WO2020067481A1 - 画像解析装置、画像解析システム、画像解析方法、コンピュータプログラム及び非一時的記録媒体 - Google Patents

画像解析装置、画像解析システム、画像解析方法、コンピュータプログラム及び非一時的記録媒体 Download PDF

Info

Publication number
WO2020067481A1
WO2020067481A1 PCT/JP2019/038280 JP2019038280W WO2020067481A1 WO 2020067481 A1 WO2020067481 A1 WO 2020067481A1 JP 2019038280 W JP2019038280 W JP 2019038280W WO 2020067481 A1 WO2020067481 A1 WO 2020067481A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency distribution
image
threshold
prognosis
connected component
Prior art date
Application number
PCT/JP2019/038280
Other languages
English (en)
French (fr)
Inventor
倫之 角谷
祥平 田中
智博 梶川
啓一 神宮
和昭 中根
Original Assignee
国立大学法人東北大学
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, 国立大学法人大阪大学 filed Critical 国立大学法人東北大学
Priority to JP2020549464A priority Critical patent/JPWO2020067481A1/ja
Publication of WO2020067481A1 publication Critical patent/WO2020067481A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]

Definitions

  • the present invention relates to an image analysis device, an image analysis system, an image analysis method, a computer program, and a non-transitory recording medium.
  • Priority is claimed on Japanese Patent Application No. 2018-185228, filed Sep. 28, 2018, the content of which is incorporated herein by reference.
  • CT Computer Tomography
  • PET Positron Emission Tomography
  • MRI Magnetic Resonance Imaging
  • morphological information of the whole body of a patient has been diagnosed
  • PET metabolism and function information of a living tissue of the patient
  • MRI Magnetic Resonance Imaging
  • morphological information of soft tissue has been diagnosed with good contrast in a narrow range.
  • medical images of these modalities were independently analyzed and diagnosed. For this reason, there has been no research that finds a relationship between images of these modalities, integrates medical information, and utilizes it in the medical field.
  • Non-Patent Document 2 an emerging technology called Radiomics that integrates and analyzes all images between modalities.
  • Radiomics it is possible to utilize big data of a large amount of medical images that are captured and accumulated every day. By analyzing thousands of features in the image in the big data, the image can be digitized and unified between images of different modalities.
  • features indicating the features of an image and results such as survival time, biomarkers, genetic information, malignancy, and pathology
  • Biomarkers, genetic information, malignancy, pathology, etc. can be obtained.
  • One embodiment of the present invention provides a binarization processing unit that generates a plurality of binarized images by performing binarization processing on captured images obtained by capturing biological tissues at different threshold values, A frequency distribution generation unit that generates a frequency distribution of connected components representing the number of a series of graphics included in the image, and using the generated frequency distribution of the connected components, the connected components used for analyzing information about prognosis.
  • a reference value specifying unit that specifies a threshold serving as a reference in a frequency distribution as a reference threshold, and a generating unit that generates an analysis result of information about prognosis using the reference threshold in the specified frequency distribution of the connected component. It is an image analysis device provided.
  • One embodiment of the present invention is the image analysis device described above, wherein the reference value specifying unit sets a threshold value that gives an extreme value in the frequency distribution of the connected component or a value near the threshold value in the frequency distribution of the connected component. It is specified as the reference threshold.
  • the frequency distribution generation unit uses the plurality of binarized images generated by the binarization processing unit to generate the binarized image. Further generating a frequency distribution of the number of holes or spheres included, the reference value identification unit, a threshold value giving an extreme value in the frequency distribution of the number of holes or spheres or a value near the threshold value of the hole or sphere of the hole or sphere Specifying a reference threshold in the frequency distribution of numbers, the generation unit, the reference threshold in the frequency distribution of the identified connected component, using the reference threshold in the frequency distribution of the number of holes or spheres, regarding the prognosis Generates information analysis results.
  • One embodiment of the present invention is the above-described image analysis device, further comprising a learning model generation unit that generates a learning model by performing learning by associating the frequency distribution of the connected component with data of prognosis of a patient.
  • the generation unit further generates prognosis data of the patient using the frequency distribution of the connected component obtained from the newly input captured image and the learning model.
  • One embodiment of the present invention provides a binarization processing unit that generates a plurality of binarized images by performing binarization processing on captured images obtained by capturing biological tissues at different threshold values, A frequency distribution generation unit that generates a frequency distribution of connected components representing the number of a series of graphics included in the image, and using the generated frequency distribution of the connected components, the connected components used for analyzing information about prognosis.
  • a reference value specifying unit that specifies a threshold serving as a reference in a frequency distribution as a reference threshold, and a generating unit that generates an analysis result of information about prognosis using the reference threshold in the specified frequency distribution of the connected component. It is an image analysis system provided.
  • One embodiment of the present invention is a binarization processing step of generating a plurality of binarized images by performing a binarization process for each of different thresholds on a captured image of a living tissue, and A frequency distribution generation step of generating a frequency distribution of connected components representing the number of a series of figures included in the image, and using the generated frequency distribution of the connected components, the connected components used for analyzing information on prognosis.
  • the image analysis method includes:
  • One embodiment of the present invention is a binarization processing step of generating a plurality of binarized images by performing a binarization process for each of different thresholds on a captured image of a living tissue, and A frequency distribution generation step of generating a frequency distribution of connected components representing the number of a series of figures included in the image, and using the generated frequency distribution of the connected components, the connected components used for analyzing information on prognosis.
  • One embodiment of the present invention is a non-transitory recording medium on which the above computer program is recorded.
  • the present invention it is possible to improve the accuracy of information relating to the prognosis of a patient obtained from a captured image of a living tissue.
  • FIG. 1 is a configuration diagram illustrating a system configuration of a prognosis prediction system according to a first embodiment.
  • 5 is a flowchart illustrating a flow of processing of the image analysis device according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a captured image input to the image analysis device according to the first embodiment.
  • FIG. 5 is a diagram illustrating a captured image after a window width and a window level are changed in the first embodiment.
  • FIG. 4 is a diagram illustrating an extracted image obtained by extracting a region from a captured image in the first embodiment.
  • FIG. 3 is a diagram illustrating a two-dimensional image extracted from an extracted image in the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a two-dimensional image to be subjected to a binarization process according to the first embodiment.
  • FIG. 4 is a diagram illustrating a binarized image after performing a binarization process on the two-dimensional image according to the first embodiment.
  • FIG. 3 is a diagram illustrating a binarized image of an axial section according to the first embodiment.
  • FIG. 11 is a diagram illustrating a first frequency distribution on one surface generated using the number of holes of a figure measured when a value of a threshold X is changed from 0 to 255. It is a figure showing the 2nd frequency distribution in one surface generated using the connected component measured when the value of threshold value X was changed from 0 to 255.
  • FIG. 5 is a diagram illustrating a first frequency distribution and a second frequency distribution generated based on a two-dimensional image of each surface.
  • One first frequency distribution obtained by summing a plurality of first frequency distributions on a plurality of surfaces and one second frequency distribution obtained by summing a plurality of second frequency distributions on a plurality of surfaces
  • FIG. 11 is a diagram showing a result of a survival time analysis in a conventional method.
  • FIG. 11 is a diagram showing a result of a survival time analysis in a conventional method.
  • FIG. 11 is a diagram showing a result of a survival time analysis in a conventional method.
  • FIG. 11 is a diagram showing a result of a survival time analysis in a conventional method.
  • FIG. 11 is a diagram showing a result of a survival time analysis in a conventional method.
  • FIG. 11 is a diagram showing a result of a survival time analysis in a conventional method. It is a figure which shows the result of the lifetime analysis in this invention. It is a figure which shows the result of the lifetime analysis in this invention.
  • FIG. 1 is a configuration diagram illustrating a system configuration of a prognosis prediction system 100 according to the first embodiment.
  • the prognosis prediction system 100 includes an external device 10 and an image analysis device 20.
  • the external device 10 and the image analysis device 20 are communicably connected by wireless or wired.
  • the external device 10 is a device that holds a captured image of a living tissue.
  • the captured image is an image of a living tissue, such as a CT image, an MRI image, and a PET image.
  • a CT image will be described as an example of a captured image.
  • the external device 10 is, for example, an X-ray CT diagnostic device that acquires a CT image, an MRI device that acquires an MRI image, a PET device that acquires a PET image, a PET / CT device, and a storage device that can store a captured image.
  • the captured image may be an image obtained by capturing a living tissue after performing appropriate staining.
  • the living tissue in the present embodiment is, for example, a tumor.
  • the image analysis device 20 analyzes the captured image held by the external device 10 and outputs information useful for predicting the prognosis of the patient of the captured image.
  • the image analysis device 20 is configured using an information processing device such as a notebook computer, a personal computer, a smartphone, a mobile phone, and a tablet terminal.
  • the image analysis device 20 includes a CPU (Central Processing Unit), a memory, and an auxiliary storage device connected by a bus, and executes an image analysis program.
  • the image analysis device 20 includes the image acquisition unit 201, the preprocessing unit 202, the binarization processing unit 203, the frequency distribution generation unit 204, the reference value identification unit 205, the output information generation unit 206, and the output unit. It functions as a device including the 207.
  • All or a part of each function of the image analysis device 20 may be realized using hardware such as an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array).
  • the image analysis program may be recorded on a computer-readable recording medium.
  • the computer-readable recording medium is, for example, a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in a computer system.
  • the image analysis program may be transmitted and received via an electric communication line.
  • the image acquisition unit 201 acquires a captured image held by the external device 10. For example, the image acquisition unit 201 acquires one captured image from a plurality of captured images held by the external device 10.
