1 to 30% by weight. It is.
  • the fiber / film material is polyamic acid, it is generally 1 to 20% by weight, preferably 1 to 10% by weight, and when the fiber / film material is polyamino acid, it is generally 1 to 30% by weight. %, Preferably 1 to 20% by weight.
  • the external phase linear velocity and the flow rate ratio in the method for producing a wet-spun fiber are generally 0.1 ms ⁇ 1 or more and 10 or more, respectively.
  • the fiber material is polyamic acid, it is preferable. Is 0.5 ms -1 or more and 100 or more, respectively.
  • the fiber material is a polyamino acid, it is preferably 0.5 ms -1 or more and 100 or more, respectively.
  • the fiber / film material is a polyester resin (typically PET of the second embodiment, polylactic acid of the fourth embodiment)
  • its concentration in the internal phase is generally 1 to 50% by weight.
  • the fiber / film material is PET, it is generally 1 to 20% by weight, preferably 2 to 10% by weight, and when it is polylactic acid, it is generally 5 to 50% by weight, preferably 10 to 10% by weight. 50% by weight.
  • the external phase linear velocity and the flow rate ratio in the method for producing a wet-spun fiber are generally 0.1 ms ⁇ 1 or more and 10 or more, respectively.
  • the flow rate ratio in the method for producing a wet film deposition film is generally 1 or more, and when the film material is polylactic acid, it is preferably 100 or more.
  • Ministers line speed at this time is generally may be at 0.1 ms -1 or more, if film material is polylactic acid, preferably may be 0.5 ms -1 or more.
  • the fiber / film material is cellulose or a derivative thereof (typically, cellulose acetate of the third embodiment)
  • its concentration in the internal phase is generally 1 to 30% by weight, preferably 2 to 20% by weight. It is.
  • the external phase line velocity and flow rate in the manufacturing method of wet spinning fibers each typically 0.1 ms -1 or more and 10 or more, preferably each 0.5 ms -1 or more and 100 or more It is.
  • the fiber / film material is a vinyl resin (typically, polystyrene of the fifth embodiment, polyvinyl alcohol of the sixth embodiment)
  • its concentration in the internal phase is generally about 1 to 50% by weight, preferably Is from 2 to 40% by weight.
  • the external phase linear velocity and the flow rate ratio in the method for producing a wet-spun fiber are generally 0.1 ms ⁇ 1 or more and 10 or more, respectively.
  • the material is polystyrene or polyvinyl alcohol, Preferably, they are 0.2 ms -1 or more and 25 or more, respectively.
  • the flow rate ratio in the method for producing a wet film deposition film is generally 1 or more, and preferably 100 or more when the film material is polystyrene or polyvinyl alcohol.
  • Ministers line speed at this time is generally may be at 0.1 ms -1 or more, for example, when film material is polystyrene or polyvinyl alcohol, preferably 0.5 ms -1 or more, more preferably 1. It may be 0 ms -1 or more.
  • the fiber / film material is a carbon material (typically, the carbon fiber of the seventh embodiment)
  • its concentration in the internal phase is generally 0.1 to 2% by weight, preferably 0.1 to 0% by weight. 0.5% by weight.
  • the external phase line velocity and flow rate in the manufacturing method of wet spinning fibers each typically 0.1 ms -1 or more and 10 or more, preferably each 0.25 ms -1 or more and 50 or more It is.
  • the method for producing a wet-spun fiber and a wet-formed film of the present invention generally includes a first step (extrusion step) and a second step (generation step) as described below, and further includes a Three steps (winding step) can be included. These first to third steps are usually performed simultaneously and continuously.
  • First step in the production method of the present invention: In the extrusion step, an inner phase containing a fiber / film material and a good solvent thereof flows from an end of an inner tube of the device through an outer tube of the device. This is a step of linearly extruding a fiber / film material into an external phase containing a poor solvent.
  • this extrusion step when producing a wet-spun fiber, use a double-pipe type micro-nozzle apparatus having an appropriate inner pipe diameter, orifice diameter, pipe diameter and orifice length, and appropriately adjust the flow rate of each of the internal phase and the external phase.
  • a double-pipe type micro-nozzle apparatus having an appropriate inner pipe diameter, orifice diameter, pipe diameter and orifice length, and appropriately adjust the flow rate of each of the internal phase and the external phase.
  • a double-pipe type micro-nozzle apparatus having a proper inner pipe minor axis and major axis, an ejection port minor axis and major axis, an orifice minor axis and major axis, an orifice length, and a pipe diameter.
  • the ratio of the external phase flow rate to the internal phase flow rate is set to a predetermined value or more.
  • the flow rate ratio depends on what kind of fiber / film material, poor solvent, good solvent, etc. are used as the inner phase and the outer phase, and what kind of fiber diameter and fiber having birefringence (orientation). It can be appropriately adjusted depending on whether a film having an aspect ratio, a thickness, a degree of stretching or the like is to be produced, and the range is not particularly limited. In general, as the value of the flow rate ratio increases, the diffusion removal rate of the good solvent of the internal phase into the external phase also increases, and the cross-sectional area of the internal phase at the orifice portion is greatly reduced.
  • the flow ratio in the present invention can be, for example, 1 or more, 10 or more, 100 or more, 1000 or more, 2000 or more, 5000 or more, and 10,000 or more for each of the wet-spun fiber and the wet-formed film.
  • the upper limit of the flow rate ratio is not particularly limited, but may be, for example, 100000 or less, 10,000 or less, 5000 or less, 2000 or less, 1000 or less for each of the wet-spun fiber and the wet-formed film. If the flow rate ratio is too high, the operation of spinning or film formation becomes difficult, and if the flow rate ratio is too low (especially if the external phase flow rate is too low), the nozzle is clogged during spinning or film formation, and the desired wet spinning is performed. Since a fiber or a wet film may not be obtained in some cases, it may be appropriately adjusted within a range where such a problem does not occur.
  • a specific fiber material has a fiber diameter and a flow rate ratio that can achieve a birefringence that cannot be obtained by a conventional production method (particularly a wet spinning method), for example, the fiber diameter is 1 ⁇ m or less.
  • the flow ratio can be selected (i.e., fibers of nano-sized fiber diameter can be produced).
  • an aspect ratio and a film thickness which cannot be obtained by a conventional manufacturing method particularly a wet film forming method
  • a flow rate ratio which can further achieve a stretching degree for example, a film It is possible to select a flow rate ratio at which the thickness is 1 ⁇ m or less (that is, a film having a nano-sized thickness can be produced).
  • the internal phase flow rate and the external phase flow rate in the method for producing a wet-spun fiber can be appropriately adjusted so that the flow rate ratio is within the above range, and the external phase linear velocity at the orifice portion is within a predetermined range, and is particularly limited. Not something.
  • the internal phase flow rate is usually 1 to 100 ⁇ L min ⁇ 1 , preferably 1 to 10 ⁇ L min ⁇ 1 .
  • the external phase flow rate is usually 100 to 500,000 ⁇ L min ⁇ 1 , preferably 1,000 to 20,000 ⁇ L min ⁇ 1 .
  • the external phase linear velocity at the orifice can be regarded as a value obtained from the following formula.
  • the external phase linear velocity at the orifice portion is determined by the internal phase flow rate, the external phase flow rate, and s.
  • the upper limit of the external phase linear velocity in the method for producing a wet-spun fiber of the present invention is not particularly limited, but may be, for example, 100 ms -1 or less, 50 ms -1 or less, and 10 ms -1 or less.
  • the internal phase and the external phase flow rate in the method for producing a wet film can also be appropriately adjusted so that the flow rate ratio falls within the above range, and preferably, the external phase linear velocity at the orifice portion falls within a predetermined range. It is not limited.
  • the internal phase flow rate is usually 1 to 200 ⁇ L min ⁇ 1 , preferably 10 to 150 ⁇ L min ⁇ 1 .
  • the flow rate of the outer phase is usually from 1,000 to 200,000 ⁇ L min ⁇ 1 , preferably from 5,000 to 100,000 ⁇ L min ⁇ 1 .
  • the external phase linear velocity at the orifice portion when producing a wet film deposition film can also be regarded as a value obtained by the above mathematical formula (1).
  • s C ⁇ F (C: short diameter of orifice, F: long diameter of orifice). If necessary, s can be adjusted in consideration of the values of the internal phase flow rate and the external phase flow rate so that a sufficient external phase linear velocity to increase the stretching ratio and the like can be obtained.
  • the upper limit of the external phase linear velocity in the method of manufacturing a wet film-forming films of the present invention is not particularly limited, for example, 200 ms -1 or less, 160 ms -1 or less, 100 ms -1 or less, can be 10 ms -1 or less.
  • the second step in the production method of the present invention converts the fiber material contained in the internal phase that is linearly extruded into the external phase by the extrusion step as described above.
  • This is a step of forming a film from the film material contained in the inner phase, which has been extruded into the outer phase into a sheet by the above-described extrusion step.
  • this is a step in which the fiber / film material in the internal phase is precipitated by diffusing the good solvent in the internal phase into the external phase to produce a fiber made of the fiber material or a film made of the film material.
  • “diffusion” means that the good solvent in the internal phase shifts to the external phase until the saturation solubility of the good solvent in the external phase is reached.
  • a component such as a surfactant as described above
  • the disturbance of the interface may be stabilized and the uniformity of the fiber diameter or the film thickness may be increased.
  • the fiber or film formed at the beginning is taken up (may be the winding in the third step described below), or the fiber or film is collected at a position away from the orifice, Since the fiber or film generated earlier does not hinder the generation of the subsequent fiber or film, the generation process can proceed efficiently.
  • the third step: Winding step which can be provided as necessary, is a step of winding the fiber or film obtained in the above-mentioned production step. If it is more convenient to wind the fiber or film to be manufactured in consideration of the application of the fiber or film (for example, from the viewpoint of the stress of the fiber made of a carbon material, Ih / Iv, etc.), a winding step may be provided. Good.
  • Ih / Iv is a ratio of the Raman intensity Ih of the G band measured in the horizontal direction with respect to the polarized laser beam to the Raman intensity Iv of the G band measured in the vertical direction with respect to the polarized laser light in the polarization Raman measurement.
  • the drawing effect (winding the fiber at a speed higher than the extrusion speed of the internal phase in the extrusion step) due to the effect brought about by the adjustment of the external phase linear velocity and the like as described above.
  • a fiber having a desired fiber diameter and birefringence can be produced.
  • a film having a desired aspect ratio, film thickness, and preferably a degree of stretching can be produced without performing a stretching treatment.
  • the stretching process is not performed in the winding step of the present invention, unless a stretching process for a special purpose such as a further improvement in properties of the fiber or the film (for example, stress, Ih / Iv) is separately required.
  • the winding speed in performing the stretching treatment can be appropriately adjusted according to the fiber / film material. For example, when a carbon material or other material is used as the fiber / film material, 0.1 to 20 cm s ⁇ 1 , preferably 0.5 to 10 cm s ⁇ 1 .
  • the wet-spun fiber of the present invention is obtained by the method of producing a wet-spun fiber of the present invention, and has a fiber diameter and a birefringence (orientation) that change according to the linear velocity ratio in the extrusion step as described above. Having.
  • the “fiber diameter” as used herein is an average value of the fiber diameters (diameters when the cross section of the fiber is regarded as a circle) at a plurality of locations of the wet-spun fiber, and is, for example, a scanning electron microscope (SEM). ) Can be calculated by measuring a sufficient number (for example, 50 locations) of fiber diameters.
  • birefringence is also an average value of the birefringence at a plurality of locations of the wet-spun fiber, and for example, a sufficient number (for example, 50 locations) of the phase difference is determined by observation using a polarizing microscope. Can be calculated from the following equation using the phase difference and the fiber diameter.
  • the fiber diameter is changed according to conditions such as the linear velocity ratio, for a plurality of wet-spun fibers formed of the same fiber material, the fiber diameter and the birefringence are measured as described above, and the regression equation thereof is obtained.
  • the fiber diameter and birefringence of the wet-spun fiber of the present invention are appropriately adjusted depending on the application, and the ranges are not particularly limited.
  • the fiber diameter can be, for example, 1000 ⁇ m or less, 100 ⁇ m or less, 10 ⁇ m or less, or 1 ⁇ m or less.
  • the lower limit of the fiber diameter is not particularly limited, but may be, for example, 1 nm or more, 10 nm or more, 100 nm or more, or 1000 nm or more.
  • the birefringence can be, for example, 0.0001 or more, 0.001 or more, 0.01 or more, or the like.
  • the upper limit of the birefringence is not particularly limited, but may be, for example, 0.1 or less, 0.05 or less, 0.01 or less.
  • the material of the wet-spun fiber of the present invention is not particularly limited as long as it can be fiberized by the method of producing a wet-spun fiber using the double-pipe type micro nozzle apparatus as described above. In short, any material that can precipitate and fibrillate when the fiber material and the internal phase containing the good solvent are linearly extruded into the external phase containing the poor solvent of the fiber material. It is obvious to those skilled in the art which fiber material corresponds to the material of the wet-spun fiber of the present invention. Typical fiber materials include polyamide, polyester, cellulose or derivatives thereof, or carbon materials as described above.
  • the fiber diameter and the birefringence are generally about 50 ⁇ m or less and about 0.5 ⁇ m, respectively. 001 or more, preferably 20 ⁇ m or less and 0.005 or more, respectively, more preferably 10 ⁇ m or less and 0.01 or more, respectively.
  • the fiber diameter and the birefringence are generally about 100 ⁇ m or less and about 0.001 ⁇ m, respectively. Above, preferably 50 ⁇ m or less and 0.002 or more, respectively.
  • the fiber diameter and the birefringence are generally about 50 ⁇ m or less and about 0.001 or more, preferably 10 ⁇ m or more, respectively. Or less and 0.005 or more.
  • the fiber diameter and the birefringence are generally about 100 ⁇ m or less and about 0.001 or more. , Preferably 50 ⁇ m or less (more preferably 10 ⁇ m or less in the case of polyvinyl alcohol) and 0.002 or more.
  • the fiber diameter and the birefringence are generally about 50 ⁇ m or less and about 0.001 or more, preferably 20 ⁇ m or less, respectively. 0.002 or more.
  • the use of the wet-spun fiber of the present invention is not particularly limited, and the wet-spun fiber material of the present invention may be used for various purposes suitable for a fiber material of a wet-spun fiber, a fiber diameter and a birefringence (orientation).
  • Spun fibers can be utilized.
  • nanofibers nanofibers
  • medical devices implantation materials in living bodies, DDS, sutures, artificial blood vessels, etc.
  • cosmetic devices cell culture devices (proliferation scaffolds (scaffolds))
  • Etc. filters
  • battery materials electromagnetic wave shielding materials
  • conductive materials heat conductive materials
  • clothing fiber reinforced plastics, coating materials, and the like.
  • the wet film-forming film of the present invention is obtained by the method of manufacturing a wet film-forming film of the present invention, and the internal phase flow rate and the external phase flow rate (flow rate ratio) in the extrusion process as described above, and preferably the external phase linear velocity It has an aspect ratio and a film thickness, preferably a degree of stretching, which vary depending on the ratio.
  • the “film thickness” in the present specification is an average value of the film thickness at a plurality of locations of the wet film deposition film. For example, a sufficient number (for example, 50 locations) of the film thickness is determined by observation using an SEM. Can be calculated by measuring Similarly, the “aspect ratio” is an average value of the aspect ratios of a plurality of portions of the wet film deposition film. For example, by observation using an SEM, a sufficient number (for example, 50 portions) of the film thickness and the width in the lateral direction are obtained. Is measured and converted into an aspect ratio (width in the lateral direction / film thickness).
  • the film thickness of the wet film-forming film of the present invention is appropriately adjusted depending on the application, and the range is not particularly limited.
  • the film thickness can be, for example, 1000 ⁇ m or less, 100 ⁇ m or less, 10 ⁇ m or less, or 1 ⁇ m or less.
  • the lower limit of the film thickness is not particularly limited, but may be, for example, 1 nm or more, 10 nm or more, 100 nm or more, or 1000 nm or more.
  • the aspect ratio can be, for example, 100 or more, 1000 or more.
  • the upper limit of the aspect ratio is not particularly limited.
  • the material of the wet film-forming film of the present invention is not particularly limited as long as it can be formed into a film by the method of manufacturing a wet film-forming film using the double tube type micro nozzle device as described above.
  • any material can be deposited and formed into a film.
  • film material corresponds to the material of the wet-formed film of the present invention.
  • Typical film materials include polyamide, polyester, cellulose or derivatives thereof, or carbon materials as described above.
  • the film thickness is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less.
  • the aspect ratio is preferably 100 or more, more preferably 1000 or more.
  • the film thickness is preferably 2000 ⁇ m or less, more preferably 1000 ⁇ m or less, and still more preferably 500 ⁇ m or less. is there.
  • the aspect ratio is preferably 100 or more, more preferably 1000 or more.
  • the application of the wet film forming film of the present invention is not particularly limited, and the wet film forming film of the present invention is used for various purposes suitable for a wet film forming film material, film thickness, aspect ratio, and the like. can do.
  • medical equipment implantation material in living body, DDS, suture, artificial blood vessel, etc.
  • cosmetic equipment cell culture equipment (scaffold for proliferation, etc.)
  • filter battery material
  • electromagnetic wave shielding material Conductive materials, heat conductive materials, clothing, fiber reinforced plastics, coating materials and the like.
  • typical fiber materials such as polyamic acid, polyethylene terephthalate (PET), cellulose acetate, polylactic acid (PLA), polystyrene (PS), and polyvinyl alcohol (PVA) (Examples 1 to 18) in which a wet-spun fiber composed of the following components was manufactured, and the internal structure shown in FIG. 20 (particularly, the size of each part shown in FIG.
