WO2020067249A1 - Nonmagnetic ceramic molded body having roughened structure on surface and method for producing same - Google Patents

Nonmagnetic ceramic molded body having roughened structure on surface and method for producing same Download PDF

Info

Publication number
WO2020067249A1
WO2020067249A1 PCT/JP2019/037772 JP2019037772W WO2020067249A1 WO 2020067249 A1 WO2020067249 A1 WO 2020067249A1 JP 2019037772 W JP2019037772 W JP 2019037772W WO 2020067249 A1 WO2020067249 A1 WO 2020067249A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
ceramic molded
magnetic ceramic
oxide
laser
Prior art date
Application number
PCT/JP2019/037772
Other languages
French (fr)
Japanese (ja)
Inventor
清水 潔
雅彦 板倉
法寿 和田
孝之 宇野
Original Assignee
ダイセルポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセルポリマー株式会社 filed Critical ダイセルポリマー株式会社
Priority to JP2020501409A priority Critical patent/JP6804689B2/en
Publication of WO2020067249A1 publication Critical patent/WO2020067249A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/91After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching

Definitions

  • the present invention relates to a non-magnetic ceramic molded article having a roughened structure on its surface and a method for producing the same.
  • Non-magnetic ceramics are widely used in various molded products as daily necessities such as tableware, cups, vases, and engineering ceramics, and it is known to perform a process of forming irregularities on the surface according to the application to which they are applied.
  • JP-A-2002-308683 discloses a ceramic member having a concave-convex structure formed with an acidic etching solution.
  • Japanese Patent No. 6032903 describes an invention of a firing setter having a specific uneven structure (claims), and as a material of the firing setter, zirconia, alumina, magnesia, spinel, cordierite, etc. (Paragraph number 0013).
  • WO2011 / 121808A1 includes a metal or ceramic base material, an impregnated layer provided by forming a concave portion on the sliding side surface of the base material, and an impregnated layer impregnated with the base material. And a resin layer covering the surface on the sliding side of the sliding member, wherein the concave portion is formed by machining (claims). It is described that the concave portion is a plurality of linear grooves, and the maximum depth of the grooves is 200 to 2000 ⁇ m (paragraph number 0026).
  • Examples of the mechanical processing include laser processing and wire cut processing (paragraph number 0014), but there is no description of specific processing conditions, and in the examples, it is described that steel was wire cut. There is no specific description about ceramics.
  • Japanese Patent Application Laid-Open No. 2015-109966 discloses a method for manufacturing a medical device material in which a specific portion of a medical device material containing tetragonal zirconia is coated with calcium phosphate, and the specific portion is irradiated with an ultrashort pulse laser.
  • a method for manufacturing a medical device material comprising: a first step of forming irregularities on the surface; and a second step of depositing or depositing calcium phosphate fine particles smaller than the period of the irregularities on the specific portion is disclosed. (Claims).
  • Japanese Patent No. 6111102 discloses that a laser beam having a wavelength of 300 to 1500 nm is applied to a portion of a planar shape substantially identical to a circuit pattern on at least one surface of a ceramic substrate containing AlN or Al 2 O 3 as a main component.
  • An aluminum film is formed on a portion of the ceramic substrate having a planar shape substantially the same as the circuit pattern on at least one surface, and a copper plate is disposed on the aluminum film to have a temperature not lower than the eutectic point of aluminum and copper and not higher than 650 ° C.
  • a method of manufacturing a metal-ceramic bonding substrate, characterized by bonding a copper plate to a ceramic substrate via an aluminum film by heating at a temperature, is disclosed.
  • Japanese Patent Application Laid-Open No. 2003-171190 discloses that the surface of a substrate made of dense ceramic having a purity of 95% or more is formed with first rounded irregularities having a surface roughness Ra of 3 to 40 ⁇ m, and the first There is disclosed a ceramic member in which the surface of the unevenness is formed as a second rounded unevenness having a surface roughness Ra of 0.1 to 2.9 ⁇ m. It is shown that the second unevenness covers the entire surface of the first unevenness.
  • JP-A-2003-137677 and JP-A-2004-66299 disclose a technique for forming irregularities by laser processing the surface of a ceramic body.
  • Japanese Patent Nos. 5,774,246 and 5,701,414 disclose a method for roughening the surface of a metal molded body by continuously irradiating a continuous wave laser with a laser beam at an irradiation speed of 2000 mm / sec or more. Although an invention of a method for producing a composite molded article of a molded article and a resin molded article is disclosed, there is no description about ceramics.
  • One aspect of the present invention is to provide a non-magnetic ceramic molded body having a roughened structure on its surface and a method for producing the same.
  • the present invention in one embodiment thereof, is a non-magnetic ceramic molded body having a surface roughened structure,
  • the roughening structure has irregularities, and the cross-sectional shape in the thickness direction of the irregularities has a curved surface
  • a non-magnetic ceramic molded body having a roughened surface on the surface wherein the non-magnetic ceramic is an oxide-based non-magnetic ceramic.
  • the present invention provides a method for producing a non-magnetic ceramic molded body having a surface roughened structure.
  • the non-magnetic ceramic molded article having a roughened structure on the surface according to one embodiment of the present invention can be used as an intermediate for producing a composite molded article with another material. Therefore, in another aspect, the present invention is also directed to a method for producing such a composite molded article, and a composite molded article.
  • the surface of an inherently hard and brittle oxide-based nonmagnetic ceramic molded body can be roughened without being separated into two or more by cracking.
  • (A) And (b) is a top view which shows some different embodiment of the recessed part of the unevenness
  • (A) And (b) is a top view which shows some different embodiment of the recessed part of the unevenness
  • (A)-(d) is a top view which shows several different embodiment of the recessed part of the unevenness
  • FIG. 1 is a top view which shows several different embodiment of the recessed part of the unevenness
  • (A) is an SEM photograph of a plan view of a roughened structure portion of the zirconia molded body of Example 1, and (b) is an SEM photograph of a cross section in a thickness direction of (a).
  • 5 is an SEM photograph of a roughened structure portion (plan view) of an alumina molded body (purity: 92%) of Example 2.
  • 6 is an SEM photograph of a roughened structure portion (plan view) of the alumina molded body (purity: 92%) of Example 3.
  • (A) is an SEM photograph of a plan view of a roughened structure portion of the alumina molded body (purity 99.5%) of Example 4
  • (b) is an SEM photograph of a cross section in the thickness direction of (a).
  • (A) is an SEM photograph of a plan view of a roughened structure portion of the alumina molded body (purity 99.5%) of Example 5, and (b) is an SEM photograph of a cross section in the thickness direction of (a).
  • . 9 is an SEM photograph of a roughened structure portion (plan view) of the alumina molded body (purity: 99.5%) of Comparative Example 2.
  • (A) is an SEM photograph of a plan view of a roughened structure portion of the steatite molded body of Example 6, and (b) is an SEM photograph of a cross section in the thickness direction of (a).
  • FIG. 2 is a perspective view of an alumina molded body manufactured in an example, and a perspective view for describing a test of bonding strength using a composite molded body of an alumina molded body and a resin molded body.
  • (A) is an SEM photograph of a plan view of a roughened structure portion of the steatite molded article of Example 8, and (b) is an SEM photograph of a cross section in the thickness direction of (a).
  • the non-magnetic ceramic molded body having a surface roughened structure is made of an oxide-based non-magnetic ceramic.
  • the oxide-based non-magnetic ceramic molded body includes alumina, zirconia, magnesia, silica, titanium oxide, cerium oxide, zinc oxide, tin oxide, uranium oxide, ⁇ -alumina, mullite, YAG, forsterite (2MgO ⁇ SiO 2), barium titanate (BaTiO 3), steatite (MgO ⁇ SiO 2), cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2), or an oxide such as lead zirconate titanate It is a molded body containing a base ceramic, and among these, another preferred embodiment of the present invention contains alumina or zirconia.
  • Alumina may be composed of a composite of alumina, other non-magnetic ceramics, and metal as long as it is within a range satisfying a predetermined thermal shock temperature, in addition to alumina.
  • the predetermined thermal shock temperature JIS @ R1648: 2002
  • JIS @ R1648: 2002 is in a range of 150 to 700 ° C. in a preferred embodiment of the present invention, and in a range of 180 to 680 ° C. in another preferred embodiment of the present invention.
  • the temperature is in the range of 200 to 650 ° C.
  • the non-magnetic ceramics molded body containing alumina has a thickness of 0.5 mm or more in a preferred embodiment of the present invention in order to prevent cracking at the time of processing by laser light irradiation.
  • the thickness is 1.0 mm or more.
  • the term “crack” in the present invention means that a part of the molded body is broken and divided into two or more, and does not include “crack”.
  • “cracking” also includes a case where it does not crack during processing by laser beam irradiation, but has a remarkably reduced strength and is divided into two or more during subsequent movement and processing.
  • Zirconia may be composed of a composite of zirconia, other non-magnetic ceramics, and a metal as long as the zirconia is within a range satisfying a predetermined thermal shock temperature.
  • the predetermined thermal shock temperature JIS @ R1648: 2002
  • JIS @ R1648: 2002 is in the range of 1 to 10 ° C. in a preferred embodiment of the present invention, and is 3 to 8 ° C. in another preferred embodiment of the present invention.
  • the nonmagnetic ceramic molded body containing zirconia has a thickness of 3 mm or more in order to prevent cracks or cracks from being generated during laser irradiation. In another preferable embodiment, the thickness is 3.5 mm or more.
  • the roughened structure has irregularities
  • the cross-sectional shape of the irregularities in the thickness direction is a curved surface. It has.
  • the cross-sectional shape in the thickness direction of the unevenness may include a partial circular shape or a partial elliptical shape.
  • the partial circular shape is a shape including a part of a circle such as a semicircular shape and a 1/3 circular shape.
  • the partial elliptical shape is a shape including a part of an ellipse such as a semi-elliptical shape and a 1/3 elliptical shape.
  • the surface roughness (Ra) of the irregularities is in the range of 1 to 30 ⁇ m in a preferred embodiment of the present invention, and in the range of 3 to 25 ⁇ m in another preferred embodiment of the present invention. In one embodiment, it is in the range of 4 to 23 ⁇ m.
  • the height difference (Rz) between the convex portion and the concave portion of the unevenness is in the range of 10 to 200 ⁇ m in a preferred embodiment of the present invention, and is in the range of 15 to 180 ⁇ m in another preferred embodiment of the present invention. In still another preferred embodiment, the thickness is in the range of 20 to 150 ⁇ m.
  • Sa (arithmetic mean height), Sz (maximum height), Sdr (interface development area ratio), and Sdq (root mean square slope) of the roughened structure portion (irregularity portion) are in the following ranges. May be.
  • Sa (arithmetic mean height) is 1 to 50 ⁇ m in a preferred embodiment of the present invention, 3 to 40 ⁇ m in another preferred embodiment of the present invention, and 5 to 30 ⁇ m in still another preferred embodiment of the present invention. It is.
  • Sz (maximum height) is 30 to 280 ⁇ m in one preferred embodiment of the present invention, 40 to 250 ⁇ m in another preferred embodiment of the present invention, and 50 to 230 ⁇ m in still another preferred embodiment of the present invention. is there.
  • the Sdr (developed area ratio of the interface) is 0.05 to 2.00 in one preferred embodiment of the present invention, and 0.1 to 1.50 in another preferred embodiment of the present invention. In another preferred embodiment, it is 0.10 to 1.00.
  • Sdq root mean square slope
  • Sdq root mean square slope
  • the cross-sectional shape of the concave and convex portions in the depth direction is a wedge shape in which the opening width on the front side is wide (maximum inner diameter portion) and the width is gradually narrowed in the depth direction (bottom direction). It may include a pot-shaped one in which the width of the portion is narrow and a maximum inner diameter portion exists from the opening to the bottom.
  • the maximum inner diameter portion is 1 to 500 ⁇ m in a preferred embodiment of the present invention, 2 to 300 ⁇ m in another preferred embodiment of the present invention, and 10 to 100 ⁇ m in still another preferred embodiment of the present invention.
  • the non-magnetic ceramic molded body having a surface roughened structure has a planar shape of the concave portion when the irregularities are continuously formed linearly at intervals. May include an elliptical shape or a similar shape.
  • the expression that the irregularities are continuously formed linearly at intervals means a form in which linear convex portions and linear concave portions are alternately formed in a certain direction.
  • planar shape of the concave portion is similar to an elliptical shape, for example, two opposing sides on the long axis side are curves (arcs) 1a, but two opposing sides on the short axis side are only the straight line 2.
  • two opposite sides on the long axis side are curves (arcs) 1a, but two opposite sides on the short axis side are a straight line 2 and a curve 1b.
  • two opposite sides on the long axis side are curves (arcs) 1a, but a straight line 2 or a curve 1b on the two opposite sides on the short axis side is partially formed.
  • FIGGS. 3A to 3D are two opposite sides on the long axis side.
  • the planar shape of the concave portion is circular or elliptical. Or, it may include a shape similar to them.
  • the concave portions at this time are formed in an island shape in the planar shape of the roughened structure, and the portions excluding the concave portions are convex portions.
  • the irregularities may be formed such that concave portions are dispersed in an island shape at equal intervals, or concave portions may be formed in an island shape at different intervals.
  • planar shape of the concave portion is similar to a circular shape, for example, a shape having a portion (protruding portion) 5 in which a part of the circumference protrudes away from the center of the circular shape (FIG. 4) (A) and (b)), shapes (FIGS. 4 (c) and (d)) in which a part of the circumference has a part (recess part) 6 that is concave toward the center of the circle, and These are mixed shapes (FIG. 4E). There may be a plurality of projections 5 and depressions 6, respectively.
  • two opposite sides on the long axis side are curved lines (arcs), but two opposite sides on the short axis side.
  • the two sides include a shape consisting of only a straight line, a shape consisting of a straight line and a curve, and a shape in which a straight line or a curve of two opposite sides on the short axis side is partially bent.
  • the non-magnetic ceramic molded body can be used as a carrier or the like capable of holding a liquid, a powder, or the like on the roughened structure portion, and can be made of another material (non-magnetic ceramics). (Excluding materials) can also be used as a production intermediate for producing a composite molded article with a molded article comprising the same.
  • the non-magnetic ceramic molded body according to one embodiment of the present invention emits a laser beam to the surface of the oxide-based non-magnetic ceramic molded body at a radiation speed of 5,000 mm / sec or more using a continuous wave laser. It can be manufactured by continuous irradiation.
  • oxide-based non-magnetic ceramic molded body used in the production method according to one embodiment of the present invention are not particularly limited, and are selected according to the application, and may be selected as needed. It will be adjusted.
  • oxide-based non-magnetic ceramic moldings include flat plates, round bars, square bars (bars having a polygonal cross section), tubes, cups, cubes, cuboids, spheres or partial spheres (hemispheres, etc.), ellipses
  • molded products such as spheres or partially elliptical spheres (such as semi-elliptical spheres) and irregular shapes
  • existing non-magnetic ceramic products can also be used.
  • the existing oxide-based non-magnetic ceramic products are made of only oxide-based non-magnetic ceramics, as well as oxide-based non-magnetic ceramics and other materials (metal, resin, rubber, glass, wood, etc.). It may be composed of a composite.
  • laser light can be continuously irradiated so that a plurality of lines formed of straight lines, curves, and combinations thereof are formed in different directions.
  • the irradiation speed of the laser beam may be 5,000 mm / sec or more in order to roughen the oxide-based nonmagnetic ceramic molded body.
  • the irradiation speed is 5,000 to 20,000 mm / sec.
  • the pressure is 5,000 to 10,000 mm / sec. If the irradiation speed of the laser beam is less than 5,000 mm / sec, it is difficult to form a roughened structure on the surface of the non-magnetic ceramic molded body.
  • the power of the laser is 100 to 4,000 W in one preferred embodiment of the present invention, 200 to 2,000 W in another preferred embodiment of the present invention, and 300 to 1 W in still another preferred embodiment of the present invention. 5,000W. Adjust the surface roughening state by decreasing the laser light output when the laser light irradiation speed is low within the above range and increasing it when the laser light irradiation speed is high within the above range. Can be.
  • the output of the laser beam is 100 W
  • the irradiation speed of the laser beam is 5,000 to 7,500 mm / sec.
  • the irradiation speed of the laser beam is 7,500 to 10,000 mm / sec.
  • the spot diameter of the laser beam is 10 to 100 ⁇ m in one preferred embodiment of the present invention, and 10 to 75 ⁇ m in another preferred embodiment of the present invention.
  • Energy density during the laser beam irradiation in a preferred embodiment of the present invention is 3 ⁇ 1,500MW / cm 2, in another preferred embodiment of the present invention is 5 ⁇ 700MW / cm 2.
  • the energy density at the time of laser beam irradiation is calculated by the following formula from the output (W) of the laser beam and the laser beam (spot area (cm 2 ) ( ⁇ ⁇ [spot diameter / 2] 2 ): laser beam output / spot area. Desired.
  • the number of repetitions (the number of passes) upon laser beam irradiation is 1 to 50 times in a preferred embodiment of the present invention, 3 to 40 times in another preferred embodiment of the present invention, and 5 in still another preferred embodiment of the present invention. Up to 30 times.
  • the number of repetitions at the time of laser light irradiation is the total number of times of irradiation for forming one line (groove) when laser light is irradiated linearly.
  • bidirectional irradiation and unidirectional irradiation can be selected.
  • bidirectional radiation irradiates a continuous wave laser from the first end to the second end of the line (groove) and then from the second end to the first end.
  • One-way irradiation is a method of repeating one-way continuous-wave laser irradiation from a first end to a second end.
  • the interval (line interval or pitch interval) between the intermediate positions of the widths of the adjacent irradiation lines (grooves formed by the adjacent irradiation) is set to 0.1 in a preferred embodiment of the present invention.
  • the line intervals may be the same or different.
  • the above-mentioned line Cross irradiation in which bidirectional irradiation or unidirectional irradiation is performed at intervals may be performed.
  • the planar shape of the concave portion of the roughened structure portion has a shape as shown in FIG. 4, for example.
  • the wavelength of the laser beam is 300 to 1200 nm in one preferred embodiment of the present invention, and 500 to 1200 nm in another preferred embodiment of the present invention.
  • the defocusing distance when irradiating the laser beam is -5 to +5 mm in a preferred embodiment of the present invention, and -1 to +1 mm in another preferred embodiment of the present invention. In the embodiment, it is -0.5 to +0.1 mm.
  • laser irradiation may be performed with the set value kept constant, or laser irradiation may be performed while changing the defocusing distance. For example, at the time of laser irradiation, the defocus distance may be gradually reduced, or may be periodically increased or decreased.
  • a known continuous wave laser can be used, for example, a YVO 4 laser, a fiber laser (preferably a single mode fiber laser), an excimer laser, a carbon dioxide laser, an ultraviolet laser, a YAG laser, a semiconductor laser, a glass laser, A ruby laser, a He-Ne laser, a nitrogen laser, a chelate laser, and a dye laser can be used.
  • a fiber laser is preferable, and a single mode fiber laser is particularly preferable, because the energy density is increased.
  • the second method for producing an oxide-based non-magnetic ceramic molded body having a surface roughened structure is different from the first method described above in that the laser light irradiation mode is different from that of the first method. The difference is the same method.
  • the second manufacturing method uses a continuous wave laser to irradiate the surface of the oxide-based non-magnetic ceramic molded body with a laser beam at an irradiation speed of 5,000 mm / sec or more in the same manner as the first manufacturing method.
  • the irradiation is performed so that the irradiated portion and the non-irradiated portion alternately occur.
  • the laser beam when irradiating a laser beam so as to form a straight line, a curve, or a combination of a straight line and a curve, the laser beam is irradiated so that a portion irradiated with the laser beam and a non-irradiated portion alternate.
  • Irradiation such that laser light irradiation parts and non-irradiation parts are generated alternately includes the embodiment of irradiation as shown in FIG.
  • FIG. 5 shows that the non-irradiated portion 12 of the laser beam having the length L2 between the irradiated portion 11 of the laser beam having the length L1 and the adjacent irradiated portion 11 of the laser beam having the length L1 is alternately formed.
  • An irradiation state is shown so as to form a dotted line.
  • the dotted line also includes a chain line such as a one-dot chain line or a two-dot chain line.
  • the irradiated portion of the laser beam may be the same, or the irradiated portion of the laser beam may be different (by shifting the irradiated portion of the laser beam) to form the oxide-based non-magnetic ceramic molded body. The whole may be roughened.
  • the laser beam is irradiated multiple times with the same part irradiated, the laser beam is irradiated in a dotted line, but the laser light irradiated part is shifted, that is, the laser light is first irradiated to the part that was not irradiated with the laser light.
  • the number of repetitions can be 1 to 20 times.
  • the oxide-based non-magnetic ceramic molded body is continuously irradiated with a laser beam, deformation such as cracking may occur in a molded body having a small thickness.
  • deformation such as cracking may occur in a molded body having a small thickness.
  • laser irradiation is performed in a dotted line as shown in FIG. 5, laser light irradiation portions 11 and laser light non-irradiation portions 12 occur alternately. Deformation such as cracking hardly occurs even in a small compact. At this time, the same effect can be obtained even when the irradiated portion of the laser beam is changed as described above (the irradiated portion of the laser beam is shifted).
  • the method of irradiating the laser beam is, for example, a method of irradiating the surface of the metal molded body 20 in one direction as shown in FIG. 6A, or a method of irradiating the surface from both directions as shown by a dotted line in FIG.
  • the method can be used.
  • a method of irradiating the laser beam so that the dotted lines irradiate with each other may be used.
  • the interval b1 between the dotted lines after the irradiation can be adjusted according to the irradiation target area of the metal molded body or the like, but can be in the same range as the line interval in the first manufacturing method.
  • the length (L1) of the irradiated portion 11 of the laser beam is 0.05 mm or more in a preferred embodiment of the present invention in order to roughen the surface into a complicated porous structure, and in another preferred embodiment of the present invention. 0.1 to 10 mm, and in still another preferred embodiment of the present invention 0.3 to 7 mm.
  • the laser light irradiation step described above is a fiber laser apparatus in which a direct modulation type modulator for directly converting a drive current of a laser is connected to a laser power supply. Is used to adjust the duty ratio (duty ratio) to perform laser irradiation.
  • a pulse wave laser by pulse excitation is generally called a normal pulse.
  • a pulse wave laser can be produced even with continuous excitation, and a pulse width (pulse ON time) is made shorter than a normal pulse, and a Q switch pulse oscillation method for oscillating a laser having a higher peak power is used.
  • a pulse wave laser can be produced by a direct modulation method in which a pulse wave laser is generated by directly modulating a pulse wave laser.
  • the method of pulsing by operating the galvanomirror is a method of irradiating a laser beam oscillated from a laser oscillator via a galvanomirror by a combination of a galvanomirror and a galvanomirror, specifically, as follows. Can be implemented.
  • a gate signal is periodically output ON / OFF from a galvano controller, and the laser light oscillated by a laser oscillator is turned ON / OFF by the ON / OFF signal, thereby pulsating the laser light without changing the energy density of the laser light. be able to.
  • laser light irradiation portions 11 and laser light non-irradiation portions 12 between adjacent laser light irradiation portions 11 are alternately formed, and are formed as a whole as a dotted line. Can be irradiated with laser light.
  • the method of pulsing by operating the galvanometer mirror is simple in operation because the duty ratio can be adjusted without changing the oscillation state of the laser light itself.
  • a method of pulsing by chopping, a method of pulsing by operating a galvanomirror, and a direct modulation method of directly modulating a driving current of a laser to generate a pulse wave laser may be used.
  • a fiber laser device in which a direct modulation type modulation device that directly converts the driving current of the laser is connected to a laser power supply the laser is continuously excited to generate a pulsed laser. May be produced.
  • the duty ratio is a ratio obtained from the ON time and the OFF time of the output of the laser light by the following equation.
  • Duty ratio (%) ON time / (ON time + OFF time) ⁇ 100 Since the duty ratio corresponds to L1 and L2 (that is, L1 / [L1 + L2]) shown in FIG. 5, it can be selected from a range of, for example, 10 to 90%.
  • the duty ratio corresponds to L1 and L2 (that is, L1 / [L1 + L2]) shown in FIG. 5, it can be selected from a range of, for example, 10 to 90%.
  • the third manufacturing method is different from the first manufacturing method and the second manufacturing method, and is a method using a pulse wave laser.
  • the method of irradiating a pulsed laser beam is, for example, a method of irradiating a pulsed laser beam, for example, Japanese Patent No. 5848104, Japanese Patent No. 5788836, Japanese Patent No. 5798534, Japanese Patent No. 5798535, The method can be carried out in the same manner as the pulse wave laser beam irradiation method described in JP-A-2016-203643, Japanese Patent No. 5888975, Japanese Patent No. 5932700, or Japanese Patent No. 6055529.
  • the surface of the oxide-based non-magnetic ceramic molded body is irradiated with a laser beam at an angle of 15 ° to 90 °, and in another preferred embodiment of the present invention, at an angle of 45 ° to 90 °. .
  • Irradiation rate when irradiating laser light to oxide-based non-magnetic ceramic molded body The irradiation speed of the laser beam is 10 to 1,000 mm / sec in a preferred embodiment of the present invention, 10 to 500 mm / sec in another preferred embodiment of the present invention, and 10 to 500 mm / sec in another preferred embodiment of the present invention. ⁇ 100 mm / sec, and in still another preferred embodiment of the present invention, it is 10-80 mm / sec.
  • Energy density when irradiating the oxide-based non-magnetic ceramic molded body with laser light is obtained from the energy output (W) of one pulse of the laser light and the laser light (spot area (cm 2 ) ( ⁇ ⁇ [spot diameter / 2] 2 ).
  • energy density during irradiation is 0.1 ⁇ 50GW / cm 2 in a preferred aspect of the present invention, in another preferred embodiment of the present invention is 0.1 ⁇ 20GW / cm 2, another preferred of the present invention in one embodiment, it is 0.5 ⁇ 10GW / cm 2, in yet another preferred embodiment of the present invention is 0.5 ⁇ 5GW / cm 2. energy density increases, the hole becomes deeper and larger.