  • the preprocessing unit 202 performs preprocessing on the captured image acquired by the image acquisition unit 201 to easily perform image analysis. Specifically, the preprocessing unit 202 changes the window width and the window level of the captured image, extracts a tumor part so that a part other than the tumor does not enter the captured image, and converts the 3D image into a 2D image. Is performed as preprocessing.
  • the binarization processing unit 203 generates a plurality of binarized images by performing a binarization process on the captured image after the preprocessing for each of different thresholds.
  • the frequency distribution generation unit 204 uses the plurality of binarized images generated by the binarization processing unit 203 to generate a first frequency representing the frequency of the number of holes in the figure included in each of the plurality of binarized images.
  • a distribution and a second frequency distribution representing the frequency of the connected component are generated. Specifically, first, the frequency distribution generation unit 204 measures the number of holes and the connected components of the figure in each binarized image. Then, the frequency distribution generation unit 204 generates the first frequency distribution by plotting the number of holes in the figure for each threshold used for generating the binarized image. Further, the frequency distribution generation unit 204 generates a second frequency distribution by plotting connected components for each threshold value used for generating a binarized image.
  • the connected component represents the number of a series of figures.
  • the reference value specifying unit 205 specifies, as a reference threshold, a threshold that is used as a reference for analyzing information about prognosis. Specifically, the reference value specifying unit 205 specifies a threshold value that gives an extreme value in the first frequency distribution as a first reference threshold value, and sets a threshold value that gives an extreme value in the second frequency distribution to a second reference threshold value. And specify.
  • the output information generation unit 206 generates an analysis result of information regarding prognosis as output information using the specified first reference threshold and the second reference threshold.
  • the output information generation unit 206 analyzes the feature amount and the patient's survival rate by Kaplan-Meier using the first reference threshold value and the second reference threshold value as the feature amount of the homology of the image. A result and a P value are generated as output information. Note that the output information generation unit 206 is an example of a generation unit.
  • the output unit 207 outputs the output information generated by the output information generation unit 206.
  • the output unit 207 may output the output information to a display device connected to the own device, or may output the output information to a printing device connected to the own device.
  • FIG. 2 is a flowchart illustrating a flow of processing of the image analysis device 20 according to the first embodiment.
  • the image acquisition unit 201 acquires a captured image from the external device 10 (Step S101).
  • the image acquisition unit 201 outputs the acquired captured image to the pre-processing unit 202.
  • the preprocessing unit 202 performs preprocessing on the captured image output from the image acquisition unit 201 (Step S102).
  • the preprocessing unit 202 receives the captured image 31 illustrated in FIG. 3A and performs a process of changing the window width and the window level on the input captured image 31.
  • FIG. 3B is a diagram illustrating the captured image 32 after the window width and the window level are changed.
  • the window width and window level satisfy the mediastinum condition that makes the lung tumor easy to see.
  • the gray scale gradient is 256.
  • the preprocessing unit 202 extracts the region 321 of the tumor part of the lung from the image shown in FIG. 3B.
  • the preprocessing unit 202 sets the CT value of the lung tumor other than the CTV region to 0 so that information other than the tumor is not included as much as possible.
  • FIG. 3C is a diagram illustrating an extracted image 33 obtained by extracting the area 321 from the captured image 32.
  • the extracted image 33 is three-dimensional image data.
  • the preprocessing unit 202 extracts a plurality of two-dimensional images of a plurality of planes (for example, an axial section (body axis section), a coronal section (coronal section), and a sagittal section (sagittal section)) from the extracted image 33. I do.
  • the preprocessing unit 202 extracts a plurality of two-dimensional images in which the tumor area is maximized on each surface.
  • FIG. 3D is a diagram illustrating the extracted two-dimensional images 34, 35, and 36.
  • the two-dimensional image 34 is a two-dimensional image sliced on the axial plane.
  • the two-dimensional image 35 is a two-dimensional image sliced on the coronal plane.
  • the two-dimensional image 36 is a two-dimensional image sliced on the sagittal plane. As described above, in the present embodiment
  • the binarization processing unit 203 performs a plurality of binarization processes on each of the two-dimensional images 34, 35, and 36 extracted by the preprocessing unit 202 by setting a threshold value of the binarization to X.
  • An image is generated (Step S104). For example, at the start of the process, the binarization processing unit 203 performs a binarization process on each of the two-dimensional images 34, 35, and 36 with the threshold value of the binarization set to 0, thereby forming a plurality of binarized images. Generate.
  • FIG. 4A is a diagram illustrating an example of the two-dimensional image 34.
  • FIG. 4B is a diagram illustrating the binarized image 40 after performing the binarization process on the two-dimensional image 34.
  • the binarized image 40 has a plurality of holes in the figure. The number of holes varies according to the value of X.
  • FIG. 4A shows the two-dimensional image 34 of the axial section
  • the binarization processing unit 203 similarly performs the binarization on the two-dimensional image 35 of the coronal section and the two-dimensional image 36 of the sagittal section. Perform processing. Accordingly, the binarization processing unit 203 generates a binarized image of an axial section, a binarized image of a coronal section, and a binarized image of a sagittal section.
  • the frequency distribution generation unit 204 uses the plurality of binarized images generated by the binarization processing unit 203 to link the number of holes in the figure included in each of the plurality of binarized images to the concatenation.
  • the components are measured (Step S105).
  • the frequency distribution generation unit 204 temporarily stores the measured number of holes in the figure and the connected components.
  • Xmax is the maximum value of the threshold value used for the binarization processing, and is 255 for 256 gradations, for example.
  • FIG. 5A is a diagram illustrating a binarized image 40 of an axial section.
  • FIG. 5B illustrates a first surface (for example, axial cross section) generated by the frequency distribution generation unit 204 using the number of holes of the figure measured when the value of the threshold X is changed from 0 to 255. It is a figure showing a frequency distribution.
  • FIG. 5C illustrates a second frequency distribution on one surface (for example, axial section) generated by the frequency distribution generation unit 204 using the connected component measured when the value of the threshold X is changed from 0 to 255.
  • the horizontal axis represents the threshold X
  • the vertical axis represents the number of holes.
  • the horizontal axis represents threshold value X
  • the vertical axis represents connected components.
  • the connected component increases when the value of X approaches a certain value, and decreases when the value of X exceeds the value.
  • the frequency distribution generation unit 204 generates two frequency distributions for one slice plane.
  • a two-dimensional image 35 of a coronal section and a two-dimensional image 35 of a sagittal section are used in addition to the two-dimensional image 34 of the axial section. Therefore, the frequency distribution generation unit 204 also generates two first frequency distributions and two second frequency distributions from the binarized image obtained from the two-dimensional image 35 of the coronal section. The frequency distribution generation unit 204 also generates two first frequency distributions and two second frequency distributions from a binarized image obtained from the two-dimensional image 36 of the sagittal section.
  • FIG. 6A is a diagram illustrating a first frequency distribution and a second frequency distribution generated based on a two-dimensional image of each surface.
  • the first frequency distribution 341 and the second frequency distribution 342 are generated based on a binarized image obtained from the two-dimensional image 34 of the axial section.
  • the first frequency distribution 351 and the second frequency distribution 352 are generated based on a binarized image obtained from the two-dimensional image 35 of the coronal section.
  • the first frequency distribution 361 and the second frequency distribution 362 are generated based on a binarized image obtained from the two-dimensional image 36 of the sagittal section.
  • the frequency distribution generation unit 204 adds (adds) the first frequency distribution 341 in the axial section, the first frequency distribution 351 in the coronal section, and the first frequency distribution 361 in the sagittal section, and the result is shown in FIG. 6B.
  • One such first frequency distribution 51 is generated.
  • the frequency distribution generation unit 204 adds (adds) the second frequency distribution 342 in the axial cross section, the second frequency distribution 352 in the coronal cross section, and the second frequency distribution 362 in the sagittal cross section.
  • One second frequency distribution 52 as shown is generated.
  • the reference value specifying unit 205 specifies a reference threshold in each of the first frequency distribution 51 and the second frequency distribution 52 (Step S109). For example, the reference value specifying unit 205 specifies the peak value of the first frequency distribution 51, that is, the value of X having the largest number of holes (the value indicated by the circle 511) as the first reference threshold. Further, the reference value specifying unit 205 specifies the peak value of the second frequency distribution 52, that is, the value of X (the value indicated by the circle 521) having the largest connected component as the second reference threshold value.
  • the reference value specifying unit 205 outputs the specified first and second reference threshold values to the output information generation unit 206.
  • the output information generation unit 206 generates output information that is an analysis result of information on prognosis corresponding to the specified first reference threshold and the second reference threshold (step S110).
  • the output information generation unit 206 outputs the generated output information to the output unit 207.
  • the output unit 207 outputs the output information generated by the output information generation unit 206 (Step S111).
  • FIGS. 7A, 7B, 8A, and 8B show examples of verification using 40 cases with a known survival time.
  • forty cases were divided into two groups (a low value group having a small homology value and 20 cases having a low homology value, and a high homology value with a first reference threshold value corresponding to the number of holes and a second reference threshold value corresponding to a connected component).
  • high value group (20 cases).
  • FIGS. 7A and 7B show an example in which 40 cases are classified into two groups with a first reference threshold value corresponding to the number of holes. For example, FIG. 7A shows 20 cases in the low value group, and FIG. 7B shows 20 cases in the high value group.
  • FIGS. 8A and 8B The results of Kaplan-Meier are shown in FIGS. 8A and 8B.
  • the horizontal axis represents a period
  • the vertical axis represents a survival rate.
  • FIG. 8A is a diagram illustrating a verification result when a first reference threshold value corresponding to the number of holes is used.
  • FIG. 8B is a diagram illustrating a verification result when the second reference threshold value corresponding to the connected component is used.
  • the survival rate of the high value group becomes lower as the period is longer, and the lower value group It can be seen that the survival rate is higher for longer periods.
  • the P values were actually calculated both were 0.05 or less, and a significant difference could be confirmed. From the results shown above, it is understood that the image analysis device 20 according to the present invention can accurately predict the prognosis.
  • FIGS. 9A to 9C and FIGS. 10A to 10B are diagrams showing the results of the survival time analysis in the conventional method.
