WO2020066899A1 - Optical film, method for manufacturing same, optical layered body, and liquid crystal display device - Google Patents

Optical film, method for manufacturing same, optical layered body, and liquid crystal display device Download PDF

Info

Publication number
WO2020066899A1
WO2020066899A1 PCT/JP2019/036994 JP2019036994W WO2020066899A1 WO 2020066899 A1 WO2020066899 A1 WO 2020066899A1 JP 2019036994 W JP2019036994 W JP 2019036994W WO 2020066899 A1 WO2020066899 A1 WO 2020066899A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
norbornene
film
stretching
resin
Prior art date
Application number
PCT/JP2019/036994
Other languages
French (fr)
Japanese (ja)
Inventor
寛哉 西岡
和哉 須田
浩成 摺出寺
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020217007152A priority Critical patent/KR20210070272A/en
Priority to JP2020549125A priority patent/JP7463965B2/en
Priority to CN201980059082.8A priority patent/CN112703435B/en
Publication of WO2020066899A1 publication Critical patent/WO2020066899A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/14Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/12Spreading-out the material on a substrate, e.g. on the surface of a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/08Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to an optical film, a method for producing the same, an optical laminate, and a liquid crystal display device.
  • Patent Documents 1 to 5 disclose optical films formed of a thermoplastic norbornene-based resin.
  • an optical film for application to an image display device such as a liquid crystal display device has been required to have excellent retardation development, and in particular, a film excellent in thickness direction retardation Rth development is required.
  • a film excellent in thickness direction retardation Rth development is required.
  • an optical film having a large retardation Rth in the thickness direction per the thickness of the optical film As a method for obtaining an optical film having a large retardation Rth in a thickness direction per thickness by using a conventional film made of a thermoplastic resin, stretching at a high stretching ratio may be considered.
  • an optical film obtained by stretching at a high stretching ratio tends to have low orientation angle accuracy.
  • the image display device may be used in various environments, for example, it may be used in a high-temperature environment. Therefore, high heat resistance is required for the optical film. Therefore, when focusing on the retardation Rth in the thickness direction, it is required that the change in the retardation Rth in the thickness direction can be suppressed even in a high-temperature environment.
  • the present invention has been made in view of the above problems, and is an optical film formed of a thermoplastic norbornene-based resin and having a large retardation Rth in a thickness direction per thickness, having high orientation angle accuracy, and It is an object of the present invention to provide an optical film capable of suppressing a change in retardation Rth in a thickness direction in a high-temperature environment and a method for manufacturing the same; and an optical laminate and a liquid crystal display device including the optical film.
  • thermoplastic norbornene resin has a glass transition temperature Tg of the predetermined range, and, the use of those expressing predetermined birefringence [Delta] n R when stretched under a predetermined condition
  • the present inventors have found that an optical film having a large retardation per thickness in the thickness direction, a high orientation angle accuracy, and excellent heat resistance can be produced, and the present invention has been completed. That is, the present invention includes the following.
  • the glass transition temperature Tg of the thermoplastic norbornene resin satisfies the following formula (1)
  • the birefringence ⁇ n R which is expressed when the thermoplastic norbornene-based resin is subjected to free-end uniaxial stretching 1.5 times in 1 minute at Tg + 15 ° C. satisfies the following formula (2):
  • the norbornene-based polymer is selected from the group consisting of a polymer of a monomer containing 25% by weight or more of a tetracyclododecene-based monomer and a hydride thereof;
  • the tetracyclododecene-based monomer is selected from the group consisting of tetracyclododecene, and a tetracyclododecene derivative in which a substituent is bonded to a ring of tetracyclododecene; [1] or [2].
  • [4] The optical film according to any one of [1] to [3], wherein the optical film has a photoelastic coefficient of 8 Brewster or less.
  • [5] The optical film according to any one of [1] to [4], wherein the in-plane retardation Re of the optical film is from 40 nm to 80 nm.
  • [6] The method for producing an optical film according to any one of [1] to [5], A method for producing an optical film, comprising molding the thermoplastic norbornene-based resin by an extrusion molding method or a solution casting method.
