WO2020067506A1 - 鉄道車輪 - Google Patents

鉄道車輪 Download PDF

Info

Publication number
WO2020067506A1
WO2020067506A1 PCT/JP2019/038360 JP2019038360W WO2020067506A1 WO 2020067506 A1 WO2020067506 A1 WO 2020067506A1 JP 2019038360 W JP2019038360 W JP 2019038360W WO 2020067506 A1 WO2020067506 A1 WO 2020067506A1
Authority
WO
WIPO (PCT)
Prior art keywords
proeutectoid cementite
cementite
railway wheel
less
width
Prior art date
Application number
PCT/JP2019/038360
Other languages
English (en)
French (fr)
Inventor
健人 前島
久保田 学
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to US17/276,510 priority Critical patent/US12049102B2/en
Priority to CN201980063645.0A priority patent/CN112752859B/zh
Priority to JP2020518748A priority patent/JP6737427B1/ja
Priority to EP19866642.2A priority patent/EP3859030A4/en
Priority to AU2019346218A priority patent/AU2019346218B2/en
Publication of WO2020067506A1 publication Critical patent/WO2020067506A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B17/00Wheels characterised by rail-engaging elements
    • B60B17/0006Construction of wheel bodies, e.g. disc wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B17/00Wheels characterised by rail-engaging elements
    • B60B17/0003Wheel bodies characterised by use of non-metallic material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/34Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tyres; for rims
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2360/00Materials; Physical forms thereof
    • B60B2360/10Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2360/00Materials; Physical forms thereof
    • B60B2360/10Metallic materials
    • B60B2360/102Steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Definitions