  • FIG. 11A and FIG. 11B are diagrams showing the results of the survival time analysis in the present invention. Note that FIGS. 9A to 11B show an example of verification using 295 cases whose structure data is known. Non-Patent Document 1 discloses 295 cases whose structure data is known.
  • a conventional method will be described.
  • a pixel value included in the tumor image most is set as a standard pixel value of the tumor image.
  • the pixel value 88 is a standard pixel value
  • the magnification of the standard pixel value is 1.
  • a binarized image shown in FIG. 9B is obtained by performing a binarization process on the tumor image shown in FIG. 9A using the standard pixel value as a threshold.
  • the number of holes cannot be measured in the binarized image shown in FIG. 9B.
  • a plurality of binarized images are obtained by performing a binarization process on a tumor image between a pixel value of 48 (magnification of 0.55) and a pixel value of 63 (magnification of 0.72). Then, by measuring the number of holes from each of the plurality of binarized images, a graph as shown in FIG. 9C is obtained.
  • the horizontal axis of the graph shown in FIG. 9C represents the magnification, and the vertical axis represents the number of holes.
  • the image analysis device 20 configured as described above, it is possible to improve the accuracy of information regarding prognosis of a patient obtained from a captured image of a living tissue.
  • the image analysis device 20 sets the number of holes and the connected component to an extreme value (for example, a maximum value) based on a plurality of binarized images obtained from one captured image of a living tissue.
  • the prognostic prediction is performed using the reference threshold value as a feature amount of the captured image.
  • the significant differences using the obtained reference threshold values are as shown in FIGS. 7A to 7B, 8A to 8B, and 11A to 11B.
  • FIGS. 7A to 7B, 8A to 8B, and 11A to 11B As described above, since there is a significant difference, more accurate values can be predicted for the obtained prognosis prediction. Therefore, it is possible to improve the accuracy of information on the prognosis of the patient obtained from the captured image of the living tissue.
  • FIG. 12 is a configuration diagram illustrating a system configuration of the prognosis prediction system 100a according to the second embodiment.
  • the prognosis prediction system 100a includes an external device 10 and an image analysis device 20a.
  • the external device 10 and the image analysis device 20a are communicably connected by wireless or wired.
  • the image analysis device 20a analyzes the captured image held by the external device 10 and outputs useful information for predicting the prognosis of the patient based on the captured image. Further, the image analysis device 20a generates a learning model by learning the frequency distribution and the prognostic data of the patient.
  • the image analysis device 20a is configured using an information processing device such as a notebook computer, a personal computer, a smartphone, a mobile phone, and a tablet terminal.
  • the image analysis device 20a includes a CPU, a memory, an auxiliary storage device, and the like connected by a bus, and executes an image analysis program.
  • the image analysis apparatus 20a includes an image acquisition unit 201a, a preprocessing unit 202, a binarization processing unit 203, a frequency distribution generation unit 204, a reference value identification unit 205, an output information generation unit 206a, and an output unit. 207, functions as an apparatus including the learning model generation unit 208. All or a part of each function of the image analysis device 20a may be realized by using hardware such as an ASIC, a PLD, and an FPGA. Further, the image analysis program may be recorded on a computer-readable recording medium.
  • the computer-readable recording medium is, for example, a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in a computer system. Further, the image analysis program may be transmitted and received via an electric communication line.
  • the configuration of the image analysis device 20a differs from that of the image analysis device 20 in that an output information generation unit 206a is provided instead of the output information generation unit 206 and a learning model generation unit 208 is newly provided.
  • the other configuration of the image analysis device 20a is the same as that of the image analysis device 20. Therefore, description of the entire image analysis device 20a is omitted, and the output information generation unit 206a and the learning model generation unit 208 will be described.
  • the learning model generation unit 208 learns the first frequency distribution and the second frequency distribution in association with the prognosis data of the patient (for example, data of the survival period indicating whether the prognosis is o months). To generate a learning model.
  • the output information generation unit 206a performs the same processing as the output information generation unit 206. Further, the output information generation unit 206a uses the first frequency distribution and the second frequency distribution generated by the frequency distribution generation unit 204 and the learning model generated by the learning model generation unit 208 to determine the prognosis of the patient. Is generated as output information.
  • the same effects as in the first embodiment can be obtained. Further, the image analysis device 20a can predict the prognosis of the patient with higher accuracy according to the learning result.
  • the learning model generation unit 208 learns a learning model by associating one of the first frequency distribution and the second frequency distribution with prognostic data of the patient (for example, prognostic ⁇ month data). May be generated.
  • the learning model generation unit 208 is configured to generate a learning model used for analysis of pathological results and DNA by learning pathological results (for example, the number of stages of disease, degree of progress of disease) and analysis results of DNA. You may.
  • the captured image used in the present invention does not need to be limited to the above-described image, and may be an image such as an ultrasonic image, a SPECT image, or a general X-ray image.
  • the frequency distribution generation units 204 and 204a may be configured to generate one of the first frequency distribution and the second frequency distribution.
  • the reference value specifying unit 205 uses one of the first frequency distribution and the second frequency distribution generated by the frequency distribution generating units 204 and 204a to determine the prognosis.
  • the preprocessing units 202 and 202a extract the two-dimensional images of the three surfaces from the extracted image 33.
  • the preprocessing units 202 and 202a output one or two from the extracted image 33. It may be configured to extract a two-dimensional image of two surfaces.
  • the reference value specifying unit 205 specifies the threshold value that gives the extreme value in the frequency distribution as the reference threshold value.
  • the reference threshold value may be specified by the following method.
  • the reference value specifying unit 205 may specify a value near a threshold value that gives an extreme value as the reference threshold value.
  • the image analysis devices 20 and 20a measure the number of holes and connected components for all binarized images. May be configured.
  • the image analyzers 20 and 20a may be configured to measure the number of holes and connected components by performing binarization processing on a three-dimensional image without extracting a two-dimensional image. In the case of such a configuration, the frequency distribution generation units 204 and 204a count a region where holes are connected in the three-dimensional image as one hole (a sphere in the image).
  • Some of the functional units included in the image analysis devices 20 and 20a may be provided in another housing.
  • Another housing is, for example, one or more servers provided on a cloud.
  • the image acquisition unit 201 and the preprocessing unit 202 are provided in one or a plurality of servers, and the image analysis devices 20 and 20a are configured to process the captured image after the preprocessing. In the case of such a configuration, it may be configured as an image analysis system including the image analysis devices 20, 20a and one or a plurality of servers.
  • the output information generation units 206 and 206a may be configured to use a ratio between the first reference threshold value and the second reference threshold value to generate output information.
  • the frequency distribution generation unit 204 complements the number of holes and the connected components at the threshold where the number of holes and the connected components are not measured from the number of holes and the connected components at the preceding and following thresholds.
  • the image analyzers 20 and 20a may be configured to use the period from the occurrence of a hole to the disappearance of the generated hole for prognosis prediction by changing the threshold value.
  • the frequency distribution generation unit 204 generates a hole in the binarized image at a certain threshold, changes the threshold from the occurrence of the hole, and changes the threshold to a hole that disappears before a predetermined period elapses as noise. Judgment, holes determined to be noise are not included in the measurement target of the number of holes at each threshold, and holes remaining for a predetermined period or longer are set as measurement targets.
  • the predetermined period represents the number of thresholds. For example, it is assumed that a predetermined period has three thresholds and a hole has occurred at a threshold of one.
  • the frequency distribution generation unit 204 determines that the hole generated at the threshold 1 is noise when the hole generated at the threshold 1 disappears for a predetermined period from the threshold 1, that is, at a time point less than the threshold 4, and determines that the hole is noise.
  • the number of holes in the thresholds 1 to 3 is not included in the measurement of the number of holes.
  • the frequency distribution generation unit 204 performs the measurement of the number of holes in the threshold 1 to the threshold 3 when the holes generated in the threshold 1 have not disappeared in a predetermined period from the threshold 1, that is, when the holes are smaller than the threshold 4. include.
  • FIGS. FIG. 13 and FIG. 14 are diagrams showing comparison results of prognostic prediction accuracy between the conventional method and the present invention.
  • 277 NSCLC (Non-Small Cell Lung Cancer) patients extracted from the publicly available TCIA (The Cancer Imaging Archive) have been extracted.
  • TCIA The Cancer Imaging Archive
  • Detailed data of each NSCLC patient is as shown in FIG.
  • This standard radiation feature is composed of three intensity features and two texture features.
  • a hole frequency distribution was created by the above-described method.
  • 8A is divided into two groups: a group having a small number of holes (homology) (low value group) and a group having a high homology value (high value group).
  • Each group is shown in FIG. 8A by using the kaplan-meier method. Such a figure (for example, Kaplan-Meier plot) was created. Thereafter, an AUC (Area under an ROC curve) value was determined from each plot curve.
  • AUC Average under an ROC curve
  • AUC values were obtained for Kaplan-Meier plots prepared in two groups divided using known feature amounts, and the AUC values were compared between the feature amounts to verify prediction accuracy.
  • the known feature amounts are, for example, a feature amount effective for prognosis prediction of NSCLC (see Reference Document 1), a feature amount described in Reference Document 2, and a feature amount described in Reference Document 3.
  • Reference Document 1 Wen Yu et al., “Development and Validation of a Predictive Radiomics Model for Clinical Outcomes in Stage I Non-small Cell Lung Cancer ”, International journal of Radiation Oncology biology Physics, 2018)
  • Reference 2 Hugo JWL Aerts1 et al., “Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach”, Nature communications, 2014
  • Reference 3 Elizabeth Huynh et al., “CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer”, Radiotherapy and Oncology, p.258-266, 2016
  • the AUC in the case of using the feature amount (homology feature amount) in the present invention was the highest, and was a feature amount capable of
  • the present invention can be applied to an apparatus for analyzing information relating to the prognosis of a patient by using a captured image of a living tissue.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Analysis (AREA)

