WO2020067248A1 - Nitride-based nonmagnetic ceramic molding having roughened structure on the surface thereof, and method for producing same - Google Patents

Nitride-based nonmagnetic ceramic molding having roughened structure on the surface thereof, and method for producing same Download PDF

Info

Publication number
WO2020067248A1
WO2020067248A1 PCT/JP2019/037771 JP2019037771W WO2020067248A1 WO 2020067248 A1 WO2020067248 A1 WO 2020067248A1 JP 2019037771 W JP2019037771 W JP 2019037771W WO 2020067248 A1 WO2020067248 A1 WO 2020067248A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
ceramic molded
magnetic ceramic
carbide
laser
Prior art date
Application number
PCT/JP2019/037771
Other languages
French (fr)
Japanese (ja)
Inventor
清水 潔
雅彦 板倉
法寿 和田
孝之 宇野
Original Assignee
ダイセルポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセルポリマー株式会社 filed Critical ダイセルポリマー株式会社
Priority to JP2020501408A priority Critical patent/JP6928741B2/en
Publication of WO2020067248A1 publication Critical patent/WO2020067248A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/91After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching

Definitions

  • the present invention relates to a carbide-based non-magnetic ceramics molded body having a surface roughened structure and a method for producing the same.
  • Non-magnetic ceramics are widely used in various molded products as daily necessities such as tableware, cups, vases, and engineering ceramics, and it is known to perform a process of forming irregularities on the surface according to the application to which they are applied.
  • JP-A-2002-308683 discloses a ceramic member having a concave-convex structure formed with an acidic etching solution.
  • Japanese Patent No. 6032903 describes an invention of a firing setter having a specific uneven structure (claims), and as a material of the firing setter, zirconia, alumina, magnesia, spinel, cordierite, etc. (Paragraph number 0013).
  • WO2011 / 121808 @ A1 includes a base made of metal or ceramic, an impregnated layer provided by forming a concave portion on the sliding side surface of the base, and an impregnated layer impregnated with the base.
  • Examples of the mechanical processing include laser processing and wire cut processing (paragraph number 0014), but there is no description of specific processing conditions, and in the examples, it is described that steel was wire cut. There is no specific description about ceramics.
  • Japanese Patent Application Laid-Open No. 2015-109966 discloses a method for manufacturing a medical device material in which a specific portion of a medical device material containing tetragonal zirconia is coated with calcium phosphate, and the specific portion is irradiated with an ultrashort pulse laser.
  • a method for manufacturing a medical device material comprising: a first step of forming irregularities on the surface by a step; and a second step of depositing or depositing calcium phosphate fine particles smaller than the period of the irregularities on the specific portion. (Claims).
  • Japanese Patent No. 6111102 discloses that a laser beam having a wavelength of 300 to 1500 nm is applied to a portion of a planar shape substantially identical to a circuit pattern on at least one surface of a ceramic substrate containing AlN or Al 2 O 3 as a main component.
  • An aluminum film is formed on a portion of the ceramic substrate having a planar shape substantially the same as the circuit pattern on at least one surface, and a copper plate is disposed on the aluminum film to have a temperature not lower than the eutectic point of aluminum and copper and not higher than 650 ° C.
  • a method of manufacturing a metal-ceramic bonding substrate, characterized by bonding a copper plate to a ceramic substrate via an aluminum film by heating at a temperature, is disclosed.
  • Japanese Patent Application Laid-Open No. 2003-171190 discloses that the surface of a substrate made of dense ceramic having a purity of 95% or more is formed with first rounded irregularities having a surface roughness Ra of 3 to 40 ⁇ m, and the first There is disclosed a ceramic member in which the surface of the unevenness is formed as a second rounded unevenness having a surface roughness Ra of 0.1 to 2.9 ⁇ m. It is shown that the second unevenness covers the entire surface of the first unevenness.
  • JP-A-2003-137677 and JP-A-2004-66299 disclose a technique for forming irregularities by laser processing the surface of a ceramic body.
  • Japanese Patent Nos. 5,774,246 and 5,701,414 disclose an invention in which a continuous wave laser is used to continuously irradiate a laser beam at an irradiation speed of 2,000 mm / sec or more to roughen the surface of a metal molded body. Discloses a method of manufacturing a composite molded article of a metal molded article and a resin molded article, but does not disclose ceramics.
  • One aspect of the present invention is to provide a non-magnetic ceramic molded body having a roughened structure on its surface and a method for producing the same.
  • the present invention in one embodiment thereof, is a non-magnetic ceramic molded body having a surface roughened structure,
  • the roughened structure has irregularities, and the cross-sectional shape in the thickness direction of the irregularities is a curved surface when observed by a scanning electron microscope photograph (200 times or more), and the curved surface of the convex portion has a length. Wrinkle-like projections formed along the direction, or the curved surface of the convex portion has a plurality of independent holes formed linearly along the length direction,
  • a non-magnetic ceramic molded body having a roughened structure on its surface wherein the non-magnetic ceramic molded body is a carbide-based non-magnetic ceramic molded body.
  • the present invention provides a method for producing such a nonmagnetic ceramic molded body.
  • the non-magnetic ceramic molded product according to the embodiment of the present invention has a roughened structure on the surface, and can be used as an intermediate for producing a composite molded product with another material. Therefore, in another aspect, the present invention is also directed to a method for producing such a composite molded article, and a composite molded article.
  • the surface of the originally hard and brittle carbide-based nonmagnetic ceramic molded body can be roughened without being separated into two or more by cracking.
  • the figure which shows the irradiation state of the laser beam of one Embodiment when implementing the 2nd manufacturing method by one example of this invention is a figure which shows the irradiation pattern of the laser beam when implementing the 2nd manufacturing method by one example of this invention, (a) is an irradiation pattern of the same direction, (b) is a bidirectional irradiation pattern.
  • (A) is an SEM photograph (magnification: 200) of the roughened structure portion (plan view) of the silicon carbide molded body of Example 1
  • (b) is a cross-sectional SEM photograph (magnification: 200) of (a) in the thickness direction. is there.
  • FIG. 3 is a perspective view of a carbide-based ceramics molded body manufactured in the example, and a perspective view for describing a test of bonding strength using a composite molded body of a carbide-based ceramics molded body and a resin molded body.
  • the non-magnetic ceramic molded body having a roughened structure on its surface contains a carbide-based non-magnetic ceramic.
  • the carbide-based non-magnetic ceramic molded body may be a molded body containing a carbide-based non-magnetic ceramic such as silicon carbide, titanium carbide, tungsten carbide, and boron carbide. Good.
  • the silicon carbide may be composed of a composite of silicon carbide and other non-magnetic ceramics, metals, and metalloids, as long as it is within a range satisfying a predetermined thermal shock temperature, in addition to being composed of silicon carbide alone.
  • the composite of silicon carbide and a metal may be a porous silicon carbide molded body in which a metal (for example, aluminum) or a metalloid (for example, silicon) is impregnated in the porous interior.
  • the content ratio of silicon carbide in the composite is 50% by mass or more in a preferred embodiment of the present invention, 60% by mass or more in another preferred embodiment of the present invention, and 70% by mass in another preferred embodiment of the present invention. % By mass or more.
  • the predetermined thermal shock temperature (JIS R1648: 2002) is in the range of 400 to 500 ° C. in one preferred embodiment of the present invention, and is in the range of 420 to 480 ° C. in another preferred embodiment of the present invention.
  • the non-magnetic ceramic molded body containing silicon carbide has a thickness of 0.5 mm or more in a preferred embodiment of the present invention, and has a thickness of 0.5 mm or more in another preferred embodiment of the present invention, in order to prevent cracking during processing. Is 1.0 mm or more.
  • the term “crack” in the present invention means that a part of the molded body is broken and divided into two or more, and does not include “crack”.
  • “cracking” also includes a case where it does not crack during processing by laser beam irradiation, but has a remarkably reduced strength and is divided into two or more during subsequent movement and processing.
  • the non-magnetic ceramic molded body having a roughened structure on its surface has a roughened structure having irregularities, and a scanning electron micrograph (200 times or more).
  • the cross-sectional shape in the thickness direction of the unevenness has a curved surface when observed by (1).
  • the cross-sectional shape of the unevenness in the thickness direction may include a partial circular shape or a partial elliptical shape.
  • the partial circular shape is a shape including a part of a circle such as a semicircular shape and a 1/3 circular shape.
  • the partial elliptical shape is a shape including a part of an ellipse such as a semi-elliptical shape and a 1/3 elliptical shape.
  • the non-magnetic ceramic molded body having a roughened structure on its surface according to the present invention may be one in which the irregularities are formed by alternately forming linear projections and linear depressions, and the projections have a curved surface. May be formed, or a plurality of independent holes in which a curved surface of the convex portion is linearly formed along the length direction.
  • the wrinkle-shaped protrusion is a portion slightly protruding outward from a surface having no wrinkle-shaped protrusion.
  • the wrinkle-like projection may be formed continuously in the length direction, for example, but may have a discontinuous portion.
  • the plurality of independent holes formed linearly has a form in which many independent holes are linearly arranged.
  • the wrinkle-like projections and / or the plurality of linearly formed independent holes have a width of 1 to 10 ⁇ m when the width of each of the linear protrusions and the linear recesses is 20 to 100 ⁇ m. May be something.
  • the surface (curved surface) of the convex portion is formed with a plurality of wrinkled protrusions and / or a plurality of independent holes formed linearly along the length direction and the surface area is increased, for example, non-magnetic ceramics
  • the joining area is increased and the joining strength is increased.
  • the recesses of the unevenness of the roughened structure are formed in an island shape and are formed by removing the recesses.
  • the convex portion has a plurality of independent holes in which wrinkle-like protrusions along the length direction and / or curved surfaces of the convex portions are linearly formed along the length direction. Is formed.
  • the wrinkle-shaped protrusion is a portion slightly protruding outward from a surface having no wrinkle-shaped protrusion.
  • the wrinkle-like projection may be formed continuously in the length direction, for example, but may have a discontinuous portion.
  • the plurality of independent holes formed linearly has a form in which many independent holes are linearly arranged.
  • the wrinkle-like projections and / or the plurality of linearly formed independent holes have a width of 1 to 10 ⁇ m when the width of each of the linear protrusions and the linear recesses is 20 to 100 ⁇ m. May be something.
  • a plurality of independent holes are formed on the surface (curved surface) of the convex portion along the length direction and / or a plurality of independent holes in which the curved surface of the convex portion is linearly formed along the length direction. If, for example, the non-magnetic ceramic molded body and another member (for example, a resin molded body) are joined together, it is considered that the joining area is increased and the joining strength is increased.
  • the surface roughness (Ra) of the unevenness is in a range of 2 to 100 ⁇ m in a preferred embodiment of the present invention, and another preferred embodiment of the present invention.
  • the thickness is in the range of 5 to 80 ⁇ m.
  • the height difference (Rz) between the convex portion and the concave portion of the unevenness is in the range of 10 to 200 ⁇ m in a preferred embodiment of the present invention.
  • the thickness is in the range of 20 to 150 ⁇ m, and in still another preferred embodiment of the present invention, the thickness is in the range of 20 to 100 ⁇ m.
  • Sa (arithmetic average height), Sz (maximum height), and Str (surface texture) of the roughened structure portion (irregularities).
  • Sz maximum height
  • Str surface texture of the roughened structure portion (irregularities). Aspect ratio) may be in the following range.
  • Sa (arithmetic mean height) is 2 to 100 ⁇ m in a preferred embodiment of the present invention, 5 to 80 ⁇ m in another preferred embodiment of the present invention, and 10 to 50 ⁇ m in still another preferred embodiment of the present invention. It is.
  • Sz (maximum height) is 10 to 300 ⁇ m in one preferred embodiment of the present invention, 20 to 200 ⁇ m in another preferred embodiment of the present invention, and 20 to 150 ⁇ m in still another preferred embodiment of the present invention. is there.
  • Sdr interface area development ratio
  • the surface roughness (Ra) of the projections of the irregularities is in the range of 1 to 10 ⁇ m in a preferred embodiment of the present invention, and is in the range of 1.5 to 8 ⁇ m in another preferred embodiment of the present invention. In still another preferred embodiment, the thickness is in the range of 2 to 8 ⁇ m.
  • the height difference (Rz) between the convex portion and the concave portion of the unevenness is in a range of 5 to 50 ⁇ m in a preferred embodiment of the present invention, and in a range of 8 to 40 ⁇ m in another preferred embodiment of the present invention.
  • the thickness is in the range of 10 to 30 ⁇ m.
  • Sa (arithmetic average height), Sz (maximum height), and Str (surface aspect ratio) of the roughened structure portion (irregularities) may be in the following ranges.
  • Sa (arithmetic mean height) is 1 to 10 ⁇ m in a preferred embodiment of the present invention, 1.5 to 8 ⁇ m in another preferred embodiment of the present invention, and 2 in still another preferred embodiment of the present invention. ⁇ 8 ⁇ m.
  • Sz (maximum height) is 8 to 40 ⁇ m in one preferred embodiment of the present invention, 10 to 30 ⁇ m in another preferred embodiment of the present invention, and 100 to 180 ⁇ m in still another preferred embodiment of the present invention. is there.
  • Sdr interface development area ratio
  • the non-magnetic ceramic molded body can be used as a carrier capable of holding a liquid, a powder, and the like on the roughened structure portion, and can be made of another material (a carbide-based non-magnetic material). It can also be used as a production intermediate for producing a composite molded body with a molded body made of a material excluding magnetic ceramics).
  • the non-magnetic ceramic molded body according to one embodiment of the present invention is characterized in that the surface of the carbide-based non-magnetic ceramic molded body is continuously irradiated with a laser beam at an irradiation speed of 5,000 mm / sec or more using a continuous wave laser. It can be manufactured by irradiation.
  • carbide-based nonmagnetic ceramic molded body used in the production method according to one embodiment of the present invention are not particularly limited, and are selected according to the application and adjusted as necessary. Is what is done.
  • carbide-based non-magnetic ceramic molded bodies include flat plates, round bars, square bars (bars with a polygonal cross section), tubes, cups, cubes, cuboids, spheres or partial spheres (such as hemispheres), and elliptical spheres
  • an existing nonmagnetic ceramic product can be used.
  • the existing carbide-based non-magnetic ceramics products include, in addition to those composed of only carbide-based non-magnetic ceramics, composites of carbide-based non-magnetic ceramics and other materials (metal, resin, rubber, glass, wood, etc.). It may be.
  • a continuous wave laser when used to continuously irradiate the surface of a carbide-based non-magnetic ceramic molded body with a laser beam at an irradiation speed of 5,000 mm / sec or more,
  • the laser beam can be continuously irradiated so that a plurality of lines composed of straight lines, curves, and combinations thereof are formed in different directions.
  • the laser beam when continuously irradiating the surface of the carbide-based nonmagnetic ceramic molded body with a continuous wave laser at an irradiation speed of 5,000 mm / sec or more, the laser beam is irradiated in the same direction.
  • continuously irradiate laser light so as to form a plurality of lines composed of straight lines, curves and combinations thereof in different directions, and form one straight line or one curved line by continuously irradiating laser light a plurality of times. can do.
  • the laser beam when continuously irradiating the surface of the carbide-based nonmagnetic ceramic molded body with a continuous wave laser at an irradiation speed of 5,000 mm / sec or more, the laser beam is irradiated in the same direction.
  • a laser beam is continuously irradiated so that a plurality of lines composed of straight lines, curves and combinations thereof are formed in different directions, and the plurality of straight lines or the plurality of curves are spaced at equal intervals or different intervals.
  • Laser light can be continuously applied so as to be formed.
  • the irradiation speed of the laser beam may be 5,000 mm / sec or more in order to roughen the carbide-based nonmagnetic ceramic molded body.
  • the irradiation speed is 5,000 to 20,000 mm / sec. Yes, in another preferred embodiment of the present invention, it is 5,000 to 10,000 mm / sec. If the irradiation speed of the laser beam is less than 5,000 mm / sec, it is difficult to form a roughened structure on the surface of the non-magnetic ceramic molded body.
  • the power of the laser is 50 to 4,000 W in a preferred embodiment of the present invention, 100 to 2,000 W in another preferred embodiment of the present invention, and 100 to 2,000 W in still another preferred embodiment of the present invention.
  • 5,000W Adjust the surface roughening state by decreasing the laser light output when the laser light irradiation speed is low within the above range and increasing it when the laser light irradiation speed is high within the above range. Can be.
  • the irradiation speed of the laser beam is 5,000 to 7,500 mm / sec.
  • the irradiation speed of the laser beam may be 7,500 to 10,000 mm / sec.
  • the spot diameter of the laser beam is 10 to 100 ⁇ m in one preferred embodiment of the present invention, and 10 to 75 ⁇ m in another preferred embodiment of the present invention.
  • the energy density at the time of laser beam irradiation is 3 to 1500 MW / cm 2 in a preferred embodiment of the present invention, and 5 to 700 MW / cm 2 in another preferred embodiment of the present invention.
  • the energy density at the time of laser beam irradiation is calculated by the following formula from the output (W) of the laser beam and the laser beam (spot area (cm 2 ) ( ⁇ ⁇ [spot diameter / 2] 2 ): laser beam output / spot area. Desired.
  • the number of repetitions (the number of passes) at the time of laser beam irradiation is 1 to 30 times in a preferred embodiment of the present invention, 3 to 25 times in another preferred embodiment of the present invention, and 5 in still another preferred embodiment of the present invention. ⁇ 20 times.
  • the number of repetitions at the time of laser light irradiation is the total number of times of irradiation for forming one line (groove) when laser light is irradiated linearly.
  • bidirectional irradiation and unidirectional irradiation can be selected.
  • bidirectional radiation irradiates a continuous wave laser from the first end to the second end of the line (groove) and then from the second end to the first end.
  • One-way irradiation is a method of repeating one-way continuous-wave laser irradiation from a first end to a second end.
  • the interval (line interval or pitch interval) between the intermediate positions of the widths of the adjacent irradiation lines (grooves formed by the adjacent irradiation) is set to 0.1 in a preferred embodiment of the present invention.
  • the line intervals may be the same or different.
  • the above-mentioned line Cross irradiation in which bidirectional irradiation or unidirectional irradiation is performed at intervals may be performed.
  • the wavelength of the laser beam is 300 to 1200 nm in one preferred embodiment of the present invention, and 500 to 1200 nm in another preferred embodiment of the present invention.
  • the defocusing distance when irradiating the laser beam is -5 to +5 mm in a preferred embodiment of the present invention, and -1 to +1 mm in another preferred embodiment of the present invention. In the embodiment, it is -0.5 to +0.1 mm.
  • laser irradiation may be performed with the set value kept constant, or laser irradiation may be performed while changing the defocusing distance. For example, at the time of laser irradiation, the defocus distance may be gradually reduced, or may be periodically increased or decreased.
  • a known continuous wave laser can be used, for example, a YVO4 laser, a fiber laser (preferably a single mode fiber laser), an excimer laser, a carbon dioxide laser, an ultraviolet laser, a YAG laser, a semiconductor laser, a glass laser, and ruby.
  • Lasers, He-Ne lasers, nitrogen lasers, chelate lasers, and dye lasers can be used.
  • a fiber laser is preferable, and a single mode fiber laser is particularly preferable, because the energy density is increased.
  • the second method for producing a carbide-based non-magnetic ceramic molded body having a roughened structure on the surface is different from the above-mentioned first method in the irradiation form of laser light. Others are the same.
  • a laser beam is applied to the surface of the carbide-based non-magnetic ceramic molded body at an irradiation speed of 5,000 mm / sec or more using a continuous wave laser in the same manner as in the first manufacturing method.
  • the irradiation is performed so that the irradiated part and the non-irradiated part of the laser light alternately occur.
  • the laser beam when irradiating a laser beam so as to form a straight line, a curve, or a combination of a straight line and a curve, the laser beam is irradiated so that a portion irradiated with the laser beam and a non-irradiated portion alternate.
  • Irradiation such that laser light irradiation parts and non-irradiation parts are generated alternately includes the embodiment of irradiation as shown in FIG. FIG.
  • a non-irradiated portion 12 of a laser beam having a length L2 is alternately generated between an irradiated portion 11 of a laser beam having a length L1 and an adjacent irradiated portion 11 of a laser beam having a length L1.
  • An irradiation state is shown so as to form a dotted line.
  • the dotted line also includes a chain line such as a one-dot chain line or a two-dot chain line.
  • the laser light irradiation part When irradiating a plurality of times, the laser light irradiation part may be the same, or the laser light irradiation part may be different (the laser light irradiation part is shifted), so that the whole non-magnetic ceramics molded body of the carbide system is formed. May be roughened.
  • the laser beam When the laser beam is irradiated multiple times with the same part irradiated, the laser beam is irradiated in a dotted line, but the laser light irradiated part is shifted, that is, the laser light is first irradiated to the part that was not irradiated with the laser light.
  • the number of repetitions can be 1 to 20 times.
  • the method of irradiating the laser beam is, for example, a method of irradiating the surface of the metal molded body 20 in one direction as shown in FIG. 2A, or a method of irradiating bidirectionally as shown by a dotted line in FIG.
  • the method can be used.
  • a method of irradiating the laser beam so that the dotted lines irradiate with each other may be used.
  • the interval b1 between the dotted lines after the irradiation can be adjusted according to the irradiation target area of the metal molded body or the like, but can be in the same range as the line interval in the first manufacturing method.
  • the length (L1) of the irradiated portion 11 of the laser beam is 0.05 mm or more in a preferred embodiment of the present invention in order to roughen the surface into a complicated porous structure, and is 0 in another preferred embodiment of the present invention. 0.1 to 10 mm, and in still another preferred embodiment of the present invention 0.3 to 7 mm.
  • the laser light irradiation step described above is a fiber laser apparatus in which a direct modulation type modulator for directly converting a drive current of a laser is connected to a laser power supply. Is used to adjust the duty ratio (duty ratio) to perform laser irradiation.
  • a pulse wave laser by pulse excitation is generally called a normal pulse.
  • a pulse wave laser can be produced even with continuous excitation, and a pulse width (pulse ON time) is made shorter than a normal pulse, and a Q switch pulse oscillation method for oscillating a laser having a higher peak power is used.
  • a pulse wave laser can be produced by a direct modulation method in which a pulse wave laser is generated by directly modulating a pulse wave laser.
  • the method of pulsing by operating the galvanomirror is a method of irradiating a laser beam oscillated from a laser oscillator via a galvanomirror by a combination of a galvanomirror and a galvanomirror, specifically, as follows. Can be implemented.