  • the energy output (W) of one pulse of laser light is obtained from the following equation.
  • the energy output (W) of one pulse of laser light (average output of laser light / frequency) / average output of pulse width laser light is 4 to 400 W in one preferred embodiment of the present invention, and is another preferable embodiment of the present invention. In one embodiment, it is 5 to 100 W, and in still another preferred embodiment of the present invention, it is 10 to 100 W. If the other laser light irradiation conditions are the same, the hole becomes deeper and larger as the output becomes larger, and the hole becomes shallower and smaller as the output becomes smaller.
  • the frequency (KHz) is 0.001 to 1000 kHz in a preferred embodiment of the present invention, 0.01 to 500 kHz in another preferred embodiment of the present invention, and 0.1 in still another preferred embodiment of the present invention. It is 1 to 100 kHz.
  • the pulse width (nsec) is 1 to 10,000 nsec in a preferred embodiment of the present invention, 1 to 1,000 nsec in another preferred embodiment of the present invention, and 1 in still another preferred embodiment of the present invention. ⁇ 100 nsec.
  • the spot diameter ( ⁇ m) of the laser beam is 1 to 300 ⁇ m in one preferred embodiment of the present invention, 10 to 300 ⁇ m in another preferred embodiment of the present invention, and 20 to 150 ⁇ m in still another preferred embodiment of the present invention. In still another preferred embodiment, the thickness is 20 to 80 ⁇ m.
  • the number of repetitions (the total number of laser light irradiations for forming one hole) is 1 to 80 in a preferred embodiment of the present invention, and 3 to 50 in another preferred embodiment of the present invention. In another preferred embodiment of the present invention, the number is 5 to 30 times. Under the same laser irradiation conditions, the hole becomes deeper and larger as the number of repetitions increases, and the hole becomes shallower and smaller as the number of repetitions decreases.
  • the line spacing is in a preferred embodiment of the present invention in the range of 0.01 to 1 mm, in another preferred embodiment of the present invention in the range of 0.01 to 0.5 mm, and in another preferred embodiment of the present invention, 0.1. 03 to 0.3 mm, and in still another preferred embodiment of the present invention it is 0.05 to 0.1 mm. If the line spacing is small, the thermal effect will also affect adjacent lines, so the hole will be large, the shape of the hole will be complicated, the depth of the hole will tend to be deep, but the thermal effect will be too large In some cases, it is difficult to form a complicated and deep hole. If the line spacing is large, the holes will be small, the shape of the holes will not be complicated and the holes will not be too deep, but the processing speed can be increased.
  • Other irradiation conditions may include an irradiation mode of irradiating a laser beam on the oxide-based non-magnetic ceramic molded body while radiating heat from the molded body.
  • an irradiation mode of irradiating a laser beam on the oxide-based non-magnetic ceramic molded body while radiating heat from the molded body For example, a method of irradiating a laser beam in a state where an oxide-based non-magnetic ceramic molded body and a metal molded body having a higher thermal conductivity than the oxide-based non-magnetic ceramic molded body are in contact with each other. A method of irradiating a laser beam while holding it in a hollow state may be used.
  • the wavelength of the pulsed laser light may be 500 to 11,000 nm.
  • a method for producing a composite molded article of an oxide-based nonmagnetic ceramic molded article having a roughened structure and a resin molded article In the first step, the first production method, the second production method, or the second 3 manufactures a non-magnetic ceramics molded body having a roughened structure on the surface by the manufacturing method.
  • a portion including the roughened structure of the oxide-based nonmagnetic ceramics molded body having a roughened surface on the surface obtained in the first step is arranged in a mold, and the resin molded body is
  • the portion including the roughened structure of the non-magnetic ceramics molded body irradiated with the laser beam in the first step is arranged in a mold, and at least the rough surface is formed. Compression molding in a state where the portion including the modified structure and the resin to be the resin molded body are in contact with each other.
  • the resin used in the second step includes thermoplastic elastomers in addition to thermoplastic resins and thermosetting resins.
  • the thermoplastic resin can be appropriately selected from known thermoplastic resins depending on the application.
  • copolymers containing styrene units such as polyamide resins (aliphatic polyamides and aromatic polyamides such as PA6 and PA66), polystyrene, ABS resins, AS resins, etc., polyethylene, copolymers containing ethylene units, polypropylene, propylene
  • Examples include copolymers containing units, other polyolefins, polyvinyl chloride, polyvinylidene chloride, polycarbonate resins, acrylic resins, methacrylic resins, polyester resins, polyacetal resins, and polyphenylene sulfide resins.
  • thermosetting resin can be appropriately selected from known thermosetting resins depending on the application. For example, urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, polyurethane, and vinyl urethane can be mentioned.
  • a thermosetting resin a prepolymer form can be used, and a heat curing treatment can be performed in a later step.
  • thermoplastic elastomer can be appropriately selected from known thermoplastic elastomers depending on the application. For example, styrene elastomers, vinyl chloride elastomers, olefin elastomers, urethane elastomers, polyester elastomers, nitrile elastomers, and polyamide elastomers can be used.
  • a known fibrous filler can be blended with these thermoplastic resins, thermosetting resins, and thermoplastic elastomers.
  • Known fibrous fillers include carbon fibers, inorganic fibers, metal fibers, and organic fibers.
  • Carbon fibers are well-known, and PAN-based, pitch-based, rayon-based, and lignin-based carbon fibers can be used.
  • the inorganic fibers include glass fibers, basalt fibers, silica fibers, silica / alumina fibers, zirconia fibers, boron nitride fibers, and silicon nitride fibers.
  • the metal fibers include fibers made of stainless steel, aluminum, copper, and the like.
  • polyamide fibers whole aromatic polyamide fibers, semi-aromatic polyamide fibers in which one of diamine and dicarboxylic acid is an aromatic compound, aliphatic polyamide fibers), polyvinyl alcohol fibers, acrylic fibers, polyolefin fibers, Synthetic fiber such as polyoxymethylene fiber, polytetrafluoroethylene fiber, polyester fiber (including wholly aromatic polyester fiber), polyphenylene sulfide fiber, polyimide fiber, liquid crystal polyester fiber, natural fiber (cellulose fiber, etc.) and regenerated cellulose ( Rayon) fiber or the like can be used.
  • synthetic fiber such as polyoxymethylene fiber, polytetrafluoroethylene fiber, polyester fiber (including wholly aromatic polyester fiber), polyphenylene sulfide fiber, polyimide fiber, liquid crystal polyester fiber, natural fiber (cellulose fiber, etc.) and regenerated cellulose ( Rayon) fiber or the like can be used.
  • these fibrous fillers those having a fiber diameter in the range of 3 to 60 ⁇ m can be used. Among them, for example, open holes formed by roughening the bonding surface 12 of the metal molded body 10 are described. A fiber having a fiber diameter smaller than the opening diameter, such as 30, can be used. The fiber diameter is 5 to 30 ⁇ m in one preferred embodiment of the present invention, and 7 to 20 ⁇ m in another preferred embodiment of the present invention.
  • the compounding amount of the fibrous filler relative to 100 parts by mass of the thermoplastic resin, the thermosetting resin, or the thermoplastic elastomer is 5 to 250 parts by mass. In another preferred embodiment of the present invention, the amount is 25 to 200 parts by mass, and in still another preferred embodiment of the present invention, the amount is 45 to 150 parts by mass.
  • the first manufacturing method, the second manufacturing method, or the second manufacturing method is performed.
  • a non-magnetic ceramic molded body having a roughened structure on the surface is manufactured by the manufacturing method of 3.
  • the oxide-based nonmagnetic ceramic molded article and the rubber molded article obtained in the first step are integrated by applying a known molding method such as press molding or transfer molding.
  • a portion including a roughened structure of an oxide-based nonmagnetic ceramic molded body is arranged in a mold, and the portion including the roughened structure is heated. After the uncured rubber to be the rubber molded body is pressed in a pressurized state, it is taken out after cooling.
  • the transfer molding method for example, a portion including a roughened structure of an oxide-based non-magnetic ceramic molded body is placed in a mold, and the uncured rubber is injection-molded in the mold, and then Then, by heating and pressurizing, the portion including the roughened structure of the oxide-based non-magnetic ceramics molded body and the rubber molded body are integrated, and taken out after cooling.
  • a step of secondary heating (secondary curing) in an oven or the like after removal from the mold can be added in order to mainly remove residual monomers.
  • the rubber of the rubber molded article used in this step is not particularly limited, and a known rubber can be used, but does not include a thermoplastic elastomer.
  • Known rubbers include ethylene-propylene copolymer (EPM), ethylene-propylene-diene terpolymer (EPDM), ethylene-octene copolymer (EOM), ethylene-butene copolymer (EBM), ethylene-octene terpolymer (EODM), Ethylene- ⁇ -olefin rubber such as ethylene-butene terpolymer (EBDM); ethylene / acrylate rubber (EAM), polychloroprene rubber (CR), acrylonitrile-butadiene rubber (NBR), hydrogenated NBR (HNBR), styrene- Butadiene rubber (SBR), alkylated chlorosulfonated polyethylene (ACSM), epichlorohydrin (ECO), polybutadiene rubber (BR), natural rubber (
  • the rubber may contain a curing agent according to the type of the rubber, if necessary.
  • various known rubber additives can be blended. Rubber additives include curing accelerators, anti-aging agents, silane coupling agents, reinforcing agents, flame retardants, ozone deterioration inhibitors, fillers, process oils, plasticizers, tackifiers, and processing aids. Can be used.
  • an adhesive layer can be interposed on the joint surface between the oxide-based non-magnetic ceramic molded article and the rubber molded article.
  • the oxide-based non-magnetic ceramic molded body is roughened by the first, second, or third manufacturing method using a continuous wave laser or a pulse wave laser in the same manner as described above.
  • an adhesive adheresive solution
  • the adhesive may be press-fitted.
  • the adhesive is not particularly limited, and a known thermoplastic adhesive, thermosetting adhesive, rubber-based adhesive, or the like can be used.
  • the thermoplastic adhesive include polyvinyl acetate, polyvinyl alcohol, polyvinyl formal, polyvinyl butyral, acrylic adhesive, polyethylene, chlorinated polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene -Ethyl acrylate copolymer, ethylene-acrylic acid copolymer, ionomer, chlorinated polypropylene, polystyrene, polyvinyl chloride, plastisol, vinyl chloride-vinyl acetate copolymer, polyvinyl ether, polyvinylpyrrolidone, polyamide, nylon, non-saturated Fixed polyesters and cellulose derivatives can be mentioned.
  • thermosetting adhesive examples include urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, polyurethane, and vinyl urethane.
  • rubber adhesives include natural rubber, synthetic polyisoprene, polychloroprene, nitrile rubber, styrene-butadiene rubber, styrene-butadiene-vinylpyridine terpolymer, polyisobutylene-butyl rubber, polysulfide rubber, silicone RTV, Examples include chlorinated rubber, brominated rubber, kraft rubber, block copolymer, and liquid rubber.
  • the part including the surface of the oxide-based non-magnetic ceramic molded body on which the adhesive layer is formed is placed in a mold, and the surface of the oxide-based non-magnetic ceramic molded body and the uncured rubber to be a rubber molded body are removed.
  • a step of heating and pressurizing in a state of being in contact with each other to perform integration is performed.
  • a step of secondary heating (secondary curing) in an oven or the like after removal from the mold can be added to remove mainly residual monomers.
  • the metal used is not limited as long as it has a melting point lower than the melting point of the oxide-based non-magnetic ceramic constituting the oxide-based non-magnetic ceramic molded body.
  • a metal according to the use of the composite molded body such as iron, aluminum, an aluminum alloy, gold, silver, platinum, copper, magnesium, titanium or an alloy thereof, and stainless steel.
  • the metal molded body is pressed against the adhesive layer of the oxide-based non-magnetic ceramic molded body having the adhesive layer to be bonded and integrated.
  • the adhesive layer is made of a thermoplastic resin-based adhesive
  • the adhesive layer can be adhered to the adhesive surface of the non-metal molded body in a state where the adhesive layer is softened by heating as necessary.
  • the adhesive layer is made of a thermosetting resin-based adhesive prepolymer, the prepolymer is heated and cured by being left in a heating atmosphere after bonding.
  • the monomer, oligomer or mixture thereof forming the UV-curable resin layer is brought into contact with the portion including the roughened portion of the oxide-based non-magnetic ceramic molded body (monomer, oligomer Or contacting a mixture thereof).
  • a step of applying the monomer, the oligomer, or a mixture thereof to a portion including a roughened portion of the oxide-based nonmagnetic ceramic molded body may be performed. it can.
  • brush coating, application using a doctor blade, roller application, casting, potting, or the like can be used alone or in combination.
  • the step of contacting the monomer, the oligomer or a mixture thereof includes enclosing a portion including a roughened portion of the oxide-based non-magnetic ceramic molded body with a mold, and placing the monomer, oligomer or a mixture thereof in the mold. Can be performed.
  • the oxide-based nonmagnetic ceramic molded body is placed in a mold with the roughened portion facing upward, and then the monomer, oligomer or a mixture thereof is placed in the mold.
  • a step of injecting the mixture can be performed.
  • the contacting step of the monomer, the oligomer or the mixture thereof, the monomer, the oligomer or the mixture thereof enters the pores of the roughened portion of the oxide-based non-magnetic ceramic molded body.
  • the form in which the monomer, oligomer or mixture thereof enters the porosity is, for example, 50% or more of the whole pores in a preferred embodiment of the present invention, 70% or more in another preferred embodiment of the present invention, and still another preferred embodiment of the present invention. In one embodiment, 80% or more, and in still another preferred embodiment of the present invention, 90% or more of the pores contain the monomer, oligomer or mixture thereof, and the monomer, oligomer or mixture thereof enters the bottom of the pore.
  • the form includes a form in which a monomer, an oligomer, or a mixture thereof enters into a partway depth of the pore, and a form in which a form in which a monomer, an oligomer, or a mixture thereof enters only near the entrance of the hole.
  • Monomers, oligomers or mixtures thereof can be applied or injected as they are in liquid form (including low-viscosity gels) at room temperature or in the form of a solution dissolved in a solvent.
  • Solid (powder) forms can be heated. It can be applied or poured after being melted or dissolved in a solvent.
  • the monomer, oligomer or mixture thereof used in the step of contacting the monomer, oligomer or mixture thereof is selected from a radical polymerizable monomer and an oligomer of a radical polymerizable monomer, or is a cation polymerizable monomer and a cation of the monomer. It may be one selected from polymerizable monomer oligomers or a mixture of two or more selected from them.
  • radical polymerizable monomer As the radical polymerizable compound, a radical polymerizable group such as a (meth) acryloyl group, a (meth) acryloyloxy group, a (meth) acryloylamino group, a vinyl ether group, a vinylaryl group, and a vinyloxycarbonyl group is contained in one molecule. Compounds having at least one compound are exemplified.
  • Compounds having one or more (meth) acryloyl groups in one molecule include 1-buten-3-one, 1-penten-3-one, 1-hexen-3-one, 4-phenyl-1-butene- 3-one, 5-phenyl-1-penten-3-one and the like, and derivatives thereof.
  • Examples of the compound having at least one (meth) acryloyloxy group in one molecule include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and t-butyl (meth).
  • Compounds having one or more (meth) acryloylamino groups in one molecule include 4- (meth) acryloylmorpholine, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-methyl (Meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-butyl (meth) acrylamide, Nn-butoxymethyl (meth) acrylamide, N- Hexyl (meth) acrylamide, N-octyl (meth) acrylamide, and the like, and derivatives thereof are given.
  • Compounds having one or more vinyl ether groups in one molecule include, for example, 3,3-bis (vinyloxymethyl) oxetane, 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxy Isopropyl vinyl ether, 4-hydroxybutyl vinyl ether, 3-hydroxybutyl vinyl ether, 2-hydroxybutyl vinyl ether, 3-hydroxyisobutyl vinyl ether, 2-hydroxyisobutyl vinyl ether, 1-methyl-3-hydroxypropyl vinyl ether, 1-methyl-2-hydroxy Propyl vinyl ether, 1-hydroxymethylpropyl vinyl ether, 4-hydroxycyclohexyl vinyl ether, 1,6-hexanediol Novinyl ether, 1,4-cyclohexane dimethanol monovinyl ether, 1,3-cyclohexane dimethanol monovinyl ether, 1,2-cyclohexane dimethanol monovinyl ether, p-xylene glycol mono
  • Examples of the compound having one or more vinylaryl groups in one molecule include styrene, divinylbenzene, methoxystyrene, ethoxystyrene, hydroxystyrene, vinylnaphthalene, vinylanthracene, 4-vinylphenyl acetate, and (4-vinylphenyl) dihydroxyborane. , N- (4-vinylphenyl) maleimide, and derivatives thereof.
  • Compounds having one or more vinyloxycarbonyl groups in one molecule include isopropenyl formate, isopropenyl acetate, isopropenyl propionate, isopropenyl butyrate, isopropenyl isobutyrate, isopropenyl caproate, isopropenyl valerate, Isopropenyl valerate, isopropenyl lactate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl caprylate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate, pivalic acid Vinyl, vinyl octylate, vinyl monochloroacetate, divinyl adipate, vinyl acrylate, vinyl methacrylate, vinyl crotonate, vinyl sorbate, vinyl benzoate, vinyl cinnamate, and the like Body and the like.
  • cationic polymerizable monomer examples include compounds having one or more cationic polymerizable groups in one molecule other than an oxetanyl group such as an epoxy ring (oxiranyl group), a vinyl ether group, and a vinyl aryl group.
  • Compounds having one or more epoxy rings in one molecule include glycidyl methyl ether, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether, and brominated bisphenol F diglycidyl ether.
  • Polyglycidyl ethers of polyether polyols diglycidyl esters of aliphatic long-chain dibasic acids; monoglycidyl ethers of aliphatic higher alcohols; phenol, cresol, butylphenol or polyether alcohols obtained by adding alkylene oxide thereto Monoglycidyl ethers; and glycidyl esters of higher fatty acids.
  • Examples of the compound having one or more vinyl ether groups in one molecule and the compound having one or more vinyl aryl groups in one molecule include the same compounds as the compounds exemplified as the radical polymerizable compound.
  • Compounds having one or more oxetanyl groups in one molecule include trimethylene oxide, 3,3-bis (vinyloxymethyl) oxetane, 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, 3-ethyl-3- (hydroxymethyl) oxetane, 3-ethyl-3-[(phenoxy) methyl] oxetane, 3-ethyl-3- (hexyloxymethyl) oxetane, 3- Ethyl-3- (chloromethyl) oxetane, 3,3-bis (chloromethyl) oxetane, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, bis ⁇ [1-ethyl (3- Oxetanyl)] methyl ⁇ ether, 4,4'-bis [
  • the oligomer of the radical polymerizable monomer and the cationic polymerizable monomer includes a monofunctional or polyfunctional (meth) acrylic oligomer.
  • a monofunctional or polyfunctional (meth) acrylic oligomer One type or a combination of two or more types can be used.
  • Monofunctional or polyfunctional (meth) acrylic oligomers include urethane (meth) acrylate oligomers, epoxy (meth) acrylate oligomers, polyether (meth) acrylate oligomers, and polyester (meth) acrylate oligomers.
  • Examples of the urethane (meth) acrylate oligomer include polycarbonate-based urethane (meth) acrylate, polyester-based urethane (meth) acrylate, polyether-based urethane (meth) acrylate, and caprolactone-based urethane (meth) acrylate.
  • the urethane (meth) acrylate oligomer can be obtained by reacting an isocyanate compound obtained by reacting a polyol with diisocyanate and a (meth) acrylate monomer having a hydroxyl group.
  • Examples of the polyol include a polycarbonate diol, a polyester polyol, a polyether polyol, and a polycaprolactone polyol.
  • the epoxy (meth) acrylate oligomer is obtained, for example, by an esterification reaction between an oxirane ring of a low molecular weight bisphenol type epoxy resin or a novolak epoxy resin and acrylic acid.
  • the polyether (meth) acrylate oligomer is obtained by obtaining a polyether oligomer having hydroxyl groups at both terminals by a dehydration condensation reaction of a polyol, and then esterifying the hydroxyl groups at both terminals with acrylic acid.
  • the polyester (meth) acrylate oligomer is obtained, for example, by obtaining a polyester oligomer having hydroxyl groups at both ends by condensation of a polycarboxylic acid and a polyol, and then esterifying the hydroxyl groups at both ends with acrylic acid.
  • the weight average molecular weight of the monofunctional or polyfunctional (meth) acrylic oligomer is 100,000 or less in a preferred embodiment of the present invention, and is 500 to 50,000 in another preferred embodiment of the present invention.
  • a photopolymerization initiator can be used with respect to 100 parts by mass of the monomers, oligomers or mixture thereof.
  • the monomer, oligomer or mixture thereof in contact with the portion including the roughened portion of the oxide-based non-magnetic ceramic molded body is cured by irradiating UV to cure the curable resin layer.
  • a composite molded article having the same can be obtained.
  • the method for producing a composite molded article of the present invention is a composite molded article of an oxide non-magnetic ceramic molded article having a roughened structure, for example, an oxide non-magnetic ceramic molded article having a roughened structure having a different shape. It can be manufactured by using a plurality of pieces and joining and integrating them via an adhesive layer formed on the joining surface.
  • the adhesive layer can be formed, for example, by applying an adhesive to the roughened structure portion of the oxide-based nonmagnetic ceramic molded body.
  • the adhesive the same adhesive as that used in the production of the other composite molded body described above can be used.
  • a composite molded article composed of a non-magnetic ceramic molded article of a different type from an oxide-based non-magnetic ceramic molded article can be manufactured in the same manner.
  • a different type of non-magnetic ceramic molded body is used. After forming the adhesive layer with the surface of the magnetic ceramic molded body also having a roughened structure, the adhesive layer of the non-magnetic ceramic molded body of a different type from the surface having the adhesive layer of the oxide non-magnetic ceramic molded body
  • the composite molded body can be manufactured by bonding and integrating the surfaces having the above.
  • non-magnetic ceramics include carbides, nitrides, borides, and silicides.
  • methods for roughening the surface of different types of non-magnetic ceramic molded bodies the methods and conditions differ depending on the type of non-magnetic ceramics. For example, as in the present invention, a method of irradiating a laser beam, filing, blasting A method of roughening by processing, etching, or the like can be applied.
  • the thermal shock temperature is a temperature at which a test piece (4 ⁇ 35 ⁇ 3 mm thick) of a heated oxide-based nonmagnetic ceramic molded body is broken when immersed in water at 30 ° C. When the internal stress generated by the temperature difference between the inside and the surface when cooled rapidly exceeds the strength of the test piece, it is destroyed.
  • Ra (arithmetic mean roughness): Eleven 1.5 mm long lines are drawn on the surface of the roughened structure portion of the oxide-based non-magnetic ceramic molded body, and those Ra are measured by a one-shot 3D shape measuring machine ( Keyence).
  • Rz maximum height: 11 lines of 1.5 mm length are drawn on the surface of the roughened structure portion of the oxide-based non-magnetic ceramic molded body, and those Rz are measured with a one-shot 3D shape measuring instrument (Keyence Corporation). Manufactured).
  • Sa (arithmetic mean height): Sa in a range of 9 ⁇ 1.8 mm on the surface of the roughened structure portion of the oxide-based non-magnetic ceramic molded body was measured by a one-shot 3D shape measuring instrument (manufactured by Keyence).
  • Sz (maximum height) Sz in a range of 9 ⁇ 1.8 mm on the surface of the roughened structure portion of the oxide-based non-magnetic ceramic molded body was measured by a one-shot 3D shape measuring instrument (manufactured by Keyence).
  • Sdr developed area ratio of interface: Indicates how much the developed area (surface area) of the defined area is increased with respect to the area of the defined area, and Sdr of a completely flat surface is 0. Sdr was measured with a one-shot 3D shape measuring instrument (manufactured by Keyence).
  • Sdq root-mean-square slope: a parameter calculated by the root-mean-square of the slope at all points in the defined area, and Sdq of a perfectly flat surface is 0. If the surface has a slope, Sdq increases. For example, Sdq becomes 1 on a plane including a 45 ° tilt component. It was measured by a one-shot 3D shape measuring machine (manufactured by Keyence).
  • cross irradiation After irradiating continuous wave laser light so that ten grooves (first group of grooves) are formed at an interval of 0.05 mm, in a direction orthogonal to the first group of grooves.
  • the continuous wave laser beam was applied so that ten grooves (second group of grooves) were formed at intervals of 0.05 mm.
  • Bidirectional irradiation After irradiating continuous wave laser light linearly so that one groove is formed in one direction, continuous wave laser light is linearly irradiated in the opposite direction at an interval of 0.05 mm. Irradiation was repeated.
  • the 0.05 mm interval between the cross irradiation and the bidirectional irradiation is the distance between the intermediate positions of the widths of adjacent grooves (lines).
  • FIGS. 7 to 14 show SEM photographs of portions of the oxide-based non-magnetic ceramic molded bodies of Examples 1 to 7 and Comparative Example 2 having a roughened structure.
  • the magnification of the SEM photograph was taken at 200 ⁇ , but is not limited to 200 ⁇ , and may be adjusted to a magnification at which the roughened structure can be easily observed.
  • the photograph can be taken at 200 to 400 ⁇ .
  • Example 1 The planar shapes of the concave portions in Example 1 (FIG. 7), Example 2 (FIG. 8), Example 4 (FIG. 10), and Example 6 (FIG. 13) are as shown in FIGS. Was.
  • the planar shapes of the concave portions of the third embodiment (FIG. 9) and the fifth embodiment (FIG. 11) are shown in FIGS. 4 (a) to 4 (e) and those shown in FIGS. Such a shape was combined.
  • the planar shape of the recess in Example 7 (FIG. 14) was as shown in FIGS. 4 (a) to 4 (e).
  • Comparative Example 1 in which the irradiation speed of the laser beam was slow was broken into a part of the molded body and divided into two or more parts. In Comparative Example 2, no hole was formed and the surface was deformed in a wrinkled shape.
  • the zirconia molded articles, alumina molded articles, steatite molded articles, and composite molded articles of the cordierite molded articles and the resin molded articles of Examples 1 to 7 had high bonding strength, so that other materials (heat It is considered that a composite molded article having high bonding strength can be obtained even when a composite molded article with a curable resin, rubber, elastomer, metal, or UV curable resin) is manufactured.
  • Example 8 The surface of a nonmagnetic ceramic molded body (10 ⁇ 50 ⁇ 2 mm thick plate) of the type shown in Table 2 was irradiated with pulsed laser light under the conditions shown in Table 2 to roughen the surface.
  • FIG. 16 shows an SEM photograph after roughening.
  • Example 8 As is clear from the comparison of the SEM photographs of FIG. 16 (Example 8), FIG. 7 (Example 1), FIG. 10 (Example 4), and FIG. 13 (Example 6), the non-magnetic ceramic molded body of Example 8 The structure after roughening was the same as that of the other examples.
  • the oxide-based non-magnetic ceramic molded article having a roughened structure on its surface according to the present invention is used as an intermediate of a composite molded article of the oxide-based non-magnetic ceramic molded article and a resin, rubber, elastomer, or metal. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Laminated Bodies (AREA)

Abstract

A nonmagnetic ceramic molded body having a roughened structure on the surface thereof, wherein the roughened structure has irregularities, the cross-sectional shape of the irregularities in the thickness direction has a curved surface, and the nonmagnetic ceramic is an oxide-based nonmagnetic ceramic.