Abstract

生体組織を撮像した撮像画像に対して、異なる閾値毎に二値化処理を行うことによって複数の二値化画像を生成する二値化処理部と、二値化画像に含まれる一連なりの図形の数を表す連結成分の頻度分布を生成する頻度分布生成部と、生成した連結成分の頻度分布を用いて、予後に関する情報の解析に用いられる連結成分の頻度分布における基準となる閾値を基準閾値として特定する基準値特定部と、特定された連結成分の頻度分布における基準閾値を用いて、予後に関する情報の解析結果を生成する生成部と、を備える画像解析装置。

Description

画像解析装置、画像解析システム、画像解析方法、コンピュータプログラム及び非一時的記録媒体
 本発明は、画像解析装置、画像解析システム、画像解析方法、コンピュータプログラム及び非一時的記録媒体に関する。
 本願は、2018年9月28日に、日本に出願された特願2018-185228号に基づき優先権を主張し、その内容をここに援用する。
 従来、医療画像の診断には、主にCT(Computed Tomography)、PET(Positron Emission Tomography)、MRI(Magnetic Resonance Imaging)が使用されていた(例えば、特許文献1、特許文献2及び非特許文献1参照)。CTでは患者の全身の形態情報を、PETでは患者の生体組織の代謝や機能の情報を、MRIでは狭い範囲でコントラスト良く軟部組織の形態情報が診断されてきた。しかし、これらのモダリティの医療画像はそれぞれ独立して解析・診断が行われていた。そのため、これらのモダリティの画像間の関連性を見出し、医療情報を統合して、医療現場に活かす研究はなかった。
 しかし、近年、モダリティ間の画像を全て統合して解析を行うRadiomicsという新興技術が提案されている(例えば、非特許文献2参照)。Radiomicsにより、日々撮影されて蓄積されている大量の医療画像のビッグデータを活用することができる。ビッグデータ内の画像において数千個に及ぶ特徴量の解析を行うことにより、画像を数値化して、異なるモダリティの画像間において統一化を図ることができる。また、画像の特徴を示した特徴量と、生存期間、バイオマーカー、遺伝子情報、悪性度、病理等の結果との関連性を調べることにより、画像のみから患者の予後予測(例えば、生存期間)、バイオマーカー、遺伝子情報、悪性度、病理等の情報を得ることができる。
国際公開第2017/010397号 特表2013-531262号公報
Mizuho Nishio, Kazuaki Nakane, Yutaka Tanaka, "Applicationof the homology method for quantification of low-attenuation lung region in patients with and without COPD", International Journal of COPD p.2125-2137 "NSCLC-Radiomics"、[online]、Atlassian、[令和1年9月20日検索]、インターネット(URL:https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics
 Radiomicsの予後予測は現在も盛んに行われており、ニハらの研究では、MRI画像の脳腫瘍部位に対して、画像の濃度の周波数やピクセル値の分布などの30個に及ぶ特徴量を組み合わせることにより、悪性度の高い腫瘍と低い腫瘍に分けて、生存率に有意差を出すことができている。また、ヒューゴらの研究では、CT画像の肺腫瘍部位に対して、生存期間に有意差があった4つの特徴量を組み合わせて解析することにより、ある程度の正確性で予後の推定を行うことができている。
 しかしながら、従来の研究では、予後予測の精度は低く、さらなる精度の向上が求められている。なお、このような問題は、予後予測に限らず、生体組織を撮像した撮像画像から患者の予後に関する情報を生成する場合に共通する問題である。
 上記事情に鑑み、本発明は、生体組織を撮像した撮像画像から得られる患者の予後に関する情報の精度を向上させる技術の提供を目的としている。
 本発明の一態様は、生体組織を撮像した撮像画像に対して、異なる閾値毎に二値化処理を行うことによって複数の二値化画像を生成する二値化処理部と、前記二値化画像に含まれる一連なりの図形の数を表す連結成分の頻度分布を生成する頻度分布生成部と、生成した前記連結成分の頻度分布を用いて、予後に関する情報の解析に用いられる前記連結成分の頻度分布における基準となる閾値を基準閾値として特定する基準値特定部と、特定された前記連結成分の頻度分布における前記基準閾値を用いて、予後に関する情報の解析結果を生成する生成部と、を備える画像解析装置である。
 本発明の一態様は、上記の画像解析装置であって、前記基準値特定部は、前記連結成分の頻度分布において極値を与える閾値又は前記閾値の近傍の値を前記連結成分の頻度分布における前記基準閾値と特定する。
 本発明の一態様は、上記の画像解析装置であって、前記頻度分布生成部は、前記二値化処理部によって生成された前記複数の二値化画像を用いて、前記二値化画像に含まれる穴又は球の数の頻度分布をさらに生成し、前記基準値特定部は、前記穴又は球の数の頻度分布において極値を与える閾値又は前記閾値の近傍の値を前記穴又は球の数の頻度分布における基準閾値と特定し、前記生成部は、特定された前記連結成分の頻度分布における前記基準閾値と、前記穴又は球の数の頻度分布における基準閾値とを用いて、予後に関する情報の解析結果を生成する。
 本発明の一態様は、上記の画像解析装置であって、前記連結成分の頻度分布と、患者の予後のデータとを対応付けて学習することによって学習モデルを生成する学習モデル生成部をさらに備え、前記生成部は、新たに入力された撮像画像から得られる前記連結成分の頻度分布と、前記学習モデルとを用いて前記患者の予後のデータをさらに生成する。
 本発明の一態様は、生体組織を撮像した撮像画像に対して、異なる閾値毎に二値化処理を行うことによって複数の二値化画像を生成する二値化処理部と、前記二値化画像に含まれる一連なりの図形の数を表す連結成分の頻度分布を生成する頻度分布生成部と、生成した前記連結成分の頻度分布を用いて、予後に関する情報の解析に用いられる前記連結成分の頻度分布における基準となる閾値を基準閾値として特定する基準値特定部と、特定された前記連結成分の頻度分布における前記基準閾値を用いて、予後に関する情報の解析結果を生成する生成部と、を備える画像解析システムである。
 本発明の一態様は、生体組織を撮像した撮像画像に対して、異なる閾値毎に二値化処理を行うことによって複数の二値化画像を生成する二値化処理ステップと、前記二値化画像に含まれる一連なりの図形の数を表す連結成分の頻度分布を生成する頻度分布生成ステップと、生成した前記連結成分の頻度分布を用いて、予後に関する情報の解析に用いられる前記連結成分の頻度分布における基準となる閾値を基準閾値として特定する基準値特定ステップと、特定された前記連結成分の頻度分布における前記基準閾値を用いて、予後に関する情報の解析結果を生成する出力情報生成ステップと、を備える画像解析方法である。
 本発明の一態様は、生体組織を撮像した撮像画像に対して、異なる閾値毎に二値化処理を行うことによって複数の二値化画像を生成する二値化処理ステップと、前記二値化画像に含まれる一連なりの図形の数を表す連結成分の頻度分布を生成する頻度分布生成ステップと、生成した前記連結成分の頻度分布を用いて、予後に関する情報の解析に用いられる前記連結成分の頻度分布における基準となる閾値を基準閾値として特定する基準値特定ステップと、特定された前記連結成分の頻度分布における前記基準閾値を用いて、予後に関する情報の解析結果を生成する出力情報生成ステップと、をコンピュータに実行させるためのコンピュータプログラムである。
 本発明の一態様は、上記のコンピュータプログラムを記録した非一時的記録媒体である。
 本発明により、生体組織を撮像した撮像画像から得られる患者の予後に関する情報の精度を向上させることが可能となる。
第1の実施形態における予後予測システムのシステム構成を表す構成図である。 第1の実施形態における画像解析装置の処理の流れを示すフローチャートである。 第1の実施形態における画像解析装置に入力される撮像画像の一例を示す図である。 第1の実施形態においてウィンドウ幅とウィンドウレベルの変更後の撮像画像を表す図である。 第1の実施形態において撮像画像から領域を抽出することによって得られた抽出画像を表す図である。 第1の実施形態において抽出画像から抽出された二次元画像を表す図である。 第1の実施形態における二値化処理の対象となる二次元画像の一例を表す図である。 第1の実施形態における二次元画像に対して二値化処理を行った後の二値化画像を表す図である。 第1の実施形態におけるaxial断面の二値化画像を表す図である。 閾値Xの値を0から255まで変化させた際に計測した図形の穴の数を用いて生成した1つの面における第1の頻度分布を表す図である。 閾値Xの値を0から255まで変化させた際に計測した連結成分を用いて生成した1つの面における第2の頻度分布を表す図である。 各面の二次元画像に基づいて生成された第1の頻度分布及び第2の頻度分布を表す図である。 複数面における複数の第1の頻度分布を合算して得られた1つの第1の頻度分布及び複数面における複数の第2の頻度分布を合算して得られた1つの第2の頻度分布の一例を示す図である。 ホモロジーの値が小さいlow value群の20症例を表す図である。 ホモロジーの値が高いhigh value群の20症例を表す図である。 穴の数に対応する第1の基準閾値を用いた場合の検証結果を表す図である。 連結成分に対応する第2の基準閾値を用いた場合の検証結果を表す図である。 従来手法における生存期間分析の結果を示す図である。 従来手法における生存期間分析の結果を示す図である。 従来手法における生存期間分析の結果を示す図である。 従来手法における生存期間分析の結果を示す図である。 従来手法における生存期間分析の結果を示す図である。 本発明における生存期間分析の結果を示す図である。 本発明における生存期間分析の結果を示す図である。 第2の実施形態における予後予測システムのシステム構成を表す構成図である。 従来手法と本発明との予後予測精度の比較結果を示す図である。 従来手法と本発明との予後予測精度の比較結果を示す図である。