  • the present disclosure relates to railway wheels.
  • Rail cars run on the rails that make up the tracks.
  • a railway vehicle has a plurality of railway wheels.
  • the railway wheel supports the vehicle, contacts the rail, and moves while rotating on the rail.
  • Railway wheels are worn by contact with rails.
  • an increase in the weight loaded on rail vehicles and an increase in speed of rail vehicles have been promoted.
  • improvement in wear resistance of railway wheels is required.
  • Patent Document 1 JP-A-9-202937
  • Patent Document 2 JP-A-2012-107295
  • Patent Document 3 JP-A-2013-231212
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-315928
  • the railway wheel disclosed in Patent Document 1 has, in mass%, C: 0.4 to 0.75%, Si: 0.4 to 0.95%, Mn: 0.6 to 1.2%, and Cr: It contains 0 to less than 0.2%, P: less than 0.03%, and S: 0.03% or less, with the balance being Fe and other unavoidable impurities.
  • a region from the surface of the wheel tread portion to at least a depth of 50 mm has a pearlite structure.
  • the method for manufacturing a railway wheel disclosed in Patent Document 1 discloses a method in which a cooling curve of a wheel tread portion passes through a pearlite generation region in a continuous cooling transformation curve diagram and is on a longer time side than a martensitic transformation curve. Including a quenching step of cooling.
  • the steel for wheels disclosed in Patent Document 2 is, by mass%, C: 0.65 to 0.84%, Si: 0.02 to 1.00%, Mn: 0.50 to 1.90%, Cr : 0.02 to 0.50%, V: 0.02 to 0.20%, S ⁇ 0.04%, P ⁇ 0.05%, Cu ⁇ 0.20%, Ni ⁇ 0.20%
  • the balance has a chemical composition of Fe and impurities.
  • This chemical composition further satisfies the following relationship: [34 ⁇ 2.7 + 29.5 ⁇ C + 2.9 ⁇ Si + 6.9 ⁇ Mn + 10.8 ⁇ Cr + 30.3 ⁇ Mo + 44.3 ⁇ V ⁇ 43] and [0.76 ⁇ exp (0.05 ⁇ C) ⁇ exp ( 1.35 ⁇ Si) ⁇ exp (0.38 ⁇ Mn) ⁇ exp (0.77 ⁇ Cr) ⁇ exp (3.0 ⁇ Mo) ⁇ exp (4.6 ⁇ V) ⁇ 25].
  • Patent Document 2 describes that this vehicle steel is excellent in wear resistance, rolling contact fatigue resistance, and spoke ring resistance by satisfying the above chemical composition and the above formula.
  • the steel for wheels disclosed in Patent Document 3 is, by mass%, C: 0.65 to 0.84%, Si: 0.4 to 1.0%, Mn: 0.50 to 1.40%, Cr : 0.02 to 0.13%, S: 0.04% or less, V: 0.02 to 0.12%, and Fn1 defined by the formula (1) is 32 to 43; Fn2 represented by (2) is 25 or less, and the balance consists of Fe and impurities.
  • Patent Document 3 describes that this wheel steel has the above chemical composition, and that Fn1 and Fn2 satisfy the above ranges, thereby exhibiting excellent wear resistance, rolling contact fatigue resistance, and spoke ring resistance. I have.
  • the railway vehicle wheel disclosed in Patent Document 4 has, in mass%, C: 0.85 to 1.20%, Si: 0.10 to 2.00%, Mn: 0.05 to 2.00%, If necessary, one or more of Cr, Mo, V, Nb, B, Co, Cu, Ni, Ti, Mg, Ca, Al, Zr, and N are contained in a predetermined amount, and the balance is Fe and An integrated railway vehicle wheel made of steel containing a chemical component consisting of other unavoidable impurities, wherein at least a part of a tread surface and / or a flange surface of the wheel has a pearlite structure.
  • the life of the railcar wheel depends on the amount of wear on the tread surface and the flange surface (paragraph [0002] of Patent Literature 4). It is described that it depends on thermal cracks on the tread and flange surfaces that occur as soon as possible. And it is described that the wear resistance and the thermal crack of a tread surface and a flange surface can be suppressed because the railcar wheel has the above configuration.
  • the railway wheel proposed in Patent Document 1 has an appropriate hardenability and a property of obtaining a pearlite structure, so that the Cr content is kept low and an appropriate amount of Si is contained.
  • the C content of the railway wheel described in Patent Document 1 is 0.4 to 0.75%, and this wheel is made of so-called hypoeutectoid steel. Therefore, there is a limit in improving the wear resistance.
  • an example of a method of manufacturing a railway wheel is as follows.
  • the steel slab is hot worked to form a railway wheel shaped intermediate product.
  • Heat treatment (tread quenching) is performed on the formed intermediate product.
  • the tread surface and the flange portion of the intermediate product are rapidly cooled.
  • fine pearlite having high wear resistance is generated in the matrix structure of the surface layer portion of the tread.
  • a hardened layer made of martensite or made of martensite and bainite
  • the quenched layer is subject to wear. Therefore, after the tread quenching, the quenched layer formed on the outermost layer of the tread is removed by cutting to expose the fine pearlite to the tread.
  • railway vehicle wheels made of hypereutectoid steel have excellent wear resistance.
  • the proeutectoid cementite is formed in the railway wheel, for example, in a plate portion and / or a boss portion of the railway wheel. Is easily generated.
  • Proeutectoid cementite reduces the toughness of the steel.
  • the thickness of the plate portion is smaller than that of the boss portion and the rim portion. Therefore, a decrease in toughness due to pro-eutectoid cementite may lead to breakage of the wheel, particularly in the plate portion.
  • An object of the present disclosure is to provide a railway wheel having excellent toughness even when the C content is as high as 0.80% or more.
  • the railway wheel according to the present disclosure Rim part, Boss part, A plate portion disposed between the rim portion and the boss portion and connected to the rim portion and the boss portion;
  • the chemical composition of the railway wheel is, in mass%, C: 0.80 to 1.60%, Si: 1.00% or less, Mn: 0.10-1.25%, P: 0.050% or less, S: 0.030% or less, Al: 0.010 to 0.650%, N: 0.0030 to 0.0200%, Cr: 0 to 0.60%, V: 0 to 0.12%, and
  • the balance consists of Fe and impurities
  • the area ratio of pearlite is 85.0% or more
  • the area ratio of proeutectoid cementite is 0.90 to 15.00%
  • the defined average value of the width W of the proeutectoid cementite is 0.95 ⁇ m or less.
  • a in the formula (1) is an area ( ⁇ m 2 ) of the pro-eutectoid cementite, and P is an outer peripheral length ( ⁇ m) of the pro-eutectoid cementite.
  • the railway wheel according to the present disclosure Rim part, Boss part, A plate portion disposed between the rim portion and the boss portion and connected to the rim portion and the boss portion;
  • the chemical composition of the railway wheel is, in mass%, C: 0.80 to 1.60%, Si: 1.00% or less, Mn: 0.10-1.25%, P: 0.050% or less, S: 0.030% or less, Al: 0.010 to 0.650%, N: 0.0030 to 0.0200%, Cr: 0 to 0.60%, V: 0 to 0.12%, and
  • the balance consists of Fe and impurities
  • the area ratio of pearlite is 85.0% or more
  • the area ratio of proeutectoid cementite is 0.90 to 15.00%
  • the maximum width of the proeutectoid cementite is Is 1.80 ⁇ m or less.
  • the railway wheel according to the present disclosure has excellent toughness even when the C content is as high as 0.80% or more.
  • FIG. 1 is a sectional view parallel to the central axis of the railway wheel.
  • FIG. 2 is a diagram showing a heat pattern in a heat treatment simulating tread quenching.
  • FIG. 3 is a diagram showing a heat pattern in a heat treatment simulating tread quenching, which is different from FIG.
  • FIG. 4 is an image diagram showing the relationship between the isothermal transformation diagram of the steel having the chemical composition shown in Table 1 and the heat patterns of FIGS. 2 and 3.
  • FIG. 5 is a schematic diagram for explaining measurement positions in the Vickers hardness test.
  • FIG. 6 is a microstructure photograph image of Test No. 5 (0.90% C material) obtained by microstructure observation.
  • FIG. 7 is a microstructure photograph image of Test No. 8 (1.00% C material) obtained by microstructure observation.
  • FIG. 6 is a microstructure photograph image of Test No. 5 (0.90% C material) obtained by microstructure observation.
  • FIG. 7 is a microstructure photograph image of Test No. 8 (1.00% C material)
  • FIG. 8 shows the Vickers hardness (HV), the Charpy impact value (J / cm 2 ), and the presence or absence of proeutectoid cementite in hypereutectoid steel materials (0.90% C material and 1.00% C material).
  • FIG. 9 is a microstructure photograph image of Test No. 5 (0.90% C material) in Table 2 obtained by SEM.
  • FIG. 10 is a microstructure photograph image of Test No. 8 (1.00% C material) in Table 2 obtained by SEM.
  • FIG. 11 is a diagram showing the relationship between the proeutectoid cementite width and the Charpy impact value of Test Nos. 1, 2, 4, 5, 7, and 8 in Table 2.
  • FIG. 12 is a diagram in which binarization processing is performed on the microstructure photograph image shown in FIG. 9 to identify proeutectoid cementite.
  • FIG. 13 is a diagram in which a skeleton line obtained by performing a thinning process on the proeutectoid cementite of FIG. 12 is superimposed and displayed on the proeutectoid cementite.
  • FIG. 14 is a schematic diagram in which a part of the binarized pro-eutectoid cementite and the skeleton line 60 of the pro-eutectoid cementite are enlarged.
  • FIG. 15 is a diagram showing an optical microscope photograph image and an image after binarization processing.
  • FIG. 16 is a diagram illustrating an example of a cooling device for cooling an intermediate product.
  • FIG. 17 is a diagram showing a heat pattern in a heat treatment simulating tread quenching adopted in the example.
  • FIG. 1 is a cross-sectional view including the central axis of the railway wheel according to the present embodiment.
  • a railway wheel 1 has a disk shape and includes a boss 2, a plate 3, and a rim 4.
  • the boss 2 has a cylindrical shape and is arranged at the center of the railway wheel 1 in the radial direction of the railway wheel 1 (the direction perpendicular to the center axis).
  • the boss 2 has a through hole 21.
  • the central axis of the through-hole 21 coincides with the central axis of the railway wheel 1.
  • a rail axle (not shown) is inserted into the through hole 21.
  • the thickness T2 of the boss 2 is greater than the thickness T3 of the plate 3.
  • the rim portion 4 is formed at an outer peripheral edge of the railway wheel 1.
  • the rim 4 includes a tread 41 and a flange 42.
  • the tread 41 is connected to the flange 42.
  • the thickness T4 of the rim portion 4 is larger than the thickness T3 of the plate portion 3.
  • the plate 3 is disposed between the boss 2 and the rim 4 and is connected to the boss 2 and the rim 4. More specifically, the inner peripheral edge of the plate 3 is connected to the boss 2, and the outer peripheral edge of the plate 3 is connected to the rim 4.
  • the thickness T3 of the plate portion 3 is smaller than the thickness T2 of the boss portion 2 and the thickness T4 of the rim portion 4.
  • the diameter of the railway wheel 1 is not particularly limited, but is, for example, 700 mm to 1000 mm.
  • the present inventors first studied a chemical composition suitable for enhancing wear resistance of a railway wheel. As a result, in a railway wheel, even if the same hardness is obtained, it is better to increase the C content to 0.80% or more and to increase the hardness than to increase the hardness by increasing the V content. It was found that the wear resistance when used as a railway wheel was increased. Although this mechanism is not clear, the following items can be considered.
  • the tread of the railway wheel in use receives an external force (load) from the rail.
  • the cementite in the pearlite of the surface layer immediately below the tread is crushed by this external force, and the hardness is increased by dispersion strengthening. Further, the carbon in the crushed fine cementite is supersaturated with ferrite in pearlite to form a solid solution, and the hardness of the surface layer immediately below the tread is increased by solid solution strengthening.
  • the above-described mechanism increases the wear resistance of the railway wheel.
  • V is contained in steel
  • the hardness of the steel is increased by precipitation strengthening of V carbonitride.
  • V carbonitride is generated in the ferrite, it mainly increases the hardness of the ferrite. That is, although the content of V increases the hardness of ferrite, it does not significantly affect the refinement of pearlite. Therefore, although the wear resistance can be increased to some extent by containing V, the wear resistance cannot be increased as much as the dispersion strengthening by crushed cementite and the solid solution strengthening of C.
  • the present inventors considered that it is preferable to use hypereutectoid steel having a C content of 0.80 to 1.60% in the chemical composition of the railway wheel in order to enhance the wear resistance.
  • pro-eutectoid cementite is easily generated in railway wheels made of hypereutectoid steel having a C content of 0.80% or more. Proeutectoid cementite reduces the toughness of railway wheels.
  • the present inventors have studied a method of increasing toughness in a railway wheel made of hypereutectoid steel having a high C content.
  • the present inventors studied to increase the toughness of a railway wheel made of hypereutectoid steel by suppressing the formation of proeutectoid cementite.
  • it has been found that it is very difficult to completely suppress the generation of proeutectoid cementite in the case of a railway wheel made of hypereutectoid steel having a high C content.
  • the present inventors do not increase the toughness of railway wheels made of hypereutectoid steel by suppressing the formation of proeutectoid cementite, but on the assumption that proeutectoid cementite is formed, the form of proeutectoid cementite It was thought that the toughness of railway wheels made of hypereutectoid steel could be improved by controlling the temperature. Therefore, the present inventors further studied the relationship between the form of proeutectoid cementite generated in a railway wheel made of hypereutectoid steel and the toughness of the railway wheel.
  • the shape of the steel material was a round bar having a diameter of 20 mm and a length of 125 mm. Heat treatment of the heat pattern shown in FIGS. 2 and 3 was performed among the steel materials to change the form of proeutectoid cementite generated in the steel materials TP1 and TP2.
  • the heat patterns shown in FIGS. 2 and 3 indicate the temperature of the atmosphere of the heat treatment. That is, it indicates the temperature of the atmosphere in which the steel material is placed during the heat treatment.
  • the heat pattern HP1 in FIG. 2 is a heat pattern in which the residence time of the steel materials TP1 and TP2 in the production temperature range of proeutectoid cementite (720 ° C.) is increased in the steel materials TP1 and TP2.
  • the heat pattern HP2 in FIG. 3 the residence time of the steel material TP2 (1.00% C material) in the temperature range for the formation of proeutectoid cementite by quenching is shortened, or the steel material TP1 (0. In the case of (90% C material), the heat pattern does not pass through the temperature range for the formation of proeutectoid cementite.
  • FIG. 4 is an image diagram showing the relationship between the isothermal transformation diagrams of the steel materials TP1 and TP2 and the heat patterns HP1 and HP2 in FIGS. 2 and 3.
  • FIG. 4 shows proeutectoid cementite nose and pearlite nose in the chemical composition of steel materials TP1 and TP2.
  • the position of the pearlite nose is substantially the same between the steel TP1 (0.90% C material) and the steel TP2 (1.00% C material).
  • the proeutectoid cementite nose the steel material TP2 (1.00% C material, broken line in FIG. 4) is shifted to the left from the steel material TP1 (0.90% C material: solid line in FIG. 4). .
  • the cooling liquid is sprayed on the treads 41 shown in FIG. 1 to cool the railway wheels 1 while performing the quenching.
  • the thickness T2 of the boss 2 is greater than the thickness T3 of the plate 3, and the boss 2 is far from the rim 4 with which the coolant contacts. Therefore, in the tread quenching, the cooling speed of the boss portion 2 is lower than the cooling speed of the plate portion 3. Therefore, as shown in FIG. 2, in the heat pattern HP1, heat patterns HP11 and HP12 assuming the cooling speed in the boss portion 2 and heat patterns HP13 and HP14 assuming the cooling speed in the plate portion 3 are prepared. Similarly, as shown in FIG. 3, in the heat pattern HP2, a heat pattern HP21 assuming a cooling speed in the boss portion 2 and a heat pattern HP22 assuming a cooling speed in the plate portion 3 were prepared.
  • the heat patterns HP11 and HP12 assuming the cooling rate at the boss portion have different holding times at 720 ° C. Specifically, in the heat pattern HP11, the holding time at 720 ° C. was 47 minutes, and in the heat pattern HP12, the holding time at 720 ° C. was 17 minutes. In other words, it was assumed that the amount of pro-eutectoid cementite generated in the steel material heat-treated in the heat pattern HP11 was larger than the amount of pro-eutectoid cementite generated in the steel material heat-treated in the heat pattern HP12. Similarly, in FIG. 2, in the heat patterns HP13 and HP14 assuming the cooling rate in the plate portion 3, the holding time at 720 ° C. is different.
  • the holding time at 720 ° C. was 47 minutes
  • the holding time at 720 ° C. was 17 minutes. That is, it was assumed that the amount of pro-eutectoid cementite generated in the steel material heat-treated in the heat pattern HP13 was larger than the amount of pro-eutectoid cementite generated in the steel material heat-treated in the heat pattern HP14.
  • a plurality of steel materials TP1 were prepared, and a plurality of steel materials TP2 were prepared. Each steel material was subjected to a heat treatment using heat patterns HP11 to HP14, HP21 and HP22 simulating tread quenching. Specifically, test materials of Test Nos. 1 to 8 shown in Table 2 were produced by combining steel materials TP1 and TP2 and heat patterns HP11 to HP14, HP21 and HP22.
  • the Vickers hardness of the steel materials of Test Nos. 1 to 8 after the heat treatment was determined. Specifically, as shown in FIG. 5, in a cross section perpendicular to the longitudinal direction (Longitudinal-direction) of the steel material 100 of each test number, a center point P1 of the steel material 100 and a circle having a radius of 1 mm centered on the point P1 are shown.
  • the Vickers hardness (HV) was measured in accordance with JIS Z 2244 (2009) at five points P2 to P5 at a 90 ° pitch position. The test force at this time was 9.8 N (1.0 kgf). The average value of the obtained Vickers hardness was defined as the Vickers hardness (HV) of the test number.
  • U-notch test pieces in accordance with JIS Z 2242 (2005) were collected from the center position in the cross section perpendicular to the longitudinal direction of the steel material of each test number.
  • the cross section perpendicular to the longitudinal direction of the U notch test piece was a square of 10 mm ⁇ 10 mm, and the length of the U notch test piece in the longitudinal direction was 55 mm.
  • the longitudinal direction of the U-notch test piece was parallel to the longitudinal direction of the steel material.
  • a U-notch was formed at the center of the length of the U-notch test piece (that is, at the center of a length of 55 mm).
  • the notch depth was 2 mm, and the notch bottom radius was 1 mm.
  • a Charpy impact test in a room temperature atmosphere was performed.
  • the Charpy impact value (J / cm 2 ) was determined for each of the four U-notch test pieces for each test number, and the average value was defined as the Charpy impact value (J / cm 2 ) for that test number.
  • the microstructure of the steel material of each test number after the heat treatment was observed, and the presence or absence of proeutectoid cementite was investigated.
  • a sample for microstructure observation was collected from the center position of the cross section perpendicular to the longitudinal direction of the steel material of each test number after the heat treatment.
  • a cross section perpendicular to the longitudinal direction of the steel material was defined as an observation surface.
  • the observation surface of each sample was mirror-finished by mechanical polishing. Thereafter, the observation surface was etched using a sodium picrate solution (100 ml of water + 2 g of picric acid + 25 g of sodium hydroxide), which is a corrosive solution suitable for the appearance of proeutectoid cementite.
  • the sample was immersed in a boiled sodium picrate solution.
  • a photographic image was generated using a 500-fold optical microscope for an arbitrary field of view (200 ⁇ m ⁇ 200 ⁇ m) in the observation surface of the sample after etching.
  • the proeutectoid cementite formed at the former austenite grain boundary exhibits a black color. Therefore, the presence or absence of proeutectoid cementite could be confirmed.
  • FIG. 6 is a microstructure photograph image of Test No. 5 (0.90% C material) obtained by the above microstructure observation.
  • FIG. 7 is a microstructure photograph image of Test No. 8 (1.00% C material) obtained by the above microstructure observation. Referring to FIGS. 6 and 7, black regions (regions indicated by black arrows) in these photographic images are proeutectoid cementite.
  • the area ratio of proeutectoid cementite confirmed in the above visual field was determined. Specifically, the area of proeutectoid cementite in the visual field (200 ⁇ m ⁇ 200 ⁇ m) was determined. The ratio of the area of the obtained proeutectoid cementite to the total area of the visual field was defined as the proeutectoid cementite area ratio (%).
  • FIG. 8 shows the Vickers hardness (HV), the Charpy impact value (J / cm 2 ), and the presence or absence of proeutectoid cementite in hypereutectoid steel materials (0.90% C material and 1.00% C material).
  • FIG. 8 in Test Nos. 1, 2, 4, and 5 in which heat pattern HP1 was applied using steel material TP1 (0.90% C material), proeutectoid cementite was present in the microstructure. Therefore, the Charpy impact value was 8.5 J / cm 2 or less.
  • Test No. 1 Heat Pattern HP11
  • Test No. 2 Heat Pattern HP12
  • Test No. 1 was higher than that of Test No. 1. .
  • the Charpy impact values for Test Nos. 1 and 2 were comparable.
  • Test No. 4 Heating Pattern HP13
  • Test No. 5 Heat Pattern HP14
  • Test No. 5 having a shorter holding time at 720 ° C. has a higher Vickers hardness than Test No. 4.
  • the Charpy impact values of Test Nos. 4 and 5 were equivalent.
  • Test Nos. 3 and 6 using the steel material TP1 and applying the heat pattern HP2 (HP21 and HP22) no proeutectoid cementite was present in the microstructure. Therefore, the Charpy impact value was as high as 14 J / cm 2 or more.
  • Test Nos. 7 and 8 to which the heat pattern HP2 (HP21 and HP22) was applied using the steel material TP2 (1.00% C material), as in Test Nos. 1, 2, 4 and 5, the microstructure was the first. Precipitated cementite was present. However, despite the presence of pro-eutectoid cementite, the Charpy impact values of Test Nos. 7 and 8 were significantly higher than those of Test Nos. 1, 2, 4, and 5, which also had pro-eutectoid cementite, and were 14 J / It exceeded cm 2. In particular, when Test No. 2 and Test No. 7 were compared, the Charpy impact values were greatly different although the Vickers hardnesses of both were almost the same. Similarly, when Test No. 5 and Test No. 8 were compared, the Charpy impact values were greatly different although the Vickers hardnesses of both were almost the same.
  • FIG. 9 is a microstructure photograph image of Test No. 5 obtained by SEM.
  • FIG. 10 is a microstructure photograph image of Test No. 8 obtained by SEM.
  • a region surrounded by a white line is proeutectoid cementite (reference numeral 50).
  • the morphology of pro-eutectoid cementite generated in Test No. 8 having a high Charpy impact value is remarkably different from the morphology of pro-eutectoid cementite generated in Test No. 5 having a low Charpy impact value.
  • the proeutectoid cementite of Test No. 8 was formed such that the width of the proeutectoid cementite was narrower overall than the proeutectoid cementite of Test No. 5.
  • the present inventors thought that even if proeutectoid cementite was formed on the plate portion 3 of the railway wheel 1, if the width of the generated proeutectoid cementite was narrow, it was possible to suppress a decrease in toughness.
  • the present inventors paid attention to the width of pro-eutectoid cementite in the microstructure photograph image.
  • the present inventors have defined the following two indices for the width of proeutectoid cementite.
  • (B) Regulation using the maximum width of proeutectoid cementite as an index The average value of the width of proeutectoid cementite in the above (A) is described in Non-Patent Document 1. It can be obtained based on the described rectangle-like method (ribbon-like method).
  • the maximum width of the proeutectoid cementite in the above (B) can be determined by performing a thinning process which is one of the image processing methods.
  • the average value of the width W of the proeutectoid cementite is determined by the rectangular approximation method described in Non-Patent Document 1. Specifically, it is determined by the following method.
  • the above microstructure photographic image (200 ⁇ m ⁇ 200 ⁇ m) obtained by the above 500 ⁇ optical microscope is binarized by image processing to specify proeutectoid cementite.
  • the area A of the specified pro-eutectoid cementite is determined.
  • the outer peripheral length P (outer peripheral length) of the specified proeutectoid cementite is determined.
  • the proeutectoid cementite is a rectangle having an area A and an outer peripheral length P. Then, assuming that the cementite is rectangular, the long side of the rectangle is regarded as the length L of the proeutectoid cementite, and the short side of the rectangle is regarded as the width W of the proeutectoid cementite. That is, the proeutectoid cementite is regarded as a rectangle satisfying the following equations (a) and (b).
  • A L ⁇ W (a)
  • P 2 ⁇ (L + W) (b)
  • the width W of the proeutectoid cementite can be defined by the following expression (1) based on the expressions (a) and (b).
  • W 1/2 ⁇ (P / 2 ⁇ ((P / 2) 2 ⁇ 4A) 1/2 ) (1)
  • the width W of each proeutectoid cementite can be determined from the area A and the peripheral length P of each proeutectoid cementite specified in the observation visual field. Then, using the width W of each proeutectoid cementite, the average value of the width W of the proeutectoid cementite can be obtained.
  • each pro-eutectoid cementite specified in the observation visual field was subjected to the method described above.
  • the area A and the peripheral length P were determined.
  • the average value of the area A of the specified proeutectoid cementite was determined, and the average value of the outer peripheral length P was determined.
  • a pro-eutectoid cementite width W defined by the equation (1) was obtained.
  • the obtained proeutectoid cementite width W was defined as the average value ( ⁇ m) of the proeutectoid cementite width W for the test number. Then, a relationship between the obtained average value of the proeutectoid cementite width W and the Charpy impact value was obtained.
  • FIG. 11 is a diagram showing the relationship between the average value of the proeutectoid cementite width W of Test Nos. 1, 2, 4, 5, 7, and 8, and the Charpy impact value.
  • the Charpy impact value is 8.5 J / cm. 2 or less.
  • the Charpy impact value exceeds 8.5 J / cm 2 , and the pro-eutectoid cementite width W is further reduced.
  • the present inventors have found that in a railway wheel made of hypereutectoid steel, by controlling the form of proeutectoid cementite, specifically, the proeutectoid cementite width defined by the formula (1) is obtained.
  • the average value of W 0.95 ⁇ m or less, it was found that the Charpy impact value was more than 8.5 J / cm 2 and excellent toughness was obtained despite the presence of proeutectoid cementite.
  • FIG. 12 is a diagram in which binarization processing is performed on the microstructure photograph image shown in FIG. 9 to specify proeutectoid cementite.
  • the proeutectoid cementite 50 can be easily specified.
  • the proeutectoid cementite 50 in the microstructure is black, and the region other than the proeutectoid cementite (pearlite region) is white.
  • the specified pro-eutectoid cementite 50 is subjected to a thinning process.
  • the thinning process is a process of converting a binarized image (proeutectoid cementite 50) into a line image having a width of one pixel (one pixel), and is a well-known image processing method.
  • a line image obtained by the thinning processing is referred to as a “skeleton line”.
  • FIG. 13 is a diagram in which a skeleton line 60 obtained by performing a thinning process on the proeutectoid cementite 50 of FIG.
  • FIG. 14 is a schematic diagram in which a part of the binarized pro-eutectoid cementite 50 and the skeleton line 60 of the pro-eutectoid cementite 50 are enlarged.
  • a straight line is drawn perpendicular to skeleton line 60 at an arbitrary measurement point P of skeleton line 60.
  • a line segment L between two intersections with the contour of the proeutectoid cementite 50 is defined as the width of the proeutectoid cementite at the measurement point P.
  • a straight line perpendicular to the skeleton line 60 is drawn at the measurement point P ⁇ b> 1 of the skeleton line 60, and the straight line between the intersections of the two points with the contour of the proeutectoid cementite 50 is drawn.
  • the length of the line segment L1 is defined as the width of the proeutectoid cementite 50 at the measurement point P1.
  • the length of a line segment L2 perpendicular to the skeleton line 60 at the measurement point P2 is defined as the width of the proeutectoid cementite 50 at the measurement point P2.
  • a branch point BP where the skeleton line 60 branches may occur.
  • the skeleton line 60 in the reference circle Cref having a diameter of 1.5 ⁇ m and centered on the branch point BP is excluded from the measurement of the width of the proeutectoid cementite.
  • the length of the line segment L is also excluded from the measurement of the width of the proeutectoid cementite 50.
  • the line segment L3 of the measurement point P3 outside the reference circle Cref intersects with the point P4 on the skeleton line 60 in addition to the measurement point P3. That is, the line segment L3 intersects the skeleton line 60 at least twice. In this case, the line segment L3 is excluded from the measurement of the width of the proeutectoid cementite 50.
  • the maximum width of the proeutectoid cementite measured in each visual field is defined as the maximum width ( ⁇ m) of the proeutectoid cementite.
  • the present inventors measured the maximum width of proeutectoid cementite by the above method. As a result, it has been found that if the maximum width of the proeutectoid cementite is 1.80 ⁇ m or less, the Charpy impact value exceeds 8.5 J / cm 2 and excellent toughness can be obtained.
  • the railway wheel of the present embodiment completed based on the above knowledge has the following configuration.
  • the chemical composition of the railway wheel is, in mass%, C: 0.80 to 1.60%, Si: 1.00% or less, Mn: 0.10-1.25%, P: 0.050% or less, S: 0.030% or less, Al: 0.010 to 0.650%, N: 0.0030 to 0.0200%, Cr: 0 to 0.60%, V: 0 to 0.12%, and
  • the balance consists of Fe and impurities
  • the area ratio of pearlite is 85.0% or more
  • the area ratio of proeutectoid cementite is 0.90 to 15.00%
  • the defined average value of the width W of the proeutectoid cementite is 0.95 ⁇ m or less.
  • a in the formula (1) is an area ( ⁇ m 2 ) of the pro-eutectoid cementite, and P is an outer peripheral length ( ⁇ m) of the pro-eutectoid cementite.
  • the chemical composition of the railway wheel is, in mass%, C: 0.80 to 1.60%, Si: 1.00% or less, Mn: 0.10-1.25%, P: 0.050% or less, S: 0.030% or less, Al: 0.010 to 0.650%, N: 0.0030 to 0.0200%, Cr: 0 to 0.60%, V: 0 to 0.12%, and
  • the balance consists of Fe and impurities
  • the area ratio of pearlite is 85.0% or more
  • the area ratio of proeutectoid cementite is 0.90 to 15.00%
  • the maximum width of the proeutectoid cementite is Is 1.80 ⁇ m or less.
  • the railway wheel of [4] is the railway wheel of [3], In the microstructure of the boss portion of the railway wheel, the area ratio of pearlite is 85.0% or more, and the area ratio of the proeutectoid cementite is 0.90 to 15.00%. The large value is 1.80 ⁇ m or less.
  • the railway wheel 1 of the present embodiment includes a boss 2, a plate 3, and a rim 4.
  • the chemical composition of the railway wheel 1 of the present embodiment contains the following elements.
  • C 0.80 to 1.60% Carbon (C) increases the hardness of the steel and increases the wear resistance of the railway wheel 1. If the C content is less than 0.80%, this effect cannot be obtained even if other element contents are within the range of the present embodiment. On the other hand, if the C content exceeds 1.60%, even if other element contents are within the range of the present embodiment, an excessively large amount of pro-eutectoid cementite precipitates at the prior austenite grain boundary, and The area ratio exceeds 15.00%. In this case, the toughness of the railway wheel 1 decreases. Therefore, the C content is 0.80 to 1.60%. A preferred lower limit of the C content is 0.85%, more preferably 0.87%, further preferably 0.90%, and still more preferably 0.95%. A preferred upper limit of the C content is 1.55%, more preferably 1.45%, further preferably 1.30%, more preferably 1.15%, and still more preferably 1.05%. %.
  • Si 1.00% or less Silicon (Si) is inevitably contained. That is, the Si content is more than 0%. Si enhances the hardness of steel by solid solution strengthening ferrite. However, if the Si content exceeds 1.00%, proeutectoid cementite is likely to be generated even if the content of other elements is within the range of the present embodiment. If the Si content exceeds 1.00%, the hardenability of the steel becomes too high, and martensite is easily formed. In this case, the thickness of the quenched layer formed on the tread during quenching of the tread increases. As a result, the cutting amount increases and the yield decreases.
  • the Si content is 1.00% or less.
  • the preferable upper limit of the Si content is 0.90%, more preferably 0.80%, further preferably 0.70%, and further preferably 0.50%.
  • the lower limit of the Si content is not particularly limited. However, excessive reduction of the Si content increases manufacturing costs. Therefore, a preferable lower limit of the Si content is 0.01%, and more preferably 0.05%. From the viewpoint of increasing the hardness of the steel, the lower limit of the Si content is more preferably 0.10%, and still more preferably 0.15%.
  • Mn 0.10-1.25%
  • Mn increases the hardness of steel by solid solution strengthening ferrite. Mn further forms MnS and improves the machinability of the steel. If the Mn content is less than 0.10%, these effects cannot be obtained even if other element contents are within the range of the present embodiment. On the other hand, if the Mn content exceeds 1.25%, the hardenability of the steel becomes too high even if the content of other elements is within the range of the present embodiment. In this case, the thickness of the quenched layer increases, and the yield in the manufacturing process decreases. Further, when the railway wheel 1 is used, the rim portion 4 is burned by frictional heat generated between the rim portion 4 and the brake. In this case, the crack resistance of the steel may decrease.
  • the Mn content is 0.10 to 1.25%.
  • a preferred lower limit of the Mn content is 0.50%, more preferably 0.60%, and further preferably 0.70%.
  • a preferred upper limit of the Mn content is 1.10%, more preferably 1.00%, further preferably 0.95%, and still more preferably 0.90%.
  • P 0.050% or less Phosphorus (P) is an unavoidable impurity. That is, the P content is more than 0%. P segregates at the grain boundaries and lowers the toughness of the steel. Therefore, the P content is 0.050% or less.
  • the preferable upper limit of the P content is 0.030%, and more preferably 0.020%.
  • the P content is preferably as low as possible. However, excessive reduction of the P content increases manufacturing costs. Therefore, in consideration of ordinary industrial production, a preferable lower limit of the P content is 0.001%, more preferably 0.002%.