Description

表面に粗面化構造を有する非磁性セラミックス成形体とその製造方法Non-magnetic ceramic molded body having surface roughened structure and method for producing the same
 本発明は、その1つの態様において、表面に粗面化構造を有する非磁性セラミックス成形体とその製造方法に関する。 In one aspect, the present invention relates to a non-magnetic ceramic molded article having a roughened structure on its surface and a method for producing the same.
 非磁性セラミックスは、食器、カップ、花びんなどの日用品、エンジニアリングセラミックスとして各種成形品に汎用されており、適用する用途に応じて、表面に凹凸を形成する処理をすることが知られている。 Non-magnetic ceramics are widely used in various molded products as daily necessities such as tableware, cups, vases, and engineering ceramics, and it is known to perform a process of forming irregularities on the surface according to the application to which they are applied.
 特開2002-308683号公報には、酸性エッチング液により凹凸構造が形成されたセラミックス部材が開示されている。 JP-A-2002-308683 discloses a ceramic member having a concave-convex structure formed with an acidic etching solution.
 特許第6032903号公報には、特定の凹凸構造を有する焼成用セッターの発明が記載されており(特許請求の範囲)、前記焼成用セッターの材料として、ジルコニア、アルミナ、マグネシア、スピネル、コーディライトなどが例示されている(段落番号0013)。 Japanese Patent No. 6032903 describes an invention of a firing setter having a specific uneven structure (claims), and as a material of the firing setter, zirconia, alumina, magnesia, spinel, cordierite, etc. (Paragraph number 0013).
 WO2011/121808A1には、金属製またはセラミックス製の基材と、前記基材の摺動側の表面部に凹部を形成することによって設けられた含浸層と、前記含浸層に含浸し、前記基材の摺動側の表面を被覆している樹脂層と、を備える摺動部材であり、前記凹部は機械加工によって形成されている発明が開示されている(特許請求の範囲)。凹部は複数の直線状の溝であり、前記溝の最大深さは200~2000μmであることが記載されている(段落番号0026)。 WO2011 / 121808A1 includes a metal or ceramic base material, an impregnated layer provided by forming a concave portion on the sliding side surface of the base material, and an impregnated layer impregnated with the base material. And a resin layer covering the surface on the sliding side of the sliding member, wherein the concave portion is formed by machining (claims). It is described that the concave portion is a plurality of linear grooves, and the maximum depth of the grooves is 200 to 2000 μm (paragraph number 0026).
 前記機械加工としては、レーザー加工、ワイヤーカット加工などが例示されているが(段落番号0014)、具体的な加工条件についての記載はなく、実施例では鋼をワイヤーカット加工したことが記載されているだけであり、セラミックスについての具体的な記載はない。 Examples of the mechanical processing include laser processing and wire cut processing (paragraph number 0014), but there is no description of specific processing conditions, and in the examples, it is described that steel was wire cut. There is no specific description about ceramics.
 特開2015-109966号公報には、正方晶ジルコニアを含有する医療機器材料の特定部位にリン酸カルシウムをコーティングする、医療機器材料の製造方法であって、前記特定部位に超短パルスレーザーを照射して表面に凹凸を形成する第一工程と、前記特定部位に前記凹凸の周期に比べて小さいリン酸カルシウム微粒子を蒸着または析出させる第二工程とを含むことを特徴とする医療機器材料の製造方法が開示されている(特許請求の範囲)。 Japanese Patent Application Laid-Open No. 2015-109966 discloses a method for manufacturing a medical device material in which a specific portion of a medical device material containing tetragonal zirconia is coated with calcium phosphate, and the specific portion is irradiated with an ultrashort pulse laser. A method for manufacturing a medical device material, comprising: a first step of forming irregularities on the surface; and a second step of depositing or depositing calcium phosphate fine particles smaller than the period of the irregularities on the specific portion is disclosed. (Claims).
 特許第6111102号公報には、AlNまたはAlを主成分とするセラミックス基板の少なくとも一方の面の回路パターンと略同一の平面形状の部分に波長300~1500nmのレーザー光を照射して、そのセラミックス基板の少なくとも一方の面の回路パターンと略同一の平面形状の部分にアルミニウム膜を形成し、このアルミニウム膜上に銅板を配置してアルミニウムと銅の共晶点以上で且つ650℃以下の温度で加熱することにより、アルミニウム膜を介して銅板をセラミックス基板に接合することを特徴とする、金属-セラミックス接合基板の製造方法が開示されている。 Japanese Patent No. 6111102 discloses that a laser beam having a wavelength of 300 to 1500 nm is applied to a portion of a planar shape substantially identical to a circuit pattern on at least one surface of a ceramic substrate containing AlN or Al 2 O 3 as a main component. An aluminum film is formed on a portion of the ceramic substrate having a planar shape substantially the same as the circuit pattern on at least one surface, and a copper plate is disposed on the aluminum film to have a temperature not lower than the eutectic point of aluminum and copper and not higher than 650 ° C. A method of manufacturing a metal-ceramic bonding substrate, characterized by bonding a copper plate to a ceramic substrate via an aluminum film by heating at a temperature, is disclosed.
 特開2003-171190号公報には、純度95%以上の緻密質セラミックスからなる基材の表面が表面粗さRa3~40μmの丸みを帯びた第1の凹凸に形成され、かつ、この第1の凹凸の表面が表面粗さRa0.1~2.9μmの丸みを帯びた第2の凹凸に形成されているセラミックス部材が開示されている。第2の凹凸は第1の凹凸の全面を覆っていることが図示されている。 Japanese Patent Application Laid-Open No. 2003-171190 discloses that the surface of a substrate made of dense ceramic having a purity of 95% or more is formed with first rounded irregularities having a surface roughness Ra of 3 to 40 μm, and the first There is disclosed a ceramic member in which the surface of the unevenness is formed as a second rounded unevenness having a surface roughness Ra of 0.1 to 2.9 μm. It is shown that the second unevenness covers the entire surface of the first unevenness.
 特開2003-137677号公報、特開2004-66299号公報には、セラミックス体の表面にレーザー加工して凹凸を形成する技術が開示されている。 JP-A-2003-137677 and JP-A-2004-66299 disclose a technique for forming irregularities by laser processing the surface of a ceramic body.
 特許第5774246号公報、特許第5701414号公報には、連続波レーザーを使用して、2000mm/sec以上の照射速度でレーザー光を連続照射して金属成形体の表面を粗面化する発明、金属成形体と樹脂成形体との複合成形体の製造方法の発明が開示されているが、セラミックスについての記載はない。 Japanese Patent Nos. 5,774,246 and 5,701,414 disclose a method for roughening the surface of a metal molded body by continuously irradiating a continuous wave laser with a laser beam at an irradiation speed of 2000 mm / sec or more. Although an invention of a method for producing a composite molded article of a molded article and a resin molded article is disclosed, there is no description about ceramics.
 本発明は、その1つの側面において、表面に粗面化構造を有する非磁性セラミックス成形体とその製造方法を提供することを課題とする。 One aspect of the present invention is to provide a non-magnetic ceramic molded body having a roughened structure on its surface and a method for producing the same.
 本発明は、その1つの実施態様において、表面に粗面化構造を有する非磁性セラミックス成形体であって、
 前記粗面化構造が凹凸を有しており、前記凹凸の厚さ方向の断面形状が曲面を有しているものであり、
 前記非磁性セラミックスが酸化物系の非磁性セラミックスである、表面に粗面化構造を有する非磁性セラミックス成形体を提供する。また本発明は別の実施態様において、表面に粗面化構造を有する非磁性セラミックス成形体の製造方法を提供する。
The present invention, in one embodiment thereof, is a non-magnetic ceramic molded body having a surface roughened structure,
The roughening structure has irregularities, and the cross-sectional shape in the thickness direction of the irregularities has a curved surface,
Provided is a non-magnetic ceramic molded body having a roughened surface on the surface, wherein the non-magnetic ceramic is an oxide-based non-magnetic ceramic. Further, in another embodiment, the present invention provides a method for producing a non-magnetic ceramic molded body having a surface roughened structure.
 本発明の1つの実施態様による表面に粗面化構造を有する非磁性セラミックス成形体は、他の材料との複合成形体を製造する中間体として使用することができる。したがって本発明は別の側面において、そのような複合成形体の製造方法、および複合成形体にも向けられている。 非 The non-magnetic ceramic molded article having a roughened structure on the surface according to one embodiment of the present invention can be used as an intermediate for producing a composite molded article with another material. Therefore, in another aspect, the present invention is also directed to a method for producing such a composite molded article, and a composite molded article.
 本発明の1つの実施態様による製造方法によれば、割れにより2以上に分離することなく、本来的に硬く脆い酸化物系の非磁性セラミックス成形体の表面を粗面化することができる。 According to the production method according to one embodiment of the present invention, the surface of an inherently hard and brittle oxide-based nonmagnetic ceramic molded body can be roughened without being separated into two or more by cracking.
(a)および(b)は、本発明の1つの例による非磁性セラミックス成形体表面の凹凸の凹部の幾つかの異なる実施形態を示す平面図。(A) And (b) is a top view which shows some different embodiment of the recessed part of the unevenness | corrugation of the surface of a nonmagnetic ceramics molded object by one example of this invention. (a)および(b)は、本発明の別の例による非磁性セラミックス成形体表面の凹凸の凹部の幾つかの異なる実施形態を示す平面図。(A) And (b) is a top view which shows some different embodiment of the recessed part of the unevenness | corrugation of the surface of a nonmagnetic ceramic molded object by another example of this invention. (a)~(d)は、本発明のさらに別の例による非磁性セラミックス成形体表面の凹凸の凹部の幾つかの異なる実施形態を示す平面図。(A)-(d) is a top view which shows several different embodiment of the recessed part of the unevenness | corrugation of the surface of a nonmagnetic ceramic molded object by another example of this invention. (a)~(e)は、本発明のさらに別の例による非磁性セラミックス成形体表面の凹凸の凹部の幾つかの異なる実施形態を示す平面図。(A)-(e) is a top view which shows several different embodiment of the recessed part of the unevenness | corrugation of the surface of a nonmagnetic ceramics molded object by another example of this invention. 本発明の1つの例による第2の製造方法を実施するときの一実施形態のレーザー光の照射状態を示す図。The figure which shows the irradiation state of the laser beam of one Embodiment when implementing the 2nd manufacturing method by one example of this invention. 本発明の1つの例による第2の製造方法を実施するときのレーザー光の照射パターンを示す図であり、(a)は同方向の照射パターン、(b)は双方向の照射パターン。It is a figure which shows the irradiation pattern of the laser beam when implementing the 2nd manufacturing method by one example of this invention, (a) is an irradiation pattern of the same direction, (b) is a bidirectional irradiation pattern. (a)は実施例1のジルコニア成形体の粗面化構造部分の平面図のSEM写真、(b)は(a)の厚さ方向断面のSEM写真である。(A) is an SEM photograph of a plan view of a roughened structure portion of the zirconia molded body of Example 1, and (b) is an SEM photograph of a cross section in a thickness direction of (a). 実施例2のアルミナ成形体(純度92%)の粗面化構造部分(平面図)のSEM写真である。5 is an SEM photograph of a roughened structure portion (plan view) of an alumina molded body (purity: 92%) of Example 2. 実施例3のアルミナ成形体(純度92%)の粗面化構造部分(平面図)のSEM写真である。6 is an SEM photograph of a roughened structure portion (plan view) of the alumina molded body (purity: 92%) of Example 3. (a)は実施例4のアルミナ成形体(純度99.5%)の粗面化構造部分の平面図のSEM写真、(b)は(a)の厚さ方向断面のSEM写真である。(A) is an SEM photograph of a plan view of a roughened structure portion of the alumina molded body (purity 99.5%) of Example 4, and (b) is an SEM photograph of a cross section in the thickness direction of (a). (a)は、実施例5のアルミナ成形体(純度99.5%)の粗面化構造部分の平面図のSEM写真、(b)は、(a)の厚さ方向断面のSEM写真である。(A) is an SEM photograph of a plan view of a roughened structure portion of the alumina molded body (purity 99.5%) of Example 5, and (b) is an SEM photograph of a cross section in the thickness direction of (a). . 比較例2のアルミナ成形体(純度99.5%)の粗面化構造部分(平面図)のSEM写真である。9 is an SEM photograph of a roughened structure portion (plan view) of the alumina molded body (purity: 99.5%) of Comparative Example 2. (a)は実施例6のステアタイト成形体の粗面化構造部分の平面図のSEM写真、(b)は(a)の厚さ方向断面のSEM写真である。(A) is an SEM photograph of a plan view of a roughened structure portion of the steatite molded body of Example 6, and (b) is an SEM photograph of a cross section in the thickness direction of (a). (a)は実施例7のコージライト成形体の粗面化構造部分の平面図のSEM写真、(b)は(a)の厚さ方向断面のSEM写真である。(A) is a SEM photograph of a plan view of a roughened structure portion of the cordierite compact of Example 7, and (b) is an SEM photograph of a cross section in the thickness direction of (a). 実施例で製造したアルミナ成形体の斜視図と、アルミナ成形体と樹脂成形体との複合成形体を使用した接合強度の試験を説明するための斜視図。FIG. 2 is a perspective view of an alumina molded body manufactured in an example, and a perspective view for describing a test of bonding strength using a composite molded body of an alumina molded body and a resin molded body. (a)は実施例8のステアタイト成形体の粗面化構造部分の平面図のSEM写真、(b)は(a)の厚さ方向断面のSEM写真である。(A) is an SEM photograph of a plan view of a roughened structure portion of the steatite molded article of Example 8, and (b) is an SEM photograph of a cross section in the thickness direction of (a).
 本発明の1つの実施態様によれば、表面に粗面化構造を有する非磁性セラミックス成形体は、酸化物系の非磁性セラミックスからなるものである。前記酸化物系の非磁性セラミックス成形体は、本発明の好ましい一態様ではアルミナ、ジルコニア、マグネシア、シリカ、酸化チタン、酸化セリウム、酸化亜鉛、酸化錫、酸化ウラン、β-アルミナ、ムライト、YAG、フォルステライト(2MgO・SiO)、チタン酸バリウム(BaTiO)、ステアタイト(MgO・SiO)、コージライト(2MgO・2Al・5SiO)、またはチタン酸ジルコン酸鉛などの酸化物系セラミックスを含む成形体であり、これらの中でも本発明の別の好ましい一態様はアルミナまたはジルコニアを含むものである。 According to one embodiment of the present invention, the non-magnetic ceramic molded body having a surface roughened structure is made of an oxide-based non-magnetic ceramic. In one preferred embodiment of the present invention, the oxide-based non-magnetic ceramic molded body includes alumina, zirconia, magnesia, silica, titanium oxide, cerium oxide, zinc oxide, tin oxide, uranium oxide, β-alumina, mullite, YAG, forsterite (2MgO · SiO 2), barium titanate (BaTiO 3), steatite (MgO · SiO 2), cordierite (2MgO · 2Al 2 O 3 · 5SiO 2), or an oxide such as lead zirconate titanate It is a molded body containing a base ceramic, and among these, another preferred embodiment of the present invention contains alumina or zirconia.
 アルミナは、アルミナのみからなるもののほか、所定の熱衝撃温度を満たす範囲内であれば、アルミナと、他の非磁性セラミックス、金属との複合体からなるものでもよい。所定の熱衝撃温度(JIS R1648:2002)は、本発明の好ましい一態様では150~700℃の範囲であり、本発明の別の好ましい一態様では180~680℃の範囲であり、本発明のさらに別の好ましい一態様では200~650℃の範囲である。 Alumina may be composed of a composite of alumina, other non-magnetic ceramics, and metal as long as it is within a range satisfying a predetermined thermal shock temperature, in addition to alumina. The predetermined thermal shock temperature (JIS @ R1648: 2002) is in a range of 150 to 700 ° C. in a preferred embodiment of the present invention, and in a range of 180 to 680 ° C. in another preferred embodiment of the present invention. In yet another preferred embodiment, the temperature is in the range of 200 to 650 ° C.
 アルミナを含む非磁性セラミックス成形体は、レーザー光の照射による加工時において割れることを防止するため、本発明の好ましい一態様では厚さが0.5mm以上のものであり、本発明の別の好ましい一態様では厚さが1.0mm以上であるものである。なお、本発明における「割れ」は、成形体の一部が割れて2以上に分割されることをいい、「ひび割れ」は含まれない。またレーザー光の照射による加工時には割れないが、著しく強度が低下して、その後の移動時および加工時に2以上に分割されるような場合も「割れ」に含まれる。 The non-magnetic ceramics molded body containing alumina has a thickness of 0.5 mm or more in a preferred embodiment of the present invention in order to prevent cracking at the time of processing by laser light irradiation. In one embodiment, the thickness is 1.0 mm or more. The term “crack” in the present invention means that a part of the molded body is broken and divided into two or more, and does not include “crack”. In addition, “cracking” also includes a case where it does not crack during processing by laser beam irradiation, but has a remarkably reduced strength and is divided into two or more during subsequent movement and processing.
 ジルコニアは、ジルコニアのみからなるもののほか、所定の熱衝撃温度を満たす範囲内であれば、ジルコニアと、他の非磁性セラミックス、金属との複合体からなるものでもよい。所定の熱衝撃温度(JIS R1648:2002)は、本発明の好ましい一態様では1~10℃の範囲であり、本発明の別の好ましい一態様では3~8℃である。ジルコニアを含む非磁性セラミックス成形体は、レーザー光の照射時においてクラックが発生したり、割れたりすることを防止するため、本発明の好ましい一態様では厚さが3mm以上のものであり、本発明の別の好ましい一態様では厚さが3.5mm以上のものである。 Zirconia may be composed of a composite of zirconia, other non-magnetic ceramics, and a metal as long as the zirconia is within a range satisfying a predetermined thermal shock temperature. The predetermined thermal shock temperature (JIS @ R1648: 2002) is in the range of 1 to 10 ° C. in a preferred embodiment of the present invention, and is 3 to 8 ° C. in another preferred embodiment of the present invention. In a preferred embodiment of the present invention, the nonmagnetic ceramic molded body containing zirconia has a thickness of 3 mm or more in order to prevent cracks or cracks from being generated during laser irradiation. In another preferable embodiment, the thickness is 3.5 mm or more.
 本発明の1つの実施態様によれば、表面に粗面化構造を有する非磁性セラミックス成形体は、前記粗面化構造が凹凸を有しており、前記凹凸の厚さ方向の断面形状が曲面を有しているものである。前記凹凸の厚さ方向の断面形状は、部分円形状または部分楕円形状を含んでいるものであってよい。部分円形状は、半円形状、1/3円形状などの円の一部を含む形状である。部分楕円形状は、半楕円形状、1/3楕円形状などの楕円の一部を含む形状である。 According to one embodiment of the present invention, in the non-magnetic ceramic molded body having a roughened structure on the surface, the roughened structure has irregularities, and the cross-sectional shape of the irregularities in the thickness direction is a curved surface. It has. The cross-sectional shape in the thickness direction of the unevenness may include a partial circular shape or a partial elliptical shape. The partial circular shape is a shape including a part of a circle such as a semicircular shape and a 1/3 circular shape. The partial elliptical shape is a shape including a part of an ellipse such as a semi-elliptical shape and a 1/3 elliptical shape.
 前記凹凸の表面粗さ(Ra)は、本発明の好ましい一態様では1~30μmの範囲であり、本発明の別の好ましい一態様では3~25μmの範囲であり、本発明のさらに別の好ましい一態様では4~23μmの範囲である。前記凹凸の凸部と凹部の高低差(Rz)は、本発明の好ましい一態様では10~200μmの範囲であり、本発明の別の好ましい一態様では15~180μmの範囲であり、本発明のさらに別の好ましい一態様では20~150μmの範囲である。 The surface roughness (Ra) of the irregularities is in the range of 1 to 30 μm in a preferred embodiment of the present invention, and in the range of 3 to 25 μm in another preferred embodiment of the present invention. In one embodiment, it is in the range of 4 to 23 μm. The height difference (Rz) between the convex portion and the concave portion of the unevenness is in the range of 10 to 200 μm in a preferred embodiment of the present invention, and is in the range of 15 to 180 μm in another preferred embodiment of the present invention. In still another preferred embodiment, the thickness is in the range of 20 to 150 μm.
 さらに前記粗面化構造部分(凹凸部分)のSa(算術平均高さ)、Sz(最大高さ)、Sdr(界面の展開面積比)、Sdq(二乗平均平方根傾斜)は、以下の範囲であってよい。Sa(算術平均高さ)は、本発明の好ましい一態様では1~50μmであり、本発明の別の好ましい一態様では3~40μmであり、本発明のさらに別の好ましい一態様では5~30μmである。 Further, Sa (arithmetic mean height), Sz (maximum height), Sdr (interface development area ratio), and Sdq (root mean square slope) of the roughened structure portion (irregularity portion) are in the following ranges. May be. Sa (arithmetic mean height) is 1 to 50 μm in a preferred embodiment of the present invention, 3 to 40 μm in another preferred embodiment of the present invention, and 5 to 30 μm in still another preferred embodiment of the present invention. It is.
 Sz(最大高さ)は、本発明の好ましい一態様では30~280μmであり、本発明の別の好ましい一態様では40~250μmであり、本発明のさらに別の好ましい一態様では50~230μmである。 Sz (maximum height) is 30 to 280 μm in one preferred embodiment of the present invention, 40 to 250 μm in another preferred embodiment of the present invention, and 50 to 230 μm in still another preferred embodiment of the present invention. is there.
 Sdr(界面の展開面積比)は、本発明の好ましい一態様では0.05~2.00であり、本発明の別の好ましい一態様では0.1~1.50であり、本発明のさらに別の好ましい一態様では0.10~1.00である。 The Sdr (developed area ratio of the interface) is 0.05 to 2.00 in one preferred embodiment of the present invention, and 0.1 to 1.50 in another preferred embodiment of the present invention. In another preferred embodiment, it is 0.10 to 1.00.
 Sdq(二乗平均平方根傾斜)は、本発明の好ましい一態様では0.3~3.0であり、本発明の別の好ましい一態様では0.4~2.0であり、本発明のさらに別の好ましい一態様では0.5~2.0である。 Sdq (root mean square slope) is 0.3 to 3.0 in a preferred embodiment of the present invention, and 0.4 to 2.0 in another preferred embodiment of the present invention. In a preferred embodiment, the number is from 0.5 to 2.0.
 前記凹凸の凹部の深さ方向の断面形状は、表面側の開口部幅が広く(最大内径部分)、深さ方向(底部方向)に幅が少しずつ狭くなっているくさび形状、表面側の開口部の幅が狭く、開口部から底部に至るまでの間に最大内径部分が存在しているような壺形状のものを含んでいてよい。最大内径部分は、本発明の好ましい一態様では1~500μmであり、本発明の別の好ましい一態様では2~300μmであり、本発明のさらに別の好ましい一態様では10~100μmである。 The cross-sectional shape of the concave and convex portions in the depth direction is a wedge shape in which the opening width on the front side is wide (maximum inner diameter portion) and the width is gradually narrowed in the depth direction (bottom direction). It may include a pot-shaped one in which the width of the portion is narrow and a maximum inner diameter portion exists from the opening to the bottom. The maximum inner diameter portion is 1 to 500 μm in a preferred embodiment of the present invention, 2 to 300 μm in another preferred embodiment of the present invention, and 10 to 100 μm in still another preferred embodiment of the present invention.
 本発明の1つの実施態様によれば、表面に粗面化構造を有する非磁性セラミックス成形体は、前記凹凸が間隔をおいて線状に連続的に形成されているとき、前記凹部の平面形状が楕円形またはそれに類似する形状を含んでいるものであってよい。前記凹凸が間隔をおいて線状に連続的に形成されているとは、線状の凸部と線状凹部が一定方向に交互に形成されている形態である。 According to one embodiment of the present invention, the non-magnetic ceramic molded body having a surface roughened structure has a planar shape of the concave portion when the irregularities are continuously formed linearly at intervals. May include an elliptical shape or a similar shape. The expression that the irregularities are continuously formed linearly at intervals means a form in which linear convex portions and linear concave portions are alternately formed in a certain direction.
 前記凹部の平面形状が楕円形に類似する形状であるときは、例えば、長軸側の対向する二辺は曲線(円弧)1aであるが、短軸側の対向する二辺は直線2のみからなる形状のもの(図1(a)および(b))、長軸側の対向する二辺は曲線(円弧)1aであるが、短軸側の対向する二辺は直線2と曲線1bからなる形状のもの(図2(a)および(b))、長軸側の対向する二辺は曲線(円弧)1aであるが、短軸側の対向する二辺の直線2または曲線1bが部分的に曲がっているもの(図3(a)~(d))が含まれる。 When the planar shape of the concave portion is similar to an elliptical shape, for example, two opposing sides on the long axis side are curves (arcs) 1a, but two opposing sides on the short axis side are only the straight line 2. (FIGS. 1A and 1B), two opposite sides on the long axis side are curves (arcs) 1a, but two opposite sides on the short axis side are a straight line 2 and a curve 1b. In the shape (FIGS. 2A and 2B), two opposite sides on the long axis side are curves (arcs) 1a, but a straight line 2 or a curve 1b on the two opposite sides on the short axis side is partially formed. (FIGS. 3A to 3D).