  • Double-pipe type micro-nozzle apparatus having an internal structure of a size different from that of the double-pipe type micro-nozzle apparatus used in Examples, and fiber materials and wet-spun fibers of wet-spun fibers other than the fiber materials and film materials used in Examples Those skilled in the art can understand that the present invention can be implemented in the same manner even when a film material of a film formation film is used.
  • Example 1 Polyamic acid fiber Under the conditions shown in Table 2, a solution of each of the internal phase and the external phase was prepared, and wet spinning of polyamic acid was performed using a predetermined double tube type micro nozzle apparatus for wet spinning fibers. Fiber (polyamic acid fiber) was produced.
  • the polyamic acid include those represented by the structural formula (Poly (pyromellitic dianhydride-co-4,4'-) in which pyromellitic dianhydride and 4,4'-diaminodiphenyl ether are linked by an amide bond. oxydianiline), amic acid solution, 15-16 wt% N-Methyl-2-pyrrolidone solution, manufactured by Sigma Aldrich).
  • FIG. 2A shows an SEM photograph of Sample # 1-10 in Table 2. Under these conditions, a polyamic acid fiber having an average diameter (fiber diameter) of about 3 ⁇ m was obtained.
  • FIG. 2B shows a flow ratio (external phase flow rate / internal phase flow rate) calculated from the internal phase flow rate and the external phase flow rate shown in Table 2, and the fiber diameter of each sample of the polyamic acid fiber obtained under the conditions. And the birefringence.
  • FIG. 2B shows that as the flow rate ratio increases, the diameter of the resulting polyamic acid fiber decreases, while the birefringence tends to increase. This result suggests that as the flow rate ratio increases, the molecular orientation of the polyamic acid molecules in the fiber in the major axis direction improves.
  • Example 2 Polyethylene terephthalate (PET) fiber Under the conditions shown in Table 3, a solution of each of the internal phase and the external phase was prepared, and a predetermined double-pipe micronozzle device for wet-spun fiber was used. Wet spun fibers (PET fibers) were produced.
  • the PET used in the examples is a commercial product (Mw: 130,000) manufactured by Sigma Aldrich.
  • FIG. 3A shows an SEM photograph of Sample # 2-4 in Table 3. Under these conditions, a PET fiber having an average diameter (fiber diameter) of about 1.5 ⁇ m was obtained.
  • FIG. 3B shows a flow rate ratio (external phase flow rate / internal phase flow rate) calculated from the internal phase flow rate and the external phase flow rate shown in Table 3, and the fiber diameter and the PET diameter of each sample of the PET fiber obtained under the conditions. Shows the birefringence.
  • FIG. 3B shows that, as in Example 1, the fiber diameter of the obtained PET fiber decreases and the birefringence tends to increase as the flow ratio increases. This result suggests that, as in Example 1, as the flow ratio increases, the molecular orientation of the PET molecules in the fiber in the major axis direction improves.
  • Example 3 Cellulose acetate fiber Under the conditions shown in Table 4, a solution of each of the internal phase and the external phase was prepared, and wet spinning of cellulose acetate was performed using a predetermined double-tube micronozzle device for wet spinning fibers. Fiber (cellulose acetate fiber) was produced.
  • the cellulose acetate used in the examples had a substitution degree of 5 wt%.
  • FIG. 4A shows an SEM photograph of Sample # 3-3 in Table 4. Under these conditions, a cellulose acetate fiber having an average diameter (fiber diameter) of about 2 ⁇ m was obtained.
  • FIG. 4B shows a flow rate ratio (external phase flow rate / internal phase flow rate) calculated from the internal phase flow rate and the external phase flow rate shown in Table 4, and the fiber diameter of each sample of the cellulose acetate fiber obtained under the conditions. And the birefringence.
  • FIG. 4B shows that the diameter of the obtained cellulose acetate fiber tends to decrease and the birefringence tends to increase as the flow velocity ratio increases, as in Example 1. From these results, it was suggested that the molecular orientation in the major axis direction of the cellulose acetate molecules in the fiber was improved as the flow rate ratio was increased, as in Example 1.
  • Example 4 Polylactic acid (PLA) fiber (Part 1: Internal phase contains TFH) Under the conditions shown in Table 5, solutions of each of the internal phase and the external phase were prepared, and a wet-spun fiber (PLA fiber) made of PLA was produced using a predetermined double tube type micro-nozzle device for the wet-spun fiber.
  • the PLA used in Example 4 was poly-DL-lactic acid manufactured by Musashino Chemical Laboratory (hereinafter, may be referred to as “PDLDA” in Example 12 described later). (Mw: 115,000).
  • FIG. 5A shows an SEM photograph of Sample # 4-7 in Table 5. Under these conditions, a PLA fiber having an average diameter (fiber diameter) of about 30 ⁇ m was obtained.
  • FIG. 5B shows a flow rate ratio (external phase flow rate / internal phase flow rate) calculated from the internal phase flow rate and the external phase flow rate shown in Table 5, and the fiber diameter and PLA fiber sample of each sample obtained under the conditions. Shows the birefringence.
  • the external phase linear velocity was between 33.3 and 167, the fiber diameter tended to decrease, but hardly changed thereafter.
  • the birefringence the external phase linear velocity increased up to 167, then decreased slightly, and increased again, but as a whole, the birefringence index tends to increase with an increase in the external phase linear velocity. I can say. This result also suggests that spinning under the condition that the external phase linear velocity is high can provide a PLA fiber with improved molecular orientation in the major axis direction.
  • PLA fiber part 2: inner phase contains ethyl acetate
  • a solution of each of the internal phase and the external phase was prepared, and a wet spun fiber (PLA fiber) made of PLA was produced using a predetermined double-pipe micronozzle device for the wet spun fiber.
  • FIG. 6 shows a flow ratio (external phase flow rate / internal phase flow rate) calculated from the internal phase flow rate and the external phase flow rate shown in Table 6, and the fiber diameter and birefringence of each PLA fiber sample obtained under the conditions. Is shown.
  • Example 6 Polystyrene (PS) Fiber (Part 1: Internal Phase Contains THF) Under the conditions shown in Table 7, each solution of the internal phase and the external phase was prepared, and a wet-spun fiber (PS fiber) made of polystyrene was produced by using a predetermined double-tube type micro-nozzle device for the wet-spun fiber.
  • PS fiber Polystyrene
  • the PS used in Example 6 (and Examples 7 and 11 described later) is commercially available polystyrene (degree of polymerization: about 2,000).
  • FIG. 7 shows a flow rate ratio (external phase flow rate / internal phase flow rate) calculated from the internal phase flow rate and the external phase flow rate shown in Table 7, and the fiber diameter and birefringence of each sample of the PS fiber obtained under the conditions. Is shown.
  • PS fiber Part 2: Internal phase contains ethyl acetate
  • Table 8 each solution of the internal phase and the external phase was prepared, and a wet-spun fiber (PS fiber) made of polystyrene was produced using a predetermined double-pipe micro-nozzle device for the wet-spun fiber.
  • FIG. 8 shows a flow ratio (external phase flow rate / internal phase flow rate) calculated from the internal phase flow rate and the external phase flow rate shown in Table 8, and the fiber diameter and birefringence of each sample of the PS fiber obtained under the conditions. Is shown.
  • Example 8 Polyvinyl alcohol (PVA) fiber Under the conditions shown in Table 9, solutions of each of the internal phase and the external phase were prepared, and made of polystyrene using a predetermined double-tube micro nozzle device for wet-spun fibers. A wet spun fiber (PS fiber) was manufactured.
  • the PVA used in Example 8 (and Example 13 to be described later) is “Poval (registered trademark) PVA-217” (Kuraray Co., Ltd., polymerization degree 1,700, saponification degree 87 to 89 mol%).
  • FIG. 9 shows a flow ratio (external phase flow rate / internal phase flow rate) calculated from the internal phase flow rate and the external phase flow rate shown in Table 9, and the fiber diameter and birefringence of each sample of the PS fiber obtained under the conditions. Is shown.
  • Example 9 Carbon Nanotube (CNT) Fiber (Part 1: Internal Phase Flow Rate 5 ⁇ L / min, Dispersant SC) Under the conditions shown in Table 10, solutions of the internal phase and the external phase were prepared, and a wet-spun fiber (CNT fiber) composed of carbon nanotubes was produced using a predetermined double-tube micronozzle device for the wet-spun fiber.
  • the CNT used in the examples is a single-walled carbon nanotube (SWCNT) (manufactured by Zeon Corporation) obtained by a super growth method.
  • FIG. 10 shows a flow ratio (external phase flow rate / internal phase flow rate) calculated from the internal phase flow rate and the external phase flow rate shown in Table 10, and the fiber diameter and birefringence index of each sample of the CNT fiber obtained under the conditions. Is shown.
  • CNT fiber Part 2: internal phase flow rate 10 mL / min, dispersant SC
  • a solution of each of the internal phase and the external phase was prepared, and a wet-spun fiber (CNT fiber) composed of CNT (the SWCNT) was prepared using a predetermined double-pipe micro-nozzle device for the wet-spun fiber.
  • FIG. 11 shows a flow rate ratio (external phase flow rate / internal phase flow rate) calculated from the internal phase flow rate and the external phase flow rate shown in Table 11, and the fiber diameter and birefringence of each sample of the CNT fiber obtained under the conditions. Is shown.
  • Example 11 CNT fiber (Part 3: winding speed) When spinning under the same conditions as Sample 10-1 in Table 11 (internal phase solution, external phase solution, internal phase flow rate, external phase flow rate and external phase linear velocity), a winding speed of 1.9 to 8.4 cm sec -1 The fiber produced in the above was wound up, and Ih / Iv and stress were measured. The results are shown in FIGS. 12 [A] and [B]. In addition, the sample whose winding speed is 0 in the figure corresponds to Sample 10-1 in Table 11.
  • CNT fiber Part 4: Internal phase flow rate 5 mL / min, dispersant COD
  • a solution of each of the internal phase and the external phase was prepared, and a wet-spun fiber (CNT fiber) composed of CNT (the SWCNT) was prepared using a predetermined double-pipe micro-nozzle device for the wet-spun fiber.
  • FIG. 13 shows a flow rate ratio (external phase flow rate / internal phase flow rate) calculated from the internal phase flow rate and the external phase flow rate shown in Table 12, and the Ih / Iv and fiber diameter of each sample of the CNT fiber obtained under the conditions. Is shown.
  • CNT fiber part 5: internal phase flow rate 10 mL / min, dispersant COD
  • a solution of each of the internal phase and the external phase was prepared, and a wet-spun fiber (CNT fiber) composed of CNT (the SWCNT) was prepared using a predetermined double-pipe micro-nozzle device for the wet-spun fiber.
  • FIG. 14 shows a flow ratio (external phase flow rate / internal phase flow rate) calculated from the internal phase flow rate and the external phase flow rate shown in Table 13, and the Ih / Iv and fiber diameter of each sample of the CNT fiber obtained under the conditions. Is shown.
  • Example 14 CNT fiber (No. 6: winding speed) When spinning under the same conditions (internal phase solution, external phase solution, internal phase flow rate, external phase flow rate and external phase linear velocity) as Sample 11-1 in Table 12, a winding speed of 1.9 to 8.4 cm sec -1 The fiber produced in the above was wound up, and Ih / Iv and stress were measured. The results are shown in FIGS. 15A and 15B. In addition, the sample whose winding speed is 0 in the figure corresponds to Sample 11-1 in Table 12.
  • Example 15 Liquid Crystal Polymer (PBLG) Fiber (Part 1) Under the conditions shown in Table 14, a solution of each of the internal phase and the external phase was prepared, and a liquid crystal polymer: poly ( ⁇ -benzyl-L-glutamic acid) was prepared using a predetermined double-tube micronozzle apparatus for wet-spun fibers. Was manufactured from a wet-spun fiber (PBLG fiber).
  • PBLG used in this example is a commercial product having a molecular weight of 70,000 to 150,000.
  • FIG. 16 shows a flow rate ratio (external phase flow rate / internal phase flow rate) calculated from the internal phase flow rate and the external phase flow rate shown in Table 14, and the fiber diameter and birefringence of each sample of the PBLG fiber obtained under the conditions. Is shown.
  • PBLG fiber part 2 Under the conditions shown in Table 15, a solution of each of the internal phase and the external phase was prepared, and a liquid crystal polymer: poly ( ⁇ -benzyl-L-glutamic acid) was prepared using a predetermined double tube type micro nozzle apparatus for wet-spun fibers.
  • PBLG fiber wet-spun fiber
  • PBLG used in this example is a synthetic product having a molecular weight of about 10,100, which was obtained under the following polymerization conditions.
  • FIG. 17 shows a flow rate ratio (external phase flow rate / internal phase flow rate) calculated from the internal phase flow rate and the external phase flow rate shown in Table 15, and the fiber diameter and birefringence of each sample of the PBLG fiber obtained under the conditions. Is shown.
  • Example 17 PBLG fiber (part 3) Under the conditions shown in Table 16, a solution of each of the internal phase and the external phase was prepared, and a liquid crystal polymer: poly ( ⁇ -benzyl-L-glutamic acid) was prepared using a predetermined double-tube type micro nozzle apparatus for wet-spun fibers. Was manufactured from a wet-spun fiber (PBLG fiber).
  • PBLG fiber wet-spun fiber
  • FIG. 18 shows a flow rate ratio (external phase flow rate / internal phase flow rate) calculated from the internal phase flow rate and the external phase flow rate shown in Table 16, and the fiber diameter and birefringence of each sample of the PBLG fiber obtained under the conditions. Is shown.
  • PBLG fiber (part 4) Under the conditions shown in Table 17, solutions of the inner phase and the outer phase were prepared, and a liquid crystal polymer: poly ( ⁇ -benzyl-L-glutamic acid) was prepared using a predetermined double-tube micro nozzle apparatus for wet-spun fibers. Was manufactured from a wet-spun fiber (PBLG fiber).
  • PBLG fiber PBLG used in this example is the same synthetic product as in Example 17.
  • FIG. 19 shows a flow ratio (external phase flow rate / internal phase flow rate) calculated from the internal phase flow rate and the external phase flow rate shown in Table 17, and the fiber diameter and birefringence of each sample of the PBLG fiber obtained under the conditions. Is shown.
  • Example 19 Polystyrene (PS) film Under the conditions shown in Table 18, a solution of each of the internal phase and the external phase was prepared, and was made of polystyrene using a predetermined double tube type micro nozzle device for a wet film formation film. A wet film (PS film) was manufactured. However, under the conditions of Samples 17-6 and 17-7, the device was blocked, and a PS film product could not be obtained.
  • PS film Polystyrene
  • FIG. 21A shows an SEM image of a PS film product when the external phase flow rate is changed with the internal phase flow rate fixed at 110 ⁇ L / min according to Samples # 17-1 to 17-5. From this figure, films (film-shaped fibers) were obtained under any of the conditions. From (d), (f), (h), and (j), the thicknesses of those films were nano-sized. It can be understood that it can be called "film”.
  • FIG. 21B shows the relationship between the flow rate of the external phase (continuous phase) and the thickness of the PS film in Samples # 17-1 to 17-5. The figure shows that the film thickness tends to decrease as the flow rate of the external phase increases, and a film (nanofilm) having a minimum thickness of 200 nm was obtained.
  • FIG. 22A shows an SEM image of the PS film product when the external phase flow rate was changed under the condition that the internal phase flow rate was fixed at 55 ⁇ L / min according to Samples # 17-8 to 17-11.
  • the flow rate of the external phase was 19,100 to 38,200 ⁇ L / min, a nanofilm was obtained without blocking the device.
  • FIG. 22B shows the relationship between the external phase flow rate and the thickness of the PS film in Samples # 17-8 to 17-11.
  • the film thickness decreased as the external phase flow rate increased, but hardly changed under the conditions of the external phase flow rate of 25,470 ⁇ L / min or more (Samples # 17-9 to 17-11).
  • PS nanofilms can be prepared by the manufacturing method (wet film forming method) of the present invention, and that the film thickness can be controlled by changing the flow rate of the external phase (continuous phase).
  • Example 20 Poly-DL-lactic acid (PDLLA) film Under the conditions shown in Table 19, a solution of each of the internal phase and the external phase was prepared, and a predetermined double-tube micro nozzle device for a wet film was used. , A wet film formed of poly-DL-lactic acid (PDLLA film).
  • FIG. 23 shows an SEM image of the PDLLA film product according to the conditions shown in Sample # 18-1. Under these conditions, the thickness of the film was about 340 nm.
  • FIG. 24 shows an SEM image of the PDLLA film product under the conditions shown in Sample # 18-2. Under these conditions, the thickness of the film was about 200 nm.
  • FIG. 25A shows SEM images of the PDLLA film product in Samples # 18-3 to 18-7 when the flow rate of the outer phase was changed while the flow rate of the inner phase was fixed at 110 ⁇ L / min.
  • FIG. 25B shows the relationship between the external phase flow rate and the thickness of the PDLLA film in Samples # 18-3 to 18-7. Under all conditions, PDLLA nanofilms were obtained.
  • Example 21 Polyvinyl alcohol (PVA) film Under the conditions shown in Table 20, solutions of each of the internal phase and the external phase were prepared, and polyvinyl alcohol was prepared using a predetermined double-tube type micro nozzle apparatus for a wet film formation film. Was manufactured. However, under the conditions of Sample 19-1, the device was blocked, and a PVA film product could not be obtained.