  • S 0.030% or less Sulfur (S) is inevitably contained. That is, the S content is more than 0%. S forms MnS and enhances machinability of steel. On the other hand, if the S content is too high, the toughness of the steel decreases. Therefore, the S content is 0.030% or less. A preferred upper limit of the S content is 0.020%. Excessive reduction of the S content increases manufacturing costs. Therefore, a preferable lower limit of the S content is 0.001%, more preferably 0.002%, and a further preferable lower limit is 0.005%.
  • Al 0.010 to 0.650%
  • Aluminum (Al) deoxidizes steel. Al further suppresses the formation of proeutectoid cementite and increases the toughness of the steel. Al further combines with N to form AlN and refines crystal grains. Refining the crystal grains increases the toughness of the steel. If the Al content is less than 0.010%, these effects cannot be sufficiently obtained even if other element contents are within the range of the present embodiment. On the other hand, if the Al content exceeds 0.650%, the nonmetallic inclusions increase and the toughness of the steel decreases even if the content of other elements is within the range of the present embodiment. Therefore, the Al content is 0.010 to 0.650%.
  • a preferable lower limit of the Al content is 0.012%, more preferably 0.020%, further preferably 0.025%, and further preferably 0.030%.
  • the preferred upper limit of the Al content is 0.600%, more preferably 0.500%, further preferably 0.300%, more preferably less than 0.250%, and still more preferably 0.1%. 240%.
  • the Al content referred to in this specification means the content of acid-soluble Al (sol. Al).
  • N 0.0030 to 0.0200%
  • Nitrogen (N) combines with Al to form AlN and refines prior austenite grains. The refinement of the prior austenite grains increases the toughness of the steel. If the N content is less than 0.0030%, this effect cannot be sufficiently obtained even if other element contents are within the range of the present embodiment. On the other hand, if the N content exceeds 0.0200%, the effect is saturated even if the content of other elements is within the range of the present embodiment. Therefore, the N content is 0.0030 to 0.0200%.
  • a preferred lower limit of the N content is 0.0035%, more preferably 0.0040%.
  • a preferred upper limit of the N content is 0.0100%, and more preferably 0.0080%.
  • the balance of the chemical composition of the railway wheel 1 according to the present embodiment consists of Fe and impurities.
  • the impurities are mixed in from the ore, scrap, or the production environment as raw materials when the railway wheel 1 is manufactured industrially, and have an adverse effect on the railway wheel 1 of the present embodiment. Means acceptable within the range not given.
  • the impurities other than the above-mentioned impurities include, for example, O, Cu, Ni, and Mo.
  • the contents of these impurity elements are, for example, as follows. O: 0.0070% or less, Cu: 0.20% or less, more preferably 0.10% or less, further preferably 0.08% or less, Ni: 0.20% or less, more preferably 0.10% or less. , More preferably, 0.08% or less, Mo: 0.07% or less.
  • the chemical composition of the railway wheel 1 of the present embodiment may further contain Cr instead of part of Fe.
  • Chromium (Cr) is an optional element and need not be contained. That is, the Cr content may be 0%. When contained, Cr narrows the lamella spacing of pearlite. This significantly increases the hardness of the pearlite. However, if the Cr content exceeds 0.60%, the quenchability becomes excessively high and the thickness of the quenched layer after quenching the treads becomes excessive even if the content of other elements is within the range of the present embodiment. To increase. Therefore, the Cr content is 0 to 0.60%.
  • a preferable lower limit of the Cr content is more than 0%, more preferably 0.01%, further preferably 0.02%, and further preferably 0.03%.
  • a preferable upper limit of the Cr content is 0.55%, more preferably 0.40%, further preferably 0.30%, further preferably 0.25%, and further preferably 0.20%. %.
  • the chemical composition of the railway wheel 1 of the present embodiment may further contain V instead of part of Fe.
  • V 0 to 0.12% Vanadium (V) is an optional element and may not be contained. That is, the V content may be 0%. When included, V forms any of carbides, nitrides, and carbonitrides to precipitate and strengthen steel (specifically, ferrite in steel). As a result, the hardness of the railway wheel 1 increases, and the wear resistance further increases. However, if the V content exceeds 0.12%, the quenchability increases, and the thickness of the quenched layer after tread quenching excessively increases. Therefore, the V content is 0 to 0.12%.
  • a preferred lower limit of the V content is more than 0%, more preferably 0.01%, further preferably 0.02%, and further preferably 0.03%.
  • a preferred upper limit of the V content is 0.11%, and more preferably 0.10%.
  • the area ratio of pearlite is 85.0% or more, and the area ratio of proeutectoid cementite is 0.90 to 15.00%.
  • phases other than pearlite and proeutectoid cementite are, for example, martensite and / or bainite.
  • the area ratio of pearlite is 85.0% or more, and the area ratio of proeutectoid cementite is 0.90 to 15.00%.
  • phases other than pearlite and proeutectoid cementite are, for example, martensite and / or bainite.
  • the pearlite area ratio is preferably 95.0% or more, and more preferably 97.0% or more.
  • phases other than pearlite and pro-eutectoid cementite are, for example, martensite and / or bainite.
  • the pearlite area ratio and the proeutectoid cementite area ratio in the microstructure of the plate portion 3, the boss portion 2, and the rim portion 4 are determined by the following methods.
  • the central position in the thickness direction of the plate portion 3 (the central position in the thickness T3 in FIG. 1), the central position in the thickness direction of the boss portion 2 (the central position in the thickness T2 in FIG. 1), the thickness of the rim portion 4.
  • a sample is taken from the center position in the direction (the center position of the thickness T4 in FIG. 1).
  • the observation surface of each sample is mirror-finished by mechanical polishing. Thereafter, etching is performed on the observation surface using a sodium picrate solution (100 ml of water + 2 g of picric acid + 25 g of sodium hydroxide).
  • the sample is immersed in a boiled sodium picrate solution.
  • a photographic image is generated using an optical microscope with a magnification of 500 for an arbitrary visual field (200 ⁇ m ⁇ 200 ⁇ m) in the observation surface of the sample after etching.
  • pearlite and proeutectoid cementite have different contrasts.
  • the black region indicated by the arrow is proeutectoid cementite
  • the remaining light gray region is pearlite.
  • each phase of the microstructure can be distinguished based on the contrast. Therefore, pearlite and proeutectoid cementite are specified based on the contrast.
  • the area ratio (%) of pearlite is determined based on the specified total area of pearlite and the area of the observation visual field (40000 ⁇ m 2 ).
  • the area ratio (%) of the proeutectoid cementite is determined based on the specified total area of the proeutectoid cementite and the area of the observation visual field (40000 ⁇ m 2 ).
  • the average value of the width W of the proeutectoid cementite defined by the expression (1) is 0.95 ⁇ m or less.
  • W 1/2 ⁇ (P / 2 ⁇ ((P / 2) 2 ⁇ 4A) 1/2 ) (1)
  • a in the formula (1) is the area of pro-eutectoid cementite ( ⁇ m 2 )
  • P is the outer peripheral length of pro-eutectoid cementite ( ⁇ m).
  • the plate portion 3 As described above, with reference to FIG. 1, among the rim portion 4, the plate portion 3, and the boss portion 2 of the railway wheel 1, the plate portion 3 has the smallest thickness T3. Therefore, in the railway wheel 1, the plate portion 3 is required to have high toughness. In the microstructure of the plate portion 3, if the average value of the width W of the proeutectoid cementite defined by the formula (1) is 0.95 ⁇ m or less, the toughness is significantly increased as shown in FIG. Therefore, in the microstructure of at least the plate portion 3 of the railway wheel of the present embodiment, the average value of the width W of the proeutectoid cementite defined by the expression (1) is 0.95 ⁇ m or less.
  • the preferable upper limit of the average value of the width W of the proeutectoid cementite is 0.90 ⁇ m, more preferably 0.85 ⁇ m, further preferably 0.80 ⁇ m, further preferably 0.75 ⁇ m, and still more preferably 0. It is less than 0.70 ⁇ m, more preferably 0.68 ⁇ m, and still more preferably 0.65 ⁇ m.
  • FIG. 15 is a diagram showing a microstructure photograph image obtained using an optical microscope and an image after binarization processing. Referring to FIG. 15, in the microstructure photograph images of mark A and mark B, the black region is proeutectoid cementite, and the other light gray regions are pearlite.
  • the image obtained by binarizing these microstructure photograph images by image processing is the image in the “binarization” column of FIG.
  • proeutectoid cementite is shown in white, and pearlite is shown in black.
  • proeutectoid cementite may be shown in black and pearlite may be shown in white.
  • the binarization process can be performed by a known image processing application such as ImageJ (trademark).
  • ImageJ trademark
  • the number of pixels of the image is not particularly limited, a preferable range of the number of pixels of the image is 300,000 pixels or more, more preferably 400,000 pixels or more, and further preferably 500,000 pixels or more.
  • the upper limit of the number of pixels is not particularly limited, but is, for example, 2 million pixels, may be 1.2 million pixels, or may be 1 million pixels.
  • each specified proeutectoid cementite is specified.
  • the continuously connected area is specified as one cementite.
  • the area A ( ⁇ m 2 ) of each specified proeutectoid cementite is determined.
  • the outer peripheral length P ( ⁇ m) of each of the specified proeutectoid cementite is determined.
  • the area A and the outer peripheral length P can be obtained by a known image processing application such as ImageJ (trademark).
  • ImageJ trademark
  • the area A and the peripheral length P of each target proeutectoid cementite are determined.
  • the average value of the area A of all the targeted proeutectoid cementite is determined, and the average value of the outer peripheral length P is determined.
  • a proeutectoid cementite width W defined by the equation (1) is obtained.
  • the obtained proeutectoid cementite width W is regarded as the average value of the proeutectoid cementite width W.
  • the average value of the proeutectoid cementite width W of the mark A in FIG. 15 is 0.52 ⁇ m
  • the average value of the proeutectoid cementite width W of the mark B is 0.95 ⁇ m.
  • the pearlite area ratio is 85.0% or more, and the area ratio of proeutectoid cementite is 0.90 to 15.00%. Further, the average value of the proeutectoid cementite width W is 0.95 ⁇ m or less.
  • proeutectoid cementite exists in the plate portion 3. However, since the average value of the proeutectoid cementite width W of the plate portion 3 is 0.95 ⁇ m or less, the railway wheel 1 of the present embodiment exhibits excellent toughness.
  • the pearlite area ratio is 85.0% or more, the area ratio of proeutectoid cementite is 0.90 to 15.00%, In addition, the average value of the proeutectoid cementite width W is 0.95 ⁇ m or less. In this case, the railway wheel 1 shows more excellent toughness.
  • a preferred upper limit of the average value of the width W of the proeutectoid cementite in the boss portion 2 is 0.90 ⁇ m, more preferably 0.85 ⁇ m, further preferably 0.80 ⁇ m, and further preferably 0.75 ⁇ m, More preferably, it is less than 0.70 ⁇ m, more preferably 0.68 ⁇ m, and still more preferably 0.65 ⁇ m.
  • the average value of the width W of the pro-eutectoid cementite in the boss portion 2 was calculated using the microstructure photograph image (observation field: 200 ⁇ m ⁇ 200 ⁇ m) of the boss portion obtained by the optical microscope described above.
  • the average value of the precipitated cementite width W can be determined by the same method as the method for determining the average value.
  • the pro-eutectoid cementite in the plate portion 3 is determined not by the average value of the width W but by the maximum width of pro-eutectoid cementite. Can also be defined.
  • the area ratio of pearlite is 85.0% or more, the area ratio of proeutectoid cementite is 0.90 to 15.00%, The maximum width of proeutectoid cementite is 1.80 ⁇ m or less.
  • the plate portion 3 As described above, with reference to FIG. 1, among the rim portion 4, the plate portion 3, and the boss portion 2 of the railway wheel 1, the plate portion 3 has the smallest thickness T3. Therefore, in the railway wheel 1, the plate portion 3 is required to have high toughness. In the microstructure of the plate portion 3, if the maximum width of the proeutectoid cementite is 1.80 ⁇ m or less, the toughness is significantly increased. Therefore, in the microstructure of at least the plate portion 3 of the railway wheel of the present embodiment, the maximum width of the proeutectoid cementite is 1.80 ⁇ m or less.
  • a preferred upper limit of the maximum width of the proeutectoid cementite is 1.75 ⁇ m, more preferably 1.70 ⁇ m, further preferably 1.60 ⁇ m, further preferably 1.50 ⁇ m, and still more preferably 1.40 ⁇ m. Yes, more preferably 1.30 ⁇ m, further preferably 1.20 ⁇ m, and still more preferably 1.10 ⁇ m.
  • the maximum width of proeutectoid cementite is determined by the following method.
  • a sample is taken from an arbitrary thickness center position of the plate portion 3 (the center position of the thickness T3 of the plate portion 3 in FIG. 1).
  • An arbitrary surface among the surfaces of the sample is defined as an observation surface.
  • the observation surface is mirror-finished by mechanical polishing. Thereafter, the observation surface is etched using a nital liquid.
  • Eight arbitrary visual fields of the observation surface of the sample after etching are observed at a magnification of 2000 using a scanning electron microscope (SEM), and a microstructure photograph image of a secondary electron image of each visual field (60 ⁇ m ⁇ 45 ⁇ m) is generated. .
  • SEM scanning electron microscope
  • the number of pixels of the image is not particularly limited, a preferable range of the number of pixels of the image is 300,000 pixels or more, more preferably 400,000 pixels or more, and further preferably 500,000 pixels or more.
  • the upper limit of the number of pixels is not particularly limited, but is, for example, 3 million pixels, may be 2 million pixels, or may be 1.5 million pixels.
  • the width of the proeutectoid cementite at a measurement point within a range of a reference circle Cref having a diameter of 1.5 ⁇ m from the branch point of the skeleton line and the line segment at the measurement point include the measurement point.
  • the width of proeutectoid cementite when it intersects the skeleton line at two or more points is out of scope.
  • the width of the proeutectoid cementite is specified in each field of view, excluding the width of the proeutectoid cementite.
  • the largest width is defined as the maximum width of proeutectoid cementite.
  • the pearlite area ratio is 85.0% or more, the area ratio of proeutectoid cementite is 0.90 to 15.00%, In addition, the maximum width of proeutectoid cementite is 1.80 ⁇ m or less. In this case, the railway wheel 1 shows more excellent toughness.
  • a preferred upper limit of the maximum width of the proeutectoid cementite in the boss portion 2 is 1.75 ⁇ m, more preferably 1.70 ⁇ m, further preferably 1.60 ⁇ m, further preferably 1.50 ⁇ m, and further preferably It is 1.40 ⁇ m, more preferably 1.30 ⁇ m, further preferably 1.20 ⁇ m, and further preferably 1.10 ⁇ m.
  • the manufacturing method includes a step of manufacturing steel for railway wheels (material manufacturing step), a step of forming a wheel-shaped intermediate product from steel for railway wheels by hot working (forming step), and a formed intermediate product.
  • a heat treatment quenching of the tread
  • cutting step cutting to form a railway wheel
  • molten steel having the above-described chemical composition is melted using an electric furnace or a converter, and then cast into a steel ingot.
  • the steel ingot may be either a slab by continuous casting or an ingot cast by a mold.
  • Hot-work slabs or ingots to produce steel materials for railway wheels of desired size The hot working is, for example, hot forging, hot rolling or the like.
  • steel materials for railway wheels are manufactured by the following method.
  • hot rolling for example, a slab rolling mill is used. The slab rolling is performed on the material by a slab rolling mill to produce a steel material for railway wheels. If a continuous rolling mill is installed downstream of the bulk rolling mill, the steel material after the bulk rolling is further subjected to hot rolling using a continuous rolling mill to produce a steel material for railway wheels. Is also good.
  • horizontal stands having a pair of horizontal rolls and vertical stands having a pair of vertical rolls are alternately arranged in a line.
  • the heating temperature of the heating furnace in hot rolling is not particularly limited, but is, for example, 1100 to 1350 ° C.
  • the steel material for railway wheels may be a cast material (slab or ingot). That is, the above-described hot working step may be omitted. Through the above steps, a steel material for railway wheels, which is a material for railway wheels, is manufactured.
  • a wheel-shaped intermediate product is formed by hot working using the prepared steel material for railway wheels. Since the intermediate product has a wheel shape, the intermediate product includes a boss portion, a plate portion, and a rim portion including a tread surface and a flange portion.
  • the hot working is, for example, hot forging, hot rolling or the like.
  • rough land forging for forming a wheel-shaped coarse intermediate product by hot forging is performed.
  • Hot rolling using a wheel rolling machine is performed on the crude intermediate product after the rough land forging.
  • Rotary forging is performed on the rough intermediate product after the hot rolling to form a through hole in a central portion corresponding to the boss portion.
  • the preferred heating temperature of the steel material for railway wheels during hot working in the forming step is 1220 ° C or higher.
  • a preferred lower limit of the heating temperature during hot working is 1230 ° C., more preferably 1250 ° C., and further preferably 1300 ° C.
  • the preferred upper limit of the heating temperature during hot working is 1350 ° C.
  • the method of cooling the intermediate product after hot working is not particularly limited. Cooling may be performed by cooling, or cooling by water.
  • tread quenching is performed on the formed wheel-shaped intermediate product. Specifically, reheating the hot working (hot forging or hot rolling) after the intermediate product over Ac m transformation point (reheating). After heating, quenching (tread quenching) is performed on the tread and the flange of the intermediate product. At this time, it is not necessary to rapidly cool the plate portion 3, and the average cooling rate CR 800-500 from 800 ° C. to 500 ° C. in the plate portion 3 may be less than 0.500 ° C./sec. However, the average cooling rate CR 750-700 from 750 ° C. to 700 ° C. in the plate portion 3 is set to 0.022 ° C./sec or more.
  • the temperature range of 750 to 700 ° C. is a temperature range in which proeutectoid cementite precipitates.
  • the average cooling rate CR 750-700 is 0.022 ° C./sec or more
  • the average value of the width W of the proeutectoid cementite in the plate portion 3 is 0.95 ⁇ m or less
  • the maximum width of the proeutectoid cementite is 1.80 ⁇ m or less.
  • the toughness of the railway wheel is good.
  • the average cooling rate CR 750-700 in the plate portion 3 from 750 ° C. to 700 ° C. is 0.022 ° C./sec or more
  • the average value of the width W of the proeutectoid cementite in the plate portion 3 becomes 0.95 ⁇ m or less.
  • the maximum width of the proeutectoid cementite in the plate portion 3 is 1.80 ⁇ m or less.
  • a preferable lower limit of the average cooling rate CR 750-700 in the plate portion 3 is 0.025 ° C./sec, more preferably 0.030 ° C./sec, further preferably 0.040 ° C./sec. Is 0.045 ° C./sec, more preferably 0.050 ° C./sec, further preferably 0.052 ° C./sec, more preferably 0.055 ° C./sec, and still more preferably 0 100 ° C./sec, more preferably 0.500 ° C./sec.
  • the average cooling rate CR 750-700 exceeds 33.000 ° C./sec , the average cooling rate CR 800-500 also becomes 0.500 ° C./sec or more. In this case, the generation of pro-eutectoid cementite is suppressed, and the area ratio of pro-eutectoid cementite can be made less than 0.90% in the steel having the above chemical composition. However, it is necessary to improve the cooling capacity of the cooling device at the time of tread quenching, which increases the equipment cost. If the cooling rate increases, a quenched layer may be formed not only on the tread but also on the surfaces of the plate portion 3 and the boss portion 2.
  • the railway wheel 1 in the present embodiment is based on the premise that at least the plate portion 3 contains proeutectoid cementite. Therefore, it is not necessary to control the cooling rate strictly in the plate portion 3 such that the generation of proeutectoid cementite is suppressed and the generation of the quenched layer is suppressed. As a result, complication of the manufacturing process can be suppressed.
  • FIG. 16 is a diagram illustrating an example of a cooling device for cooling an intermediate product.
  • the cooling device 10 includes a rotating device 11 having a rotating shaft, one or a plurality of boss cooling nozzles 12, one or a plurality of plate cooling nozzles 13, and one or a plurality of tread cooling nozzles 14.
  • the tread cooling nozzle 14 is arranged around the rotation axis of the cooling device 10.
  • the nozzle opening of the tread cooling nozzle 14 is arranged to face the tread 41 of the intermediate product.
  • the nozzle opening of the tread cooling nozzle 14 may be arranged to face the surface of the flange 42 of the intermediate product.
  • the plate portion cooling nozzle 13 is arranged such that the nozzle port faces the surface of the plate portion 3.
  • the boss cooling nozzle 12 is arranged so that the nozzle port faces the surface of the boss 2.
  • the tread cooling nozzle 14 injects a cooling liquid from the nozzle opening to mainly cool the tread 41 of the rim 4 and the surface of the flange 42.
  • the cooling liquid is, for example, water, mist, spray or the like.
  • the plate portion cooling nozzle 13 mainly cools the plate portion 3 by injecting a cooling gas from the nozzle port.
  • the cooling gas is, for example, compressed air.
  • the boss cooling nozzle 12 also injects a cooling gas from the nozzle opening to mainly cool the boss 2.
  • the cooling device 10 further includes a plurality of thermometers 20.
  • the thermometer 20 is arranged around the intermediate product, and measures the temperature of the rim portion 4, the tread surface 41, the flange portion 42, the plate portion 3, and the boss portion 2.
  • the plurality of thermometers 20 include the tread 41, the surface of the flange 42, the surface of the rim 4 other than the surface of the tread 41 and the flange 42 (for example, the side surface of the rim 4), and the plate.
  • the temperature distribution on the surface of the part 3 and the temperature distribution on the surface of the boss part 2 can be measured.
  • the intermediate product heated above the A cm transformation point is placed in the cooling device 10. While rotating the intermediate product by the rotating device 11, the cooling liquid is injected from the tread cooling nozzle 14 to perform the tread quenching. Further, during the tread quenching, cooling gas is injected from the plate cooling nozzle 13 and / or the boss cooling nozzle 12 to cool the plate 3 and / or the boss 2. While measuring the temperature distribution of the intermediate product with the thermometer 20, the cooling rate of the plate portion 3 at 750 to 700 ° C. is adjusted to be 0.022 to 33.000 ° C./sec.
  • Fine pearlite is generated on the surface layer of the tread 41 by the tread quenching.
  • the C content of the railway wheel 1 of the present embodiment is as high as 0.80 to 1.60%. Therefore, the wear resistance of the fine pearlite increases.
  • the average cooling rate CR 750-700 at 750 to 700 ° C. in the plate portion 3 is adjusted to 0.022 to 33.000 ° C./sec.
  • the pearlite area ratio is 85.0% or more and the area ratio of proeutectoid cementite is 0.90 to 15.00%, but the width W of proeutectoid cementite is Can be 0.95 ⁇ m or less.
  • the maximum width of the proeutectoid cementite can be 1.80 ⁇ m or less. For this reason, although proeutectoid cementite is present in the microstructure, sufficient toughness can be obtained.
  • the pearlite area ratio is 85.0% or more, the area ratio of proeutectoid cementite is 0.90 to 15.00%, and
  • the average value of the width W of the proeutectoid cementite is 0.95 ⁇ m or less, or the maximum width of the proeutectoid cementite is 1.80 ⁇ m or less, the average cooling rate CR 800 at 800 to 500 ° C. in the plate portion 3 and the boss portion 2. Even if ⁇ 500 is less than 0.500 ° C./sec, the average cooling rate CR 750-700 at 750 to 700 ° C.
  • the area ratio of pearlite is 85.0% or more, the area ratio of proeutectoid cementite is 0.90 to 15.00%, and the average value of the width W of proeutectoid cementite is 0.95 ⁇ m or less, and also in the microstructure of the boss portion 2, the area ratio of pearlite is 85.0% or more and the area ratio of proeutectoid cementite is 0.90 to 15.00%.
  • the average value of the width W becomes 0.95 ⁇ m or less.
  • the area ratio of pearlite is 85.0% or more, the area ratio of proeutectoid cementite is 0.90 to 15.00%, and the maximum width of proeutectoid cementite is 1.80 ⁇ m or less.
  • the area ratio of pearlite is 85.0% or more, the area ratio of proeutectoid cementite is 0.90 to 15.00%, and the maximum width of proeutectoid cementite is 1%. .80 ⁇ m or less.
  • the cooling device 10 may not include the boss portion cooling nozzle 12. Further, the cooling device 10 may include the tread cooling nozzle 14 and may not include the plate cooling nozzle 13 and the boss cooling nozzle 12.
  • the average cooling rate CR 750-700 at 750 to 700 ° C. in the plate portion 3 or the plate portion 3 and the boss portion 2 is adjusted by adjusting the injection amount of the cooling liquid of the tread cooling nozzle 14 during the tread quenching. Can be adjusted to 0.022 to 33.000 ° C./sec.
  • the intermediate product is reheated.
  • the intermediate product after hot working may be directly (without reheating) subjected to tread quenching.
  • Temper up the intermediate product after hardening the tread as necessary Tempering at a known temperature and time is sufficient.
  • the tempering temperature is, for example, 400 to 600 ° C.
  • the railway wheel of the present embodiment is manufactured.
  • the pearlite area ratio is at least 85.0% and the area ratio of proeutectoid cementite is 0.90 to 15.00 in at least the microstructure of the plate portion 3. %,
  • the average value of the width W of the proeutectoid cementite defined by the formula (1) is 0.95 ⁇ m or less.
  • the maximum width of the proeutectoid cementite is 1.80 ⁇ m or less.
  • the pearlite area ratio is 85.0% or more, and the area ratio of proeutectoid cementite is 0.90 to 15.00%.
  • the average value of the width W of the pro-eutectoid cementite defined in (1) is 0.95 ⁇ m or less, and in the microstructure of the boss portion 2, the pearlite area ratio is 85.0% or more.
  • the area ratio is 0.90 to 15.00%, and the average value of the width W of the proeutectoid cementite defined by the formula (1) is 0.95 ⁇ m or less. Therefore, in the railway wheel of the present embodiment, sufficient toughness can be obtained although proeutectoid cementite is present.
  • the pearlite area ratio is at least 85.0% and the area ratio of proeutectoid cementite is 0.90 to 15 at least in the microstructure of the plate portion 3. 0.000%, and the maximum width of proeutectoid cementite is 1.80 ⁇ m or less.
  • the pearlite area ratio is 85.0% or more, and the area ratio of proeutectoid cementite is 0.90 to 15.00%.
  • the maximum width of precipitated cementite is 1.80 ⁇ m or less, and in the microstructure of the boss portion 2, the pearlite area ratio is 85.0% or more, and the area ratio of proeutectoid cementite is 0.90 to 15.00%. And the maximum width of proeutectoid cementite is 1.80 ⁇ m or less. Therefore, in the railway wheel of the present embodiment, sufficient toughness can be obtained although proeutectoid cementite is present.
  • An ingot (a truncated cone with a top diameter of 107 mm, a bottom diameter of 97 mm, and a height of 230 mm) was manufactured from the molten steel by an ingot making method.
  • the ingot was heated to 1250 ° C. to simulate the hot working process of the railway wheel manufacturing process, and then hot forged to produce a round bar having a diameter of 40 mm. Further, a round bar (steel material) having a diameter of 20 mm and a length of 125 mm was collected from the center of the round bar by machining.
  • a simulated tread quenching test simulating tread quenching during the manufacturing process of the railway wheel was performed on the steel material of each test number. Specifically, the heat treatment of the heat pattern shown in Table 4 and FIG. 17 was performed on the steel material of each test number. In each heat pattern, the average cooling rate of the steel material temperature of 800 ⁇ 500 °C CR 800-500 (°C / sec), and the average cooling rate in the steel material temperature of 750 ⁇ 700 °C CR 750-700 (°C / second) , And Table 4. Through the above manufacturing process, a steel material simulating a railway wheel (simulated railway wheel steel material) was manufactured.
  • the average cooling rate CR 800-500 is reduced to 0.420 ° C./sec by starting cooling from 950 ° C., maintaining the temperature at 690 ° C. for a predetermined time, and then restarting cooling.
  • the average cooling rate CR 750-700 was adjusted to 0.530 ° C./sec.
  • the cooling is started from 950 ° C., kept at 720 ° C. for a predetermined time, restarted cooling, then kept at 650 ° C. for a predetermined time, and then restarted cooling, so that the average cooling rate CR 800-500 was adjusted to 0.175 ° C./sec, and the average cooling rate CR 750-700 was adjusted to 0.0480 ° C./sec.
  • Test pieces for microstructure observation were collected from the center position of the cross section perpendicular to the longitudinal direction of the simulated railway wheel steel of each test number after the heat treatment.
  • a cross section perpendicular to the longitudinal direction of the test material was used as an observation surface on the surface of the test piece.
  • the observation surface of each test piece was mirror-finished by mechanical polishing. Thereafter, the observation surface was subjected to etching using a sodium picrate solution (100 ml of water + 2 g of picric acid + 25 g of sodium hydroxide). In the etching, the test piece was immersed in a boiled sodium picrate solution.
  • a photographic image for microstructure observation was generated using an optical microscope at a magnification of 500 with respect to an arbitrary visual field (200 ⁇ m ⁇ 200 ⁇ m) in the observation surface of the test piece after etching.
  • the pearlite, proeutectoid cementite, and other phases differ in contrast, as described above. Therefore, pearlite and proeutectoid cementite were specified based on the contrast of the photographic image.
  • the area ratio (%) of pearlite was determined based on the specified total area of pearlite and the area of the observation visual field.
  • the area ratio (%) of the pro-eutectoid cementite was determined based on the specified total area of pro-eutectoid cementite and the area of the observation visual field.
  • Table 4 shows the obtained pearlite area ratio and proeutectoid cementite area ratio.
  • pro-eutectoid cementite width W defined by the equation (1) was obtained.
  • the obtained proeutectoid cementite width W was regarded as the average value of the proeutectoid cementite width W.
  • Table 4 shows the obtained average value ( ⁇ m) of the pro-eutectoid cementite width W.
  • Test Nos. 12 to 16 calculation of the average value of the proeutectoid cementite width W was omitted because the area ratio of proeutectoid cementite was extremely small (described as “ ⁇ ” in Table 4).
  • the specified pro-eutectoid cementite was subjected to a thinning process to obtain a skeleton line of the pro-eutectoid cementite.
  • the straight line perpendicular to the skeleton line from any measurement point of the skeletal line is defined as the line segment length between the intersection of two points with the contour of the proeutectoid cementite as the width of the proeutectoid cementite at the measurement point. did.
  • the width of the proeutectoid cementite when it intersected was excluded from the target.
  • the maximum value of the width of the proeutectoid cementite was specified in each field of view, excluding the width of the proeutectoid cementite in the case.
  • the largest width was defined as the maximum width of proeutectoid cementite.
  • Table 4 shows the obtained maximum width ( ⁇ m) of proeutectoid cementite. In Test Nos. 12 to 16, calculation of the maximum width of pro-eutectoid cementite was omitted because the area ratio of pro-eutectoid cementite was extremely small (denoted by "-" in Table 4).
  • U-notch test specimens based on JIS Z 2242 (2005) were collected from the center position of the cross section perpendicular to the longitudinal direction of the simulated railway wheel steel material of each test number.
  • the cross section perpendicular to the longitudinal direction (Longitudinal-direction) of the U notch test piece was a square of 10 mm ⁇ 10 mm, and the length of the U notch test piece in the longitudinal direction was 55 mm.
  • the longitudinal direction of the U-notch test piece was parallel to the longitudinal direction of the steel material.
  • a U-notch was formed at the center of the length of the U-notch test piece (that is, at the center of a length of 55 mm).
  • the notch depth was 2 mm, and the notch bottom radius was 1.0 mm.
  • a Charpy impact test in a room temperature atmosphere was performed.
  • the Charpy impact value (J / cm 2 ) was determined for four U-notch test pieces, and the average value of the four U-notch test pieces was defined as the Charpy impact value (J / cm 2 ) of the test number.
  • Table 4 shows the obtained Charpy impact values.
  • Table 4 shows the test results. Referring to Table 4, the chemical compositions of the simulated railway wheel steel materials of Test Nos. 1 to 7 were appropriate. Further, in the heat treatment simulating the tread quenching, the average cooling rate CR 800-500 (° C./second ) and the average cooling rate CR 750-700 (° C./second ) were appropriate. Therefore, the pearlite area ratio was 85.0% or more, and the area ratio of proeutectoid cementite was 0.90 to 15.00%. Further, the average value of the width W of the proeutectoid cementite was 0.95 ⁇ m or less. The maximum width of the proeutectoid cementite was 1.80 ⁇ m or less. Therefore, the Charpy impact value exceeded 8.5 J / cm 2 , and excellent toughness was obtained.
  • the average cooling rate CR 750-700 was as low as 0.010 to 0.019 ° C./sec. Therefore, in the microstructures of the simulated railway wheel steel materials of these test numbers, the average value of the width W of the proeutectoid cementite exceeded 0.95 ⁇ m. Further, the maximum width of the proeutectoid cementite exceeded 1.80 ⁇ m. Therefore, the Charpy impact value was 8.5 J / cm 2 or less. In Test Nos. 11 to 15, the average cooling rate CR 800-500 exceeded 0.500 ° C./sec. In Test Nos. 14 and 15, the average cooling rate CR 750-700 exceeded 33.000 ° C./sec. Was. Therefore, the area ratio of proeutectoid cementite was less than 0.90%, which was out of the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