 本発明の1つの実施態様によれば、表面に粗面化構造を有する非磁性セラミックス成形体は、前記凹凸が分散してランダムに形成されているとき、前記凹部の平面形状が円形、楕円形またはそれらに類似する形状を含んでいるものであってよい。このときの凹部は、前記粗面化構造の平面形状において島状に分散して形成されており、凹部を除いた部分が凸部である。前記凹凸は、凹部が等間隔で島状に分散して形成されていてもよいし、凹部同士が異なる間隔で島状に分散して形成されていてもよい。 According to one embodiment of the present invention, in the non-magnetic ceramic molded body having a roughened structure on its surface, when the irregularities are dispersed and randomly formed, the planar shape of the concave portion is circular or elliptical. Or, it may include a shape similar to them. The concave portions at this time are formed in an island shape in the planar shape of the roughened structure, and the portions excluding the concave portions are convex portions. The irregularities may be formed such that concave portions are dispersed in an island shape at equal intervals, or concave portions may be formed in an island shape at different intervals.
 前記凹部の平面形状が円形に類似する形状であるときは、例えば、円周の一部が円形の中心から遠ざかるように突き出されている部分(突出部)5を有している形状(図4(a)および(b))、円周の一部が円形の中心方向に窪んでいる部分(窪み部)6を有している形状(図4(c)および(d))、およびそれらが混在している形状のものである(図4(e))。突出部5と窪み部6は、それぞれ複数箇所あってもよい。 When the planar shape of the concave portion is similar to a circular shape, for example, a shape having a portion (protruding portion) 5 in which a part of the circumference protrudes away from the center of the circular shape (FIG. 4) (A) and (b)), shapes (FIGS. 4 (c) and (d)) in which a part of the circumference has a part (recess part) 6 that is concave toward the center of the circle, and These are mixed shapes (FIG. 4E). There may be a plurality of projections 5 and depressions 6, respectively.
 前記凹部の平面形状が楕円形に類似する形状であるときは、例えば、図1~図3に示すとおり、長軸側の対向する二辺は曲線(円弧)であるが、短軸側の対向する二辺は直線のみからなる形状のもの、直線と曲線からなる形状のもの、短軸側の対向する二辺の直線または曲線が部分的に曲がっているものが含まれる。 When the planar shape of the concave portion is similar to an elliptical shape, for example, as shown in FIGS. 1 to 3, two opposite sides on the long axis side are curved lines (arcs), but two opposite sides on the short axis side. The two sides include a shape consisting of only a straight line, a shape consisting of a straight line and a curve, and a shape in which a straight line or a curve of two opposite sides on the short axis side is partially bent.
 本発明の1つの実施態様によれば、非磁性セラミックス成形体は、粗面化構造部分に液体、粉体などを保持できる担体などとして使用することができるほか、他の材料(非磁性セラミックスを除いた材料)からなる成形体との複合成形体を製造するための製造中間体としても使用することができる。 According to one embodiment of the present invention, the non-magnetic ceramic molded body can be used as a carrier or the like capable of holding a liquid, a powder, or the like on the roughened structure portion, and can be made of another material (non-magnetic ceramics). (Excluding materials) can also be used as a production intermediate for producing a composite molded article with a molded article comprising the same.
<表面に粗面化構造を有する酸化物系の非磁性セラミックス成形体の第1の製造方法>
 次に本発明の1つの実施態様による、表面に粗面化構造を有する酸化物系の非磁性セラミックス成形体の第1の製造方法を説明する。本発明の1つの実施態様による非磁性セラミックス成形体は、酸化物系の非磁性セラミックス成形体の表面に対して、連続波レーザーを使用して5,000mm/sec以上の照射速度でレーザー光を連続照射して製造することができる。
<First manufacturing method of oxide-based non-magnetic ceramic molded body having surface roughened structure>
Next, a first method for producing an oxide-based nonmagnetic ceramic molded body having a roughened structure on the surface according to one embodiment of the present invention will be described. The non-magnetic ceramic molded body according to one embodiment of the present invention emits a laser beam to the surface of the oxide-based non-magnetic ceramic molded body at a radiation speed of 5,000 mm / sec or more using a continuous wave laser. It can be manufactured by continuous irradiation.
 本発明の1つの実施態様による製造方法で使用する酸化物系の非磁性セラミックス成形体の形状、大きさ、厚みなどは特に制限されるものではなく、用途に応じて選択され、必要に応じて調整されるものである。例えば、酸化物系の非磁性セラミックス成形体として、平板、丸棒、角棒(断面が多角形の棒)、管、カップ形状のもの、立方体、直方体、球または部分球(半球など)、楕円球または部分楕円球(半楕円球など)、不定形などの成形体のほか、既存の非磁性体セラミックス製品も使用することができる。前記既存の酸化物系の非磁性セラミックス製品は、酸化物系の非磁性セラミックスのみからなるもののほか、酸化物系の非磁性セラミックスと他の材料(金属、樹脂、ゴム、ガラス、木材など)の複合体からなるものでもよい。 The shape, size, thickness, and the like of the oxide-based non-magnetic ceramic molded body used in the production method according to one embodiment of the present invention are not particularly limited, and are selected according to the application, and may be selected as needed. It will be adjusted. For example, oxide-based non-magnetic ceramic moldings include flat plates, round bars, square bars (bars having a polygonal cross section), tubes, cups, cubes, cuboids, spheres or partial spheres (hemispheres, etc.), ellipses In addition to molded products such as spheres or partially elliptical spheres (such as semi-elliptical spheres) and irregular shapes, existing non-magnetic ceramic products can also be used. The existing oxide-based non-magnetic ceramic products are made of only oxide-based non-magnetic ceramics, as well as oxide-based non-magnetic ceramics and other materials (metal, resin, rubber, glass, wood, etc.). It may be composed of a composite.
 1つの実施態様によれば、酸化物系の非磁性セラミックス成形体の表面に対して、連続波レーザーを使用して5,000mm/sec以上の照射速度でレーザー光を連続照射するとき、同一方向または異なる方向に直線、曲線およびこれらの組み合わせからなる複数本の線が形成されるようにレーザー光を連続照射することができる。 According to one embodiment, when continuously irradiating the surface of an oxide-based non-magnetic ceramic molded body with a laser beam at an irradiation speed of 5,000 mm / sec or more using a continuous wave laser, the same direction is applied. Alternatively, laser light can be continuously irradiated so that a plurality of lines formed of straight lines, curves, and combinations thereof are formed in different directions.
 また別の実施態様によれば、酸化物系の非磁性セラミックス成形体の表面に対して、連続波レーザーを使用して5,000mm/sec以上の照射速度でレーザー光を連続照射するとき、同一方向または異なる方向に直線、曲線およびこれらの組み合わせからなる複数本の線が形成されるようにレーザー光を連続照射し、レーザー光を複数回連続照射して1本の直線または1本の曲線を形成することができる。 According to another embodiment, when continuously irradiating the surface of an oxide-based nonmagnetic ceramic molded body with a laser beam at an irradiation speed of 5,000 mm / sec or more using a continuous wave laser, Continuously irradiate laser light so that a plurality of lines composed of straight lines, curves and combinations thereof are formed in the direction or different directions, and continuously irradiate the laser light a plurality of times to form one straight line or one curve. Can be formed.
 さらに別の実施態様によれば、酸化物系の非磁性セラミックス成形体の表面に対して、連続波レーザーを使用して5,000mm/sec以上の照射速度でレーザー光を連続照射するとき、同一方向または異なる方向に直線、曲線およびこれらの組み合わせからなる複数本の線が形成されるようにレーザー光を連続照射し、前記複数本の直線または前記複数本の曲線が、等間隔または異なる間隔をおいて形成されるようにレーザー光を連続照射することができる。 According to still another embodiment, when continuously irradiating the surface of an oxide-based nonmagnetic ceramic molded body with a laser beam at an irradiation speed of 5,000 mm / sec or more using a continuous wave laser, Straight lines in the direction or different directions, continuously irradiating laser light such that a plurality of lines consisting of a curve and a combination thereof are formed, the plurality of straight lines or the plurality of curves, at equal intervals or different intervals The laser beam can be continuously irradiated so as to be formed.
 レーザー光の照射速度は、酸化物系の非磁性セラミックス成形体を粗面化するため、5,000mm/sec以上であってよく、本発明の好ましい一態様では5,000~20,000mm/secであり、本発明の別の好ましい一態様では5,000~10,000mm/secである。レーザー光の照射速度が5,000mm/sec未満であると、非磁性セラミックス成形体の表面に粗面化構造を形成することが難しい。 The irradiation speed of the laser beam may be 5,000 mm / sec or more in order to roughen the oxide-based nonmagnetic ceramic molded body. In a preferred embodiment of the present invention, the irradiation speed is 5,000 to 20,000 mm / sec. In another preferred embodiment of the present invention, the pressure is 5,000 to 10,000 mm / sec. If the irradiation speed of the laser beam is less than 5,000 mm / sec, it is difficult to form a roughened structure on the surface of the non-magnetic ceramic molded body.
 レーザーの出力は、本発明の好ましい一態様では100~4,000Wであり、本発明の別の好ましい一態様では200~2,000Wであり、本発明のさらに別の好ましい一態様では300~1,000Wである。レーザー光の出力は、レーザー光の照射速度が上記した範囲内で遅いときは小さくして、レーザー光の照射速度が上記した範囲内で速いときは大きくすることで粗面化状態を調整することができる。例えば、レーザー光の出力が100Wであるときは、本発明の好ましい一態様ではレーザー光の照射速度は5,000~7,500mm/secであり、レーザー光の出力が500Wであるときは、本発明の好ましい一態様ではレーザー光の照射速度は7,500~10,000mm/secである。 The power of the laser is 100 to 4,000 W in one preferred embodiment of the present invention, 200 to 2,000 W in another preferred embodiment of the present invention, and 300 to 1 W in still another preferred embodiment of the present invention. 5,000W. Adjust the surface roughening state by decreasing the laser light output when the laser light irradiation speed is low within the above range and increasing it when the laser light irradiation speed is high within the above range. Can be. For example, when the output of the laser beam is 100 W, in one preferred embodiment of the present invention, the irradiation speed of the laser beam is 5,000 to 7,500 mm / sec. In a preferred embodiment of the present invention, the irradiation speed of the laser beam is 7,500 to 10,000 mm / sec.
 レーザー光のスポット径は、本発明の好ましい一態様では10~100μmであり、本発明の別の好ましい一態様では10~75μmである。 ス ポ ッ ト The spot diameter of the laser beam is 10 to 100 μm in one preferred embodiment of the present invention, and 10 to 75 μm in another preferred embodiment of the present invention.
 レーザー光照射時のエネルギー密度は、本発明の好ましい一態様では3~1,500MW/cmであり、本発明の別の好ましい一態様では5~700MW/cmである。レーザー光照射時のエネルギー密度は、レーザー光の出力(W)と、レーザー光(スポット面積(cm)(π・〔スポット径/2〕)から次式:レーザー光の出力/スポット面積により求められる。 Energy density during the laser beam irradiation, in a preferred embodiment of the present invention is 3 ~ 1,500MW / cm 2, in another preferred embodiment of the present invention is 5 ~ 700MW / cm 2. The energy density at the time of laser beam irradiation is calculated by the following formula from the output (W) of the laser beam and the laser beam (spot area (cm 2 ) (π · [spot diameter / 2] 2 ): laser beam output / spot area. Desired.
 レーザー光照射時の繰り返し回数(パス回数)は、本発明の好ましい一態様では1~50回、本発明の別の好ましい一態様では3~40回、本発明のさらに別の好ましい一態様では5~30回である。レーザー光照射時の繰り返し回数は、レーザー光を線状に照射するとき、1本のライン(溝)を形成するために照射する合計回数である。 The number of repetitions (the number of passes) upon laser beam irradiation is 1 to 50 times in a preferred embodiment of the present invention, 3 to 40 times in another preferred embodiment of the present invention, and 5 in still another preferred embodiment of the present invention. Up to 30 times. The number of repetitions at the time of laser light irradiation is the total number of times of irradiation for forming one line (groove) when laser light is irradiated linearly.
 1本のラインに繰り返し照射するときは、双方向照射と一方向照射を選択することができる。双方向放射は、1本のライン(溝)を形成するとき、ライン(溝)の第1端部から第2端部に連続波レーザーを照射した後、第2端部から第1端部に連続波レーザーを照射して、その後は、第1端部から第2端部、第2端部から第1端部というように繰り返し連続波レーザーを照射する方法である。一方向照射は、第1端部から第2端部への一方向の連続波レーザー照射を繰り返す方法である。双方向放射または一方向照射したときは、粗面化構造部分の凹部の平面形状は、例えば図1~図3に示すような形状になる。 双方 向 When irradiating one line repeatedly, bidirectional irradiation and unidirectional irradiation can be selected. When forming one line (groove), bidirectional radiation irradiates a continuous wave laser from the first end to the second end of the line (groove) and then from the second end to the first end. A method of irradiating a continuous wave laser and thereafter repeatedly irradiating a continuous wave laser from a first end to a second end and from a second end to a first end. One-way irradiation is a method of repeating one-way continuous-wave laser irradiation from a first end to a second end. When bidirectional radiation or unidirectional irradiation is performed, the planar shape of the concave portion of the roughened structure portion has a shape as shown in FIGS. 1 to 3, for example.
 レーザー光を直線状に照射するとき、隣接する照射ライン(隣接する照射により形成された溝)の幅の中間位置同士の間隔(ライン間隔またはピッチ間隔)は、本発明の好ましい一態様では0.03~1.0mmであり、本発明の別の好ましい一態様では0.03~0.2mmである。ライン間隔は同一でもよいし、異なっていてもよい。 When irradiating the laser beam linearly, the interval (line interval or pitch interval) between the intermediate positions of the widths of the adjacent irradiation lines (grooves formed by the adjacent irradiation) is set to 0.1 in a preferred embodiment of the present invention. 03 to 1.0 mm, and in another preferred embodiment of the present invention it is 0.03 to 0.2 mm. The line intervals may be the same or different.
 レーザー光を照射するとき、上記したライン間隔をおいて双方向照射または一方向照射して複数本の溝を形成した後、さらに前記複数本の溝に直交または斜交する方向から、上記したライン間隔をおいて双方向照射または一方向照射するクロス照射を実施することもできる。クロス照射したときは、粗面化構造部分の凹部の平面形状は、例えば図4に示すような形状になる。 When irradiating the laser beam, after forming a plurality of grooves by bidirectional irradiation or unidirectional irradiation at the above-mentioned line interval, further from the direction orthogonal or oblique to the plurality of grooves, the above-mentioned line Cross irradiation in which bidirectional irradiation or unidirectional irradiation is performed at intervals may be performed. When cross irradiation is performed, the planar shape of the concave portion of the roughened structure portion has a shape as shown in FIG. 4, for example.
 レーザー光の波長は、本発明の好ましい一態様では300~1200nmであり、本発明の別の好ましい一態様では500~1200nmである。レーザー光を照射するときの焦点はずし距離は、本発明の好ましい一態様では-5~+5mmであり、本発明の別の好ましい一態様では-1~+1mmであり、本発明のさらに別の好ましい一態様では-0.5~+0.1mmである。焦点はずし距離は、設定値を一定にしてレーザー照射しても良いし、焦点はずし距離を変化させながらレーザー照射しても良い。例えば、レーザー照射時に、焦点はずし距離を徐々に小さくしたり、周期的に大きくしたり小さくしたりしてもよい。 波長 The wavelength of the laser beam is 300 to 1200 nm in one preferred embodiment of the present invention, and 500 to 1200 nm in another preferred embodiment of the present invention. The defocusing distance when irradiating the laser beam is -5 to +5 mm in a preferred embodiment of the present invention, and -1 to +1 mm in another preferred embodiment of the present invention. In the embodiment, it is -0.5 to +0.1 mm. As the defocusing distance, laser irradiation may be performed with the set value kept constant, or laser irradiation may be performed while changing the defocusing distance. For example, at the time of laser irradiation, the defocus distance may be gradually reduced, or may be periodically increased or decreased.
 連続波レーザーは公知のものを使用することができ、例えば、YVOレーザー、ファイバーレーザー(好ましくはシングルモードファイバーレーザー)、エキシマレーザー、炭酸ガスレーザー、紫外線レーザー、YAGレーザー、半導体レーザー、ガラスレーザー、ルビーレーザー、He-Neレーザー、窒素レーザー、キレートレーザー、色素レーザーを使用することができる。これらの中でもエネルギー密度が高められることから、ファイバーレーザーが好ましく、特にシングルモードファイバーレーザーが好ましい。 A known continuous wave laser can be used, for example, a YVO 4 laser, a fiber laser (preferably a single mode fiber laser), an excimer laser, a carbon dioxide laser, an ultraviolet laser, a YAG laser, a semiconductor laser, a glass laser, A ruby laser, a He-Ne laser, a nitrogen laser, a chelate laser, and a dye laser can be used. Among them, a fiber laser is preferable, and a single mode fiber laser is particularly preferable, because the energy density is increased.
<表面に粗面化構造を有する酸化物系の非磁性セラミックス成形体の第2の製造方法>
 本発明の1つの実施態様による、表面に粗面化構造を有する酸化物系の非磁性セラミックス成形体の第2の製造方法は、上記した第1の製造方法とは、レーザー光の照射形態が異なるほかは、同じ方法である。
<Second method for producing oxide-based non-magnetic ceramic molded body having a roughened structure on its surface>
According to one embodiment of the present invention, the second method for producing an oxide-based non-magnetic ceramic molded body having a surface roughened structure is different from the first method described above in that the laser light irradiation mode is different from that of the first method. The difference is the same method.
 第2の製造方法は、第1の製造方法と同様にして酸化物系の非磁性セラミックス成形体の表面に対して、連続波レーザーを使用して5,000mm/sec以上の照射速度でレーザー光を連続照射する工程において、粗面化対象となる酸化物系の非磁性セラミックス成形体の表面に対してレーザー光を照射するとき、レーザー光の照射部分と非照射部分が交互に生じるように照射する工程を有している。 The second manufacturing method uses a continuous wave laser to irradiate the surface of the oxide-based non-magnetic ceramic molded body with a laser beam at an irradiation speed of 5,000 mm / sec or more in the same manner as the first manufacturing method. In the process of continuously irradiating laser light, when irradiating the surface of the oxide-based non-magnetic ceramic molded body to be roughened with laser light, the irradiation is performed so that the irradiated portion and the non-irradiated portion alternately occur. The step of performing
 第2の製造方法では、直線、曲線または直線と曲線の組み合わせになるようにレーザー光を照射するとき、レーザー光の照射部分と非照射部分が交互に生じるように照射する。レーザー光の照射部分と非照射部分が交互に生じるように照射するとは、図5に示すように照射する実施形態を含んでいる。図5は、長さL1のレーザー光の照射部分11と隣接する長さL1のレーザー光の照射部分11の間にある長さL2のレーザー光の非照射部分12が交互に生じて、全体として点線状に形成されるように照射した状態を示している。前記点線には、一点鎖線、二点鎖線などの鎖線も含まれる。 {Circle around (2)} In the second manufacturing method, when irradiating a laser beam so as to form a straight line, a curve, or a combination of a straight line and a curve, the laser beam is irradiated so that a portion irradiated with the laser beam and a non-irradiated portion alternate. Irradiation such that laser light irradiation parts and non-irradiation parts are generated alternately includes the embodiment of irradiation as shown in FIG. FIG. 5 shows that the non-irradiated portion 12 of the laser beam having the length L2 between the irradiated portion 11 of the laser beam having the length L1 and the adjacent irradiated portion 11 of the laser beam having the length L1 is alternately formed. An irradiation state is shown so as to form a dotted line. The dotted line also includes a chain line such as a one-dot chain line or a two-dot chain line.
 複数回照射するときは、レーザー光の照射部分を同じにしてもよいし、レーザー光の照射部分を異ならせる(レーザー光の照射部分をずらす)ことで、酸化物系の非磁性セラミックス成形体の全体が粗面化されるようにしてもよい。レーザー光の照射部分を同じにして複数回照射したときは点線状に照射されるが、レーザー光の照射部分をずらして、即ち、最初はレーザー光の非照射部分であった部分にレーザー光の照射部分が重なるようにずらして照射することを繰り返すと、点線状に照射した場合であっても、最終的には実線状態に照射されることになる。繰り返し回数は、1~20回にすることができる。 When irradiating a plurality of times, the irradiated portion of the laser beam may be the same, or the irradiated portion of the laser beam may be different (by shifting the irradiated portion of the laser beam) to form the oxide-based non-magnetic ceramic molded body. The whole may be roughened. When the laser beam is irradiated multiple times with the same part irradiated, the laser beam is irradiated in a dotted line, but the laser light irradiated part is shifted, that is, the laser light is first irradiated to the part that was not irradiated with the laser light. If the irradiation is repeated while being shifted so that the irradiation portions overlap, even when the irradiation is performed in a dotted line, the irradiation is finally performed in a solid line state. The number of repetitions can be 1 to 20 times.
 酸化物系の非磁性セラミックス成形体に対して連続的にレーザー光を照射すると、厚さの小さい成形体では割れなどの変形が生じるおそれもある。しかし、図5に示すように点線状にレーザー照射すると、レーザー光の照射部分11とレーザー光の非照射部分12が交互に生じることになるため、レーザー光の照射を継続した場合、厚さの小さい成形体でも割れなどの変形が生じ難くなる。このとき、上記のようにレーザー光の照射部分を異ならせた(レーザー光の照射部分をずらせた)場合でも同様の効果が得られる。 す る と If the oxide-based non-magnetic ceramic molded body is continuously irradiated with a laser beam, deformation such as cracking may occur in a molded body having a small thickness. However, when laser irradiation is performed in a dotted line as shown in FIG. 5, laser light irradiation portions 11 and laser light non-irradiation portions 12 occur alternately. Deformation such as cracking hardly occurs even in a small compact. At this time, the same effect can be obtained even when the irradiated portion of the laser beam is changed as described above (the irradiated portion of the laser beam is shifted).
 レーザー光の照射方法は、例えば金属成形体20の表面に対して、図6(a)に示すように一方向に照射する方法、または図6(b)に示す点線のように双方向から照射する方法を使用することができる。その他、レーザー光の点線照射部分が交差するように照射する方法でもよい。照射後の各点線の間隔b1は、金属成形体の照射対象面積などに応じて調整することができるものであるが、第1の製造方法のライン間隔と同じ範囲にすることができる。 The method of irradiating the laser beam is, for example, a method of irradiating the surface of the metal molded body 20 in one direction as shown in FIG. 6A, or a method of irradiating the surface from both directions as shown by a dotted line in FIG. The method can be used. In addition, a method of irradiating the laser beam so that the dotted lines irradiate with each other may be used. The interval b1 between the dotted lines after the irradiation can be adjusted according to the irradiation target area of the metal molded body or the like, but can be in the same range as the line interval in the first manufacturing method.
 図5に示すレーザー光の照射部分11の長さ(L1)とレーザー光の非照射部分12の長さ(L2)は、L1/L2=1/9~9/1の範囲になるように調整することができる。レーザー光の照射部分11の長さ(L1)は、複雑な多孔構造に粗面化するためには、本発明の好ましい一態様では0.05mm以上であり、本発明の別の好ましい一態様では0.1~10mmであり、本発明のさらに別の好ましい一態様では0.3~7mmである。 The length (L1) of the laser light irradiated portion 11 and the length (L2) of the laser light non-irradiated portion 12 shown in FIG. 5 are adjusted so that L1 / L2 = 1/9 to 9/1. can do. The length (L1) of the irradiated portion 11 of the laser beam is 0.05 mm or more in a preferred embodiment of the present invention in order to roughen the surface into a complicated porous structure, and in another preferred embodiment of the present invention. 0.1 to 10 mm, and in still another preferred embodiment of the present invention 0.3 to 7 mm.
 本発明の第2の製造方法の1つの例示的な実施形態では、上記したレーザー光の照射工程は、レーザーの駆動電流を直接変換する直接変調方式の変調装置をレーザー電源に接続したファイバーレーザー装置を使用し、デューティ比(duty ratio)を調整してレーザー照射する。 In one exemplary embodiment of the second manufacturing method of the present invention, the laser light irradiation step described above is a fiber laser apparatus in which a direct modulation type modulator for directly converting a drive current of a laser is connected to a laser power supply. Is used to adjust the duty ratio (duty ratio) to perform laser irradiation.
 レーザーの励起には、パルス励起と連続励起の2種類があり、パルス励起によるパルス波レーザーは一般にノーマルパルスと呼ばれる。連続励起であってもパルス波レーザーを作り出すことが可能であり、ノーマルパルスよりパルス幅(パルスON時間)を短くして、その分ピークパワーの高いレーザーを発振させるQスイッチパルス発振方法、AOMやLN光強度変調機により時間的に光を切り出すことでパルス波レーザーを生成させる外部変調方式、機械的にチョッピングしてパルス化する方法、ガルバノミラーを操作してパルス化する方法、レーザーの駆動電流を直接変調してパルス波レーザーを生成する直接変調方式によりパルス波レーザーを作り出すことができる。ガルバノミラーを操作してパルス化する方法は、ガルバノミラーとガルバノコントローラーの組み合わせによって、ガルバノミラーを介してレーザー発振機から発振されたレーザー光を照射する方法であり、具体的には次のように実施することができる。 There are two types of laser excitation: pulse excitation and continuous excitation. A pulse wave laser by pulse excitation is generally called a normal pulse. A pulse wave laser can be produced even with continuous excitation, and a pulse width (pulse ON time) is made shorter than a normal pulse, and a Q switch pulse oscillation method for oscillating a laser having a higher peak power is used. An external modulation method in which a pulse wave laser is generated by temporally cutting out light using an LN light intensity modulator, a method of mechanically chopping and pulsing, a method of operating a galvanomirror to form a pulse, and a laser driving current A pulse wave laser can be produced by a direct modulation method in which a pulse wave laser is generated by directly modulating a pulse wave laser. The method of pulsing by operating the galvanomirror is a method of irradiating a laser beam oscillated from a laser oscillator via a galvanomirror by a combination of a galvanomirror and a galvanomirror, specifically, as follows. Can be implemented.