  • An optical laminate comprising the optical film according to any one of [1] to [5] and a polarizing plate.
  • a liquid crystal display device comprising the optical laminate according to [7].
  • an optical film formed of a thermoplastic norbornene-based resin and having a large retardation Rth in the thickness direction per thickness, having a high orientation angle accuracy, and having a retardation Rth in the thickness direction in a high-temperature environment. It is possible to provide an optical film capable of suppressing the change and a method for producing the same; and an optical laminate and a liquid crystal display device including the optical film.
  • nx represents a refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the film and in a direction giving the maximum refractive index.
  • ny represents a refractive index in the in-plane direction and a direction orthogonal to the direction of nx.
  • nz represents the refractive index in the thickness direction.
  • d represents the thickness of the film.
  • the measurement wavelength is 550 nm unless otherwise specified.
  • a “long” film refers to a film having a length of 5 times or more with respect to the width of the film, preferably having a length of 10 times or more, and specifically, Refers to a film that is long enough to be wound up in a roll and stored or transported.
  • the upper limit of the ratio of the length to the width of the film is not particularly limited, but may be, for example, 100,000 times or less.
  • polarizing plate includes not only a rigid member but also a flexible member such as a resin film, unless otherwise specified.
  • the optical film according to one embodiment of the present invention is a film formed of a thermoplastic norbornene-based resin.
  • the thermoplastic norbornene-based resin contains a norbornene-based polymer.
  • the optical film according to the present embodiment satisfies the following first to third requirements.
  • the glass transition temperature Tg of the thermoplastic norbornene resin satisfies the following equation (1).
  • the evaluation birefringence ⁇ n R of the thermoplastic norbornene resin satisfies the following expression (2).
  • the evaluation birefringence refers to the birefringence that appears when a certain material is subjected to a free-end uniaxial stretching at a stretching temperature 15 ° C. higher than the glass transition temperature of the material by 1.5 times in one minute.
  • the retardation Rth in the thickness direction of the optical film and the thickness d of the optical film satisfy the following expression (3).
  • the optical film according to the present embodiment that satisfies the above first to third requirements has a large retardation Rth in the thickness direction per thickness d as represented by the formula (3).
  • this optical film can suppress a change in the retardation Rth in the thickness direction in a high-temperature environment. Further, this optical film can achieve high orientation angle accuracy while having a retardation Rth in the thickness direction which is larger than the thickness d as described above.
  • Thermoplastic norbornene resin is a thermoplastic resin containing a norbornene-based polymer.
  • the norbornene-based polymer is a polymer having a structure obtained by polymerizing a norbornene-based monomer and further performing hydrogenation as necessary. Therefore, the norbornene-based polymer usually includes at least one structure selected from the group consisting of a repeating structure obtained by polymerizing a norbornene-based monomer and a structure obtained by hydrogenating the repeating structure.
  • Such norbornene-based polymers include, for example, ring-opened polymers of norbornene-based monomers, ring-opened copolymers of norbornene-based monomers and arbitrary monomers, and hydrides thereof. And an addition copolymer of a norbornene-based monomer and an arbitrary monomer, and a hydride thereof.
  • the number of the norbornene-based polymer contained in the thermoplastic norbornene-based resin may be one, or two or more.
  • the norbornene-based monomer is a monomer containing a norbornene structure in a molecule.
  • Examples of the norbornene-based monomer include bicyclo [2.2.1] hept-2-ene (common name: norbornene) and tricyclo [4.3.0.1 2,5 ] deca-3,7- Diene (common name: dicyclopentadiene), tetracyclo [4.4.0.1 2,5 .
  • dodeca-3-ene (common name: tetracyclododecene), norbornene-based monomer having no aromatic ring structure; 5-phenyl-2-norbornene, 5- (4-methylphenyl) Norbornene-based monomers having an aromatic substituent, such as -2-norbornene, 5- (1-naphthyl) -2-norbornene, and 9- (2-norbornen-5-yl) -carbazole; 1,4-methano -1,4,4a, 4b, 5,8,8a, 9a-octahydrofluorene, 1,4-methano-1,4,4a, 9a-tetrahydrofluorene (common name: methanotetrahydrofluorene), 1,4- Methano-1,4,4a, 9a-tetrahydrodibenzofuran, 1,4-methano-1,4,4a, 9a-tetrahydroc
  • Examples of the substituent include an alkyl group such as a methyl group, an ethyl group, a propyl group, and an isopropyl group; an alkylidene group; an alkenyl group;
  • Examples of the polar group include a hetero atom and an atomic group having a hetero atom.
  • Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom.
  • the polar group include a halogen group such as a fluoro group, a chloro group, a bromo group, and an iodo group; a carboxyl group; a carbonyloxycarbonyl group; an epoxy group; a hydroxy group; an oxy group; an alkoxy group; an ester group; A silyl group; an amino group; a nitrile group; a sulfone group; a cyano group; an amide group; an imide group;
  • the number of substituents may be one or two or more.
  • the types of two or more substituents may be the same or different.
  • the norbornene-based monomer preferably has a small amount of a polar group, and more preferably has no polar group.
  • One of the norbornene-based monomers may be used alone, or two or more thereof may be used in combination at an arbitrary ratio.
  • thermoplastic norbornene resin having a desired glass transition temperature Tg and evaluation birefringence [Delta] n R is obtained.
  • Tg glass transition temperature
  • birefringence manifestation of the norbornene-based polymer depend on the type and polymerization ratio of the norbornene-based monomer which is a raw material of the norbornene-based polymer.
  • the glass transition temperature and the birefringence manifestation of the norbornene-based polymer can be adjusted, so that the thermoplastic norbornene-based resin containing the norbornene-based polymer can be adjusted.
  • the norbornene-based polymer is preferably selected from the group consisting of a polymer of a monomer containing a tetracyclododecene-based monomer and a hydride thereof.
  • Such a norbornene-based polymer is usually a repeating structure obtained by polymerizing a tetracyclododecene-based monomer, and one or more members selected from the group consisting of a structure obtained by hydrogenating the repeating structure. (Hereinafter sometimes referred to as “tetracyclododecene-based structure” as appropriate).
  • the tetracyclododecene-based monomer represents a monomer selected from the group consisting of tetracyclododecene and a tetracyclododecene derivative.
  • a tetracyclododecene derivative is a compound having a structure in which a substituent is bonded to a ring of tetracyclododecene.
  • the number of substituents may be one or two or more.
  • the types of two or more substituents may be the same or different.
  • Preferred tetracyclododecene derivatives include, for example, 8-ethylidene-tetracyclo [4.4.0.1 2,5 .
  • the ratio (polymerization ratio) of the tetracyclododecene-based monomer contained in the total amount of the monomer as a raw material of the norbornene-based polymer to 100% by weight is preferably 25% by weight or more, more preferably 27% by weight or more.
  • the glass transition temperature and the birefringence of the norbornene-based polymer can be increased, so that the glass transition temperature Tg of the thermoplastic norbornene-based resin and the evaluation
  • the refraction ⁇ n R can easily fall within the range of the expressions (1) and (2).
  • the ratio of the repeating structure (monomer unit) derived from a certain monomer in the norbornene-based polymer coincides with the ratio (polymerization ratio) of the monomer in all the monomers. Therefore, the ratio of the tetracyclododecene-based structure in the norbornene-based polymer usually coincides with the polymerization ratio of the tetracyclododecene-based monomer to the total amount of the monomers. Therefore, the ratio of the tetracyclododecene-based structure to 100% by weight of the norbornene-based polymer is preferably within the same range as the polymerization ratio of the tetracyclododecene-based monomer.
  • the norbornene-based monomer is used as a norbornene-based monomer. It is preferable to use a dicyclopentadiene monomer. Therefore, the norbornene-based polymer is preferably selected from the group consisting of a polymer of a monomer containing a dicyclopentadiene-based monomer and a hydride thereof.
  • Such a norbornene-based polymer usually has a repeating structure obtained by polymerizing a dicyclopentadiene-based monomer, and one or more structures selected from the group consisting of a structure obtained by hydrogenating the repeating structure. (Hereinafter may be referred to as “dicyclopentadiene-based structure” as appropriate).