C含有量が0.80%以上と高くても、優れた靭性を有する、鉄道車輪を提供する。本実施形態の鉄道車輪の化学組成は、質量%で、C:0.80~1.60%、Si:1.00%以下、Mn:0.10~1.25%、P:0.050%以下、S:0.030%以下、Al:0.010~0.650%、N:0.0030~0.0200%及び、残部がFe及び不純物からなり、鉄道車輪の板部のミクロ組織において、パーライトの面積率は85.0%以上であり、初析セメンタイトの面積率は0.90~15.00%であり、式(1)の初析セメンタイトの幅Wの平均値は0.70μm未満である。 W=1/2×(P/2-((P/2)-4A)1/2) (1) 式(1)中のAは初析セメンタイトの面積(μm)であり、Pは初析セメンタイトの外周長(μm)である。

Description

鉄道車輪
 本開示は、鉄道車輪に関する。
 鉄道車両は、線路を構成するレール上を走行する。鉄道車両は、複数の鉄道車輪を備える。鉄道車輪は、車両を支持し、レールと接触して、レール上を回転しながら移動する。鉄道車輪は、レールとの接触により摩耗する。最近、鉄道輸送の高効率化を目的として、鉄道車両への積載重量の増加、及び、鉄道車両の高速化が進められている。その結果、鉄道車輪の耐摩耗性の向上が求められている。
 鉄道車輪の耐摩耗性を高める技術が、特開平9-202937号公報(特許文献1)、特開2012-107295号公報(特許文献2)、特開2013-231212号公報(特許文献3)、特開2004-315928号公報(特許文献4)に提案されている。
 特許文献1に開示された鉄道車輪は、質量%で、C:0.4~0.75%、Si:0.4~0.95%、Mn:0.6~1.2%、Cr:0~0.2%未満、P:0.03%未満、S:0.03%以下を含有し、残部がFe及びその他不可避の不純物からなる。この鉄道車輪において、車輪踏面部の表面から少なくとも深さ50mmまでの領域が、パーライト組織からなる。特許文献1の鉄道車輪の製造方法は、車輪踏面部の冷却曲線が、連続冷却変態曲線図におけるパーライト生成領域を通り、かつ、マルテンサイト変態曲線より長時間側にある条件で、車輪踏面部を冷却する焼入工程を含む。
 特許文献2に開示された車輪用鋼は、質量%で、C:0.65~0.84%、Si:0.02~1.00%、Mn:0.50~1.90%、Cr:0.02~0.50%、V:0.02~0.20%、S≦0.04%、P≦0.05%、Cu≦0.20%、Ni≦0.20%を含有し、残部がFeと不純物とからなる化学組成を有する。この化学組成はさらに、次の関係式を満たす。〔34≦2.7+29.5×C+2.9×Si+6.9×Mn+10.8×Cr+30.3×Mo+44.3×V≦43〕かつ〔0.76×exp(0.05×C)×exp(1.35×Si)×exp(0.38×Mn)×exp(0.77×Cr)×exp(3.0×Mo)×exp(4.6×V)≦25〕。この車両用鋼は、上記化学組成及び上記式を満たすことにより、耐摩耗性、耐転動疲労特性、耐スポークリング性に優れる、と特許文献2には記載されている。
 特許文献3に開示された車輪用鋼は、質量%で、C:0.65~0.84%、Si:0.4~1.0%、Mn:0.50~1.40%、Cr:0.02~0.13%、S:0.04%以下、V:0.02~0.12%を含有し、式(1)で定義されるFn1が32~43で、かつ、式(2)で表されるFn2が25以下であり、残部がFe及び不純物からなる。ここで、式(1)は、Fn1=2.7+29.5C+2.9Si+6.9Mn+10.8Cr+30.3Mo+44.3Vであり、式(2)は、Fn2=exp(0.76)×exp(0.05C)×exp(1.35Si)×exp(0.38Mn)×exp(0.77Cr)×exp(3.0Mo)×exp(4.6V)である。この車輪用鋼は、上記化学組成を有し、Fn1及びFn2が上記範囲を満たすことにより、耐摩耗性、耐転動疲労特性、耐スポークリング性に優れる、と特許文献3には記載されている。
 特許文献4に開示された鉄道車両用車輪は、質量%で、C:0.85~1.20%、Si:0.10~2.00%、Mn:0.05~2.00%、必要に応じてさらにCr、Mo、V、Nb、B、Co、Cu、Ni、Ti、Mg、Ca、Al、Zr、及びNの1種又は2種以上を所定量含有し、残部がFe及びその他不可避的不純物からなる化学成分を含有する鋼で構成された一体型の鉄道車両用車輪であって、車輪の踏面及び/又はフランジ面の少なくとも一部がパーライト組織である。特許文献4では、鉄道車両用車輪の寿命は、踏面及びフランジ面の摩耗量に依存し(特許文献4の段落[0002])、さらに、高速鉄道においてブレーキを掛けたときの発熱量の増大にともない発生する踏面及びフランジ面での熱亀裂に依存すると記載されている。そして、鉄道車両用車輪が上記構成を有することにより、踏面及びフランジ面の耐摩耗性及び熱亀裂を抑制できる、と記載されている。
特開平9-202937号公報 特開2012-107295号公報 特開2013-231212号公報 特開2004-315928号公報
 特許文献1に提案されている鉄道車輪は、適度の焼入れ性と同時に、パーライト組織が得られる性質を持たせるために、Cr含有量を低く抑え、かつ、適量のSiを含有する。しかしながら、特許文献1に記載の鉄道車輪のC含有量は0.4~0.75%であり、この車輪はいわゆる亜共析鋼からなる。そのため、耐摩耗性の向上には限界がある。
 特許文献2及び特許文献3に提案されている車輪用鋼では、C含有量が0.65~0.84%の鋼にVを含有することにより、パーライト組織を強化して、耐摩耗性を高めている。しかしながら、特許文献2及び3に提案されている車輪用鋼もいわゆる亜共析鋼からなる。そのため、Vを含有するだけでは、耐摩耗性の向上に限界がある。
 一方、特許文献4に提案されている鉄道車両用車輪では、C含有量を高めた過共析鋼を用いることにより、耐摩耗性を高めている。
 ところで、鉄道車輪の製造方法の一例は次のとおりである。鋼片を熱間加工して鉄道車輪形状の中間品を成形する。成形された中間品に対して、熱処理(踏面焼入れ)を実施する。踏面焼入れでは、中間品を加熱した後、中間品の踏面及びフランジ部を急冷する。これにより、踏面の表層部分のマトリクス組織には、耐摩耗性が高い微細パーライトが生成する。しかしながら、踏面焼入れ後の踏面の表層部分には、微細パーライトの上層にマルテンサイトからなる(又は、マルテンサイト及びベイナイトからなる)焼入れ層が形成される。鉄道車輪の使用中において、焼入れ層は摩耗しやすい。そのため、踏面焼入れ後、踏面の最表層に形成された焼入れ層を切削加工で除去して、微細パーライトを踏面に露出させる。以上の工程により、鉄道車輪が製造される。
 上述のとおり、過共析鋼からなる鉄道車両用車輪は、耐摩耗性に優れる。しかしながら、過共析鋼を用いて上述の製造方法で鉄道車輪を製造した場合、亜共析鋼とは異なり、鉄道車輪内、たとえば、鉄道車輪の板部及び/又はボス部に、初析セメンタイトが生成しやすくなる。初析セメンタイトは鋼の靱性を低下する。特に、ボス部及びリム部と比較して板部の厚さは薄い。そのため、初析セメンタイトによる靱性の低下は、板部において特に車輪の割損につながる可能性がある。
 本開示の目的は、C含有量が0.80%以上と高くても優れた靭性を有する鉄道車輪を提供することである。
 本開示による鉄道車輪は、
 リム部と、
 ボス部と、
 前記リム部と前記ボス部との間に配置され、前記リム部と前記ボス部とにつながる板部とを備え、
 前記鉄道車輪の化学組成は、質量%で、
 C:0.80~1.60%、
 Si:1.00%以下、
 Mn:0.10~1.25%、
 P:0.050%以下、
 S:0.030%以下、
 Al:0.010~0.650%、
 N:0.0030~0.0200%、
 Cr:0~0.60%、
 V:0~0.12%、及び、
 残部がFe及び不純物からなり、
 前記鉄道車輪の前記板部のミクロ組織において、パーライトの面積率は85.0%以上であり、初析セメンタイトの面積率は0.90~15.00%であり、かつ、式(1)で定義される前記初析セメンタイトの幅Wの平均値は0.95μm以下である。
 W=1/2×(P/2-((P/2)-4A)1/2) (1)
 ここで、式(1)中のAは前記初析セメンタイトの面積(μm)であり、Pは前記初析セメンタイトの外周長(μm)である。
 本開示による鉄道車輪は、
 リム部と、
 ボス部と、
 前記リム部と前記ボス部との間に配置され、前記リム部と前記ボス部とにつながる板部とを備え、
 前記鉄道車輪の化学組成は、質量%で、
 C:0.80~1.60%、
 Si:1.00%以下、
 Mn:0.10~1.25%、
 P:0.050%以下、
 S:0.030%以下、
 Al:0.010~0.650%、
 N:0.0030~0.0200%、
 Cr:0~0.60%、
 V:0~0.12%、及び、
 残部がFe及び不純物からなり、
 前記鉄道車輪の前記板部のミクロ組織において、パーライトの面積率は85.0%以上であり、初析セメンタイトの面積率は0.90~15.00%であり、前記初析セメンタイトの最大幅は1.80μm以下である。
 本開示による鉄道車輪は、C含有量が0.80%以上と高くても、優れた靭性を有する。
図1は、鉄道車輪の中心軸に平行な断面図である。 図2は、踏面焼入れを模擬した熱処理でのヒートパターンを示す図である。 図3は、図2と異なる、踏面焼入れを模擬した熱処理でのヒートパターンを示す図である。 図4は、表1に示す化学組成の鋼材における等温変態線図と、図2及び図3のヒートパターンとの関係を示すイメージ図である。 図5は、ビッカース硬さ試験の測定位置を説明するための模式図である。 図6は、ミクロ組織観察により得られた試験番号5(0.90%C材)のミクロ組織写真画像である。 図7は、ミクロ組織観察により得られた試験番号8(1.00%C材)のミクロ組織写真画像である。 図8は、過共析鋼材(0.90%C材及び1.00%C材)でのビッカース硬さ(HV)と、シャルピー衝撃値(J/cm)と、初析セメンタイトの有無との関係を示す図である。 図9は、SEMで得られた表2中の試験番号5(0.90%C材)のミクロ組織写真画像である。 図10は、SEMで得られた表2中の試験番号8(1.00%C材)のミクロ組織写真画像である。 図11は、表2中の試験番号1、2、4、5、7及び8の初析セメンタイト幅とシャルピー衝撃値との関係を示す図である。 図12は、図9に示すミクロ組織写真画像に対して2値化処理を実施して、初析セメンタイトを特定した図である。 図13は、図12の初析セメンタイトに対して細線化処理を実施して得られた骨格線を、初析セメンタイトに重ねて表示した図である。 図14は、2値化された初析セメンタイトと、その初析セメンタイトの骨格線60との一部を拡大した模式図である。 図15は、光学顕微鏡写真画像と、2値化処理後の画像とを示す図である。 図16は、中間品を冷却するための冷却装置の一例を示す図である。 図17は、実施例において採用した、踏面焼入れを模擬した熱処理でのヒートパターンを示す図である。
 [鉄道車輪の構成]
 図1は本実施形態による鉄道車輪の中心軸を含む断面図である。図1を参照して、鉄道車輪1は円盤状であり、ボス部2と、板部3と、リム部4とを備える。ボス部2は円筒状であり、鉄道車輪1の径方向(中心軸に対して垂直な方向)において、鉄道車輪1の中央部に配置される。ボス部2は貫通孔21を有する。貫通孔21の中心軸は、鉄道車輪1の中心軸と一致する。貫通孔21には、図示しない鉄道用車軸が挿入される。ボス部2の厚さT2は、板部3の厚さT3よりも厚い。リム部4は、鉄道車輪1の外周の縁部に形成されている。リム部4は、踏面41と、フランジ部42とを含む。踏面41は、フランジ部42と繋がっている。鉄道車輪1の使用時において、踏面41及びフランジ部42はレール表面と接触する。リム部4の厚さT4は、板部3の厚さT3よりも厚い。板部3は、ボス部2とリム部4との間に配置され、ボス部2及びリム部4とつながっている。具体的には、板部3の内周縁部はボス部2とつながっており、板部3の外周縁部はリム部4とつながっている。板部3の厚さT3は、ボス部2の厚さT2及びリム部4の厚さT4よりも薄い。鉄道車輪1の直径は特に限定されるものではないが、たとえば、700mm~1000mmである。
 [本開示の鉄道車輪の技術思想]
 本発明者らは初めに、鉄道車輪において、耐摩耗性を高めるのに適切な化学組成について検討を行った。その結果、鉄道車輪においては、同じ硬さを得るにしても、V含有量を高めて硬さを高めるよりも、C含有量を0.80%以上に高めて硬さを高めた方が、鉄道車輪として使用したときの耐摩耗性が高まることが分かった。このメカニズムは定かではないが、次の事項が考えられる。使用中の鉄道車輪の踏面は、レールから外力(荷重)を受ける。この外力により踏面直下の表層のパーライト中のセメンタイトが破砕され、分散強化により硬さが高まる。さらに、破砕された微細なセメンタイト中の炭素がパーライト中のフェライトに過飽和に固溶し、固溶強化により踏面直下の表層の硬さを高める。
 鋼のC含有量を高めれば、パーライト中のセメンタイトの体積分率が増大し、さらに、パーライトがより微細なラメラを形成しやすい。この場合、上記メカニズムにより鉄道車輪の耐摩耗性が高まる。これに対して、鋼にVを含有した場合、V炭窒化物の析出強化により鋼の硬さを高める。このとき、V炭窒化物はフェライト中に生成するため、主としてフェライトの硬さを高める。つまり、Vの含有は、フェライトの硬さを高めるものの、パーライトの微細化にはそれほど影響しない。そのため、V含有によりある程度耐摩耗性を高めることはできるものの、破砕セメンタイトによる分散強化及びCの固溶強化ほど、耐摩耗性を高めることができない。
 そこで、本発明者らは、耐摩耗性を高めるためには、鉄道車輪の化学組成において、C含有量を0.80~1.60%の過共析鋼とするのが好ましいと考えた。
 しかしながら、本発明者らの検討の結果、C含有量が0.80%以上の過共析鋼の鉄道車輪では、初析セメンタイトが生成しやすいことが分かった。初析セメンタイトは、鉄道車輪の靭性を低下する。
 そこで、本発明者らは、C含有量が高い過共析鋼からなる鉄道車輪において、靭性を高める方法について検討を行った。
 初めに、本発明者らは、過共析鋼からなる鉄道車輪において、初析セメンタイトの生成を抑制することにより、鉄道車輪の靭性を高めることを検討した。しかしながら、C含有量が高い過共析鋼からなる鉄道車輪の場合、初析セメンタイトの生成を完全に抑えることは非常に困難であることが判明した。そして、初析セメンタイトの生成を極力抑えようとすれば、製造工程における制御を厳格に行う必要があることが判明した。
 そこで、本発明者らは、初析セメンタイトの生成を抑制することにより過共析鋼からなる鉄道車輪の靭性を高めるのではなく、初析セメンタイトが生成することを前提として、初析セメンタイトの形態を制御することにより、過共析鋼からなる鉄道車輪の靭性を高めることができるのではないかと考えた。そこで、本発明者らは、過共析鋼からなる鉄道車輪に生成している初析セメンタイトの形態と、鉄道車輪の靭性との関係についてさらに検討を行った。その結果、過共析鋼からなる鉄道車輪の板部において初析セメンタイトが面積率で0.90~15.00%生成している場合であっても、式(1)で定義される初析セメンタイト幅Wの平均値が0.95μm以下であれば、十分な靭性が得られることを初めて知見した。以下、この点について説明する。
 [鉄道車輪における初析セメンタイトと靭性との関係について]
 過共析鋼の鉄道車輪を模擬した、表1に示す化学組成の鋼材TP1、TP2を作製した。
Figure JPOXMLDOC01-appb-T000001
 