  • FIG. 26A shows SEM images of the PVA film product in Samples # 19-2 to 19-5 when the flow rate of the external phase was changed under the condition that the flow rate of the internal phase was fixed at 57 ⁇ L / min.
  • FIG. 26B shows the relationship between the flow rate of the external phase and the thickness of the PVA film in Samples # 19-1 to 19-5. PVA nanofilms were obtained under all conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本発明は、微細な(好ましくはナノサイズの)断面径を有する繊維であって分子配向性が向上したもの、または極めて薄い(好ましくはナノサイズの)厚さを有するフィルムを、湿式の簡易な工程で連続的に高速で得ることができる、湿式紡糸繊維または湿式成膜フィルムの製造方法を提供する。本発明に係る、二重管型マイクロノズル装置を用いた湿式紡糸繊維/湿式成膜フィルムの製造方法は、前記装置の内管の円形/矩形の末端から、繊維/フィルム素材およびその良溶媒を含む内相を、前記装置の外管を流れる、前記繊維/フィルム素材の貧溶媒を含む外相中に線状に押し出す工程において、内相流量に対する外相流量の比を1以上とし、湿式紡糸繊維についてはさらに前記内相と前記外相とが合流するオリフィス部における外相線速度を0.1ms-1以上とする、製造方法である。

Description

湿式紡糸繊維、湿式成膜フィルムおよびそれらの製造方法
 本発明は、各種の高分子材料(ポリマー)からなる、ナノサイズの繊維径を有する繊維(ナノ繊維)およびナノサイズの厚さを有するフィルム状成形体(ナノフィルム)、ならびにそれらの湿式製造方法に関する。より詳しくは、本発明は、二重管型マイクロノズル装置を用いる、分子配向性を向上させたナノ繊維の湿式製造方法およびナノフィルムの湿式製造方法に関する。
 ナノサイズの微細な繊維径を有する高分子材料で形成されている繊維(ナノ繊維)については、これまで様々な湿式の製造方法(湿式紡糸法)が広く使用されている。湿式紡糸法では、原料となる高分子溶液をノズルから静置状態の凝固浴に吐出することで高分子繊維を得る。また、一般的には、生成した繊維に張力をかけて(引っ張って)長軸方向へ物理的に延伸し、高分子の配向性を向上させることで、高強度な繊維が調製されている。
 例えば、特許文献1には、ポリα-ヒドロキシ酸(ポリ乳酸等)を主成分とする生分解性多孔質性極細中空糸(内径が500μm以下、外径は例えば1mm未満)、および湿式二重紡糸法による当該中空糸の製造方法が記載されている。特許文献1における湿式二重紡糸法では、外径1.0mm、内径0.6mmのノズルを備えて2種類の異なる溶液を押し出すことのできる二重湿式紡糸装置を用いている。ノズルの外径部(鞘部)にジオキサンに溶解させたポリ乳酸、内径部(芯部)にメタノールを送液し、それをドライアイスおよびメタノールを含む静置された凝固浴中に押し出し、鞘部の被凝固浴物質(ポリ乳酸)を凍結させてから脱溶媒することで、中空の繊維が得られる。また、上記の湿式二重紡糸法では必要に応じて、凝固浴中で生成した中空糸を押し出し速度より早く引っ張ることにより延伸してもよいことが記載されている。
 また、より簡便な操作により延伸された微細な繊維を得ることのできる湿式紡糸法として、特許文献2に記載されているように、漏斗状の製造装置を用いて、紡糸原液を凝固液中に押し出して凝固させ、生成した糸状物を凝固液とともに下方に流下させながら延伸する方法(流下式緊張紡糸方法)も従来知られている。また、近年ではせん断流れの中で繊維を製造する技術もいくつか報告されている。例えば、特許文献3では、高分子溶液をせん断流れの生じている分散媒(高分子の貧溶媒)に連続的に導入し、それにより生じた高分子液滴を引き延ばすことでナノ繊維を得る技術が報告されている。特許文献4では、高分子溶液を充填したノズルを回転させ、それにより吐出されたジェット流を固化することで繊維を得る手法(Rotary jet spinning)が報告されている。
 湿式紡糸法としては従来、ポリエステル(ポリ乳酸等)、セルロースまたはその誘導体などからなるものの製造方法がよく知られているが、近年ではカーボンナノチューブ等のカーボン材料からなる繊維の製造方法も提案されている。例えば特許文献5には、ポリビニルアルコール(PVA)等のバインダー樹脂を用いず、カーボンナノチューブを界面活性剤によって水のみまたは有機溶媒と水とを含む混合溶媒(第1の溶媒)に分散させた分散液を、第1の溶媒とは異なる第2の溶媒である凝集液に注入し、カーボンナノチューブを凝集紡糸する工程を含む、凝集紡糸構造体の製造方法が開示されている。
 一方、高分子材料で形成されている厚さがナノサイズのフィルム状成形体(ナノフィルム)の製造方法については、溶融高分子あるいは高分子に可塑剤を加えた混合液を押し出して延伸することで、ロール・ツー・ロール(Roll to Roll)で成形加工する、一般的な連続式のフィルム調製法は実用化されている。また、湿式で高分子溶液からナノフィルムを製造する方法としては、実験室レベルでは、キャスト法およびスピンコーターを用いた成膜を組み合わせた方法が行われることもある。キャスト法は、高分子溶液から溶媒を蒸発させて乾固させる方法であり、スピンコーターを用いて遠心力で溶液を薄く引き伸ばしながら表面積を拡大することで溶媒を迅速に蒸発させて乾固させることができる。しかしながら、ナノフィルムの湿式での製造方法で実用化されているものはない。
 特許文献6には、湿式紡糸ではなく反応紡糸ではあるが、ポリウレタンプレポリマーを該ポリウレタンプレポリマーの進行方向と同一方向に流動する反応液を含む反応浴に対して吐出する反応紡糸法およびそれにより製造されたポリウレタンウレア(PUU)連続成形体が記載されている。従来の反応紡糸法において、外相が静止しているため引き取りの際に液抵抗が大きくなり、紡糸速度を挙げるのが困難なため、切断や経済性などの問題のため細い繊維を製造することができなかったところ、特許文献6に記載の反応紡糸法では、外相となる反応浴中に内相となる反応液を吐出する際に、内相よりも外相の速度を高くすることで、液抵抗を小さくし、紡糸(引取)速度を向上できるとされている。そのような発明の一実施形態として、実施例22には、矩形型ノズル(幅0.16mm)からポリウレタンプレポリマーを所定の線速度で吐出し、所定の流動速度をもつ反応液を用いて管状路内幹部に導き、テープ状のPUUに成形し、採取したことが記載されている。しかしながら、このようにして得られた「テープ状」のPUUの形状や厚さ等のサイズは不明である。なお、特許文献6には、湿式紡糸法に関して、「ポリマー溶液からの脱溶媒速度が遅く、経済的な紡糸速度で10デニールより太い繊度のPUU弾性繊維を製造することが難しい。」、「また空気抵抗や液抵抗のために逆に10デニールより細いPUU弾性繊維-これは最近製品の軽量化にともない需要が急増している-を造ることも困難である。」などと記載されている。
 非特許文献1には、横方向に並走している複数の矩形型微細流路を備えたマイクロデバイスにおいて、各流路に細胞溶液またはアルギン酸溶液を流し、バリウムイオンを含むゼラチン化溶液中に吐出してアルギン酸溶液をゲル化させることで、細胞とアルギン酸ファイバーとがストライプパターンで並んでいるハイドロゲルシートを作製できることが記載されている。
 出願人は以前に、特許文献7において、オリフィス形状を有するマイクロ流路を備えた二重管型マイクロノズル装置(特許文献1に記載の二重湿式紡糸装置よりも細い繊維径の製造に適するよう改良されている装置)を用いて、油溶性低ブロック共重合体(ポリ乳酸等の脂肪族ポリエステル樹脂由来の疎水性部位と、PEG等の親水性高分子由来の親水性部位とを有する)および有機溶媒を含む内相を、高流速で流速が制御された、界面活性剤および水を含む外相中に押し出すことにより湿式紡糸を行う「マイクロ湿式紡糸プロセス」により、1本鎖のナノ繊維を連続的に得る方法を開示している。また特許文献8では、同じく二重管型マイクロノズル装置を用いて、セルロースおよびイオン液体を含む内相(セルロースのイオン液体溶液)を、水を含む外相中に押し出す工程を含む、セルロースナノファイバーの製造方法を開示している。しかしながら特許文献7には、上記の特殊な共重合体以外の共重合体に対して応用することについては具体的に記載されておらず、特許文献8には、上記の特殊な溶媒以外のセルロースの良溶媒を用いることについては具体的に記載されていない。また、特許文献7および8のどちらにも、内相を外相に押し出す工程単独で、分子配向性を向上させることが可能であることについて記載されていない。さらに、特許文献7および8のどちらにも、ナノ繊維ではなくナノフィルム(フィルム状成形体)を得ることについては記載されていない。
特開2003-328229号公報 特開昭60-246806号公報 US2010/0247908A1(US8,551,378B2) US2015/0354094A1 特開2012-126635号公報 WO1998/038364(特許第3791932号) WO2012/029710A1(特許第5835743号) 特開2015-004151号公報(特許第6229927号)
Kobayashi et al., J. BIOSCI. BIOENG., 116(6), 761-767, 2013
 従来の一般的な湿式紡糸法では、高分子を繊維状に加工する紡糸工程と繊維の強度を高める高分子の延伸工程は別プロセスであるため、プロセスが煩雑化し、工業的な利用の際には設備投資が莫大となる。また、前掲の先行技術文献のいずれにも、流下式緊張紡糸方法やせん断流れ場で微細な高分子繊維を調製する製造方法によって、分子配向性を向上させた繊維が得られることは報告されていない。1段階のプロセスで高分子繊維の調製及び配向性向上を実現することができれば、従来のプロセスを大幅に簡略化できる。分子配向性は、得られた繊維の物性や機能に影響をおよぼすことが考えられるため、分子配向性の向上は高機能繊維の開発においても極めて重要である。これまで、多くのノウハウを導入した延伸工程を開発することによって、分子配向性が制御された繊維製品が開発されてきたが、ナノ繊維のように繊維の微細化が進むにつれて1本あたりの引張強度が極めて小さくなるため、紡糸後の延伸工程も困難を極める。
 一方、フィルム状成形体で商業化されているロール・ツー・ロールのプロセスでは、混練後の押し出しと延伸工程によって時間をかけて薄膜を調製している。いずれの従来技術においても、フィルム成形加工には延伸のための大型装置と動力が必要となり、加工時間は秒~分単位で行われている。また、キャスト法およびスピンコーターを用いた成膜を組み合わせた実験室レベルの方法において、キャスト法だけではフィルムの薄膜化が難しく、スピンコーターを用いれば薄膜化はできるが、連続的に製造することはできなくなる。
 本発明は、一つの側面において、微細な(好ましくはナノサイズの)断面径を有する繊維であって、分子配向性が向上したものを、湿式の簡易な工程で連続的に高速で得ることができる、湿式紡糸繊維の製造方法を提供することを課題とする。
 また、本発明は一つの側面において、極めて薄い(好ましくはナノサイズの)厚さを有するフィルムを、湿式の簡易な工程で連続的に高速で得ることができる、湿式成膜フィルムの製造方法を提供することを課題とする。
 本発明者らは、前掲特許文献7および8に記載されている二重管型マイクロノズル装置を用いた湿式紡糸法(マイクロ湿式紡糸プロセス)において、様々な繊維素材を良溶媒に溶解させた内相と、その繊維素材の貧溶媒を含む外相とを用い、内相流量に対する外相流量の比(本明細書において「流量比」と呼ぶ。)を様々に変化させながら紡糸した。その結果、紡糸工程において外相の線速度や内相および外相の流量比を制御することで、従来は別工程として行われている延伸処理等を要することなく、微細かつ分子配向性が高い繊維を得られること、それにより従来は(例えばエレクトロスピニング(電解紡糸)法などにおいて)延伸処理等によって分子配向性を向上させることが困難であった繊維についても、分子配向性が向上した繊維を製造することが可能となることを見出した。内相に溶解している繊維素材を析出させて繊維化するための貧溶媒が、凝固浴として静止しているのではなく、外相として内相と共に流動しており、二重管型マイクロノズル装置のオリフィス部においてそれらの2種類の流体が高い線速度を有するようになること、その剪断流れにより上記のような微細かつ分子配向性の高い繊維(ナノ繊維)が得られるのではないかと考えられる。
 本発明者らはさらに、上記のようなナノ繊維の製造方法において、マイクロノズルのオリフィス(二重管部分の断面構造)を、円形から矩形に変更することにより、極めて短時間のうちに希薄高分子溶液からフィルム(フィルム形状の繊維)を生成することができること、またその過程における内相および外相の溶液流れによる延伸効果を通じて、一方向に延伸された高いアスペクト比(幅/厚み)を有するフィルムをミリ秒レベルで連続的に調製し、溶液中で回収できることも見出し、本発明を完成させるに至った。
 すなわち、本発明は下記の事項を包含する。
[1]
 二重管型マイクロノズル装置を用いた湿式紡糸繊維の製造方法であって、
 前記装置の内管の円形の末端から、繊維素材およびその良溶媒を含む内相を、前記装置の外管を流れる、前記繊維素材の貧溶媒を含む外相中に線状に押し出す工程において、
 前記内相と前記外相とが合流するオリフィス部における外相線速度が0.1ms-1以上であり、かつ前記内相の流量に対する前記外相の流量の比が1以上である、湿式紡糸繊維の製造方法。
[2]
 前記内相が、繊維素材として、ポリアミド樹脂、ポリエステル樹脂、セルロースもしくはその誘導体、ビニル樹脂、またはカーボン材料を含有する、項1に記載の湿式紡糸繊維の製造方法。
[3]
 前記繊維素材がポリアミド樹脂であり、前記外相線速度が0.1ms-1以上であり、かつ前記内相の流量に対する前記外相の流量の比が10以上である、項2に記載の湿式紡糸繊維の製造方法。
[4]
 前記繊維素材がポリエステル樹脂であり、前記外相線速度が0.1ms-1以上であり、かつ前記内相の流量に対する前記外相の流量の比が10以上である、項2に記載の湿式紡糸繊維の製造方法。
[5]
 前記繊維素材がセルロースもしくはその誘導体であり、前記外相線速度が0.1ms-1以上であり、かつ前記内相の流量に対する前記外相の流量の比が10以上である、項2に記載の湿式紡糸繊維の製造方法。
[6]
 前記繊維素材がビニル樹脂であり、前記外相線速度が0.1ms-1以上であり、かつ前記内相の流量に対する前記外相の流量の比が10以上である、項2に記載の湿式紡糸繊維の製造方法。
[7]
 前記繊維素材がカーボン材料であり、前記外相線速度が0.1ms-1以上であり、かつ前記内相の流量に対する前記外相の流量の比が10以上である、項2に記載の湿式紡糸繊維の製造方法。
[8]
 二重管型マイクロノズル装置を用いた湿式紡糸繊維の製造方法によって得られ、当該製造方法において繊維化できる素材で形成されている、繊維径が1000μm以下、かつ複屈折率が0.0001以上である、湿式紡糸繊維。
[9]
 前記繊維素材が、ポリアミド樹脂、ポリエステル樹脂、セルロースもしくはその誘導体、ビニル樹脂、またはカーボン材料を含有する、項8に記載の湿式紡糸繊維。
[10]
 前記繊維素材がポリアミド樹脂であり、前記繊維径が50μm以下、かつ前記複屈折率が0.001以上である、項9に記載の湿式紡糸繊維。
[11]
 前記繊維素材がポリエステル樹脂であり、前記繊維径が100μm以下、かつ前記複屈折率が0.001以上である、項9に記載の湿式紡糸繊維。
[12]
 前記繊維素材がセルロースもしくはその誘導体であり、前記繊維径が50μm以下、かつ前記複屈折率が0.001以上である、項9に記載の湿式紡糸繊維。
[13]
 前記繊維素材がビニル樹脂であり、前記繊維径が100μm以下、かつ前記複屈折率が0.001以上である、項9に記載の湿式紡糸繊維。
[14]
 前記繊維素材がカーボン材料であり、前記繊維径が50μm以下、かつ前記複屈折率が0.001以上である、項9に記載の湿式紡糸繊維。
[15]
 二重管型マイクロノズル装置を用いた湿式成膜フィルムの製造方法であって、
 前記装置の内管の矩形の末端から、フィルム素材およびその良溶媒を含む内相を、前記装置の外管を流れる、前記フィルム素材の貧溶媒を含む外相中にシート状に押し出す工程において、前記内相の流量に対する前記外相の流量の比が1以上である、湿式成膜フィルムの製造方法。
[16]
 前記内相と前記外相とが合流するオリフィス部における外相線速度が10ms-1以上である、項15に記載の湿式成膜フィルムの製造方法。
[17]
 前記内相が、フィルム素材として、ポリエステル樹脂またはビニル樹脂を含有する、項15に記載の湿式成膜フィルムの製造方法。
[18]
 前記フィルム素材がポリエステル樹脂であり、前記内相の流量に対する前記外相の流量の比が1以上である、項15に記載の湿式成膜フィルムの製造方法。
[19]
 前記フィルム素材がビニル樹脂であり、前記内相の流量に対する前記外相の流量の比が1以上である、項15に記載の湿式成膜フィルムの製造方法。
[20]
 二重管型マイクロノズル装置を用いた湿式成膜フィルムの製造方法によって得られ、当該製造方法においてフィルム化できる素材で形成されている、フィルム厚が1000μm以下である、湿式成膜フィルム。
[21]
 前記フィルム素材が、ポリエステル樹脂またはビニル樹脂を含有する、請求項20に記載の湿式成膜フィルム。
 従来技術では、紡糸時の流体流れ(せん断流れ)によって分子配向性を向上させた事例はない。本発明による湿式紡糸繊維の製造方法は、分子配向性を(例えば従来の2倍以上に)向上させた微細繊維を1段階で調製するための方法として有用であるだけでなく、分子配向性の向上に伴う機械的強度や繊維としての性能が向上した微細繊維が得られるようになることが期待される。特に、延伸工程の導入が困難となるナノスケールの微細繊維(ナノ繊維)に関しては、繊維の機能向上をもたらすことのできる製造技術として、本発明の優位性は高い。