  • Dicyclopentadiene-based monomer represents a monomer selected from the group consisting of dicyclopentadiene and dicyclopentadiene derivatives.
  • a dicyclopentadiene derivative is a compound having a structure in which a substituent is bonded to a ring of dicyclopentadiene.
  • the number of substituents may be one or two or more.
  • the types of two or more substituents may be the same or different.
  • One type of dicyclopentadiene-based monomer may be used alone, or two or more types may be used in combination.
  • the ratio (polymerization ratio) of the dicyclopentadiene-based monomer contained in the total amount of the monomer as a raw material of the norbornene-based polymer to 100% by weight is preferably 50% by weight or more, more preferably 55% by weight. %, Particularly preferably at least 60% by weight, preferably at most 80% by weight, more preferably at most 75% by weight, particularly preferably at most 70% by weight.
  • the polymerization ratio of the dicyclopentadiene-based monomer is in the above range, the glass transition temperature and the birefringence manifestation of the norbornene-based polymer can be increased, so that the glass transition temperature Tg and the evaluation birefringence of the thermoplastic norbornene-based resin can be increased.
  • ⁇ n R easily falls within the range of the expressions (1) and (2).
  • the ratio of the dicyclopentadiene-based structure in the norbornene-based polymer coincides with the polymerization ratio of the dicyclopentadiene-based monomer to the total amount of the monomers. Accordingly, the ratio of the dicyclopentadiene-based structure to 100% by weight of the norbornene-based polymer preferably falls within the same range as the polymerization ratio of the dicyclopentadiene-based monomer.
  • the ratio of the amounts thereof is preferably in a predetermined range.
  • the amount of the dicyclopentadiene-based monomer is preferably 100 parts by weight or more, more preferably 150 parts by weight or more, and particularly preferably 200 parts by weight, based on 100 parts by weight of the tetracyclododecene-based monomer. It is at least 500 parts by weight, preferably at most 500 parts by weight, more preferably at most 450 parts by weight, particularly preferably at most 400 parts by weight.
  • the amount of the dicyclopentadiene-based structure is preferably 100 parts by weight or more, more preferably 150 parts by weight or more, and particularly preferably 200 parts by weight, based on 100 parts by weight of the tetracyclododecene-based structure.
  • Parts by weight preferably 500 parts by weight or less, more preferably 450 parts by weight or less, particularly preferably 400 parts by weight or less.
  • the glass transition temperature and birefringence manifestation of the norbornene-based polymer can be increased. Therefore, the glass transition temperature Tg of the thermoplastic norbornene-based resin and the evaluated birefringence ⁇ n R are calculated by the formula (1). And it is easy to fit in the range of the expression (2).
  • thermoplastic norbornene-based resin having a desired glass transition temperature Tg and an evaluation birefringence ⁇ n R is obtained as the type of the arbitrary monomer.
  • the optional monomer capable of ring-opening copolymerization with the norbornene-based monomer include monocyclic olefins such as cyclohexene, cycloheptene and cyclooctene and derivatives thereof; and cyclic conjugated dienes such as cyclohexadiene and cycloheptadiene.
  • Examples of the optional monomer capable of addition copolymerization with the norbornene-based monomer include ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene and 1-butene and derivatives thereof; cyclobutene and cyclopentene , Cyclohexene and the like, and derivatives thereof; non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene and 5-methyl-1,4-hexadiene;
  • One kind of the arbitrary monomer may be used alone, or two or more kinds may be used in combination.
  • a hydride having a structure obtained by polymerizing a norbornene-based monomer and further performing hydrogenation is preferable.
  • This hydride may be one in which the non-aromatic unsaturated bond in the polymer is hydrogenated, one in which the aromatic unsaturated bond in the polymer is hydrogenated, Both the non-aromatic unsaturated bond and the aromatic unsaturated bond may be hydrogenated.
  • a norbornene-based polymer in which both the non-aromatic unsaturated bond and the aromatic unsaturated bond in the polymer are hydrogenated is preferable.
