JP2022133479A - 予後推定装置及び予後推定方法 - Google Patents

予後推定装置及び予後推定方法 Download PDF

Info

Publication number
JP2022133479A
JP2022133479A JP2019100198A JP2019100198A JP2022133479A JP 2022133479 A JP2022133479 A JP 2022133479A JP 2019100198 A JP2019100198 A JP 2019100198A JP 2019100198 A JP2019100198 A JP 2019100198A JP 2022133479 A JP2022133479 A JP 2022133479A
Authority
JP
Japan
Prior art keywords
prognosis
image
vetch
map
lung cancer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019100198A
Other languages
English (en)
Inventor
秀孝 有村
Hidetaka Arimura
健太 二宮
Kenta NINOMIYA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Priority to JP2019100198A priority Critical patent/JP2022133479A/ja
Priority to PCT/JP2020/018346 priority patent/WO2020241178A1/ja
Publication of JP2022133479A publication Critical patent/JP2022133479A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

【課題】肺がんの予後を精度よく推定する。【解決手段】予後推定装置1は、分析対象の肺がん組織を撮像した対象画像について、所定の閾値を用いて閾値処理を行った画像を準備する閾値処理部21と、閾値処理後の画像について、所定の個別関心領域毎に組織の穴及び連結部分の数をそれぞれカウントすることにより、ベッチマップを作成するベッチマップ作成部22と、ベッチマップから、予後に関連する特徴量を算出する、特徴量算出部23と、を有する。【選択図】図1