  • a gate signal is periodically output ON / OFF from a galvano controller, and the laser light oscillated by a laser oscillator is turned ON / OFF by the ON / OFF signal, thereby pulsating the laser light without changing the energy density of the laser light. be able to.
  • the laser light irradiation portions 11 and the non-laser light non-irradiation portions 12 between the adjacent laser light irradiation portions 11 are alternately formed, and are formed in a dotted line as a whole. Can be irradiated with laser light.
  • the method of pulsing by operating the galvanometer mirror is simple in operation because the duty ratio can be adjusted without changing the oscillation state of the laser light itself.
  • a method of pulsing by chopping, a method of pulsing by operating a galvanomirror, and a direct modulation method of directly modulating a driving current of a laser to generate a pulse wave laser may be used.
  • a fiber laser device in which a direct modulation type modulation device that directly converts the driving current of the laser is connected to a laser power supply the laser is continuously excited to generate a pulsed laser. May be produced.
  • the duty ratio is a ratio obtained from the ON time and the OFF time of the output of the laser light by the following equation.
  • Duty ratio (%) ON time / (ON time + OFF time) ⁇ 100 Since the duty ratio corresponds to L1 and L2 (that is, L1 / [L1 + L2]) shown in FIG. 1, the duty ratio can be selected, for example, from the range of 10 to 90%. By adjusting the duty ratio and irradiating the laser light, it is possible to irradiate in a dotted line as shown in FIG.
  • a method for producing a composite molded article of a carbide-based nonmagnetic ceramic molded article having a roughened structure and a resin molded article In the first step, the surface is formed by the above-described first production method or second production method. A non-magnetic ceramic molded body having a roughened structure is manufactured.
  • a portion including the roughened structure of the carbide-based nonmagnetic ceramics molded body having a roughened structure on the surface obtained in the first step is arranged in a mold to form the resin molded body.
  • Compression molding is performed in a state where the portion including the structure and the resin to be the resin molded body are in contact with each other.
  • the resin used in the second step includes thermoplastic elastomers in addition to thermoplastic resins and thermosetting resins.
  • the thermoplastic resin can be appropriately selected from known thermoplastic resins depending on the application.
  • copolymers containing styrene units such as polyamide resins (aliphatic polyamides and aromatic polyamides such as PA6 and PA66), polystyrene, ABS resins, AS resins, etc., polyethylene, copolymers containing ethylene units, polypropylene, propylene
  • Examples include copolymers containing units, other polyolefins, polyvinyl chloride, polyvinylidene chloride, polycarbonate resins, acrylic resins, methacrylic resins, polyester resins, polyacetal resins, and polyphenylene sulfide resins.
  • thermosetting resin can be appropriately selected from known thermosetting resins depending on the application. For example, urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, polyurethane, and vinyl urethane can be mentioned.
  • a thermosetting resin a prepolymer form can be used, and a heat curing treatment can be performed in a later step.
  • thermoplastic elastomer can be appropriately selected from known thermoplastic elastomers depending on the application. For example, styrene elastomers, vinyl chloride elastomers, olefin elastomers, urethane elastomers, polyester elastomers, nitrile elastomers, and polyamide elastomers can be used.
  • a known fibrous filler can be blended with these thermoplastic resins, thermosetting resins, and thermoplastic elastomers.
  • Known fibrous fillers include carbon fibers, inorganic fibers, metal fibers, and organic fibers.
  • the carbon fibers are well-known, and PAN-based, pitch-based, rayon-based, and lignin-based carbon fibers can be used.
  • the inorganic fibers include glass fibers, basalt fibers, silica fibers, silica / alumina fibers, zirconia fibers, boron nitride fibers, and silicon nitride fibers.
  • the metal fibers include fibers made of stainless steel, aluminum, copper, and the like.
  • polyamide fibers whole aromatic polyamide fibers, semi-aromatic polyamide fibers in which one of diamine and dicarboxylic acid is an aromatic compound, aliphatic polyamide fibers), polyvinyl alcohol fibers, acrylic fibers, polyolefin fibers, Synthetic fiber such as polyoxymethylene fiber, polytetrafluoroethylene fiber, polyester fiber (including wholly aromatic polyester fiber), polyphenylene sulfide fiber, polyimide fiber, liquid crystal polyester fiber, natural fiber (cellulose fiber, etc.) and regenerated cellulose ( Rayon) fiber or the like can be used.
  • synthetic fiber such as polyoxymethylene fiber, polytetrafluoroethylene fiber, polyester fiber (including wholly aromatic polyester fiber), polyphenylene sulfide fiber, polyimide fiber, liquid crystal polyester fiber, natural fiber (cellulose fiber, etc.) and regenerated cellulose ( Rayon) fiber or the like can be used.
  • these fibrous fillers those having a fiber diameter in the range of 3 to 60 ⁇ m can be used. Among them, for example, open holes formed by roughening the bonding surface 12 of the metal molded body 10 are described. A fiber having a fiber diameter smaller than the opening diameter, such as 30, can be used. The fiber diameter is 5 to 30 ⁇ m in one preferred embodiment of the present invention, and 7 to 20 ⁇ m in another preferred embodiment of the present invention.
  • the blending amount of the fibrous filler with respect to 100 parts by mass of the thermoplastic resin, the thermosetting resin, or the thermoplastic elastomer is 5 to 250 parts by mass in a preferred embodiment of the present invention, and 25 to 200 parts in another preferred embodiment of the present invention. Parts by mass, in another preferred embodiment of the present invention, from 45 to 150 parts by mass.
  • the surface is formed by the first production method or the second production method.
  • a non-magnetic ceramic molded body having a roughened structure is manufactured.
  • the carbide-based nonmagnetic ceramic molded body and the rubber molded body obtained in the first step are integrated by applying a known molding method such as press molding or transfer molding.
  • a portion including a roughened structure of a carbide-based nonmagnetic ceramics molded body is arranged in a mold, and heating and heating are performed on the portion including the roughened structure. After the uncured rubber to be the rubber molded body is pressed in a pressurized state, it is taken out after cooling.
  • a portion including a roughened structure of a carbide-based non-magnetic ceramic molded body is arranged in a mold, and the uncured rubber is injection-molded in the mold, and thereafter, By heating and pressurizing, the part including the roughened structure of the carbide-based nonmagnetic ceramic molded body and the rubber molded body are integrated, and after cooling, they are taken out.
  • a step of secondary heating (secondary curing) in an oven or the like after removal from the mold can be added in order to mainly remove residual monomers.
  • the rubber of the rubber molded body used in this step is not particularly limited, and a known rubber can be used, but does not include a thermoplastic elastomer.
  • Known rubbers include ethylene-propylene copolymer (EPM), ethylene-propylene-diene terpolymer (EPDM), ethylene-octene copolymer (EOM), ethylene-butene copolymer (EBM), ethylene-octene terpolymer (EODM), Ethylene- ⁇ -olefin rubbers such as ethylene-butene terpolymer (EBDM); Ethylene / acrylic acid rubber (EAM), polychloroprene rubber (CR), acrylonitrile-butadiene rubber (NBR), hydrogenated NBR (HNBR), styrene-butadiene rubber (SBR), alkylated chlorosulfonated polyethylene (ACSM), epichlorohydrin (ECO), polybutadiene rubber (BR), natural rubber
  • the rubber may contain a curing agent according to the type of the rubber, if necessary.
  • various known rubber additives can be blended. Rubber additives include curing accelerators, anti-aging agents, silane coupling agents, reinforcing agents, flame retardants, ozone deterioration inhibitors, fillers, process oils, plasticizers, tackifiers, and processing aids. Can be used.
  • an adhesive layer can be interposed at the joint surface between the carbide-based non-magnetic ceramic molded article and the rubber molded article.
  • a carbide-based non-magnetic ceramic molded body is roughened using a continuous wave laser in the same manner as in the above method.
  • an adhesive adheresive solution
  • the adhesive may be press-fitted.
  • the adhesive is not particularly limited, and a known thermoplastic adhesive, thermosetting adhesive, rubber-based adhesive, or the like can be used.
  • the thermoplastic adhesive include polyvinyl acetate, polyvinyl alcohol, polyvinyl formal, polyvinyl butyral, acrylic adhesive, polyethylene, chlorinated polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene -Ethyl acrylate copolymer, ethylene-acrylic acid copolymer, ionomer, chlorinated polypropylene, polystyrene, polyvinyl chloride, plastisol, vinyl chloride-vinyl acetate copolymer, polyvinyl ether, polyvinylpyrrolidone, polyamide, nylon, non-saturated Fixed polyesters and cellulose derivatives can be mentioned.
  • thermosetting adhesive examples include urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, polyurethane, and vinyl urethane.
  • rubber adhesives include natural rubber, synthetic polyisoprene, polychloroprene, nitrile rubber, styrene-butadiene rubber, styrene-butadiene-vinylpyridine terpolymer, polyisobutylene-butyl rubber, polysulfide rubber, silicone RTV, Examples include chlorinated rubber, brominated rubber, kraft rubber, block copolymer, and liquid rubber.
  • a rubber molded body separately molded is bonded to the surface of the carbide-based nonmagnetic ceramic molded body on which the adhesive layer was formed in the previous step, or
  • the part including the surface of the carbide-based non-magnetic ceramic molded body with the agent layer formed was placed in the mold, and the surface of the carbide-based non-magnetic ceramic molded body was brought into contact with the uncured rubber to be the rubber molded body.
  • a step of integrating by heating and pressing in a state is performed. In the case of this step, a step of secondary heating (secondary curing) in an oven or the like after removal from the mold can be added to remove mainly residual monomers.
  • the roughened structure is formed by the first manufacturing method or the second manufacturing method.
  • the first manufacturing method or the second manufacturing method To produce a carbide-based non-magnetic ceramic molded article having the following.
  • the second step the roughened carbide-based non-magnetic ceramic molded body is placed in the mold such that the surface including the porous structure portion faces upward. Thereafter, the metal in a molten state is poured into a mold by, for example, a known die casting method, and then cooled.
  • the metal used is not limited as long as it has a melting point lower than the melting point of the carbide-based non-magnetic ceramic constituting the carbide-based non-magnetic ceramic molded body.
  • a metal according to the use of the composite molded body such as iron, aluminum, an aluminum alloy, gold, silver, platinum, copper, magnesium, titanium or an alloy thereof, and stainless steel.
  • the metal molded body is pressed against the adhesive layer of the carbide-based non-magnetic ceramic molded body having the adhesive layer to be bonded and integrated.
  • the adhesive layer is made of a thermoplastic resin-based adhesive
  • the adhesive layer can be adhered to the adhesive surface of the non-metal molded body in a state where the adhesive layer is softened by heating as necessary.
  • the adhesive layer is made of a thermosetting resin-based adhesive prepolymer, the prepolymer is heated and cured by being left in a heating atmosphere after bonding.
  • a monomer, an oligomer or a mixture thereof for forming a UV-curable resin layer is brought into contact with the portion including the roughened portion of the carbide-based non-magnetic ceramic molded body (monomer, oligomer or Contacting those mixtures).
  • a step of applying the monomer, the oligomer or the mixture thereof to a portion including the roughened portion of the carbide-based non-magnetic ceramic molded body can be performed.
  • brush coating, application using a doctor blade, roller application, casting, potting, and the like can be used alone or in combination.
  • the portion including the roughened portion of the carbide-based nonmagnetic ceramic molded body is surrounded by a mold, and the monomer, the oligomer or the mixture thereof is placed in the mold.
  • An injecting step can be performed.
  • the step of contacting the monomer, the oligomer or the mixture thereof includes the steps of: placing the carbide-based non-magnetic ceramic molded body in a mold with the roughened portion facing upward; Can be performed.
  • the monomer, oligomer or mixture thereof enters the porosity of the roughened portion of the carbide-based non-magnetic ceramic molded body.
  • the form in which the monomer, oligomer or mixture thereof enters the porosity is, for example, 50% or more of the whole pores in a preferred embodiment of the present invention, 70% or more in another preferred embodiment of the present invention, and still another preferred embodiment of the present invention. In one embodiment, 80% or more, and in still another preferred embodiment of the present invention, 90% or more of the pores contain the monomer, oligomer or mixture thereof, and the monomer, oligomer or mixture thereof enters the bottom of the pore.
  • the form includes a form in which a monomer, an oligomer, or a mixture thereof enters into a partway depth of the pore, and a form in which a form in which a monomer, an oligomer, or a mixture thereof enters only near the entrance of the hole.
  • Monomers, oligomers or mixtures thereof can be applied or injected as they are in liquid form (including low-viscosity gels) at room temperature or in the form of a solution dissolved in a solvent.
  • Solid (powder) forms can be heated. It can be applied or poured after being melted or dissolved in a solvent.
  • the monomer, oligomer or mixture thereof used in the step of contacting the monomer, oligomer or mixture thereof is selected from a radical polymerizable monomer and an oligomer of a radical polymerizable monomer, or is a cation polymerizable monomer and a cation of the monomer. It may be one selected from polymerizable monomer oligomers or a mixture of two or more selected from them.
  • radical polymerizable monomer As the radical polymerizable compound, a radical polymerizable group such as a (meth) acryloyl group, a (meth) acryloyloxy group, a (meth) acryloylamino group, a vinyl ether group, a vinylaryl group, and a vinyloxycarbonyl group is contained in one molecule. Compounds having at least one compound are exemplified.
  • Compounds having one or more (meth) acryloyl groups in one molecule include 1-buten-3-one, 1-penten-3-one, 1-hexen-3-one, 4-phenyl-1-butene- 3-one, 5-phenyl-1-penten-3-one and the like, and derivatives thereof.
  • Examples of the compound having at least one (meth) acryloyloxy group in one molecule include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and t-butyl (meth).
  • Compounds having one or more (meth) acryloylamino groups in one molecule include 4- (meth) acryloylmorpholine, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-methyl (Meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-butyl (meth) acrylamide, Nn-butoxymethyl (meth) acrylamide, N- Hexyl (meth) acrylamide, N-octyl (meth) acrylamide, and the like, and derivatives thereof are given.
  • Compounds having one or more vinyl ether groups in one molecule include, for example, 3,3-bis (vinyloxymethyl) oxetane, 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxy Isopropyl vinyl ether, 4-hydroxybutyl vinyl ether, 3-hydroxybutyl vinyl ether, 2-hydroxybutyl vinyl ether, 3-hydroxyisobutyl vinyl ether, 2-hydroxyisobutyl vinyl ether, 1-methyl-3-hydroxypropyl vinyl ether, 1-methyl-2-hydroxy Propyl vinyl ether, 1-hydroxymethylpropyl vinyl ether, 4-hydroxycyclohexyl vinyl ether, 1,6-hexanediol Novinyl ether, 1,4-cyclohexane dimethanol monovinyl ether, 1,3-cyclohexane dimethanol monovinyl ether, 1,2-cyclohexane dimethanol monovinyl ether, p-xylene glycol mono
  • Examples of the compound having one or more vinylaryl groups in one molecule include styrene, divinylbenzene, methoxystyrene, ethoxystyrene, hydroxystyrene, vinylnaphthalene, vinylanthracene, 4-vinylphenyl acetate, and (4-vinylphenyl) dihydroxyborane. , N- (4-vinylphenyl) maleimide, and derivatives thereof.
  • Compounds having one or more vinyloxycarbonyl groups in one molecule include isopropenyl formate, isopropenyl acetate, isopropenyl propionate, isopropenyl butyrate, isopropenyl isobutyrate, isopropenyl caproate, isopropenyl valerate, Isopropenyl valerate, isopropenyl lactate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl caprylate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate, pivalic acid Vinyl, vinyl octylate, vinyl monochloroacetate, divinyl adipate, vinyl acrylate, vinyl methacrylate, vinyl crotonate, vinyl sorbate, vinyl benzoate, vinyl cinnamate, and the like Body and the like.
  • cationic polymerizable monomer examples include compounds having one or more cationic polymerizable groups in one molecule other than an oxetanyl group such as an epoxy ring (oxiranyl group), a vinyl ether group, and a vinyl aryl group.
  • Compounds having one or more epoxy rings in one molecule include glycidyl methyl ether, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether, and brominated bisphenol F diglycidyl ether.
  • Polyglycidyl ethers of polyether polyols diglycidyl esters of aliphatic long-chain dibasic acids; monoglycidyl ethers of aliphatic higher alcohols; phenol, cresol, butylphenol or polyether alcohols obtained by adding alkylene oxide thereto Monoglycidyl ethers; and glycidyl esters of higher fatty acids.
  • Examples of the compound having one or more vinyl ether groups in one molecule and the compound having one or more vinyl aryl groups in one molecule include the same compounds as the compounds exemplified as the radical polymerizable compound.
  • Compounds having one or more oxetanyl groups in one molecule include trimethylene oxide, 3,3-bis (vinyloxymethyl) oxetane, 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, 3-ethyl-3- (hydroxymethyl) oxetane, 3-ethyl-3-[(phenoxy) methyl] oxetane, 3-ethyl-3- (hexyloxymethyl) oxetane, 3- Ethyl-3- (chloromethyl) oxetane, 3,3-bis (chloromethyl) oxetane, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, bis ⁇ [1-ethyl (3- Oxetanyl)] methyl ⁇ ether, 4,4'-bis [
  • the oligomer of the radical polymerizable monomer and the cationic polymerizable monomer includes a monofunctional or polyfunctional (meth) acrylic oligomer.
  • a monofunctional or polyfunctional (meth) acrylic oligomer One type or a combination of two or more types can be used.
  • Monofunctional or polyfunctional (meth) acrylic oligomers include urethane (meth) acrylate oligomers, epoxy (meth) acrylate oligomers, polyether (meth) acrylate oligomers, and polyester (meth) acrylate oligomers.
  • Examples of the urethane (meth) acrylate oligomer include polycarbonate-based urethane (meth) acrylate, polyester-based urethane (meth) acrylate, polyether-based urethane (meth) acrylate, and caprolactone-based urethane (meth) acrylate.
  • the urethane (meth) acrylate oligomer can be obtained by reacting an isocyanate compound obtained by reacting a polyol with diisocyanate and a (meth) acrylate monomer having a hydroxyl group.
  • Examples of the polyol include a polycarbonate diol, a polyester polyol, a polyether polyol, and a polycaprolactone polyol.
  • the epoxy (meth) acrylate oligomer is obtained, for example, by an esterification reaction between an oxirane ring of a low molecular weight bisphenol type epoxy resin or a novolak epoxy resin and acrylic acid.
  • the polyether (meth) acrylate oligomer is obtained by obtaining a polyether oligomer having hydroxyl groups at both terminals by a dehydration condensation reaction of a polyol, and then esterifying the hydroxyl groups at both terminals with acrylic acid.
  • the polyester (meth) acrylate oligomer is obtained, for example, by obtaining a polyester oligomer having hydroxyl groups at both ends by condensation of a polycarboxylic acid and a polyol, and then esterifying the hydroxyl groups at both ends with acrylic acid.
  • the weight average molecular weight of the monofunctional or polyfunctional (meth) acrylic oligomer is 100,000 or less in a preferred embodiment of the present invention, and is 500 to 50,000 in another preferred embodiment of the present invention.
  • a photopolymerization initiator can be used with respect to 100 parts by mass of the monomers, oligomers or mixture thereof.
  • the monomer, oligomer or mixture thereof in contact with the portion including the roughened portion of the carbide-based non-magnetic ceramic molded body is cured by irradiating UV to cure the resin, and has a curable resin layer.
  • a composite molded article can be obtained.
  • a method of manufacturing a molded article A composite molded article of a carbide-based nonmagnetic ceramic molded article having a roughened structure uses, for example, a plurality of carbide-based nonmagnetic ceramic molded articles having a roughened structure having different shapes. It can be manufactured by joining and integrating through an adhesive layer formed on the joining surface.
  • the adhesive layer can be formed by, for example, applying an adhesive to a roughened structure portion of a carbide-based nonmagnetic ceramic molded body.
  • the adhesive the same adhesive as that used in the production of the other composite molded body described above can be used.
  • a composite molded body composed of a nonmagnetic ceramic molded body of a different type from a carbide-based nonmagnetic ceramic molded body can be manufactured in the same manner.
  • the surface of the ceramic molded body also has a roughened structure to form an adhesive layer, and then has an adhesive layer of a non-magnetic ceramic molded body of a different type from the surface of the carbide-based nonmagnetic ceramic molded body that has the adhesive layer
  • the composite molded body can be manufactured by joining and integrating the surfaces.
  • non-magnetic ceramics include oxides, nitrides, borides, and silicides.
  • methods for roughening the surface of different types of non-magnetic ceramic molded bodies the methods and conditions differ depending on the type of non-magnetic ceramics. For example, as in the present invention, a method of irradiating a laser beam, filing, blasting A method of roughening by processing, etching, or the like can be applied.
  • the thermal shock temperature is a temperature at which a heated test piece (4 ⁇ 35 ⁇ 3 mm in thickness) of a carbide-based nonmagnetic ceramic molded body is broken when immersed in water at 30 ° C. When the internal stress generated by the temperature difference between the inside and the surface when cooled rapidly exceeds the strength of the test piece, it is destroyed.
  • Ra (arithmetic mean roughness): Eleven 1.5 mm long lines are drawn on the surface of the roughened structure portion of the carbide-based non-magnetic ceramic molded body, and those Ra are measured by a one-shot 3D shape measuring instrument (Keyence Corporation). Manufactured).
  • Rz maximum height: 11 lines of 1.5 mm length are drawn on the surface of the roughened structure portion of the carbide-based non-magnetic ceramic molded body, and those Rz are measured by a one-shot 3D shape measuring machine (manufactured by Keyence Corporation). ).
  • Sa (arithmetic mean height): Sa in a range of 9 ⁇ 1.8 mm on the surface of the roughened structure portion of the carbide-based nonmagnetic ceramic molded body was measured by a one-shot 3D shape measuring instrument (manufactured by Keyence).
  • Sz (maximum height) Sz in the range of 9 ⁇ 1.8 mm of the surface of the roughened structure portion of the carbide-based nonmagnetic ceramic molded body was measured by a one-shot 3D shape measuring instrument (manufactured by Keyence).
  • Str (Aspect ratio of surface texture): Indicates the isotropic and anisotropy of the surface texture, and is shown in the range of 0 to 1. If Str is close to 0, it indicates that the surface is not direction-dependent, and if Str is close to 1, the surface does not depend on the direction. Str was measured by a one-shot 3D shape measuring machine (manufactured by Keyence).
  • Examples 1 to 3 Comparative Example 1
  • the surface of a nonmagnetic ceramic molded body (10 ⁇ 50 ⁇ 2 mm thick plate) of the type shown in Table 1 was continuously irradiated with laser light under the conditions shown in Table 1 using the continuous wave laser device described below. And roughened.
  • trade name SA701 Nippon Fine Ceramics Co., Ltd.
  • trade name SS501 Nippon Fine Ceramics Co., Ltd.
  • the bidirectional irradiation was performed as follows. Bidirectional irradiation: After irradiating continuous wave laser light linearly so that one groove is formed in one direction, continuous wave laser light is linearly irradiated in the opposite direction at an interval of 0.05 mm. Irradiation was repeated.
  • the 0.05 mm spacing for bidirectional irradiation is the distance between the intermediate positions of the width of adjacent grooves.
  • FIGS. 3 to 5 and 6 show SEM photographs of portions of the non-magnetic ceramic molded bodies of Examples 1 to 3 and Comparative Example 1 having a roughened structure.
  • Example 1 the bonding strength between the non-magnetic ceramic molded article and the resin molded article was measured.
  • Tensile test Using the composite molded article shown in FIG. 7, a tensile test was performed to evaluate the shear bonding strength (S1). Tensile test is based on ISO 19095, with the non-magnetic ceramic molded body 30 fixed at the end, and pulled in the X direction shown in FIG. 7 until the non-magnetic ceramic molded body 30 and the resin molded body 31 are broken. The maximum load until the joint surface was destroyed was measured. Table 1 shows the results. ⁇ Tensile test conditions> Testing machine: AUTOGRAPH AG-X plus (50kN) manufactured by Shimadzu Corporation Tensile speed: 10 mm / min Distance between grips: 50mm
  • the carbide-based non-magnetic ceramic molded body having a surface roughened structure of the present invention is used as an intermediate for producing a composite molded body of a carbide-based non-magnetic ceramic molded body and a resin, rubber, elastomer, metal, or the like. be able to.