 ガルバノコントローラーから周期的にGate信号をON/OFF出力し、そのON/OFF信号でレーザー発振機により発振したレーザー光をON/OFFすることで、レーザー光のエネルギー密度を変化させることなくパルス化することができる。それによって、図5に示すようにレーザー光の照射部分11と隣接するレーザー光の照射部分11の間にあるレーザー光の非照射部分12が交互に生じて、全体として点線状に形成されるようにレーザー光を照射することができる。ガルバノミラーを操作してパルス化する方法は、レーザー光の発振状態自体は替えることなく、デューティ比を調整することができるため、操作が簡単である。 A gate signal is periodically output ON / OFF from a galvano controller, and the laser light oscillated by a laser oscillator is turned ON / OFF by the ON / OFF signal, thereby pulsating the laser light without changing the energy density of the laser light. be able to. As a result, as shown in FIG. 5, laser light irradiation portions 11 and laser light non-irradiation portions 12 between adjacent laser light irradiation portions 11 are alternately formed, and are formed as a whole as a dotted line. Can be irradiated with laser light. The method of pulsing by operating the galvanometer mirror is simple in operation because the duty ratio can be adjusted without changing the oscillation state of the laser light itself.
 これらの方法の中でも、連続波レーザーのエネルギー密度を変更することなく、パルス化(照射部分と非照射部分が交互に生じるように照射する)ことが容易にできる方法であることから、機械的にチョッピングしてパルス化する方法、ガルバノミラーを操作してパルス化する方法、レーザーの駆動電流を直接変調してパルス波レーザーを生成する直接変調方式が使用されてよい。上記したような例示的な実施形態では、レーザーの駆動電流を直接変換する直接変調方式の変調装置をレーザー電源に接続したファイバーレーザー装置を使用することで、レーザーを連続励起させてパルス波レーザーを作り出してよい。 Among these methods, it is easy to pulse (irradiate so that irradiated and non-irradiated portions alternate) without changing the energy density of the continuous wave laser. A method of pulsing by chopping, a method of pulsing by operating a galvanomirror, and a direct modulation method of directly modulating a driving current of a laser to generate a pulse wave laser may be used. In the exemplary embodiment as described above, by using a fiber laser device in which a direct modulation type modulation device that directly converts the driving current of the laser is connected to a laser power supply, the laser is continuously excited to generate a pulsed laser. May be produced.
 デューティ比は、レーザー光の出力のON時間とOFF時間から次式により求められる比である。
   デューティ比(%)=ON時間/(ON時間+OFF時間)×100
デューティ比は、図5に示すL1とL2(すなわち、L1/[L1+L2])に対応するものであるから、例えば10~90%の範囲から選択することができる。デューティ比を調整してレーザー光を照射することで、図5に示すような点線状に照射することができる。
The duty ratio is a ratio obtained from the ON time and the OFF time of the output of the laser light by the following equation.
Duty ratio (%) = ON time / (ON time + OFF time) × 100
Since the duty ratio corresponds to L1 and L2 (that is, L1 / [L1 + L2]) shown in FIG. 5, it can be selected from a range of, for example, 10 to 90%. By adjusting the duty ratio and irradiating the laser beam, it is possible to irradiate in a dotted line as shown in FIG.
<表面に粗面化構造を有する酸化物系の非磁性セラミックス成形体の第3の製造方法>
 本発明の1つの実施態様による、第3の製造方法は、第1の製造方法と第2の製造方法とは異なり、パルス波レーザーを使用する方法である。
<Third manufacturing method of oxide-based non-magnetic ceramic molded body having surface roughened structure>
According to one embodiment of the present invention, the third manufacturing method is different from the first manufacturing method and the second manufacturing method, and is a method using a pulse wave laser.
 前記パルス波レーザー光を照射するとき、下記の要件(i)~(v)を調整することで、表面に粗面化構造を形成することができる。パルス波レーザー光を照射する方法は、通常のパルス波レーザー光を照射する方法のほか、例えば特許第5848104号公報、特許第5788836号公報、特許第5798534号公報、特許第5798535号公報、特開2016-203643号公報、特許第5889775号公報、特許第5932700号、または特許第6055529号公報に記載のパルス波レーザー光の照射方法と同様にして実施することができる。 (4) When irradiating the pulsed laser light, a roughened structure can be formed on the surface by adjusting the following requirements (i) to (v). The method of irradiating a pulsed laser beam is, for example, a method of irradiating a pulsed laser beam, for example, Japanese Patent No. 5848104, Japanese Patent No. 5788836, Japanese Patent No. 5798534, Japanese Patent No. 5798535, The method can be carried out in the same manner as the pulse wave laser beam irradiation method described in JP-A-2016-203643, Japanese Patent No. 5888975, Japanese Patent No. 5932700, or Japanese Patent No. 6055529.
<要件(i)酸化物系の非磁性セラミックス成形体に対してレーザー光を照射するときの照射角度>
 酸化物系の非磁性セラミックス成形体の表面に対して本発明の好ましい一態様では15度~90度の角度、本発明の別の好ましい一態様では45~90度の角度でレーザー光を照射する。
<Requirement (i) Irradiation angle when irradiating laser light to oxide-based non-magnetic ceramic molded body>
In a preferred embodiment of the present invention, the surface of the oxide-based non-magnetic ceramic molded body is irradiated with a laser beam at an angle of 15 ° to 90 °, and in another preferred embodiment of the present invention, at an angle of 45 ° to 90 °. .
<要件(ii)酸化物系の非磁性セラミックス成形体に対してレーザー光を照射するときの照射速度>
 レーザー光の照射速度は本発明の好ましい一態様では10~1,000mm/secであり、本発明の別の好ましい一態様では10~500mm/secであり、本発明の別の好ましい一態様では10~100mm/secであり、本発明のさらに別の好ましい一態様では10~80mm/secである。
<Requirement (ii) Irradiation rate when irradiating laser light to oxide-based non-magnetic ceramic molded body>
The irradiation speed of the laser beam is 10 to 1,000 mm / sec in a preferred embodiment of the present invention, 10 to 500 mm / sec in another preferred embodiment of the present invention, and 10 to 500 mm / sec in another preferred embodiment of the present invention. ~ 100 mm / sec, and in still another preferred embodiment of the present invention, it is 10-80 mm / sec.
<(iii)前記酸化物系の非磁性セラミックス成形体に対してレーザー光を照射するときのエネルギー密度>
 レーザー光の照射時のエネルギー密度は、レーザー光の1パルスのエネルギー出力(W)と、レーザー光(スポット面積(cm)(π・〔スポット径/2〕)から求められる。レーザー光の照射時のエネルギー密度は本発明の好ましい一態様では0.1~50GW/cmであり、本発明の別の好ましい一態様では0.1~20GW/cmであり、本発明の別の好ましい一態様では0.5~10GW/cmであり、本発明のさらに別の好ましい一態様では0.5~5GW/cmである。エネルギー密度が大きくなるほど、孔は深くかつ大きくなる。
<(Iii) Energy density when irradiating the oxide-based non-magnetic ceramic molded body with laser light>
The energy density at the time of laser light irradiation is obtained from the energy output (W) of one pulse of the laser light and the laser light (spot area (cm 2 ) (π · [spot diameter / 2] 2 ). energy density during irradiation is 0.1 ~ 50GW / cm 2 in a preferred aspect of the present invention, in another preferred embodiment of the present invention is 0.1 ~ 20GW / cm 2, another preferred of the present invention in one embodiment, it is 0.5 ~ 10GW / cm 2, in yet another preferred embodiment of the present invention is 0.5 ~ 5GW / cm 2. energy density increases, the hole becomes deeper and larger.
 レーザー光の1パルスのエネルギー出力(W)は、次式から求められるものである。
   レーザー光の1パルスのエネルギー出力(W)=(レーザー光の平均出力/周波数)/パルス幅
レーザー光の平均出力は、本発明の好ましい一態様では4~400Wであり、本発明の別の好ましい一態様では5~100Wであり、本発明のさらに別の好ましい一態様では10~100Wである。他のレーザー光の照射条件が同一であれば、出力が大きいほど孔は深くかつ大きくなり、出力が小さいほど孔は浅くかつ小さくなる。周波数(KHz)は、本発明の好ましい一態様では0.001~1000kHzであり、本発明の別の好ましい一態様では0.01~500kHzであり、本発明のさらに別の好ましい一態様では0.1~100kHzである。パルス幅(nsec)は、本発明の好ましい一態様では1~10,000nsecであり、本発明の別の好ましい一態様では1~1,000nsecであり、本発明のさらに別の好ましい一態様では1~100nsecである。
The energy output (W) of one pulse of laser light is obtained from the following equation.
The energy output (W) of one pulse of laser light = (average output of laser light / frequency) / average output of pulse width laser light is 4 to 400 W in one preferred embodiment of the present invention, and is another preferable embodiment of the present invention. In one embodiment, it is 5 to 100 W, and in still another preferred embodiment of the present invention, it is 10 to 100 W. If the other laser light irradiation conditions are the same, the hole becomes deeper and larger as the output becomes larger, and the hole becomes shallower and smaller as the output becomes smaller. The frequency (KHz) is 0.001 to 1000 kHz in a preferred embodiment of the present invention, 0.01 to 500 kHz in another preferred embodiment of the present invention, and 0.1 in still another preferred embodiment of the present invention. It is 1 to 100 kHz. The pulse width (nsec) is 1 to 10,000 nsec in a preferred embodiment of the present invention, 1 to 1,000 nsec in another preferred embodiment of the present invention, and 1 in still another preferred embodiment of the present invention. ~ 100 nsec.
 レーザー光のスポット径(μm)は、本発明の好ましい一態様では1~300μm、本発明の別の好ましい一態様では10~300μm、本発明のさらに別の好ましい一態様では20~150μm、本発明のさらに別の好ましい一態様では20~80μmである。 The spot diameter (μm) of the laser beam is 1 to 300 μm in one preferred embodiment of the present invention, 10 to 300 μm in another preferred embodiment of the present invention, and 20 to 150 μm in still another preferred embodiment of the present invention. In still another preferred embodiment, the thickness is 20 to 80 μm.
<(iv)レーザー光を照射するときの繰り返し回数>
 繰り返し回数(一つの孔を形成するための合計のレーザー光の照射回数)は本発明の好ましい一態様では1~80回であり、本発明の別の好ましい一態様では3~50回であり、本発明の別の好ましい一態様では5~30回である。同一のレーザー照射条件であれば、繰り返し回数が多いほど孔が深くかつ大きくなり、繰り返し回数が少ないほど孔が浅くかつ小さくなる。
<(Iv) Number of repetitions when irradiating laser light>
The number of repetitions (the total number of laser light irradiations for forming one hole) is 1 to 80 in a preferred embodiment of the present invention, and 3 to 50 in another preferred embodiment of the present invention. In another preferred embodiment of the present invention, the number is 5 to 30 times. Under the same laser irradiation conditions, the hole becomes deeper and larger as the number of repetitions increases, and the hole becomes shallower and smaller as the number of repetitions decreases.
<(v)酸化物系の非磁性セラミックス成形体に対してレーザー光を照射するときのライン間隔>
 前記酸化物系の非磁性セラミックス成形体に対してレーザー光をライン状に照射するとき、隣接するライン同士の間隔を広くしたり、狭くしたりすることで、孔の大きさ、孔の形状、孔の深さを調整することができる。なお、パルス波レーザー光は、点を照射して、前記点を複数繋いでラインを形成するものである。
<(V) Line spacing when irradiating laser light to oxide-based non-magnetic ceramics molded body>
When irradiating the oxide-based non-magnetic ceramic molded body with a laser beam in a line shape, by increasing or decreasing the interval between adjacent lines, the size of the hole, the shape of the hole, The depth of the holes can be adjusted. Note that the pulsed laser light irradiates a point and connects a plurality of the points to form a line.
 ライン間隔は本発明の好ましい一態様では0.01~1mmの範囲であり、本発明の別の好ましい一態様では0.01~0.5mmの範囲、本発明の別の好ましい一態様では0.03~0.3mm、本発明のさらに別の好ましい一態様では0.05~0.1mmである。ライン間隔が狭いと、隣接するラインにも熱的影響が及ぶため、孔は大きくなり、孔の形状は複雑になり、孔の深さは深くなる傾向にあるが、熱的影響が大きくなり過ぎると複雑で深い形状の孔が形成され難くなることもある。ライン間隔が広いと、孔は小さくなり、孔の形状は複雑にはならず、孔はあまり深くならない傾向にあるが、処理速度を高めることはできる。 The line spacing is in a preferred embodiment of the present invention in the range of 0.01 to 1 mm, in another preferred embodiment of the present invention in the range of 0.01 to 0.5 mm, and in another preferred embodiment of the present invention, 0.1. 03 to 0.3 mm, and in still another preferred embodiment of the present invention it is 0.05 to 0.1 mm. If the line spacing is small, the thermal effect will also affect adjacent lines, so the hole will be large, the shape of the hole will be complicated, the depth of the hole will tend to be deep, but the thermal effect will be too large In some cases, it is difficult to form a complicated and deep hole. If the line spacing is large, the holes will be small, the shape of the holes will not be complicated and the holes will not be too deep, but the processing speed can be increased.
 その他の照射条件として、前記酸化物系の非磁性セラミックス成形体に対してレーザー光を照射するとき、前記成形体から放熱させながら照射する照射形態も含めることができる。例えば、酸化物系の非磁性セラミックス成形体と、前記酸化物系の非磁性セラミックス成形体よりも熱伝導率の大きい金属成形体を接触させた状態でレーザー光を照射する方法、前記成形体を中空に保持した状態でレーザー光を照射する方法が挙げられる。その他、パルス波レーザー光の波長は500~11,000nmであってよい。 照射 Other irradiation conditions may include an irradiation mode of irradiating a laser beam on the oxide-based non-magnetic ceramic molded body while radiating heat from the molded body. For example, a method of irradiating a laser beam in a state where an oxide-based non-magnetic ceramic molded body and a metal molded body having a higher thermal conductivity than the oxide-based non-magnetic ceramic molded body are in contact with each other. A method of irradiating a laser beam while holding it in a hollow state may be used. In addition, the wavelength of the pulsed laser light may be 500 to 11,000 nm.
 本発明の1つの実施態様による表面に粗面化構造を有する非磁性セラミックス成形体を、他の材料(非磁性セラミックスを除いた材料)からなる成形体との複合成形体を製造するための製造中間体として使用したときの、複合成形体の製造方法の幾つかの例について説明する。これらの複合成形体の製造方法および製造された複合成形体も本発明の範囲内に含まれる。 Production for producing a composite molded article of a non-magnetic ceramic molded article having a roughened structure on the surface and a molded article made of another material (a material excluding non-magnetic ceramics) according to one embodiment of the present invention Some examples of a method for producing a composite molded article when used as an intermediate will be described. The method for producing these composite molded articles and the produced composite molded articles are also included in the scope of the present invention.
(1)粗面化構造を有する酸化物系の非磁性セラミックス成形体と樹脂成形体との複合成形体の製造方法
 第1工程では、上記した第1の製造方法、第2の製造方法または第3はの製造方法により表面に粗面化構造を有する非磁性セラミックス成形体を製造する。
(1) A method for producing a composite molded article of an oxide-based nonmagnetic ceramic molded article having a roughened structure and a resin molded article. In the first step, the first production method, the second production method, or the second 3 manufactures a non-magnetic ceramics molded body having a roughened structure on the surface by the manufacturing method.
 第2工程では、第1工程において得た表面に粗面化構造を有する酸化物系の非磁性セラミックス成形体の粗面化構造を含む部分を金型内に配置して、前記樹脂成形体となる樹脂を射出成形するか、または第2工程では、第1工程においてレーザー光が照射された非磁性セラミックス成形体の粗面化構造を含む部分を金型内に配置して、少なくとも前記粗面化構造を含む部分と前記樹脂成形体となる樹脂を接触させた状態で圧縮成形する。 In the second step, a portion including the roughened structure of the oxide-based nonmagnetic ceramics molded body having a roughened surface on the surface obtained in the first step is arranged in a mold, and the resin molded body is In the second step, the portion including the roughened structure of the non-magnetic ceramics molded body irradiated with the laser beam in the first step is arranged in a mold, and at least the rough surface is formed. Compression molding in a state where the portion including the modified structure and the resin to be the resin molded body are in contact with each other.
 第2工程で使用する樹脂としては、熱可塑性樹脂、熱硬化性樹脂のほか、熱可塑性エラストマーも含まれる。熱可塑性樹脂は、用途に応じて公知の熱可塑性樹脂から適宜選択することができる。例えば、ポリアミド系樹脂(PA6、PA66等の脂肪族ポリアミド、芳香族ポリアミド)、ポリスチレン、ABS樹脂、AS樹脂などのスチレン単位を含む共重合体、ポリエチレン、エチレン単位を含む共重合体、ポリプロピレン、プロピレン単位を含む共重合体、その他のポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリカーボネート系樹脂、アクリル系樹脂、メタクリル系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂、およびポリフェニレンスルフィド系樹脂を挙げることができる。 樹脂 The resin used in the second step includes thermoplastic elastomers in addition to thermoplastic resins and thermosetting resins. The thermoplastic resin can be appropriately selected from known thermoplastic resins depending on the application. For example, copolymers containing styrene units such as polyamide resins (aliphatic polyamides and aromatic polyamides such as PA6 and PA66), polystyrene, ABS resins, AS resins, etc., polyethylene, copolymers containing ethylene units, polypropylene, propylene Examples include copolymers containing units, other polyolefins, polyvinyl chloride, polyvinylidene chloride, polycarbonate resins, acrylic resins, methacrylic resins, polyester resins, polyacetal resins, and polyphenylene sulfide resins.
 熱硬化性樹脂は、用途に応じて公知の熱硬化性樹脂から適宜選択することができる。例えば、尿素樹脂、メラミン樹脂、フェノール樹脂、レソルシノール樹脂、エポキシ樹脂、ポリウレタン、およびビニルウレタンを挙げることができる。熱硬化性樹脂を使用するときは、プレポリマー形態のものを使用し、後工程において加熱硬化処理をすることができる。 The thermosetting resin can be appropriately selected from known thermosetting resins depending on the application. For example, urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, polyurethane, and vinyl urethane can be mentioned. When a thermosetting resin is used, a prepolymer form can be used, and a heat curing treatment can be performed in a later step.
 熱可塑性エラストマーは、用途に応じて公知の熱可塑性エラストマーから適宜選択することができる。例えば、スチレン系エラストマー、塩化ビニル系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ニトリル系エラストマー、およびポリアミド系エラストマーを挙げることができる。 The thermoplastic elastomer can be appropriately selected from known thermoplastic elastomers depending on the application. For example, styrene elastomers, vinyl chloride elastomers, olefin elastomers, urethane elastomers, polyester elastomers, nitrile elastomers, and polyamide elastomers can be used.
 これらの熱可塑性樹脂、熱硬化性樹脂、および熱可塑性エラストマーには、公知の繊維状充填材を配合することができる。公知の繊維状充填材としては、炭素繊維、無機繊維、金属繊維、有機繊維等を挙げることができる。 公 知 A known fibrous filler can be blended with these thermoplastic resins, thermosetting resins, and thermoplastic elastomers. Known fibrous fillers include carbon fibers, inorganic fibers, metal fibers, and organic fibers.
 炭素繊維は周知のものであり、PAN系、ピッチ系、レーヨン系、リグニン系等のものを用いることができる。無機繊維としては、ガラス繊維、玄武岩繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化ホウ素繊維、窒化ケイ素繊維等を挙げることができる。金属繊維としては、ステンレス、アルミニウム、銅等からなる繊維を挙げることができる。有機繊維としては、ポリアミド繊維(全芳香族ポリアミド繊維、ジアミンとジカルボン酸のいずれか一方が芳香族化合物である半芳香族ポリアミド繊維、脂肪族ポリアミド繊維)、ポリビニルアルコール繊維、アクリル繊維、ポリオレフィン繊維、ポリオキシメチレン繊維、ポリテトラフルオロエチレン繊維、ポリエステル繊維(全芳香族ポリエステル繊維を含む)、ポリフェニレンスルフィド繊維、ポリイミド繊維、液晶ポリエステル繊維などの合成繊維や天然繊維(セルロース系繊維など)や再生セルロース(レーヨン)繊維などを用いることができる。 Carbon fibers are well-known, and PAN-based, pitch-based, rayon-based, and lignin-based carbon fibers can be used. Examples of the inorganic fibers include glass fibers, basalt fibers, silica fibers, silica / alumina fibers, zirconia fibers, boron nitride fibers, and silicon nitride fibers. Examples of the metal fibers include fibers made of stainless steel, aluminum, copper, and the like. As organic fibers, polyamide fibers (wholly aromatic polyamide fibers, semi-aromatic polyamide fibers in which one of diamine and dicarboxylic acid is an aromatic compound, aliphatic polyamide fibers), polyvinyl alcohol fibers, acrylic fibers, polyolefin fibers, Synthetic fiber such as polyoxymethylene fiber, polytetrafluoroethylene fiber, polyester fiber (including wholly aromatic polyester fiber), polyphenylene sulfide fiber, polyimide fiber, liquid crystal polyester fiber, natural fiber (cellulose fiber, etc.) and regenerated cellulose ( Rayon) fiber or the like can be used.
 これらの繊維状充填材は、繊維径が3~60μmの範囲のものを使用することができるが、これらの中でも、例えば金属成形体10の接合面12が粗面化されて形成される開放孔30などの開口径より小さな繊維径のものを使用することができる。繊維径は、本発明の好ましい一態様では5~30μm、本発明の別の好ましい一態様では7~20μmである。熱可塑性樹脂、熱硬化性樹脂、または熱可塑性エラストマー100質量部に対する繊維状充填材の配合量は、本発明の好ましい一態様では5~250質量部である。本発明の別の好ましい一態様では25~200質量部、本発明のさらに別の好ましい一態様では45~150質量部である。 As these fibrous fillers, those having a fiber diameter in the range of 3 to 60 μm can be used. Among them, for example, open holes formed by roughening the bonding surface 12 of the metal molded body 10 are described. A fiber having a fiber diameter smaller than the opening diameter, such as 30, can be used. The fiber diameter is 5 to 30 μm in one preferred embodiment of the present invention, and 7 to 20 μm in another preferred embodiment of the present invention. In one preferred embodiment of the present invention, the compounding amount of the fibrous filler relative to 100 parts by mass of the thermoplastic resin, the thermosetting resin, or the thermoplastic elastomer is 5 to 250 parts by mass. In another preferred embodiment of the present invention, the amount is 25 to 200 parts by mass, and in still another preferred embodiment of the present invention, the amount is 45 to 150 parts by mass.
(2-1)粗面化構造を有する酸化物系の非磁性セラミックス成形体とゴム成形体との複合成形体の製造方法
 第1工程では、第1の製造方法、第2の製造方法または第3の製造方法により表面に粗面化構造を有する非磁性セラミックス成形体を製造する。第2工程では、第1工程において得た酸化物系の非磁性セラミックス成形体とゴム成形体をプレス成形やトランスファー成形などの公知の成形方法を適用して一体化させる。
(2-1) Method of Manufacturing Composite Molded Product of Oxide-Based Nonmagnetic Ceramic Molded Body Having Roughened Structure and Rubber Molded Body In the first step, the first manufacturing method, the second manufacturing method, or the second manufacturing method is performed. A non-magnetic ceramic molded body having a roughened structure on the surface is manufactured by the manufacturing method of 3. In the second step, the oxide-based nonmagnetic ceramic molded article and the rubber molded article obtained in the first step are integrated by applying a known molding method such as press molding or transfer molding.
 プレス成形法を適用するときは、例えば、酸化物系の非磁性セラミックス成形体の粗面化構造を含む部分を金型内に配置して、前記粗面化構造を含む部分に対して、加熱および加圧した状態で前記ゴム成形体となる未硬化ゴムをプレスした後、冷却後に取り出す。トランスファー成形法を適用するときは、例えば、酸化物系の非磁性セラミックス成形体の粗面化構造を含む部分を金型内に配置して、未硬化ゴムを金型内に射出成形し、その後、加熱および加圧して、酸化物系の非磁性セラミックス成形体の粗面化構造を含む部分とゴム成形体を一体化させ、冷却後に取り出す。 When the press molding method is applied, for example, a portion including a roughened structure of an oxide-based nonmagnetic ceramic molded body is arranged in a mold, and the portion including the roughened structure is heated. After the uncured rubber to be the rubber molded body is pressed in a pressurized state, it is taken out after cooling. When applying the transfer molding method, for example, a portion including a roughened structure of an oxide-based non-magnetic ceramic molded body is placed in a mold, and the uncured rubber is injection-molded in the mold, and then Then, by heating and pressurizing, the portion including the roughened structure of the oxide-based non-magnetic ceramics molded body and the rubber molded body are integrated, and taken out after cooling.
 なお、使用するゴムの種類によっては、主として残留モノマーを除去するため、金型から取り出した後、オーブンなどでさらに二次加熱(二次硬化)する工程を付加することができる。 Depending on the type of rubber used, a step of secondary heating (secondary curing) in an oven or the like after removal from the mold can be added in order to mainly remove residual monomers.