Description

本発明は、予後推定装置及び予後推定方法に関する。
がん患者の患部のCT画像を撮像し、画像処理技術を用いてがんに係る判定を行う方法が検討されている。例えば、特許文献1では、組織の画像を解析することで、画像にがん組織の像が含まれているかを判定する方法が開示されている。また、非特許文献1では、テクスチャ特徴およびウェーブレット分解等を使用してがん組織の画像に係る特徴量を求め、肺がんの予後を推定することが検討されている。
特許第5522481号公報
Arimura H, Soufi M, Kamezawa H,Ninomiya K and Yamada M "Radiomics with artificial intelligence forprecision medicine in radiation therapy" Journal of Radiation Research, September2018, 60 (1), Pages 150-157
しかしながら、肺がんの予後の推定については精度に関して改善の余地があった。
本発明は上記を鑑みてなされたものであり、肺がんの予後を精度よく推定することが可能な予後推定装置及び予後推定方法を提供することを目的とする。
上記目的を達成するため、本発明の一形態に係る予後推定装置は、分析対象の肺がん組織を撮像した対象画像について、所定の閾値を用いて閾値処理を行った画像を準備する閾値処理部と、閾値処理後の画像について、所定の個別関心領域毎に組織の穴及び連結部分の数をそれぞれカウントすることにより、ベッチマップを作成するベッチマップ作成部と、前記ベッチマップから、予後に関連する特徴量を算出する、特徴量算出部と、を有する。
また、本発明の一形態に係る予後推定方法は、分析対象の肺がん組織を撮像した対象画像について、所定の閾値を用いて閾値処理を行った画像を準備する画像準備ステップと、閾値処理後の画像について、所定の個別関心領域毎に組織の穴及び連結部分の数をそれぞれカウントすることにより、ベッチマップを作成するベッチマップ作成ステップと、前記ベッチマップから、予後に関連する特徴量を算出する、特徴量算出ステップと、を含む。
上記の予後推定装置及び予後推定方法によれば、分析対象の肺がん組織を撮像した対象画像について、閾値に基づく閾値処理を行った画像を準備し、当該画像について、所定の関心領域毎に組織の穴及び連結部分の数をそれぞれカウントすることにより、ベッチマップを作成し、このベッチマップに基づいて予後に関連する特徴量が算出される。このようにがん組織の穴及び連結部分に係るベッチマップを作成した上で予後に関連する特徴量を算出する構成とすることで、肺がんの予後を精度よく推定することが可能となる。
前記閾値処理部において、1の前記対象画像から、閾値を変更した複数種類の閾値処理を行った画像を準備し、前記ベッチマップ作成部において、前記複数種類の閾値処理を行った画像から、複数の前記ベッチマップを作成し、前記特徴量算出部において、前記複数のベッチマップに基づいて特徴量を算出する態様とすることができる。
上記のように、1の対象画像から閾値を変更した複数種類の閾値処理を行った画像を準備し、複数のベッチマップを作成した上で特徴量を算出する構成とすることで、分析対象の肺がん組織に含まれる種々の穴等に係る情報を反映したベッチマップを作成することができると共に、これらの情報を考慮して予後に関連する特徴量を算出することができる。したがって、肺がんの予後をより精度よく推定することが可能となる。
前記特徴量算出部において、予後の予測に係る数理モデルに対して所定のアルゴリズムを複数回適用することで、予後に関連する特徴量を選択する態様とすることができる。
上記のように数理モデルに対して所定のアルゴリズムを適用して特徴量を選択する際に、これを複数回適用して特徴量を選択することにより、特徴量の選択をより精度良く行うことができるため、肺がんの予後をより精度よく推定することが可能となる。
本発明によれば、肺がんの予後を精度よく推定することが可能な予後推定装置及び予後推定方法が提供される。
図1は、一実施形態に係る予後推定装置の構成を説明するブロック図である。 図2は、予後推定装置において行われる予後の推定に係る処理を説明するフロー図である。 図3(a)、図3(b)、図3(c)は、予後推定装置が取得する画像の例を説明する図である。 図4は、閾値処理を行った画像を説明する図である。 図5は、ベッチマップ画像の作成手順について説明するフロー図である。 図6は、ベッチマップ画像の作成手順について説明する図である。 図7は、閾値毎に作成されたベッチマップ画像を説明する図である。 図8(a)、図8(b)、図8(c)、図8(d)は、異なる手順で算出した特徴量に基づいてがん患者を2群に分けた際の、2群の分離具合について説明する図である。
以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。
図1は、本発明の一形態に係る予後推定装置の構成を説明するブロック図である。本実施形態に係る予後推定装置1は、肺がん患者の患部の画像から肺がんの予後を推定する装置である。対象となる肺がんには、非小細胞肺がん(腺がん、扁平上皮がん、大細胞がん、腺扁平上皮がん等)、及び、小細胞肺がんの両方が含まれる。以下の実施形態では、これらを総称して肺がんという。予後推定装置1では、肺がん患者の患部組織(がん組織)を撮像した画像に基づいて肺がんの予後に関連性の高い特徴量(radiomic features)を算出して出力する機能を有する。予後推定装置1では、肺がんの予後と関連性が高い特徴量を算出することができるため、画像に基づいて特徴量の算出結果が、肺がんの予後の推定結果に対応するといえる。