 鋼材の形状は直径20mm、長さ125mmの丸棒とした。各鋼材のうち、図2及び図3に示すヒートパターンの熱処理を実施して、鋼材TP1、TP2に生成する初析セメンタイトの形態を変化させた。
 図2及び図3に示すヒートパターンは、熱処理の雰囲気の温度を示す。つまり、鋼材が熱処理時に配置される雰囲気の温度を示す。図2のヒートパターンHP1は、鋼材TP1及びTP2において、初析セメンタイトの生成温度域内(720℃)での鋼材TP1及びTP2の滞留時間を長くしたヒートパターンである。一方、図3のヒートパターンHP2は、急冷により初析セメンタイトの生成温度域での鋼材TP2(1.00%C材)の滞留時間を短くした、又は、C含有量が低い鋼材TP1(0.90%C材)の場合には初析セメンタイトの生成温度域を通過しない、ヒートパターンである。
 図4は、鋼材TP1及びTP2の等温変態線図と図2及び図3のヒートパターンHP1、HP2との関係を示すイメージ図である。図4では、鋼材TP1及びTP2の化学組成における初析セメンタイトノーズとパーライトノーズとを示す。なお、鋼材TP1(0.90%C材)と鋼材TP2(1.00%C材)とでは、パーライトノーズの位置はほぼ同じである。一方、初析セメンタイトノーズに関しては、鋼材TP2(1.00%C材、図4中で破線)の方が、鋼材TP1(0.90%C材:図4中で実線)よりも左にずれる。
 図4を参照して、鋼材TP1(0.90%C材)に対してヒートパターンHP1を適用した場合、初析セメンタイト生成温度域での滞留時間が長くなる。そのため、ヒートパターンHP1を適用した鋼材TP1のミクロ組織には、初析セメンタイト(初析θともいう)が生成する。また、鋼材TP1(0.90%C材)に対してヒートパターンHP2を適用した場合、初析セメンタイト生成温度域を通過しない。そのため、ヒートパターンHP2を適用した鋼材TP1のミクロ組織には、初析セメンタイトがほぼ生成しない。一方、鋼材TP1よりもC含有量が高い鋼材TP2(1.00%C材)に対してヒートパターンHP2を適用した場合、初析セメンタイト生成温度域を通過する。そのため、ヒートパターンHP2を適用した鋼材TP2のミクロ組織には、初析セメンタイトが生成する。
 なお、上述のとおり、鉄道車輪の踏面焼入れでは、図1に示す踏面41に冷却液を噴射して、焼入れを実施しながら鉄道車輪1を冷却する。図1に示すとおり、鉄道車輪1において、ボス部2の厚さT2は板部3の厚さT3よりも厚く、かつ、ボス部2は、冷却液が接触するリム部4から遠い。そのため、踏面焼入れにおいて、ボス部2の冷却速度は、板部3の冷却速度よりも遅い。そこで、図2に示すとおり、ヒートパターンHP1では、ボス部2での冷却速度を想定したヒートパターンHP11及びHP12と、板部3での冷却速度を想定したヒートパターンHP13及びHP14とを準備した。同様に、図3に示すとおり、ヒートパターンHP2では、ボス部2での冷却速度を想定したヒートパターンHP21と、板部3での冷却速度を想定したヒートパターンHP22とを準備した。
 なお、図2において、ボス部での冷却速度を想定したヒートパターンHP11及びHP12は、720℃での保持時間を異なる時間とした。具体的には、ヒートパターンHP11では、720℃での保持時間を47分とし、ヒートパターンHP12では、720℃での保持時間を17分とした。つまり、ヒートパターンHP11で熱処理した鋼材の初析セメンタイトの生成量が、ヒートパターンHP12で熱処理した鋼材の初析セメンタイトの生成量よりも多くなることを想定した。同様に、図2において、板部3での冷却速度を想定したヒートパターンHP13及びHP14は、720℃での保持時間を異なる時間とした。具体的には、ヒートパターンHP13では、720℃での保持時間を47分とし、ヒートパターンHP14では、720℃での保持時間を17分とした。つまり、ヒートパターンHP13で熱処理した鋼材の初析セメンタイトの生成量が、ヒートパターンHP14で熱処理した鋼材の初析セメンタイトの生成量よりも多くなることを想定した。
 鋼材TP1を複数準備し、鋼材TP2を複数準備した。各鋼材に対して、踏面焼入れを模擬したヒートパターンHP11~HP14、HP21及びHP22による熱処理を実施した。具体的には、鋼材TP1、TP2、及び、ヒートパターンHP11~HP14、HP21及びHP22の組み合わせにより、表2に示す試験番号1~試験番号8の試験材を作製した。
Figure JPOXMLDOC01-appb-T000002
 