 以下、本発明の一実施形態を、図面を参照しながら説明する。
(第1の実施形態)
 図1は、第1の実施形態における予後予測システム100のシステム構成を表す構成図である。予後予測システム100は、外部装置10及び画像解析装置20を備える。外部装置10及び画像解析装置20は、無線又は有線により通信可能に接続される。
 外部装置10は、生体組織が撮像された撮像画像を保持する装置である。撮像画像は、CT画像、MRI画像及びPET画像等の生体組織が撮像された画像である。以下の説明では、撮像画像として、CT画像を例に説明する。外部装置10は、例えばCT画像を取得するX線CT診断装置、MRI画像を取得するMRI装置、PET画像を取得するPET装置、PET/CT装置及び撮像画像を保存可能な記憶装置である。なお、撮像画像は、適当な染色を施した後の生体組織を撮像した画像であってもよい。本実施形態における生体組織とは、例えば腫瘍である。
 画像解析装置20は、外部装置10が保持している撮像画像を解析することにより、撮像画像の患者の予後予測に有用な情報を出力する。画像解析装置20は、例えばノートパソコン、パーソナルコンピュータ、スマートフォン、携帯電話、タブレット端末等の情報処理装置を用いて構成される。
 次に、第1の実施形態における画像解析装置20の具体的な機能構成について説明する。画像解析装置20は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備え、画像解析プログラムを実行する。画像解析プログラムの実行によって、画像解析装置20は、画像取得部201、前処理部202、二値化処理部203、頻度分布生成部204、基準値特定部205、出力情報生成部206、出力部207を備える装置として機能する。なお、画像解析装置20の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。また、画像解析プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。また、画像解析プログラムは、電気通信回線を介して送受信されてもよい。
 画像取得部201は、外部装置10が保持している撮像画像を取得する。例えば、画像取得部201は、外部装置10が保持している複数の撮像画像のうち1枚の撮像画像を取得する。
 前処理部202は、画像取得部201によって取得された撮像画像に対して、画像解析を容易に行うための前処理を行う。具体的には、前処理部202は、撮像画像に対して、画像のウィンドウ幅とウィンドウレベルの変更、腫瘍以外の部分が入らないように腫瘍部分の抽出処理、3D画像から2D画像への変換のいずれか又は全てを前処理として行う。
 二値化処理部203は、前処理後の撮像画像に対して、異なる閾値毎に二値化処理を行うことによって複数の二値化画像を生成する。
 頻度分布生成部204は、二値化処理部203によって生成された複数の二値化画像を用いて、複数の二値化画像それぞれに含まれる図形の穴の数の頻度を表す第1の頻度分布と、連結成分の頻度を表す第2の頻度分布とを生成する。具体的には、まず頻度分布生成部204は、各二値化画像において、図形の穴の数及び連結成分を計測する。そして、頻度分布生成部204は、二値化画像の生成に用いられた閾値毎に、図形の穴の数をプロットすることによって第1の頻度分布を生成する。また、頻度分布生成部204は、二値化画像の生成に用いられた閾値毎に、連結成分をプロットすることによって第2の頻度分布を生成する。なお、連結成分とは、一連なりの図形の数を表す。
 基準値特定部205は、生成された第1の頻度分布及び第2の頻度分布を用いて、予後に関する情報の解析に用いられる基準となる閾値を基準閾値として特定する。具体的には、基準値特定部205は、第1の頻度分布において極値を与える閾値を第1の基準閾値と特定し、第2の頻度分布において極値を与える閾値を第2の基準閾値と特定する。
 出力情報生成部206は、特定された第1の基準閾値と、第2の基準閾値とを用いて、予後に関する情報の解析結果を出力情報として生成する。具体的には、出力情報生成部206は、第1の基準閾値と、第2の基準閾値とを画像のホモロジーの特徴量として、この特徴量と患者の生存率とをKaplan-meierで分析した結果やP値を出力情報として生成する。なお、出力情報生成部206は、生成部の一態様である。
 出力部207は、出力情報生成部206によって生成された出力情報を出力する。例えば、出力部207は、自装置に接続された表示装置に対して出力情報を出力してもよいし、自装置に接続された印刷装置に対して出力情報を出力してもよい。
 図2は、第1の実施形態における画像解析装置20の処理の流れを示すフローチャートである。
 画像取得部201は、外部装置10から撮像画像を取得する(ステップS101)。画像取得部201は、取得した撮像画像を前処理部202に出力する。前処理部202は、画像取得部201から出力された撮像画像に対して前処理を行う(ステップS102)。
 図3A及び図3Bを用いて、第1の実施形態における前処理の具体的な処理を説明する。前処理部202は、図3Aに示す撮像画像31を入力として、入力された撮像画像31に対してウィンドウ幅とウィンドウレベルを変更する処理を行う。図3Bは、ウィンドウ幅とウィンドウレベルの変更後の撮像画像32を表す図である。本実施形態では、肺腫瘍が見やすい縦隔条件を満たすウィンドウ幅とウィンドウレベルに変更している。このときグレイスケールの階調度は256である。次に、前処理部202は、図3Bに示す画像から肺の腫瘍部分の領域321を抽出する。この際、前処理部202は、できるだけ腫瘍以外の情報がはいらないように、肺腫瘍のCTV領域以外のCT値を0とする。
 図3Cは、撮像画像32から領域321を抽出することによって得られた抽出画像33を表す図である。抽出画像33は、3次元の画像データである。次に、前処理部202は、抽出画像33から複数の面(例えば、axial断面(体軸断面)、coronal断面(冠状断面)及びsagittal断面(矢状断面))の複数の二次元画像を抽出する。なお、前処理部202は、各面で腫瘍面積が最大になる複数の二次元画像を抽出する。図3Dは、抽出された二次元画像34、35及び36を表す図である。二次元画像34は、axial面でスライスされた二次元画像である。二次元画像35は、coronal面でスライスされた二次元画像である。二次元画像36は、sagittal面でスライスされた二次元画像である。このように、本実施形態では、患者一人当たり、3枚の二次元画像を用いる。
 図2に戻り、二値化処理部203は、二値化の閾値X=0とする(ステップS103)。二値化処理部203は、前処理部202によって抽出された二次元画像34、35及び36それぞれに対して、二値化の閾値をXとして二値化処理を行うことによって複数の二値化画像を生成する(ステップS104)。例えば、処理開始時では、二値化処理部203は、二値化の閾値を0として二次元画像34、35及び36それぞれに対して二値化処理を行うことによって複数の二値化画像を生成する。
 図4A及び図4Bを用いて、第1の実施形態における二値化処理に説明する。図4Aは二次元画像34の一例を表す図である。図4Bは、二次元画像34に対して二値化処理を行った後の二値化画像40を表す図である。図4Bに示すように、二値化画像40には、図形内に穴が複数存在している。この穴の数は、Xの値に応じて変化する。なお、図4Aでは、axial断面の二次元画像34を示しているが、二値化処理部203はcoronal断面の二次元画像35及びsagittal断面の二次元画像36に対しても同様に二値化処理を行う。これにより、二値化処理部203は、axial断面の二値化画像、coronal断面の二値化画像及びsagittal断面の二値化画像を生成する。
 図2に戻り、頻度分布生成部204は、二値化処理部203によって生成された複数の二値化画像を用いて、複数の二値化画像それぞれに含まれる図形の穴の数と、連結成分を計測する(ステップS105)。頻度分布生成部204は、計測した図形の穴の数と、連結成分とを一時的に保持する。その後、二値化処理部203は、X=Xmaxであるか否かを判定する(ステップS106)。Xmaxは、二値化処理に用いる閾値の最大値であり、例えば256階調の場合には255である。
 X=Xmaxでない場合(ステップS106-NO)、二値化処理部203はXの値に1加算して値を新たな閾値Xとする(ステップS107)。その後、画像解析装置20は、ステップS104以降の処理を実行する。
 一方、X=Xmaxである場合(ステップS106-YES)、頻度分布生成部204は保持している閾値X毎の図形の穴の数と、連結成分とを用いて第1の頻度分布及び第2の頻度分布を生成する(ステップS108)。