予後推定装置1における肺がんの予後の推定に利用する肺がん患者の患部組織を撮像した画像(対象画像)としては、例えば、CT(Computed Tomography:コンピュータ断層撮影)により得られるCT画像が挙げられる。予後推定装置1では、肺がんの患部組織及びその周囲を撮像したCT画像に対して所定の処理を行うことで、予後に関係する特徴量を算出することができる。
図1に示すように、予後推定装置1は、画像取得部11、画像解析部12、記憶部13、及び、出力部14を有する。
予後推定装置1は、例えば、CPU(Central Processing Unit)、主記憶装置であるRAM(Random Access Memory)及びROM(Read Only Memory)、他の機器との間の通信を行う通信モジュール、並びにハードディスク等の補助記憶装置等のハードウェアを備えるコンピュータとして構成される。そして、これらの構成要素が動作することにより、予後推定装置1としての機能が発揮され得る。なお、予後推定装置1としての機能は、複数のコンピュータの組み合わせによって実現されていてもよい。
予後推定装置1の画像取得部11は、外部装置等から患者の患部組織を撮像したCT画像である対象画像を取得する機能を有する。また、画像取得部11は、CT画像に含まれる患部組織(肺がん組織)の領域を特定する情報も併せて取得してもよい。一般的に、患者のCT画像として、肺がん組織及びその周辺の組織を撮像した画像が取得される。したがって、画像取得部11では、CT画像と共に当該CT画像のうち肺がん組織を撮像した領域を特定する情報を取得する。これにより、画像取得部11は、肺がん組織を撮像した画像(肺がん組織として特定された像が含まれる画像)を取得することができる。なお、CT画像自体から肺がん組織の領域を特定することができる場合には、肺がん組織の領域を特定する情報を別途取得しなくてもよい。
画像解析部12は、肺がん組織を撮像したCT画像についての解析を行い、肺がんの予後に係る特徴量を算出する機能を有する。画像解析部12で行われる解析の詳細については後述するが、CT画像を所定の閾値に基づいた二値化処理を行った後、肺がん組織に含まれる孔の数に係るベッチ数(Betti numbers)の分布に基づくベッチマップを作成する。そして、このベッチ数の分布に基づいてがんの予後に関連する特徴量を算出する。そのため、画像解析部12は、閾値処理部21、ベッチマップ作成部22、及び、特徴量算出部23を有する。
記憶部13は、画像取得部11において取得された画像及びがん組織の領域を特定する情報、画像解析部12による解析結果等を記憶する機能を有する。
出力部14は、画像解析部12による解析結果を出力する機能を有する。出力先としては、予後推定装置1に設けられたモニタ、外部装置等が挙げられる。また、出力内容等は特に限定されず、例えば、画像解析部12により算出された特徴量をそのまま出力する態様としてもよいし、特徴量に基づいた予後の判定を行いその結果を出力する態様としてもよい。予後の判定を行う場合には、判定を行うためのロジック等を記憶部13において保持し、特徴量を算出した後に当該ロジックを用いて判定を行うこととしてもよい。
次に、図2~図7を参照しながら、予後推定装置1による画像に基づく予後推定の手順について説明する。図2は、予後推定装置1において行われる予後の推定に係る処理を説明するフロー図である。この図2を参照しながら、予後の推定に係る処理について説明する。
まず、予後推定装置1では、画像取得部11により、肺がん組織を含むCT画像と、当該CT画像における肺がん組織(腫瘍組織)を撮像した領域を特定する情報を取得する(ステップS01)。画像取得部11が取得する情報の例を図3に示す。図3(a)は、肺がん組織を含む領域を撮像したCT画像の例である。図3(b)は、CT画像のうち、肺がん組織の像が含まれる領域を特定した情報の例であり、白色部分が肺がん組織であることを示している。図3(c)は、図3(a)で示すCT画像に対して図3(b)で示す肺がん組織の場所を特定する情報を重ね合わせたものである。画像取得部11において図3(c)で示す情報を取得することで、予後推定装置1では、CT画像のうち肺がん組織を撮像した領域を特定することができ、当該領域に含まれる情報を予後の推定に利用することができる。
次に、予後推定装置1の画像解析部12の閾値処理部21では、前処理としてCT画像を8ビットのグレースケール画像に変換する(ステップS02)。この処理を行うことにより、256段階の光の強さで表示されたグレースケールのCT画像を得ることができる。その後、複数の閾値を用いて二値化処理を行い、閾値処理画像を作成する(ステップS03:画像準備ステップ)。上記の通り、CT画像は256段階(0~255)の光の強度の組み合わせで構成されている。したがって、そのうちいずれかの段階を閾値として設定し、光の強度が閾値またはそれ以下の領域を黒とし、光の強度が閾値よりも大きい領域を白とすることで、二値化された画像を得ることができる。0~255のそれぞれを閾値として二値化処理を行うことで、256枚の二値化画像を得ることができる。図4は上記の処理に得られた二値化画像を閾値(threshold value)に並べたものを模式的に示している。図4に示すように、閾値が0の場合には、画像全体が白くなる。一方、閾値を大きくすると徐々に画像に含まれる黒色の領域が大きくなる。また、図示していないが閾値が255の場合には、画像全体が黒くなる。このように1枚のCT画像から256枚の閾値処理を行った画像(閾値処理画像)を生成する。