 さらに、ノズルの形状を変更することにより、ナノ繊維と同様に湿式で、厚さがナノサイズのフィルムを大型の延伸装置を用いることなく調製することが可能である。フィルム調製時に外相の流れによって一方向へ延伸された(短手方向にはほとんど延伸されず、長手方向に所望の延伸度で延伸された)異方性フィルムの調製が可能である。また、従来のナノフィルムの湿式製造方法における蒸発乾固では、蒸発面と他面で非対称な内部構造の生成物が得られるが、本発明の製造方法では外相の貧溶媒中で両面から、内相の高分子の良溶媒を拡散して固化させるため、対称性のある内部構造を形成できる。フィルムのアスペクト比、厚さ、延伸度は、同一の製造デバイスにおいて、内相および外相の流量比によって、好ましくはさらに外相線速度によって、制御することが可能である。
図1は、本発明における、湿式紡糸繊維を製造する実施形態に関する模式図等である。[A]二重管マイクロノズル装置を用いた、高分子材料からなる湿式紡糸繊維の調製を表す模式図。[B]二重管マイクロノズル装置の内部構造(オリフィス部周辺)を表す模式図。aは内管径、bはオリフィス径、cは配管径、dはオリフィス長であり、それぞれについて例示されている数値は、実施例で用いた湿式紡糸用二重管マイクロノズル装置についてのものである。[C]二重管マイクロノズルの吐出部における断面([B]のS-S’)を表す模式図。 図2は、ポリアミック酸ファイバーを製造した実施例1(表2参照)に関する。[A]Sample 1-10の走査型電子顕微鏡(SEM)画像。[B]外相および内相の流量比(横軸)と、繊維径(右縦軸、●印、他図でも同様)および複屈折率(左縦軸、■印、他図でも同様)との関係を表すプロット。 図3は、PETファイバーを製造した実施例2(表3参照)に関する。[A]Sample 2-4のSEM画像。[B]外相および内相の流量比(横軸)と、繊維径(右縦軸)および複屈折率(左縦軸)との関係を表すプロット。 図4は、酢酸セルロースファイバーを製造した実施例3(表4参照)に関する。[A]Sample 3-3のSEM画像。[B]外相および内相の流量比(横軸)と、繊維径(右縦軸)および複屈折率(左縦軸)との関係を表すプロット。 図5は、PLAファイバー(その1)を製造した実施例4(表5参照)に関する。[A]Sample 4-7のSEM画像。[B]外相および内相の流量比(横軸)と、ファイバー径(右縦軸)および複屈折率(左縦軸)との関係を表すプロット。 図6は、PLAファイバー(その2)を製造した実施例5(表6参照)における、外相および内相の流量比(横軸)と、繊維径(右縦軸)および複屈折率(左縦軸)との関係を表すプロットである。 図7は、PSファイバー(その1)を製造した実施例6(表7参照)における、外相および内相の流量比(横軸)と、繊維径(右縦軸)および複屈折率(左縦軸)との関係を表すプロットである。 図8は、PSファイバー(その2)を製造した実施例7(表8参照)における、外相および内相の流量比(横軸)と、繊維径(右縦軸)および複屈折率(左縦軸)との関係を表すプロットである。 図9は、PVAファイバーを製造した実施例8(表9参照)における、外相および内相の流量比(横軸)と、繊維径(右縦軸)および複屈折率(左縦軸)との関係を表すプロットである。 図10は、CNTファイバー(その1)を製造した実施例9(表10参照)における、外相および内相の流量比(横軸)と、繊維径(右縦軸)および複屈折率(左縦軸)との関係を表すプロットである。 図11は、CNTファイバー(その2)を製造した実施例10(表11参照)における、外相および内相の流量比(横軸)と、繊維径(右縦軸)および複屈折率(左縦軸)との関係を表すプロットである。 図12は、CNTファイバー(その3)を製造した実施例11における、[A]巻き取り速度(横軸)と、繊維径(右縦軸)およびIh/Iv(左縦軸)との関係を表すプロット、ならびに[B]巻き取り速度(横軸)と、繊維径(右縦軸)および応力(左縦軸)との関係を表すプロットである。 図13は、CNTファイバー(その4)を製造した実施例12(表12参照)における、外相および内相の流量比(横軸)と、繊維径(右縦軸)およびIh/Iv(左縦軸)との関係を表すプロットである。 図14は、CNTファイバー(その5)を製造した実施例13(表13参照)における、外相および内相の流量比(横軸)と、繊維径(右縦軸)およびIh/Iv(左縦軸)との関係を表すプロットである。 図15は、CNTファイバー(その6)を製造した実施例14における、[A]巻き取り速度(横軸)と、繊維径(右縦軸)およびIh/Iv(左縦軸)との関係を表すプロット、ならびに[B]巻き取り速度(横軸)と、繊維径(右縦軸)および応力(左縦軸)との関係を表すプロットである。 図16は、PBLGファイバー(その1)を製造した実施例15(表14参照)における、外相および内相の流量比(横軸)と、繊維径(右縦軸)および複屈折率(左縦軸)との関係を表すプロットである。 図17は、PBLGファイバー(その2)を製造した実施例16(表15参照)における、外相および内相の流量比(横軸)と、繊維径(右縦軸)および複屈折率(左縦軸)との関係を表すプロットである。 図18は、PBLGファイバー(その3)を製造した実施例17(表16参照)における、外相および内相の流量比(横軸)と、繊維径(右縦軸)および複屈折率(左縦軸)との関係を表すプロットである。 図19は、PBLGファイバー(その4)を製造した実施例18(表17参照)における、外相および内相の流量比(横軸)と、繊維径(右縦軸)および複屈折率(左縦軸)との関係を表すプロットである。 図20は、本発明における、湿式成膜フィルムを製造する実施形態に関する模式図等である。[A]高分子材料からなる湿式成膜フィルムの製造用の二重管マイクロノズル装置を表す模式図。[B]二重管マイクロノズル装置の内部構造(オリフィス部周辺)を表す模式図。側面(1)方向から見た断面図(縦断面図)において、Aは内管吐出口短径、Bは外管吐出口短径、Cはオリフィス短径である。側面(2)方向から見た断面図(横断面図)において、Dは内管吐出口長径、Eは外管吐出口長径、Fはオリフィス長径、Gはオリフィス長、Hは配管径である。それぞれについて例示されている数値は、実施例で用いた湿式成膜用二重管マイクロノズル装置についてのものである。 図21は、PSフィルムを製造した実施例19(表18参照)のSample 17-1~17-5に関する。[A]SEM画像。内相流量はいずれも110μL/min、外相流量は(a)(b)12,730μL/min、(c)(d)25,470μL/min、(e)(f)38,200μL/min、(g)(h)50,930μL/min、(i)(j)63,660μL/min。[B]外相流量とフィルムの厚みとの関係を表すプロット。 図22は、PSフィルムを製造した実施例19(表18参照)のSample 17-8~17-11に関する。[A]SEM画像。内相流量はいずれも55μL/min、外相流量は(a)(b)19,100μL/min、(c)(d)25,470μL/min、(e)(f)31,830μL/min、(g)(h)38,200μL/min。[B]外相流量とフィルムの厚みとの関係を表すプロット。 図23は、PDLLAフィルムを製造した実施例20(表19参照)における、Sample 18-1のSEM画像である。 図24は、PDLLAフィルムを製造した実施例20(表19参照)における、Sample 18-2のSEM画像である。 図25は、PDLLAフィルムを製造した実施例20(表19参照)のSample 18-3~18-7に関する。[A]SEM画像。内相流量はいずれも110μL/min、外相流量は(a)(b)12,730μL/min、(c)(d)25,470μL/min、(e)(f)38,200μL/min、(g)(h)50,930μL/min、(i)(j)76,390μL/min)。[B]外相流量とフィルムの厚みとの関係を表すプロット。 図26は、PVAフィルムを製造した実施例21(表20参照)のSample 19-1~19-5に関する。[A]SEM画像。内相流量はいずれも57μL/min、外相流量は(a)(b)25,470μL/min、(c)(d)38,200μL/min、(e)(f)50,930μL/min、(g)(h)63,660μL/min。[B]外相流量とフィルムの厚みとの関係を表すプロット。
 本明細書において、本発明の製造方法により得られる湿式紡糸繊維および湿式成膜フィルムは、典型的な実施形態においては、それぞれナノサイズの繊維径およびナノサイズのフィルム厚を有するため、便宜上それらを「ナノ繊維」および「ナノフィルム」と称するときがある。しかしながら、本発明の製造方法により得られる湿式紡糸繊維および湿式成膜フィルムは、繊維径およびフィルム厚がナノサイズのものに限定されるものではない。繊維径およびフィルム厚がナノサイズであるかどうかにかかわらず、本発明の製造方法により得られる湿式紡糸繊維および湿式成膜フィルムを、それぞれ「本発明の湿式紡糸繊維」および「本発明の湿式成膜フィルム」と呼ぶ。
 - 湿式紡糸繊維および湿式成膜フィルムの製造方法 -
 本発明の湿式紡糸繊維の製造方法は、二重管型マイクロノズル装置を用いて行われ、当該装置の内管の円形の末端から、繊維素材およびその良溶媒を含む内相を、当該装置の外管を流れる、前記繊維素材の貧溶媒を含む外相中に線状に押し出す工程(後述する押出工程)において、内相と外相とが合流するオリフィス部において、外相線速度を所定の速さ以上とし、かつ内相の流量に対する外相の流量の比(外相流量/内相流量。本明細書において「流量比」と呼ぶ。)を所定の値以上とするものである。
 本発明の湿式成膜フィルムの製造方法は、二重管型マイクロノズル装置を用いて行われ、当該装置の内管の矩形の末端から、フィルム素材およびその良溶媒を含む内相を、当該装置の外管を流れる、前記フィルム素材の貧溶媒を含む外相中にシート状に押し出す工程(押出工程)において、内相と外相とが合流するオリフィス部において、内相の流量に対する外相の流量の比(流量比)を所定の値以上とする、好ましくはさらに外相線速度を所定の速さ以上とするものである。
 <二重管型マイクロノズル装置>
 本発明の湿式紡糸繊維の製造方法で用いられる「二重管型マイクロノズル装置」は、前掲特許文献7および8に記載の発明で用いられている二重管型マイクロノズル装置と基本的な構造が共通するものである。湿式紡糸繊維の製造用の二重管マイクロノズル装置の基本的な構造の例を、図1([A][B]および[C])に模式的に示す。二重管マイクロノズル装置は、内管(内相を流すためのマイクロ流路)および外管(外相を流すためのマイクロ流路)からなる二重管マイクロ流路を備えており、それぞれの管(マイクロ流路)に連結された送液手段(例えばシリンジポンプ)によって、所望の流量で内相および外相を送液することができる。内管および外管の一端(吐出口)はノズル状(マイクロノズル)になっており、それぞれ内相および外相が押し出される(吐出される)。湿式紡糸繊維を製造するために用いられる二重管型マイクロノズル装置は、前掲特許文献7および8に記載されているものと同様に、内管の吐出口は円形であり、内相は線状に押し出される。外管の吐出口も、内管を取り囲むような円形であり、内管および外管は吐出部において円形の入れ籠状(同心円状)となる。内管から押し出された内相と、外管から押し出された外相は、オリフィス部(開口部)において合流する。本発明では、内相および外相の流量によって、オリフィス部における外相線速度を調節することにより、内相に含まれている繊維素材から、所望の繊維径および複屈折率(配向性)を有する繊維を形成することができる。
 図1[B]の、内管の吐出口が円形である二重管型マイクロノズル装置のオリフィス部周辺に示されている、内管径(a)、オリフィス径(b)、配管径(c)およびオリフィス長(d)は、内相および外相の流量比とともに、オリフィスにおける内相線速度および外相線速度に関係する要素である。各要素のサイズは、所望の繊維径および高分子配向性を有する湿式紡糸繊維が得られるよう、すなわち所望の流量比で内相および外相を送液したときに、所望の外相線速度を達成できるよう、適宜設計することができ、特に限定されるものではない。例えば、内管径(a)は50μm~5000μm(5mm)、オリフィス径(b)は100μm~2000μm(2mm)、配管径(c)は500μm~100000μm(100mm)、オリフィス長(d)は1μm~100000μm(100mm)とすることができる。なお、「円形」であるとは、一般的には真円または略真円であって、製造時の公差(例えば直径に対して5%)が許容されるほか、本発明の作用効果が奏される湿式紡糸繊維が得られる範囲で、長径と短径にわずかな差がある(例えば短径に対して長径が+10%の範囲に収まる)楕円など、変形した円形も許容される。
 本発明の湿式成膜フィルムの製造方法で用いられる二重管型マイクロノズル装置の基本的な構造の例を、図20([A]および[B])に模式的に示す。湿式成膜フィルム製造用の二重管型マイクロノズル装置の基本的な構造は、湿式紡糸繊維製造用の二重管型マイクロノズル装置と共通だが、吐出口における内管および外管の形状やオリフィス部周辺の構造が相違する。湿式成膜フィルム製造用の場合、内管の吐出口は矩形であり、内相はシート状に押し出される。外管の吐出口も、内管を取り囲むような矩形であり、内管および外管は吐出物において矩形の入れ籠状となる。なお、「矩形」であるとは、本発明の作用効果が奏される湿式成膜フィルムが得られる範囲で、所望の長径および短径(アスペクト比)を有する矩形(長方形)のほか、角が丸まっているなど、変形した矩形も許容される。
 図20[B]の、内管が矩形である二重管型マイクロノズル装置のオリフィス部周辺に示されている、内管吐出口短径(A)、外管吐出口短径(B)、オリフィス短径(C)、内管吐出口長径(D)、外管吐出口長径(E)、オリフィス長径(F)、オリフィス長(G)、配管径(H)は、内相および外相の流量比とともに、オリフィスにおける内相線速度および外相線速度に関係する要素である。各要素のサイズは、所望のフィルム厚、アスペクト比、好ましくはさらに延伸度を有する湿式成膜フィルムが得られるよう、すなわち所望の流量比で内相および外相を送液したときに、好ましくは所望の外相線速度を達成できるよう、適宜設計することができ、特に限定されるものではない。例えば、
内管吐出口短径(A)は30~5000μm、
内管吐出口長径(D)は300~50000μm、
アスペクト比(D/A)は10以上、
外管吐出口短径(B)は50~10000μm、
外管吐出口長径(E)は500~100000μm、
アスペクト比(E/B)は10以上、
オリフィス短径(C)は30~5000μm、
オリフィス長径(F)は300~50000μm、
アスペクト比(F/C)は10以上、
オリフィス長(G)は500~10000μm、
配管径(H)は500~100000μm
とすることができる。なお、外管吐出口の短径および長径の数値は、入れ籠状になっている内管吐出口の短径および長径の長さを除外していない数値であり、「外管だけ」の吐出口の短径および長径(断面積)を求める場合は、「外管吐出口」の短径および長径(断面積)から「内管吐出口」の短径および長径(断面積)を差し引けば(さらに必要に応じて内管吐出口の枠を形成している部材の断面積を差し引けば)よい。
 <内相および外相>
 本発明において、二重管型マイクロノズルの内管には、内相として、本発明の製造方法により製造される繊維またはフィルムを形成する素材(本明細書において「繊維/フィルム素材」と呼ぶ。)を含む溶液、すなわち繊維/フィルム素材とその良溶媒とを含む溶液が送液される。一方、二重管型マイクロノズルの外管には、外相として、繊維/フィルム素材の貧溶媒、または貧溶媒を含む溶液が送液される。なお、「繊維/フィルム素材」は、必要に応じて「繊維素材およびフィルム素材」または「繊維素材またはフィルム素材」と読み替えることができる。
 ・繊維/フィルム素材
 繊維/フィルム素材は、二重管型マイクロノズル装置を用いた湿式製造方法により繊維化またはフィルム化できるものであれば特に限定されるものではない。そのような繊維/フィルム素材は、公知の繊維またはフィルムの湿式製造方法において素材として用いられているものの中から選択することができるが、例えば、ポリアミド、ポリエステル、セルロースもしくはその誘導体、ビニル樹脂、カーボン材料が挙げられる。このうちの好ましいフィルム素材としては、ポリエステル、ビニル樹脂が挙げられる。これらの繊維/フィルム素材は、いずれか1種を単独で用いても、2種以上を混合して用いてもよい。
 本発明において「ポリアミド樹脂」は、1種または2種以上のモノマー同士がアミド結合によって結合している構造を有するポリマー(人工合成樹脂)を全般的に指す。例えば、脂肪族骨格を有するナイロン、芳香族骨格を有するアラミド、さらにポリイミドの前駆体であるポリアミド酸(ポリアミック酸)などの人工合成樹脂は代表的なポリアミド樹脂である。ポリアミド樹脂のうち、典型的なナイロンとしては、例えば、ナイロン6、ナイロン11、ナイロン12、ナイロン66、ナイロン610、ナイロン6T、ナイロン6I、ナイロン9T、ナイロンM5T、ナイロン612などが挙げられる。典型的なアラミドとしては、例えば、ポリ-p-フェニレンテレフタルアミド(登録商標「ケブラー」、登録商標「トワロン」)、ポリ-m-フェニレンイソフタルアミド(登録商標「ノーメックス」)などが挙げられる。典型的なポリアミック酸としては、例えば、デュポン社のポリイミド「カプトンH」)を2段法で合成する際の中間体に相当する、ピロメリット酸二無水物と4,4'-ジアミノジフェニルエーテルの共重合体が挙げられる。なお、ポリアミック酸は、様々なテトラカルボン酸2無水物とジアミンを原料に合成されるポリイミドのそれぞれの前駆体に相当する、様々な化合物の総称である。ポリ-p-フェニレンテレフタルアミドなどの芳香族骨格を有するアラミドは液晶高分子としても知られており、例えば硫酸を本発明における良溶媒として用いることができる。
 本発明におけるポリアミド樹脂は、上に例示に限定されるものではなく、当業者によってポリアミド樹脂に該当すると理解される様々なポリマーを用いることができる。「ポリアミド樹脂」は、分子中の結合が全てアミド結合である狭義のポリアミド樹脂のみならず、分子中の結合の主体がアミド結合である(全ての結合の種類のうち、アミド結合が占める割合が最も高い)がそれ以外の結合も含まれている広義のポリアミド樹脂、いわばポリアミド系共重合体も包含する。狭義のポリアミド樹脂は、特定のポリマー同士のアミド結合によって構成されている単独重合体またはランダム共重合体であってもよいし、特定のポリマー同士のアミド結合からなるブロックと、それとは別のポリマー同士のアミド結合からなるブロックとによって構成されているブロック共重合体であってもよい。広義のポリアミド樹脂(ポリアミド系共重合体)としては、例えば、上述した狭義のポリアミドに相当するブロックと、本明細書に別記されている狭義のポリエステル樹脂および/またはビニル樹脂に相当するブロックとによって構成されている、ブロック共重合体が挙げられる。あるいは、1つのモノマーが3個以上の官能基を有し、アミド結合を主体とする2種類以上の結合によって架橋構造を形成している(ある結合が主鎖を形成し、別の結合が側鎖における架橋を形成している)ような共重合体も広義のポリアミド樹脂(ポリアミド系共重合体)として挙げられる。