 この工程で使用するゴム成形体のゴムは特に制限されるものではなく、公知のゴムを使用することができるが、熱可塑性エラストマーは含まれない。公知のゴムとしては、エチレン‐プロピレンコポリマー(EPM)、エチレン‐プロピレン‐ジエンターポリマー(EPDM)、エチレン‐オクテンコポリマー(EOM)、エチレン‐ブテンコポリマー(EBM)、エチレン‐オクテンターポリマー(EODM)、エチレン‐ブテンターポリマー(EBDM)などのエチレン‐α‐オレフィンゴム;エチレン/アクリル酸ゴム(EAM)、ポリクロロプレンゴム(CR)、アクリロニトリル‐ブタジエンゴム(NBR)、水添NBR(HNBR)、スチレン‐ブタジエンゴム(SBR)、アルキル化クロロスルホン化ポリエチレン(ACSM)、エピクロルヒドリン(ECO)、ポリブタジエンゴム(BR)、天然ゴム(合成ポリイソプレンを含む)(NR)、塩素化ポリエチレン(CPE)、ブロム化ポリメチルスチレン‐ブテンコポリマー、スチレン‐ブタジエン‐スチレンおよびスチレン‐エチレン‐ブタジエン‐スチレンブロックコポリマー、アクリルゴム(ACM)、エチレン‐酢酸ビニルエラストマー(EVM)、およびシリコーンゴムなどを使用することができる。 ゴ ム The rubber of the rubber molded article used in this step is not particularly limited, and a known rubber can be used, but does not include a thermoplastic elastomer. Known rubbers include ethylene-propylene copolymer (EPM), ethylene-propylene-diene terpolymer (EPDM), ethylene-octene copolymer (EOM), ethylene-butene copolymer (EBM), ethylene-octene terpolymer (EODM), Ethylene-α-olefin rubber such as ethylene-butene terpolymer (EBDM); ethylene / acrylate rubber (EAM), polychloroprene rubber (CR), acrylonitrile-butadiene rubber (NBR), hydrogenated NBR (HNBR), styrene- Butadiene rubber (SBR), alkylated chlorosulfonated polyethylene (ACSM), epichlorohydrin (ECO), polybutadiene rubber (BR), natural rubber (including synthetic polyisoprene) (NR), chlorinated polyethylene (CPE) , Brominated polymethylstyrene-butene copolymer, styrene-butadiene-styrene and styrene-ethylene-butadiene-styrene block copolymer, acrylic rubber (ACM), ethylene-vinyl acetate elastomer (EVM), and silicone rubber can be used. it can.
 ゴムには、必要によりゴムの種類に応じた硬化剤を含有させてよいが、その他、公知の各種ゴム用添加剤を配合することができる。ゴム用添加剤としては、硬化促進剤、老化防止剤、シランカップリング剤、補強剤、難燃剤、オゾン劣化防止剤、充填剤、プロセスオイル、可塑剤、粘着付与剤、および加工助剤などを使用することができる。 (4) The rubber may contain a curing agent according to the type of the rubber, if necessary. In addition, various known rubber additives can be blended. Rubber additives include curing accelerators, anti-aging agents, silane coupling agents, reinforcing agents, flame retardants, ozone deterioration inhibitors, fillers, process oils, plasticizers, tackifiers, and processing aids. Can be used.
(2-2)粗面化構造を有する酸化物系の非磁性セラミックス成形体とゴム成形体との複合成形体(接着剤層を含む)の製造方法
 1つの実施態様によれば、酸化物系の非磁性セラミックス成形体とゴム成形体との複合成形体の製造方法では、酸化物系の非磁性セラミックス成形体とゴム成形体の接合面に接着剤層を介在させることができる。
(2-2) Method for Manufacturing Composite Molded Body (Including Adhesive Layer) of Oxide-Based Non-Magnetic Ceramics Molded Body Having Roughened Structure and Rubber Molded Body According to one embodiment, In the method for producing a composite molded article of a non-magnetic ceramic molded article and a rubber molded article described above, an adhesive layer can be interposed on the joint surface between the oxide-based non-magnetic ceramic molded article and the rubber molded article.
 第1工程にて、上記した方法と同様に連続波レーザーまたはパルス波レーザーを使用して第1、第2または第3の製造方法により、酸化物系の非磁性セラミックス成形体を粗面化する。第2工程にて、酸化物系の非磁性セラミックス成形体の粗面化構造面に接着剤(接着剤溶液)を塗布して接着剤層を形成する。このとき、接着剤を圧入するようにしてもよい。接着剤を塗布することで、非磁性セラミックスの粗面化構造面と内部の孔に接着剤を存在させることができる。 In the first step, the oxide-based non-magnetic ceramic molded body is roughened by the first, second, or third manufacturing method using a continuous wave laser or a pulse wave laser in the same manner as described above. . In the second step, an adhesive (adhesive solution) is applied to the roughened surface of the oxide-based nonmagnetic ceramic molded body to form an adhesive layer. At this time, the adhesive may be press-fitted. By applying the adhesive, the adhesive can be present on the roughened surface of the non-magnetic ceramic and on the internal holes.
 接着剤は、特に制限されるものではなく、公知の熱可塑性接着剤、熱硬化性接着剤、ゴム系接着剤などを使用することができる。熱可塑性接着剤の例としては、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラール、アクリル系接着剤、ポリエチレン、塩素化ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-エチルアクリレート共重合体、エチレン-アクリル酸共重合体、アイオノマー、塩素化ポリプロピレン、ポリスチレン、ポリ塩化ビニル、プラスチゾル、塩化ビニル-酢酸ビニル共重合体、ポリビニルエーテル、ポリビニルピロリドン、ポリアミド、ナイロン、飽和無定形ポリエステル、およびセルロース誘導体を挙げることができる。 The adhesive is not particularly limited, and a known thermoplastic adhesive, thermosetting adhesive, rubber-based adhesive, or the like can be used. Examples of the thermoplastic adhesive include polyvinyl acetate, polyvinyl alcohol, polyvinyl formal, polyvinyl butyral, acrylic adhesive, polyethylene, chlorinated polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene -Ethyl acrylate copolymer, ethylene-acrylic acid copolymer, ionomer, chlorinated polypropylene, polystyrene, polyvinyl chloride, plastisol, vinyl chloride-vinyl acetate copolymer, polyvinyl ether, polyvinylpyrrolidone, polyamide, nylon, non-saturated Fixed polyesters and cellulose derivatives can be mentioned.
 熱硬化性接着剤の例としては、尿素樹脂、メラミン樹脂、フェノール樹脂、レソルシノール樹脂、エポキシ樹脂、ポリウレタン、およびビニルウレタンを挙げることができる。ゴム系接着剤の例としては、天然ゴム、合成ポリイソプレン、ポリクロロプレン、ニトリルゴム、スチレン-ブタジエンゴム、スチレン-ブタジエン-ビニルピリジン三元共重合体、ポリイソブチレン-ブチルゴム、ポリスルフィドゴム、シリコーンRTV、塩化ゴム、臭化ゴム、クラフトゴム、ブロック共重合体、および液状ゴムを挙げることができる。 例 Examples of the thermosetting adhesive include urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, polyurethane, and vinyl urethane. Examples of rubber adhesives include natural rubber, synthetic polyisoprene, polychloroprene, nitrile rubber, styrene-butadiene rubber, styrene-butadiene-vinylpyridine terpolymer, polyisobutylene-butyl rubber, polysulfide rubber, silicone RTV, Examples include chlorinated rubber, brominated rubber, kraft rubber, block copolymer, and liquid rubber.
 この製造方法の例では第3工程にて、前工程において接着剤層を形成した酸化物系の非磁性セラミックス成形体の面に対して別途成形したゴム成形体を接着する工程、または前工程において接着剤層を形成した酸化物系の非磁性セラミックス成形体の面を含む部分を金型内に配置して、酸化物系の非磁性セラミックス成形体の面とゴム成形体となる未硬化ゴムを接触させた状態で加熱および加圧して一体化させる工程を実施する。この工程の場合には、主として残留モノマーを除去するため、金型から取り出した後、オーブンなどでさらに二次加熱(二次硬化)する工程を付加することができる。 In an example of this manufacturing method, in the third step, a step of bonding a separately molded rubber molded body to the surface of the oxide-based nonmagnetic ceramic molded body on which the adhesive layer was formed in the previous step, or The part including the surface of the oxide-based non-magnetic ceramic molded body on which the adhesive layer is formed is placed in a mold, and the surface of the oxide-based non-magnetic ceramic molded body and the uncured rubber to be a rubber molded body are removed. A step of heating and pressurizing in a state of being in contact with each other to perform integration is performed. In the case of this step, a step of secondary heating (secondary curing) in an oven or the like after removal from the mold can be added to remove mainly residual monomers.
(3-1)粗面化構造を有する酸化物系のセラミックス成形体と金属成形体との複合成形体の製造方法
 第1工程では、第1の製造方法、第2の製造方法または第3の製造方法により粗面化構造を有する酸化物系の非磁性セラミックス成形体を製造する。第2工程では、金型内に粗面化した酸化物系の非磁性セラミックス成形体の多孔構造部を含む面が上になるように配置する。その後、例えば周知のダイカスト法を適用して、溶融状態の金属を金型内に流し込んだ後、冷却する。
(3-1) Method for Producing Composite Molded Body of Oxide-Based Ceramic Molded Body and Metal Molded Body Having Roughened Structure In the first step, the first production method, the second production method, or the third production method An oxide-based non-magnetic ceramic molded body having a roughened structure is manufactured by a manufacturing method. In the second step, the surface of the roughened oxide-based non-magnetic ceramic molded body including the porous structure is placed in the mold so as to face upward. Thereafter, the metal in a molten state is poured into a mold by, for example, a known die casting method, and then cooled.
 使用する金属は、酸化物系の非磁性セラミックス成形体を構成する酸化物系の非磁性セラミックスの融点よりも低い融点のものであれば制限されない。例えば、鉄、アルミニウム、アルミニウム合金、金、銀、プラチナ、銅、マグネシウム、チタンまたはそれらの合金、ステンレスなどの複合成形体の用途に応じた金属を選択することができる。 金属 The metal used is not limited as long as it has a melting point lower than the melting point of the oxide-based non-magnetic ceramic constituting the oxide-based non-magnetic ceramic molded body. For example, it is possible to select a metal according to the use of the composite molded body such as iron, aluminum, an aluminum alloy, gold, silver, platinum, copper, magnesium, titanium or an alloy thereof, and stainless steel.
(3-2)粗面化構造を有する酸化物系の非磁性セラミックス成形体と金属成形体との複合成形体(接着剤層あり)の製造方法
 第1工程と第2工程は、上記した「(2-2)粗面化構造を有する酸化物系の非磁性セラミックス成形体とゴム成形体との複合成形体(接着剤層を含む)の製造方法」と同様に実施して、接着剤層を有する酸化物系の非磁性セラミックス成形体を製造する。
(3-2) Method for Producing Composite Molded Body (With Adhesive Layer) of Oxide-Based Non-Magnetic Ceramics Molded Body Having Roughness Structure and Metal Molded Body (2-2) Method for Manufacturing Composite Molded Body (Including Adhesive Layer) of Oxide-Based Nonmagnetic Ceramic Molded Body Having Roughened Structure and Rubber Molded Body " To produce an oxide-based non-magnetic ceramic compact having the following formula:
 第3工程では、接着剤層を有する酸化物系の非磁性セラミックス成形体の接着剤層に金属成形体を押しつけて接着・一体化する。接着剤層が熱可塑性樹脂系接着剤からなるものであるときは、必要に応じて加熱して接着剤層を軟らかくした状態で、非金属成形体の接着面と接着させることができる。また接着剤層が熱硬化性樹脂系接着剤のプレポリマーからなるものであるときは、接着後に加熱雰囲気に放置してプレポリマーを加熱硬化させる。 で は In the third step, the metal molded body is pressed against the adhesive layer of the oxide-based non-magnetic ceramic molded body having the adhesive layer to be bonded and integrated. When the adhesive layer is made of a thermoplastic resin-based adhesive, the adhesive layer can be adhered to the adhesive surface of the non-metal molded body in a state where the adhesive layer is softened by heating as necessary. When the adhesive layer is made of a thermosetting resin-based adhesive prepolymer, the prepolymer is heated and cured by being left in a heating atmosphere after bonding.
(4)粗面化構造を有する酸化物系の非磁性セラミックス成形体とUV硬化性樹脂成形体との複合成形体の製造方法
 第1工程では、上記した第1の製造方法、第2の製造方法または第3の製造方法により表面に粗面化構造を有する酸化物系の非磁性セラミックス成形体を製造する。
(4) Method for producing composite molded article of oxide-based non-magnetic ceramic molded article having a roughened structure and UV-curable resin molded article In the first step, the above-mentioned first production method and second production An oxide-based nonmagnetic ceramic molded body having a roughened structure on the surface is manufactured by the method or the third manufacturing method.
 次の工程にて、酸化物系の非磁性セラミックス成形体の粗面化部分を含めた部分に対して、UV硬化性樹脂層を形成するモノマー、オリゴマーまたはそれらの混合物を接触させる(モノマー、オリゴマーまたはそれらの混合物の接触工程)。モノマー、オリゴマーまたはそれらの混合物の接触工程としては、酸化物系の非磁性セラミックス成形体の粗面化部分を含めた部分に対してモノマー、オリゴマーまたはそれらの混合物を塗布する工程を実施することができる。モノマー、オリゴマーまたはそれらの混合物を塗布する工程は、刷毛塗り、ドクターブレードを使用した塗布、ローラー塗布、流延、ポッティングなどを単独で使用したり、組み合わせて使用したりすることができる。 In the next step, the monomer, oligomer or mixture thereof forming the UV-curable resin layer is brought into contact with the portion including the roughened portion of the oxide-based non-magnetic ceramic molded body (monomer, oligomer Or contacting a mixture thereof). As the step of contacting the monomer, the oligomer, or a mixture thereof, a step of applying the monomer, the oligomer, or a mixture thereof to a portion including a roughened portion of the oxide-based nonmagnetic ceramic molded body may be performed. it can. In the step of applying the monomer, oligomer, or mixture thereof, brush coating, application using a doctor blade, roller application, casting, potting, or the like can be used alone or in combination.
 モノマー、オリゴマーまたはそれらの混合物の接触工程は、酸化物系の非磁性セラミックス成形体の粗面化部分を含めた部分を型枠で包囲して、前記型枠内にモノマー、オリゴマーまたはそれらの混合物を注入する工程を実施することができる。またモノマー、オリゴマーまたはそれらの混合物の接触工程は、酸化物系の非磁性セラミックス成形体の粗面化部分を上にした状態で型内部に入れた後、前記型内部にモノマー、オリゴマーまたはそれらの混合物を注入する工程を実施することができる。 The step of contacting the monomer, the oligomer or a mixture thereof includes enclosing a portion including a roughened portion of the oxide-based non-magnetic ceramic molded body with a mold, and placing the monomer, oligomer or a mixture thereof in the mold. Can be performed. In the contacting step of the monomer, oligomer or mixture thereof, the oxide-based nonmagnetic ceramic molded body is placed in a mold with the roughened portion facing upward, and then the monomer, oligomer or a mixture thereof is placed in the mold. A step of injecting the mixture can be performed.
 このモノマー、オリゴマーまたはそれらの混合物の接触工程によって、酸化物系の非磁性セラミックス成形体の粗面化部分の多孔にモノマー、オリゴマーまたはそれらの混合物が入り込む。多孔にモノマー、オリゴマーまたはそれらの混合物が入り込む形態は、例えば、本発明の好ましい一態様では孔全体の50%以上、本発明の別の好ましい一態様では70%以上、本発明のさらに別の好ましい一態様では80%以上、本発明のさらに別の好ましい一態様では90%以上の孔にモノマー、オリゴマーまたはそれらの混合物が入り込む形態のほか、孔の底までモノマー、オリゴマーまたはそれらの混合物が入り込んだ形態、孔深さの途中の深さまでモノマー、オリゴマーまたはそれらの混合物が入り込んだ形態、孔の入口付近にのみモノマー、オリゴマーまたはそれらの混合物が入り込んだ形態が混在している形態が含まれる。 に よ っ て By the contacting step of the monomer, the oligomer or the mixture thereof, the monomer, the oligomer or the mixture thereof enters the pores of the roughened portion of the oxide-based non-magnetic ceramic molded body. The form in which the monomer, oligomer or mixture thereof enters the porosity is, for example, 50% or more of the whole pores in a preferred embodiment of the present invention, 70% or more in another preferred embodiment of the present invention, and still another preferred embodiment of the present invention. In one embodiment, 80% or more, and in still another preferred embodiment of the present invention, 90% or more of the pores contain the monomer, oligomer or mixture thereof, and the monomer, oligomer or mixture thereof enters the bottom of the pore. The form includes a form in which a monomer, an oligomer, or a mixture thereof enters into a partway depth of the pore, and a form in which a form in which a monomer, an oligomer, or a mixture thereof enters only near the entrance of the hole.
 モノマー、オリゴマーまたはそれらの混合物は、常温で液体のもの(低粘度のゲルも含む)や溶剤に溶解された溶液形態のものはそのまま塗布または注入することができ、固体(粉末)のものは加熱溶融させたり、溶剤に溶解させたりした後で塗布または注入することができる。 Monomers, oligomers or mixtures thereof can be applied or injected as they are in liquid form (including low-viscosity gels) at room temperature or in the form of a solution dissolved in a solvent. Solid (powder) forms can be heated. It can be applied or poured after being melted or dissolved in a solvent.
 モノマー、オリゴマーまたはそれらの混合物の接触工程で使用するモノマー、オリゴマーまたはそれらの混合物は、ラジカル重合性モノマーおよびラジカル重合性モノマーのオリゴマーから選ばれるものであるか、カチオン重合性モノマーおよび前記モノマーのカチオン重合性モノマーオリゴマー、またはそれらから選択される2種以上の混合物から選ばれるものであってよい。 The monomer, oligomer or mixture thereof used in the step of contacting the monomer, oligomer or mixture thereof is selected from a radical polymerizable monomer and an oligomer of a radical polymerizable monomer, or is a cation polymerizable monomer and a cation of the monomer. It may be one selected from polymerizable monomer oligomers or a mixture of two or more selected from them.
(ラジカル重合性モノマー)
 ラジカル重合性化合物としては、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、ビニルエーテル基、ビニルアリール基、およびビニルオキシカルボニル基などのラジカル重合性基を一分子内に1つ以上有する化合物などが挙げられる。
(Radical polymerizable monomer)
As the radical polymerizable compound, a radical polymerizable group such as a (meth) acryloyl group, a (meth) acryloyloxy group, a (meth) acryloylamino group, a vinyl ether group, a vinylaryl group, and a vinyloxycarbonyl group is contained in one molecule. Compounds having at least one compound are exemplified.
 (メタ)アクリロイル基を一分子内に1つ以上有する化合物としては、1-ブテン-3-オン、1-ペンテン-3-オン、1-ヘキセン-3-オン、4-フェニル-1-ブテン-3-オン、5-フェニル-1-ペンテン-3-オンなど、およびこれらの誘導体などが挙げられる。 Compounds having one or more (meth) acryloyl groups in one molecule include 1-buten-3-one, 1-penten-3-one, 1-hexen-3-one, 4-phenyl-1-butene- 3-one, 5-phenyl-1-penten-3-one and the like, and derivatives thereof.
 (メタ)アクリロイルオキシ基を一分子内に1つ以上有する化合物としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ラウリル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、n-ブトキシエチル(メタ)アクリレート、ブトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2―ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、アクリル酸、メタクリル酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、グリシジル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルアシッドフォスフェート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、デカンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピル(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート、イソアミル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、γ-(メタ)アクリロイルオキシプロピルトリメトキシシラン、2-(メタ)アクリロイルオキシエチルイソシアネート、1,1-ビス(アクリロイルオキシ)エチルイソシアネート、2-(2-(メタ)アクリロイルオキシエチルオキシ)エチルイソシアネート、3-(メタ)アクリロイルオキシプロピルトリエトキシシランなど、およびこれらの誘導体などが挙げられる。 Examples of the compound having at least one (meth) acryloyloxy group in one molecule include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and t-butyl (meth). A) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, n-lauryl (meth) acrylate, n-stearyl (meth) acrylate, n-butoxyethyl (meth) acrylate, Butoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, cyclohexyl (meth) acrylate, tetrahydrofurfuryl (meth) acryl , Benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, dimethyl Aminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, acrylic acid, methacrylic acid, 2- (meth) acryloyloxyethylsuccinic acid, 2- (meth) acryloyloxyethylhexahydrophthalic acid, 2- (meth) acryloyl Oxyethyl-2-hydroxypropyl phthalate, glycidyl (meth) acrylate, 2- (meth) acryloyloxyethyl acid phosphate, ethylene glycol di (meth) acrylate, diethyl Glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1 , 9-Nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, decane di (meth) acrylate, glycerin di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) ) Acrylate, dimethylol tricyclodecane di (meth) acrylate, trifluoroethyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, isoamyl (meth) acrylate, isomyristyl (meth) acrylate, γ- (meth) ) Acryloyloxypropyltrimethoxysilane, 2- (meth) acryloyloxyethyl isocyanate, 1,1-bis (acryloyloxy) ethyl isocyanate, 2- (2- (meth) acryloyloxyethyloxy) ethyl isocyanate, 3- (meth) ) Acryloyloxypropyltriethoxysilane and the like, and derivatives thereof.
 (メタ)アクリロイルアミノ基を一分子内に1つ以上有する化合物としては、4-(メタ)アクリロイルモルホリン、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-n-ブトキシメチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミド、N-オクチル(メタ)アクリルアミドなど、およびこれらの誘導体などが挙げられる。 Compounds having one or more (meth) acryloylamino groups in one molecule include 4- (meth) acryloylmorpholine, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-methyl (Meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-butyl (meth) acrylamide, Nn-butoxymethyl (meth) acrylamide, N- Hexyl (meth) acrylamide, N-octyl (meth) acrylamide, and the like, and derivatives thereof are given.
 ビニルエーテル基を一分子内に1つ以上有する化合物としては、例えば、3,3-ビス(ビニルオキシメチル)オキセタン、2-ヒドロキシエチルビニルエーテル、3-ヒドロキシプロピルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、2-ヒドロキシイソプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、3-ヒドロキシブチルビニルエーテル、2-ヒドロキシブチルビニルエーテル、3-ヒドロキシイソブチルビニルエーテル、2-ヒドロキシイソブチルビニルエーテル、1-メチル-3-ヒドロキシプロピルビニルエーテル、1-メチル-2-ヒドロキシプロピルビニルエーテル、1-ヒドロキシメチルプロピルビニルエーテル、4-ヒドロキシシクロヘキシルビニルエーテル、1,6-ヘキサンジオールモノビニルエーテル、1,4-シクロヘキサンジメタノールモノビニルエーテル、1,3-シクロヘキサンジメタノールモノビニルエーテル、1,2-シクロヘキサンジメタノールモノビニルエーテル、p-キシレングリコールモノビニルエーテル、m-キシレングリコールモノビニルエーテル、o-キシレングリコールモノビニルエーテル、ジエチレングリコールモノビニルエーテル、トリエチレングリコールモノビニルエーテル、テトラエチレングリコールモノビニルエーテル、ペンタエチレングリコールモノビニルエーテル、オリゴエチレングリコールモノビニルエーテル、ポリエチレングリコールモノビニルエーテル、ジプロピレングリコールモノビニルエーテル、トリプロピレングリコールモノビニルエーテル、テトラプロピレングリコールモノビニルエーテル、ペンタプロピレングリコールモノビニルエーテル、オリゴプロピレングリコールモノビニルエーテル、ポリプロピレングリコールモノビニルエーテルなど、およびこれらの誘導体などが挙げられる。 Compounds having one or more vinyl ether groups in one molecule include, for example, 3,3-bis (vinyloxymethyl) oxetane, 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxy Isopropyl vinyl ether, 4-hydroxybutyl vinyl ether, 3-hydroxybutyl vinyl ether, 2-hydroxybutyl vinyl ether, 3-hydroxyisobutyl vinyl ether, 2-hydroxyisobutyl vinyl ether, 1-methyl-3-hydroxypropyl vinyl ether, 1-methyl-2-hydroxy Propyl vinyl ether, 1-hydroxymethylpropyl vinyl ether, 4-hydroxycyclohexyl vinyl ether, 1,6-hexanediol Novinyl ether, 1,4-cyclohexane dimethanol monovinyl ether, 1,3-cyclohexane dimethanol monovinyl ether, 1,2-cyclohexane dimethanol monovinyl ether, p-xylene glycol monovinyl ether, m-xylene glycol monovinyl ether, o-xylene Glycol monovinyl ether, diethylene glycol monovinyl ether, triethylene glycol monovinyl ether, tetraethylene glycol monovinyl ether, pentaethylene glycol monovinyl ether, oligoethylene glycol monovinyl ether, polyethylene glycol monovinyl ether, dipropylene glycol monovinyl ether, tripropylene glycol monovinyl ether, tetra Propylene glyco Monovinyl ether, pentapropylene glycol monovinyl ether, oligopropylene glycol monovinyl ether, polypropylene glycol monovinyl ether, and the like, and derivatives thereof.
 ビニルアリール基を一分子内に1つ以上有する化合物としては、スチレン、ジビニルベンゼン、メトキシスチレン、エトキシスチレン、ヒドロキシスチレン、ビニルナフタレン、ビニルアントラセン、酢酸4-ビニルフェニル、(4-ビニルフェニル)ジヒドロキシボラン、N-(4-ビニルフェニル)マレイミドなど、およびこれらの誘導体などが挙げられる。 Examples of the compound having one or more vinylaryl groups in one molecule include styrene, divinylbenzene, methoxystyrene, ethoxystyrene, hydroxystyrene, vinylnaphthalene, vinylanthracene, 4-vinylphenyl acetate, and (4-vinylphenyl) dihydroxyborane. , N- (4-vinylphenyl) maleimide, and derivatives thereof.
 ビニルオキシカルボニル基を一分子内に1つ以上有する化合物としては、ギ酸イソプロペニル、酢酸イソプロペニル、プロピオン酸イソプロペニル、酪酸イソプロペニル、イソ酪酸イソプロペニル、カプロン酸イソプロペニル、吉草酸イソプロペニル、イソ吉草酸イソプロペニル、乳酸イソプロペニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、シクロヘキサンカルボン酸ビニル、ピバリン酸ビニル、オクチル酸ビニル、モノクロロ酢酸ビニル、アジピン酸ジビニル、アクリル酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、ソルビン酸ビニル、安息香酸ビニル、桂皮酸ビニルなど、およびこれらの誘導体などが挙げられる。 Compounds having one or more vinyloxycarbonyl groups in one molecule include isopropenyl formate, isopropenyl acetate, isopropenyl propionate, isopropenyl butyrate, isopropenyl isobutyrate, isopropenyl caproate, isopropenyl valerate, Isopropenyl valerate, isopropenyl lactate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl caprylate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate, pivalic acid Vinyl, vinyl octylate, vinyl monochloroacetate, divinyl adipate, vinyl acrylate, vinyl methacrylate, vinyl crotonate, vinyl sorbate, vinyl benzoate, vinyl cinnamate, and the like Body and the like.
(カチオン重合性モノマー)
 カチオン重合性モノマーとしては、エポキシ環(オキシラニル基)、ビニルエーテル基、ビニルアリール基などのオキセタニル基等の以外のカチオン重合性基を一分子内に1つ以上有する化合物などが挙げられる。
(Cationically polymerizable monomer)