次に、予後推定装置1のベッチマップ作成部22では、閾値処理画像毎にベッチマップを作成する(ステップS04:ベッチマップ作成ステップ)。ベッチマップとは、閾値処理画像に含まれるがん組織の穴の数に係るベッチ数及び連結部分の数に係るベッチ数に基づいて作成された画像である。ベッチマップの作成については、図5及び図6を参照しながら説明する。
まず、上述の通り、閾値処理画像を準備する(ステップS11)。次に、準備した閾値処理画像について、ベッチ数を算出するための領域毎に画像を分割する(ステップS12)。図6では、閾値を70として二値化した画像D1を示している。この画像D1を例えばカーネルサイズを縦横共に7ピクセルとして分割する。なお、以降の処理を行う対象となる領域は、肺がん組織を撮像した領域である。この領域を関心領域(ROI:regions of interests)という場合があり、分割された領域の一つずつを個別関心領域(local ROI)という場合がある。
次に、ベッチマップ作成部22では、分割された領域毎にベッチ数(Bettinumbers)b0及びb1を算出した画像(b0画像及びb1画像)を生成する(ステップS13、ステップS14)。ベッチ数とは、位相空間に対する不変量であり、自然数で記述される。本実施形態では、ベッチ数b0(0次のベッチ数)は分割された領域における連結成分の数を示す。ベッチ数b1(1次のベッチ数)は分割された領域における穴の数を示す。すなわち、ベッチ数b1,b0を算出することは、所定の関心領域毎に組織の穴及び連結部分の数をそれぞれカウントすることに対応するといえる。
図6では、一部の関心領域ROIに対応する画像D2及び画像D3を反転した画像を示している。画像D2のうち黒色となっている領域は、がん組織が存在しないため暗くなっている、すなわち、穴となっている領域を示している。画像D2では、白色の領域である連結部分(白色の画素同士が連結されている部分)が1つとなっている。すなわち、画像D2では1つの連結部分のみで構成されている。したがって、この画像D2に基づくベッチ数b0は1となる。
また、画像D3では、穴となっている領域が白色で示されているが、この領域が3つ独立した状態(穴となっている領域に対して隣接する4辺の画素が全て黒色である状態)で存在している。したがって、この画像D3(画像D2と同じ)に基づくベッチ数b1は3となる。このように、分割した領域毎にベッチ数b0,b1をそれぞれ算出する。分割した領域毎にベッチ数は算出されるので、各領域でのベッチ数b0の算出結果をまとめたb0画像(図6の画像D4)及び各領域でのベッチ数b1の算出結果をまとめたb1画像(図6の画像D5)を得ることができる。b0画像の作成(S13)及びb1画像の作成(S14)は、独立した工程であるので、同時に行ってもよいし、いずれかを先に行ってもよい。
次に、ベッチマップ作成部22では、b0画像及びb1画像から、b1/b0画像を作成する(ステップS15)。上述のようにベッチ数b0及びb1は、いずれも自然数であるので、b1/b0を算出することができる。上記のように分割された領域毎にベッチ数がb0,b1が算出されるので、これらの数値に基づいて領域毎にb1/b0を算出する。算出されたb1/b0の分布を図示したのがb1/b0画像である。図6では、b0画像D4及びb1画像D5に基づいて作成されたb1/b0画像D6を示している。このb1/b0画像D6が、ベッチマップ画像に対応する。
ベッチマップ画像は、1つの二値化画像から1つ生成することができる。すなわち、本実施形態で説明したように256個の二値化画像(閾値処理画像)を作成した場合、256個のベッチマップを作成することができる。
図2に戻り、予後推定装置1の特徴量算出部23では、上記の手順で得られた複数のベッチマップ画像から、予後推定用の特徴量(radiomic features)を算出する(ステップS05:特徴量算出ステップ)。予後推定用の特徴量とは、ベッチマップ画像から算出される特徴量であり肺がんの予後と関連性が高いと考えられる特徴量である。予後推定用の特徴量を算出するための手法としては、従来、Soufi M, Arimura H, Nakamoto T, Hirose T aki, Ohga S, Umezu Y, HondaH and Sasaki T "Exploration of temporal stability and prognostic power ofradiomic features based on electronic portal imaging device images" PhysicaMedica, February 2018, 46, Pages 32-44等で開示されている特徴量の算出手法を適用することができる。従来開示されている特徴量の算出手法とは、8ビットグレースケールに変換した1枚のCT画像からウェーブレット関数に基づく4種類の画像を準備し、この4種類の画像に基づいて54個の特徴量を算出するものである。特徴量を算出する手法自体は上記の文献に記載されている。また、本実施形態でも上記と同様の方法により1枚のb1/b0画像から54種類の特徴量を得ることができる。本実施形態の場合、例えば、256個のベッチマップ画像に対して上記の特徴量の算出を行った結果、合計13824の特徴量(homological radiomic features)を得ることができる。