  • the development of retardation Rth in the thickness direction can be effectively increased, and the photoelastic coefficient can be reduced. Therefore, it is possible to achieve both a large thickness direction retardation Rth and a low photoelastic coefficient. Further, usually, properties such as mechanical strength, moisture resistance and heat resistance of the optical film can be effectively improved.
  • the glass transition temperature of the penorbornene-based polymer is preferably 110 ° C. or higher, more preferably 112 ° C. or higher, and particularly preferably 114 ° C. or higher.
  • a film containing a norbornene-based polymer in which the type and the polymerization ratio of the norbornene-based monomer are adjusted so as to have a glass transition temperature in the above range the birefringence due to stretching tends to have a large expression, Therefore, it is easy to increase the retardation Rth in the thickness direction of the optical film.
  • the upper limit of the glass transition temperature of the norbornene-based polymer is not particularly limited, but is preferably 180 ° C or lower, more preferably 170 ° C or lower, and particularly preferably 160 ° C or lower. When the glass transition temperature of the norbornene-based polymer is equal to or lower than the above upper limit, the retardation Rth in the thickness direction of the optical film is easily increased.
  • the glass transition temperature of the norbornene-based polymer can be measured using a differential scanning calorimeter in accordance with JIS K 6911 at a heating rate of 10 ° C./min.
  • the glass transition temperature of the norbornene-based polymer can be adjusted by, for example, the type and polymerization ratio of the norbornene-based monomer as a raw material of the norbornene-based polymer.
  • the norbornene-based polymer preferably has a large birefringence developing property. Therefore, the norbornene-based polymer preferably has a large evaluation birefringence.
  • the evaluation birefringence of the norbornene-based polymer is preferably 0.0025 or more, more preferably 0.0026 or more, and particularly preferably 0.0027 or more.
  • the upper limit of the evaluation birefringence of the norbornene-based polymer is not particularly limited, but is preferably 0.0050 or less, more preferably 0.0047 or less, and particularly preferably 0.0045 or less.
  • the evaluation birefringence of the norbornene-based polymer is equal to or less than the above upper limit, the production of the norbornene-based polymer can be easily performed.
  • the evaluation birefringence of the norbornene-based polymer can be measured by the following method.
  • a sheet is obtained by molding a norbornene-based polymer. This sheet is subjected to free-end uniaxial stretching.
  • the free-end uniaxial stretching is stretching in one direction, and means stretching in which a restraining force is not applied to a sheet other than the stretching direction.
  • the stretching temperature of the free-end uniaxial stretching is a temperature 15 ° C. higher than the glass transition temperature of the norbornene-based polymer.
  • the stretching time is 1 minute, and the stretching ratio of the free-end uniaxial stretching is 1.5 times.
  • the in-plane retardation of the central portion of the sheet is measured at a measurement wavelength of 550 nm, and the in-plane retardation is divided by the thickness of the central portion of the sheet to obtain an evaluation birefringence.
  • the birefringence can be adjusted, for example, by the type and polymerization ratio of the norbornene-based monomer as a raw material of the norbornene-based polymer, and the molecular weight distribution of the norbornene-based polymer.
  • the weight average molecular weight Mw of the norbornene-based polymer is preferably 10,000 to 100,000, more preferably 15,000 to 80,000, and particularly preferably 20,000 to 60,000. When the weight average molecular weight is in the above range, the mechanical strength and moldability of the optical film are highly balanced.
  • the molecular weight distribution Mw / Mn of the norbornene-based polymer is preferably 2.4 or less, more preferably 2.35 or less, and particularly preferably 2.3 or less.
  • the molecular weight distribution is a ratio between the weight average molecular weight and the number average molecular weight, and is represented by “weight average molecular weight Mw / number average molecular weight Mn”.
  • the lower limit of the molecular weight distribution of the norbornene-based polymer is usually 1.0 or more.
  • the weight average molecular weight and the number average molecular weight of the norbornene-based polymer can be measured in terms of polyisoprene by gel permeation chromatography using cyclohexane as an eluent.
  • toluene may be used as an eluent in the gel permeation chromatography.
  • the weight average molecular weight and the number average molecular weight can be measured in terms of polystyrene.