 熱処理後の各試験番号1~8の鋼材のビッカース硬さを求めた。具体的には、図5に示すとおり、各試験番号の鋼材100の長手方向(Longitudinal-direction)に垂直な断面において、鋼材100の中心点P1と、点P1を中心とした半径1mmの円上で90°ピッチ位置の点P2~点P5の5点において、JIS Z 2244(2009)に準拠してビッカース硬さ(HV)を測定した。このときの試験力を9.8N(1.0kgf)とした。得られたビッカース硬さの平均値を、その試験番号のビッカース硬さ(HV)と定義した。
 さらに、熱処理後の各試験番号1~8の鋼材の靭性を評価するために、シャルピー衝撃値を求めた。具体的には、各試験番号の鋼材の長手方向に垂直な断面における中心位置から、JIS Z 2242(2005)に準拠したUノッチ試験片を採取した。Uノッチ試験片の長手方向に垂直な断面は10mm×10mmの正方形とし、Uノッチ試験片の長手方向の長さは55mmとした。Uノッチ試験片の長手方向は、鋼材の長手方向と平行とした。Uノッチ試験片の長さ中央位置(つまり、長さ55mmの中央位置)に、Uノッチを形成した。ノッチ深さを2mmとし、ノッチ底半径を1mmとした。JIS Z 2242(2005)に準拠して、室温大気中でのシャルピー衝撃試験を実施した。各試験番号で4個のUノッチ試験片に対してシャルピー衝撃値(J/cm)を求め、それらの平均値を、その試験番号のシャルピー衝撃値(J/cm)と定義した。
 さらに、熱処理後の各試験番号の鋼材のミクロ組織を観察して、初析セメンタイトの有無を調査した。具体的には、熱処理後の各試験番号の鋼材の長手方向に垂直な断面の中心位置から、ミクロ組織観察用サンプルを採取した。サンプルの表面のうち、鋼材の長手方向に垂直な断面を観察面とした。各サンプルの観察面を機械研磨により鏡面仕上げした。その後、観察面に対して、初析セメンタイトの現出に適した腐食液であるピクリン酸ソーダ液(水100ml+ピクリン酸2g+水酸化ナトリウム25g)を用いたエッチングを実施した。エッチングでは、煮沸したピクリン酸ソーダ液にサンプルを浸漬した。エッチング後のサンプルの観察面内の任意の1視野(200μm×200μm)に対して、500倍の光学顕微鏡を用いて写真画像を生成した。観察面において、旧オーステナイト粒界に生成した初析セメンタイトは黒色を呈する。そのため、初析セメンタイトの有無を確認できた。
 図6は、上述のミクロ組織観察により得られた試験番号5(0.90%C材)のミクロ組織写真画像である。図7は、上述のミクロ組織観察により得られた試験番号8(1.00%C材)のミクロ組織写真画像である。図6及び図7を参照して、これらの写真画像のうちの黒色の領域(黒色矢印で示す領域)が初析セメンタイトである。
 上記視野内で確認された初析セメンタイトの面積率を求めた。具体的には、視野内(200μm×200μm)中の初析セメンタイトの面積を求めた。得られた初析セメンタイトの面積の、視野の総面積に対する割合を、初析セメンタイト面積率(%)と定義した。
 得られた初析セメンタイト面積率が0.90%未満であれば、初析セメンタイトがない、と判断した。一方、初析セメンタイト面積率が0.90%を超えれば、初析セメンタイトがある、と判断した。
 以上の試験結果に基づいて、各試験番号でのビッカース硬さ(HV)、シャルピー衝撃値(J/cm)及び初析セメンタイトの有無との関係を調査した。
 図8は、過共析鋼材(0.90%C材及び1.00%C材)でのビッカース硬さ(HV)と、シャルピー衝撃値(J/cm)と、初析セメンタイトの有無との関係を示す図である。図8を参照して、鋼材TP1(0.90%C材)を用いてヒートパターンHP1を適用した試験番号1、2、4及び5では、ミクロ組織内に初析セメンタイトが存在した。そのため、シャルピー衝撃値が8.5J/cm以下であった。なお、試験番号1(ヒートパターンHP11)と試験番号2(ヒートパターンHP12)とを比較すると、720℃での保持時間が短い試験番号2の方が、試験番号1よりもビッカース硬さが高かった。しかしながら、シャルピー衝撃値は、試験番号1及び2は同等であった。同様に、試験番号4(ヒートパターンHP13)と試験番号5(ヒートパターンHP14)とを比較すると、720℃での保持時間が短い試験番号5の方が、試験番号4よりもビッカース硬さが高かった。しかしながら、シャルピー衝撃値は、試験番号4及び5は同等であった。一方、鋼材TP1を用い、かつ、ヒートパターンHP2(HP21及びHP22)を適用した試験番号3及び6では、ミクロ組織中に初析セメンタイトが存在しなかった。そのため、シャルピー衝撃値が14J/cm以上と高かった。
 一方、鋼材TP2(1.00%C材)を用いてヒートパターンHP2(HP21及びHP22)を適用した試験番号7及び8では、試験番号1、2、4及び5と同様に、ミクロ組織において初析セメンタイトが存在した。しかしながら、初析セメンタイトが存在するにもかかわらず、試験番号7及び8のシャルピー衝撃値は、同じく初析セメンタイトが存在する試験番号1、2、4及び5と比較して顕著に高く、14J/cmを超えた。特に、試験番号2と試験番号7とを比較すると、両者のビッカース硬さはほぼ同じであるにもかかわらず、シャルピー衝撃値が大きく異なっていた。同様に、試験番号5と試験番号8とを比較すると、両者のビッカース硬さはほぼ同じであるにもかかわらず、シャルピー衝撃値が大きく異なっていた。
 以上の調査結果は、初析セメンタイトが存在していても、靭性を高めることができる可能性があることを示している。そこで、本発明者らは、共に初析セメンタイトが存在している試験番号5及び試験番号8の鋼材に注目し、5000倍の走査型電子顕微鏡(SEM)を用いてミクロ組織写真画像を生成して、試験番号5及び試験番号8のミクロ組織における初析セメンタイトの形態を調査した。
 図9は、SEMで得られた試験番号5のミクロ組織写真画像である。図10は、SEMで得られた試験番号8のミクロ組織写真画像である。図9及び図10において白線で囲んだ領域は初析セメンタイト(符号50)である。図9及び図10を比較して、シャルピー衝撃値が高い試験番号8で生成している初析セメンタイトの形態は、シャルピー衝撃値が低い試験番号5で生成している初析セメンタイトの形態と顕著に異なっていた。具体的には、試験番号8の初析セメンタイトは、試験番号5の初析セメンタイトと比較して、全体的に初析セメンタイトの幅が狭く形成されていた。
 以上の検討結果から、本発明者らは、鉄道車輪1の板部3に初析セメンタイトが生成しても、生成した初析セメンタイトの幅が狭い場合、靭性の低下を抑制できると考えた。
 そこで、鉄道車輪1内の初析セメンタイトの形態を示す指標として、本発明者らは、ミクロ組織写真画像内の初析セメンタイトの幅に注目した。そして、本発明者らは、初析セメンタイトの幅について、次の2つの指標を定義した。
 (A)初析セメンタイトの幅の平均値を指標とした規定
 (B)初析セメンタイトの最大幅を指標とした規定
 上記(A)の初析セメンタイトの幅の平均値は、非特許文献1に記載の長方形近似法(ribbon-like method)に基づいて求めることができる。上記(B)の初析セメンタイトの最大幅は、画像処理方法の1つである細線化処理を実施することにより求めることができる。以下、上記(A)及び(B)について詳述する。
 (A)初析セメンタイトの幅Wの平均値を初析セメンタイトの形態の指標とした規定
 初析セメンタイトの幅Wの平均値を、非特許文献1に記載の長方形近似法により求める。具体的には、次の方法により求める。上述の500倍の光学顕微鏡により得られた上述のミクロ組織写真画像(200μm×200μm)を画像処理により2値化して、初析セメンタイトを特定する。特定された初析セメンタイトの面積Aを求める。さらに、特定された初析セメンタイトの外周の長さP(外周長)を求める。得られた各初析セメンタイトの面積A及び外周長Pとを用いて、初析セメンタイトを面積A及び外周長Pを有する長方形であると仮定する。そして、セメンタイトを長方形と仮定したときの長方形の長辺を初析セメンタイトの長さLとみなし、長方形の短辺を初析セメンタイトの幅Wとみなす。つまり、初析セメンタイトを次の式(a)及び式(b)を満たす長方形とみなす。
 A=L×W (a)
 P=2×(L+W) (b)
 このように、各初析セメンタイトを長方形に近似した場合、式(a)及び式(b)に基づいて、初析セメンタイトの幅Wを次の式(1)で定義できる。
 W=1/2×(P/2-((P/2)-4A)1/2) (1)
 なお、初析セメンタイトの長さLは次の式で定義できる。
 L=1/2×(P/2+((P/2)-4A)1/2
 式(1)を用いれば、観察視野において特定された各初析セメンタイトの面積A及び外周長Pとから、各初析セメンタイトの幅Wを求めることができる。そして、各初析セメンタイトの幅Wを用いて、初析セメンタイトの幅Wの平均値を求めることができる。
 初析セメンタイトが確認された試験番号1、2、4、5、7及び8のミクロ組織観察視野(200μm×200μm)において、観察視野で特定された各初析セメンタイトに対して、上述の方法で面積A及び外周長Pを求めた。特定された初析セメンタイトの面積Aの平均値を求め、外周長Pの平均値を求めた。求めた面積Aの平均値と、求めた外周長Pの平均値とを用いて、式(1)で定義された初析セメンタイト幅Wを求めた。求めた初析セメンタイト幅Wを、その試験番号での初析セメンタイト幅Wの平均値(μm)と定義した。そして、求めた初析セメンタイト幅Wの平均値とシャルピー衝撃値との関係を求めた。
 図11は、試験番号1、2、4、5、7及び8の初析セメンタイト幅Wの平均値とシャルピー衝撃値との関係を示す図である。図11を参照して、上記式(1)で定義された初析セメンタイトの幅Wの平均値が0.95μmよりも大きい場合(試験番号1、4)、シャルピー衝撃値が8.5J/cm以下となる。これに対して、初析セメンタイトが9.5μm以下になれば、(試験番号2、5、7及び8)、シャルピー衝撃値が8.5J/cmを超え、さらに、初析セメンタイト幅Wの平均値が狭くなるにしたがい、シャルピー衝撃値が急速に上昇する。つまり、図11のグラフにおいて、初析セメンタイト幅Wの平均値=0.95μm付近に変曲点が存在する。
 以上の検討結果から、本発明者らは、過共析鋼からなる鉄道車輪では、初析セメンタイトの形態を制御することにより、具体的には、式(1)で定義される初析セメンタイト幅Wの平均値を0.95μm以下にすることにより、初析セメンタイトが存在するにもかかわらず、シャルピー衝撃値が8.5J/cm超となり、優れた靭性が得られることを見出した。
 (B)初析セメンタイトの最大幅を初析セメンタイトの形態の指標とした規定
 初析セメンタイトの最大幅を、次の方法で求めた。上述の観察面に対して、機械研磨による鏡面仕上げの後、ナイタール液を用いたエッチングを実施した。エッチング後の観察面内の任意の8視野において、走査型電子顕微鏡(SEM)を用いて2000倍で観察し、二次電子像のミクロ組織写真画像(60μm×45μm)を生成する。ミクロ組織写真画像を画像処理により2値化して、初析セメンタイトを特定する。特定された初析セメンタイトに対して、細線化処理を実施する。
 図12は、図9に示すミクロ組織写真画像に対して2値化処理を実施して、初析セメンタイトを特定した図である。図12に示すとおり、周知の2値化処理を実施することにより、初析セメンタイト50を容易に特定できる。図12では、ミクロ組織のうち、初析セメンタイト50を黒色とし、初析セメンタイト以外の領域(パーライト領域)を白色としている。
 2値化処理によりミクロ組織写真画像中の初析セメンタイト50を特定した後、特定された初析セメンタイト50に対して、細線化処理を実施する。細線化処理とは、2値化された画像(初析セメンタイト50)を幅1画素(1ピクセル)の線画像に変換する処理であり、周知の画像処理方法である。以下、細線化処理により得られた線画像を「骨格線」という。
 2値化された画像中の初析セメンタイト50に対して細線化処理を実施して、骨格線を得た。図13は、図12の初析セメンタイト50に対して細線化処理を実施して得られた骨格線60を、初析セメンタイト50に重ねて表示した図である。
 図14は、2値化された初析セメンタイト50と、その初析セメンタイト50の骨格線60との一部を拡大した模式図である。図14を参照して、骨格線60の任意の測定点Pにおいて、骨格線60と垂直に直線を引く。そして、その直線のうち、初析セメンタイト50の輪郭との2点の交点の間の線分Lを、その測定点Pでの初析セメンタイトの幅と定義する。図14を参照して、たとえば、骨格線60のうち、測定点P1において、骨格線60に垂直な直線を引き、その直線のうち、初析セメンタイト50の輪郭との2点の交点の間の線分L1の長さを、測定点P1での初析セメンタイト50の幅と定義する。同様に、骨格線60のうち、測定点P2における骨格線60と垂直な線分L2の長さを、測定点P2での初析セメンタイト50の幅と定義する。
 なお、骨格線60では、骨格線60が分岐する分岐点BPが発生する場合がある。分岐点BPを中心とした直径1.5μmの基準円Cref内の骨格線60については、初析セメンタイトの幅の測定の対象外とする。また、基準円Cref外の測定点Pの線分Lが骨格線60と2回以上交差する場合、その線分Lの長さについても、初析セメンタイト50の幅の測定の対象外とする。図14では、基準円Cref外の測定点P3の線分L3は、測定点P3以外に、骨格線60上の点P4と交差する。つまり、線分L3は、骨格線60と2回以上交差する。この場合、線分L3は、初析セメンタイト50の幅の測定の対象外とする。
 各視野(合計8視野)で測定された初析セメンタイトの幅のうち、最大の幅を、初析セメンタイトの最大幅(μm)と定義する。
 本発明者らは上記の方法により初析セメンタイトの最大幅を測定した。その結果、初析セメンタイトの最大幅が1.80μm以下であれば、シャルピー衝撃値が8.5J/cm超となり、優れた靱性が得られることを見出した。
 以上の知見に基づいて完成した本実施形態の鉄道車輪は、次の構成を有する。
 [1]の鉄道車輪は、
 リム部と、
 ボス部と、
 前記リム部と前記ボス部との間に配置され、前記リム部と前記ボス部とにつながる板部とを備え、
 前記鉄道車輪の化学組成は、質量%で、
 C:0.80~1.60%、
 Si:1.00%以下、
 Mn:0.10~1.25%、
 P:0.050%以下、
 S:0.030%以下、
 Al:0.010~0.650%、
 N:0.0030~0.0200%、
 Cr:0~0.60%、
 V:0~0.12%、及び、
 残部がFe及び不純物からなり、
 前記鉄道車輪の前記板部のミクロ組織において、パーライトの面積率は85.0%以上であり、初析セメンタイトの面積率は0.90~15.00%であり、かつ、式(1)で定義される前記初析セメンタイトの幅Wの平均値は0.95μm以下である。
 W=1/2×(P/2-((P/2)-4A)1/2) (1)
 ここで、式(1)中のAは前記初析セメンタイトの面積(μm)であり、Pは前記初析セメンタイトの外周長(μm)である。
 [2]の鉄道車輪は、[1]に記載の鉄道車輪であってさらに、
 前記鉄道車輪の前記ボス部のミクロ組織において、パーライトの面積率は85.0%以上であり、前記初析セメンタイトの面積率は0.90~15.00%であり、かつ、式(1)で定義される前記初析セメンタイトの幅Wの平均値は0.95μm以下である。
 [3]の鉄道車輪は、
 リム部と、
 ボス部と、
 前記リム部と前記ボス部との間に配置され、前記リム部と前記ボス部とにつながる板部とを備え、
 前記鉄道車輪の化学組成は、質量%で、
 C:0.80~1.60%、
 Si:1.00%以下、
 Mn:0.10~1.25%、
 P:0.050%以下、
 S:0.030%以下、
 Al:0.010~0.650%、
 N:0.0030~0.0200%、
 Cr:0~0.60%、
 V:0~0.12%、及び、
 残部がFe及び不純物からなり、
 前記鉄道車輪の前記板部のミクロ組織において、パーライトの面積率は85.0%以上であり、初析セメンタイトの面積率は0.90~15.00%であり、前記初析セメンタイトの最大幅は1.80μm以下である。
 [4]の鉄道車輪は、[3]に記載の鉄道車輪であって、
 前記鉄道車輪の前記ボス部のミクロ組織において、パーライトの面積率は85.0%以上であり、前記初析セメンタイトの面積率は0.90~15.00%であり、前記初析セメンタイトの最大幅は1.80μm以下である。
 [5]の鉄道車輪は、[1]~[4]のいずれか1項に記載の鉄道車輪であって、
 前記化学組成は、
 Cr:0.02~0.60%、及び、
 V:0.02~0.12%、
 からなる群から選択される1元素以上を含有する。
 以下、本実施形態の鉄道車輪について詳述する。本明細書において、元素に関する「%」は、特に断りがない限り、質量%を意味する。
 [鉄道車輪の化学組成]
 本実施形態の鉄道車輪1は、図1に示すとおり、ボス部2と、板部3とリム部4とを備える。本実施形態の鉄道車輪1の化学組成は、次の元素を含有する。
 C:0.80~1.60%
 炭素(C)は、鋼の硬度を高め、鉄道車輪1の耐摩耗性を高める。C含有量が0.80%未満であれば、他の元素含有量が本実施形態の範囲内であっても、この効果が得られない。一方、C含有量が1.60%を超えれば、他の元素含有量が本実施形態の範囲内であっても、旧オーステナイト粒界に初析セメンタイトが過剰に多く析出し、初析セメンタイトの面積率が15.00%を超える。この場合、鉄道車輪1の靱性が低下する。したがって、C含有量は0.80~1.60%である。C含有量の好ましい下限は0.85%であり、さらに好ましくは0.87%であり、さらに好ましくは0.90%であり、さらに好ましくは0.95%である。C含有量の好ましい上限は1.55%であり、さらに好ましくは1.45%であり、さらに好ましくは1.30%であり、さらに好ましくは1.15%であり、さらに好ましくは1.05%である。
 Si:1.00%以下
 シリコン(Si)は不可避に含有される。つまり、Si含有量は0%超である。Siは、フェライトを固溶強化して鋼の硬さを高める。しかしながら、Si含有量が1.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、初析セメンタイトが生成しやすくなる。Si含有量が1.00%を超えればさらに、鋼の焼入れ性が高くなりすぎ、マルテンサイトが生成しやすくなる。この場合、踏面焼入れ時に踏面上に形成される焼入れ層の厚みが増大する。その結果、切削量が増大して歩留りが低下する。Si含有量が1.00%を超えればさらに、鉄道車輪1の使用中に、ブレーキとの間に発生する摩擦熱によりリム部4に焼きが入る。この場合、鋼の耐き裂性が低下する場合がある。したがって、Si含有量は1.00%以下である。Si含有量の好ましい上限は0.90%であり、さらに好ましくは0.80%であり、さらに好ましくは0.70%であり、さらに好ましくは0.50%である。Si含有量の下限は特に制限されない。しかしながら、Si含有量の過剰な低減は製造コストを高める。したがって、Si含有量の好ましい下限は0.01%であり、さらに好ましくは0.05%である。鋼の硬さを高める観点では、Si含有量のさらに好ましい下限は0.10%であり、さらに好ましくは0.15%である。
 Mn:0.10~1.25%
 マンガン(Mn)はフェライトを固溶強化して鋼の硬さを高める。Mnはさらに、MnSを形成し、鋼の被削性を向上する。Mn含有量が0.10%未満であれば、他の元素含有量が本実施形態の範囲内であっても、これらの効果は得られない。一方、Mn含有量が1.25%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼の焼入れ性が高くなりすぎる。この場合、焼入れ層の厚みが増大し、製造工程時における歩留まりが低下する。さらに、鉄道車輪1の使用時に、ブレーキとの間に発生する摩擦熱によりリム部4に焼きが入る。この場合、鋼の耐き裂性が低下する場合がある。したがって、Mn含有量は0.10~1.25%である。Mn含有量の好ましい下限は0.50%であり、さらに好ましくは0.60%であり、さらに好ましくは0.70%である。Mn含有量の好ましい上限は1.10%であり、さらに好ましくは1.00%であり、さらに好ましくは0.95%であり、さらに好ましくは0.90%である。
 P:0.050%以下
 りん(P)は、不可避に含有される不純物である。つまり、P含有量は0%超である。Pは粒界に偏析して鋼の靭性を低下する。したがって、P含有量は0.050%以下である。P含有量の好ましい上限は0.030%であり、さらに好ましくは0.020%である。P含有量はなるべく低い方が好ましい。しかしながら、P含有量の過剰な低減は製造コストを高める。したがって、通常の工業生産を考慮した場合、P含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%である。
 S:0.030%以下
 硫黄(S)は、不可避に含有される。つまり、S含有量は0%超である。SはMnSを形成し、鋼の被削性を高める。一方、S含有量が高すぎれば、鋼の靭性が低下する。したがって、S含有量は0.030%以下である。S含有量の好ましい上限は0.020%である。S含有量の過剰な低減は製造コストを高める。したがって、S含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%であり、さらに好ましい下限は0.005%である。
 Al:0.010~0.650%
 アルミニウム(Al)は、鋼を脱酸する。Alはさらに、初析セメンタイトの生成を抑制し、鋼の靱性を高める。Alはさらに、Nと結合してAlNを形成し、結晶粒を微細化する。結晶粒を微細化することにより、鋼の靱性が高まる。Al含有量が0.010%未満であれば、他の元素含有量が本実施形態の範囲内であっても、これらの効果が十分に得られない。一方、Al含有量が0.650%を超えれば、他の元素含有量が本実施形態の範囲内であっても、非金属介在物が増加して鋼の靱性が低下する。したがって、Al含有量は0.010~0.650%である。Al含有量の好ましい下限は0.012%であり、さらに好ましくは0.020%であり、さらに好ましくは0.025%であり、さらに好ましくは0.030%である。Al含有量の好ましい上限は0.600%であり、さらに好ましくは0.500%であり、さらに好ましくは0.300%であり、さらに好ましくは0.250%未満であり、さらに好ましくは0.240%である。本明細書でいうAl含有量は、酸可溶Al(sol.Al)の含有量を意味する。
 N:0.0030~0.0200%
 窒素(N)は、Alと結合してAlNを形成し、旧オーステナイト粒を微細化する。旧オーステナイト粒が微細化することにより、鋼の靭性が高まる。N含有量が0.0030%未満であれば、他の元素含有量が本実施形態の範囲内であっても、この効果が十分に得られない。一方、N含有量が0.0200%を超えれば、他の元素含有量が本実施形態の範囲内であっても、その効果が飽和する。したがって、N含有量は0.0030~0.0200%である。N含有量の好ましい下限は、0.0035%であり、さらに好ましくは0.0040%である。N含有量の好ましい上限は、0.0100%であり、さらに好ましくは0.0080%である。
 本実施形態による鉄道車輪1の化学組成の残部は、Fe及び不純物からなる。ここで、不純物とは、上記鉄道車輪1を工業的に製造する際に、原料としての鉱石、スクラップ、又は製造環境などから混入されるものであって、本実施形態の鉄道車輪1に悪影響を与えない範囲で許容されるものを意味する。上述の不純物以外の不純物としては、たとえば、O、Cu、Ni、Moである。これらの不純物元素の含有量はたとえば、次のとおりである。O:0.0070%以下、Cu:0.20%以下、さらに好ましくは0.10%以下、さらに好ましくは0.08%以下、Ni:0.20%以下、さらに好ましくは0.10%以下、さらに好ましくは0.08%以下、Mo:0.07%以下。
 [任意元素(Optional Elements)について]
 本実施形態の鉄道車輪1の化学組成はさらに、Feの一部に代えて、Crを含有してもよい。
 Cr:0~0.60%
 クロム(Cr)は、任意元素であり、含有されなくてもよい。つまり、Cr含有量は0%であってもよい。含有される場合、Crは、パーライトのラメラ間隔を狭める。これにより、パーライトの硬度が顕著に増大する。しかしながら、Cr含有量が0.60%を超えれば、他の元素含有量が本実施形態の範囲内であっても、焼入れ性が過剰に高くなり、踏面焼入れ後の焼入れ層の厚さが過剰に増大する。したがって、Cr含有量は0~0.60%である。Cr含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.03%である。Cr含有量の好ましい上限は0.55%であり、さらに好ましくは0.40%であり、さらに好ましくは0.30%であり、さらに好ましくは0.25%であり、さらに好ましくは0.20%である。
 本実施形態の鉄道車輪1の化学組成はさらに、Feの一部に代えて、Vを含有してもよい。
 V:0~0.12%
 バナジウム(V)は任意元素であり、含有されなくてもよい。つまり、V含有量は0%であってもよい。含有される場合、Vは、炭化物、窒化物、及び炭窒化物のいずれかを形成して、鋼(具体的には鋼中のフェライト)を析出強化する。その結果、鉄道車輪1の硬さが増大して、耐摩耗性をさらに高める。しかしながら、V含有量が0.12%を超えれば、焼入れ性が高くなり、踏面焼入れ後の焼入れ層の厚さが過剰に増大する。したがって、V含有量は0~0.12%である。V含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.03%である。V含有量の好ましい上限は0.11%であり、さらに好ましくは0.10%である。