なお、本実施形態では、予後の予測に係る数理モデルを用いて、上記の13824の特徴量から予後の推定に適した特徴量として7種類の特徴量を選択している。具体的には、CPHM(コックス比例ハザードモデル:Cox Proportional-Hazards Model)を用いている。このモデルはある患者が他の患者が長生きしているかを評価する関数であり、患者の生存時間を予測するものである。このモデルに対して、elastic-netというスパースモデリングを適用したCox-netアルゴリズムを適用することで、特徴量を選択する処理を行った。Cox-netアルゴリズム自体は予後の推定に用いられている公知のものであり、例えば、Simon N, Friedman J, Hastie T and Tibshirani R "RegularizationPaths for Cox’s Proportional Hazards Model via Coordinate Descent" Journalof Statistical Software, Mar 2011, 39(5), Pages.1-13に具体的に記載されている。このCox-netアルゴリズムを用いることで、肺がんの予後の推定に適した特徴量を54種類の特徴量から選択することができる。
また、本実施形態では、13824の特徴量に対してCox-netアルゴリズムを100回適用することで、患者の生存時間の予測(すなわち、予後の推定)との相関がより強いと考えられる7個の特徴量を選択している。Cox-netアルゴリズムを100回適用することで、より多様な条件において予後との相関が高い特徴量を特定することができる。
なお、上記の手順で算出された特徴量が予後の予測に有用かどうかを評価した結果を図8に示す。具体的には、上記実施形態で説明した特徴量に基づいて肺がん患者を2群に分けた場合、その予後に差があるかを評価した。また、従来から行われている特徴量の算出方法等、上記実施形態で説明した方法とは異なる予後の推定方法に基づいて肺がん患者を2群に分けた場合と比較して、群間の差が大きくなるかを評価した。
図8(a)では、本実施形態で説明したベッチマップを利用して算出した特徴量を用いて2群に分けた場合の結果を示している。また、図8(b)では、従来から行われているウェーブレット関数に基づく4種類の画像から得られる特徴量を用いて2群に分けた場合の結果を示している。また、図8(c)では、本実施形態で説明したベッチマップを利用して算出した特徴量と従来からのウェーブレット関数を用いて得られる特徴量との組み合わせた場合の結果を示している。また、図8(d)では、深層学習(Deep Learning)を用いて患者を2群に分けた場合の結果を示している。図8(a)~図8(d)では、同一の肺がん患者の画像を利用してそれぞれ2群に分けている。
肺がん患者を特徴量に基づいて2群に分ける方法について説明する。本実施形態に係る手法に基づいてがん患者を2群に分ける場合、まず、CPHMを作成すると、7個の特徴量それぞれに対する重み付けに係る重み係数が得られる。患者毎にCT画像から得られる7つの特徴量それぞれに関する重み係数と特徴量との積の総和を算出する。このように算出されるradiomic scores(rad-scores)の中央値を用いて、肺がん患者を2群に分けた。なお、図8(b)、(c)に示す結果に対応する手法についても同様の方法を用いて肺がん患者を2群に分けた。また、図8(d)に示す結果に対応する手法については、深層学習を行う際に利用した特徴量を利用して患者を2群に分けた。
図8(a)~図8(d)では、2群それぞれの患者について、経過年に対する生存率をプロットしている。各図では、2群のうち、生存年が長くなった患者群をLowとし、生存年が短くなった患者群をHighとしている。また、各図では、p値を示している。p値は、2群の分離度合いを示す値であって、値が小さいほど2群が精度良く分離されていることを示している。具体的には、図8(a)に示す結果に係るp値は1.5×10-3であり、図8(b)に示す結果に係るp値は0.31であり、図8(c)に示す結果に係るp値は2.9×10-3であり、図8(d)に示す結果に係るp値は0.079であった。
図8(a)~図8(d)に示すように、本実施形態で説明したベッチマップを利用して算出した特徴量による2つのがん患者群は、他の手法に基づいて分けられた2つのがん患者群よりも経過年に対する生存率という点で精度よく分離できていることが示されている。すなわち、本実施形態で説明した手法で算出される特徴量及びこの特徴量に基づくradiomic scores(rad-scores)は、予後の推定に対して有用であるといえる。
画像解析部12の特徴量算出部23では、ベッチマップ画像を用いて特徴量を算出するだけでなく、当該画像の元となるCT画像を撮像したがん患者がHigh群またはLow群のいずれに属するかを判定するような処理を行ってもよい。
なお、上記の7つの特徴量に対して重み係数を反映してradiomic scores(rad-scores)を算出する方法は、上記の特徴量(radiomic features)が予後の推定に関して有用であるかを評価する際に用いた手法の一例である。すなわち、実際に予後が不明ながん患者について予後を推定する場合には、上記とは異なる手法を用いてもよい。すなわち、ベッチマップ画像に基づいた特徴量を算出した後、上記とは異なる方法(例えば、特徴量に関する何らかの計算を行う等)で特徴量に基づいてがん患者の予後を推定してもよい。