 また、液晶高分子などとして知られているポリアミノ酸、例えば、ポリ(γ-ベンジル-L-グルタミン酸)(PBLG)、ポリ(γ-メチル-L-グルタミン酸)などのポリグルタミン酸;ポリアスパラギン酸;ε-ポリリジンなども、本発明におけるポリアミド樹脂に含まれる。このようなポリアミノ酸は、L体のみからなるもの、D体のみからなるもの、DL体からなるもの、いずれであってもよい。
 本発明において「ポリエステル樹脂」は、1種または2種以上のモノマー同士がエステル結合によって結合している構造を有するポリマー(人工合成樹脂)を全般的に指す。典型的なポリエステル樹脂としては、例えば、ポリエチレンテレフタラート(PET)、ポリエチレンナフタラート(PEN)、ポリトリメチレンテレフタラート(PTT)、ポリブチレンテレフタラート(PBT)、ポリブチレンナフタタラート(PBN)、ポリ乳酸(PLA)、ポリグリコール酸、ポリカプロン酸、ポリヒドロキシ酪酸、ポリブチレンサクシネート、ポリヒドロキシアルカノエートなどの合成樹脂(ポリエステル樹脂)を挙げることができる。しかしながら、本発明におけるポリエステル樹脂はこれらに限定されるものではなく、当業者によってポリエステル樹脂に該当すると理解される様々なポリマーを用いることができる。「ポリエステル樹脂」は、分子中の結合が全てエステル結合である狭義のポリエステル樹脂のみならず、分子中の結合の主体がエステル結合である(全ての結合の種類のうち、エステル結合が占める割合が最も高い)がそれ以外の結合も含まれている広義のポリエステル樹脂、いわばポリエステル系共重合体も包含する。狭義のポリエステルは、特定のポリマー同士のエステル結合によって構成されている単独重合体またはランダム共重合体であってもよいし、特定のポリマー同士のエステル結合からなるブロックと、それとは別のポリマー同士のエステル結合からなるブロックとによって構成されているブロック共重合体であってもよい。広義のポリエステル樹脂(ポリエステル系共重合体)としては、例えば、上述した狭義のポリエステルに相当するブロックと、本明細書に別記されている狭義のポリアミド樹脂および/またはビニル樹脂に相当するブロックとによって構成されている、ブロック共重合体が挙げられる。あるいは、1つのモノマーが3個以上の官能基を有し、エステル結合を主体とする2種類以上の結合によって架橋構造を形成している(ある結合が主鎖を形成し、別の結合が側鎖における架橋を形成している)ような共重合体も広義のポリエステル樹脂(ポリエステル系共重合体)として挙げられる。
 本発明において「セルロースまたはその誘導体」は、植物繊維等の主成分となっている天然のポリマーであるセルロース、またはセルロースを原料としてそれに化学的な処理を施すことにより得られる半合成的なポリマーを包含する。典型的なセルロース誘導体としては、例えば、酢酸セルロース、プロピオン酸セルロース、硝酸セルロース、エチルセルロース、カルボキシメチルセルロースなどを挙げることができるが、本発明におけるセルロース誘導体はこれらに限定されるものではなく、当業者によってセルロースまたはその誘導体に該当すると理解される様々なポリマーを用いることができる。
 本発明において「ビニル樹脂」は、1種または2種以上のモノマー(ビニル化合物)同士がビニル基における付加重合によって結合している構造を有するポリマーを全般的に指す。代表的なビニル樹脂としては、例えば、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルアセタール、ポリスチレンが挙げられる。また、ビニル樹脂には、スチレンをモノマーとして含む単独重合体であるポリスチレン(狭義のスチレン樹脂)の他、スチレンおよび他のビニル化合物の共重合体(広義のスチレン(系)樹脂)も包含される。ポリスチレン以外のスチレン系樹脂としては、例えば、ハードセグメントとしてのポリスチレンと、ソフトセグメントとしてのポリブタジエンまたはポリイソプレンとからなるブロック共重合体であるスチレン系熱可塑性エラストマー(TPS);スチレンとアクリロニトリルの共重合体であるAS樹脂(SAN);アクリロニトリル、ブタジエンおよびスチレンの共重合体であるABS樹脂などを挙げることができる。このように、「ビニル樹脂」は、分子中の結合が全てビニル基同士の付加重合によって形成されている狭義のビニル樹脂のみならず、分子中の結合の主体がビニル基同士の付加重合によって形成されている(全ての結合の種類のうち、ビニル基同士の付加重合による結合が占める割合が最も高い)がそれ以外の結合も含まれている広義のビニル樹脂、いわばビニル系共重合体も包含する。狭義のビニル樹脂は、特定のポリマー同士のビニル基における付加重合によって構成されている単独重合体またはランダム共重合体であってもよいし、特定のポリマー同士のビニル基における付加重合からなるブロックと、それとは別のポリマー同士のビニル基における付加重合からなるブロックとによって構成されているブロック共重合体であってもよい。広義のビニル樹脂(ビニル系共重合体)としては、例えば、上述した狭義のビニル樹脂に相当するブロックと、本明細書に別記されている狭義のポリアミドおよび/またはポリエステルに相当するブロックとによって構成されている、ブロック共重合体が挙げられる。あるいは、1つのモノマーが3個以上の官能基を有し、ビニル基における付加重合を主体とする2種類以上の結合によって架橋構造を形成している(ある結合が主鎖を形成し、別の結合が側鎖における架橋を形成している)ような共重合体も広義のビニル樹脂(ビニル系共重合体)として挙げられる。
 本発明において「カーボン材料」とは、いわゆる炭素繊維に加えて、カーボンナノチューブ(CNT)、グラフェン、フラーレンおよびそれらの誘導体など、主に炭素原子で構成されている物質(化合物)を指す。本発明では、繊維素材として用いることできる、すなわち本発明の製造方法によって繊維化できるカーボン材料であれば、どのような製造方法によって調製されたものであるかは特に限定されず用いることができる。本発明においては基本的に、カーボン材料は単独で内相に溶解し、繊維化することができるが、他の繊維素材(合成樹脂)や増粘剤など、例えばポリアミド、ポリエステル、ポリアクリロニトリル、ポリビニルアルコール、セルロースもしくはその誘導体などと共に内相に溶解してもよい。炭素繊維としては、例えば、アクリル繊維から得られたPAN系(Polyacrylonitrile)炭素繊維、およびピッチから得られたピッチ系(PITCH)炭素繊維を挙げることができる。カーボンナノチューブ(CNT)としては、例えば、周壁の構成数に基づく分類による単層CNT(Single Wall Carbon Nanotube:SWNT)および多層CNT(Multi Wall Carbon Nanotube:MWNT)や、グラフェンシートの構造に基づく分類によるカイラル(らせん)型、ジグザグ型、およびアームチェア型などのCNTを挙げることができる。繊維の形成のしやすさの観点からは、アスペクト比が大きく(例えば1×10以上の)分子間力の大きなSWNTが好ましい。CNTの長さの上限は特に限定されないが、例えば10μmから数mm程度である。
 本発明の代表的な実施形態において、湿式紡糸繊維を製造するための繊維素材または湿式成膜フィルムを製造するためのフィルム素材として、ポリアミド樹脂の一例であるポリアミック酸、ポリエステル樹脂の一例であるポリエチレンテレフタラート(PET)、セルロースもしくはその誘導体の一例である酢酸セルロース、ポリエステル樹脂の一例であるポリ乳酸、ビニル樹脂の例であるポリスチレンまたはポリビニルアルコール、あるいはカーボン材料の一例である炭素繊維が用いられる。
 ポリアミック酸は、例えば下記構造式(I)に示すように、ピロメリット酸二無水物と4,4'-ジアミノジフェニルエーテルとがアミド結合によって連結している化学構造を有するポリマー(ポリアミド樹脂)の総称である。なお、このようなポリアミック酸を加熱または触媒により脱水、環化(イミド化)反応を進行させると、ポリイミド樹脂が得られる。ポリアミック酸は、そのモノマー(合成原料)によって、また集合体としての平均分子量や分子量分布によって性状が変動しうるが、本発明では実施形態に応じた適切な性状を有するポリアミック酸を用いればよい。ポリアミック酸は、公知の方法により様々な性状のものを合成することができ、また様々な性状のものを商業的に入手することが可能であり、本発明で用いるポリアミック酸がどのようにして準備されたものであるかは特に限定されるものではない。
Figure JPOXMLDOC01-appb-C000001
 ポリエチレンテレフタラート(PET)は、下記構造式(II)に示すように、エチレングリコールとテレフタル酸とがエステル結合によって連結している化学構造を有するポリマー(ポリエステル樹脂の一種)である。ポリエチレンテレフタラートは、その集合体としての平均分子量や分子量分布によって性状が変動しうるが、本発明では実施形態に応じた適切な性状を有するポリエチレンテレフタラートを用いればよい。ポリエチレンテレフタラートは、公知の方法により様々な性状のものを合成することができ、また様々な性状のものを商業的に入手することが可能であり、本発明で用いるポリエチレンテレフタラートがどのようにして準備されたものであるかは特に限定されるものではない。
Figure JPOXMLDOC01-appb-C000002
 酢酸セルロースは、下記構造式(III)に示すように、セルロースが有する水酸基(繰り返し単位あたり3つ存在する)が部分的に酢酸エステル化している化学構造を有するポリマー(セルロース誘導体の一種)である。酢酸セルロースは、その集合体としての重合度(例えば6%粘度が指標とされる。)や酢化度(酢酸エステル化している水酸基の程度であり、置換度、または百分率が指標とされる。)によって性状が変動しうるが、本発明では実施形態に応じた適切な性状を有する酢酸セルロースを用いればよい。酢酸セルロースは、公知の方法により様々な性状のものを合成することができ、また様々な性状のものを商業的に入手することが可能であり、本発明で用いる酢酸セルロースがどのようにして準備されたものであるかは特に限定されるものではない。
Figure JPOXMLDOC01-appb-C000003
 ポリ乳酸(PLA)は、下記構造式(IV)に示すように、乳酸同士がエステル結合によって連結している化学構造を有するポリマー(ポリエステル樹脂の一種)である。ポリ乳酸は、その集合体としての平均分子量や分子量分布によって性状が変動しうるが、本発明では実施形態に応じた適切な性状を有するポリ乳酸を用いればよい。ポリ乳酸は、公知の方法により様々な性状のものを合成することができ、また様々な性状のものを商業的に入手することが可能であり、本発明で用いるポリ乳酸がどのようにして準備されたものであるかは特に限定されるものではない。
Figure JPOXMLDOC01-appb-C000004
 ・良溶媒
 内相に含まれる良溶媒は、繊維/フィルム素材に応じて、それを十分に溶解することができる溶媒を適宜選択して用いることができる。良溶媒は、一般的には有機溶媒であり、無極性溶媒であってもよいし、極性溶媒(非プロトン性溶媒、プロトン性溶媒)であってもよい。良溶媒としては、例えば、脂肪族炭化水素(ヘキサン、オクタンなど)、芳香族炭化水素(ベンゼン、トルエン、キシレンなど)、エステル(酢酸メチル、酢酸エチルなど)、エーテル(環状エーテルを含む。ジエチルエーテル、テトラヒドロフランなど)、ケトン(環状ケトンを含む。アセトン、N-メチル-2-ピロリドンなど)、アルコール(1-ブタノール、1-プロパノール、2-プロパノール、エタノール、メタノールなど)、ハロゲン含有溶媒(クロロホルム、ジクロロメタン、ヘキサフルオロ-2-プロパノールなど)、炭酸エステル、有機酸、その他の有機溶媒(ジメチルスルホキシド、ジメチルアセトアミド、N,N-ジメチルホルムアミドなど)、水、イオン液体、超臨界流体が挙げられる。このような良溶媒は、いずれか1種を単独で用いても、2種以上を混合して用いてもよい。本発明における良溶媒としては、公知の湿式の製造方法において各種の繊維/フィルム素材を溶解するために用いられている良溶媒を、同様に用いることが可能である。
 ・内相に配合されるその他の成分
 内相には、必要に応じて、繊維/フィルム素材および良溶媒以外の物質が添加されていてもよい。例えば、繊維/フィルム素材と共に界面活性剤、塩類、金属化合物、薬物などの生理活性物質、ナノ粒子、触媒、モノマー、非溶媒(外相へ拡散することのない溶媒成分)などを良溶媒に溶解させ、その溶液を内相として用いることもできる。
 例えば、繊維/フィルム素材がカーボン材料である場合、分散剤としてノニオン界面活性剤、アニオン界面活性剤またはカチオン界面活性剤を内相に配合することができる。ノニオン界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ソルビタン脂肪酸エステル、しょ糖脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンポリオキシプロピレンブロックコポリマーが挙げられる。アニオン界面活性剤としては、例えば、コール酸ナトリウム、デオキシコール酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム、アルキルアルコール硫酸エステル塩、アルキルジフェニルエーテルジスルホン酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸エステルナトリウム、ジアルキルスルホコハク酸ナトリウム、アルキルアリルスルホコハク酸ナトリウム、N-ラウロイルサルコシンナトリウム、ポリオキシエチレンアルキルフェニルエーテル硫酸エステルナトリウム、(メタ)アクリロイルポリオキシアルキレン硫酸エステルナトリウム、アルキルアルコールリン酸エステル塩、胆汁酸塩が挙げられる。カチオン界面活性剤としては、例えば、テトラアルキルアンモニウムハライド、アルキルピリジニウムハライド、アルキルイミダゾリンハライドが挙げられる。
 ・貧溶媒
 外相に含まれる貧溶媒は、繊維/フィルム素材および良溶媒に応じて、良溶媒を拡散させて繊維/フィルム素材を析出させることができる溶媒を適宜選択して用いることができる。代表的な貧溶媒としては、水(純水)や有機溶媒が挙げられる。貧溶媒は、いずれか1種を単独で用いても、2種以上を混合して用いてもよい。本発明における貧溶媒としては、公知の湿式の製造方法において各種の繊維/フィルム素材を成形する(繊維/フィルム素材を溶解させた溶液を凝集させる)ために用いられている貧溶媒を、同様に用いることが可能である。
 また、水と、水との相溶性が高い他の溶媒とを混合して、貧溶媒として用いることもできる。例えば、水と、内水相の良溶媒として用いられる溶媒(例えばN-メチル-2-ピロリドン)との混合溶媒、つまり繊維/フィルム素材の拡散速度を制御する程度に水で希釈された良溶媒を、外水相の貧溶媒として用いることができる。
 ・外相に配合されるその他の成分
 外相には、必要に応じて、貧溶媒以外の物質が添加されていてもよい。例えば、非イオン性界面活性剤(商品名「Tween80」(一般名:ポリオキシエチレンソルビタンモノオレアート)、「アクリディック」(DIC株式会社)など)またはその他の界面活性剤(界面活性作用を有する化合物)を、外相に配合することができる。そのような界面活性剤には、内相に含まれる良溶媒と外相に含まれる貧溶媒との界面の張力を低下させる、または内相に含まれる良溶媒の外相における飽和溶解度を上昇させることにより、良溶媒が外相中に拡散(移行)し易くさせる作用がある。例えば、繊維/フィルム素材がポリアミック酸、良溶媒がN-メチル-2-ピロリドンの場合や、繊維/フィルム素材がポリ乳酸、良溶媒がテトラヒドロフランの場合に、貧溶媒としての水に、非イオン性界面活性剤を添加して用いることが好ましい。外相中の界面活性剤の濃度は、上述したような界面活性剤の作用を考慮しながら適宜調節することができ、繊維/フィルム素材によっては界面活性剤が必要ない場合もあるが、通常0~10重量%、好ましくは0~5重量%である。
 本発明の好ましい実施形態において、繊維/フィルム素材は例えば下記表に示す8種類のいずれかとすることができる。本明細書において、それらの8種類の繊維/フィルム素材を用いる実施形態を、それぞれ第1~第8実施形態と呼ぶ。各実施形態の繊維/フィルム素材に対して用いる良溶媒および貧溶媒は、例えば下記表に示すような組み合わせとすることができる。ただし、当業者であれば、表に示した繊維/フィルム素材についてその他の良溶媒および貧溶媒の組み合わせであってもよいことを理解することができ、また表に示されていない他の繊維/フィルム素材に対する良溶媒および貧溶媒の適切な組み合わせについても理解することができる。
Figure JPOXMLDOC01-appb-T000005
 ・調製方法
 内相および外相はそれぞれ、本発明の製造方法に供する前に、上記の繊維/フィルム素材、良溶媒、貧溶媒などを用いて、常法に従って混合および溶解して調製しておけばよい。
 内相中の繊維/フィルム素材の濃度は、用いる繊維/フィルム素材および良溶媒の種類、ならびに外相に含まれる貧溶媒およびその他の成分(界面活性剤等)の種類などに応じて、必要であれば内相の粘度が適切な範囲となるようにして、また得られる繊維/フィルムの性状(繊維径、フィルム厚、および複屈折率)や用途を考慮しながら、適宜調整することができる。例えば、繊維/フィルム素材の種類に応じて、内相中の繊維/フィルム素材の濃度と、外相及び内相の流量比とによって、得られる繊維の繊維径および複屈折率やフィルムの厚さを調節することができる。
 例えば、繊維/フィルム素材がポリアミド樹脂(代表的には第1実施形態のポリアミック酸、第8実施形態のポリアミノ酸)である場合、その内相中の濃度は、一般的に1~30重量%である。例えば、繊維/フィルム素材がポリアミック酸の場合は、一般的に1~20重量%、好ましくは1~10重量%であり、繊維/フィルム素材がポリアミノ酸の場合は、一般的に1~30重量%、好ましくは1~20重量%である。
 上記の内相を用いる場合、湿式紡糸繊維の製造方法における外相線速度および流量比は、一般的にはそれぞれ0.1ms-1以上および10以上であり、繊維素材がポリアミック酸の場合は、好ましくはそれぞれ0.5ms-1以上および100以上であり、繊維素材がポリアミノ酸の場合は、好ましくはそれぞれ0.5ms-1以上および100以上である。