Abstract

Provided is a nitride-based nonmagnetic ceramic molding having a roughened structure on the surface thereof, wherein the roughened structure has recesses and protrusions, and when viewed using a scanning electron microscope photograph (at a magnification of least 200x), the cross-sectional shape of the recesses and protrusions in the thickness direction is curved, and the curve of the protrusions is a wrinkle-shaped protrusion formed along the length direction, or the curve of the protrusions has a plurality of independent holes formed in a line along the length direction.

Description

表面に粗面化構造を有する炭化物系の非磁性セラミックス成形体とその製造方法Carbide-based non-magnetic ceramics molded body having surface roughened structure and method for producing the same
 本発明は、その1つの態様において、表面に粗面化構造を有する炭化物系の非磁性セラミックス成形体とその製造方法に関する。 In one embodiment, the present invention relates to a carbide-based non-magnetic ceramics molded body having a surface roughened structure and a method for producing the same.
 非磁性セラミックスは、食器、カップ、花びんなどの日用品、エンジニアリングセラミックスとして各種成形品に汎用されており、適用する用途に応じて、表面に凹凸を形成する処理をすることが知られている。 Non-magnetic ceramics are widely used in various molded products as daily necessities such as tableware, cups, vases, and engineering ceramics, and it is known to perform a process of forming irregularities on the surface according to the application to which they are applied.
 特開2002-308683号公報には、酸性エッチング液により凹凸構造が形成されたセラミックス部材が開示されている。特許第6032903号公報には、特定の凹凸構造を有する焼成用セッターの発明が記載されており(特許請求の範囲)、前記焼成用セッターの材料として、ジルコニア、アルミナ、マグネシア、スピネル、コーディライトなどが例示されている(段落番号0013)。 JP-A-2002-308683 discloses a ceramic member having a concave-convex structure formed with an acidic etching solution. Japanese Patent No. 6032903 describes an invention of a firing setter having a specific uneven structure (claims), and as a material of the firing setter, zirconia, alumina, magnesia, spinel, cordierite, etc. (Paragraph number 0013).
 WO2011/121808 A1には、金属製またはセラミックス製の基材と、前記基材の摺動側の表面部に凹部を形成することによって設けられた含浸層と、前記含浸層に含浸し、前記基材の摺動側の表面を被覆している樹脂層と、を備える摺動部材であり、前記凹部は機械加工によって形成されている発明が開示されている(特許請求の範囲)。凹部は複数の直線状の溝であり、前記溝の最大深さは200~2,000μmであることが記載されている(段落番号0026)。 WO2011 / 121808 @ A1 includes a base made of metal or ceramic, an impregnated layer provided by forming a concave portion on the sliding side surface of the base, and an impregnated layer impregnated with the base. A resin layer covering a surface of the material on the sliding side, wherein the recess is formed by machining (claims). It is described that the concave portion is a plurality of linear grooves, and the maximum depth of the grooves is 200 to 2,000 μm (paragraph number 0026).
 前記機械加工としては、レーザ加工、ワイヤーカット加工などが例示されているが(段落番号0014)、具体的な加工条件についての記載はなく、実施例では鋼をワイヤーカット加工したことが記載されているだけであり、セラミックスについての具体的な記載はない。 Examples of the mechanical processing include laser processing and wire cut processing (paragraph number 0014), but there is no description of specific processing conditions, and in the examples, it is described that steel was wire cut. There is no specific description about ceramics.
 特開2015-109966号公報にには、正方晶ジルコニアを含有する医療機器材料の特定部位にリン酸カルシウムをコーティングする、医療機器材料の製造方法であって、前記特定部位に超短パルスレーザーを照射して表面に凹凸を形成する第一工程と、前記特定部位に前記凹凸の周期に比べて小さいリン酸カルシウム微粒子を蒸着または析出させる第二工程とを含むことを特徴とする医療機器材料の製造方法が開示されている(特許請求の範囲)。 Japanese Patent Application Laid-Open No. 2015-109966 discloses a method for manufacturing a medical device material in which a specific portion of a medical device material containing tetragonal zirconia is coated with calcium phosphate, and the specific portion is irradiated with an ultrashort pulse laser. A method for manufacturing a medical device material, comprising: a first step of forming irregularities on the surface by a step; and a second step of depositing or depositing calcium phosphate fine particles smaller than the period of the irregularities on the specific portion. (Claims).
 特許第6111102号公報には、AlNまたはAlを主成分とするセラミックス基板の少なくとも一方の面の回路パターンと略同一の平面形状の部分に波長300~1500nmのレーザー光を照射して、そのセラミックス基板の少なくとも一方の面の回路パターンと略同一の平面形状の部分にアルミニウム膜を形成し、このアルミニウム膜上に銅板を配置してアルミニウムと銅の共晶点以上で且つ650℃以下の温度で加熱することにより、アルミニウム膜を介して銅板をセラミックス基板に接合することを特徴とする、金属-セラミックス接合基板の製造方法が開示されている。 Japanese Patent No. 6111102 discloses that a laser beam having a wavelength of 300 to 1500 nm is applied to a portion of a planar shape substantially identical to a circuit pattern on at least one surface of a ceramic substrate containing AlN or Al 2 O 3 as a main component. An aluminum film is formed on a portion of the ceramic substrate having a planar shape substantially the same as the circuit pattern on at least one surface, and a copper plate is disposed on the aluminum film to have a temperature not lower than the eutectic point of aluminum and copper and not higher than 650 ° C. A method of manufacturing a metal-ceramic bonding substrate, characterized by bonding a copper plate to a ceramic substrate via an aluminum film by heating at a temperature, is disclosed.
 特開2003-171190号公報には、純度95%以上の緻密質セラミックスからなる基材の表面が表面粗さRa3~40μmの丸みを帯びた第1の凹凸に形成され、かつ、この第1の凹凸の表面が表面粗さRa0.1~2.9μmの丸みを帯びた第2の凹凸に形成されているセラミックス部材が開示されている。第2の凹凸は第1の凹凸の全面を覆っていることが図示されている。 Japanese Patent Application Laid-Open No. 2003-171190 discloses that the surface of a substrate made of dense ceramic having a purity of 95% or more is formed with first rounded irregularities having a surface roughness Ra of 3 to 40 μm, and the first There is disclosed a ceramic member in which the surface of the unevenness is formed as a second rounded unevenness having a surface roughness Ra of 0.1 to 2.9 μm. It is shown that the second unevenness covers the entire surface of the first unevenness.
 特開2003-137677号公報および特開2004-66299号公報には、セラミックス体の表面にレーザー加工して凹凸を形成する技術が開示されている。 JP-A-2003-137677 and JP-A-2004-66299 disclose a technique for forming irregularities by laser processing the surface of a ceramic body.
 特許第5774246号公報および特許第5701414号公報には、連続波レーザーを使用して、2,000mm/sec以上の照射速度でレーザー光を連続照射して金属成形体の表面を粗面化する発明、金属成形体と樹脂成形体との複合成形体の製造方法の発明が開示されているが、セラミックスについての記載はない。 Japanese Patent Nos. 5,774,246 and 5,701,414 disclose an invention in which a continuous wave laser is used to continuously irradiate a laser beam at an irradiation speed of 2,000 mm / sec or more to roughen the surface of a metal molded body. Discloses a method of manufacturing a composite molded article of a metal molded article and a resin molded article, but does not disclose ceramics.
 本発明は、その1つの側面において、表面に粗面化構造を有する非磁性セラミックス成形体とその製造方法を提供することを課題とする。 One aspect of the present invention is to provide a non-magnetic ceramic molded body having a roughened structure on its surface and a method for producing the same.
 本発明は、その1つの実施態様において、表面に粗面化構造を有する非磁性セラミックス成形体であって、
 前記粗面化構造が凹凸を有しており、走査型電子顕微鏡写真(200倍以上)により観察したときに前記凹凸の厚さ方向の断面形状が曲面であり、前記凸部の曲面が長さ方向に沿って形成されたしわ状突起、または前記凸部の曲面が長さ方向に沿って線状に形成された複数の独立穴を有しているものであり、
 前記非磁性セラミックス成形体が炭化物系の非磁性セラミックス成形体である、表面に粗面化構造を有する非磁性セラミックス成形体を提供する。また本発明は別の実施態様において、このような非磁性セラミックス成形体の製造方法を提供する。
The present invention, in one embodiment thereof, is a non-magnetic ceramic molded body having a surface roughened structure,
The roughened structure has irregularities, and the cross-sectional shape in the thickness direction of the irregularities is a curved surface when observed by a scanning electron microscope photograph (200 times or more), and the curved surface of the convex portion has a length. Wrinkle-like projections formed along the direction, or the curved surface of the convex portion has a plurality of independent holes formed linearly along the length direction,
Provided is a non-magnetic ceramic molded body having a roughened structure on its surface, wherein the non-magnetic ceramic molded body is a carbide-based non-magnetic ceramic molded body. In another embodiment, the present invention provides a method for producing such a nonmagnetic ceramic molded body.
 本発明の実施態様による非磁性セラミックス成形体は表面に粗面化構造を有しており、他の材料との複合成形体を製造する中間体として使用することができる。したがって本発明は別の側面において、そのような複合成形体の製造方法、および複合成形体にも向けられている。 非 The non-magnetic ceramic molded product according to the embodiment of the present invention has a roughened structure on the surface, and can be used as an intermediate for producing a composite molded product with another material. Therefore, in another aspect, the present invention is also directed to a method for producing such a composite molded article, and a composite molded article.
 本発明の実施態様による製造方法によれば、割れにより2以上に分離することなく、本来的に硬く脆い炭化物系の非磁性セラミックス成形体の表面を粗面化することができる。 According to the manufacturing method according to the embodiment of the present invention, the surface of the originally hard and brittle carbide-based nonmagnetic ceramic molded body can be roughened without being separated into two or more by cracking.
本発明の1つの例による第2の製造方法を実施するときの一実施形態のレーザー光の照射状態を示す図。The figure which shows the irradiation state of the laser beam of one Embodiment when implementing the 2nd manufacturing method by one example of this invention. 本発明の1つの例による第2の製造方法を実施するときのレーザー光の照射パターンを示す図であり、(a)は同方向の照射パターン、(b)は双方向の照射パターン。It is a figure which shows the irradiation pattern of the laser beam when implementing the 2nd manufacturing method by one example of this invention, (a) is an irradiation pattern of the same direction, (b) is a bidirectional irradiation pattern. (a)は実施例1の炭化ケイ素成形体の粗面化構造部分(平面図)のSEM写真(200倍)、(b)は(a)の厚さ方向の断面SEM写真(200倍)である。(A) is an SEM photograph (magnification: 200) of the roughened structure portion (plan view) of the silicon carbide molded body of Example 1, and (b) is a cross-sectional SEM photograph (magnification: 200) of (a) in the thickness direction. is there. 実施例2の炭化ケイ素/アルミニウム成形体の粗面化構造部分(平面図)のSEM写真(200倍)である。5 is an SEM photograph (magnification: 200) of a roughened structure portion (plan view) of the silicon carbide / aluminum molded product of Example 2. 実施例3の炭化ケイ素/ケイ素成形体の粗面化構造部分(平面図)のSEM写真(200倍)である。4 is an SEM photograph (magnification: 200) of a roughened structure portion (plan view) of the silicon carbide / silicon molded product of Example 3. 比較例1の炭化ケイ素成形体の粗面化構造部分(平面図)のSEM写真(200倍)である。5 is an SEM photograph (magnification: 200) of a roughened structure portion (plan view) of the silicon carbide molded body of Comparative Example 1. 実施例で製造した炭化物系セラミックス成形体の斜視図と、炭化物系セラミックス成形体と樹脂成形体との複合成形体を使用した接合強度の試験を説明するための斜視図。FIG. 3 is a perspective view of a carbide-based ceramics molded body manufactured in the example, and a perspective view for describing a test of bonding strength using a composite molded body of a carbide-based ceramics molded body and a resin molded body.
 本発明の実施態様によれば、表面に粗面化構造を有する非磁性セラミックス成形体は、炭化物系の非磁性セラミックスを含むものである。炭化物系の非磁性セラミックス成形体は、炭化ケイ素、炭化チタン、炭化タングステン、炭化ホウ素などの炭化物系の非磁性セラミックスを含む成形体であってよいが、これらの中でも炭化ケイ素を含むものであってよい。 According to the embodiment of the present invention, the non-magnetic ceramic molded body having a roughened structure on its surface contains a carbide-based non-magnetic ceramic. The carbide-based non-magnetic ceramic molded body may be a molded body containing a carbide-based non-magnetic ceramic such as silicon carbide, titanium carbide, tungsten carbide, and boron carbide. Good.
 炭化ケイ素は、炭化ケイ素のみからなるもののほか、所定の熱衝撃温度を満たす範囲内であれば、炭化ケイ素と、他の非磁性セラミックス、金属、半金属との複合体からなるものでもよい。炭化ケイ素と金属との複合体は、多孔質に成形した炭化ケイ素成形体の多孔内部に金属(例えば、アルミニウム)または半金属(例えば、ケイ素)を含浸させたものであってよく、このような複合体における炭化ケイ素の含有割合は本発明の好ましい一態様では50質量%以上であり、本発明の別の好ましい一態様では60質量%以上であり、本発明のさらに別の好ましい一態様では70質量%以上である。 (4) The silicon carbide may be composed of a composite of silicon carbide and other non-magnetic ceramics, metals, and metalloids, as long as it is within a range satisfying a predetermined thermal shock temperature, in addition to being composed of silicon carbide alone. The composite of silicon carbide and a metal may be a porous silicon carbide molded body in which a metal (for example, aluminum) or a metalloid (for example, silicon) is impregnated in the porous interior. The content ratio of silicon carbide in the composite is 50% by mass or more in a preferred embodiment of the present invention, 60% by mass or more in another preferred embodiment of the present invention, and 70% by mass in another preferred embodiment of the present invention. % By mass or more.
 所定の熱衝撃温度(JIS R1648:2002)は、本発明の好ましい一態様では400~500℃の範囲であり、本発明の別の好ましい一態様では420~480℃の範囲である。 The predetermined thermal shock temperature (JIS R1648: 2002) is in the range of 400 to 500 ° C. in one preferred embodiment of the present invention, and is in the range of 420 to 480 ° C. in another preferred embodiment of the present invention.
 炭化ケイ素を含む非磁性セラミックス成形体は、加工時において割れることを防止するため、本発明の好ましい一態様では厚さが0.5mm以上のものであり、本発明の別の好ましい一態様では厚さが1.0mm以上である。なお、本発明における「割れ」は、成形体の一部が割れて2以上に分割されることをいい、「ひび割れ」は含まれない。またレーザー光の照射による加工時には割れないが、著しく強度が低下して、その後の移動時および加工時に2以上に分割されるような場合も「割れ」に含まれる。 The non-magnetic ceramic molded body containing silicon carbide has a thickness of 0.5 mm or more in a preferred embodiment of the present invention, and has a thickness of 0.5 mm or more in another preferred embodiment of the present invention, in order to prevent cracking during processing. Is 1.0 mm or more. The term “crack” in the present invention means that a part of the molded body is broken and divided into two or more, and does not include “crack”. In addition, “cracking” also includes a case where it does not crack during processing by laser beam irradiation, but has a remarkably reduced strength and is divided into two or more during subsequent movement and processing.
 本発明の幾つかの実施態様によれば、表面に粗面化構造を有する非磁性セラミックス成形体は、前記粗面化構造が凹凸を有しており、走査型電子顕微鏡写真(200倍以上)により観察したときに前記凹凸の厚さ方向の断面形状が曲面を有しているものである。 According to some embodiments of the present invention, the non-magnetic ceramic molded body having a roughened structure on its surface has a roughened structure having irregularities, and a scanning electron micrograph (200 times or more). The cross-sectional shape in the thickness direction of the unevenness has a curved surface when observed by (1).
 前記凹凸の厚さ方向の断面形状は、部分円形状または部分楕円形状を含んでいてよい。部分円形状は、半円形状、1/3円形状などの円の一部を含む形状である。部分楕円形状は、半楕円形状、1/3楕円形状などの楕円の一部を含む形状である。 断面 The cross-sectional shape of the unevenness in the thickness direction may include a partial circular shape or a partial elliptical shape. The partial circular shape is a shape including a part of a circle such as a semicircular shape and a 1/3 circular shape. The partial elliptical shape is a shape including a part of an ellipse such as a semi-elliptical shape and a 1/3 elliptical shape.
 本発明の表面に粗面化構造を有する非磁性セラミックス成形体は、前記凹凸が線状の凸部と線状の凹部が交互に形成されているものであってよく、前記凸部には曲面の長さ方向に沿ったしわ状突起、または前記凸部の曲面が長さ方向に沿って線状に形成された複数の独立穴が形成されていてよい。 The non-magnetic ceramic molded body having a roughened structure on its surface according to the present invention may be one in which the irregularities are formed by alternately forming linear projections and linear depressions, and the projections have a curved surface. May be formed, or a plurality of independent holes in which a curved surface of the convex portion is linearly formed along the length direction.
 1つの例によれば、しわ状の突起は、しわ状の突起がない面から少し外側に突き出されている部分である。しわ状突起は、例えば長さ方向に連続して形成されているものであってよいが、不連続部分があってもよい。1つの例によれば、線状に形成された複数の独立穴は、多数の独立穴が線状に並んでいる形態である。しわ状の突起および/または線状に形成された複数の独立穴は、前記線状の凸部と前記線状の凹部のそれぞれの幅が20~100μmであるとき、幅が1~10μmであるものであってよい。 に よ According to one example, the wrinkle-shaped protrusion is a portion slightly protruding outward from a surface having no wrinkle-shaped protrusion. The wrinkle-like projection may be formed continuously in the length direction, for example, but may have a discontinuous portion. According to one example, the plurality of independent holes formed linearly has a form in which many independent holes are linearly arranged. The wrinkle-like projections and / or the plurality of linearly formed independent holes have a width of 1 to 10 μm when the width of each of the linear protrusions and the linear recesses is 20 to 100 μm. May be something.
 このように凸部の表面(曲面)において長さ方向に沿ってしわ状突起および/または線状に形成された複数の独立穴が形成され、表面積が増加されていると、例えば、非磁性セラミックス成形体と他部材(例えば、樹脂成形体)と接合するときには、接合面の接触面積が増大されていることで接合強度が高められると考えられる。 When the surface (curved surface) of the convex portion is formed with a plurality of wrinkled protrusions and / or a plurality of independent holes formed linearly along the length direction and the surface area is increased, for example, non-magnetic ceramics When joining the molded body and another member (for example, a resin molded body), it is considered that the joining area is increased and the joining strength is increased.
 本発明の表面に粗面化構造を有する非磁性セラミックス成形体の幾つかの例では、前記粗面化構造の凹凸のうちの凹部が島状に分散して形成され、前記凹部を除いた部分が凸部であるものであり、前記凸部には長さ方向に沿ったしわ状の突起および/または前記凸部の曲面が長さ方向に沿って線状に形成された複数の独立穴が形成されている。 In some examples of the non-magnetic ceramic molded body having a roughened structure on the surface according to the present invention, the recesses of the unevenness of the roughened structure are formed in an island shape and are formed by removing the recesses. Is a convex portion, and the convex portion has a plurality of independent holes in which wrinkle-like protrusions along the length direction and / or curved surfaces of the convex portions are linearly formed along the length direction. Is formed.
 1つの例によれば、しわ状の突起は、しわ状の突起がない面から少し外側に突き出されている部分である。しわ状突起は、例えば長さ方向に連続して形成されているものであってよいが、不連続部分があってもよい。1つの例によれば、線状に形成された複数の独立穴は、多数の独立穴が線状に並んでいる形態である。しわ状の突起および/または線状に形成された複数の独立穴は、前記線状の凸部と前記線状の凹部のそれぞれの幅が20~100μmであるとき、幅が1~10μmであるものであってよい。 に よ According to one example, the wrinkle-shaped protrusion is a portion slightly protruding outward from a surface having no wrinkle-shaped protrusion. The wrinkle-like projection may be formed continuously in the length direction, for example, but may have a discontinuous portion. According to one example, the plurality of independent holes formed linearly has a form in which many independent holes are linearly arranged. The wrinkle-like projections and / or the plurality of linearly formed independent holes have a width of 1 to 10 μm when the width of each of the linear protrusions and the linear recesses is 20 to 100 μm. May be something.
 このように凸部の表面(曲面)において長さ方向に沿ってしわ状突起および/または前記凸部の曲面が長さ方向に沿って線状に形成された複数の独立穴が形成され、表面積が増加されていると、例えば、非磁性セラミックス成形体と他部材(例えば、樹脂成形体)と接合するときには、接合面の接触面積が増大されていることで接合強度が高められると考えられる。 In this manner, a plurality of independent holes are formed on the surface (curved surface) of the convex portion along the length direction and / or a plurality of independent holes in which the curved surface of the convex portion is linearly formed along the length direction. If, for example, the non-magnetic ceramic molded body and another member (for example, a resin molded body) are joined together, it is considered that the joining area is increased and the joining strength is increased.
 本発明の非磁性セラミックス成形体の幾つかの例によれば、前記凹凸の表面粗さ(Ra)は本発明の好ましい一態様では2~100μmの範囲であり、本発明の別の好ましい一態様では5~80μmの範囲であり、本発明のさらに別の好ましい一態様では10~50μmの範囲である。 According to some examples of the nonmagnetic ceramic molded body of the present invention, the surface roughness (Ra) of the unevenness is in a range of 2 to 100 μm in a preferred embodiment of the present invention, and another preferred embodiment of the present invention. In another preferred embodiment of the present invention, the thickness is in the range of 5 to 80 μm.