  • the stress birefringence of the norbornene-based polymer is preferably at least 2350 ⁇ 10 ⁇ 12 Pa ⁇ 1 , more preferably at least 2400 ⁇ 10 ⁇ 12 Pa ⁇ 1 , particularly preferably at least 2550 ⁇ 10 ⁇ 12 Pa ⁇ 1 , It is preferably at most 3000 ⁇ 10 ⁇ 12 Pa ⁇ 1 , more preferably at most 2950 ⁇ 10 ⁇ 12 Pa ⁇ 1 , particularly preferably at most 2800 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the film containing the norbornene-based polymer tends to have a large birefringence due to stretching, and therefore, in the thickness direction of the optical film. It is easy to increase the retardation Rth.
  • the retardation Re and Rth of the optical film can be easily controlled, and the in-plane variation of the retardation can be suppressed.
  • the stress birefringence of the norbornene-based polymer can be measured by the following method.
  • the norbornene-based polymer is formed into a sheet to obtain a sheet.
  • a weight having a predetermined weight (for example, 160 g) is fixed to one of the clips.
  • a sheet is placed in an oven set at a predetermined temperature (for example, a temperature higher by 5 ° C. than the glass transition temperature of the norbornene-based polymer) for a predetermined time (for example, one hour) starting from the clip with the unfixed weight as a starting point.
  • a stretching process is performed.
  • the stretched sheet is cooled slowly and returned to room temperature.
  • the in-plane retardation at the center of the sheet is measured at a measurement wavelength of 650 nm, and this in-plane retardation is divided by the thickness at the center of the sheet to calculate a ⁇ n value. Then, the ⁇ n value is divided by the stress applied to the sheet (in the above case, the stress applied when a predetermined weight is fixed) to obtain the stress birefringence.
  • the stress birefringence of the norbornene-based polymer can be adjusted by the type and polymerization ratio of the norbornene-based monomer as a raw material of the norbornene-based polymer.
  • the norbornene-based polymer can be produced, for example, by a production method including polymerizing a norbornene-based monomer and any monomer used as needed in the presence of a suitable catalyst.
  • the method for producing a norbornene-based polymer includes, after the above-described polymerization, a hydrogen containing a transition metal such as nickel, palladium, and ruthenium with respect to the obtained polymer. Contacting hydrogen in the presence of a hydrogenation catalyst to hydrogenate carbon-carbon unsaturated bonds.
  • the proportion of the norbornene-based polymer contained in the thermoplastic norbornene-based resin is arbitrary within a range where a thermoplastic norbornene-based resin satisfying the formulas (1) and (2) can be obtained. From the viewpoint of utilizing the excellent properties of the norbornene-based polymer, the proportion of the norbornene-based polymer contained in the thermoplastic norbornene-based resin is preferably 80% by weight to 100% by weight, more preferably 90% by weight to 100% by weight. And particularly preferably from 95% by weight to 100% by weight.
  • the thermoplastic norbornene-based resin may contain an arbitrary component other than the norbornene-based polymer.
  • optional components for example, ultraviolet absorbers, antioxidants, heat stabilizers, light stabilizers, antistatic agents, dispersants, chlorine scavengers, flame retardants, crystallization nucleating agents, reinforcing agents, antiblocking agents, Examples include anti-fogging agents, release agents, pigments, organic or inorganic fillers, neutralizing agents, lubricants, decomposers, metal deactivators, stain inhibitors, antibacterial agents and the like.
  • One type of optional component may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the thermoplastic norbornene-based resin has a glass transition temperature Tg that satisfies the formula (1).
  • the glass transition temperature Tg of the thermoplastic norbornene-based resin is usually 110 ° C. or higher, preferably 112 ° C. or higher, and particularly preferably 114 ° C. or higher.
  • a film containing a thermoplastic norbornene-based resin having a glass transition temperature Tg in the above-mentioned range tends to have a large birefringence due to stretching, and therefore, increases the retardation Rth in the thickness direction of the optical film. easy.