 繊維/フィルム素材がポリエステル樹脂(代表的には第2実施形態のPET、第4実施形態のポリ乳酸)である場合、その内相中の濃度は、一般的に1~50重量%である。例えば、繊維/フィルム素材がPETの場合は、一般的に1~20重量%、好ましくは2~10重量%であり、ポリ乳酸の場合は、一般的に5~50重量%、好ましくは10~50重量%である。
 上記の内相を用いる場合、湿式紡糸繊維の製造方法における外相線速度および流量比は、一般的にはそれぞれ0.1ms-1以上および10以上であり、繊維素材がPETの場合は好ましくはそれぞれ1.0ms-1以上および300以上であり、繊維素材がポリ乳酸の場合は、好ましくはそれぞれ0.5ms-1以上および20以上である。
 上記の内相を用いる場合、湿式成膜フィルムの製造方法における流量比は、一般的には1以上であり、フィルム素材がポリ乳酸の場合は、好ましくは100以上である。この際の外相線速度は、一般的には0.1ms-1以上であってもよく、フィルム素材がポリ乳酸の場合は、好ましくは0.5ms-1以上であってもよい。
 繊維/フィルム素材がセルロースまたはその誘導体(代表的には第3実施形態の酢酸セルロース)である場合、その内相中の濃度は、一般的に1~30重量%、好ましくは2~20重量%である。
 上記の内相を用いる場合、湿式紡糸繊維の製造方法における外相線速度および流量比は、一般的にはそれぞれ0.1ms-1以上および10以上、好ましくはそれぞれ0.5ms-1以上および100以上である。
 繊維/フィルム素材がビニル樹脂(代表的には第5実施形態のポリスチレン、第6実施形態のポリビニルアルコール)である場合、その内相中の濃度は、一般的におよそ1~50重量%、好ましくは2~40重量%である。
 上記の内相を用いる場合、湿式紡糸繊維の製造方法における外相線速度および流量比は、一般的にはそれぞれ0.1ms-1以上および10以上であり、素材がポリスチレンまたはポリビニルアルコールの場合は、好ましくはそれぞれ0.2ms-1以上および25以上である。
 上記の内相を用いる場合、湿式成膜フィルムの製造方法における流量比は、一般的には1以上であり、フィルム素材がポリスチレンまたはポリビニルアルコールの場合は、好ましくは100以上である。この際の外相線速度は、一般的には0.1ms-1以上であってもよく、例えばフィルム素材がポリスチレンまたはポリビニルアルコールの場合は、好ましくは0.5ms-1以上、より好ましくは1.0ms-1以上であってもよい。
 繊維/フィルム素材がカーボン材料(代表的には第7実施形態の炭素繊維)である場合、その内相中の濃度は、一般的に0.1~2重量%、好ましくは0.1~0.5重量%である。
 上記の内相を用いる場合、湿式紡糸繊維の製造方法における外相線速度および流量比は、一般的にはそれぞれ0.1ms-1以上および10以上、好ましくはそれぞれ0.25ms-1以上および50以上である。
 <製造工程>
 本発明の湿式紡糸繊維および湿式成膜フィルムの製造方法は、どちらも一般的に、下記のような第1工程(押出工程)および第2工程(生成工程)を含み、必要に応じてさらに第3工程(巻取工程)を含むことができる。これらの第1~第3工程は、通常は同時進行で、連続的に行われるものである。
 ・第1工程:押出工程
 本発明の製造方法における第1工程:押出工程は、装置の内管の末端から、繊維/フィルム素材およびその良溶媒を含む内相を、装置の外管を流れる、繊維/フィルム素材の貧溶媒を含む外相中に、線状に押し出す工程である。
 この押出工程において、湿式紡糸繊維を製造する場合は、適切な内管径、オリフィス径、配管径およびオリフィス長を有する二重管型マイクロノズル装置を用い、内相および外相それぞれの流量を適切に設定することで、内相および外相の流量比と、内相と外相とが合流するオリフィス部における外相線速度を所定の範囲となるよう調節することにより、得られる繊維の断面径(繊維径)および複屈折率を所望のものとすることができる。また湿式成膜フィルムを製造する場合は、適切な内管の短径および長径、吐出口の短径および長径、オリフィスの短径および長径、オリフィス長、配管径を有する二重管型マイクロノズル装置を用い、内相および外相それぞれの流量を適切に設定することで、内相および外相の流量比と、好ましくは内相と外相とが合流するオリフィス部における外相線速度を所定の範囲となるよう調節することにより、得られるフィルムのアスペクト比および厚さ、好ましくは延伸度などを所望のものとすることができる。
 本発明では、内相流量に対する外相流量の比(流量比)が所定の値以上となるようにする。流量比は、内相および外相としてどのような繊維/フィルム素材、貧溶媒、良溶媒等を含むものを用いるかに応じて、またどのような繊維径および複屈折率(配向性)を有する繊維や、アスペクト比、厚さ、延伸度などを有するフィルムを製造するかに応じて、適宜調節することができ、その範囲は特に限定されるものではない。一般的に、流量比の値が大きくなるほど、内相の良溶媒の外相への拡散除去率も増大し、オリフィス部での内相の断面積が大幅に縮小されるため、湿式紡糸繊維にあっては、得られる繊維の断面径は細くなる一方、繊維の長手方向への線速度が増大して複屈折率は高くなる傾向にあり、湿式成膜フィルムにあっては、得られるフィルムの厚さは薄く、アスペクト比は大きくなり、好ましくは延伸度も大きくなる傾向にある。本発明における流量比は、湿式紡糸繊維および湿式成膜フィルムのそれぞれについて、例えば、1以上、10以上、100以上、1000以上、2000以上、5000以上、10000以上とすることができる。流量比の上限値は特に限定されないが、湿式紡糸繊維および湿式成膜フィルムのそれぞれについて、例えば100000以下、10000以下、5000以下、2000以下、1000以下などとすることができる。流量比は、高すぎると紡糸または成膜の操作が困難になり、また低すぎると(特に外相流量が低すぎると)紡糸または成膜の際にノズルが閉塞するなどして、所望の湿式紡糸繊維または湿式成膜フィルムが得られなくなることがあるので、そのような問題が起きない範囲で適宜調整すればよい。本発明の好ましい実施形態の一例として、特定の繊維素材について、従来の製造方法(特に湿式紡糸法)では得られない繊維径および複屈折率を達成できる流量比、例えば繊維径が1μm以下となる(つまりナノサイズの繊維径のファイバーを製造できる)流量比を選択することができる。本発明の好ましい実施形態の一例として、特定のフィルム素材について、従来の製造方法(特に湿式成膜法)では得られないアスペクト比およびフィルム厚、好ましくはさらに延伸度を達成できる流量比、例えばフィルム厚が1μm以下となる(つまりナノサイズの厚さのフィルムを製造できる)流量比を選択することができる。
 湿式紡糸繊維の製造方法における内相流量および外相流量は、流量比が上記の範囲となるよう、またオリフィス部における外相線速度が所定の範囲となるよう、適宜調整することができ、特に限定されるものではない。内相流量は、通常1~100μL min-1、好ましくは1~10μL min-1である。外相流量は、通常100~500000μL min-1、好ましくは1000~20000μL min-1である。
 オリフィス部における外相線速度は、次の計算式より求められる値とみなすことができる。
Figure JPOXMLDOC01-appb-M000006
 湿式紡糸繊維用の二重管マイクロノズル装置が図1[B]のような内部構造を有するとき、s=(b/2)π(b:オリフィス径)とみなすことができる。sは、必要に応じて、配向性を増大させるのに十分な外相線速度が得られるのであれば、内相流量および外相流量それぞれの値を考慮して、調整することができる。オリフィス部での外相線速度は、内相流量および外相流量およびsによって定まるものである。本発明の湿式紡糸繊維の製造方法における外相線速度は、例えば、0.1ms-1以上、0.5ms-1以上、1ms-1以上、5ms-1以上、10ms-1以上とすることができる。本発明の湿式紡糸繊維の製造方法における外相線速度の上限値は特に限定されないが、例えば、100ms-1以下、50ms-1以下、10ms-1以下とすることができる。
 湿式成膜フィルムの製造方法における内相および外相流量も、流量比が上記の範囲となるよう、また好ましくはオリフィス部における外相線速度が所定の範囲となるよう、適宜調整することができ、特に限定されるものではない。内相流量は、通常1~200μL min-1、好ましくは10~150μL min-1である。外相流量は、通常1000~200000μL min-1、好ましくは5000~100000μL min-1である。
 湿式成膜フィルムを製造する際のオリフィス部における外相線速度も、前記数式(1)による求められる値とみなすことができる。湿式成膜フィルム用の二重管マイクロノズル装置が図12[B]のような内部構造を有するとき、s=C×F(C:オリフィス短径、F:オリフィス長径)とみなすことができる。sは、必要に応じて、延伸率等を増大させるのに十分な外相線速度が得られるよう、内相流量および外相流量それぞれの値を考慮して、調整することができる。本発明の湿式成膜フィルムの製造方法の好ましい実施形態における外相線速度は、例えば、0.1ms-1以上、1ms-1以上、10ms-1以上、20ms-1以上、40ms-1以上とすることができる。本発明の湿式成膜フィルムの製造方法における外相線速度の上限値は特に限定されないが、例えば、200ms-1以下、160ms-1以下、100ms-1以下、10ms-1以下とすることができる。
 ・第2工程:生成工程
 本発明の製造方法における第2工程:生成工程は、上述したような押出工程により外相中に線状に押し出された内相に含まれている繊維素材を繊維化する工程、または上述したような押出工程により外相中にシート状に押し出された内相に含まれているフィルム素材をフィルム化する工程である。具体的には、内相中の良溶媒が外相に拡散することにより、内相中の繊維/フィルム素材を析出させて、繊維素材からなる繊維またはフィルム素材からなるフィルムを生成させる工程である。ここで、「拡散」とは、外相における良溶媒の飽和溶解度に達するまで、内相中の良溶媒が外相へ移行することを指す。この際、前述したような界面活性剤等の成分を外相に添加することにより、界面の乱れを安定化させて繊維径またはフィルム厚の均質性を高めるようにしてもよい。
 生成工程では、初期に形成された繊維もしくはフィルムを引き取ること(次に述べる第3工程における巻き取りであってもよい。)により、または繊維もしくはフィルムをオリフィスから離れた位置に回収することにより、先に生成した繊維もしくはフィルムによって、後の繊維もしくはフィルムの生成が妨げられることがなくなるため、効率的に生成工程を進行させることができる。
 ・第3工程:巻取工程
 本発明の製造方法において、必要に応じて設けることのできる第3工程:巻取工程は、上記生成工程により得られた繊維またはフィルムを巻き取る工程である。製造される繊維またはフィルムの用途を考慮したときに(例えばカーボン材料を素材とする繊維の応力、Ih/Ivなどの観点から)巻き取った方が好都合であれば、巻取工程を設ければよい。なお、「Ih/Iv」は、偏光ラマン測定において、繊維を偏光レーザー光に対して水平方向に測定したGバンドのラマン強度Ihと垂直方向に対して測定したGバンドのラマン強度Ivの比であり、Ih/Ivの値が大きいほど配向性が高いとされ、配向性の指標として用いることができる(WO2014/185497参照)。
 本発明の湿式紡糸繊維の製造方法では、前述したような外相線速度の調節等によってもたらされる作用効果により、延伸処理(押出工程における内相の押出速度よりも速い速度で繊維を巻き取ること)を行わなくとも、所望の繊維径および複屈折率を有する繊維を製造することができる。本発明の湿式成膜フィルムの製造方法でも同様に、延伸処理を行わなくても所望のアスペクト比、フィルム厚、好ましくは延伸度を有するフィルムを製造することができる。したがって、繊維またはフィルムに関する性状の更なる向上(例えば応力、Ih/Iv)などの、特別な目的による延伸処理が別途必要でない限り、本発明の巻取工程では延伸処理は行われない。延伸処理を行う場合の巻き取り速度は、繊維/フィルム素材に応じて適宜調節することができるが、例えば、繊維/フィルム素材としてカーボン材料またはその他の素材を用いる場合に、0.1~20cm s-1、好ましくは0.5~10cm s-1とすることができる。
 -湿式紡糸繊維-
 本発明の湿式紡糸繊維は、本発明の湿式紡糸繊維の製造方法によって得られるものであり、前述したような押出工程における線速度比等に応じて変化する繊維径および複屈折率(配向性)を有する。
 なお、本明細書でいう「繊維径」は、湿式紡糸繊維の複数箇所の繊維径(繊維の断面を円とみなしたときの直径)の平均値であって、例えば、走査型電子顕微鏡(SEM)を用いた観察により、十分な数(例えば50箇所)の繊維径を測定することにより算出することができる。
 本明細書でいう「複屈折率」も、湿式紡糸繊維の複数箇所の複屈折率の平均値であって、例えば、偏光顕微鏡を用いた観察により、十分な数(例えば50箇所)の位相差を測定し、その位相差と前記繊維径とを用いた下記式より算出することができる。
Figure JPOXMLDOC01-appb-M000007
 なお、湿式紡糸繊維(繊維素材)の種類を問わず、本発明の製造方法によって得られた同じ繊維素材で形成されている湿式紡糸繊維同士を比較すると、繊維径が小さいほど複屈折率は高い傾向があり、回帰式を作成することが可能である。本発明において、線速度比等の条件により繊維径を変化させた、同じ繊維素材で形成されている複数の湿式紡糸繊維について、上記のように繊維径および複屈折率を測定し、その回帰式を作成することにより、ある繊維径を有する本発明の製造方法によって得られた湿式紡糸繊維の複屈折率を(上記回帰式への繊維径の内挿または外挿により)推定することが可能である。ただし、本発明の製造方法によって得られる繊維径の低下と共に分子配向性を向上させた湿式紡糸繊維と、その他の製造方法によって得られる(従来の一般的な延伸方法等による、繊維径の低下に伴う分子配向性の向上の程度が本発明ほどではない)湿式紡糸繊維とでは、湿式紡糸繊維の繊維素材が同じであっても回帰式は異なる。
 本発明の湿式紡糸繊維の繊維径および複屈折率は、用途に応じて適宜調整され、その範囲は特に限定されるものではない。繊維径は、例えば1000μm以下、100μm以下、10μm以下または1μm以下とすることができる。繊維径の下限値は特に限定されないが、例えば1nm以上、10nm以上、100nm以上、1000nm以上などとすることができる。複屈折率は、例えば0.0001以上、0.001以上、0.01以上などとすることができる。複屈折率の上限値は特に限定されないが、例えば0.1以下、0.05以下、0.01以下などとすることができる。
 本発明の湿式紡糸繊維の素材は、前述したような二重管型マイクロノズル装置を用いた湿式紡糸繊維の製造方法によって繊維化できるものであればよく、特に限定されるものではない。端的に言えば、繊維素材およびその良溶媒を含む内相を、その繊維素材の貧溶媒を含む外相中に線状に押し出したときに、析出して繊維化することのできる素材であればよく、どのような繊維素材が本発明の湿式紡糸繊維の素材に該当するかは当業者にとって明らかである。代表的な繊維素材としては、前述したような、ポリアミド、ポリエステル、セルロースもしくはその誘導体、またはカーボン材料が挙げられる。
 繊維素材がポリアミド樹脂(代表的には第1実施形態のポリアミック酸および第8実施形態のポリアミノ酸)である場合、繊維径および複屈折率は、一般的にはそれぞれ約50μm以下および約0.001以上、好ましくはそれぞれ20μm以下および0.005以上、より好ましくはそれぞれ10μm以下および0.01以上である。
 繊維素材がポリエステル樹脂(代表的には第2実施形態のPET、第4実施形態のポリ乳酸)である場合、繊維径および複屈折率は、一般的にはそれぞれ約100μm以下および約0.001以上、好ましくはそれぞれ50μm以下および0.002以上である。
 繊維素材がセルロースまたはその誘導体(代表的には第3実施形態の酢酸セルロース)である場合、繊維径および複屈折率は、一般的には約50μm以下および約0.001以上、好ましくはそれぞれ10μm以下および0.005以上である。
 繊維素材がビニル樹脂(代表的には第5実施形態のポリスチレン、第6実施形態のポリビニルアルコール)である場合、繊維径および複屈折率は、一般的には約100μm以下および約0.001以上、好ましくはそれぞれ50μm以下(ポリビニルアルコールの場合はより好ましくは10μm以下)および0.002以上である。
 繊維素材がカーボン材料(代表的には第7実施形態の炭素繊維)である場合、繊維径および複屈折率は、一般的には約50μm以下および約0.001以上、好ましくはそれぞれ20μm以下および0.002以上である。
 本発明の湿式紡糸繊維の用途は特に限定されるものではなく、湿式紡糸繊維素材繊維素材や、繊維径および複屈折率(配向性)などに適した、様々な目的のために本発明の湿式紡糸繊維を利用することができる。例えば、従来のいわゆるナノファイバー(ナノ繊維)と同様に、医療用器具(生体内埋込材料、DDS、縫合糸、人工血管等)、化粧用器具、細胞培養用器具(増殖用足場(スキャフォールド)等)、フィルター、電池用素材、電磁波遮蔽材、導電性材料、熱伝導性材料、衣料、繊維強化プラスチック、塗装材などの材料として用いることができる。
 -湿式成膜フィルム-
 本発明の湿式成膜フィルムは、本発明の湿式成膜フィルムの製造方法によって得られるものであり、前述したような押出工程における内相流量および外相流量(流量比)、好ましくはさらに外相線速度比に応じて変化する、アスペクト比およびフィルム厚、好ましくはさらに延伸度を有する。
 なお、本明細書でいう「フィルム厚」は、湿式成膜フィルムの複数箇所のフィルム厚の平均値であって、例えば、SEMを用いた観察により、十分な数(例えば50箇所)のフィルム厚を測定することにより算出することができる。同様に「アスペクト比」も、湿式成膜フィルムの複数箇所のアスペクト比の平均値であって、例えば、SEMを用いた観察により、十分な数(例えば50箇所)のフィルム厚および横手方向の幅を測定し、アスペクト比(横手方向の幅/フィルム厚)に換算することにより、算出することができる。
 本発明の湿式成膜フィルムのフィルム厚は、用途に応じて適宜調整され、その範囲は特に限定されるものではない。フィルム厚は、例えば1000μm以下、100μm以下、10μm以下または1μm以下とすることができる。フィルム厚の下限値は特に限定されないが、例えば1nm以上、10nm以上、100nm以上、1000nm以上などとすることができる。アスペクト比は、例えば100以上、1000以上などとすることができる。アスペクト比の上限値は特に限定されない。