 本発明の非磁性セラミックス成形体の幾つかの例によれば、前記凹凸の凸部と凹部の高低差(Rz)は本発明の好ましい一態様では10~200μmの範囲であり、本発明の別の好ましい一態様では20~150μmの範囲であり、本発明のさらに別の好ましい一態様では20~100μmの範囲である。 According to some examples of the non-magnetic ceramic molded body of the present invention, the height difference (Rz) between the convex portion and the concave portion of the unevenness is in the range of 10 to 200 μm in a preferred embodiment of the present invention. In a preferred embodiment, the thickness is in the range of 20 to 150 μm, and in still another preferred embodiment of the present invention, the thickness is in the range of 20 to 100 μm.
 さらに本発明の非磁性セラミックス成形体の幾つかの例によれば、前記粗面化構造部分(凹凸部分)のSa(算術平均高さ)、Sz(最大高さ)、およびStr(表面性状のアスペクト比)は、以下の範囲であってよい。 Further, according to some examples of the non-magnetic ceramic molded body of the present invention, Sa (arithmetic average height), Sz (maximum height), and Str (surface texture) of the roughened structure portion (irregularities). Aspect ratio) may be in the following range.
 Sa(算術平均高さ)は、本発明の好ましい一態様では2~100μmであり、本発明の別の好ましい一態様では5~80μmであり、本発明のさらに別の好ましい一態様では10~50μmである。 Sa (arithmetic mean height) is 2 to 100 μm in a preferred embodiment of the present invention, 5 to 80 μm in another preferred embodiment of the present invention, and 10 to 50 μm in still another preferred embodiment of the present invention. It is.
 Sz(最大高さ)は、本発明の好ましい一態様では10~300μmであり、本発明の別の好ましい一態様では20~200μmであり、本発明のさらに別の好ましい一態様では20~150μmである。 Sz (maximum height) is 10 to 300 μm in one preferred embodiment of the present invention, 20 to 200 μm in another preferred embodiment of the present invention, and 20 to 150 μm in still another preferred embodiment of the present invention. is there.
 Sdr(界面の展開面積比)は、本発明の好ましい一態様では0.1~3.0である。 Sdr (interface area development ratio) is 0.1 to 3.0 in a preferred embodiment of the present invention.
 また前記凹凸の凸部の表面粗さ(Ra)は本発明の好ましい一態様では1~10μmの範囲であり、本発明の別の好ましい一態様では1.5~8μmの範囲であり、本発明のさらに別の好ましい一態様では2~8μmの範囲である。 The surface roughness (Ra) of the projections of the irregularities is in the range of 1 to 10 μm in a preferred embodiment of the present invention, and is in the range of 1.5 to 8 μm in another preferred embodiment of the present invention. In still another preferred embodiment, the thickness is in the range of 2 to 8 μm.
 この場合に前記凹凸の凸部と凹部の高低差(Rz)は本発明の好ましい一態様では5~50μmの範囲であり、本発明の別の好ましい一態様では8~40μmの範囲であり、本発明のさらに別の好ましい一態様では10~30μmの範囲である。 In this case, the height difference (Rz) between the convex portion and the concave portion of the unevenness is in a range of 5 to 50 μm in a preferred embodiment of the present invention, and in a range of 8 to 40 μm in another preferred embodiment of the present invention. In still another preferred embodiment of the invention, the thickness is in the range of 10 to 30 μm.
 さらにこの場合の前記粗面化構造部分(凹凸部分)のSa(算術平均高さ)、Sz(最大高さ)、およびStr(表面性状のアスペクト比)は、以下の範囲であってよい。 In this case, Sa (arithmetic average height), Sz (maximum height), and Str (surface aspect ratio) of the roughened structure portion (irregularities) may be in the following ranges.
 Sa(算術平均高さ)は、本発明の好ましい一態様では1~10μmであり、本発明の別の好ましい一態様では1.5~8μmであり、本発明のさらに別の好ましい一態様では2~8μmである。 Sa (arithmetic mean height) is 1 to 10 μm in a preferred embodiment of the present invention, 1.5 to 8 μm in another preferred embodiment of the present invention, and 2 in still another preferred embodiment of the present invention. ~ 8 μm.
 Sz(最大高さ)は、本発明の好ましい一態様では8~40μmであり、本発明の別の好ましい一態様では10~30μmであり、本発明のさらに別の好ましい一態様では100~180μmである。 Sz (maximum height) is 8 to 40 μm in one preferred embodiment of the present invention, 10 to 30 μm in another preferred embodiment of the present invention, and 100 to 180 μm in still another preferred embodiment of the present invention. is there.
 Sdr(界面の展開面積比)は、本発明の好ましい一態様では0.01~2.0である。 Sdr (interface development area ratio) is 0.01 to 2.0 in a preferred embodiment of the present invention.
 本発明の1つの実施態様によれば、非磁性セラミックス成形体は、粗面化構造部分に液体、粉体などを保持できる担体などとして使用することができるほか、他の材料(炭化物系の非磁性セラミックスを除いた材料)からなる成形体との複合成形体を製造するための製造中間体としても使用することができる。 According to one embodiment of the present invention, the non-magnetic ceramic molded body can be used as a carrier capable of holding a liquid, a powder, and the like on the roughened structure portion, and can be made of another material (a carbide-based non-magnetic material). It can also be used as a production intermediate for producing a composite molded body with a molded body made of a material excluding magnetic ceramics).
<表面に粗面化構造を有する炭化物系の非磁性セラミックス成形体の第1の製造方法>
 次に本発明の1つの実施態様による、表面に粗面化構造を有する炭化物系の非磁性セラミックス成形体の第1の製造方法を説明する。本発明の1つの実施態様による非磁性セラミックス成形体は、炭化物系の非磁性セラミックス成形体の表面に対して、連続波レーザーを使用して5,000mm/sec以上の照射速度でレーザー光を連続照射して製造することができる。
<First Production Method of Carbide-based Non-magnetic Ceramics Molded Body Having Roughened Structure on Surface>
Next, a first method for producing a carbide-based nonmagnetic ceramic molded body having a roughened structure on the surface according to one embodiment of the present invention will be described. The non-magnetic ceramic molded body according to one embodiment of the present invention is characterized in that the surface of the carbide-based non-magnetic ceramic molded body is continuously irradiated with a laser beam at an irradiation speed of 5,000 mm / sec or more using a continuous wave laser. It can be manufactured by irradiation.
 本発明の1つの実施態様による製造方法で使用する炭化物系の非磁性セラミックス成形体の形状、大きさ、厚みなどは特に制限されるものではなく、用途に応じて選択され、必要に応じて調整されるものである。例えば、炭化物系の非磁性セラミックス成形体として、平板、丸棒、角棒(断面が多角形の棒)、管、カップ形状のもの、立方体、直方体、球または部分球(半球など)、楕円球または部分楕円球(半楕円球など)、不定形などの成形体のほか、既存の非磁性体セラミックス製品も使用することができる。前記既存の炭化物系の非磁性セラミックス製品は、炭化物系の非磁性セラミックスのみからなるもののほか、炭化物系の非磁性セラミックスと他の材料(金属、樹脂、ゴム、ガラス、木材など)の複合体からなるものでもよい。 The shape, size, thickness, and the like of the carbide-based nonmagnetic ceramic molded body used in the production method according to one embodiment of the present invention are not particularly limited, and are selected according to the application and adjusted as necessary. Is what is done. For example, carbide-based non-magnetic ceramic molded bodies include flat plates, round bars, square bars (bars with a polygonal cross section), tubes, cups, cubes, cuboids, spheres or partial spheres (such as hemispheres), and elliptical spheres Alternatively, in addition to a molded article having a partially elliptical sphere (such as a semi-elliptical sphere) or an irregular shape, an existing nonmagnetic ceramic product can be used. The existing carbide-based non-magnetic ceramics products include, in addition to those composed of only carbide-based non-magnetic ceramics, composites of carbide-based non-magnetic ceramics and other materials (metal, resin, rubber, glass, wood, etc.). It may be.
 1つの実施態様によれば、炭化物系の非磁性セラミックス成形体の表面に対して、連続波レーザーを使用して5,000mm/sec以上の照射速度でレーザー光を連続照射するとき、同一方向または異なる方向に直線、曲線およびこれらの組み合わせからなる複数本の線が形成されるようにレーザー光を連続照射することができる。 According to one embodiment, when a continuous wave laser is used to continuously irradiate the surface of a carbide-based non-magnetic ceramic molded body with a laser beam at an irradiation speed of 5,000 mm / sec or more, The laser beam can be continuously irradiated so that a plurality of lines composed of straight lines, curves, and combinations thereof are formed in different directions.
 また別の実施態様によれば、炭化物系の非磁性セラミックス成形体の表面に対して、連続波レーザーを使用して5,000mm/sec以上の照射速度でレーザー光を連続照射するとき、同一方向または異なる方向に直線、曲線およびこれらの組み合わせからなる複数本の線が形成されるようにレーザー光を連続照射し、レーザー光を複数回連続照射して1本の直線または1本の曲線を形成することができる。 According to another embodiment, when continuously irradiating the surface of the carbide-based nonmagnetic ceramic molded body with a continuous wave laser at an irradiation speed of 5,000 mm / sec or more, the laser beam is irradiated in the same direction. Alternatively, continuously irradiate laser light so as to form a plurality of lines composed of straight lines, curves and combinations thereof in different directions, and form one straight line or one curved line by continuously irradiating laser light a plurality of times. can do.
 さらに別の実施態様によれば、炭化物系の非磁性セラミックス成形体の表面に対して、連続波レーザーを使用して5,000mm/sec以上の照射速度でレーザー光を連続照射するとき、同一方向または異なる方向に直線、曲線およびこれらの組み合わせからなる複数本の線が形成されるようにレーザー光を連続照射し、前記複数本の直線または前記複数本の曲線が、等間隔または異なる間隔をおいて形成されるようにレーザー光を連続照射することができる。 According to still another embodiment, when continuously irradiating the surface of the carbide-based nonmagnetic ceramic molded body with a continuous wave laser at an irradiation speed of 5,000 mm / sec or more, the laser beam is irradiated in the same direction. Alternatively, a laser beam is continuously irradiated so that a plurality of lines composed of straight lines, curves and combinations thereof are formed in different directions, and the plurality of straight lines or the plurality of curves are spaced at equal intervals or different intervals. Laser light can be continuously applied so as to be formed.
 レーザー光の照射速度は、炭化物系の非磁性セラミックス成形体を粗面化するため、5,000mm/sec以上であってよく、本発明の好ましい一態様では5,000~20,000mm/secであり、本発明の別の好ましい一態様では5,000~10,000mm/secである。レーザー光の照射速度が5,000mm/sec未満であると、非磁性セラミックス成形体の表面に粗面化構造を形成することが難しい。 The irradiation speed of the laser beam may be 5,000 mm / sec or more in order to roughen the carbide-based nonmagnetic ceramic molded body. In a preferred embodiment of the present invention, the irradiation speed is 5,000 to 20,000 mm / sec. Yes, in another preferred embodiment of the present invention, it is 5,000 to 10,000 mm / sec. If the irradiation speed of the laser beam is less than 5,000 mm / sec, it is difficult to form a roughened structure on the surface of the non-magnetic ceramic molded body.
 レーザーの出力は、本発明の好ましい一態様では50~4,000Wであり、本発明の別の好ましい一態様では100~2,000Wであり、本発明のさらに別の好ましい一態様では100~1,000Wである。レーザー光の出力は、レーザー光の照射速度が上記した範囲内で遅いときは小さくして、レーザー光の照射速度が上記した範囲内で速いときは大きくすることで粗面化状態を調整することができる。例えば、レーザー光の出力が100Wであるときは、本発明の好ましい一態様ではレーザー光の照射速度は5,000~7,500mm/secであり、レーザー光の出力が500Wであるときは、本発明の好ましい一態様ではレーザー光の照射速度は7,500~10,000mm/secであってよい。 The power of the laser is 50 to 4,000 W in a preferred embodiment of the present invention, 100 to 2,000 W in another preferred embodiment of the present invention, and 100 to 2,000 W in still another preferred embodiment of the present invention. 5,000W. Adjust the surface roughening state by decreasing the laser light output when the laser light irradiation speed is low within the above range and increasing it when the laser light irradiation speed is high within the above range. Can be. For example, when the output of the laser beam is 100 W, in one preferred embodiment of the present invention, the irradiation speed of the laser beam is 5,000 to 7,500 mm / sec. In a preferred embodiment of the present invention, the irradiation speed of the laser beam may be 7,500 to 10,000 mm / sec.
 レーザー光のスポット径は、本発明の好ましい一態様では10~100μmであり、本発明の別の好ましい一態様では10~75μmである。 ス ポ ッ ト The spot diameter of the laser beam is 10 to 100 μm in one preferred embodiment of the present invention, and 10 to 75 μm in another preferred embodiment of the present invention.
 レーザー光照射時のエネルギー密度は、本発明の好ましい一態様では3~1500MW/cmであり、本発明の別の好ましい一態様では5~700MW/cmである。レーザー光照射時のエネルギー密度は、レーザー光の出力(W)と、レーザー光(スポット面積(cm)(π・〔スポット径/2〕)から次式:レーザー光の出力/スポット面積により求められる。 The energy density at the time of laser beam irradiation is 3 to 1500 MW / cm 2 in a preferred embodiment of the present invention, and 5 to 700 MW / cm 2 in another preferred embodiment of the present invention. The energy density at the time of laser beam irradiation is calculated by the following formula from the output (W) of the laser beam and the laser beam (spot area (cm 2 ) (π · [spot diameter / 2] 2 ): laser beam output / spot area. Desired.
 レーザー光照射時の繰り返し回数(パス回数)は、本発明の好ましい一態様では1~30回、本発明の別の好ましい一態様では3~25回、本発明のさらに別の好ましい一態様では5~20回である。レーザー光照射時の繰り返し回数は、レーザー光を線状に照射するとき、1本のライン(溝)を形成するために照射する合計回数である。 The number of repetitions (the number of passes) at the time of laser beam irradiation is 1 to 30 times in a preferred embodiment of the present invention, 3 to 25 times in another preferred embodiment of the present invention, and 5 in still another preferred embodiment of the present invention. ~ 20 times. The number of repetitions at the time of laser light irradiation is the total number of times of irradiation for forming one line (groove) when laser light is irradiated linearly.
 1本のラインに繰り返し照射するときは、双方向照射と一方向照射を選択することができる。双方向放射は、1本のライン(溝)を形成するとき、ライン(溝)の第1端部から第2端部に連続波レーザーを照射した後、第2端部から第1端部に連続波レーザーを照射して、その後は、第1端部から第2端部、第2端部から第1端部というように繰り返し連続波レーザーを照射する方法である。一方向照射は、第1端部から第2端部への一方向の連続波レーザー照射を繰り返す方法である。 双方 向 When irradiating one line repeatedly, bidirectional irradiation and unidirectional irradiation can be selected. When forming one line (groove), bidirectional radiation irradiates a continuous wave laser from the first end to the second end of the line (groove) and then from the second end to the first end. A method of irradiating a continuous wave laser and thereafter repeatedly irradiating a continuous wave laser from a first end to a second end and from a second end to a first end. One-way irradiation is a method of repeating one-way continuous-wave laser irradiation from a first end to a second end.
 レーザー光を直線状に照射するとき、隣接する照射ライン(隣接する照射により形成された溝)の幅の中間位置同士の間隔(ライン間隔またはピッチ間隔)は、本発明の好ましい一態様では0.03~1.0mmであり、本発明の別の好ましい一態様では0.03~0.2mmである。ライン間隔は同一でもよいし、異なっていてもよい。 When irradiating the laser beam linearly, the interval (line interval or pitch interval) between the intermediate positions of the widths of the adjacent irradiation lines (grooves formed by the adjacent irradiation) is set to 0.1 in a preferred embodiment of the present invention. 03 to 1.0 mm, and in another preferred embodiment of the present invention it is 0.03 to 0.2 mm. The line intervals may be the same or different.
 レーザー光を照射するとき、上記したライン間隔をおいて双方向照射または一方向照射して複数本の溝を形成した後、さらに前記複数本の溝に直交または斜交する方向から、上記したライン間隔をおいて双方向照射または一方向照射するクロス照射を実施することもできる。 When irradiating the laser beam, after forming a plurality of grooves by bidirectional irradiation or unidirectional irradiation at the above-mentioned line interval, further from the direction orthogonal or oblique to the plurality of grooves, the above-mentioned line Cross irradiation in which bidirectional irradiation or unidirectional irradiation is performed at intervals may be performed.
 レーザー光の波長は、本発明の好ましい一態様では300~1200nmであり、本発明の別の好ましい一態様では500~1200nmである。レーザー光を照射するときの焦点はずし距離は、本発明の好ましい一態様では-5~+5mmであり、本発明の別の好ましい一態様では-1~+1mmであり、本発明のさらに別の好ましい一態様では-0.5~+0.1mmである。焦点はずし距離は、設定値を一定にしてレーザー照射しても良いし、焦点はずし距離を変化させながらレーザー照射しても良い。例えば、レーザー照射時に、焦点はずし距離を徐々に小さくしたり、周期的に大きくしたり小さくしたりしてもよい。 波長 The wavelength of the laser beam is 300 to 1200 nm in one preferred embodiment of the present invention, and 500 to 1200 nm in another preferred embodiment of the present invention. The defocusing distance when irradiating the laser beam is -5 to +5 mm in a preferred embodiment of the present invention, and -1 to +1 mm in another preferred embodiment of the present invention. In the embodiment, it is -0.5 to +0.1 mm. As the defocusing distance, laser irradiation may be performed with the set value kept constant, or laser irradiation may be performed while changing the defocusing distance. For example, at the time of laser irradiation, the defocus distance may be gradually reduced, or may be periodically increased or decreased.
 連続波レーザーは公知のものを使用することができ、例えば、YVO4レーザー、ファイバーレーザー(好ましくはシングルモードファイバーレーザー)、エキシマレーザー、炭酸ガスレーザー、紫外線レーザー、YAGレーザー、半導体レーザー、ガラスレーザー、ルビーレーザー、He-Neレーザー、窒素レーザー、キレートレーザー、色素レーザーを使用することができる。これらの中でもエネルギー密度が高められることから、ファイバーレーザーが好ましく、特にシングルモードファイバーレーザーが好ましい。 A known continuous wave laser can be used, for example, a YVO4 laser, a fiber laser (preferably a single mode fiber laser), an excimer laser, a carbon dioxide laser, an ultraviolet laser, a YAG laser, a semiconductor laser, a glass laser, and ruby. Lasers, He-Ne lasers, nitrogen lasers, chelate lasers, and dye lasers can be used. Among them, a fiber laser is preferable, and a single mode fiber laser is particularly preferable, because the energy density is increased.
<表面に粗面化構造を有する炭化物系の非磁性セラミックス成形体の第2の製造方法>
 本発明の1つの実施態様による、表面に粗面化構造を有する炭化物系の非磁性セラミックス成形体の第2の製造方法は、上記した第1の製造方法とは、レーザー光の照射形態が異なるほかは、同じ方法である。
<Second method for producing carbide-based non-magnetic ceramic molded body having a roughened surface structure>
According to one embodiment of the present invention, the second method for producing a carbide-based nonmagnetic ceramic molded body having a roughened structure on the surface is different from the above-mentioned first method in the irradiation form of laser light. Others are the same.
 第2の製造方法は、第1の製造方法と同様にして炭化物系の非磁性セラミックス成形体の表面に対して、連続波レーザーを使用して5,000mm/sec以上の照射速度でレーザー光を連続照射する工程において、粗面化対象となる炭化物系の非磁性セラミックス成形体の表面に対してレーザー光を照射するとき、レーザー光の照射部分と非照射部分が交互に生じるように照射する工程を有している。 In the second manufacturing method, a laser beam is applied to the surface of the carbide-based non-magnetic ceramic molded body at an irradiation speed of 5,000 mm / sec or more using a continuous wave laser in the same manner as in the first manufacturing method. In the step of continuously irradiating, when irradiating the surface of the carbide-based non-magnetic ceramic molded body to be surface-roughened with laser light, the irradiation is performed so that the irradiated part and the non-irradiated part of the laser light alternately occur. have.
 第2の製造方法では、直線、曲線または直線と曲線の組み合わせになるようにレーザー光を照射するとき、レーザー光の照射部分と非照射部分が交互に生じるように照射する。レーザー光の照射部分と非照射部分が交互に生じるように照射するとは、図1に示すように照射する実施形態を含んでいる。図1は、長さL1のレーザー光の照射部分11と隣接する長さL1のレーザー光の照射部分11の間にある長さL2のレーザー光の非照射部分12が交互に生じて、全体として点線状に形成されるように照射した状態を示している。前記点線には、一点鎖線、二点鎖線などの鎖線も含まれる。 {Circle around (2)} In the second manufacturing method, when irradiating a laser beam so as to form a straight line, a curve, or a combination of a straight line and a curve, the laser beam is irradiated so that a portion irradiated with the laser beam and a non-irradiated portion alternate. Irradiation such that laser light irradiation parts and non-irradiation parts are generated alternately includes the embodiment of irradiation as shown in FIG. FIG. 1 shows that a non-irradiated portion 12 of a laser beam having a length L2 is alternately generated between an irradiated portion 11 of a laser beam having a length L1 and an adjacent irradiated portion 11 of a laser beam having a length L1. An irradiation state is shown so as to form a dotted line. The dotted line also includes a chain line such as a one-dot chain line or a two-dot chain line.