  • the upper limit of the glass transition temperature Tg of the thermoplastic norbornene-based resin is not particularly limited, but is preferably 180 ° C or lower, more preferably 170 ° C or lower, and particularly preferably 160 ° C or lower. When the glass transition temperature Tg of the thermoplastic norbornene resin is equal to or lower than the above upper limit, the retardation Rth in the thickness direction of the optical film is easily increased.
  • thermoplastic norbornene-based resin can be measured using a differential scanning calorimeter in accordance with JIS K 6911 at a heating rate of 10 ° C / min.
  • the glass transition temperature Tg of the thermoplastic norbornene-based resin can be adjusted by, for example, the type and polymerization ratio of the norbornene-based monomer as a raw material of the norbornene-based polymer, and the content of the norbornene-based polymer.
  • Thermoplastic norbornene resin has a rating birefringence [Delta] n R satisfying the equation (2).
  • the evaluation birefringence ⁇ n R of the thermoplastic norbornene-based resin is usually 0.0025 or more, preferably 0.0026 or more, and particularly preferably 0.0027 or more.
  • the upper limit of the evaluation birefringence [Delta] n R of the thermoplastic norbornene resin is no particular restriction is not, preferably 0.0050 or less, more preferably 0.0047 or less, particularly preferably 0.0045 or less. If the evaluation birefringence [Delta] n R of the thermoplastic norbornene resin is more than the upper limit of the above, it is possible to easily manufacture the thermoplastic norbornene resin.
  • thermoplastic norbornene resin Evaluation birefringence [Delta] n R of the thermoplastic norbornene resin can be measured by the following methods.
  • a sheet is obtained by molding a thermoplastic norbornene-based resin. This sheet is subjected to free-end uniaxial stretching.
  • the stretching temperature of the free-end uniaxial stretching is a temperature 15 ° C. higher than the glass transition temperature Tg of the thermoplastic norbornene-based resin (that is, Tg + 15 ° C.).
  • the stretching time is 1 minute, and the stretching ratio of the free-end uniaxial stretching is 1.5 times.
  • the in-plane retardation Re (a) at the center of the sheet is measured at a measurement wavelength of 550 nm, and the in-plane retardation Re (a) is divided by the thickness T (a) at the center of the sheet to evaluate.
  • a birefringence ⁇ n R is obtained.
  • the evaluation birefringence ⁇ n R of the thermoplastic norbornene-based resin is, for example, the type and polymerization ratio of the norbornene-based monomer as a raw material of the norbornene-based polymer, the molecular weight distribution of the norbornene-based polymer, and the content of the norbornene-based polymer. Can be adjusted by rate.
  • Stress birefringence C R of the thermoplastic norbornene resin is preferably 2350 ⁇ 10 -12 Pa -1 or higher, more preferably 2400 ⁇ 10 -12 Pa -1 or higher, particularly preferably 2550 ⁇ 10 -12 Pa -1 or higher And preferably at most 3000 ⁇ 10 ⁇ 12 Pa ⁇ 1 , more preferably at most 2950 ⁇ 10 ⁇ 12 Pa ⁇ 1 , particularly preferably at most 2800 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • stress birefringence C R of the thermoplastic norbornene resin is not less than the lower limit of the range, the film containing the thermoplastic norbornene resin tends expression greater of birefringence by stretching, therefore, the optical film Is easy to increase the retardation Rth in the thickness direction. Also, if the stress birefringence C R of the thermoplastic norbornene resin is more than the upper limit of the above range, it becomes easy to control the retardation Re and Rth of the optical film, it is possible to suppress the variation in in-plane retardation .
  • Stress birefringence C R of the thermoplastic norbornene resin can be measured by the following method.
  • a sheet is obtained by molding a thermoplastic norbornene-based resin into a sheet. After fixing both ends of the sheet with clips, a weight having a predetermined weight (for example, 160 g) is fixed to one of the clips.
  • a predetermined temperature for example, a temperature higher by 5 ° C. than the glass transition temperature Tg of the thermoplastic norbornene-based resin
  • a predetermined time for example, 1 hour
  • the in-plane retardation Re (b) at the center of the sheet is measured at a measurement wavelength of 650 nm, and this in-plane retardation Re (b) is divided by the thickness T (b) [mm] at the center of the sheet.