 図5A~5C、図6A及び図6Bを用いて、第1の実施形態における頻度分布の生成処理を説明する。図5Aはaxial断面の二値化画像40を表す図である。図5Bは、頻度分布生成部204が、閾値Xの値を0から255まで変化させた際に計測した図形の穴の数を用いて生成した1つの面(例えば、axial断面)における第1の頻度分布を表す図である。図5Cは頻度分布生成部204が、閾値Xの値を0から255まで変化させた際に計測した連結成分を用いて生成した1つの面(例えば、axial断面)における第2の頻度分布を表す図である。図5Bにおいて、横軸は閾値Xを表し、縦軸は穴の数を表す。図5Bに示す1つの面(例えば、axial断面)における第1の頻度分布では、Xの値がある値に近づくと穴の数が急激に上昇し、その値を超えると減少している。図5Cにおいて、横軸は閾値Xを表し、縦軸は連結成分を表す。図5Cに示す1つの面(例えば、axial断面)における第2の頻度分布では、Xの値がある値に近づくと連結成分が上昇し、その値を超えると減少している。頻度分布生成部204は、1つのスライス面に対して2つの頻度分布を生成する。
 本実施形態では、axial断面の二次元画像34の他に、coronal断面の二次元画像35及びsagittal断面の二次元画像35を用いている。そのため、頻度分布生成部204は、coronal断面の二次元画像35から得られる二値化画像からも2つの第1の頻度分布及び第2の頻度分布を生成する。また、頻度分布生成部204は、sagittal断面の二次元画像36から得られる二値化画像からも2つの第1の頻度分布及び第2の頻度分布を生成する。
 図6Aは、各面の二次元画像に基づいて生成された第1の頻度分布及び第2の頻度分布を表す図である。例えば、第1の頻度分布341及び第2の頻度分布342は、axial断面の二次元画像34から得られる二値化画像に基づいて生成される。また、第1の頻度分布351及び第2の頻度分布352は、coronal断面の二次元画像35から得られる二値化画像に基づいて生成される。また、第1の頻度分布361及び第2の頻度分布362は、sagittal断面の二次元画像36から得られる二値化画像に基づいて生成される。
 そして、頻度分布生成部204は、axial断面における第1の頻度分布341、coronal断面における第1の頻度分布351及びsagittal断面における第1の頻度分布361を合算(足し算)して、図6Bに示すような1つの第1の頻度分布51を生成する。同様に、頻度分布生成部204は、axial断面における第2の頻度分布342、coronal断面における第2の頻度分布352及びsagittal断面における第2の頻度分布362を合算(足し算)して、図6Bに示すような1つの第2の頻度分布52を生成する。
 その後、頻度分布生成部204は、生成した第1の頻度分布51及び第2の頻度分布52を基準値特定部205に出力する。基準値特定部205は、第1の頻度分布51及び第2の頻度分布52それぞれにおいて、基準閾値を特定する(ステップS109)。例えば、基準値特定部205は、第1の頻度分布51のピークの値、すなわち穴の数が1番大きいXの値(円511で示す値)を第1の基準閾値と特定する。また、基準値特定部205は、第2の頻度分布52のピークの値、すなわち連結成分が1番大きいXの値(円521で示す値)を第2の基準閾値と特定する。
 基準値特定部205は、特定した第1の基準閾値及び第2の基準閾値を出力情報生成部206に出力する。出力情報生成部206は、特定された第1の基準閾値と、第2の基準閾値に対応した予後に関する情報の解析結果である出力情報を生成する(ステップS110)。出力情報生成部206は、生成した出力情報を出力部207に出力する。出力部207は、出力情報生成部206によって生成された出力情報を出力する(ステップS111)。
 次に、基準値特定部205で得られた第1の基準閾値及び第2の基準閾値を用いて、生存期間分析を行い、第1の基準閾値及び第2の基準閾値がどれほど正しく評価できているのかを検証する。図7及び図8は、生存期間分析の流れを説明するための図である。図7A、図7B、図8A及び図8Bでは、生存期間が既知である40の症例を用いて検証した例を示している。
 まず、40症例を穴の数に対応する第1の基準閾値及び連結成分に対応する第2の基準閾値それぞれで2群(ホモロジーの値が小さいlow value群の20症例と、ホモロジーの値が高いhigh value群の20症例)に分類する。図7A及び図7Bでは、40症例を穴の数に対応する第1の基準閾値で2群に分類した例を示している。例えば、図7Aはlow value群の20症例を表し、図7Bはhigh value群の20症例を表す。
 次に、生存期間に有意差があるか否かをkaplan-meier法を用いて定量的に解析する。Kaplan-meierの結果を図8A及び図8Bに示す。図8A及び図8Bにおいて、横軸は期間を表し、縦軸は生存率を表す。図8Aは、穴の数に対応する第1の基準閾値を用いた場合の検証結果を表す図である。図8Bは、連結成分に対応する第2の基準閾値を用いた場合の検証結果を表す図である。図8A及び図8Bに示すように、穴の数で2群に分けた場合も、連結成分で2群に分けた場合も、high value群の生存率は期間が長くなるほど低くなり、low value群の生存率は期間が長くなっても高いのが見て取れる。また、実際にP値を算出すると、どちらも0.05以下であり有意差を確認することができた。
 上記に示す結果から、本発明における画像解析装置20は、精度よく予後予測を行うことができることがわかる。
 次に、従来手法における生存期間分析と、本発明における生存期間分析を比較して本発明の優位性を検証する。図9A~図9C及び図10A~図10Bは、従来手法における生存期間分析の結果を示す図である。図11A及び図11Bは、本発明における生存期間分析の結果を示す図である。なお、図9A~図11Bでは、ストラクチャデータが既知である295の症例を用いて検証した例を示している。ストラクチャデータが既知である295の症例は、非特許文献1に示されている。
 まず従来手法について説明する。
 従来手法では、図9Aに示すような腫瘍画像を用いて、腫瘍画像に最も多く含まれている画素値をその腫瘍画像の標準画素値とする。ここで、画素値88が標準画素値であるとし、標準画素値の倍率を1とする。従来手法では、標準画素値を閾値として、図9Aに示す腫瘍画像に二値化処理を行うことによって図9Bに示す二値化画像を得る。しかしながら、図9Bに示す二値化画像では、穴の数が計測不可能である。そのため、従来手法では、例えば画素値48(倍率0.55)~画素値63(倍率0.72)の間で、腫瘍画像に二値化処理を行うことで複数の二値化画像を取得して、複数の二値化画像のそれぞれから穴の数を計測することによって図9Cのようなグラフを取得する。図9Cに示すグラフの横軸は倍率を表し、縦軸は穴の数を表す。
 そして、従来手法では、近似式y=a(x-b)2+cにおける定数aと、定数bの値を用いて生存期間分析を行っている。その結果を図10A及び図10Bに示す。図10A及び図10Bにおいて、横軸は期間を表し、縦軸は生存率を表す。図10Aは、近似式y=a(x-b)2+cにおけるaの中央値で295の症例を2群に分類してkaplan-meier法を用いて定量的に解析した結果を表している。図10Bは、近似式y=a(x-b)2+cにおける定数bの中央値で295の症例を2群に分類してkaplan-meier法を用いて定量的に解析した結果を表している。図10A及び図10Bに示すように、P値を算出すると、どちらも0.05以上であり有意差を確認することができなかった。
 それに対して、図11A及び図11Bに示すように、本発明ではP値を算出すると、どちらも0.05以下であり有意差を確認することができた。このように、本発明における手法は、従来の手法に比べて優位性がある。また、有意差があるため、予後予測の有用性を示唆しているといえる。
 以上のように構成された画像解析装置20によれば、生体組織を撮像した撮像画像から得られる患者の予後に関する情報の精度を向上させることが可能となる。具体的には、画像解析装置20は、生体組織を撮像した1枚の撮像画像から得られる複数の二値化画像に基づいて、穴の数及び連結成分が極値(例えば、最大値)となる基準閾値を、その撮像画像の特徴量として用いて予後予測を行う。得られた基準閾値を用いた有意差については、図7A~図7B、図8A~図8B及び図11A~図11Bに示す通りである。このように、有意差があるため、得られる予後予測についてもより正確な値を予測することができる。そのため、生体組織を撮像した撮像画像から得られる患者の予後に関する情報の精度を向上させることが可能になる。
(第2の実施形態)
 第2の実施形態では、画像形成装置は、頻度分布と、患者の予後のデータとを学習することによって学習モデルを生成し、新たに入力された患者の画像データから患者のこれからの予後を予測する。
 図12は、第2の実施形態における予後予測システム100aのシステム構成を表す構成図である。予後予測システム100aは、外部装置10及び画像解析装置20aを備える。外部装置10及び画像解析装置20aは、無線又は有線により通信可能に接続される。
 画像解析装置20aは、外部装置10が保持している撮像画像を解析することにより、撮像画像の患者の予後予測に有用な情報を出力する。また、画像解析装置20aは、頻度分布と、患者の予後のデータとを学習することによって学習モデルを生成する。画像解析装置20aは、例えばノートパソコン、パーソナルコンピュータ、スマートフォン、携帯電話、タブレット端末等の情報処理装置を用いて構成される。