 [鉄道車輪の板部のミクロ組織]
 本実施形態の鉄道車輪1の板部3のミクロ組織において、パーライトの面積率は85.0%以上であり、初析セメンタイトの面積率は0.90~15.00%である。板部3のミクロ組織のうち、パーライト及び初析セメンタイト以外の相はたとえば、マルテンサイト及び/又はベイナイトである。
 好ましくは、本実施形態の鉄道車輪のボス部2のミクロ組織では、パーライトの面積率は85.0%以上であり、初析セメンタイトの面積率は0.90~15.00%である。ボス部2のミクロ組織のうち、パーライト及び初析セメンタイト以外の相はたとえば、マルテンサイト及び/又はベイナイトである。
 なお、リム部4のミクロ組織では、好ましくはパーライト面積率が95.0%以上であり、さらに好ましくは97.0%以上である。リム部4のミクロ組織のうち、パーライト及び初析セメンタイト以外の相はたとえば、マルテンサイト及び/又はベイナイトである。
 板部3、ボス部2、及びリム部4のミクロ組織におけるパーライト面積率、初析セメンタイト面積率は、次の方法で求める。板部3の厚さ方向の中央位置(図1の厚さT3の中央位置)、ボス部2の厚さ方向の中央位置(図1の厚さT2の中央位置)、リム部4の厚さ方向の中央位置(図1の厚さT4の中央位置)からサンプルを採取する。各サンプルの観察面を機械研磨により鏡面仕上げする。その後、観察面に対して、ピクリン酸ソーダ液(水100ml+ピクリン酸2g+水酸化ナトリウム25g)を用いたエッチングを実施する。エッチングでは、煮沸したピクリン酸ソーダ液にサンプルを浸漬する。エッチング後のサンプルの観察面内の任意の1視野(200μm×200μm)に対して、500倍の光学顕微鏡を用いて写真画像を生成する。観察面において、パーライトと、初析セメンタイトとは、コントラストが異なる。たとえば、図6及び図7において、矢印で示される黒色の領域は初析セメンタイトであり、残りの薄い灰色の領域はパーライトである。このように、ミクロ組織の各相はコントラストに基づいて、判別可能である。そこで、コントラストに基づいて、パーライト及び初析セメンタイトを特定する。パーライトの面積率(%)は、特定されたパーライトの総面積と観察視野の面積(40000μm)とに基づいて求める。初析セメンタイトの面積率(%)は、特定された初析セメンタイトの総面積と、観察視野の面積(40000μm)とに基づいて求める。
 [初析セメンタイトの形態について]
 (A)初析セメンタイトの幅Wの平均値を指標とする規定
 本実施形態の鉄道車輪1では、板部3のミクロ組織において、パーライト面積率が85.0%以上であり、かつ、初析セメンタイトの面積率が0.90~15.00%である。つまり、板部3において、初析セメンタイトが存在している。しかしながら、後述のとおり、初析セメンタイト幅Wの平均値が0.95μm以下であるため、本実施形態の鉄道車輪1は、優れた靭性を示す。
 [板部3の初析セメンタイト幅Wの平均値について]
 本実施形態の鉄道車輪ではさらに、少なくとも板部のミクロ組織において、式(1)で定義される初析セメンタイトの幅Wの平均値が0.95μm以下である。
 W=1/2×(P/2-((P/2)-4A)1/2) (1)
 ここで、式(1)中のAは初析セメンタイトの面積(μm)であり、Pは初析セメンタイトの外周長(μm)である。
 上述のとおり、図1を参照して、鉄道車輪1のリム部4、板部3、ボス部2のうち、板部3の厚さT3が最も薄い。したがって、鉄道車輪1において、板部3には高い靭性が求められる。板部3のミクロ組織において、式(1)で定義される初析セメンタイトの幅Wの平均値が0.95μm以下であれば、図11に示すとおり、靭性が顕著に高まる。したがって、本実施形態の鉄道車輪の、少なくとも板部3のミクロ組織において、式(1)で定義される初析セメンタイトの幅Wの平均値が0.95μm以下である。初析セメンタイトの幅Wの平均値の好ましい上限は0.90μmであり、さらに好ましくは0.85μmであり、さらに好ましくは0.80μmであり、さらに好ましくは0.75μmであり、さらに好ましくは0.70μm未満であり、さらに好ましくは0.68μmであり、さらに好ましくは0.65μmである。
 初析セメンタイトの幅Wの平均値は、次の方法で求める。上述の光学顕微鏡を用いて得られた板部3のミクロ組織写真画像(観察視野:200μm×200μm)を準備する。写真画像に対して周知の画像処理により2値化処理を実施する。図15は、光学顕微鏡を用いて得られたミクロ組織写真画像と、2値化処理後の画像とを示す図である。図15を参照して、マークA及びマークBのミクロ組織写真画像において、黒色領域が初析セメンタイトであり、それ以外の薄い灰色領域がパーライトである。これらのミクロ組織写真画像を画像処理により2値化処理した画像が図15の「2値化」欄の画像である。2値化欄の画像では、初析セメンタイトを白色で示し、パーライトを黒色で示している。しかしながら、2値化処理では、初析セメンタイトを黒色で示し、パーライトを白色で示してもよい。2値化処理はたとえば、ImageJ(商標)等の周知の画像処理アプリケーションで実施することができる。なお、画像の画素数は特に限定されないが、画像の画素数の好ましい範囲は、30万画素以上であり、さらに好ましくは40万画素以上であり、さらに好ましくは50万画素以上である。画素数の上限は特に限定されないが、たとえば、200万画素であり、120万画素であってもよいし、100万画素であってもよい。
 2値化処理後の画像において、個々の初析セメンタイトを特定する。このとき、連続して繋がっている領域は、1つのセメンタイトとして特定する。特定された各初析セメンタイトの面積A(μm)を求める。さらに、特定された各初析セメンタイトの外周長P(μm)を求める。面積A及び外周長Pはたとえば、ImageJ(商標)等の周知の画像処理アプリケーションで求めることができる。特定された各初析セメンタイトにおいて、面積Aが0.80μm未満のものは、ノイズである可能性があるため、除外する。つまり、面積Aが0.80μm以上の初析セメンタイトを対象とする。対象となる各初析セメンタイトの面積A及び外周長さPを求める。対象となった全ての初析セメンタイトの面積Aの平均値を求め、かつ、外周長Pの平均値を求める。求めた面積Aの平均値と、求めた外周長Pの平均値とを用いて、式(1)で定義された初析セメンタイト幅Wを求める。求めた初析セメンタイト幅Wを初析セメンタイト幅Wの平均値とみなす。なお、図15のマークAの初析セメンタイト幅Wの平均値は0.52μmであり、マークBの初析セメンタイト幅Wの平均値は0.95μmである。
 以上のとおり、本実施形態の鉄道車輪1では、板部3のミクロ組織において、パーライト面積率が85.0%以上であり、初析セメンタイトの面積率が0.90~15.00%であり、かつ、初析セメンタイト幅Wの平均値が0.95μm以下である。本実施形態の鉄道車輪1では、板部3において初析セメンタイトが存在している。しかしながら、板部3の初析セメンタイト幅Wの平均値が0.95μm以下であるため、本実施形態の鉄道車輪1は、優れた靭性を示す。
 [ボス部2の好ましい初析セメンタイト幅Wの平均値について]
 好ましくは、本実施形態の鉄道車輪1のボス部2のミクロ組織においても、パーライト面積率が85.0%以上であり、初析セメンタイトの面積率が0.90~15.00%であり、かつ、初析セメンタイト幅Wの平均値が0.95μm以下である。この場合、鉄道車輪1はさらに優れた靭性を示す。ボス部2における初析セメンタイトの幅Wの平均値の好ましい上限は0.90μmであり、さらに好ましくは0.85μmであり、さらに好ましくは0.80μmであり、さらに好ましくは0.75μmであり、さらに好ましくは0.70μm未満であり、さらに好ましくは0.68μmであり、さらに好ましくは0.65μmである。
 なお、ボス部2における初析セメンタイトの幅Wの平均値は、上述の光学顕微鏡により得られたボス部のミクロ組織写真画像(観察視野:200μm×200μm)を用いて、板部3での初析セメンタイト幅Wの平均値を求める方法と同じ方法により求めることができる。
 (B)初析セメンタイトの最大幅を指標とする規定
 本実施形態による鉄道車輪1において、板部3内の初析セメンタイトを、上述の幅Wの平均値ではなく、初析セメンタイトの最大幅で定義することもできる。この場合、本実施形態の鉄道車輪1の板部3のミクロ組織において、パーライトの面積率は85.0%以上であり、初析セメンタイトの面積率は0.90~15.00%であり、初析セメンタイトの最大幅は1.80μm以下である。
 上述のとおり、図1を参照して、鉄道車輪1のリム部4、板部3、ボス部2のうち、板部3の厚さT3が最も薄い。したがって、鉄道車輪1において、板部3には高い靭性が求められる。板部3のミクロ組織において、初析セメンタイトの最大幅が1.80μm以下であれば、靭性が顕著に高まる。したがって、本実施形態の鉄道車輪の、少なくとも板部3のミクロ組織において、初析セメンタイトの最大幅が1.80μm以下である。初析セメンタイトの最大幅の好ましい上限は1.75μmであり、さらに好ましくは1.70μmであり、さらに好ましくは1.60μmであり、さらに好ましくは1.50μmであり、さらに好ましくは1.40μmであり、さらに好ましくは1.30μmであり、さらに好ましくは1.20μmであり、さらに好ましくは1.10μmである。
 初析セメンタイトの最大幅は、次の方法で求める。板部3の任意の厚さ中央位置(図1中の板部3の厚さT3の中央位置)からサンプルを採取する。サンプルの表面のうち、任意の表面を観察面とする。観察面を機械研磨により鏡面仕上げにする。その後、観察面に対して、ナイタール液を用いたエッチングを実施する。エッチング後のサンプルの観察面の任意の8視野を、走査型電子顕微鏡(SEM)を用いて2000倍で観察し、各視野(60μm×45μm)の二次電子像のミクロ組織写真画像を生成する。なお、画像の画素数は特に限定されないが、画像の画素数の好ましい範囲は、30万画素以上であり、さらに好ましくは40万画素以上であり、さらに好ましくは50万画素以上である。画素数の上限は特に限定されないが、たとえば、300万画素であり、200万画素であってもよいし、150万画素であってもよい。
 ミクロ組織写真画像を画像処理により2値化して、初析セメンタイトを特定する。特定された初析セメンタイトに対して、細線化処理を実施して、初析セメンタイトの骨格線を特定する。骨格線の任意の測定点から骨格線に対して垂直な直線のうち、初析セメンタイトの輪郭との2点の交差点間の線分長さを、その測定点での初析セメンタイトの幅と定義する。このとき、図14を参照して、骨格線の分岐点から直径1.5μmの基準円Crefの範囲内の測定点での初析セメンタイトの幅と、測定点での線分が測定点を含んだ2点以上で骨格線と交差する場合の初析セメンタイトの幅とは、対象外とする。
 骨格線の分岐点から直径1.5μmの基準円Crefの範囲内の測定点での初析セメンタイトの幅と、測定点での線分が測定点を含んだ2点以上で骨格線と交差する場合の初析セメンタイトの幅とを対象外として、各視野において、初析セメンタイトの幅の最大値を特定する。8つの視野の初析セメンタイトの幅の最大値のうち、最も大きい幅を、初析セメンタイトの最大幅と定義する。
 好ましくは、本実施形態の鉄道車輪1のボス部2のミクロ組織においても、パーライト面積率が85.0%以上であり、初析セメンタイトの面積率が0.90~15.00%であり、かつ、初析セメンタイトの最大幅が1.80μm以下である。この場合、鉄道車輪1はさらに優れた靭性を示す。ボス部2における初析セメンタイトの最大幅の好ましい上限は1.75μmであり、さらに好ましくは1.70μmであり、さらに好ましくは1.60μmであり、さらに好ましくは1.50μmであり、さらに好ましくは1.40μmであり、さらに好ましくは1.30μmであり、さらに好ましくは1.20μmであり、さらに好ましくは1.10μmである。
 [鉄道車輪の製造方法]
 上述の鉄道車輪を製造する方法の一例を説明する。本製造方法は、鉄道車輪用鋼を製造する工程(素材製造工程)と、熱間加工により、鉄道車輪用鋼から車輪形状の中間品を成形する工程(成形工程)と、成形された中間品に対して熱処理(踏面焼入れ)を実施する工程(熱処理工程)と、熱処理後の中間品の踏面等から焼入れ層を切削加工により除去して鉄道車輪とする工程(切削加工工程)とを含む。以下、各工程について説明する。
 [素材製造工程]
 素材製造工程では、電気炉又は転炉等を用いて上述の化学組成を有する溶鋼を溶製した後、鋳造して鋼塊にする。なお、鋼塊は連続鋳造による鋳片、鋳型によって鋳込まれたインゴットのいずれであってもよい。
 鋳片又はインゴットを熱間加工して、所望のサイズの鉄道車輪用鋼材を製造する。熱間加工はたとえば、熱間鍛造、熱間圧延等である。熱間圧延により鉄道車輪用鋼材を製造する場合、たとえば、次の方法で鉄道車輪用鋼材を製造する。熱間圧延ではたとえば、分塊圧延機を用いる。分塊圧延機により素材に対して分塊圧延を実施して、鉄道車輪用鋼材を製造する。分塊圧延機の下流に連続圧延機が設置されている場合、分塊圧延後の鋼材に対してさらに、連続圧延機を用いて熱間圧延を実施して、鉄道車輪用鋼材を製造してもよい。連続圧延機では、一対の水平ロールを有する水平スタンドと、一対の垂直ロールを有する垂直スタンドとが交互に一列に配列される。熱間圧延での加熱炉の加熱温度は特に限定されないが、たとえば、1100~1350℃である。以上の製造工程により、鉄道車輪用鋼材が製造される。
 なお、鉄道車輪用鋼材は、鋳造材(鋳片又はインゴット)であってもよい。つまり、上述の熱間加工工程は省略されてもよい。以上の工程により、鉄道車輪の素材である鉄道車輪用鋼材が製造される。
 [成形工程]
 成形工程では、準備された鉄道車輪用鋼材を用いて、熱間加工により車輪形状の中間品を成形する。中間品は車輪形状を有するため、ボス部と、板部と、踏面及びフランジ部を含むリム部とを備える。熱間加工はたとえば、熱間鍛造、熱間圧延等である。たとえば、熱間鍛造により車輪形状の粗中間品を成形する荒地鍛造を実施する。荒地鍛造後の粗中間品に対して、車輪圧延機を用いた熱間圧延を実施する。熱間圧延後の粗中間品に対して回転鍛造を実施して、ボス部に相当する中央部に貫通孔を形成する。以上の構成により、熱間加工により車輪形状の中間品を成形する。
 成形工程での熱間加工時における鉄道車輪用鋼材の好ましい加熱温度は1220℃以上である。この場合、熱間加工時の加熱温度の好ましい下限は1230℃であり、さらに好ましくは1250℃であり、さらに好ましくは1300℃である。熱間加工時の加熱温度の好ましい上限は1350℃である。
 なお、熱間加工後の中間品の冷却方法は特に限定されない。放冷でもよいし、水冷でもよい。
 [熱処理工程]
 熱処理工程では、成形された車輪形状の中間品に対して踏面焼入れを実施する。具体的には、熱間加工(熱間鍛造又は熱間圧延)後の中間品をAc変態点以上に再加熱する(再加熱処理)。加熱後、中間品の踏面及びフランジ部に対して急冷(踏面焼入れ)を実施する。このとき、板部3に対して急冷する必要はなく、板部3における800℃から500℃に至るまでの平均冷却速度CR800-500は0.500℃/秒未満であってよい。しかしながら、板部3における750℃から700℃に至るまでの平均冷却速度CR750-700を0.022℃/秒以上とする。
 上述の化学組成の鉄道車輪1の中間品において、750~700℃の温度域は、初析セメンタイトが析出する温度域である。平均冷却速度CR750-700が0.022℃/秒以上であれば、板部3における初析セメンタイトの幅Wの平均値が0.95μm以下となり、初析セメンタイトの最大幅が1.80μm以下となる。この場合、鉄道車輪の靭性が良好である。
 板部3における750℃から700℃に至るまでの平均冷却速度CR750-700が0.022℃/秒以上であれば、板部3における800℃から500℃に至るまでの平均冷却速度CR800-500が0.500℃/秒未満であっても、過剰な初析セメンタイトの生成が抑制される。その結果、板部3における初析セメンタイトの幅Wの平均値が0.95μm以下となる。また、板部3における初析セメンタイトの最大幅が1.80μm以下になる。板部3における平均冷却速度CR750-700の好ましい下限は0.025℃/秒であり、さらに好ましくは0.030℃/秒であり、さらに好ましくは0.040℃/秒であり、さらに好ましくは0.045℃/秒であり、さらに好ましくは0.050℃/秒であり、さらに好ましくは0.052℃/秒であり、さらに好ましくは0.055℃/秒であり、さらに好ましくは0.100℃/秒であり、さらに好ましくは0.500℃/秒である。
 なお、平均冷却速度CR750-700が33.000℃/秒を超えれば、平均冷却速度CR800-500も0.500℃/秒以上となる。この場合、初析セメンタイトの生成が抑制され、上記化学組成の鋼材において、初析セメンタイトの面積率を0.90%未満とすることができる。しかしながら、踏面焼入れ時の冷却装置の冷却能力を向上させる必要があり、設備コストが高くなる。冷却速度が速くなれば、踏面だけでなく、板部3やボス部2の表面にも焼入れ層が形成されてしまう可能性がある。板部3やボス部2での焼入れ層の生成は抑制できる方が好ましい。したがって、初析セメンタイトの面積率を0.90%未満にしようとすれば、焼入れ層の生成の抑制も考慮しつつ、板部3の冷却速度を厳密に調整する必要がある。本実施形態での鉄道車輪1は、少なくとも板部3に初析セメンタイトが存在することを前提とする。そのため、板部3において、初析セメンタイトの生成を抑制しつつ、かつ、焼入れ層の生成を抑制する、というような厳密な冷却速度の制御をする必要がない。その結果、製造工程の複雑化を抑制できる。
 図16は、中間品を冷却するための冷却装置の一例を示す図である。冷却装置10は、回転軸を有する回転装置11と、1又は複数のボス部冷却ノズル12と、1又は複数の板部冷却ノズル13と、1又は複数の踏面冷却ノズル14とを備える。踏面冷却ノズル14は、冷却装置10の回転軸の周りに配置される。踏面冷却ノズル14のノズル口は、中間品の踏面41に対向して配置される。踏面冷却ノズル14のノズル口は、中間品のフランジ部42の表面に対向して配置してもよい。板部冷却ノズル13は、ノズル口が板部3の表面に対向するように配置される。ボス部冷却ノズル12は、ノズル口がボス部2の表面に対向するように配置される。
 踏面冷却ノズル14は、ノズル口から冷却液を噴射して、主としてリム部4の踏面41及びフランジ部42の表面を冷却する。冷却液はたとえば、水、ミスト、スプレー等である。一方、板部冷却ノズル13は、ノズル口から冷却気体を噴射して、主として板部3を冷却する。冷却気体はたとえば圧縮空気等である。ボス部冷却ノズル12も板部冷却ノズル13と同様に、ノズル口から冷却気体を噴射して、主としてボス部2を冷却する。
 冷却装置10はさらに、複数の測温計20を備える。測温計20は中間品の周りに配置され、リム部4、踏面41、フランジ部42、板部3、ボス部2の温度を測定する。図16では、複数の測温計20は、踏面41、フランジ部42の表面、リム部4の表面のうち踏面41及びフランジ部42の表面以外の表面(たとえば、リム部4の側面)、板部3の表面、及びボス部2の表面の温度分布が測定可能となるように配置されている。
 Acm変態点以上に加熱された中間品を冷却装置10に配置する。回転装置11により中間品を回転させながら、踏面冷却ノズル14から冷却液を噴射して、踏面焼入れを実施する。さらに、踏面焼入れを実施中に、板部冷却ノズル13及び/又はボス部冷却ノズル12から冷却気体を噴射して、板部3及び/又はボス部2を冷却する。測温計20で中間品の温度分布を測定しながら、板部3において750~700℃での冷却速度が0.022~33.000℃/秒となるように調整する。
 踏面焼入れにより、踏面41の表層に微細パーライトが生成する。本実施形態の鉄道車輪1のC含有量は0.80~1.60%と高い。そのため、微細パーライトの耐摩耗性が高まる。さらに、踏面焼入れ時、板部3において、750~700℃における平均冷却速度CR750-700を0.022~33.000℃/秒に調整する。この場合、少なくとも板部3のミクロ組織において、パーライト面積率が85.0%以上となり、かつ、初析セメンタイトの面積率が0.90~15.00%となるものの、初析セメンタイトの幅Wの平均を0.95μm以下にすることができる。また、初析セメンタイトの最大幅を1.80μm以下とすることができる。そのため、ミクロ組織中に初析セメンタイトが存在するものの、十分な靭性を得ることができる。
 なお、板部3だけでなく、ボス部2のミクロ組織においても、パーライト面積率を85.0%以上とし、かつ、初析セメンタイトの面積率を0.90~15.00%とし、かつ、初析セメンタイトの幅Wの平均値を0.95μm以下、又は、初析セメンタイトの最大幅を1.80μm以下とする場合、板部3及びボス部2における800~500℃の平均冷却速度CR800-500を0.500℃/秒未満であっても、板部3における750~700℃での平均冷却速度CR750-700を0.022~33.000℃/秒とするとともに、ボス部2における750~700℃での平均冷却速度CR750-700も0.022~33.0℃/秒とする。この場合、板部3のミクロ組織において、パーライト面積率が85.0%以上であって初析セメンタイトの面積率が0.90~15.00%となり、初析セメンタイトの幅Wの平均値が0.95μm以下になるとともに、ボス部2のミクロ組織においても、パーライト面積率が85.0%以上であって初析セメンタイトの面積率が0.90~15.00%となり、初析セメンタイトの幅Wの平均値が0.95μm以下になる。また、板部3のミクロ組織において、パーライト面積率が85.0%以上であって初析セメンタイトの面積率が0.90~15.00%となり、初析セメンタイトの最大幅が1.80μm以下になるとともに、ボス部2のミクロ組織においても、パーライト面積率が85.0%以上であって初析セメンタイトの面積率が0.90~15.00%となり、初析セメンタイトの最大幅が1.80μm以下になる。
 なお、上述の冷却装置10は、板部冷却ノズル13及びボス部冷却ノズル12が備えられているが、冷却装置10は、ボス部冷却ノズル12を備えていなくてもよい。また、冷却装置10は、踏面冷却ノズル14を備え、板部冷却ノズル13及びボス部冷却ノズル12を備えていなくてもよい。この場合、踏面焼入れ時の踏面冷却ノズル14の冷却液の噴射量を調整することにより、板部3、又は、板部3及びボス部2における750~700℃での平均冷却速度CR750-700を0.022~33.000℃/秒に調整することができる。
 上記説明では中間品を再加熱するが、熱間加工後の中間品に対して直接(再加熱せずに)、踏面焼入れを実施してもよい。
 踏面焼入れ後の中間品に対して、必要に応じて焼戻しを実施する。焼戻しは周知の温度及び時間で行えば足りる。焼戻し温度はたとえば、400~600℃である。
 [切削加工工程]
 上述のとおり、熱処理後の中間品の踏面の表層には微細パーライトが形成されるが、その上層には焼入れ層が形成されている。鉄道車輪の使用において、焼入れ層の耐摩耗性は低いため、切削加工により焼入れ層を除去する。切削加工は周知の方法で行えば足りる。
 以上の工程により本実施形態の鉄道車輪が製造される。上記製造工程で製造された本実施形態の鉄道車輪において、少なくとも板部3のミクロ組織では、パーライト面積率が85.0%以上であり、初析セメンタイトの面積率が0.90~15.00%であり、式(1)で定義される初析セメンタイトの幅Wの平均値が0.95μm以下である。又は、初析セメンタイトの最大幅が1.80μm以下である。好ましくは、本実施形態の鉄道車輪において、板部3のミクロ組織では、パーライト面積率が85.0%以上であり、初析セメンタイトの面積率が0.90~15.00%であり、式(1)で定義される初析セメンタイトの幅Wの平均値が0.95μm以下であり、かつ、ボス部2のミクロ組織では、パーライト面積率が85.0%以上であり、初析セメンタイトの面積率が0.90~15.00%であり、式(1)で定義される初析セメンタイトの幅Wの平均値が0.95μm以下である。そのため、本実施形態の鉄道車輪では、初析セメンタイトが存在するものの、十分な靭性が得られる。
 また、上記製造工程で製造された本実施形態の鉄道車輪において、少なくとも板部3のミクロ組織では、パーライト面積率が85.0%以上であり、初析セメンタイトの面積率が0.90~15.00%であり、初析セメンタイトの最大幅は1.80μm以下である。好ましくは、本実施形態の鉄道車輪において、板部3のミクロ組織では、パーライト面積率が85.0%以上であり、初析セメンタイトの面積率が0.90~15.00%であり、初析セメンタイトの最大幅が1.80μm以下であり、かつ、ボス部2のミクロ組織では、パーライト面積率が85.0%以上であり、初析セメンタイトの面積率が0.90~15.00%であり、初析セメンタイトの最大幅が1.80μm以下である。そのため、本実施形態の鉄道車輪では、初析セメンタイトが存在するものの、十分な靭性が得られる。
 表3に示す化学組成を有する鋼番号A~Fの溶鋼を製造した。
Figure JPOXMLDOC01-appb-T000003
 