図2に戻り、予後推定装置1の出力部14では、推定結果を出力する(ステップS06)。出力する結果とは、予後の推定時に利用した特徴量自体であってもよいし、上記の図8等で示したように、がん患者を2群に分けた場合にどちらに属するかを特定する情報であってもよい。
上記のように、本実施形態に係る予後推定装置及び予後推定方法によれば、分析対象の肺がん組織を撮像した対象画像について、閾値に基づく閾値処理を行った画像を準備し、当該画像について、所定の関心領域毎に組織の穴及び連結部分の数をそれぞれカウントすることにより、ベッチマップを作成し、このベッチマップに基づいて予後に関連する特徴量が算出される。このようにがん組織の穴及び連結部分に係るベッチマップを作成した上で予後に関連する特徴量を算出する構成とすることで、肺がんの予後を精度よく推定することが可能となる。
従来から、肺がん組織を撮像した画像(特に、CT画像)から予後を推定する方法は検討されている。また、肺がんの場合、従来から肺がん組織に形成された穴と患者の予後に相関がある可能性が指摘されていた。したがって、予後の推定に適した特徴量を算出できれば、予後の推定を精度良く行うことができると考えられていた。しかしながら、従来から行われた方法では、撮像した画像から予後の推定に対応すると考えられる特徴量を算出することができるものの、推定精度の向上が望まれていた。
これに対して、本実施形態に係る予後推定装置及び予後推定方法では、組織の穴及び連結部分の数に着目したベッチマップを作成している。このベッチマップに用いられるベッチ数とは、位相幾何学における位相空間に対する不変量であり、これを利用することで、肺がん組織の画像に含まれる組織の穴及び連結部分に係る不変量を利用した特徴量の算出が可能となる。したがって、従来の手法(例えば、ベッチマップを利用しない方法)と比較して、予後の推定に係る精度の高い特徴量を算出することができる。したがって、予後の推定を精度よく行うことが可能となる。
また、上記の予後推定装置1では、1の対象画像から閾値を変更した複数種類の閾値処理を行った画像を準備し、複数のベッチマップを作成した上で特徴量を算出する構成とされている。このような構成とすることで、分析対象の肺がん組織に含まれる種々の穴等に係る情報を反映したベッチマップを作成することができると共に、これらの情報を考慮して予後に関連する特徴量を算出することができる。したがって、肺がんの予後をより精度よく推定することが可能となる。
なお、上記実施形態では、8ビットのグレースケール画像における256段階全てを利用して、256種類の閾値処理を行った画像を作成しているが、この数を変更したとしても予後の推定精度を高くすることができると考えられる。例えば、光の強度が0~255である256段階全てではなく、1,3,5,7・・・というように一部の光の強度のみを閾値として用いて複数種類の閾値処理を行った画像を作成してもよい。この場合、複数種類の画像の閾値は、特定の光の強度範囲に集中して選択してもよいし、ある程度分散させて選択してもよい。
また、ベッチマップの作成に使用する閾値処理を行った画像は1種類であってもよい。すなわち、1つの二値化画像のみを用いてベッチマップを作成して特徴量を算出してもよい。
また、上記の予後推定装置1では、特徴量算出部23において、予後の予測に係る数理モデル(CPHM)に対して所定のアルゴリズム(Cox-netアルゴリズム)を複数回適用することで、予後に関連する特徴量を選択している。数理モデルに対して所定のアルゴリズムを適用して特徴量を選択する際に、これを複数回適用して特徴量を選択することにより、特徴量の選択をより精度良く行うことができるため、肺がんの予後をより精度よく推定することが可能となる。なお、上記の実施形態では、CPHMに対してCox-netアルゴリズムを複数回適用する場合について説明したが、数理モデル及びアルゴリズムは、上記で説明したものに限定されない。すなわち、予後の予測に係る数理モデルであれば、CPHM以外の数理モデルを利用してもよい。また、数理モデルの選択に対応させて生存時間の分析に係るアルゴリズムから適切なアルゴズムを選択して組み合わせる構成としてもよい。
本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。
例えば、上記実施形態では、患者の肺がん組織を撮像した画像(対象画像)がCT画像である場合について説明したが、画像の種類は限定されない。
また、ベッチマップを作成する際の分割する領域の大きさ(画素数等)は、画像の大きさ及び細かさ等を考慮して適宜変更してもよい。また、ベッチマップの作成方法は上記に限定されない。
また、1の患者について1の画像を用いて特徴量を算出する構成について説明したが、例えば、複数の画像を用いて特徴量を算出する構成としてもよい。
また、予後推定装置1は、少なくとも予後の推定に関連する特徴量を算出する機能を有していればよい。すなわち、予後推定装置1とは異なる装置で、特徴量から具体的な予後を算出する処理等を行ってもよい。
1…予後推定装置、11…画像取得部、12…画像解析部、13…記憶部、14…出力部、21…閾値処理部、22…ベッチマップ作成部、23…特徴量算出部。