Examples of the cationic polymerizable monomer include compounds having one or more cationic polymerizable groups in one molecule other than an oxetanyl group such as an epoxy ring (oxiranyl group), a vinyl ether group, and a vinyl aryl group.
 エポキシ環を一分子内に一つ以上有する化合物としては、グリシジルメチルエーテル、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル、臭素化ビスフェノールFジグリシジルエーテル、臭素化ビスフェノールSジグリシジルエーテル、エポキシノボラック樹脂、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールSジグリシジルエーテル、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-メタ-ジオキサン、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、3,4-エポキシ-6-メチルシクロヘキシル-3’,4’-エポキシ-6’-メチルシクロヘキサンカルボキシレート、メチレンビス(3,4-エポキシシクロヘキサン)、ジシクロペンタジエンジエポキサイド、エチレングリコールのジ(3,4-エポキシシクロヘキシルメチル)エーテル、エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、エポキシヘキサヒドロフタル酸ジオクチル、エポキシヘキサヒドロフタル酸ジ-2-エチルヘキシル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル類;エチレングリコール、プロピレングリコール、グリセリンなどの脂肪族多価アルコールに1種又は2種以上のアルキレンオキサイドを付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル類;脂肪族長鎖二塩基酸のジグリシジルエステル類;脂肪族高級アルコールのモノグリシジルエーテル類;フェノール、クレゾール、ブチルフェノール又はこれらにアルキレンオキサイドを付加して得られるポリエーテルアルコールのモノグリシジルエーテル類;および高級脂肪酸のグリシジルエステル類などが挙げられる。 Compounds having one or more epoxy rings in one molecule include glycidyl methyl ether, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether, and brominated bisphenol F diglycidyl ether. Glycidyl ether, brominated bisphenol S diglycidyl ether, epoxy novolak resin, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 3,4-epoxycyclohexylmethyl (3,4 -Epoxy) cyclohexanecarboxylate, 2- (3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy) cyclohexane-meta-dioxane, (3,4-epoxycyclohexylmethyl) adipate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, 3,4-epoxy-6-methylcyclohexyl-3 ', 4'-epoxy-6'-methyl Cyclohexane carboxylate, methylene bis (3,4-epoxycyclohexane), dicyclopentadiene diepoxide, di (3,4-epoxycyclohexylmethyl) ether of ethylene glycol, ethylene bis (3,4-epoxycyclohexanecarboxylate), epoxyhexa Dioctyl hydrophthalate, di-2-ethylhexyl epoxyhexahydrophthalate, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylol Lepropane triglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether; obtained by adding one or more alkylene oxides to aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol, and glycerin. Polyglycidyl ethers of polyether polyols; diglycidyl esters of aliphatic long-chain dibasic acids; monoglycidyl ethers of aliphatic higher alcohols; phenol, cresol, butylphenol or polyether alcohols obtained by adding alkylene oxide thereto Monoglycidyl ethers; and glycidyl esters of higher fatty acids.
 ビニルエーテル基を一分子内に1つ以上有する化合物、ビニルアリール基を一分子内に1つ以上有する化合物としては、ラジカル重合性化合物として例示した化合物と同様の化合物が挙げられる。 Examples of the compound having one or more vinyl ether groups in one molecule and the compound having one or more vinyl aryl groups in one molecule include the same compounds as the compounds exemplified as the radical polymerizable compound.
 オキセタニル基を一分子内に一つ以上有する化合物としては、としては、トリメチレンオキシド、3,3-ビス(ビニルオキシメチル)オキセタン、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-(ヒドロキシメチル)オキセタン、3-エチル-3-[(フェノキシ)メチル]オキセタン、3-エチル-3-(ヘキシルオキシメチル)オキセタン、3-エチル-3-(クロロメチル)オキセタン、3,3-ビス(クロロメチル)オキセタン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、ビス{[1-エチル(3-オキセタニル)]メチル}エーテル、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビシクロヘキシル、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]シクロヘキサン、および3-エチル-3{〔(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタンなどが挙げられる。 Compounds having one or more oxetanyl groups in one molecule include trimethylene oxide, 3,3-bis (vinyloxymethyl) oxetane, 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, 3-ethyl-3- (hydroxymethyl) oxetane, 3-ethyl-3-[(phenoxy) methyl] oxetane, 3-ethyl-3- (hexyloxymethyl) oxetane, 3- Ethyl-3- (chloromethyl) oxetane, 3,3-bis (chloromethyl) oxetane, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, bis {[1-ethyl (3- Oxetanyl)] methyl} ether, 4,4'-bis [(3-ethyl-3-oxetanyl) methoxymethyl] Bicyclohexyl, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] cyclohexane, and 3-ethyl-3 {[(3-ethyloxetan-3-yl) methoxy] methyl} oxetane .
 ラジカル重合性モノマーとカチオン重合性モノマーのオリゴマーは、単官能または多官能(メタ)アクリル系オリゴマーが挙げられ。1種または2種以上を組み合わせて使用できる。単官能または多官能(メタ)アクリル系オリゴマーとしては、ウレタン(メタ)アクリレートオリゴマー、エポキシ(メタ)アクリレートオリゴマー、ポリエーテル(メタ)アクリレートオリゴマー、およびポリエステル(メタ)アクリレートオリゴマーなどが挙げられる。 オ リ ゴ マ ー The oligomer of the radical polymerizable monomer and the cationic polymerizable monomer includes a monofunctional or polyfunctional (meth) acrylic oligomer. One type or a combination of two or more types can be used. Monofunctional or polyfunctional (meth) acrylic oligomers include urethane (meth) acrylate oligomers, epoxy (meth) acrylate oligomers, polyether (meth) acrylate oligomers, and polyester (meth) acrylate oligomers.
 ウレタン(メタ)アクリレートオリゴマーとしては、ポリカーボネート系ウレタン(メタ)アクリレート、ポリエステル系ウレタン(メタ)アクリレート、ポリエーテル系ウレタン(メタ)アクリレート、およびカプロラクトン系ウレタン(メタ)アクリレートなどが挙げられる。ウレタン(メタ)アクリレートオリゴマーは、ポリオールとジイソシアネートとを反応させて得られるイソシアネート化合物と、水酸基を有する(メタ)アクリレートモノマーとの反応により得ることができる。前記ポリオールとしては、ポリカーボネートジオール、ポリエステルポリオール、ポリエーテルポリオール、およびポリカプロラクトンポリオールが挙げられる。 (4) Examples of the urethane (meth) acrylate oligomer include polycarbonate-based urethane (meth) acrylate, polyester-based urethane (meth) acrylate, polyether-based urethane (meth) acrylate, and caprolactone-based urethane (meth) acrylate. The urethane (meth) acrylate oligomer can be obtained by reacting an isocyanate compound obtained by reacting a polyol with diisocyanate and a (meth) acrylate monomer having a hydroxyl group. Examples of the polyol include a polycarbonate diol, a polyester polyol, a polyether polyol, and a polycaprolactone polyol.
 エポキシ(メタ)アクリレートオリゴマーは、例えば、低分子量のビスフェノール型エポキシ樹脂やノボラックエポキシ樹脂のオキシラン環とアクリル酸とのエステル化反応により得られる。ポリエーテル(メタ)アクリレートオリゴマーは、ポリオールの脱水縮合反応によって両末端に水酸基を有するポリエーテルオリゴマーを得、次いで、その両末端の水酸基をアクリル酸でエステル化することにより得られる。ポリエステル(メタ)アクリレートオリゴマーは、例えば、ポリカルボン酸とポリオールの縮合によって両末端に水酸基を有するポリエステルオリゴマーを得、次いで、その両末端の水酸基をアクリル酸でエステル化することにより得られる。 The epoxy (meth) acrylate oligomer is obtained, for example, by an esterification reaction between an oxirane ring of a low molecular weight bisphenol type epoxy resin or a novolak epoxy resin and acrylic acid. The polyether (meth) acrylate oligomer is obtained by obtaining a polyether oligomer having hydroxyl groups at both terminals by a dehydration condensation reaction of a polyol, and then esterifying the hydroxyl groups at both terminals with acrylic acid. The polyester (meth) acrylate oligomer is obtained, for example, by obtaining a polyester oligomer having hydroxyl groups at both ends by condensation of a polycarboxylic acid and a polyol, and then esterifying the hydroxyl groups at both ends with acrylic acid.
 単官能または多官能(メタ)アクリル系オリゴマーの重量平均分子量は、本発明の好ましい一態様では100,000以下であり、本発明の別の好ましい一態様では500~50,000である。 重量 The weight average molecular weight of the monofunctional or polyfunctional (meth) acrylic oligomer is 100,000 or less in a preferred embodiment of the present invention, and is 500 to 50,000 in another preferred embodiment of the present invention.
 上記したモノマー、オリゴマーまたはそれらの混合物を使用するときは、前記モノマー、オリゴマーまたはそれらの混合物100質量部に対して0.01~10質量部の光重合開始剤を使用することができる。 When the above-mentioned monomers, oligomers or mixtures thereof are used, 0.01 to 10 parts by mass of a photopolymerization initiator can be used with respect to 100 parts by mass of the monomers, oligomers or mixture thereof.
 次の工程にて、酸化物系の非磁性セラミックス成形体の粗面化部分を含む部分と接触されたモノマー、オリゴマーまたはそれらの混合物に対してUVを照射して硬化させ、硬化性樹脂層を有する複合成形体を得ることができる。 In the next step, the monomer, oligomer or mixture thereof in contact with the portion including the roughened portion of the oxide-based non-magnetic ceramic molded body is cured by irradiating UV to cure the curable resin layer. A composite molded article having the same can be obtained.
(5)粗面化構造を有する酸化物系の非磁性セラミックス成形体同士の複合成形体、または粗面化構造を有する酸化物系の非磁性セラミックス成形体と、異なる種類の非磁性セラミックス成形体の複合成形体の製造方法
 粗面化構造を有する酸化物系の非磁性セラミックス成形体同士の複合成形体は、例えば、異なる形状の粗面化構造を有する酸化物系の非磁性セラミックス成形体の複数を使用し、それらの接合面に形成させた接着剤層を介して接合一体化させることで製造することができる。前記接着剤層は、酸化物系の非磁性セラミックス成形体の粗面化構造部分に接着剤を塗布するなどして形成することができる。接着剤としては、上記した他の複合成形体の製造で使用したものと同じものを使用することができる。
(5) A composite formed body of an oxide-based non-magnetic ceramic formed body having a roughened structure, or an oxide-based non-magnetic ceramic formed body having a roughened structure, and a different type of non-magnetic ceramic formed body The method for producing a composite molded article of the present invention is a composite molded article of an oxide non-magnetic ceramic molded article having a roughened structure, for example, an oxide non-magnetic ceramic molded article having a roughened structure having a different shape. It can be manufactured by using a plurality of pieces and joining and integrating them via an adhesive layer formed on the joining surface. The adhesive layer can be formed, for example, by applying an adhesive to the roughened structure portion of the oxide-based nonmagnetic ceramic molded body. As the adhesive, the same adhesive as that used in the production of the other composite molded body described above can be used.
 さらに酸化物系の非磁性セラミックス成形体と異なる種類の非磁性セラミックス成形体からなる複合成形体も同様にして製造することができる。 Furthermore, a composite molded article composed of a non-magnetic ceramic molded article of a different type from an oxide-based non-magnetic ceramic molded article can be manufactured in the same manner.
 この実施形態では、酸化物系の非磁性セラミックス成形体の粗面化構造部分に接着剤層を形成して、異なる種類の非磁性セラミックス成形体と接合一体化させる方法のほか、異なる種類の非磁性セラミックス成形体の表面も粗面化構造にして接着剤層を形成した後、酸化物系の非磁性セラミックス成形体の接着剤層を有する面と異なる種類の非磁性セラミックス成形体の接着剤層を有する面を接合一体化させて複合成形体を製造することができる。 In this embodiment, in addition to a method of forming an adhesive layer on a roughened structure portion of an oxide-based non-magnetic ceramic molded body and joining and integrating it with a different type of non-magnetic ceramic molded body, a different type of non-magnetic ceramic molded body is used. After forming the adhesive layer with the surface of the magnetic ceramic molded body also having a roughened structure, the adhesive layer of the non-magnetic ceramic molded body of a different type from the surface having the adhesive layer of the oxide non-magnetic ceramic molded body The composite molded body can be manufactured by bonding and integrating the surfaces having the above.
 異なる種類の非磁性セラミックスは、炭化物系、窒化物系、硼化物系、および珪化物系などである。異なる種類の非磁性セラミックス成形体の表面を粗面化する方法としては、非磁性セラミックスの種類により方法や条件が異なるが、例えば、本願発明と同様にレーザー光を照射する方法、やすり加工、ブラスト加工、エッチング加工などで粗面化する方法を適用することができる。 Different types of non-magnetic ceramics include carbides, nitrides, borides, and silicides. As methods for roughening the surface of different types of non-magnetic ceramic molded bodies, the methods and conditions differ depending on the type of non-magnetic ceramics. For example, as in the present invention, a method of irradiating a laser beam, filing, blasting A method of roughening by processing, etching, or the like can be applied.
 各実施形態における各構成およびそれらの組み合わせなどは一例であって、本発明の主旨から逸脱しない範囲で、適宜構成の付加、省略、置換およびその他の変更が可能である。本発明は、実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。 Each configuration in each embodiment and a combination thereof are merely examples, and addition, omission, substitution, and other changes of the configuration can be appropriately made without departing from the gist of the present invention. The invention is not limited by the embodiments, but only by the claims.
 <熱衝撃温度(JIS R1648:2002)>
 熱衝撃温度は、加熱された酸化物系の非磁性セラミックス成形体の試験片(4×35×厚さ3mm)を30℃の水中に浸漬したときに破壊された温度である。急激に冷却されたときに内部と表面で生じる温度差により発生する内部応力が試験片の強度を超えたときに破壊される。
<Thermal shock temperature (JIS R1648: 2002)>
The thermal shock temperature is a temperature at which a test piece (4 × 35 × 3 mm thick) of a heated oxide-based nonmagnetic ceramic molded body is broken when immersed in water at 30 ° C. When the internal stress generated by the temperature difference between the inside and the surface when cooled rapidly exceeds the strength of the test piece, it is destroyed.
 Ra(算術平均粗さ):酸化物系の非磁性セラミックス成形体の粗面化構造部分の面に1.5mm長さの線を11本引いて、それらのRaをワンショット3D形状測定機(キーエンス製)により測定した。 Ra (arithmetic mean roughness): Eleven 1.5 mm long lines are drawn on the surface of the roughened structure portion of the oxide-based non-magnetic ceramic molded body, and those Ra are measured by a one-shot 3D shape measuring machine ( Keyence).
 Rz(最大高さ):酸化物系の非磁性セラミックス成形体の粗面化構造部分の面に1.5mm長さの線を11本引いて、それらのRzをワンショット3D形状測定機(キーエンス製)により測定した。 Rz (maximum height): 11 lines of 1.5 mm length are drawn on the surface of the roughened structure portion of the oxide-based non-magnetic ceramic molded body, and those Rz are measured with a one-shot 3D shape measuring instrument (Keyence Corporation). Manufactured).
 Sa(算術平均高さ):酸化物系の非磁性セラミックス成形体の粗面化構造部分の面の9×1.8mmの範囲のSaをワンショット3D形状測定機(キーエンス製)により測定した。 Sa (arithmetic mean height): Sa in a range of 9 × 1.8 mm on the surface of the roughened structure portion of the oxide-based non-magnetic ceramic molded body was measured by a one-shot 3D shape measuring instrument (manufactured by Keyence).
 Sz(最大高さ):酸化物系の非磁性セラミックス成形体の粗面化構造部分の面の9×1.8mmの範囲のSzをワンショット3D形状測定機(キーエンス製)により測定した。 Sz (maximum height): Sz in a range of 9 × 1.8 mm on the surface of the roughened structure portion of the oxide-based non-magnetic ceramic molded body was measured by a one-shot 3D shape measuring instrument (manufactured by Keyence).
 Sdr(界面の展開面積比):定義領域の展開面積(表面積)が、定義領域の面積に対してどれだけ増大しているかを表し、完全に平坦な面のSdrは0となる。Sdrをワンショット3D形状測定機(キーエンス製)により測定した。 Sdr (developed area ratio of interface): Indicates how much the developed area (surface area) of the defined area is increased with respect to the area of the defined area, and Sdr of a completely flat surface is 0. Sdr was measured with a one-shot 3D shape measuring instrument (manufactured by Keyence).
 Sdq(二乗平均平方根傾斜):定義領域のすべての点における傾斜の二乗平均平方根により算出されるパラメータであり、完全に平坦な面のSdqは0となる。表面に傾斜があるとSdqは大きくなり、例えば45°の傾斜成分からなる平面では、Sdqは1になる。ワンショット3D形状測定機(キーエンス製)により測定した。 Sdq (root-mean-square slope): a parameter calculated by the root-mean-square of the slope at all points in the defined area, and Sdq of a perfectly flat surface is 0. If the surface has a slope, Sdq increases. For example, Sdq becomes 1 on a plane including a 45 ° tilt component. It was measured by a one-shot 3D shape measuring machine (manufactured by Keyence).
実施例1~7、比較例1~2
 表1に示す種類の非磁性セラミックス成形体(10×50×厚さ2mmの平板)の表面に対して、下記の連続波レーザー装置を使用して、表1に示す条件でレーザー光を連続照射して粗面化した。表1中、アルミナ92は純度92%であること、アルミナ99は純度99.5%であることを示している。
(レーザー装置)
  発振器:IPG-Ybファイバー;YLR-300-SM
  ガルバノミラー SQUIREEL(ARGES社製)
  集光系:fc=80mm/fθ=100mm
Examples 1 to 7, Comparative Examples 1 and 2
The surface of a nonmagnetic ceramic molded body (10 × 50 × 2 mm thick plate) of the type shown in Table 1 was continuously irradiated with laser light under the conditions shown in Table 1 using the continuous wave laser device described below. And roughened. In Table 1, alumina 92 has a purity of 92% and alumina 99 has a purity of 99.5%.
(Laser device)
Oscillator: IPG-Yb fiber; YLR-300-SM
Galvano mirror SQUIIREEL (ARGES)
Light collection system: fc = 80 mm / fθ = 100 mm
 なお、クロス照射と双方向照射は、以下のとおりに実施した。
 クロス(クロス照射):0.05mmの間隔をおいて10本の溝(第1群の溝)が形成されるように連続波レーザー光を照射した後、第1群の溝と直交する方向に0.05mmの間隔をおいて10本の溝(第2群の溝)が形成されるように連続波レーザー光を照射した。
The cross irradiation and the bidirectional irradiation were performed as follows.
Cross (cross irradiation): After irradiating continuous wave laser light so that ten grooves (first group of grooves) are formed at an interval of 0.05 mm, in a direction orthogonal to the first group of grooves. The continuous wave laser beam was applied so that ten grooves (second group of grooves) were formed at intervals of 0.05 mm.
 双方向照射:一方向に1本の溝が形成されるように連続波レーザー光を直線状に照射した後、0.05mmの間隔をおいて反対方向に同様にして連続波レーザー光を直線状に照射することを繰り返した。 Bidirectional irradiation: After irradiating continuous wave laser light linearly so that one groove is formed in one direction, continuous wave laser light is linearly irradiated in the opposite direction at an interval of 0.05 mm. Irradiation was repeated.
 クロス照射と双方向照射の0.05mmの間隔は、隣接する溝(ライン)同士の幅の中間位置の間の距離である。 間隔 The 0.05 mm interval between the cross irradiation and the bidirectional irradiation is the distance between the intermediate positions of the widths of adjacent grooves (lines).
 実施例1~7、比較例2の酸化物系の非磁性セラミックス成形体の粗面化構造を有する部分のSEM写真を図7~図14に示す。SEM写真の倍率は200倍で撮影したが、200倍に限定されず、粗面化構造が観察し易い倍率に調整すればよく、例えば200~400倍で撮影することができる。 S FIGS. 7 to 14 show SEM photographs of portions of the oxide-based non-magnetic ceramic molded bodies of Examples 1 to 7 and Comparative Example 2 having a roughened structure. The magnification of the SEM photograph was taken at 200 ×, but is not limited to 200 ×, and may be adjusted to a magnification at which the roughened structure can be easily observed. For example, the photograph can be taken at 200 to 400 ×.
 実施例1~7、比較例1~2で得られた粗面化構造を有する酸化物系の非磁性セラミックス成形体を使用して、樹脂成形体(ガラス繊維を30質量%含有するポリアミド6の成形体)との複合成形体(図15)を製造した。 Using the oxide-based non-magnetic ceramic molded body having a roughened structure obtained in Examples 1 to 7 and Comparative Examples 1 and 2, a resin molded body (polyamide 6 containing 30% by mass of glass fiber) was prepared. And a composite molded article (FIG. 15).
 得られた各複合成形体を使用して、非磁性セラミックス成形体と樹脂成形体の接合強度を測定した。 接合 Using each of the obtained composite molded bodies, the bonding strength between the non-magnetic ceramic molded body and the resin molded body was measured.
 〔引張試験〕
 図15に示す複合成形体(ISO19095-2:2015に準拠した試験片)を用い、下記の条件で引張試験を行ってせん断接合強度(S1)を評価した。結果を表1に示す。引張試験は、ISO19095に準拠し、酸化物系の非磁性セラミックス成形体30側の端部を固定した状態で、酸化物系の非磁性セラミックス成形体30と樹脂成形体31が破断するまで図13に示すX方向に引っ張った場合の接合面が破壊されるまでの最大荷重を測定した。結果を表1に示す。
(Tensile test)
Using the composite molded body (a test piece conforming to ISO19095-2: 2015) shown in FIG. 15, a tensile test was performed under the following conditions to evaluate the shear bonding strength (S1). Table 1 shows the results. The tensile test is performed in accordance with ISO 19095, with the end of the oxide-based non-magnetic ceramic molded body 30 fixed, and until the oxide-based non-magnetic ceramic molded body 30 and the resin molded body 31 are broken, as shown in FIG. The maximum load until the joint surface was broken when pulled in the X direction shown in FIG. Table 1 shows the results.
 <引張試験条件>
 試験機:島津製作所製AUTOGRAPH AG-X plus(50kN)
 引張速度:10mm/min
 つかみ具間距離:50mm
<Tensile test conditions>
Testing machine: AUTOGRAPH AG-X plus (50kN) manufactured by Shimadzu Corporation
Tensile speed: 10 mm / min
Distance between grips: 50mm
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~7のジルコニア成形体、アルミナ成形体、ステアタイト成形体、コージライト成形体における粗面化構造の凹凸は、図7~図11、図13、および図14のSEM写真(平面写真または断面写真)から、凹凸部の厚さ方向の断面形状が曲面(部分円)形状を含むものであることが明らかであった。 The irregularities of the roughened structure in the zirconia molded bodies, alumina molded bodies, steatite molded bodies, and cordierite molded bodies of Examples 1 to 7 are shown by SEM photographs (plan images) of FIGS. 7 to 11, FIG. 13, and FIG. Or a cross-sectional photograph), it was clear that the cross-sectional shape in the thickness direction of the uneven portion includes a curved (partial circle) shape.
 実施例1(図7)、実施例2(図8)、実施例4(図10)、実施例6(図13)の凹部の平面形状は、図1~図3に示すような形状であった。実施例3(図9)、および実施例5(図11)の凹部の平面形状は、図4(a)~(e)に示すような形状のものと、それらと図1~図3に示すような形状が組み合わされたものであった。実施例7(図14)の凹部の平面形状は、図4(a)~(e)に示すような形状のものであった。 The planar shapes of the concave portions in Example 1 (FIG. 7), Example 2 (FIG. 8), Example 4 (FIG. 10), and Example 6 (FIG. 13) are as shown in FIGS. Was. The planar shapes of the concave portions of the third embodiment (FIG. 9) and the fifth embodiment (FIG. 11) are shown in FIGS. 4 (a) to 4 (e) and those shown in FIGS. Such a shape was combined. The planar shape of the recess in Example 7 (FIG. 14) was as shown in FIGS. 4 (a) to 4 (e).
 レーザー光の照射速度の遅い比較例1は、成形体の一部に割れが発生して2以上に分割され、比較例2は、穴は開かず、表面がしわ状に変形していた。 比較 Comparative Example 1 in which the irradiation speed of the laser beam was slow was broken into a part of the molded body and divided into two or more parts. In Comparative Example 2, no hole was formed and the surface was deformed in a wrinkled shape.
 実施例1~7のジルコニア成形体、アルミナ成形体、ステアタイト成形体、コージライト成形体と樹脂成形体との複合成形体は、高い接合強度を有していたことから、他の材料(熱硬化性樹脂、ゴム、エラストマー、金属、UV硬化性樹脂)との複合成形体を製造した場合であっても、高い接合強度の複合成形体が得られるものと考えられる。 The zirconia molded articles, alumina molded articles, steatite molded articles, and composite molded articles of the cordierite molded articles and the resin molded articles of Examples 1 to 7 had high bonding strength, so that other materials (heat It is considered that a composite molded article having high bonding strength can be obtained even when a composite molded article with a curable resin, rubber, elastomer, metal, or UV curable resin) is manufactured.
実施例8
 表2に示す種類の非磁性セラミックス成形体(10×50×厚さ2mmの平板)の表面に対して、表2に示す条件でパルス波レーザー光を照射して粗面化した。図16に粗面化後のSEM写真を示す。
Example 8
The surface of a nonmagnetic ceramic molded body (10 × 50 × 2 mm thick plate) of the type shown in Table 2 was irradiated with pulsed laser light under the conditions shown in Table 2 to roughen the surface. FIG. 16 shows an SEM photograph after roughening.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図16(実施例8)と図7(実施例1)、図10(実施例4)、図13(実施例6)のSEM写真の対比から明らかなとおり、実施例8の非磁性セラミックス成形体の粗面化後の構造は、前記他の実施例と同様なものであった。 As is clear from the comparison of the SEM photographs of FIG. 16 (Example 8), FIG. 7 (Example 1), FIG. 10 (Example 4), and FIG. 13 (Example 6), the non-magnetic ceramic molded body of Example 8 The structure after roughening was the same as that of the other examples.
 本発明の表面に粗面化構造を有する酸化物系の非磁性セラミックス成形体は、酸化物系の非磁性セラミックス成形体と樹脂、ゴム、エラストマー、金属との複合成形体の中間体として利用することができる。 The oxide-based non-magnetic ceramic molded article having a roughened structure on its surface according to the present invention is used as an intermediate of a composite molded article of the oxide-based non-magnetic ceramic molded article and a resin, rubber, elastomer, or metal. be able to.
 1a:曲線(円弧)
 1b:曲線
 2:直線
 5:突出部
 6:窪み部