 画像解析装置20aは、バスで接続されたCPUやメモリや補助記憶装置などを備え、画像解析プログラムを実行する。画像解析プログラムの実行によって、画像解析装置20aは、画像取得部201a、前処理部202、二値化処理部203、頻度分布生成部204、基準値特定部205、出力情報生成部206a、出力部207、学習モデル生成部208を備える装置として機能する。なお、画像解析装置20aの各機能の全て又は一部は、ASICやPLDやFPGA等のハードウェアを用いて実現されてもよい。また、画像解析プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。また、画像解析プログラムは、電気通信回線を介して送受信されてもよい。
 画像解析装置20aは、出力情報生成部206に代えて出力情報生成部206aを備える点、学習モデル生成部208を新たに備える点で画像解析装置20と構成が異なる。画像解析装置20aは、他の構成については画像解析装置20と同様である。そのため、画像解析装置20a全体の説明は省略し、出力情報生成部206a及び学習モデル生成部208について説明する。
 学習モデル生成部208は、第1の頻度分布及び第2の頻度分布と、患者の予後のデータ(例えば、予後○か月であるかを表す生存期間のデータ)とを対応付けて学習することによって学習モデルを生成する。
 出力情報生成部206aは、出力情報生成部206と同様の処理を行う。また、出力情報生成部206aは、頻度分布生成部204によって生成された第1の頻度分布及び第2の頻度分布と、学習モデル生成部208によって生成された学習モデルとを用いて、患者の予後のデータを出力情報として生成する。
 以上のように構成された画像解析装置20aによれば、第1の実施形態と同様の効果を得ることができる。
 また、画像解析装置20aは、学習結果に応じて、より高精度に患者の予後を予測することができる。
 <第2の実施形態における変形例>
 学習モデル生成部208は、第1の頻度分布及び第2の頻度分布のいずれか一方と、患者の予後のデータ(例えば、予後○か月のデータ)とを対応付けて学習することによって学習モデルを生成するように構成されてもよい。
 学習モデル生成部208は、病理結果(例えば、病気のステージ数、病気の進行度合い)やDNAの解析結果を学習することによって、病理結果やDNAの解析に用いる学習モデルを生成するように構成されてもよい。
 第1の実施形態及び第2の実施形態に共通する変形例について説明する。
 本発明で用いる撮像画像は、上記の画像に限定される必要はなく、超音波画像、SPECT画像、X線一般撮影画像等の画像であってもよい。
 頻度分布生成部204,204aは、第1の頻度分布及び第2の頻度分布のいずれか一方を生成するように構成されてもよい。このように構成される場合、基準値特定部205は、頻度分布生成部204,204aによって、生成された第1の頻度分布及び第2の頻度分布のいずれか一方の頻度分布を用いて、予後に関する情報の解析に用いられる基準閾値を特定する。
 上記の各実施形態では、前処理部202,202aが、抽出画像33から3つの面それぞれの二次元画像を抽出する構成を示したが、前処理部202,202aは抽出画像33から1つ又は2つの面の二次元画像を抽出するように構成されてもよい。
 上記の各実施形態では、基準値特定部205が、頻度分布において極値を与える閾値を基準閾値と特定する構成を示したが、基準閾値は以下の方法で特定されてもよい。例えば、基準値特定部205は、極値を与える閾値の近傍の値を基準閾値として特定してもよい。
 画像解析装置20,20aは、全ての閾値で二値化処理を行うことによって複数の二値化画像を生成した後に、全ての二値化画像に対して穴の数と連結成分を計測するように構成されてもよい。
 画像解析装置20,20aは、二次元画像の抽出を行わず、三次元画像に対して二値化処理を行うことによって穴の数と連結成分を計測するように構成されてもよい。このように構成される場合、頻度分布生成部204,204aは、三次元画像内における穴がつながっている領域を1つの穴(画像上では、球)としてカウントする。
 画像解析装置20,20aが備える各機能部の一部は、別の筐体に備えられてもよい。
別の筐体は、例えばクラウド上に設けられた1又は複数のサーバである。例えば、画像取得部201及び前処理部202が1又は複数のサーバに備えられ、画像解析装置20,20aが前処理後の撮像画像を処理するように構成される。このように構成される場合、画像解析装置20,20a及び1又は複数のサーバを備える画像解析システムとして構成されてもよい。
 出力情報生成部206,206aは、第1の基準閾値と、第2の基準閾値との比を出力情報の生成に用いるように構成されてもよい。
 二値化処理部203は、ステップS107の処理においてXの値に2以上の値を加算して新たな閾値Xとするように構成されてもよい。このように構成されることによって、二値化処理部203は、閾値X=0からX=Xmaxまでの全てにおいて二値化画像を生成する必要がない。そのため、処理負荷を軽減することができる。このように構成される場合、頻度分布生成部204は、穴の数及び連結成分が計測されていない閾値における穴の数及び連結成分を、前後の閾値における穴の数及び連結成分から補完する。
 画像解析装置20,20aは、穴が発生してから、閾値を変化させることによって、発生した穴が消失するまでの期間を予後予測に用いるように構成されてもよい。具体的には、頻度分布生成部204は、ある閾値における二値化画像において穴が発生し、穴が発生してから、閾値を変化させて所定の期間経過する前に消失した穴をノイズと判断して、ノイズと判断された穴を各閾値において穴の数の計測対象に含めず、所定の期間以上残っている穴を計測対象とする。所定の期間は、閾値の数を表す。例えば、所定の期間が閾値3つであるとし、閾値1で穴が発生したとする。この場合、頻度分布生成部204は、閾値1から所定の期間、すなわち閾値4未満の時点で、閾値1で発生した穴が消失した場合には当該穴をノイズと判断して、ノイズと判断された穴を閾値1~閾値3における穴の数の計測に含めない。一方、頻度分布生成部204は、閾値1から所定の期間、すなわち閾値4未満の時点で、閾値1で発生した穴が消失していない場合には閾値1~閾値3における穴の数の計測に含める。
 次に、図13及び図14を用いて、本発明における予後予測精度の優位性について説明する。図13及び図14は、従来手法と本発明との予後予測精度の比較結果を示す図である。従来手法と本発明との予後予測精度を比較するために、一般公開されているTCIA(The Cancer Imaging Archive)から抽出した277人のNSCLC(Non-Small Cell Lung Cancer:非小細胞性肺がん)患者を解析した。各NSCLC患者の詳細なデータは、図13に示す通りである。NSCLC患者の予後予測の優れた性能である5つの標準的な放射線特徴を採用し、相同性に基づく放射線特徴を比較した。この標準的な放射線特徴は、3つの強度特徴と2つのテクスチャ特徴で構成されている。
 277人のNSCLC患者の画像データを用いて、上記の手法で穴の頻度分布を作成した。そして、穴の数(ホモロジー)の値が小さい群(low value群)と、ホモロジーの値が高い群(high value群)の2群に分けて、それぞれにkaplan-meier法を用いて図8Aのような図(例えば、カプランマイヤープロット)を作成した。その後、各プロット曲線からAUC(Area under an ROC curve)値を求めた。本発明の穴の数の代わりに、公知の特徴量を用いて分けた2群で作成したカプランマイヤープロットについてそれぞれAUC値を求め、AUC値を特徴量間で比較して予測精度を検証した。ここで、公知の特徴量とは、例えば、NSCLCの予後予測に有効な特徴量(参考文献1参照)、参考文献2に記載の特徴量及び参考文献3に記載の特徴量である。
(参考文献1:Wen Yu et al., “Development and Validation of a Predictive
Radiomics Model for Clinical Outcomes in Stage I Non-small Cell Lung Cancer”, International journal of Radiation Oncology biology Physics, 2018)
(参考文献2:Hugo J.W.L. Aerts1 et al., “Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach”, Nature communications, 2014)
(参考文献3:Elizabeth Huynh et al., “CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer”, Radiotherapy and Oncology, p.258-266, 2016)
 その結果、本発明における特徴量(ホモロジー特徴量)を用いた場合のAUCが最も高く、公知の特徴量よりも予後予測を精度よく行える特徴量であることが分かった。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 生体組織を撮像した撮像画像を用いて患者の予後に関する情報の解析を行う装置に適用できる。
10…外部装置, 20、20a…画像解析装置, 201…画像取得部, 202…前処理部, 203…二値化処理部, 204…頻度分布生成部, 205…基準値特定部, 206、206a…出力情報生成部, 207…出力部, 208…学習モデル生成部