 複数回照射するときは、レーザー光の照射部分を同じにしてもよいし、レーザー光の照射部分を異ならせる(レーザー光の照射部分をずらす)ことで、炭化物系の非磁性セラミックス成形体の全体が粗面化されるようにしてもよい。レーザー光の照射部分を同じにして複数回照射したときは点線状に照射されるが、レーザー光の照射部分をずらして、即ち、最初はレーザー光の非照射部分であった部分にレーザー光の照射部分が重なるようにずらして照射することを繰り返すと、点線状に照射した場合であっても、最終的には実線状態に照射されることになる。繰り返し回数は、1~20回にすることができる。 When irradiating a plurality of times, the laser light irradiation part may be the same, or the laser light irradiation part may be different (the laser light irradiation part is shifted), so that the whole non-magnetic ceramics molded body of the carbide system is formed. May be roughened. When the laser beam is irradiated multiple times with the same part irradiated, the laser beam is irradiated in a dotted line, but the laser light irradiated part is shifted, that is, the laser light is first irradiated to the part that was not irradiated with the laser light. If the irradiation is repeated while being shifted so that the irradiation portions overlap, even when the irradiation is performed in a dotted line, the irradiation is finally performed in a solid line state. The number of repetitions can be 1 to 20 times.
 炭化物系の非磁性セラミックス成形体に対して連続的にレーザー光を照射すると、厚さの小さい成形体では割れなどの変形が生じるおそれもある。しかし、図1に示すように点線状にレーザー照射すると、レーザー光の照射部分11とレーザー光の非照射部分12が交互に生じることになるため、レーザー光の照射を継続した場合、厚さの小さい成形体でも割れなどの変形が生じ難くなる。このとき、上記のようにレーザー光の照射部分を異ならせた(レーザー光の照射部分をずらせた)場合でも同様の効果が得られる。 (4) When a laser beam is continuously irradiated on a carbide-based nonmagnetic ceramic molded body, deformation such as cracking may occur in a molded body having a small thickness. However, when laser irradiation is performed in a dotted line as shown in FIG. 1, laser light irradiation portions 11 and laser light non-irradiation portions 12 are alternately generated. Deformation such as cracking hardly occurs even in a small compact. At this time, the same effect can be obtained even when the irradiated portion of the laser beam is changed as described above (the irradiated portion of the laser beam is shifted).
 レーザー光の照射方法は、例えば金属成形体20の表面に対して、図2(a)に示すように一方向に照射する方法、または図2(b)に示す点線のように双方向から照射する方法を使用することができる。その他、レーザー光の点線照射部分が交差するように照射する方法でもよい。照射後の各点線の間隔b1は、金属成形体の照射対象面積などに応じて調整することができるものであるが、第1の製造方法のライン間隔と同じ範囲にすることができる。 The method of irradiating the laser beam is, for example, a method of irradiating the surface of the metal molded body 20 in one direction as shown in FIG. 2A, or a method of irradiating bidirectionally as shown by a dotted line in FIG. The method can be used. In addition, a method of irradiating the laser beam so that the dotted lines irradiate with each other may be used. The interval b1 between the dotted lines after the irradiation can be adjusted according to the irradiation target area of the metal molded body or the like, but can be in the same range as the line interval in the first manufacturing method.
 図1に示すレーザー光の照射部分11の長さ(L1)とレーザー光の非照射部分12の長さ(L2)は、L1/L2=1/9~9/1の範囲になるように調整することができる。レーザー光の照射部分11の長さ(L1)は、複雑な多孔構造に粗面化するためには本発明の好ましい一態様では0.05mm以上であり、本発明の別の好ましい一態様では0.1~10mmであり、本発明のさらに別の好ましい一態様では0.3~7mmである。 The length (L1) of the laser light irradiated portion 11 and the length (L2) of the laser light non-irradiated portion 12 shown in FIG. 1 are adjusted so that L1 / L2 = 1/9 to 9/1. can do. The length (L1) of the irradiated portion 11 of the laser beam is 0.05 mm or more in a preferred embodiment of the present invention in order to roughen the surface into a complicated porous structure, and is 0 in another preferred embodiment of the present invention. 0.1 to 10 mm, and in still another preferred embodiment of the present invention 0.3 to 7 mm.
 本発明の第2の製造方法の1つの例示的な実施形態では、上記したレーザー光の照射工程は、レーザーの駆動電流を直接変換する直接変調方式の変調装置をレーザー電源に接続したファイバーレーザー装置を使用し、デューティ比(duty ratio)を調整してレーザー照射する。 In one exemplary embodiment of the second manufacturing method of the present invention, the laser light irradiation step described above is a fiber laser apparatus in which a direct modulation type modulator for directly converting a drive current of a laser is connected to a laser power supply. Is used to adjust the duty ratio (duty ratio) to perform laser irradiation.
 レーザーの励起には、パルス励起と連続励起の2種類があり、パルス励起によるパルス波レーザーは一般にノーマルパルスと呼ばれる。連続励起であってもパルス波レーザーを作り出すことが可能であり、ノーマルパルスよりパルス幅(パルスON時間)を短くして、その分ピークパワーの高いレーザーを発振させるQスイッチパルス発振方法、AOMやLN光強度変調機により時間的に光を切り出すことでパルス波レーザーを生成させる外部変調方式、機械的にチョッピングしてパルス化する方法、ガルバノミラーを操作してパルス化する方法、レーザーの駆動電流を直接変調してパルス波レーザーを生成する直接変調方式によりパルス波レーザーを作り出すことができる。ガルバノミラーを操作してパルス化する方法は、ガルバノミラーとガルバノコントローラーの組み合わせによって、ガルバノミラーを介してレーザー発振機から発振されたレーザー光を照射する方法であり、具体的には次のように実施することができる。 There are two types of laser excitation: pulse excitation and continuous excitation. A pulse wave laser by pulse excitation is generally called a normal pulse. A pulse wave laser can be produced even with continuous excitation, and a pulse width (pulse ON time) is made shorter than a normal pulse, and a Q switch pulse oscillation method for oscillating a laser having a higher peak power is used. An external modulation method in which a pulse wave laser is generated by temporally cutting out light using an LN light intensity modulator, a method of mechanically chopping and pulsing, a method of operating a galvanomirror to form a pulse, and a laser driving current A pulse wave laser can be produced by a direct modulation method in which a pulse wave laser is generated by directly modulating a pulse wave laser. The method of pulsing by operating the galvanomirror is a method of irradiating a laser beam oscillated from a laser oscillator via a galvanomirror by a combination of a galvanomirror and a galvanomirror, specifically, as follows. Can be implemented.
 ガルバノコントローラーから周期的にGate信号をON/OFF出力し、そのON/OFF信号でレーザー発振機により発振したレーザー光をON/OFFすることで、レーザー光のエネルギー密度を変化させることなくパルス化することができる。それによって、図1に示すようにレーザー光の照射部分11と隣接するレーザー光の照射部分11の間にあるレーザー光の非照射部分12が交互に生じて、全体として点線状に形成されるようにレーザー光を照射することができる。ガルバノミラーを操作してパルス化する方法は、レーザー光の発振状態自体は替えることなく、デューティ比を調整することができるため、操作が簡単である。 A gate signal is periodically output ON / OFF from a galvano controller, and the laser light oscillated by a laser oscillator is turned ON / OFF by the ON / OFF signal, thereby pulsating the laser light without changing the energy density of the laser light. be able to. As a result, as shown in FIG. 1, the laser light irradiation portions 11 and the non-laser light non-irradiation portions 12 between the adjacent laser light irradiation portions 11 are alternately formed, and are formed in a dotted line as a whole. Can be irradiated with laser light. The method of pulsing by operating the galvanometer mirror is simple in operation because the duty ratio can be adjusted without changing the oscillation state of the laser light itself.
 これらの方法の中でも、連続波レーザーのエネルギー密度を変更することなく、パルス化(照射部分と非照射部分が交互に生じるように照射する)ことが容易にできる方法であることから、機械的にチョッピングしてパルス化する方法、ガルバノミラーを操作してパルス化する方法、レーザーの駆動電流を直接変調してパルス波レーザーを生成する直接変調方式が使用されてよい。上記したような例示的な実施形態では、レーザーの駆動電流を直接変換する直接変調方式の変調装置をレーザー電源に接続したファイバーレーザー装置を使用することで、レーザーを連続励起させてパルス波レーザーを作り出してよい。 Among these methods, it is easy to pulse (irradiate so that irradiated and non-irradiated portions alternate) without changing the energy density of the continuous wave laser. A method of pulsing by chopping, a method of pulsing by operating a galvanomirror, and a direct modulation method of directly modulating a driving current of a laser to generate a pulse wave laser may be used. In the exemplary embodiment as described above, by using a fiber laser device in which a direct modulation type modulation device that directly converts the driving current of the laser is connected to a laser power supply, the laser is continuously excited to generate a pulsed laser. May be produced.
 デューティ比は、レーザー光の出力のON時間とOFF時間から次式により求められる比である。
   デューティ比(%)=ON時間/(ON時間+OFF時間)×100
デューティ比は、図1に示すL1とL2(すなわち、L1/[L1+L2])に対応するものであるから、例えば10~90%の範囲から選択することができる。デューティ比を調整してレーザー光を照射することで、図1に示すような点線状に照射することができる。
The duty ratio is a ratio obtained from the ON time and the OFF time of the output of the laser light by the following equation.
Duty ratio (%) = ON time / (ON time + OFF time) × 100
Since the duty ratio corresponds to L1 and L2 (that is, L1 / [L1 + L2]) shown in FIG. 1, the duty ratio can be selected, for example, from the range of 10 to 90%. By adjusting the duty ratio and irradiating the laser light, it is possible to irradiate in a dotted line as shown in FIG.
 本発明の1つの実施態様による表面に粗面化構造を有する非磁性セラミックス成形体を、他の材料(非磁性セラミックスを除いた材料)からなる成形体との複合成形体を製造するための製造中間体として使用したときの複合成形体の製造方法の幾つかの例について説明する。これらの複合成形体の製造方法および製造された複合成形体も本発明の範囲内に含まれる。 Production for producing a composite molded article of a non-magnetic ceramic molded article having a roughened structure on the surface and a molded article made of another material (a material excluding non-magnetic ceramics) according to one embodiment of the present invention Some examples of a method for producing a composite molded article when used as an intermediate will be described. The method for producing these composite molded articles and the produced composite molded articles are also included in the scope of the present invention.
(1)粗面化構造を有する炭化物系の非磁性セラミックス成形体と樹脂成形体との複合成形体の製造方法
 第1工程では、上記した第1の製造方法または第2の製造方法により表面に粗面化構造を有する非磁性セラミックス成形体を製造する。
(1) A method for producing a composite molded article of a carbide-based nonmagnetic ceramic molded article having a roughened structure and a resin molded article. In the first step, the surface is formed by the above-described first production method or second production method. A non-magnetic ceramic molded body having a roughened structure is manufactured.
 第2工程では、第1工程において得た表面に粗面化構造を有する炭化物系の非磁性セラミックス成形体の粗面化構造を含む部分を金型内に配置して、前記樹脂成形体となる樹脂を射出成形するか、または第2工程では、第1工程においてレーザー光が照射された非磁性セラミックス成形体の粗面化構造を含む部分を金型内に配置して、少なくとも前記粗面化構造を含む部分と前記樹脂成形体となる樹脂を接触させた状態で圧縮成形する。 In the second step, a portion including the roughened structure of the carbide-based nonmagnetic ceramics molded body having a roughened structure on the surface obtained in the first step is arranged in a mold to form the resin molded body. Injection molding a resin or, in the second step, disposing a portion including the roughened structure of the non-magnetic ceramics molded body irradiated with the laser beam in the first step in a mold, and at least performing the roughening. Compression molding is performed in a state where the portion including the structure and the resin to be the resin molded body are in contact with each other.
 第2工程で使用する樹脂としては、熱可塑性樹脂、熱硬化性樹脂のほか、熱可塑性エラストマーも含まれる。熱可塑性樹脂は、用途に応じて公知の熱可塑性樹脂から適宜選択することができる。例えば、ポリアミド系樹脂(PA6、PA66等の脂肪族ポリアミド、芳香族ポリアミド)、ポリスチレン、ABS樹脂、AS樹脂などのスチレン単位を含む共重合体、ポリエチレン、エチレン単位を含む共重合体、ポリプロピレン、プロピレン単位を含む共重合体、その他のポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリカーボネート系樹脂、アクリル系樹脂、メタクリル系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂、およびポリフェニレンスルフィド系樹脂を挙げることができる。 樹脂 The resin used in the second step includes thermoplastic elastomers in addition to thermoplastic resins and thermosetting resins. The thermoplastic resin can be appropriately selected from known thermoplastic resins depending on the application. For example, copolymers containing styrene units such as polyamide resins (aliphatic polyamides and aromatic polyamides such as PA6 and PA66), polystyrene, ABS resins, AS resins, etc., polyethylene, copolymers containing ethylene units, polypropylene, propylene Examples include copolymers containing units, other polyolefins, polyvinyl chloride, polyvinylidene chloride, polycarbonate resins, acrylic resins, methacrylic resins, polyester resins, polyacetal resins, and polyphenylene sulfide resins.
 熱硬化性樹脂は、用途に応じて公知の熱硬化性樹脂から適宜選択することができる。例えば、尿素樹脂、メラミン樹脂、フェノール樹脂、レソルシノール樹脂、エポキシ樹脂、ポリウレタン、およびビニルウレタンを挙げることができる。熱硬化性樹脂を使用するときは、プレポリマー形態のものを使用し、後工程において加熱硬化処理をすることができる。 The thermosetting resin can be appropriately selected from known thermosetting resins depending on the application. For example, urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, polyurethane, and vinyl urethane can be mentioned. When a thermosetting resin is used, a prepolymer form can be used, and a heat curing treatment can be performed in a later step.
 熱可塑性エラストマーは、用途に応じて公知の熱可塑性エラストマーから適宜選択することができる。例えば、スチレン系エラストマー、塩化ビニル系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ニトリル系エラストマー、およびポリアミド系エラストマーを挙げることができる。 The thermoplastic elastomer can be appropriately selected from known thermoplastic elastomers depending on the application. For example, styrene elastomers, vinyl chloride elastomers, olefin elastomers, urethane elastomers, polyester elastomers, nitrile elastomers, and polyamide elastomers can be used.
 これらの熱可塑性樹脂、熱硬化性樹脂、および熱可塑性エラストマーには、公知の繊維状充填材を配合することができる。公知の繊維状充填材としては、炭素繊維、無機繊維、金属繊維、有機繊維等を挙げることができる。 公 知 A known fibrous filler can be blended with these thermoplastic resins, thermosetting resins, and thermoplastic elastomers. Known fibrous fillers include carbon fibers, inorganic fibers, metal fibers, and organic fibers.
 炭素繊維は周知のものであり、PAN系、ピッチ系、レーヨン系、リグニン系等のものを用いることができる。無機繊維としては、ガラス繊維、玄武岩繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化ホウ素繊維、窒化ケイ素繊維等を挙げることができる。金属繊維としては、ステンレス、アルミニウム、銅等からなる繊維を挙げることができる。
 有機繊維としては、ポリアミド繊維(全芳香族ポリアミド繊維、ジアミンとジカルボン酸のいずれか一方が芳香族化合物である半芳香族ポリアミド繊維、脂肪族ポリアミド繊維)、ポリビニルアルコール繊維、アクリル繊維、ポリオレフィン繊維、ポリオキシメチレン繊維、ポリテトラフルオロエチレン繊維、ポリエステル繊維(全芳香族ポリエステル繊維を含む)、ポリフェニレンスルフィド繊維、ポリイミド繊維、液晶ポリエステル繊維などの合成繊維や天然繊維(セルロース系繊維など)や再生セルロース(レーヨン)繊維などを用いることができる。
The carbon fibers are well-known, and PAN-based, pitch-based, rayon-based, and lignin-based carbon fibers can be used. Examples of the inorganic fibers include glass fibers, basalt fibers, silica fibers, silica / alumina fibers, zirconia fibers, boron nitride fibers, and silicon nitride fibers. Examples of the metal fibers include fibers made of stainless steel, aluminum, copper, and the like.
As organic fibers, polyamide fibers (wholly aromatic polyamide fibers, semi-aromatic polyamide fibers in which one of diamine and dicarboxylic acid is an aromatic compound, aliphatic polyamide fibers), polyvinyl alcohol fibers, acrylic fibers, polyolefin fibers, Synthetic fiber such as polyoxymethylene fiber, polytetrafluoroethylene fiber, polyester fiber (including wholly aromatic polyester fiber), polyphenylene sulfide fiber, polyimide fiber, liquid crystal polyester fiber, natural fiber (cellulose fiber, etc.) and regenerated cellulose ( Rayon) fiber or the like can be used.
 これらの繊維状充填材は、繊維径が3~60μmの範囲のものを使用することができるが、これらの中でも、例えば金属成形体10の接合面12が粗面化されて形成される開放孔30などの開口径より小さな繊維径のものを使用することができる。繊維径は、本発明の好ましい一態様では5~30μm、本発明の別の好ましい一態様では7~20μmである。熱可塑性樹脂、熱硬化性樹脂、または熱可塑性エラストマー100質量部に対する繊維状充填材の配合量は本発明の好ましい一態様では5~250質量部、本発明の別の好ましい一態様では25~200質量部、本発明のさらに別の好ましい一態様では45~150質量部である。 As these fibrous fillers, those having a fiber diameter in the range of 3 to 60 μm can be used. Among them, for example, open holes formed by roughening the bonding surface 12 of the metal molded body 10 are described. A fiber having a fiber diameter smaller than the opening diameter, such as 30, can be used. The fiber diameter is 5 to 30 μm in one preferred embodiment of the present invention, and 7 to 20 μm in another preferred embodiment of the present invention. The blending amount of the fibrous filler with respect to 100 parts by mass of the thermoplastic resin, the thermosetting resin, or the thermoplastic elastomer is 5 to 250 parts by mass in a preferred embodiment of the present invention, and 25 to 200 parts in another preferred embodiment of the present invention. Parts by mass, in another preferred embodiment of the present invention, from 45 to 150 parts by mass.
(2-1)粗面化構造を有する炭化物系の非磁性セラミックス成形体とゴム成形体との複合成形体の製造方法
 第1工程では、第1の製造方法または第2の製造方法により表面に粗面化構造を有する非磁性セラミックス成形体を製造する。第2工程では、第1工程において得た炭化物系の非磁性セラミックス成形体とゴム成形体をプレス成形やトランスファー成形などの公知の成形方法を適用して一体化させる。
(2-1) Method for Producing Composite Molded Body of Carbide-Based Nonmagnetic Ceramics Molded Body Having Roughened Structure and Rubber Molded Body In the first step, the surface is formed by the first production method or the second production method. A non-magnetic ceramic molded body having a roughened structure is manufactured. In the second step, the carbide-based nonmagnetic ceramic molded body and the rubber molded body obtained in the first step are integrated by applying a known molding method such as press molding or transfer molding.
 プレス成形法を適用するときは、例えば、炭化物系の非磁性セラミックス成形体の粗面化構造を含む部分を金型内に配置して、前記粗面化構造を含む部分に対して、加熱および加圧した状態で前記ゴム成形体となる未硬化ゴムをプレスした後、冷却後に取り出す。トランスファー成形法を適用するときは、例えば、炭化物系の非磁性セラミックス成形体の粗面化構造を含む部分を金型内に配置して、未硬化ゴムを金型内に射出成形し、その後、加熱および加圧して、炭化物系の非磁性セラミックス成形体の粗面化構造を含む部分とゴム成形体を一体化させ、冷却後に取り出す。 When the press molding method is applied, for example, a portion including a roughened structure of a carbide-based nonmagnetic ceramics molded body is arranged in a mold, and heating and heating are performed on the portion including the roughened structure. After the uncured rubber to be the rubber molded body is pressed in a pressurized state, it is taken out after cooling. When applying the transfer molding method, for example, a portion including a roughened structure of a carbide-based non-magnetic ceramic molded body is arranged in a mold, and the uncured rubber is injection-molded in the mold, and thereafter, By heating and pressurizing, the part including the roughened structure of the carbide-based nonmagnetic ceramic molded body and the rubber molded body are integrated, and after cooling, they are taken out.
 なお、使用するゴムの種類によっては、主として残留モノマーを除去するため、金型から取り出した後、オーブンなどでさらに二次加熱(二次硬化)する工程を付加することができる。 Depending on the type of rubber used, a step of secondary heating (secondary curing) in an oven or the like after removal from the mold can be added in order to mainly remove residual monomers.
 この工程で使用するゴム成形体のゴムは特に制限されるものではなく、公知のゴムを使用することができるが、熱可塑性エラストマーは含まれない。公知のゴムとしては、エチレン‐プロピレンコポリマー(EPM)、エチレン‐プロピレン‐ジエンターポリマー(EPDM)、エチレン‐オクテンコポリマー(EOM)、エチレン‐ブテンコポリマー(EBM)、エチレン‐オクテンターポリマー(EODM)、エチレン‐ブテンターポリマー(EBDM)などのエチレン‐α‐オレフィンゴム;
 エチレン/アクリル酸ゴム(EAM)、ポリクロロプレンゴム(CR)、アクリロニトリル‐ブタジエンゴム(NBR)、水添NBR(HNBR)、スチレン‐ブタジエンゴム(SBR)、アルキル化クロロスルホン化ポリエチレン(ACSM)、エピクロルヒドリン(ECO)、ポリブタジエンゴム(BR)、天然ゴム(合成ポリイソプレンを含む)(NR)、塩素化ポリエチレン(CPE)、ブロム化ポリメチルスチレン‐ブテンコポリマー、スチレン‐ブタジエン‐スチレンおよびスチレン‐エチレン‐ブタジエン‐スチレンブロックコポリマー、アクリルゴム(ACM)、エチレン‐酢酸ビニルエラストマー(EVM)、およびシリコーンゴムなどを使用することができる。
The rubber of the rubber molded body used in this step is not particularly limited, and a known rubber can be used, but does not include a thermoplastic elastomer. Known rubbers include ethylene-propylene copolymer (EPM), ethylene-propylene-diene terpolymer (EPDM), ethylene-octene copolymer (EOM), ethylene-butene copolymer (EBM), ethylene-octene terpolymer (EODM), Ethylene-α-olefin rubbers such as ethylene-butene terpolymer (EBDM);
Ethylene / acrylic acid rubber (EAM), polychloroprene rubber (CR), acrylonitrile-butadiene rubber (NBR), hydrogenated NBR (HNBR), styrene-butadiene rubber (SBR), alkylated chlorosulfonated polyethylene (ACSM), epichlorohydrin (ECO), polybutadiene rubber (BR), natural rubber (including synthetic polyisoprene) (NR), chlorinated polyethylene (CPE), brominated polymethylstyrene-butene copolymer, styrene-butadiene-styrene and styrene-ethylene-butadiene -Styrene block copolymers, acrylic rubbers (ACM), ethylene-vinyl acetate elastomers (EVM), silicone rubbers and the like can be used.