Claims (4)

  1. 分析対象の肺がん組織を撮像した対象画像について、所定の閾値を用いて閾値処理を行った画像を準備する閾値処理部と、
    閾値処理後の画像について、所定の個別関心領域毎に組織の穴及び連結部分の数をそれぞれカウントすることにより、ベッチマップを作成するベッチマップ作成部と、
    前記ベッチマップから、予後に関連する特徴量を算出する、特徴量算出部と、
    を有する、予後推定装置。
  2. 前記閾値処理部において、1の前記対象画像から、閾値を変更した複数種類の閾値処理を行った画像を準備し、
    前記ベッチマップ作成部において、前記複数種類の閾値処理を行った画像から、複数の前記ベッチマップを作成し、
    前記特徴量算出部において、前記複数のベッチマップに基づいて特徴量を算出する、請求項1に記載の予後推定装置。
  3. 前記特徴量算出部において、予後の予測に係る数理モデルに対して所定のアルゴリズムを複数回適用することで、予後に関連する特徴量を選択する、請求項2に記載の予後推定装置。
  4. 分析対象の肺がん組織を撮像した対象画像について、所定の閾値を用いて閾値処理を行った画像を準備する画像準備ステップと、
    閾値処理後の画像について、所定の個別関心領域毎に組織の穴及び連結部分の数をそれぞれカウントすることにより、ベッチマップを作成するベッチマップ作成ステップと、
    前記ベッチマップから、予後に関連する特徴量を算出する、特徴量算出ステップと、
    を含む、予後推定方法。
JP2019100198A 2019-05-29 2019-05-29 予後推定装置及び予後推定方法 Pending JP2022133479A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019100198A JP2022133479A (ja) 2019-05-29 2019-05-29 予後推定装置及び予後推定方法
PCT/JP2020/018346 WO2020241178A1 (ja) 2019-05-29 2020-04-30 肺がん評価装置及び肺がん評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019100198A JP2022133479A (ja) 2019-05-29 2019-05-29 予後推定装置及び予後推定方法