 上記溶鋼を用いて造塊法によりインゴット(上面直径107mm、底面直径97mm、高さ230mmの円錐台型)を製造した。鉄道車輪の製造工程の熱間加工工程を模擬して、インゴットを1250℃に加熱後、熱間鍛造して、直径40mmの丸棒を製造した。さらに、この丸棒の中央部から、機械加工により直径20mm、長さ125mmの丸棒(鋼材)を採取した。
 [模擬踏面焼入れ試験]
 各試験番号の鋼材に対して、鉄道車輪の製造工程中の踏面焼入れを模擬した模擬踏面焼入れ試験を実施した。具体的には、各試験番号の鋼材に対して、表4及び図17に示すヒートパターンの熱処理を実施した。各ヒートパターンにおいて、鋼材温度が800~500℃の平均冷却速度CR800-500(℃/秒)、及び、鋼材温度が750~700℃での平均冷却速度CR750-700(℃/秒)は、表4に示すとおりであった。以上の製造工程により、鉄道車輪を模擬した鋼材(模擬鉄道車輪鋼材)を製造した。
Figure JPOXMLDOC01-appb-T000004
 
 図17において、たとえば、「HP690」では、950℃から冷却を開始し、690℃で所定時間保持し、その後冷却を再開することにより、平均冷却速度CR800-500を0.420℃/秒に調整し、平均冷却速度CR750-700を0.530℃/秒に調整した。「HP720速650」では、950℃から冷却を開始し、720℃で所定時間保持し、その後冷却を再開し、650℃で所定時間保持し、その後、冷却を再開することにより、平均冷却速度CR800-500を0.175℃/秒に調整し、平均冷却速度CR750-700を0.0480℃/秒に調整した。
 [パーライト面積率及び初析セメンタイト面積率の測定]
 熱処理後の各試験番号の模擬鉄道車輪鋼材の長手方向に垂直な断面の中心位置から、ミクロ組織観察用の試験片を採取した。試験片の表面のうち、供試材の長手方向に垂直な断面を観察面とした。各試験片の観察面を機械研磨により鏡面仕上げした。その後、観察面に対して、ピクリン酸ソーダ液(水100ml+ピクリン酸2g+水酸化ナトリウム25g)を用いたエッチングを実施した。エッチングでは、煮沸したピクリン酸ソーダ液に試験片を浸漬した。エッチング後の試験片の観察面内の任意の1視野(200μm×200μm)に対して、500倍の光学顕微鏡を用いてミクロ組織観察用の写真画像を生成した。視野において、パーライト、初析セメンタイト、及び他の相(マルテンサイト、ベイナイト)は、上述のとおり、コントラストが異なる。したがって、写真画像のコントラストに基づいて、パーライト及び初析セメンタイトを特定した。特定されたパーライトの総面積と観察視野の面積とに基づいて、パーライトの面積率(%)を求めた。また、特定された初析セメンタイトの総面積と観察視野の面積とに基づいて、初析セメンタイトの面積率(%)を求めた。得られたパーライト面積率及び初析セメンタイト面積率を表4に示す。
 [初析セメンタイト幅Wの平均値の測定]
 上述のエッチング後の試験片の観察面内の任意の1視野(200μm×200μm)のミクロ組織観察用の写真画像に対して、画像処理アプリケーションImageJ(商品名)を用いて、2値化処理を実施し、視野(写真画像)中の個々の初析セメンタイトを特定した。特定された各初析セメンタイトの面積A(μm)を求めた。さらに、特定された各初析セメンタイトの外周長P(μm)を求めた。各初析セメンタイトの面積A及び外周長Pは上述の画像処理アプリケーションを用いて求めた。特定された各初析セメンタイトにおいて、面積Aが0.80μm未満のものは、ノイズである可能性があるため、除外した。対象となる各初析セメンタイトの面積A及び外周長さPを求めた。対象となった全ての初析セメンタイトの面積Aの平均値を求め、かつ、外周長Pの平均値を求めた。求めた面積Aの平均値と、求めた外周長Pの平均値とを用いて、式(1)で定義された初析セメンタイト幅Wを求めた。求めた初析セメンタイト幅Wを初析セメンタイト幅Wの平均値とみなした。求めた初析セメンタイト幅Wの平均値(μm)を表4に示す。なお、試験番号12~16は、初析セメンタイトの面積率が極めて小さかったため、初析セメンタイト幅Wの平均値の算出を省略した(表4中で「-」と記載)。
 [初析セメンタイトの最大幅の測定]
 上述の観察面に対して、機械研磨による鏡面仕上げの後、ナイタール液を用いたエッチングを実施した。エッチング後の試験片の観察面内の任意の8視野を、走査型電子顕微鏡(SEM)を用いて2000倍で観察し、各視野(60μm×45μm)の二次電子像のミクロ組織写真画像を生成した。ミクロ組織観察用の写真画像に対して、画像処理アプリケーションImageJ(商品名)を用いて、2値化処理を実施し、視野(写真画像)中の個々の初析セメンタイトを特定した。そして、2値化処理によりミクロ組織写真画像中の初析セメンタイトを特定した後、特定された初析セメンタイトに対して、細線化処理を実施して、初析セメンタイトの骨格線を得た。
 骨格線の任意の測定点から骨格線に対して垂直な直線のうち、初析セメンタイトの輪郭との2点の交差点間の線分長さを、その測定点での初析セメンタイトの幅と定義した。このとき、骨格線の分岐点から直径1.5μmの基準円Crefの範囲内の測定点での初析セメンタイトの幅と、測定点での線分が測定点を含んだ2点以上で骨格線と交差する場合の初析セメンタイトの幅とは、対象外とした。
 骨格線の分岐点から直径1.5μmの基準円Crefの範囲内の測定点での初析セメンタイトの幅と、測定点での線分が測定点を含んだ2点以上で骨格線と交差する場合の初析セメンタイトの幅とを対象外として、各視野において、初析セメンタイトの幅の最大値を特定した。8つの視野の初析セメンタイトの幅の最大値のうち、最も大きい幅を、初析セメンタイトの最大幅と定義した。求めた初析セメンタイトの最大幅(μm)を表4に示す。なお、試験番号12~16は、初析セメンタイトの面積率が極めて小さかったため、初析セメンタイト最大幅の算出を省略した(表4中で「-」と記載)。
 [シャルピー衝撃試験]
 各試験番号の模擬鉄道車輪鋼材の長手方向に垂直な断面の中心位置から、JIS Z 2242(2005)に準拠したUノッチ試験片を採取した。Uノッチ試験片の長手方向(Longitudinal-direction)に垂直な断面は10mm×10mmの正方形とし、Uノッチ試験片の長手方向の長さは55mmとした。Uノッチ試験片の長手方向は、鋼材の長手方向と平行とした。Uノッチ試験片の長さ中央位置(つまり、長さ55mmの中央位置)に、Uノッチを形成した。ノッチ深さを2mmとし、ノッチ底半径を1.0mmとした。JIS Z 2242(2005)に準拠して、室温大気中でのシャルピー衝撃試験を実施した。4個のUノッチ試験片に対してシャルピー衝撃値(J/cm)を求め、4個の平均値を、その試験番号のシャルピー衝撃値(J/cm)と定義した。得られたシャルピー衝撃値を表4に示す。
 [試験結果]
 試験結果を表4に示す。表4を参照して、試験番号1~7の模擬鉄道車輪鋼材の化学組成は適切であった。さらに、踏面焼入れを模擬した熱処理において、平均冷却速度CR800-500(℃/秒)、及び、平均冷却速度CR750-700(℃/秒)が適切であった。そのため、パーライト面積率は85.0%以上であり、かつ、初析セメンタイトの面積率が0.90~15.00%であった。さらに、初析セメンタイトの幅Wの平均値が0.95μm以下であった。また、初析セメンタイトの最大幅が1.80μm以下であった。そのため、シャルピー衝撃値が8.5J/cmを超え、優れた靭性が得られた。
 一方、試験番号8~10ではいずれも、化学組成は適切であったものの、平均冷却速度CR750-700が0.010~0.019℃/秒と低かった。そのため、これらの試験番号の模擬鉄道車輪鋼材のミクロ組織において、初析セメンタイトの幅Wの平均値が0.95μmを超えた。また、初析セメンタイトの最大幅が1.80μmを超えた。そのため、シャルピー衝撃値が8.5J/cm以下であった。なお、試験番号11~15では、平均冷却速度CR800-500が0.500℃/秒を超え、試験番号14及び15ではさらに、平均冷却速度CR750-700が33.000℃/秒を超えた。そのため、初析セメンタイトの面積率が0.90%未満となり、本発明の対象外であった。
 以上、本発明の実施形態を説明した。しかしながら、上述した実施形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施形態を適宜変更して実施することができる。
 1 鉄道車輪
 2 ボス部
 3 板部
 4 リム部
 41 踏面
 42 フランジ部

Claims (5)

  1.  鉄道車輪であって、
     リム部と、
     ボス部と、
     前記リム部と前記ボス部との間に配置され、前記リム部と前記ボス部とにつながる板部とを備え、
     前記鉄道車輪の化学組成は、質量%で、
     C:0.80~1.60%、
     Si:1.00%以下、
     Mn:0.10~1.25%、
     P:0.050%以下、
     S:0.030%以下、
     Al:0.010~0.650%、
     N:0.0030~0.0200%、
     Cr:0~0.60%、
     V:0~0.12%、及び、
     残部がFe及び不純物からなり、
     前記鉄道車輪の前記板部のミクロ組織において、パーライトの面積率は85.0%以上であり、初析セメンタイトの面積率は0.90~15.00%であり、かつ、式(1)で定義される前記初析セメンタイトの幅Wの平均値は0.95μm以下である、
     鉄道車輪。
     W=1/2×(P/2-((P/2)-4A)1/2) (1)
     ここで、式(1)中のAは前記初析セメンタイトの面積(μm)であり、Pは前記初析セメンタイトの外周長(μm)である。
  2.  請求項1に記載の鉄道車輪であってさらに、
     前記鉄道車輪の前記ボス部のミクロ組織において、パーライトの面積率は85.0%以上であり、前記初析セメンタイトの面積率は0.90~15.00%であり、かつ、式(1)で定義される前記初析セメンタイトの幅Wの平均値は0.95μm以下である、
     鉄道車輪。
  3.  鉄道車輪であって、
     リム部と、
     ボス部と、
     前記リム部と前記ボス部との間に配置され、前記リム部と前記ボス部とにつながる板部とを備え、
     前記鉄道車輪の化学組成は、質量%で、
     C:0.80~1.60%、
     Si:1.00%以下、
     Mn:0.10~1.25%、
     P:0.050%以下、
     S:0.030%以下、
     Al:0.010~0.650%、
     N:0.0030~0.0200%、
     Cr:0~0.60%、
     V:0~0.12%、及び、
     残部がFe及び不純物からなり、
     前記鉄道車輪の前記板部のミクロ組織において、パーライトの面積率は85.0%以上であり、初析セメンタイトの面積率は0.90~15.00%であり、前記初析セメンタイトの最大幅は1.80μm以下である、
     鉄道車輪。
  4.  請求項3に記載の鉄道車輪であって、
     前記鉄道車輪の前記ボス部のミクロ組織において、パーライトの面積率は85.0%以上であり、前記初析セメンタイトの面積率は0.90~15.00%であり、前記初析セメンタイトの最大幅は1.80μm以下である、
     鉄道車輪。
  5.  請求項1~請求項4のいずれか1項に記載の鉄道車輪であって、
     前記化学組成は、
     Cr:0.02~0.60%、及び、
     V:0.02~0.12%、
     からなる群から選択される1元素以上を含有する、
     鉄道車輪。
PCT/JP2019/038360 2018-09-28 2019-09-27 鉄道車輪 WO2020067506A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/276,510 US12049102B2 (en) 2018-09-28 2019-09-27 Railway wheel
CN201980063645.0A CN112752859B (zh) 2018-09-28 2019-09-27 铁路车轮
JP2020518748A JP6737427B1 (ja) 2018-09-28 2019-09-27 鉄道車輪
EP19866642.2A EP3859030A4 (en) 2018-09-28 2019-09-27 RAIL WHEEL
AU2019346218A AU2019346218B2 (en) 2018-09-28 2019-09-27 Railway wheel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018183041 2018-09-28
JP2018-183041 2018-09-28
JP2019-132303 2019-07-17
JP2019132303 2019-07-17

Publications (1)

Publication Number Publication Date
WO2020067506A1 true WO2020067506A1 (ja) 2020-04-02

Family

ID=69953182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038360 WO2020067506A1 (ja) 2018-09-28 2019-09-27 鉄道車輪

Country Status (6)

Country Link
US (1) US12049102B2 (ja)
EP (1) EP3859030A4 (ja)
JP (1) JP6737427B1 (ja)
CN (1) CN112752859B (ja)
AU (1) AU2019346218B2 (ja)
WO (1) WO2020067506A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023062886A1 (ja) 2021-10-14 2023-04-20 日本製鉄株式会社 鉄道車輪

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6773254B2 (ja) * 2018-09-28 2020-10-21 日本製鉄株式会社 鉄道車輪

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09202937A (ja) 1996-01-23 1997-08-05 Sumitomo Metal Ind Ltd 耐摩耗性および耐熱亀裂性に優れた鉄道車両用車輪およびその製造方法
JP2004315928A (ja) 2003-04-18 2004-11-11 Nippon Steel Corp 耐摩耗性および耐熱き裂性に優れた高炭素鉄道車両用車輪
US20110253268A1 (en) * 2010-04-16 2011-10-20 Pangang Group Co., Ltd. High carbon content and high strength heat-treated steel rail and method for producing the same
JP2012107295A (ja) 2010-11-18 2012-06-07 Sumitomo Metal Ind Ltd 車輪用鋼
WO2013161548A1 (ja) * 2012-04-27 2013-10-31 新日鐵住金株式会社 車輪用鋼
WO2015190088A1 (ja) * 2014-06-11 2015-12-17 Jfeスチール株式会社 鉄道車両用車輪および鉄道車両用車輪の製造方法
CN106521315A (zh) * 2016-11-10 2017-03-22 钢铁研究总院 一种高强度高韧性重载列车车轮用钢及其热处理方法
WO2018181861A1 (ja) * 2017-03-31 2018-10-04 新日鐵住金株式会社 鉄道車輪
WO2018181862A1 (ja) * 2017-03-31 2018-10-04 新日鐵住金株式会社 鉄道車輪の製造方法及び鉄道車輪

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4336101B2 (ja) * 2002-12-25 2009-09-30 新日本製鐵株式会社 耐摩耗性および靭性に優れた高炭素パーライト系レール
JP4949144B2 (ja) * 2007-07-02 2012-06-06 新日本製鐵株式会社 耐表面損傷性および耐摩耗性に優れたパーライト系レールおよびその製造方法
EP2980231B1 (en) * 2013-03-27 2018-12-19 JFE Steel Corporation Method for manufacturing pearlite rail
JP5977699B2 (ja) * 2013-03-27 2016-08-24 株式会社神戸製鋼所 生引き性に優れた高強度鋼線用線材、高強度鋼線、高強度亜鉛めっき鋼線、およびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09202937A (ja) 1996-01-23 1997-08-05 Sumitomo Metal Ind Ltd 耐摩耗性および耐熱亀裂性に優れた鉄道車両用車輪およびその製造方法
JP2004315928A (ja) 2003-04-18 2004-11-11 Nippon Steel Corp 耐摩耗性および耐熱き裂性に優れた高炭素鉄道車両用車輪
US20110253268A1 (en) * 2010-04-16 2011-10-20 Pangang Group Co., Ltd. High carbon content and high strength heat-treated steel rail and method for producing the same
JP2012107295A (ja) 2010-11-18 2012-06-07 Sumitomo Metal Ind Ltd 車輪用鋼
WO2013161548A1 (ja) * 2012-04-27 2013-10-31 新日鐵住金株式会社 車輪用鋼
JP2013231212A (ja) 2012-04-27 2013-11-14 Nippon Steel & Sumitomo Metal Corp 車輪用鋼
WO2015190088A1 (ja) * 2014-06-11 2015-12-17 Jfeスチール株式会社 鉄道車両用車輪および鉄道車両用車輪の製造方法
CN106521315A (zh) * 2016-11-10 2017-03-22 钢铁研究总院 一种高强度高韧性重载列车车轮用钢及其热处理方法
WO2018181861A1 (ja) * 2017-03-31 2018-10-04 新日鐵住金株式会社 鉄道車輪
WO2018181862A1 (ja) * 2017-03-31 2018-10-04 新日鐵住金株式会社 鉄道車輪の製造方法及び鉄道車輪

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"CHARACTERIZATION OF CEMENTITE PARTICLES", IMAGA ANAL STEREOL, vol. 29, 2010, pages 91 - 98
See also references of EP3859030A4
UEDA MASAHARU, ET. AL.: "Influence of microstructure on rolling contact wear in high carbon steels", vol. 90, no. 12, 1 December 2004 (2004-12-01), pages 1023 - 1030, XP055700919, DOI: 10.1111/acer.12610 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023062886A1 (ja) 2021-10-14 2023-04-20 日本製鉄株式会社 鉄道車輪

Also Published As

Publication number Publication date
US20220032681A1 (en) 2022-02-03
AU2019346218B2 (en) 2022-01-06
CN112752859A (zh) 2021-05-04
AU2019346218A1 (en) 2021-05-13
CN112752859B (zh) 2023-01-24
US12049102B2 (en) 2024-07-30
EP3859030A1 (en) 2021-08-04
JPWO2020067506A1 (ja) 2021-02-15
EP3859030A4 (en) 2022-06-22
JP6737427B1 (ja) 2020-08-12

Similar Documents

Publication Publication Date Title
CN110462069B (zh) 铁路车轮的制造方法以及铁路车轮
JP6443606B1 (ja) 鉄道車輪
JP6773254B2 (ja) 鉄道車輪
WO2020067506A1 (ja) 鉄道車輪
JP6528894B2 (ja) 鉄道用車輪
JP7332886B2 (ja) 鉄道車輪
JP7031793B2 (ja) 鉄道車輪
WO2022220237A1 (ja) 鉄道車輪
WO2023062886A1 (ja) 鉄道車輪

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020518748

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019866642

Country of ref document: EP

Effective date: 20210428

ENP Entry into the national phase

Ref document number: 2019346218

Country of ref document: AU

Date of ref document: 20190927

Kind code of ref document: A