 ゴムには、必要によりゴムの種類に応じた硬化剤を含有させてよいが、その他、公知の各種ゴム用添加剤を配合することができる。ゴム用添加剤としては、硬化促進剤、老化防止剤、シランカップリング剤、補強剤、難燃剤、オゾン劣化防止剤、充填剤、プロセスオイル、可塑剤、粘着付与剤、および加工助剤などを使用することができる。 (4) The rubber may contain a curing agent according to the type of the rubber, if necessary. In addition, various known rubber additives can be blended. Rubber additives include curing accelerators, anti-aging agents, silane coupling agents, reinforcing agents, flame retardants, ozone deterioration inhibitors, fillers, process oils, plasticizers, tackifiers, and processing aids. Can be used.
(2-2)粗面化構造を有する炭化物系の非磁性セラミックス成形体とゴム成形体との複合成形体(接着剤層を含む)の製造方法
 1つの実施態様によれば、炭化物系の非磁性セラミックス成形体とゴム成形体との複合成形体の製造方法では、炭化物系の非磁性セラミックス成形体とゴム成形体の接合面に接着剤層を介在させることができる。
(2-2) Method for Producing Composite Molded Body (Including Adhesive Layer) of Carbide-Based Nonmagnetic Ceramic Molded Body Having Roughened Structure and Rubber Molded Body According to one embodiment, according to one embodiment, In the method for producing a composite molded article of a magnetic ceramic molded article and a rubber molded article, an adhesive layer can be interposed at the joint surface between the carbide-based non-magnetic ceramic molded article and the rubber molded article.
 第1工程にて、上記した方法と同様に連続波レーザーを使用して、炭化物系の非磁性セラミックス成形体を粗面化する。第2工程にて、炭化物系の非磁性セラミックス成形体の粗面化構造面に接着剤(接着剤溶液)を塗布して接着剤層を形成する。このとき、接着剤を圧入するようにしてもよい。接着剤を塗布することで、非磁性セラミックスの粗面化構造面と内部の孔に接着剤を存在させることができる。 (4) In the first step, a carbide-based non-magnetic ceramic molded body is roughened using a continuous wave laser in the same manner as in the above method. In the second step, an adhesive (adhesive solution) is applied to the roughened structure surface of the carbide-based nonmagnetic ceramic molded body to form an adhesive layer. At this time, the adhesive may be press-fitted. By applying the adhesive, the adhesive can be present on the roughened surface of the non-magnetic ceramic and on the internal holes.
 接着剤は、特に制限されるものではなく、公知の熱可塑性接着剤、熱硬化性接着剤、ゴム系接着剤などを使用することができる。熱可塑性接着剤の例としては、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラール、アクリル系接着剤、ポリエチレン、塩素化ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-エチルアクリレート共重合体、エチレン-アクリル酸共重合体、アイオノマー、塩素化ポリプロピレン、ポリスチレン、ポリ塩化ビニル、プラスチゾル、塩化ビニル-酢酸ビニル共重合体、ポリビニルエーテル、ポリビニルピロリドン、ポリアミド、ナイロン、飽和無定形ポリエステル、およびセルロース誘導体を挙げることができる。 The adhesive is not particularly limited, and a known thermoplastic adhesive, thermosetting adhesive, rubber-based adhesive, or the like can be used. Examples of the thermoplastic adhesive include polyvinyl acetate, polyvinyl alcohol, polyvinyl formal, polyvinyl butyral, acrylic adhesive, polyethylene, chlorinated polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene -Ethyl acrylate copolymer, ethylene-acrylic acid copolymer, ionomer, chlorinated polypropylene, polystyrene, polyvinyl chloride, plastisol, vinyl chloride-vinyl acetate copolymer, polyvinyl ether, polyvinylpyrrolidone, polyamide, nylon, non-saturated Fixed polyesters and cellulose derivatives can be mentioned.
 熱硬化性接着剤の例としては、尿素樹脂、メラミン樹脂、フェノール樹脂、レソルシノール樹脂、エポキシ樹脂、ポリウレタン、およびビニルウレタンを挙げることができる。ゴム系接着剤の例としては、天然ゴム、合成ポリイソプレン、ポリクロロプレン、ニトリルゴム、スチレン-ブタジエンゴム、スチレン-ブタジエン-ビニルピリジン三元共重合体、ポリイソブチレン-ブチルゴム、ポリスルフィドゴム、シリコーンRTV、塩化ゴム、臭化ゴム、クラフトゴム、ブロック共重合体、および液状ゴムを挙げることができる。 例 Examples of the thermosetting adhesive include urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, polyurethane, and vinyl urethane. Examples of rubber adhesives include natural rubber, synthetic polyisoprene, polychloroprene, nitrile rubber, styrene-butadiene rubber, styrene-butadiene-vinylpyridine terpolymer, polyisobutylene-butyl rubber, polysulfide rubber, silicone RTV, Examples include chlorinated rubber, brominated rubber, kraft rubber, block copolymer, and liquid rubber.
 この製造方法の例では第3工程にて、前工程において接着剤層を形成した炭化物系の非磁性セラミックス成形体の面に対して別途成形したゴム成形体を接着する工程、または前工程において接着剤層を形成した炭化物系の非磁性セラミックス成形体の面を含む部分を金型内に配置して、炭化物系の非磁性セラミックス成形体の面とゴム成形体となる未硬化ゴムを接触させた状態で加熱および加圧して一体化させる工程を実施する。この工程の場合には、主として残留モノマーを除去するため、金型から取り出した後、オーブンなどでさらに二次加熱(二次硬化)する工程を付加することができる。 In the example of this manufacturing method, in the third step, a rubber molded body separately molded is bonded to the surface of the carbide-based nonmagnetic ceramic molded body on which the adhesive layer was formed in the previous step, or The part including the surface of the carbide-based non-magnetic ceramic molded body with the agent layer formed was placed in the mold, and the surface of the carbide-based non-magnetic ceramic molded body was brought into contact with the uncured rubber to be the rubber molded body. A step of integrating by heating and pressing in a state is performed. In the case of this step, a step of secondary heating (secondary curing) in an oven or the like after removal from the mold can be added to remove mainly residual monomers.
(3-1)粗面化構造を有する炭化物系のセラミックス成形体と金属成形体との複合成形体の製造方法
 第1工程では、第1の製造方法または第2の製造方法により粗面化構造を有する炭化物系の非磁性セラミックス成形体を製造する。第2工程では、金型内に粗面化した炭化物系の非磁性セラミックス成形体の多孔構造部を含む面が上になるように配置する。その後、例えば周知のダイカスト法を適用して、溶融状態の金属を金型内に流し込んだ後、冷却する。
(3-1) Method for Producing Composite Molded Body of Carbide-Based Ceramics Molded Body and Metal Molded Body Having Roughened Structure In the first step, the roughened structure is formed by the first manufacturing method or the second manufacturing method. To produce a carbide-based non-magnetic ceramic molded article having the following. In the second step, the roughened carbide-based non-magnetic ceramic molded body is placed in the mold such that the surface including the porous structure portion faces upward. Thereafter, the metal in a molten state is poured into a mold by, for example, a known die casting method, and then cooled.
 使用する金属は、炭化物系の非磁性セラミックス成形体を構成する炭化物系の非磁性セラミックスの融点よりも低い融点のものであれば制限されない。例えば、鉄、アルミニウム、アルミニウム合金、金、銀、プラチナ、銅、マグネシウム、チタンまたはそれらの合金、ステンレスなどの複合成形体の用途に応じた金属を選択することができる。 金属 The metal used is not limited as long as it has a melting point lower than the melting point of the carbide-based non-magnetic ceramic constituting the carbide-based non-magnetic ceramic molded body. For example, it is possible to select a metal according to the use of the composite molded body such as iron, aluminum, an aluminum alloy, gold, silver, platinum, copper, magnesium, titanium or an alloy thereof, and stainless steel.
(3-2)粗面化構造を有する炭化物系の非磁性セラミックス成形体と金属成形体との複合成形体(接着剤層あり)の製造方法
 第1工程と第2工程は、上記した「(2-2)粗面化構造を有する炭化物系の非磁性セラミックス成形体とゴム成形体との複合成形体(接着剤層を含む)の製造方法」と同様に実施して、接着剤層を有する炭化物系の非磁性セラミックス成形体を製造する。
(3-2) Manufacturing Method of Composite Molded Body (with Adhesive Layer) of Carbide-Based Non-Magnetic Ceramics Molded Body Having Roughened Structure and Metal Molded Body 2-2) Method for Manufacturing Composite Molded Body (Including Adhesive Layer) of Carbide-Based Non-magnetic Ceramics Molded Body Having Roughened Structure and Rubber Molded Body " Manufactures carbide-based non-magnetic ceramic molded bodies.
 第3工程では、接着剤層を有する炭化物系の非磁性セラミックス成形体の接着剤層に金属成形体を押しつけて接着・一体化する。接着剤層が熱可塑性樹脂系接着剤からなるものであるときは、必要に応じて加熱して接着剤層を軟らかくした状態で、非金属成形体の接着面と接着させることができる。また接着剤層が熱硬化性樹脂系接着剤のプレポリマーからなるものであるときは、接着後に加熱雰囲気に放置してプレポリマーを加熱硬化させる。 で は In the third step, the metal molded body is pressed against the adhesive layer of the carbide-based non-magnetic ceramic molded body having the adhesive layer to be bonded and integrated. When the adhesive layer is made of a thermoplastic resin-based adhesive, the adhesive layer can be adhered to the adhesive surface of the non-metal molded body in a state where the adhesive layer is softened by heating as necessary. When the adhesive layer is made of a thermosetting resin-based adhesive prepolymer, the prepolymer is heated and cured by being left in a heating atmosphere after bonding.
(4)粗面化構造を有する炭化物系の非磁性セラミックス成形体とUV硬化性樹脂成形体との複合成形体の製造方法
 第1工程では、上記した第1の製造方法または第2の製造方法により表面に粗面化構造を有する炭化物系の非磁性セラミックス成形体を製造する。
(4) Method of Manufacturing Composite Molded Body of Carbide-Based Nonmagnetic Ceramic Molded Body Having Roughened Structure and UV-Curable Resin Molded Body In the first step, the above-described first manufacturing method or second manufacturing method is used. To produce a carbide-based non-magnetic ceramic molded body having a roughened structure on the surface.
 次の工程にて、炭化物系の非磁性セラミックス成形体の粗面化部分を含めた部分に対して、UV硬化性樹脂層を形成するモノマー、オリゴマーまたはそれらの混合物を接触させる(モノマー、オリゴマーまたはそれらの混合物の接触工程)。
 モノマー、オリゴマーまたはそれらの混合物の接触工程としては、炭化物系の非磁性セラミックス成形体の粗面化部分を含めた部分に対してモノマー、オリゴマーまたはそれらの混合物を塗布する工程を実施することができる。モノマー、オリゴマーまたはそれらの混合物を塗布する工程は、刷毛塗り、ドクターブレードを使用した塗布、ローラー塗布、流延、ポッティングなどを単独で使用したり、組み合わせて使用したりすることができる。
In the next step, a monomer, an oligomer or a mixture thereof for forming a UV-curable resin layer is brought into contact with the portion including the roughened portion of the carbide-based non-magnetic ceramic molded body (monomer, oligomer or Contacting those mixtures).
As the step of contacting the monomer, the oligomer or the mixture thereof, a step of applying the monomer, the oligomer or the mixture thereof to a portion including the roughened portion of the carbide-based non-magnetic ceramic molded body can be performed. . In the step of applying a monomer, an oligomer or a mixture thereof, brush coating, application using a doctor blade, roller application, casting, potting, and the like can be used alone or in combination.
 モノマー、オリゴマーまたはそれらの混合物の接触工程は、炭化物系の非磁性セラミックス成形体の粗面化部分を含めた部分を型枠で包囲して、前記型枠内にモノマー、オリゴマーまたはそれらの混合物を注入する工程を実施することができる。
 またモノマー、オリゴマーまたはそれらの混合物の接触工程は、炭化物系の非磁性セラミックス成形体の粗面化部分を上にした状態で型内部に入れた後、前記型内部にモノマー、オリゴマーまたはそれらの混合物を注入する工程を実施することができる。
In the contacting step of the monomer, the oligomer or the mixture thereof, the portion including the roughened portion of the carbide-based nonmagnetic ceramic molded body is surrounded by a mold, and the monomer, the oligomer or the mixture thereof is placed in the mold. An injecting step can be performed.
Further, the step of contacting the monomer, the oligomer or the mixture thereof includes the steps of: placing the carbide-based non-magnetic ceramic molded body in a mold with the roughened portion facing upward; Can be performed.
 このモノマー、オリゴマーまたはそれらの混合物の接触工程によって、炭化物系の非磁性セラミックス成形体の粗面化部分の多孔にモノマー、オリゴマーまたはそれらの混合物が入り込む。多孔にモノマー、オリゴマーまたはそれらの混合物が入り込む形態は、例えば、本発明の好ましい一態様では孔全体の50%以上、本発明の別の好ましい一態様では70%以上、本発明のさらに別の好ましい一態様では80%以上、本発明のさらに別の好ましい一態様では90%以上の孔にモノマー、オリゴマーまたはそれらの混合物が入り込む形態のほか、孔の底までモノマー、オリゴマーまたはそれらの混合物が入り込んだ形態、孔深さの途中の深さまでモノマー、オリゴマーまたはそれらの混合物が入り込んだ形態、孔の入口付近にのみモノマー、オリゴマーまたはそれらの混合物が入り込んだ形態が混在している形態が含まれる。 モ ノ マ ー By the contacting step of the monomer, oligomer or mixture thereof, the monomer, oligomer or mixture thereof enters the porosity of the roughened portion of the carbide-based non-magnetic ceramic molded body. The form in which the monomer, oligomer or mixture thereof enters the porosity is, for example, 50% or more of the whole pores in a preferred embodiment of the present invention, 70% or more in another preferred embodiment of the present invention, and still another preferred embodiment of the present invention. In one embodiment, 80% or more, and in still another preferred embodiment of the present invention, 90% or more of the pores contain the monomer, oligomer or mixture thereof, and the monomer, oligomer or mixture thereof enters the bottom of the pore. The form includes a form in which a monomer, an oligomer, or a mixture thereof enters into a partway depth of the pore, and a form in which a form in which a monomer, an oligomer, or a mixture thereof enters only near the entrance of the hole.
 モノマー、オリゴマーまたはそれらの混合物は、常温で液体のもの(低粘度のゲルも含む)や溶剤に溶解された溶液形態のものはそのまま塗布または注入することができ、固体(粉末)のものは加熱溶融させたり、溶剤に溶解させたりした後で塗布または注入することができる。 Monomers, oligomers or mixtures thereof can be applied or injected as they are in liquid form (including low-viscosity gels) at room temperature or in the form of a solution dissolved in a solvent. Solid (powder) forms can be heated. It can be applied or poured after being melted or dissolved in a solvent.
 モノマー、オリゴマーまたはそれらの混合物の接触工程で使用するモノマー、オリゴマーまたはそれらの混合物は、ラジカル重合性モノマーおよびラジカル重合性モノマーのオリゴマーから選ばれるものであるか、カチオン重合性モノマーおよび前記モノマーのカチオン重合性モノマーオリゴマー、またはそれらから選択される2種以上の混合物から選ばれるものあってよい。 The monomer, oligomer or mixture thereof used in the step of contacting the monomer, oligomer or mixture thereof is selected from a radical polymerizable monomer and an oligomer of a radical polymerizable monomer, or is a cation polymerizable monomer and a cation of the monomer. It may be one selected from polymerizable monomer oligomers or a mixture of two or more selected from them.
(ラジカル重合性モノマー)
 ラジカル重合性化合物としては、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、ビニルエーテル基、ビニルアリール基、およびビニルオキシカルボニル基などのラジカル重合性基を一分子内に1つ以上有する化合物などが挙げられる。
(Radical polymerizable monomer)
As the radical polymerizable compound, a radical polymerizable group such as a (meth) acryloyl group, a (meth) acryloyloxy group, a (meth) acryloylamino group, a vinyl ether group, a vinylaryl group, and a vinyloxycarbonyl group is contained in one molecule. Compounds having at least one compound are exemplified.
 (メタ)アクリロイル基を一分子内に1つ以上有する化合物としては、1-ブテン-3-オン、1-ペンテン-3-オン、1-ヘキセン-3-オン、4-フェニル-1-ブテン-3-オン、5-フェニル-1-ペンテン-3-オンなど、およびこれらの誘導体などが挙げられる。 Compounds having one or more (meth) acryloyl groups in one molecule include 1-buten-3-one, 1-penten-3-one, 1-hexen-3-one, 4-phenyl-1-butene- 3-one, 5-phenyl-1-penten-3-one and the like, and derivatives thereof.
 (メタ)アクリロイルオキシ基を一分子内に1つ以上有する化合物としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ラウリル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、n-ブトキシエチル(メタ)アクリレート、ブトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2―ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、アクリル酸、メタクリル酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、グリシジル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルアシッドフォスフェート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、デカンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピル(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート、イソアミル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、γ-(メタ)アクリロイルオキシプロピルトリメトキシシラン、2-(メタ)アクリロイルオキシエチルイソシアネート、1,1-ビス(アクリロイルオキシ)エチルイソシアネート、2-(2-(メタ)アクリロイルオキシエチルオキシ)エチルイソシアネート、3-(メタ)アクリロイルオキシプロピルトリエトキシシランなど、およびこれらの誘導体などが挙げられる。 Examples of the compound having at least one (meth) acryloyloxy group in one molecule include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and t-butyl (meth). A) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, n-lauryl (meth) acrylate, n-stearyl (meth) acrylate, n-butoxyethyl (meth) acrylate, Butoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, cyclohexyl (meth) acrylate, tetrahydrofurfuryl (meth) acryl , Benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, dimethyl Aminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, acrylic acid, methacrylic acid, 2- (meth) acryloyloxyethylsuccinic acid, 2- (meth) acryloyloxyethylhexahydrophthalic acid, 2- (meth) acryloyl Oxyethyl-2-hydroxypropyl phthalate, glycidyl (meth) acrylate, 2- (meth) acryloyloxyethyl acid phosphate, ethylene glycol di (meth) acrylate, diethyl Glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1 , 9-Nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, decane di (meth) acrylate, glycerin di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) ) Acrylate, dimethylol tricyclodecane di (meth) acrylate, trifluoroethyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, isoamyl (meth) acrylate, isomyristyl (meth) acrylate, γ- (meth) ) Acryloyloxypropyltrimethoxysilane, 2- (meth) acryloyloxyethyl isocyanate, 1,1-bis (acryloyloxy) ethyl isocyanate, 2- (2- (meth) acryloyloxyethyloxy) ethyl isocyanate, 3- (meth) ) Acryloyloxypropyltriethoxysilane and the like, and derivatives thereof.
 (メタ)アクリロイルアミノ基を一分子内に1つ以上有する化合物としては、4-(メタ)アクリロイルモルホリン、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-n-ブトキシメチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミド、N-オクチル(メタ)アクリルアミドなど、およびこれらの誘導体などが挙げられる。 Compounds having one or more (meth) acryloylamino groups in one molecule include 4- (meth) acryloylmorpholine, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-methyl (Meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-butyl (meth) acrylamide, Nn-butoxymethyl (meth) acrylamide, N- Hexyl (meth) acrylamide, N-octyl (meth) acrylamide, and the like, and derivatives thereof are given.
 ビニルエーテル基を一分子内に1つ以上有する化合物としては、例えば、3,3-ビス(ビニルオキシメチル)オキセタン、2-ヒドロキシエチルビニルエーテル、3-ヒドロキシプロピルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、2-ヒドロキシイソプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、3-ヒドロキシブチルビニルエーテル、2-ヒドロキシブチルビニルエーテル、3-ヒドロキシイソブチルビニルエーテル、2-ヒドロキシイソブチルビニルエーテル、1-メチル-3-ヒドロキシプロピルビニルエーテル、1-メチル-2-ヒドロキシプロピルビニルエーテル、1-ヒドロキシメチルプロピルビニルエーテル、4-ヒドロキシシクロヘキシルビニルエーテル、1,6-ヘキサンジオールモノビニルエーテル、1,4-シクロヘキサンジメタノールモノビニルエーテル、1,3-シクロヘキサンジメタノールモノビニルエーテル、1,2-シクロヘキサンジメタノールモノビニルエーテル、p-キシレングリコールモノビニルエーテル、m-キシレングリコールモノビニルエーテル、o-キシレングリコールモノビニルエーテル、ジエチレングリコールモノビニルエーテル、トリエチレングリコールモノビニルエーテル、テトラエチレングリコールモノビニルエーテル、ペンタエチレングリコールモノビニルエーテル、オリゴエチレングリコールモノビニルエーテル、ポリエチレングリコールモノビニルエーテル、ジプロピレングリコールモノビニルエーテル、トリプロピレングリコールモノビニルエーテル、テトラプロピレングリコールモノビニルエーテル、ペンタプロピレングリコールモノビニルエーテル、オリゴプロピレングリコールモノビニルエーテル、ポリプロピレングリコールモノビニルエーテルなど、およびこれらの誘導体などが挙げられる。 Compounds having one or more vinyl ether groups in one molecule include, for example, 3,3-bis (vinyloxymethyl) oxetane, 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxy Isopropyl vinyl ether, 4-hydroxybutyl vinyl ether, 3-hydroxybutyl vinyl ether, 2-hydroxybutyl vinyl ether, 3-hydroxyisobutyl vinyl ether, 2-hydroxyisobutyl vinyl ether, 1-methyl-3-hydroxypropyl vinyl ether, 1-methyl-2-hydroxy Propyl vinyl ether, 1-hydroxymethylpropyl vinyl ether, 4-hydroxycyclohexyl vinyl ether, 1,6-hexanediol Novinyl ether, 1,4-cyclohexane dimethanol monovinyl ether, 1,3-cyclohexane dimethanol monovinyl ether, 1,2-cyclohexane dimethanol monovinyl ether, p-xylene glycol monovinyl ether, m-xylene glycol monovinyl ether, o-xylene Glycol monovinyl ether, diethylene glycol monovinyl ether, triethylene glycol monovinyl ether, tetraethylene glycol monovinyl ether, pentaethylene glycol monovinyl ether, oligoethylene glycol monovinyl ether, polyethylene glycol monovinyl ether, dipropylene glycol monovinyl ether, tripropylene glycol monovinyl ether, tetra Propylene glyco Monovinyl ether, pentapropylene glycol monovinyl ether, oligopropylene glycol monovinyl ether, polypropylene glycol monovinyl ether, and the like, and derivatives thereof.
 ビニルアリール基を一分子内に1つ以上有する化合物としては、スチレン、ジビニルベンゼン、メトキシスチレン、エトキシスチレン、ヒドロキシスチレン、ビニルナフタレン、ビニルアントラセン、酢酸4-ビニルフェニル、(4-ビニルフェニル)ジヒドロキシボラン、N-(4-ビニルフェニル)マレイミドなど、およびこれらの誘導体などが挙げられる。 Examples of the compound having one or more vinylaryl groups in one molecule include styrene, divinylbenzene, methoxystyrene, ethoxystyrene, hydroxystyrene, vinylnaphthalene, vinylanthracene, 4-vinylphenyl acetate, and (4-vinylphenyl) dihydroxyborane. , N- (4-vinylphenyl) maleimide, and derivatives thereof.