Publications (1)

Publication Number Publication Date
JP2022133479A true JP2022133479A (ja) 2022-09-14

Family

ID=73552938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019100198A Pending JP2022133479A (ja) 2019-05-29 2019-05-29 予後推定装置及び予後推定方法

Country Status (2)

Country Link
JP (1) JP2022133479A (ja)
WO (1) WO2020241178A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112205A1 (ja) * 2019-12-05 2021-06-10 国立大学法人大阪大学 画像解析方法、画像解析装置、画像解析システム、制御プログラム、記録媒体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5522481B2 (ja) * 2009-01-27 2014-06-18 国立大学法人大阪大学 画像解析装置、画像解析方法、画像解析プログラムおよび記録媒体
JP6483826B2 (ja) * 2015-07-15 2019-03-13 国立大学法人大阪大学 画像解析装置、画像解析方法、画像解析システム、画像解析プログラム、および記録媒体
JP7264486B2 (ja) * 2017-11-24 2023-04-25 国立大学法人大阪大学 画像解析方法、画像解析装置、画像解析システム、画像解析プログラム、記録媒体

Also Published As

Publication number Publication date
WO2020241178A1 (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
US11403750B2 (en) Localization and classification of abnormalities in medical images
US10441225B2 (en) Predicting disease recurrence following trimodality therapy in non-small cell lung cancer using computed tomography derived radiomic features and clinico-pathologic features
JP4999163B2 (ja) 画像処理方法および装置ならびにプログラム
JP6168426B2 (ja) 疾患分析装置、制御方法、及びプログラム
KR20180022607A (ko) 다양한 측정으로부터의 의료 측정 데이터에 기초한 결과 데이터의 결정
CN112529834A (zh) 病理图像模式在3d图像数据中的空间分布
CN112861961B (zh) 肺血管分类方法及装置、存储介质及电子设备
EP3836157B1 (en) Method for obtaining disease-related clinical information
Montaha et al. A shallow deep learning approach to classify skin cancer using down-scaling method to minimize time and space complexity
TWI587844B (zh) 醫療影像處理裝置及其乳房影像處理方法
JPWO2014192187A1 (ja) 乳房画像病変検出システム、乳房画像病変検出方法、乳房画像病変検出プログラムおよび乳房画像病変検出プログラムを記録したコンピュータ読み取り可能な記録媒体
CN114332132A (zh) 图像分割方法、装置和计算机设备
JP5961512B2 (ja) 画像処理装置およびその作動方法並びに画像処理プログラム
JP2022133479A (ja) 予後推定装置及び予後推定方法
CN115631387B (zh) 基于图卷积神经网络的肺癌病理高危因素预测方法和装置
JP2017189394A (ja) 情報処理装置および情報処理システム
WO2021197176A1 (en) Systems and methods for tumor characterization
Upadhyay et al. Classification of benign-malignant pulmonary lung nodules using ensemble learning classifiers
WO2020067481A1 (ja) 画像解析装置、画像解析システム、画像解析方法、コンピュータプログラム及び非一時的記録媒体
Radhika et al. Skin Melanoma Classification from Dermoscopy Images using ANU-Net Technique
Maduskar et al. Cavity contour segmentation in chest radiographs using supervised learning and dynamic programming
Sánchez et al. Artificial intelligence model for the prediction of malignant tumors using a set of medical images from mammography studies
KR102505539B1 (ko) 간 분할 정보 제공 방법 및 이를 이용한 간 분할에 대한 정보 제공용 장치
Mahbod Towards Improvement of Automated Segmentation and Classification of Tissues and Nuclei in Microscopic Images Using Deep Learning Approaches
Hapase Melanoma detection in dermoscopy images using a cloud based machine learning application