 
1a: Curve (arc)
1b: Curve 2: Straight line 5: Projection 6: Depression

Claims (20)

  1.  表面に粗面化構造を有する非磁性セラミックス成形体であって、
     前記粗面化構造が凹凸を有しており、前記凹凸の厚さ方向の断面形状が曲面を有しているものであり、
     前記非磁性セラミックスが酸化物系の非磁性セラミックスである、非磁性セラミックス成形体。
    A non-magnetic ceramic molded body having a surface roughened structure,
    The roughening structure has irregularities, and the cross-sectional shape in the thickness direction of the irregularities has a curved surface,
    A non-magnetic ceramic molded body, wherein the non-magnetic ceramic is an oxide-based non-magnetic ceramic.
  2.  前記酸化物系の非磁性セラミックス成形体が、熱衝撃温度(JIS R1648:2002)が150~700℃の範囲で、厚さが0.5mm以上である、請求項1記載の非磁性セラミックス成形体。 2. The non-magnetic ceramic molded body according to claim 1, wherein the oxide-based non-magnetic ceramic molded body has a thermal shock temperature (JIS R1648: 2002) of 150 to 700 ° C. and a thickness of 0.5 mm or more. .
  3.  前記酸化物系の非磁性セラミックス成形体がアルミナを含む、請求項2記載の非磁性セラミックス成形体。 3. The non-magnetic ceramic molded body according to claim 2, wherein the oxide-based non-magnetic ceramic molded body contains alumina.
  4.  前記酸化物系の非磁性セラミックス成形体が、熱衝撃温度(JIS R1648:2002)が1~10℃の範囲で、厚さが3mm以上である、請求項1記載の非磁性セラミックス成形体。 The non-magnetic ceramic molded body according to claim 1, wherein the oxide-based non-magnetic ceramic molded body has a thermal shock temperature (JIS R1648: 2002) of 1 to 10 ° C and a thickness of 3 mm or more.
  5.  前記酸化物系の非磁性セラミックスがジルコニアを含む、請求項4記載の非磁性セラミックス成形体。 5. The non-magnetic ceramic molded body according to claim 4, wherein the oxide-based non-magnetic ceramic contains zirconia.
  6.  前記凹凸の厚さ方向の断面形状が、部分円形状または部分楕円形状である、請求項1~5のいずれか1項記載の非磁性セラミックス成形体。 6. The non-magnetic ceramic molded body according to any one of claims 1 to 5, wherein a cross-sectional shape in the thickness direction of the unevenness is a partial circular shape or a partial elliptical shape.
  7.  前記凹凸の表面粗さ(Ra)が1~30μmの範囲であり、前記凹凸の凸部と凹部の高低差(Rz)が10~200μmの範囲である、請求項1~6のいずれか1項記載の非磁性セラミックス成形体。 The surface roughness (Ra) of the irregularities is in a range of 1 to 30 μm, and a height difference (Rz) between a convex portion and a concave portion of the irregularities is in a range of 10 to 200 μm. The non-magnetic ceramic molded article according to the above.
  8.  前記凹凸の算術平均高さ(Sa)が1~50μmの範囲であり、前記凹凸の凸部の最大高さ(Sz)が30~280μmの範囲であり、前記凹凸の界面の展開面積比(Sdr)が0.05~2.00の範囲である、請求項1~6のいずれか1項記載の非磁性セラミックス成形体。 The arithmetic mean height (Sa) of the irregularities is in the range of 1 to 50 μm, the maximum height (Sz) of the convex portions of the irregularities is in the range of 30 to 280 μm, and the development area ratio (Sdr) of the interface between the irregularities is 7. The non-magnetic ceramic molded body according to claim 1, wherein (a) is in the range of 0.05 to 2.00.
  9.  前記凹凸の二乗平均平方根傾斜(Sdq)が0.3~3.0の範囲である、請求項1~6のいずれか1項記載の非磁性セラミックス成形体。 The non-magnetic ceramic molded product according to any one of claims 1 to 6, wherein the root mean square slope (Sdq) of the irregularities is in the range of 0.3 to 3.0.
  10.  前記凹凸が間隔をおいて線状に連続的に形成されているとき、前記凹部の平面形状が楕円形またはそれに類似する形状を含んでいる、請求項1~9のいずれか1項記載の非磁性セラミックス成形体。 10. The non-conductive structure according to claim 1, wherein when the irregularities are continuously formed linearly at intervals, the planar shape of the concave portion includes an elliptical shape or a shape similar thereto. Magnetic ceramic moldings.
  11.  前記凹凸が分散してランダムに形成されているとき、前記凹部の平面形状が円形、楕円形またはそれらに類似する形状を含んでいる、請求項1~9のいずれか1項記載の非磁性セラミックス成形体。 The non-magnetic ceramic according to any one of claims 1 to 9, wherein when the irregularities are dispersed and formed at random, the planar shape of the concave portion includes a circle, an ellipse, or a shape similar thereto. Molded body.
  12.  請求項1~11のいずれか1項記載の非磁性セラミックス成形体の製造方法であって、
     酸化物系の非磁性セラミックス成形体の表面に対して、連続波レーザーを使用して5,000mm/sec以上の照射速度でレーザー光を連続照射することで粗面化する、非磁性セラミックス成形体の製造方法。
    The method for producing a non-magnetic ceramic molded body according to any one of claims 1 to 11,
    A non-magnetic ceramic molded body whose surface is roughened by continuously irradiating the surface of an oxide-based non-magnetic ceramic molded body with a laser beam at a rate of 5,000 mm / sec or more using a continuous wave laser. Manufacturing method.
  13.  請求項1~11のいずれか1項記載の非磁性セラミックス成形体の製造方法であって、
     酸化物系の非磁性セラミックス成形体の表面に対して、連続波レーザーを使用して5,000mm/sec以上の照射速度でレーザー光を連続照射する工程を有しており、
     前記レーザー光の照射工程が、粗面化対象となる酸化物系の非磁性セラミックス成形体の表面に対してレーザー光を照射するとき、レーザー光の照射部分と非照射部分が交互に生じるように照射する工程である、非磁性セラミックス成形体の製造方法。
    The method for producing a non-magnetic ceramic molded body according to any one of claims 1 to 11,
    A step of continuously irradiating the surface of the oxide-based nonmagnetic ceramic molded body with a laser beam at an irradiation speed of 5,000 mm / sec or more using a continuous wave laser,
    The laser light irradiation step, when irradiating the surface of the oxide-based non-magnetic ceramics molded body to be roughened with laser light, so that the irradiated portion of the laser light and the non-irradiated portion alternately occur. A method for producing a non-magnetic ceramic molded body, which is an irradiation step.
  14.  前記酸化物系の非磁性セラミックス成形体の表面に対して、連続波レーザーを使用して5,000mm/sec以上の照射速度でレーザー光を連続照射するとき、
     同一方向または異なる方向に直線、曲線およびこれらの組み合わせからなる複数本の線が形成されるようにレーザー光を連続照射する、請求項12または13記載の非磁性セラミックス成形体の製造方法。
    When continuously irradiating the surface of the oxide-based nonmagnetic ceramic molded body with a laser beam at an irradiation speed of 5,000 mm / sec or more using a continuous wave laser,
    14. The method for producing a non-magnetic ceramic molded body according to claim 12, wherein the laser beam is continuously irradiated so as to form a plurality of lines composed of straight lines, curved lines, and combinations thereof in the same direction or different directions.
  15.  前記酸化物系の非磁性セラミックス成形体の表面に対して、連続波レーザーを使用して5,000mm/sec以上の照射速度でレーザー光を連続照射するとき、
     同一方向または異なる方向に直線、曲線およびこれらの組み合わせからなる複数本の線が形成されるようにレーザー光を連続照射し、レーザー光を複数回連続照射して1本の直線または1本の曲線を形成する、請求項12または13記載の非磁性セラミックス成形体の製造方法。
    When continuously irradiating the surface of the oxide-based nonmagnetic ceramic molded body with a laser beam at an irradiation speed of 5,000 mm / sec or more using a continuous wave laser,
    Laser light is continuously irradiated so that a plurality of lines composed of straight lines, curves and combinations thereof are formed in the same direction or different directions, and one straight line or one curved line is continuously irradiated with the laser light plural times. 14. The method for producing a non-magnetic ceramic molded body according to claim 12, wherein
  16.  前記酸化物系の非磁性セラミックス成形体の表面に対して、連続波レーザーを使用して5,000mm/sec以上の照射速度でレーザー光を連続照射するとき、
     同一方向または異なる方向に直線、曲線およびこれらの組み合わせからなる複数本の線が形成されるようにレーザー光を連続照射し、
     前記複数本の直線または前記複数本の曲線が、等間隔または異なる間隔をおいて形成されるようにレーザー光を連続照射する、請求項12または13記載の非磁性セラミックス成形体の製造方法。
    When continuously irradiating the surface of the oxide-based nonmagnetic ceramic molded body with a laser beam at an irradiation speed of 5,000 mm / sec or more using a continuous wave laser,
    Continuously irradiate laser light such that a plurality of lines consisting of straight lines, curves and combinations thereof are formed in the same direction or different directions,
    14. The method of manufacturing a non-magnetic ceramic molded body according to claim 12, wherein the laser light is continuously irradiated such that the plurality of straight lines or the plurality of curves are formed at equal intervals or different intervals.
  17.  請求項1~11のいずれか1項記載の非磁性セラミックス成形体の製造方法であって、
     酸化物系の非磁性セラミックス成形体の表面に対して、パルス波レーザーを使用し、下記の要件(i)~(v)を満たすようにパルス波レーザー光を照射することで粗面化する、非磁性セラミックス成形体の製造方法。
     (i)前記酸化物系の非磁性セラミックス成形体の表面に対してレーザー光を照射するときの照射角度が15度~90度
     (ii)前記酸化物系の非磁性セラミックス成形体の表面に対してレーザー光を照射するときの照射速度が10~1,000mm/sec
     (iii)前記酸化物系の非磁性セラミックス成形体の表面に対してレーザー光を照射するときのエネルギー密度が0.1~50GW/cm
     (iv)前記酸化物系の非磁性セラミックス成形体の表面に対してレーザー光を照射するときの繰り返し回数が1~80回
     (v)前記酸化物系の非磁性セラミックス成形体の表面に対してレーザー光を照射するときのライン間隔が0.01~1mm
    The method for producing a non-magnetic ceramic molded body according to any one of claims 1 to 11,
    The surface of the oxide-based non-magnetic ceramic molded body is roughened by irradiating a pulse wave laser beam using a pulse wave laser so as to satisfy the following requirements (i) to (v): A method for producing a non-magnetic ceramic molded body.
    (I) When the surface of the oxide-based non-magnetic ceramic molded body is irradiated with a laser beam, the irradiation angle is 15 to 90 degrees. (Ii) With respect to the surface of the oxide-based non-magnetic ceramic molded body. The irradiation speed when irradiating the laser beam is 10 to 1,000 mm / sec.
    (Iii) The energy density when irradiating the surface of the oxide-based non-magnetic ceramic molded body with laser light is 0.1 to 50 GW / cm 2.
    (Iv) The number of repetitions of irradiating the surface of the oxide-based non-magnetic ceramic molded body with laser light is 1 to 80 times. (V) The surface of the oxide-based non-magnetic ceramic molded body is Line spacing when irradiating laser light is 0.01-1mm
  18.  前記要件(i)~(v)が下記の数値範囲のものである、請求項17記載の非磁性セラミックス成形体の製造方法。
     (i)15度~90度
     (ii)10~500mm/sec
     (iii)0.1~50GW/cm
     (iv)1~80回
     (v)0.01~0.5mm
    18. The method for producing a non-magnetic ceramic molded body according to claim 17, wherein the requirements (i) to (v) fall within the following numerical ranges.
    (I) 15 degrees to 90 degrees (ii) 10 to 500 mm / sec
    (Iii) 0.1 to 50 GW / cm 2
    (Iv) 1 to 80 times (v) 0.01 to 0.5 mm
  19.  前記要件(i)~(v)が下記の数値範囲のものである、請求項17記載の非磁性セラミックス成形体の製造方法。
     (i)15度~90度
     (ii)10~100mm/sec
     (iii)0.1~20GW/cm
     (iv)3~50回
     (v)0.03~0.3mm
    18. The method for producing a non-magnetic ceramic molded body according to claim 17, wherein the requirements (i) to (v) fall within the following numerical ranges.
    (I) 15 degrees to 90 degrees (ii) 10 to 100 mm / sec
    (Iii) 0.1 to 20 GW / cm 2
    (Iv) 3 to 50 times (v) 0.03 to 0.3 mm
  20.  前記要件(i)~(v)が下記の数値範囲のものである、請求項17記載の非磁性セラミックス成形体の製造方法。
     (i)45度~90度
     (ii)10~80mm/sec
     (iii)0.5~5GW/cm
     (iv)5~30回
     (v)0.05~0.1mm
    18. The method for producing a non-magnetic ceramic molded body according to claim 17, wherein the requirements (i) to (v) fall within the following numerical ranges.
    (I) 45 degrees to 90 degrees (ii) 10 to 80 mm / sec
    (Iii) 0.5 to 5 GW / cm 2
    (Iv) 5 to 30 times (v) 0.05 to 0.1 mm
PCT/JP2019/037772 2018-09-27 2019-09-26 Nonmagnetic ceramic molded body having roughened structure on surface and method for producing same WO2020067249A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020501409A JP6804689B2 (en) 2018-09-27 2019-09-26 Non-magnetic ceramic molded body having a roughened structure on the surface and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-182206 2018-09-27
JP2018182206 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020067249A1 true WO2020067249A1 (en) 2020-04-02

Family

ID=69951384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037772 WO2020067249A1 (en) 2018-09-27 2019-09-26 Nonmagnetic ceramic molded body having roughened structure on surface and method for producing same

Country Status (3)

Country Link
JP (3) JP6804689B2 (en)
TW (1) TWI828768B (en)
WO (1) WO2020067249A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180275A (en) * 2010-05-31 2012-09-20 Nishimura Togyo Kk Method for producing ceramic for heat-radiating members, ceramic for heat-radiating members, and solar cell module and led light-emitting module using the ceramic
WO2016039419A1 (en) * 2014-09-11 2016-03-17 国立研究開発法人産業技術総合研究所 Method for forming surface structure of zirconia-based ceramic, and zirconia-based ceramic
WO2016170895A1 (en) * 2015-04-21 2016-10-27 トーカロ株式会社 Method for roughening substrate, method for surface-treating substrate, method for producing spray-coated member, and spray-coated member
WO2018043637A1 (en) * 2016-09-02 2018-03-08 ダイセルポリマー株式会社 Metal molded body surface roughening method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790250B2 (en) * 1988-06-15 1995-10-04 川崎製鉄株式会社 Roll surface processing method
US6899798B2 (en) * 2001-12-21 2005-05-31 Applied Materials, Inc. Reusable ceramic-comprising component which includes a scrificial surface layer
JP5798535B2 (en) * 2012-09-07 2015-10-21 ダイセルポリマー株式会社 Method for producing composite molded body
JP5932700B2 (en) * 2013-03-29 2016-06-08 ダイセルポリマー株式会社 Method for producing composite molded body
KR101536307B1 (en) 2014-09-18 2015-07-13 에스케이씨 주식회사 Sintered sheet and preparation method thereof
US20190009362A1 (en) 2015-12-22 2019-01-10 Heraeus Deutschland GmbH & Co. KG Method for producing a metal-ceramic substrate with picolaser
JP6722617B2 (en) * 2017-05-12 2020-07-15 三菱電線工業株式会社 Metal surface roughening method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180275A (en) * 2010-05-31 2012-09-20 Nishimura Togyo Kk Method for producing ceramic for heat-radiating members, ceramic for heat-radiating members, and solar cell module and led light-emitting module using the ceramic
WO2016039419A1 (en) * 2014-09-11 2016-03-17 国立研究開発法人産業技術総合研究所 Method for forming surface structure of zirconia-based ceramic, and zirconia-based ceramic
WO2016170895A1 (en) * 2015-04-21 2016-10-27 トーカロ株式会社 Method for roughening substrate, method for surface-treating substrate, method for producing spray-coated member, and spray-coated member
WO2018043637A1 (en) * 2016-09-02 2018-03-08 ダイセルポリマー株式会社 Metal molded body surface roughening method

Also Published As

Publication number Publication date
JP2020128336A (en) 2020-08-27
TW202024003A (en) 2020-07-01
JP2020125240A (en) 2020-08-20
JP7444693B2 (en) 2024-03-06
JPWO2020067249A1 (en) 2021-02-15
JP7444694B2 (en) 2024-03-06
TWI828768B (en) 2024-01-11
JP6804689B2 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
JP7337738B2 (en) Composite compact
JP2016124024A (en) Manufacturing method of metal molding having porous structure on surface layer part
JP7100084B2 (en) Composite molded body
US20200031067A1 (en) Medical apparatus and method for manufacturing same
JP7058078B2 (en) Composite molded body and its manufacturing method
WO2020067249A1 (en) Nonmagnetic ceramic molded body having roughened structure on surface and method for producing same
JP7100185B2 (en) Rare earth magnet precursor or rare earth magnet molded body and composite molded body using it
CN112208172A (en) Composite molded body and method for producing same
JP7385463B2 (en) Non-magnetic ceramic molded body and its manufacturing method
JP2021098351A (en) Composite molding and method for manufacturing the same
TW201834851A (en) Method for producing composite moulded body, and composite moulded body
JP2007090769A (en) Manufacturing method of glass mold and manufacturing method of acrylic resin plate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020501409

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864312

Country of ref document: EP

Kind code of ref document: A1