 ビニルオキシカルボニル基を一分子内に1つ以上有する化合物としては、ギ酸イソプロペニル、酢酸イソプロペニル、プロピオン酸イソプロペニル、酪酸イソプロペニル、イソ酪酸イソプロペニル、カプロン酸イソプロペニル、吉草酸イソプロペニル、イソ吉草酸イソプロペニル、乳酸イソプロペニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、シクロヘキサンカルボン酸ビニル、ピバリン酸ビニル、オクチル酸ビニル、モノクロロ酢酸ビニル、アジピン酸ジビニル、アクリル酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、ソルビン酸ビニル、安息香酸ビニル、桂皮酸ビニルなど、およびこれらの誘導体などが挙げられる。 Compounds having one or more vinyloxycarbonyl groups in one molecule include isopropenyl formate, isopropenyl acetate, isopropenyl propionate, isopropenyl butyrate, isopropenyl isobutyrate, isopropenyl caproate, isopropenyl valerate, Isopropenyl valerate, isopropenyl lactate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl caprylate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate, pivalic acid Vinyl, vinyl octylate, vinyl monochloroacetate, divinyl adipate, vinyl acrylate, vinyl methacrylate, vinyl crotonate, vinyl sorbate, vinyl benzoate, vinyl cinnamate, and the like Body and the like.
(カチオン重合性モノマー)
 カチオン重合性モノマーとしては、エポキシ環(オキシラニル基)、ビニルエーテル基、ビニルアリール基などのオキセタニル基等の以外のカチオン重合性基を一分子内に1つ以上有する化合物などが挙げられる。
(Cationically polymerizable monomer)
Examples of the cationic polymerizable monomer include compounds having one or more cationic polymerizable groups in one molecule other than an oxetanyl group such as an epoxy ring (oxiranyl group), a vinyl ether group, and a vinyl aryl group.
 エポキシ環を一分子内に一つ以上有する化合物としては、グリシジルメチルエーテル、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル、臭素化ビスフェノールFジグリシジルエーテル、臭素化ビスフェノールSジグリシジルエーテル、エポキシノボラック樹脂、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールSジグリシジルエーテル、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-メタ-ジオキサン、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、3,4-エポキシ-6-メチルシクロヘキシル-3’,4’-エポキシ-6’-メチルシクロヘキサンカルボキシレート、メチレンビス(3,4-エポキシシクロヘキサン)、ジシクロペンタジエンジエポキサイド、エチレングリコールのジ(3,4-エポキシシクロヘキシルメチル)エーテル、エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、エポキシヘキサヒドロフタル酸ジオクチル、エポキシヘキサヒドロフタル酸ジ-2-エチルヘキシル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル類;エチレングリコール、プロピレングリコール、グリセリンなどの脂肪族多価アルコールに1種又は2種以上のアルキレンオキサイドを付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル類;脂肪族長鎖二塩基酸のジグリシジルエステル類;脂肪族高級アルコールのモノグリシジルエーテル類;フェノール、クレゾール、ブチルフェノール又はこれらにアルキレンオキサイドを付加して得られるポリエーテルアルコールのモノグリシジルエーテル類;および高級脂肪酸のグリシジルエステル類などが挙げられる。 Compounds having one or more epoxy rings in one molecule include glycidyl methyl ether, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether, and brominated bisphenol F diglycidyl ether. Glycidyl ether, brominated bisphenol S diglycidyl ether, epoxy novolak resin, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 3,4-epoxycyclohexylmethyl (3,4 -Epoxy) cyclohexanecarboxylate, 2- (3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy) cyclohexane-meta-dioxane, (3,4-epoxycyclohexylmethyl) adipate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, 3,4-epoxy-6-methylcyclohexyl-3 ', 4'-epoxy-6'-methyl Cyclohexane carboxylate, methylene bis (3,4-epoxycyclohexane), dicyclopentadiene diepoxide, di (3,4-epoxycyclohexylmethyl) ether of ethylene glycol, ethylene bis (3,4-epoxycyclohexanecarboxylate), epoxyhexa Dioctyl hydrophthalate, di-2-ethylhexyl epoxyhexahydrophthalate, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylol Lepropane triglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether; obtained by adding one or more alkylene oxides to aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol, and glycerin. Polyglycidyl ethers of polyether polyols; diglycidyl esters of aliphatic long-chain dibasic acids; monoglycidyl ethers of aliphatic higher alcohols; phenol, cresol, butylphenol or polyether alcohols obtained by adding alkylene oxide thereto Monoglycidyl ethers; and glycidyl esters of higher fatty acids.
 ビニルエーテル基を一分子内に1つ以上有する化合物、ビニルアリール基を一分子内に1つ以上有する化合物としては、ラジカル重合性化合物として例示した化合物と同様の化合物が挙げられる。 Examples of the compound having one or more vinyl ether groups in one molecule and the compound having one or more vinyl aryl groups in one molecule include the same compounds as the compounds exemplified as the radical polymerizable compound.
 オキセタニル基を一分子内に一つ以上有する化合物としては、としては、トリメチレンオキシド、3,3-ビス(ビニルオキシメチル)オキセタン、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-(ヒドロキシメチル)オキセタン、3-エチル-3-[(フェノキシ)メチル]オキセタン、3-エチル-3-(ヘキシルオキシメチル)オキセタン、3-エチル-3-(クロロメチル)オキセタン、3,3-ビス(クロロメチル)オキセタン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、ビス{[1-エチル(3-オキセタニル)]メチル}エーテル、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビシクロヘキシル、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]シクロヘキサン、および3-エチル-3{〔(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタンなどが挙げられる。 Compounds having one or more oxetanyl groups in one molecule include trimethylene oxide, 3,3-bis (vinyloxymethyl) oxetane, 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, 3-ethyl-3- (hydroxymethyl) oxetane, 3-ethyl-3-[(phenoxy) methyl] oxetane, 3-ethyl-3- (hexyloxymethyl) oxetane, 3- Ethyl-3- (chloromethyl) oxetane, 3,3-bis (chloromethyl) oxetane, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, bis {[1-ethyl (3- Oxetanyl)] methyl} ether, 4,4'-bis [(3-ethyl-3-oxetanyl) methoxymethyl] Bicyclohexyl, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] cyclohexane, and 3-ethyl-3 {[(3-ethyloxetan-3-yl) methoxy] methyl} oxetane .
 ラジカル重合性モノマーとカチオン重合性モノマーのオリゴマーは、単官能または多官能(メタ)アクリル系オリゴマーが挙げられ。1種または2種以上を組み合わせて使用できる。単官能または多官能(メタ)アクリル系オリゴマーとしては、ウレタン(メタ)アクリレートオリゴマー、エポキシ(メタ)アクリレートオリゴマー、ポリエーテル(メタ)アクリレートオリゴマー、およびポリエステル(メタ)アクリレートオリゴマーなどが挙げられる。 オ リ ゴ マ ー The oligomer of the radical polymerizable monomer and the cationic polymerizable monomer includes a monofunctional or polyfunctional (meth) acrylic oligomer. One type or a combination of two or more types can be used. Monofunctional or polyfunctional (meth) acrylic oligomers include urethane (meth) acrylate oligomers, epoxy (meth) acrylate oligomers, polyether (meth) acrylate oligomers, and polyester (meth) acrylate oligomers.
 ウレタン(メタ)アクリレートオリゴマーとしては、ポリカーボネート系ウレタン(メタ)アクリレート、ポリエステル系ウレタン(メタ)アクリレート、ポリエーテル系ウレタン(メタ)アクリレート、およびカプロラクトン系ウレタン(メタ)アクリレートなどが挙げられる。ウレタン(メタ)アクリレートオリゴマーは、ポリオールとジイソシアネートとを反応させて得られるイソシアネート化合物と、水酸基を有する(メタ)アクリレートモノマーとの反応により得ることができる。前記ポリオールとしては、ポリカーボネートジオール、ポリエステルポリオール、ポリエーテルポリオール、およびポリカプロラクトンポリオールが挙げられる。 (4) Examples of the urethane (meth) acrylate oligomer include polycarbonate-based urethane (meth) acrylate, polyester-based urethane (meth) acrylate, polyether-based urethane (meth) acrylate, and caprolactone-based urethane (meth) acrylate. The urethane (meth) acrylate oligomer can be obtained by reacting an isocyanate compound obtained by reacting a polyol with diisocyanate and a (meth) acrylate monomer having a hydroxyl group. Examples of the polyol include a polycarbonate diol, a polyester polyol, a polyether polyol, and a polycaprolactone polyol.
 エポキシ(メタ)アクリレートオリゴマーは、例えば、低分子量のビスフェノール型エポキシ樹脂やノボラックエポキシ樹脂のオキシラン環とアクリル酸とのエステル化反応により得られる。ポリエーテル(メタ)アクリレートオリゴマーは、ポリオールの脱水縮合反応によって両末端に水酸基を有するポリエーテルオリゴマーを得、次いで、その両末端の水酸基をアクリル酸でエステル化することにより得られる。ポリエステル(メタ)アクリレートオリゴマーは、例えば、ポリカルボン酸とポリオールの縮合によって両末端に水酸基を有するポリエステルオリゴマーを得、次いで、その両末端の水酸基をアクリル酸でエステル化することにより得られる。 The epoxy (meth) acrylate oligomer is obtained, for example, by an esterification reaction between an oxirane ring of a low molecular weight bisphenol type epoxy resin or a novolak epoxy resin and acrylic acid. The polyether (meth) acrylate oligomer is obtained by obtaining a polyether oligomer having hydroxyl groups at both terminals by a dehydration condensation reaction of a polyol, and then esterifying the hydroxyl groups at both terminals with acrylic acid. The polyester (meth) acrylate oligomer is obtained, for example, by obtaining a polyester oligomer having hydroxyl groups at both ends by condensation of a polycarboxylic acid and a polyol, and then esterifying the hydroxyl groups at both ends with acrylic acid.
 単官能または多官能(メタ)アクリル系オリゴマーの重量平均分子量は、本発明の好ましい一態様では100,000以下であり、本発明の別の好ましい一態様では500~50,000である。 重量 The weight average molecular weight of the monofunctional or polyfunctional (meth) acrylic oligomer is 100,000 or less in a preferred embodiment of the present invention, and is 500 to 50,000 in another preferred embodiment of the present invention.
 上記したモノマー、オリゴマーまたはそれらの混合物を使用するときは、前記モノマー、オリゴマーまたはそれらの混合物100質量部に対して0.01~10質量部の光重合開始剤を使用することができる。 When the above-mentioned monomers, oligomers or mixtures thereof are used, 0.01 to 10 parts by mass of a photopolymerization initiator can be used with respect to 100 parts by mass of the monomers, oligomers or mixture thereof.
 次の工程にて、炭化物系の非磁性セラミックス成形体の粗面化部分を含む部分と接触されたモノマー、オリゴマーまたはそれらの混合物に対してUVを照射して硬化させ、硬化性樹脂層を有する複合成形体を得ることができる。 In the next step, the monomer, oligomer or mixture thereof in contact with the portion including the roughened portion of the carbide-based non-magnetic ceramic molded body is cured by irradiating UV to cure the resin, and has a curable resin layer. A composite molded article can be obtained.
(5)粗面化構造を有する炭化物系の非磁性セラミックス成形体同士の複合成形体、または粗面化構造を有する炭化物系の非磁性セラミックス成形体と、異なる種類の非磁性セラミックス成形体の複合成形体の製造方法
 粗面化構造を有する炭化物系の非磁性セラミックス成形体同士の複合成形体は、例えば、異なる形状の粗面化構造を有する炭化物系の非磁性セラミックス成形体の複数を使用し、それらの接合面に形成させた接着剤層を介して接合一体化させることで製造することができる。前記接着剤層は、炭化物系の非磁性セラミックス成形体の粗面化構造部分に接着剤を塗布するなどして形成することができる。接着剤としては、上記した他の複合成形体の製造で使用したものと同じものを使用することができる。
(5) A composite of a carbide-based nonmagnetic ceramic molded body having a roughened structure, or a composite of a carbide-based nonmagnetic ceramic molded body having a roughened structure and a different type of nonmagnetic ceramic molded body. A method of manufacturing a molded article A composite molded article of a carbide-based nonmagnetic ceramic molded article having a roughened structure uses, for example, a plurality of carbide-based nonmagnetic ceramic molded articles having a roughened structure having different shapes. It can be manufactured by joining and integrating through an adhesive layer formed on the joining surface. The adhesive layer can be formed by, for example, applying an adhesive to a roughened structure portion of a carbide-based nonmagnetic ceramic molded body. As the adhesive, the same adhesive as that used in the production of the other composite molded body described above can be used.
 さらに炭化物系の非磁性セラミックス成形体と異なる種類の非磁性セラミックス成形体からなる複合成形体も同様にして製造することができる。 Furthermore, a composite molded body composed of a nonmagnetic ceramic molded body of a different type from a carbide-based nonmagnetic ceramic molded body can be manufactured in the same manner.
 この実施形態では、炭化物系の非磁性セラミックス成形体の粗面化構造部分に接着剤層を形成して、異なる種類の非磁性セラミックス成形体と接合一体化させる方法のほか、異なる種類の非磁性セラミックス成形体の表面も粗面化構造にして接着剤層を形成した後、炭化物系の非磁性セラミックス成形体の接着剤層を有する面と異なる種類の非磁性セラミックス成形体の接着剤層を有する面を接合一体化させて複合成形体を製造することができる。 In this embodiment, in addition to a method of forming an adhesive layer on a roughened structure portion of a carbide-based non-magnetic ceramic molded body and joining and integrating with a different type of non-magnetic ceramic molded body, different types of non-magnetic ceramic The surface of the ceramic molded body also has a roughened structure to form an adhesive layer, and then has an adhesive layer of a non-magnetic ceramic molded body of a different type from the surface of the carbide-based nonmagnetic ceramic molded body that has the adhesive layer The composite molded body can be manufactured by joining and integrating the surfaces.
 異なる種類の非磁性セラミックスは、酸化物系、窒化物系、硼化物系、および珪化物系などである。異なる種類の非磁性セラミックス成形体の表面を粗面化する方法としては、非磁性セラミックスの種類により方法や条件が異なるが、例えば、本願発明と同様にレーザー光を照射する方法、やすり加工、ブラスト加工、エッチング加工などで粗面化する方法を適用することができる。 Different types of non-magnetic ceramics include oxides, nitrides, borides, and silicides. As methods for roughening the surface of different types of non-magnetic ceramic molded bodies, the methods and conditions differ depending on the type of non-magnetic ceramics. For example, as in the present invention, a method of irradiating a laser beam, filing, blasting A method of roughening by processing, etching, or the like can be applied.
 各実施形態における各構成およびそれらの組み合わせなどは一例であって、本発明の主旨から逸脱しない範囲で、適宜構成の付加、省略、置換およびその他の変更が可能である。本発明は、実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。 Each configuration in each embodiment and a combination thereof are merely examples, and addition, omission, substitution, and other changes of the configuration can be appropriately made without departing from the gist of the present invention. The invention is not limited by the embodiments, but only by the claims.
 <熱衝撃温度(JIS R1648:2002)>
 熱衝撃温度は、加熱された炭化物系の非磁性セラミックス成形体の試験片(4×35×厚さ3mm)を30℃の水中に浸漬したときに破壊された温度である。急激に冷却されたときに内部と表面で生じる温度差により発生する内部応力が試験片の強度を超えたときに破壊される。
<Thermal shock temperature (JIS R1648: 2002)>
The thermal shock temperature is a temperature at which a heated test piece (4 × 35 × 3 mm in thickness) of a carbide-based nonmagnetic ceramic molded body is broken when immersed in water at 30 ° C. When the internal stress generated by the temperature difference between the inside and the surface when cooled rapidly exceeds the strength of the test piece, it is destroyed.
 Ra(算術平均粗さ):炭化物系の非磁性セラミックス成形体の粗面化構造部分の面に1.5mm長さの線を11本引いて、それらのRaをワンショット3D形状測定機(キーエンス製)により測定した。 Ra (arithmetic mean roughness): Eleven 1.5 mm long lines are drawn on the surface of the roughened structure portion of the carbide-based non-magnetic ceramic molded body, and those Ra are measured by a one-shot 3D shape measuring instrument (Keyence Corporation). Manufactured).
 Rz(最大高さ):炭化物系の非磁性セラミックス成形体の粗面化構造部分の面に1.5mm長さの線を11本引いて、それらのRzをワンショット3D形状測定機(キーエンス製)により測定した。 Rz (maximum height): 11 lines of 1.5 mm length are drawn on the surface of the roughened structure portion of the carbide-based non-magnetic ceramic molded body, and those Rz are measured by a one-shot 3D shape measuring machine (manufactured by Keyence Corporation). ).
 Sa(算術平均高さ):炭化物系の非磁性セラミックス成形体の粗面化構造部分の面の9×1.8mmの範囲のSaをワンショット3D形状測定機(キーエンス製)により測定した。 Sa (arithmetic mean height): Sa in a range of 9 × 1.8 mm on the surface of the roughened structure portion of the carbide-based nonmagnetic ceramic molded body was measured by a one-shot 3D shape measuring instrument (manufactured by Keyence).
 Sz(最大高さ):炭化物系の非磁性セラミックス成形体の粗面化構造部分の面の9×1.8mmの範囲のSzをワンショット3D形状測定機(キーエンス製)により測定した。 Sz (maximum height): Sz in the range of 9 × 1.8 mm of the surface of the roughened structure portion of the carbide-based nonmagnetic ceramic molded body was measured by a one-shot 3D shape measuring instrument (manufactured by Keyence).
 Str(表面性状のアスペクト比):表面性状の等方性、異方性を示すもので、0~1の範囲で示す。Strが0に近い場合は筋目、Strが1に近い場合は表面が方向に依存しないことを示す。Strをワンショット3D形状測定機(キーエンス製)により測定した。 Str (Aspect ratio of surface texture): Indicates the isotropic and anisotropy of the surface texture, and is shown in the range of 0 to 1. If Str is close to 0, it indicates that the surface is not direction-dependent, and if Str is close to 1, the surface does not depend on the direction. Str was measured by a one-shot 3D shape measuring machine (manufactured by Keyence).
実施例1~3、比較例1
 表1に示す種類の非磁性セラミックス成形体(10×50×厚さ2mmの平板)の表面に対して、下記の連続波レーザー装置を使用して、表1に示す条件でレーザー光を連続照射して粗面化した。実施例2の炭化ケイ素70質量%/アルミニウム30質量%複合体は、商品名SA701(日本ファインセラミックス(株))を使用した。実施例3の炭化ケイ素50質量%/ケイ素50質量%複合体は、商品名SS501(日本ファインセラミックス(株))を使用した。
Examples 1 to 3, Comparative Example 1
The surface of a nonmagnetic ceramic molded body (10 × 50 × 2 mm thick plate) of the type shown in Table 1 was continuously irradiated with laser light under the conditions shown in Table 1 using the continuous wave laser device described below. And roughened. As the composite of 70% by mass of silicon carbide and 30% by mass of aluminum in Example 2, trade name SA701 (Nippon Fine Ceramics Co., Ltd.) was used. As the composite of 50% by mass of silicon carbide and 50% by mass of silicon in Example 3, trade name SS501 (Nippon Fine Ceramics Co., Ltd.) was used.
(レーザー装置)
  発振器:IPG-Ybファイバー;YLR-300-SM
  ガルバノミラー SQUIREEL(ARGES社製)
  集光系:fc=80mm/fθ=100mm
(Laser device)
Oscillator: IPG-Yb fiber; YLR-300-SM
Galvano mirror SQUIIREEL (ARGES)
Light collection system: fc = 80 mm / fθ = 100 mm
 なお、双方向照射は、以下のとおりに実施した。
双方向照射:一方向に1本の溝が形成されるように連続波レーザー光を直線状に照射した後、0.05mmの間隔をおいて反対方向に同様にして連続波レーザー光を直線状に照射することを繰り返した。双方向照射の0.05mmの間隔は、隣接する溝同士の幅の中間位置の間の距離である。
The bidirectional irradiation was performed as follows.
Bidirectional irradiation: After irradiating continuous wave laser light linearly so that one groove is formed in one direction, continuous wave laser light is linearly irradiated in the opposite direction at an interval of 0.05 mm. Irradiation was repeated. The 0.05 mm spacing for bidirectional irradiation is the distance between the intermediate positions of the width of adjacent grooves.
 実施例1~3、比較例1の非磁性セラミックス成形体の粗面化構造を有する部分のSEM写真を図3~図5、図6に示す。 S FIGS. 3 to 5 and 6 show SEM photographs of portions of the non-magnetic ceramic molded bodies of Examples 1 to 3 and Comparative Example 1 having a roughened structure.
  実施例1~3、比較例1で得られた粗面化構造を有する非磁性セラミックス成形体を使用して、樹脂成形体(ガラス繊維を30質量%含有するポリアミド66の成形体)との複合成形体(図7)を製造した。 Using the non-magnetic ceramic molded body having a roughened structure obtained in Examples 1 to 3 and Comparative Example 1 with a resin molded body (a molded body of polyamide 66 containing 30% by mass of glass fiber). A molded article (FIG. 7) was produced.
 実施例1で得られた複合成形体を使用して、非磁性セラミックス成形体と樹脂成形体の接合強度を測定した。
 〔引張試験〕
 図7に示す複合成形体を用い、引張試験を行ってせん断接合強度(S1)を評価した。引張試験は、ISO19095に準拠し、非磁性セラミックス成形体30側の端部を固定した状態で、非磁性セラミックス成形体30と樹脂成形体31が破断するまで図7に示すX方向に引っ張った場合の接合面が破壊されるまでの最大荷重を測定した。結果を表1に示す。
 <引張試験条件>
 試験機:島津製作所製AUTOGRAPH AG-X plus (50kN)
 引張速度:10mm/min
 つかみ具間距離:50mm
Using the composite molded article obtained in Example 1, the bonding strength between the non-magnetic ceramic molded article and the resin molded article was measured.
(Tensile test)
Using the composite molded article shown in FIG. 7, a tensile test was performed to evaluate the shear bonding strength (S1). Tensile test is based on ISO 19095, with the non-magnetic ceramic molded body 30 fixed at the end, and pulled in the X direction shown in FIG. 7 until the non-magnetic ceramic molded body 30 and the resin molded body 31 are broken. The maximum load until the joint surface was destroyed was measured. Table 1 shows the results.
<Tensile test conditions>
Testing machine: AUTOGRAPH AG-X plus (50kN) manufactured by Shimadzu Corporation
Tensile speed: 10 mm / min
Distance between grips: 50mm
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~3の炭化ケイ素を含む非磁性セラミックス成形体における粗面化構造の凹凸は、先端部の厚さ方向の断面形状が曲面(部分円)形状のものであった。実施例1(図3)は、長さ方向に沿って連続したしわ状突起が形成されていた。実施例2、3(図4、図5)は、長さ方向に沿って線状に形成された多数の独立穴が形成されていた。レーザー光の照射速度の遅い比較例1は、割れは生じていなかったが、部分的に欠落が発生した。 凹凸 The irregularities of the roughened structure in the non-magnetic ceramics molded body containing silicon carbide of Examples 1 to 3 were such that the cross-sectional shape in the thickness direction of the tip was a curved surface (partial circle). In Example 1 (FIG. 3), wrinkle-like projections were formed continuously along the length direction. In Examples 2 and 3 (FIGS. 4 and 5), a large number of independent holes formed linearly along the length direction were formed. In Comparative Example 1 in which the irradiation speed of the laser light was low, no cracks occurred, but some chips were missing.
 本発明の表面に粗面化構造を有する炭化物系の非磁性セラミックス成形体は、炭化物系の非磁性セラミックス成形体と樹脂、ゴム、エラストマー、金属などとの複合成形体の製造中間体として利用することができる。