 本発明の湿式成膜フィルムの素材は、前述したような二重管型マイクロノズル装置を用いた湿式成膜フィルムの製造方法によってフィルム化できるものであればよく、特に限定されるものではない。端的に言えば、フィルム素材およびその良溶媒を含む内相を、そのフィルム素材の貧溶媒を含む外相中にシート状に押し出したときに、析出してフィルム化することのできる素材であればよく、どのようなフィルム素材が本発明の湿式成膜フィルムの素材に該当するかは当業者にとって明らかである。代表的なフィルム素材としては、前述したような、ポリアミド、ポリエステル、セルロースもしくはその誘導体、またはカーボン材料が挙げられる。
 フィルム素材がポリエステル樹脂(代表的には第4実施形態のポリ乳酸)である場合、フィルム厚は、好ましくは1000μm以下、より好ましくは500μm以下である。アスペクト比は、好ましくは100以上、より好ましくは1000以上である。
 フィルム素材がビニル樹脂(代表的には第5実施形態のポリスチレン、第6実施形態のポリビニルアルコール)である場合、フィルム厚は、好ましくは2000μm以下、より好ましくは1000μm以下、さらに好ましくは500μm以下である。アスペクト比は、好ましくは100以上、より好ましくは1000以上である。
 本発明の湿式成膜フィルムの用途は特に限定されるものではなく、湿式成膜フィルム素材や、フィルム厚およびアスペクト比などに適した、様々な目的のために本発明の湿式成膜フィルムを利用することができる。例えば、医療用器具(生体内埋込材料、DDS、縫合糸、人工血管等)、化粧用器具、細胞培養用器具(増殖用足場(スキャフォールド)等)、フィルター、電池用素材、電磁波遮蔽材、導電性材料、熱伝導性材料、衣料、繊維強化プラスチック、塗装材などの材料として用いることができる。
 以下、図1に示す内部構造(特に図1[B]に示す各部位のサイズを有するもの、オリフィス断面積は、(b/2)π=約3.14×10-8)を有する二重管型マイクロノズル装置を用いて、代表的な繊維素材である、ポリアミック酸、ポリエチレンテレフタラート(PET)、酢酸セルロース、ポリ乳酸(PLA)、ポリスチレン(PS)、およびポリビニルアルコール(PVA)からなる湿式紡糸繊維を製造した実施形態(実施例1~18)、ならびに図20に示す内部構造(特に図20[B]に示す各部位のサイズを有するもの、オリフィス断面積は4×10-7)を有する二重管型マイクロノズル装置を用いて、代表的なフィルム素材である、ポリスチレン(PS)、ポリ乳酸(PLA)、およびポリビニルアルコール(PVA)からなる湿式成膜フィルムを製造した実施形態(実施例19~21)に基づき、本発明をより具体的に説明する。しかしながら本発明がこれらの二重管型マイクロノズル装置ならびに繊維素材およびフィルム素材を用いる実施形態によって限定的に解釈されるべきものでないことは当業者にとって明らかである。実施例で用いた二重管型マイクロノズル装置とは異なるサイズの内部構造を有する二重管型マイクロノズル装置や、実施例で用いた繊維素材およびフィルム素材以外の湿式紡糸繊維の繊維素材および湿式成膜フィルムのフィルム素材を用いた場合も、同様にして本発明を実施できることを当業者は理解することができる。
 [実施例1]ポリアミック酸ファイバー
 表2に示す条件で、内相、外相それぞれの溶液を調製し、湿式紡糸繊維用の所定の二重管型マイクロノズル装置を用いて、ポリアミック酸からなる湿式紡糸繊維(ポリアミック酸ファイバー)を製造した。ポリアミック酸としては、ピロメリット酸二無水物と4,4'-ジアミノジフェニルエーテルとがアミド結合によって連結している、前記構造式で表されるもの(Poly(pyromellitic dianhydride-co-4,4’-oxydianiline),amic acid solution、15-16 wt% N-Methyl-2-pyrrolidone溶液、Sigma Aldrich製)を用いた。
 図2[A]に、表2のSample 1-10のSEM写真を示す。この条件では平均直径(繊維径)が約3μmのポリアミック酸ファイバーが得られた。
 図2[B]に、表2に示される内相流量および外相流量から算出される流量比(外相流量/内相流量)と、その条件下で得られたポリアミック酸ファイバーの各サンプルの繊維径および複屈折率を示す。図2[B]より、流量比の増加に伴って、得られるポリアミック酸ファイバーの直径が減少すること、その一方で複屈折率は増加する傾向を示すことが分かる。この結果より、流量比が増加するにつれて、ファイバー内のポリアミック酸分子の長軸方向への分子配向性が向上することが示唆された。
Figure JPOXMLDOC01-appb-T000008
 [実施例2]ポリエチレンテレフタラート(PET)ファイバー
 表3に示す条件で、内相、外相それぞれの溶液を調製し、湿式紡糸繊維用の所定の二重管型マイクロノズル装置を用いて、PETからなる湿式紡糸繊維(PETファイバー)を製造した。なお、実施例で用いたPETはSigma Aldrich製の市販品(Mw:130,000)である。
 図3[A]に、表3のSample 2-4のSEM写真を示す。この条件では平均直径(繊維径)が約1.5μmのPETファイバーが得られた。
 図3[B]に、表3に示される内相流量および外相流量から算出される流量比(外相流量/内相流量)と、その条件下で得られたPETファイバーの各サンプルの繊維径および複屈折率を示す。図3[B]より、実施例1と同様に、流量比の増加に伴って、得られるPETファイバーの繊維径は減少し、複屈折率は増加する傾向を示すことが分かる。この結果より、実施例1と同様に、流量比が増加するにつれて、ファイバー内のPET分子の長軸方向への分子配向性が向上することが示唆された。
Figure JPOXMLDOC01-appb-T000009
 [実施例3]酢酸セルロースファイバー
 表4に示す条件で、内相、外相それぞれの溶液を調製し、湿式紡糸繊維用の所定の二重管型マイクロノズル装置を用いて、酢酸セルロースからなる湿式紡糸繊維(酢酸セルロースファイバー)を製造した。なお、実施例で用いた酢酸セルロースは、置換度が5wt%のものである。
 図4[A]に、表4のSample 3-3のSEM写真を示す。この条件では平均直径(繊維径)が約2μmの酢酸セルロースファイバーが得られた。
 図4[B]に、表4に示される内相流量および外相流量から算出される流量比(外相流量/内相流量)と、その条件下で得られた酢酸セルロースファイバーの各サンプルの繊維径および複屈折率を示す。図4[B]より、実施例1等と同様に、流速比の増加に伴って、得られる酢酸セルロースファイバーの直径は減少し、複屈折率は増加する傾向を示すことが分かる。この結果より、実施例1等と同様に、流速比が増加するにつれて、ファイバー内の酢酸セルロース分子の長軸方向への分子配向性が向上することが示唆された。
Figure JPOXMLDOC01-appb-T000010
 [実施例4]ポリ乳酸(PLA)ファイバー(その1:内相がTFHを含む)
 表5に示す条件で、内相、外相それぞれの溶液を調製し、湿式紡糸繊維用の所定の二重管型マイクロノズル装置を用いて、PLAからなる湿式紡糸繊維(PLAファイバー)を製造した。なお、実施例4(および後記実施例5および実施例12)で用いたPLAは、武蔵野化学研究所製のポリ-DL-乳酸(後記実施例12において「PDLDA」と表記することがある。)(Mw:115,000)である。
 図5[A]に、表5のSample 4-7のSEM写真を示す。この条件では平均直径(繊維径)が約30μmのPLAファイバーが得られた。
 図5[B]に、表5に示される内相流量および外相流量から算出される流量比(外相流量/内相流量)と、その条件下で得られたPLAファイバーの各サンプルの繊維径および複屈折率を示す。外相線速度が33.3から167の間では、繊維径が減少傾向を示したが、それ以降はほとんど変化が見られなかった。複屈折率については、外相線速度が167までは増加し、その後はわずかに減少し、再度増加したが、全体としては、外相線速度の増加に伴って複屈折率も増加する傾向にあるといえる。この結果からも、外相線速度が高速である条件下での紡糸によって、長軸方向への分子配向性が向上したPLAファイバーが得られることが示唆された。
Figure JPOXMLDOC01-appb-T000011
 [実施例5]PLAファイバー(その2:内相が酢酸エチルを含む)
 表6に示す条件で、内相、外相それぞれの溶液を調製し、湿式紡糸繊維用の所定の二重管型マイクロノズル装置を用いて、PLAからなる湿式紡糸繊維(PLAファイバー)を製造した。
 図6に、表6に示される内相流量および外相流量から算出される流量比(外相流量/内相流量)と、その条件下で得られたPLAファイバーの各サンプルの繊維径および複屈折率を示す。
Figure JPOXMLDOC01-appb-T000012
 [実施例6]ポリスチレン(PS)ファイバー(その1:内相がTHFを含む)
 表7に示す条件で、内相、外相それぞれの溶液を調製し、湿式紡糸繊維用の所定の二重管型マイクロノズル装置を用いて、ポリスチレンからなる湿式紡糸繊維(PSファイバー)を製造した。なお、実施例6(および後記実施例7および実施例11)で用いたPSは、市販のポリスチレン(重合度約2,000)である。
 図7に、表7に示される内相流量および外相流量から算出される流量比(外相流量/内相流量)と、その条件下で得られたPSファイバーの各サンプルの繊維径および複屈折率を示す。
Figure JPOXMLDOC01-appb-T000013
 [実施例7]PSファイバー(その2:内相が酢酸エチルを含む)
 表8に示す条件で、内相、外相それぞれの溶液を調製し、湿式紡糸繊維用の所定の二重管型マイクロノズル装置を用いて、ポリスチレンからなる湿式紡糸繊維(PSファイバー)を製造した。
 図8に、表8に示される内相流量および外相流量から算出される流量比(外相流量/内相流量)と、その条件下で得られたPSファイバーの各サンプルの繊維径および複屈折率を示す。
Figure JPOXMLDOC01-appb-T000014
 [実施例8]ポリビニルアルコール(PVA)ファイバー
 表9に示す条件で、内相、外相それぞれの溶液を調製し、湿式紡糸繊維用の所定の二重管型マイクロノズル装置を用いて、ポリスチレンからなる湿式紡糸繊維(PSファイバー)を製造した。なお、実施例8(および後記実施例13)で用いたPVAは、「ポバール(登録商標)PVA-217」(株式会社クラレ、重合度1,700、けん化度87~89mol%)である。
 図9に、表9に示される内相流量および外相流量から算出される流量比(外相流量/内相流量)と、その条件下で得られたPSファイバーの各サンプルの繊維径および複屈折率を示す。
Figure JPOXMLDOC01-appb-T000015
 [実施例9]カーボンナノチューブ(CNT)ファイバー(その1:内相流量5μL/min、分散剤SC)
 表10に示す条件で、内相、外相それぞれの溶液を調製し、湿式紡糸繊維用の所定の二重管型マイクロノズル装置を用いて、カーボンナノチューブからなる湿式紡糸繊維(CNTファイバー)を製造した。なお、実施例で用いたCNTは、スーパーグロース法により得られた単層カーボンナノチューブ(SWCNT)(日本ゼオン製)である。
 図10に、表10に示される内相流量および外相流量から算出される流量比(外相流量/内相流量)と、その条件下で得られたCNTファイバーの各サンプルの繊維径および複屈折率を示す。
Figure JPOXMLDOC01-appb-T000016
 [実施例10]CNTファイバー(その2:内相流量10mL/min、分散剤SC)
 表11に示す条件で、内相、外相それぞれの溶液を調製し、湿式紡糸繊維用の所定の二重管型マイクロノズル装置を用いて、CNT(前記SWCNT)からなる湿式紡糸繊維(CNTファイバー)を製造した。
 図11に、表11に示される内相流量および外相流量から算出される流量比(外相流量/内相流量)と、その条件下で得られたCNTファイバーの各サンプルの繊維径および複屈折率を示す。
Figure JPOXMLDOC01-appb-T000017
 [実施例11]CNTファイバー(その3:巻取り速度)
 表11のSample 10-1と同じ条件(内相溶液、外相溶液、内相流量、外相流量および外相線速度)で紡糸する際に、1.9~8.4 cm sec-1の巻き取り速度で生成した繊維を巻き取り、Ih/Ivおよび応力を測定した。結果を図12[A]および[B]に示す。なお、図中の巻き取り速度が0のサンプルは、表11のSample 10-1に相当する。
 [実施例12]CNTファイバー(その4:内相流量5mL/min、分散剤COD)
 表12に示す条件で、内相、外相それぞれの溶液を調製し、湿式紡糸繊維用の所定の二重管型マイクロノズル装置を用いて、CNT(前記SWCNT)からなる湿式紡糸繊維(CNTファイバー)を製造した。
Figure JPOXMLDOC01-appb-T000018
 図13に、表12に示される内相流量および外相流量から算出される流量比(外相流量/内相流量)と、その条件下で得られたCNTファイバーの各サンプルのIh/Ivおよび繊維径を示す。
 [実施例13]CNTファイバー(その5:内相流量10mL/min、分散剤COD)
 表13に示す条件で、内相、外相それぞれの溶液を調製し、湿式紡糸繊維用の所定の二重管型マイクロノズル装置を用いて、CNT(前記SWCNT)からなる湿式紡糸繊維(CNTファイバー)を製造した。
Figure JPOXMLDOC01-appb-T000019
 図14に、表13に示される内相流量および外相流量から算出される流量比(外相流量/内相流量)と、その条件下で得られたCNTファイバーの各サンプルのIh/Ivおよび繊維径を示す。
 [実施例14]CNTファイバー(その6:巻取り速度)
 表12のSample 11-1と同じ条件(内相溶液、外相溶液、内相流量、外相流量および外相線速度)で紡糸する際に、1.9~8.4 cm sec-1の巻き取り速度で生成した繊維を巻き取り、Ih/Ivおよび応力を測定した。結果を図15[A]および[B]に示す。なお、図中の巻き取り速度が0のサンプルは、表12のSample 11-1に相当する。
 [実施例15]液晶高分子(PBLG)ファイバー(その1)
 表14に示す条件で、内相、外相それぞれの溶液を調製し、湿式紡糸繊維用の所定の二重管型マイクロノズル装置を用いて、液晶高分子:ポリ(γ-ベンジル-L-グルタミン酸)からなる湿式紡糸繊維(PBLGファイバー)を製造した。本実施例で用いたPBLGは、分子量70,000~150,000の市販品である。
 図16に、表14に示される内相流量および外相流量から算出される流量比(外相流量/内相流量)と、その条件下で得られたPBLGファイバーの各サンプルの繊維径および複屈折率を示す。
Figure JPOXMLDOC01-appb-T000020
 [実施例16]PBLGファイバー(その2)
 表15に示す条件で、内相、外相それぞれの溶液を調製し、湿式紡糸繊維用の所定の二重管型マイクロノズル装置を用いて、液晶高分子:ポリ(γ-ベンジル-L-グルタミン酸)からなる湿式紡糸繊維(PBLGファイバー)を製造した。本実施例で用いたPBLGは、下記の重合条件に従って得られた、分子量約10,100の合成品である。
 溶媒:1,4-ジオキサン
 開始剤:トリエチルアミン
 モノマー/開始剤:50/1
 反応温度:15℃
 反応時間:120h
 図17に、表15に示される内相流量および外相流量から算出される流量比(外相流量/内相流量)と、その条件下で得られたPBLGファイバーの各サンプルの繊維径および複屈折率を示す。
Figure JPOXMLDOC01-appb-T000021
 [実施例17]PBLGファイバー(その3)
 表16に示す条件で、内相、外相それぞれの溶液を調製し、湿式紡糸繊維用の所定の二重管型マイクロノズル装置を用いて、液晶高分子:ポリ(γ-ベンジル-L-グルタミン酸)からなる湿式紡糸繊維(PBLGファイバー)を製造した。本実施例で用いたPBLGは、実施例17と同じ合成品である。
 図18に、表16に示される内相流量および外相流量から算出される流量比(外相流量/内相流量)と、その条件下で得られたPBLGファイバーの各サンプルの繊維径および複屈折率を示す。
Figure JPOXMLDOC01-appb-T000022
 [実施例18]PBLGファイバー(その4)
 表17に示す条件で、内相、外相それぞれの溶液を調製し、湿式紡糸繊維用の所定の二重管型マイクロノズル装置を用いて、液晶高分子:ポリ(γ-ベンジル-L-グルタミン酸)からなる湿式紡糸繊維(PBLGファイバー)を製造した。本実施例で用いたPBLGは、実施例17と同じ合成品である。
 図19に、表17に示される内相流量および外相流量から算出される流量比(外相流量/内相流量)と、その条件下で得られたPBLGファイバーの各サンプルの繊維径および複屈折率を示す。
Figure JPOXMLDOC01-appb-T000023
 [実施例19]ポリスチレン(PS)フィルム
 表18に示す条件で、内相、外相それぞれの溶液を調製し、湿式成膜フィルム用の所定の二重管型マイクロノズル装置を用いて、ポリスチレンからなる湿式成膜フィルム(PSフィルム)を製造した。但し、Sample 17-6および17-7の条件ではデバイスの閉塞が起こり、PSフィルム生成物を得ることができなかった。
Figure JPOXMLDOC01-appb-T000024
 図21[A]に、Sample 17-1~17-5に従って、内相流量を110μL/minに固定した条件で外相流量を変化させたときのPSフィルム生成物のSEM画像を示す。この図より、いずれの条件においてもフィルム(フィルム形状の繊維)が得られ、(d)、(f)、(h)、(j)より、それらのフィルムの厚みはナノサイズであり、「ナノフィルム」と呼べるものであることが分かる。
 図21[B]に、Sample 17-1~17-5における、外相(連続相)の流速とPSフィルムの厚みとの関係を示す。この図より、外相流量が増加するにつれてフィルムの厚みが減少する傾向が見られ、最小で厚みが200nmのフィルム(ナノフィルム)が得られた。
 図22[A]に、Sample 17-8~17-11に従って、内相流量を55μL/minに固定した条件で外相流量を変化させたときのPSフィルム生成物のSEM画像を示す。外相流量を19,100~38,200μL/minとすることにより、デバイスの閉塞を起こさずに、ナノフィルムが得られた。