Claims (8)

  1.  生体組織を撮像した撮像画像に対して、異なる閾値毎に二値化処理を行うことによって複数の二値化画像を生成する二値化処理部と、
     前記二値化画像に含まれる一連なりの図形の数を表す連結成分の頻度分布を生成する頻度分布生成部と、
     生成した前記連結成分の頻度分布を用いて、予後に関する情報の解析に用いられる前記連結成分の頻度分布における基準となる閾値を基準閾値として特定する基準値特定部と、
     特定された前記連結成分の頻度分布における前記基準閾値を用いて、予後に関する情報の解析結果を生成する生成部と、
     を備える画像解析装置。
  2.  前記基準値特定部は、前記連結成分の頻度分布において極値を与える閾値又は前記閾値の近傍の値を前記連結成分の頻度分布における前記基準閾値と特定する、請求項1に記載の画像解析装置。
  3.  前記頻度分布生成部は、前記二値化処理部によって生成された前記複数の二値化画像を用いて、前記二値化画像に含まれる穴又は球の数の頻度分布をさらに生成し、
     前記基準値特定部は、前記穴又は球の数の頻度分布において極値を与える閾値又は前記閾値の近傍の値を前記穴又は球の数の頻度分布における基準閾値と特定し、
     前記生成部は、特定された前記連結成分の頻度分布における前記基準閾値と、前記穴又は球の数の頻度分布における基準閾値とを用いて、予後に関する情報の解析結果を生成する、請求項2に記載の画像解析装置。
  4.  前記連結成分の頻度分布と、患者の予後のデータとを対応付けて学習することによって学習モデルを生成する学習モデル生成部をさらに備え、
     前記生成部は、新たに入力された撮像画像から得られる前記連結成分の頻度分布と、前記学習モデルとを用いて前記患者の予後のデータをさらに生成する、請求項1から3のいずれか一項に記載の画像解析装置。
  5.  生体組織を撮像した撮像画像に対して、異なる閾値毎に二値化処理を行うことによって複数の二値化画像を生成する二値化処理部と、
     前記二値化画像に含まれる一連なりの図形の数を表す連結成分の頻度分布を生成する頻度分布生成部と、
     生成した前記連結成分の頻度分布を用いて、予後に関する情報の解析に用いられる前記連結成分の頻度分布における基準となる閾値を基準閾値として特定する基準値特定部と、
     特定された前記連結成分の頻度分布における前記基準閾値を用いて、予後に関する情報の解析結果を生成する生成部と、
     を備える画像解析システム。
  6.  生体組織を撮像した撮像画像に対して、異なる閾値毎に二値化処理を行うことによって複数の二値化画像を生成する二値化処理ステップと、
     前記二値化画像に含まれる一連なりの図形の数を表す連結成分の頻度分布を生成する頻度分布生成ステップと、
     生成した前記連結成分の頻度分布を用いて、予後に関する情報の解析に用いられる前記連結成分の頻度分布における基準となる閾値を基準閾値として特定する基準値特定ステップと、
     特定された前記連結成分の頻度分布における前記基準閾値を用いて、予後に関する情報の解析結果を生成する出力情報生成ステップと、
     を備える画像解析方法。
  7.  生体組織を撮像した撮像画像に対して、異なる閾値毎に二値化処理を行うことによって複数の二値化画像を生成する二値化処理ステップと、
     前記二値化画像に含まれる一連なりの図形の数を表す連結成分の頻度分布を生成する頻度分布生成ステップと、
     生成した前記連結成分の頻度分布を用いて、予後に関する情報の解析に用いられる前記連結成分の頻度分布における基準となる閾値を基準閾値として特定する基準値特定ステップと、
     特定された前記連結成分の頻度分布における前記基準閾値を用いて、予後に関する情報の解析結果を生成する出力情報生成ステップと、
     をコンピュータに実行させるためのコンピュータプログラム。
  8.  請求項7に記載のコンピュータプログラムを記録した非一時的記録媒体。
PCT/JP2019/038280 2018-09-28 2019-09-27 画像解析装置、画像解析システム、画像解析方法、コンピュータプログラム及び非一時的記録媒体 WO2020067481A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020549464A JPWO2020067481A1 (ja) 2018-09-28 2019-09-27 画像解析装置、画像解析システム、画像解析方法、コンピュータプログラム及び非一時的記録媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018185228 2018-09-28
JP2018-185228 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067481A1 true WO2020067481A1 (ja) 2020-04-02

Family

ID=69951922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038280 WO2020067481A1 (ja) 2018-09-28 2019-09-27 画像解析装置、画像解析システム、画像解析方法、コンピュータプログラム及び非一時的記録媒体

Country Status (2)

Country Link
JP (1) JPWO2020067481A1 (ja)
WO (1) WO2020067481A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021112205A1 (ja) * 2019-12-05 2021-06-10

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087112A1 (ja) * 2009-01-27 2010-08-05 国立大学法人大阪大学 画像解析装置、画像解析方法、画像解析プログラムおよび記録媒体
JP2015156894A (ja) * 2014-02-21 2015-09-03 学校法人日本大学 医用画像処理装置、その医用目的領域抽出方法及び医用目的領域抽出処理プログラム
WO2017010397A1 (ja) * 2015-07-15 2017-01-19 国立大学法人大阪大学 画像解析装置、画像解析方法、画像解析システム、画像解析プログラム、および記録媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087112A1 (ja) * 2009-01-27 2010-08-05 国立大学法人大阪大学 画像解析装置、画像解析方法、画像解析プログラムおよび記録媒体
JP2015156894A (ja) * 2014-02-21 2015-09-03 学校法人日本大学 医用画像処理装置、その医用目的領域抽出方法及び医用目的領域抽出処理プログラム
WO2017010397A1 (ja) * 2015-07-15 2017-01-19 国立大学法人大阪大学 画像解析装置、画像解析方法、画像解析システム、画像解析プログラム、および記録媒体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021112205A1 (ja) * 2019-12-05 2021-06-10
WO2021112205A1 (ja) * 2019-12-05 2021-06-10 国立大学法人大阪大学 画像解析方法、画像解析装置、画像解析システム、制御プログラム、記録媒体
JP7265805B2 (ja) 2019-12-05 2023-04-27 国立大学法人大阪大学 画像解析方法、画像解析装置、画像解析システム、制御プログラム、記録媒体

Also Published As

Publication number Publication date
JPWO2020067481A1 (ja) 2021-08-30

Similar Documents

Publication Publication Date Title
Chen et al. Radiomic features analysis in computed tomography images of lung nodule classification
JP2022525198A (ja) 陽電子放射断層撮影を用いた腫瘍セグメンテーションのための深層畳み込みニューラルネットワーク
Xu et al. Texture analysis on 18 F-FDG PET/CT images to differentiate malignant and benign bone and soft-tissue lesions
Peeken et al. „Radio-oncomics “ Das Potenzial von Radiomics in der Strahlenonkologie
To et al. Deep dense multi-path neural network for prostate segmentation in magnetic resonance imaging
CN112770838B (zh) 使用自关注深度学习进行图像增强的系统和方法
Gong et al. Computer-aided diagnosis of lung cancer: the effect of training data sets on classification accuracy of lung nodules
US10311571B2 (en) Image analysis method supporting illness development prediction for a neoplasm in a human or animal body
RU2449371C2 (ru) Устойчивая к ошибкам функциональная визуализация
Phillips et al. Clinical applications of textural analysis in non-small cell lung cancer
Lee et al. Associating spatial diversity features of radiologically defined tumor habitats with epidermal growth factor receptor driver status and 12-month survival in glioblastoma: methods and preliminary investigation
EP2987114B1 (en) Method and system for determining a phenotype of a neoplasm in a human or animal body
JP2016512776A (ja) X線画像における構造のコンピュータ援用検出のための方法およびx線システム
Abbaspour et al. Endorectal ultrasound radiomics in locally advanced rectal cancer patients: despeckling and radiotherapy response prediction using machine learning
Ben Bouallegue et al. Diagnostic and prognostic value of amyloid PET textural and shape features: comparison with classical semi-quantitative rating in 760 patients from the ADNI-2 database
WO2020067481A1 (ja) 画像解析装置、画像解析システム、画像解析方法、コンピュータプログラム及び非一時的記録媒体
WO2021118918A1 (en) Radiomics-based treatment decision support for lung cancer
Germanese et al. Radiomics to predict prostate canceraggressiveness: a preliminary study
US11120888B2 (en) Systems and methods for predicting lung cancer immune therapy responsiveness using quantitative textural analysis
Tomassini et al. Cloud-YLung for non-small cell lung cancer histology classification from 3D computed tomography whole-lung scans
Filippi et al. Pet-radiomics in lymphoma and multiple myeloma: update of current literature
CN113850788A (zh) 一种判断膀胱癌肌层浸润状态的系统及其应用
Cai et al. Impact of localized fine tuning in the performance of segmentation and classification of lung nodules from computed tomography scans using deep learning
JP2022133479A (ja) 予後推定装置及び予後推定方法
Lo et al. Prediction of metastasis in head and neck cancer from computed tomography images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549464

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867674

Country of ref document: EP

Kind code of ref document: A1