 
The carbide-based non-magnetic ceramic molded body having a surface roughened structure of the present invention is used as an intermediate for producing a composite molded body of a carbide-based non-magnetic ceramic molded body and a resin, rubber, elastomer, metal, or the like. be able to.

Claims (14)

  1.  表面に粗面化構造を有する非磁性セラミックス成形体であって、
     前記粗面化構造が凹凸を有しており、走査型電子顕微鏡写真(200倍以上)により観察したときに前記凹凸の厚さ方向の断面形状が曲面であり、前記凸部の曲面が長さ方向に沿って形成されたしわ状突起、または前記凸部の曲面が長さ方向に沿って線状に形成された複数の独立穴を有しているものであり、
     前記非磁性セラミックス成形体が炭化物系の非磁性セラミックス成形体である、非磁性セラミックス成形体。
    A non-magnetic ceramic molded body having a surface roughened structure,
    The roughened structure has irregularities, and the cross-sectional shape in the thickness direction of the irregularities is a curved surface when observed by a scanning electron microscope photograph (200 times or more), and the curved surface of the convex portion has a length. Wrinkle-like projections formed along the direction, or the curved surface of the convex portion has a plurality of independent holes formed linearly along the length direction,
    A non-magnetic ceramic molded body, wherein the non-magnetic ceramic molded body is a carbide-based non-magnetic ceramic molded body.
  2.  前記炭化物系の非磁性セラミックス成形体が、熱衝撃温度(JIS R1648:2002)が400~500℃の範囲で、厚さが0.5mm以上である、請求項1記載の非磁性セラミックス成形体。 非 The non-magnetic ceramic molded article according to claim 1, wherein the carbide-based non-magnetic ceramic molded article has a thermal shock temperature (JIS R1648: 2002) in the range of 400 to 500 ° C and a thickness of 0.5 mm or more.
  3.  前記炭化物系の非磁性セラミックス成形体が炭化ケイ素を含む成形体である、請求項2記載の非磁性セラミックス成形体。 3. The non-magnetic ceramic molded body according to claim 2, wherein the carbide-based non-magnetic ceramic molded body is a molded body containing silicon carbide.
  4.  前記炭化物系の非磁性セラミックス成形体が、多孔質の炭化ケイ素の孔内部に金属または半金属が含浸されている複合体であり、前記炭化ケイ素の含有割合が50質量%以上である、請求項1記載の非磁性セラミックス成形体。 The said nonmagnetic ceramics molded body of a carbide type | system | group is a composite body in which the inside of the hole of porous silicon carbide is impregnated with metal or metalloid, and the content rate of the said silicon carbide is 50 mass% or more. 2. The non-magnetic ceramic molded body according to 1.
  5.  前記凹凸の凸部の先端部の厚さ方向の断面形状が、部分円形状または部分楕円形状、請求項1~4のいずれか1項記載の非磁性セラミックス成形体。 (5) The non-magnetic ceramic molded product according to any one of (1) to (4), wherein a cross-sectional shape in a thickness direction of a tip portion of the projection of the unevenness is a partial circular shape or a partial elliptical shape.
  6.  前記凹凸が線状の凸部と線状の凹部が交互に形成されてなるものであり、
     前記線状の凸部と前記線状の凹部のそれぞれの幅が20~100μmであるとき、前記凸部の長さ方向に形成されたしわ状突起、または線状に形成された複数の独立穴の幅が1~10μmである、請求項1~5のいずれか1項記載の非磁性セラミックス成形体。
    The irregularities are formed by alternately forming linear convex portions and linear concave portions,
    When the width of each of the linear protrusions and the linear recesses is 20 to 100 μm, wrinkle protrusions formed in the length direction of the protrusions, or a plurality of independent holes formed in a linear shape. The non-magnetic ceramic molded body according to any one of claims 1 to 5, wherein the width of the non-magnetic ceramic body is 1 to 10 µm.
  7.  前記凹凸のうちの凹部が島状に分散して形成され、前記凹部を除いた部分が凸部であり、
     前記凸部の幅が20~100μmであるとき、前記凸部の長さ方向に形成されたしわ状突起、または線状に形成された独立穴の集合体の幅が1~10μmである、請求項1~5のいずれか1項記載の非磁性セラミックス成形体。
    Concave portions of the irregularities are formed in an island-shape, and portions excluding the concave portions are convex portions,
    When the width of the convex portion is 20 to 100 μm, the width of the wrinkle-shaped protrusion formed in the length direction of the convex portion or the aggregate of the independent holes formed in a linear shape is 1 to 10 μm. Item 6. The non-magnetic ceramic molded article according to any one of Items 1 to 5.
  8.  前記凹凸の凸部の先端部の表面粗さ(Ra)が5~40μmの範囲であり、前記凹凸の凸部と凹部の高低差(Rz)が50~200μmの範囲である、請求項1~7のいずれか1項記載の非磁性セラミックス成形体。 The surface roughness (Ra) of the tip of the convex part of the irregularities is in the range of 5 to 40 μm, and the height difference (Rz) between the convex part and the concave part of the irregularities is in the range of 50 to 200 μm. 8. The non-magnetic ceramic molded product according to any one of items 7 to 7.
  9.  前記凹凸の凸部の先端部の表面粗さ(Ra)が10~30μmの範囲であり、前記凹凸の凸部と凹部の高低差(Rz)が60~180μmの範囲である、請求項1~7のいずれか1項記載の非磁性セラミックス成形体。 The surface roughness (Ra) of the tip of the convex part of the irregularities is in the range of 10 to 30 μm, and the height difference (Rz) between the convex part and the concave part of the irregularity is in the range of 60 to 180 μm. 8. The non-magnetic ceramic molded product according to any one of items 7 to 7.
  10.  請求項1~9のいずれか1項記載の表面に粗面化構造を有する非磁性セラミックス成形体の製造方法であって、
     炭化ケイ素を含む炭化物系の非磁性セラミックス成形体の表面に対して、連続波レーザーを使用して5,000mm/sec以上の照射速度でレーザー光を連続照射することで粗面化する、非磁性セラミックス成形体の製造方法。
    The method for producing a non-magnetic ceramic molded body having a surface roughened structure according to any one of claims 1 to 9,
    The surface of a carbide-based non-magnetic ceramic molded body containing silicon carbide is roughened by continuously irradiating a laser beam at a rate of 5,000 mm / sec or more using a continuous wave laser. Manufacturing method of ceramic molded body.
  11.  請求項1~9のいずれか1項記載の表面に粗面化構造を有する非磁性セラミックス成形体の製造方法であって、
     炭化ケイ素を含む炭化物系の非磁性セラミックス成形体の表面に対して、連続波レーザーを使用して5,000mm/sec以上の照射速度でレーザー光を連続照射する工程を有しており、
     前記レーザー光の照射工程が、粗面化対象となる金属成形体の表面に対してレーザー光を照射するとき、レーザー光の照射部分と非照射部分が交互に生じるように照射する工程である、非磁性セラミックス成形体の製造方法。
    The method for producing a non-magnetic ceramic molded body having a surface roughened structure according to any one of claims 1 to 9,
    A step of continuously irradiating the surface of the carbide-based nonmagnetic ceramic molded body containing silicon carbide with a laser beam at an irradiation speed of 5,000 mm / sec or more using a continuous wave laser,
    The laser light irradiation step is a step of irradiating the surface of the metal molded body to be roughened, when irradiating the laser light, so that the irradiated part and the non-irradiated part of the laser light alternately occur. A method for producing a non-magnetic ceramic molded body.
  12.  前記非磁性セラミックス成形体の表面に対して、連続波レーザーを使用して5,000mm/sec以上の照射速度でレーザー光を連続照射するとき、
     同一方向または異なる方向に直線、曲線およびこれらの組み合わせからなる複数本の線が形成されるようにレーザー光を連続照射する、請求項7~11のいずれか1項記載の非磁性セラミックス成形体の製造方法。
    When continuously irradiating the surface of the non-magnetic ceramic molded body with a laser beam at an irradiation speed of 5,000 mm / sec or more using a continuous wave laser,
    The non-magnetic ceramic molded body according to any one of claims 7 to 11, wherein the laser light is continuously irradiated such that a plurality of lines composed of straight lines, curved lines, and combinations thereof are formed in the same direction or different directions. Production method.
  13.  前記非磁性セラミックス成形体の表面に対して、連続波レーザーを使用して5,000mm/sec以上の照射速度でレーザー光を連続照射するとき、
     同一方向または異なる方向に直線、曲線およびこれらの組み合わせからなる複数本の線が形成されるようにレーザー光を連続照射し、レーザー光を複数回連続照射して1本の直線または1本の曲線を形成する、請求項7~11のいずれか1項記載の非磁性セラミックス成形体の製造方法。
    When continuously irradiating the surface of the non-magnetic ceramic molded body with a laser beam at an irradiation speed of 5,000 mm / sec or more using a continuous wave laser,
    Laser light is continuously irradiated so that a plurality of lines composed of straight lines, curves and combinations thereof are formed in the same direction or different directions, and one straight line or one curved line is continuously irradiated with the laser light plural times. The method for producing a non-magnetic ceramic molded article according to any one of claims 7 to 11, wherein
  14.  前記非磁性セラミックス成形体の表面に対して、連続波レーザーを使用して5,000mm/sec以上の照射速度でレーザー光を連続照射するとき、
     同一方向または異なる方向に直線、曲線およびこれらの組み合わせからなる複数本の線が形成されるようにレーザー光を連続照射し、
     前記複数本の直線または前記複数本の曲線が、等間隔または異なる間隔をおいて形成されるようにレーザー光を連続照射する、請求項7~11のいずれか1項記載の非磁性セラミックス成形体の製造方法。

     
    When continuously irradiating the surface of the non-magnetic ceramic molded body with a laser beam at an irradiation speed of 5,000 mm / sec or more using a continuous wave laser,
    Continuously irradiate laser light such that a plurality of lines consisting of straight lines, curves and combinations thereof are formed in the same direction or different directions,
    The non-magnetic ceramic molded body according to any one of claims 7 to 11, wherein the laser beam is continuously irradiated such that the plurality of straight lines or the plurality of curves are formed at equal intervals or at different intervals. Manufacturing method.

PCT/JP2019/037771 2018-09-27 2019-09-26 Nitride-based nonmagnetic ceramic molding having roughened structure on the surface thereof, and method for producing same WO2020067248A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020501408A JP6928741B2 (en) 2018-09-27 2019-09-26 Carbide-based non-magnetic ceramic molded body having a roughened structure on the surface and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018182205 2018-09-27
JP2018-182205 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020067248A1 true WO2020067248A1 (en) 2020-04-02

Family

ID=69950678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037771 WO2020067248A1 (en) 2018-09-27 2019-09-26 Nitride-based nonmagnetic ceramic molding having roughened structure on the surface thereof, and method for producing same

Country Status (2)

Country Link
JP (3) JP6928741B2 (en)
WO (1) WO2020067248A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317605A (en) * 1988-06-15 1989-12-22 Kawasaki Steel Corp Method of working roll surface
JP2001048667A (en) * 1999-08-13 2001-02-20 Asahi Glass Co Ltd Joining method for ceramic parts
WO2016170895A1 (en) * 2015-04-21 2016-10-27 トーカロ株式会社 Method for roughening substrate, method for surface-treating substrate, method for producing spray-coated member, and spray-coated member
WO2018043637A1 (en) * 2016-09-02 2018-03-08 ダイセルポリマー株式会社 Metal molded body surface roughening method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4743973B2 (en) 2000-01-24 2011-08-10 コバレントマテリアル株式会社 Silicon carbide members for firing electronic components
JP4354671B2 (en) 2002-04-23 2009-10-28 トーカロ株式会社 Silicon carbide member and manufacturing method thereof
JP3996039B2 (en) 2002-11-05 2007-10-24 アプライドマテリアルズジャパン株式会社 Method for manufacturing ceramic base material with metal spray coating
JP4379776B2 (en) 2003-03-31 2009-12-09 コバレントマテリアル株式会社 Silicon impregnated silicon carbide member
JP5324945B2 (en) 2009-01-30 2013-10-23 太平洋セメント株式会社 Silicon carbide bonded body and method for manufacturing the same
WO2014080536A1 (en) 2012-11-20 2014-05-30 Dowaメタルテック株式会社 Metal-ceramic bonded substrate and method for producing same
WO2016039419A1 (en) * 2014-09-11 2016-03-17 国立研究開発法人産業技術総合研究所 Method for forming surface structure of zirconia-based ceramic, and zirconia-based ceramic
JP6722617B2 (en) * 2017-05-12 2020-07-15 三菱電線工業株式会社 Metal surface roughening method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317605A (en) * 1988-06-15 1989-12-22 Kawasaki Steel Corp Method of working roll surface
JP2001048667A (en) * 1999-08-13 2001-02-20 Asahi Glass Co Ltd Joining method for ceramic parts
WO2016170895A1 (en) * 2015-04-21 2016-10-27 トーカロ株式会社 Method for roughening substrate, method for surface-treating substrate, method for producing spray-coated member, and spray-coated member
WO2018043637A1 (en) * 2016-09-02 2018-03-08 ダイセルポリマー株式会社 Metal molded body surface roughening method

Also Published As

Publication number Publication date
JP2020125239A (en) 2020-08-20
JP7100084B2 (en) 2022-07-12
JP2020128335A (en) 2020-08-27
JP6928741B2 (en) 2021-09-01
JPWO2020067248A1 (en) 2021-02-15
TW202041485A (en) 2020-11-16

Similar Documents

Publication Publication Date Title
WO2020067308A1 (en) Nitride-based nonmagnetic ceramic molding and method for producing same
CN106009899B (en) Composition, method for producing shaped article, and shaped article
JP2016124024A (en) Manufacturing method of metal molding having porous structure on surface layer part
WO2018181526A1 (en) Medical apparatus and method for manufacturing same
JP7058078B2 (en) Composite molded body and its manufacturing method
WO2020067248A1 (en) Nitride-based nonmagnetic ceramic molding having roughened structure on the surface thereof, and method for producing same
JP7100185B2 (en) Rare earth magnet precursor or rare earth magnet molded body and composite molded body using it
WO2020067249A1 (en) Nonmagnetic ceramic molded body having roughened structure on surface and method for producing same
JP7385463B2 (en) Non-magnetic ceramic molded body and its manufacturing method
CN112208172A (en) Composite molded body and method for producing same
TWI832907B (en) Carbide-based non-magnetic ceramic shaped body with roughened surface structure and manufacturing method thereof
JP2021098351A (en) Composite molding and method for manufacturing the same
CN111050983B (en) Method for producing joined body of dissimilar materials

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020501408

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866260

Country of ref document: EP

Kind code of ref document: A1