 図22[B]に、Sample 17-8~17-11における、外相流量とPSフィルムの厚みとの関係を示す。外相流量が増加するとフィルムの厚みは減少したが、外相流量が25,470μL/min以上の条件(Sample 17-9~17-11)ではほとんど変化がなかった。
 以上の結果から,本発明の製造方法(湿式成膜方法)でPSナノフィルムを調製でき、そのフィルム厚みは外相(連続相)の流量を変えることで制御できることが示唆された。
 [実施例20]ポリ-DL-乳酸(PDLLA)フィルム
 表19に示す条件で、内相、外相それぞれの溶液を調製し、湿式成膜フィルム用の所定の二重管型マイクロノズル装置を用いて、ポリ-DL-乳酸からなる湿式成膜フィルム(PDLLAフィルム)を製造した。
Figure JPOXMLDOC01-appb-T000025
 図23に、Sample 18-1に示す条件に従ったPDLLAフィルム生成物のSEM画像を示す。この条件では、フィルムの厚みは約340nmであった。
 図24に、Sample 18-2に示す条件に従ったPDLLAフィルム生成物のSEM画像を示す。この条件では、フィルムの厚みは約200nmであった。
 図25[A]に、Sample 18-3~18-7において、内相流量を110μL/minに固定した条件で外相流量を変化させたときのPDLLAフィルム生成物のSEM画像を示す。図25[B]に、Sample 18-3~18-7における、外相流量とPDLLAフィルムの厚みとの関係を示す。いずれの条件においてもPDLLAナノフィルムが得られた。
 [実施例21]ポリビニルアルコール(PVA)フィルム
 表20に示す条件で、内相、外相それぞれの溶液を調製し、湿式成膜フィルム用の所定の二重管型マイクロノズル装置を用いて、ポリビニルアルコールからなる湿式成膜フィルム(PVAフィルム)を製造した。但し、Sample 19-1の条件ではデバイスの閉塞が起こり、PVAフィルム生成物を得ることができなかった。
Figure JPOXMLDOC01-appb-T000026
 図26[A]に、Sample 19-2~19-5において、内相流量を57μL/minに固定した条件で外相流量を変化させたときのPVAフィルム生成物のSEM画像を示す。図26[B]に、Sample 19-1~19-5における、外相流量とPVAフィルムの厚みとの関係を示す。いずれの条件においてもPVAナノフィルムが得られた。

Claims (21)

  1.  二重管型マイクロノズル装置を用いた湿式紡糸繊維の製造方法であって、
     前記装置の内管の円形の末端から、繊維素材およびその良溶媒を含む内相を、前記装置の外管を流れる、前記繊維素材の貧溶媒を含む外相中に線状に押し出す工程において、
     前記内相と前記外相とが合流するオリフィス部における外相線速度が0.1ms-1以上であり、かつ前記内相の流量に対する前記外相の流量の比が1以上である、湿式紡糸繊維の製造方法。
  2.  前記内相が、繊維素材として、ポリアミド樹脂、ポリエステル樹脂、セルロースもしくはその誘導体、ビニル樹脂、またはカーボン材料を含有する、請求項1に記載の湿式紡糸繊維の製造方法。
  3.  前記繊維素材がポリアミド樹脂であり、前記外相線速度が0.1ms-1以上であり、かつ前記内相の流量に対する前記外相の流量の比が10以上である、請求項2に記載の湿式紡糸繊維の製造方法。
  4.  前記繊維素材がポリエステル樹脂であり、前記外相線速度が0.1ms-1以上であり、かつ前記内相の流量に対する前記外相の流量の比が10以上である、請求項2に記載の湿式紡糸繊維の製造方法。
  5.  前記繊維素材がセルロースもしくはその誘導体であり、前記外相線速度が0.1ms-1以上であり、かつ前記内相の流量に対する前記外相の流量の比が10以上である、請求項2に記載の湿式紡糸繊維の製造方法。
  6.  前記繊維素材がビニル樹脂であり、前記外相線速度が0.1ms-1以上であり、かつ前記内相の流量に対する前記外相の流量の比が10以上である、請求項2に記載の湿式紡糸繊維の製造方法。
  7.  前記繊維素材がカーボン材料であり、前記外相線速度が0.1ms-1以上であり、かつ前記内相の流量に対する前記外相の流量の比が10以上である、請求項2に記載の湿式紡糸繊維の製造方法。
  8.  二重管型マイクロノズル装置を用いた湿式紡糸繊維の製造方法によって得られ、当該製造方法において繊維化できる素材で形成されている、繊維径が1000μm以下、かつ複屈折率が0.0001以上である、湿式紡糸繊維。
  9.  前記繊維素材が、ポリアミド樹脂、ポリエステル樹脂、セルロースもしくはその誘導体、ビニル樹脂、またはカーボン材料を含有する、請求項8に記載の湿式紡糸繊維。
  10.  前記繊維素材がポリアミド樹脂であり、前記繊維径が50μm以下、かつ前記複屈折率が0.001以上である、請求項9に記載の湿式紡糸繊維。
  11.  前記繊維素材がポリエステル樹脂であり、前記繊維径が100μm以下、かつ前記複屈折率が0.001以上である、請求項9に記載の湿式紡糸繊維。
  12.  前記繊維素材がセルロースもしくはその誘導体であり、前記繊維径が50μm以下、かつ前記複屈折率が0.001以上である、請求項9に記載の湿式紡糸繊維。
  13.  前記繊維素材がビニル樹脂であり、前記繊維径が100μm以下、かつ前記複屈折率が0.001以上である、請求項9に記載の湿式紡糸繊維。
  14.  前記繊維素材がカーボン材料であり、前記繊維径が50μm以下、かつ前記複屈折率が0.001以上である、請求項9に記載の湿式紡糸繊維。
  15.  二重管型マイクロノズル装置を用いた湿式成膜フィルムの製造方法であって、
     前記装置の内管の矩形の末端から、フィルム素材およびその良溶媒を含む内相を、前記装置の外管を流れる、前記フィルム素材の貧溶媒を含む外相中にシート状に押し出す工程において、前記内相の流量に対する前記外相の流量の比が1以上である、湿式成膜フィルムの製造方法。
  16.  前記内相と前記外相とが合流するオリフィス部における外相線速度が0.1ms-1以上である、請求項15に記載の湿式成膜フィルムの製造方法。
  17.  前記内相が、フィルム素材として、ポリエステル樹脂またはビニル樹脂を含有する、請求項15に記載の湿式成膜フィルムの製造方法。
  18.  前記フィルム素材がポリエステル樹脂であり、前記内相の流量に対する前記外相の流量の比が1以上である、請求項15に記載の湿式成膜フィルムの製造方法。
  19.  前記フィルム素材がビニル樹脂であり、前記内相の流量に対する前記外相の流量の比が1以上である、請求項15に記載の湿式成膜フィルムの製造方法。
  20.  二重管型マイクロノズル装置を用いた湿式成膜フィルムの製造方法によって得られ、当該製造方法においてフィルム化できる素材で形成されている、フィルム厚が1000μm以下である、湿式成膜フィルム。
  21.  前記フィルム素材が、ポリエステル樹脂またはビニル樹脂を含有する、請求項20に記載の湿式成膜フィルム。
PCT/JP2019/038576 2018-09-28 2019-09-30 湿式紡糸繊維、湿式成膜フィルムおよびそれらの製造方法 WO2020067570A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980063750.4A CN112888813A (zh) 2018-09-28 2019-09-30 湿法纺丝纤维、湿法成膜薄膜及其制造方法
JP2020549514A JP7544377B2 (ja) 2018-09-28 2019-09-30 湿式紡糸繊維、湿式成膜フィルムおよびそれらの製造方法
US17/279,947 US20220154369A1 (en) 2018-09-28 2019-09-30 Wet spun fibers, wet formed film, and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-183868 2018-09-28
JP2018183868 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067570A1 true WO2020067570A1 (ja) 2020-04-02

Family

ID=69952959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038576 WO2020067570A1 (ja) 2018-09-28 2019-09-30 湿式紡糸繊維、湿式成膜フィルムおよびそれらの製造方法

Country Status (4)

Country Link
US (1) US20220154369A1 (ja)
JP (1) JP7544377B2 (ja)
CN (1) CN112888813A (ja)
WO (1) WO2020067570A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737393B (zh) * 2021-09-15 2022-06-07 陕西环保产业研究院有限公司 一种静电纺丝纳米纤维膜及其制备方法
CN115305705A (zh) * 2022-02-15 2022-11-08 浙江理工大学 一种具有垂直有序的微结构的二维材料复合纤维及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS346058B1 (ja) * 1956-04-19 1959-07-11
JPS4941127B1 (ja) * 1970-02-13 1974-11-07
WO2012029710A1 (ja) * 2010-08-30 2012-03-08 国立大学法人岡山大学 生分解性と生体親和性に優れたナノ繊維およびその製造方法
JP2015004151A (ja) * 2013-06-24 2015-01-08 国立大学法人 岡山大学 セルロースナノファイバーおよびその製造方法
WO2017102989A1 (en) * 2015-12-18 2017-06-22 Universidad Politécnica de Madrid Method for producing elongated structures such as fibers from polymer solutions by straining flow spinning
JP2018119224A (ja) * 2017-01-23 2018-08-02 株式会社クレハ ポリアミドナノファイバーの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682677B2 (en) * 2000-11-03 2004-01-27 Honeywell International Inc. Spinning, processing, and applications of carbon nanotube filaments, ribbons, and yarns

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS346058B1 (ja) * 1956-04-19 1959-07-11
JPS4941127B1 (ja) * 1970-02-13 1974-11-07
WO2012029710A1 (ja) * 2010-08-30 2012-03-08 国立大学法人岡山大学 生分解性と生体親和性に優れたナノ繊維およびその製造方法
JP2015004151A (ja) * 2013-06-24 2015-01-08 国立大学法人 岡山大学 セルロースナノファイバーおよびその製造方法
WO2017102989A1 (en) * 2015-12-18 2017-06-22 Universidad Politécnica de Madrid Method for producing elongated structures such as fibers from polymer solutions by straining flow spinning
JP2018119224A (ja) * 2017-01-23 2018-08-02 株式会社クレハ ポリアミドナノファイバーの製造方法

Also Published As

Publication number Publication date
JP7544377B2 (ja) 2024-09-03
CN112888813A (zh) 2021-06-01
JPWO2020067570A1 (ja) 2021-09-16
US20220154369A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
Szewczyk et al. The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology
Dadol et al. Solution blow spinning (SBS) and SBS-spun nanofibers: Materials, methods, and applications
Wang et al. Preparation of cellulose acetate-polyacrylonitrile composite nanofibers by multi-fluid mixing electrospinning method: Morphology, wettability, and mechanical properties
Wang et al. Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets
Okutan et al. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers
Azarniya et al. Effect of graphene oxide nanosheets on the physico-mechanical properties of chitosan/bacterial cellulose nanofibrous composites
Khalf et al. Cellulose acetate core–shell structured electrospun fiber: fabrication and characterization
Jia et al. Superhydrophobic (polyvinylidene fluoride-co-hexafluoropropylene)/(polystyrene) composite membrane via a novel hybrid electrospin-electrospray process
Tijing et al. Two-nozzle electrospinning of (MWNT/PU)/PU nanofibrous composite mat with improved mechanical and thermal properties
AK S et al. Fabrication of poly (Caprolactone) nanofibers by electrospinning
WO2020067570A1 (ja) 湿式紡糸繊維、湿式成膜フィルムおよびそれらの製造方法
Aijaz et al. Novel optimised highly aligned electrospun PEI-PAN nanofibre mats with excellent wettability
JPH11512492A (ja) 中空ポリマファイバを紡糸する装置および方法
Gu et al. High-efficiency production of core-sheath nanofiber membrane via co-axial electro-centrifugal spinning for controlled drug release
CN106149203A (zh) 一种载药纳米纤维膜及其应用
WO2021015078A1 (ja) カーボンナノチューブ含有セルロース繊維およびその製造方法
Song et al. Fiber alignment and liquid crystal orientation of cellulose nanocrystals in the electrospun nanofibrous mats
US20120021217A1 (en) Fibers with an activated surface and method of making same by extrusion
Heseltine et al. Fiber formation from silk fibroin using pressurized gyration
Jafarpour et al. Electrospinning of ternary composite of PMMA-PEG-SiO2 nanoparticles: Comprehensive process optimization and electrospun properties
Bonakdar et al. Highly porous biobased membranes via electrospinning of PBS and CTAB
Arbab et al. Simultaneous effects of polymer concentration, jet-stretching, and hot-drawing on microstructural development of wet-spun poly (acrylonitrile) fibers
US20040086591A1 (en) Multiple passage extrusion apparatus
El-Aassar et al. Chemical crosslinking of poly (vinyl alcohol)/poly ethylene glycol with glutaraldehyde nanofibers
JPS6039404B2 (ja) 中空繊維状膜及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549514

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866390

Country of ref document: EP

Kind code of ref document: A1