  • the ⁇ n value is calculated.
  • the ⁇ n value (in the above case, stress applied when fixing the predetermined weight) stress applied to the seat by dividing, to calculate stress birefringence C R.
  • Stress birefringence C R of the thermoplastic norbornene resin the kind and the polymerization ratio of norbornene-based monomers as the raw material of the norbornene-based polymer, and can be adjusted by the content of the norbornene-based polymer.
  • the optical film according to the present embodiment is a film formed of the above-described thermoplastic norbornene-based resin, and the retardation Rth and the thickness d in the thickness direction satisfy the above-described formula (3).
  • the ratio Rth / d is usually at least 3.5 ⁇ 10 ⁇ 3 , preferably at least 3.7 ⁇ 10 ⁇ 3 , particularly preferably at least 4.0 ⁇ 10 ⁇ 3 .
  • the optical film according to the present embodiment can increase the retardation Rth in the thickness direction per the thickness d. Therefore, it is possible to increase the retardation Rth in the thickness direction while reducing the thickness d.
  • the upper limit of the ratio Rth / d is not particularly limited, but is preferably 8.0 ⁇ 10 ⁇ 3 or less, and more preferably 6.0 ⁇ 10 ⁇ 3 from the viewpoint of effectively suppressing the delamination of the optical film. It is as follows.
  • the glass transition temperature and birefringence manifestation of the norbornene-based polymer usually depend on the type and polymerization ratio of the norbornene-based monomer used as the material of the norbornene-based polymer. Therefore, the glass transition temperature Tg and evaluation birefringence [Delta] n R of the thermoplastic norbornene-based resin containing the norbornene-based polymer has a correlation to the type and polymerization ratio of the norbornene monomer which is a material of the norbornene-based polymer.
  • the glass transition temperature Tg and evaluation birefringence [Delta] n R of a thermoplastic norbornene resin usually, a norbornene-based monomer type and polymerization ratio of the raw material of the norbornene-based polymer included in the thermoplastic norbornene resin Reflects.
  • the glass transition temperature Tg and evaluation birefringence ⁇ n selected type to have R and amount of norbornene norbornene polymer employing the monomer in a predetermined range
  • the thermoplastic norbornene-based resin contained therein has excellent retardation Rth in the thickness direction due to stretching. Therefore, an optical film having a high Rth / d as described above can be manufactured as a stretched film using the above-described thermoplastic norbornene-based resin containing a norbornene-based polymer.
  • the photoelastic coefficient of the optical film according to the present embodiment is preferably small.
  • the specific photoelastic coefficient of the optical film is preferably 8 Brewster or less, more preferably 7 Brewster or less, and particularly preferably 6 Brewster or less.
  • 1 Brewster 1 ⁇ 10 ⁇ 13 cm 2 / dyn.
  • the light leakage refers to a phenomenon in which, when the liquid crystal display device is set to a black display state, light to be shielded leaks from the screen and the screen becomes bright.
  • the lower limit of the photoelastic coefficient is not particularly limited, but is preferably 0.5 Brewster or more, more preferably 1.0 Brewster or more, and particularly preferably 1.5 Brewster or more.
  • the photoelastic coefficient of the optical film can be measured by an ellipsometer.
  • An optical film having a small photoelastic coefficient can be realized by using, for example, a thermoplastic norbornene-based resin containing a hydrogenated norbornene-based polymer.
  • the optical film according to the present embodiment can achieve high orientation angle accuracy.
  • the optical film has a slow axis in an in-plane direction perpendicular to the thickness direction.
  • the optical film can suppress the variation in the direction of the slow axis. Therefore, since the dispersion of the orientation angle ⁇ as an angle formed by the slow axis with respect to a certain reference direction can be suppressed, high orientation angle accuracy can be achieved.
  • An optical film having a high alignment angle accuracy can make display characteristics such as screen brightness and contrast uniform in a plane when provided in a liquid crystal display device.
  • the orientation angle accuracy of the optical film can be evaluated by the standard deviation ⁇ of the orientation angle ⁇ .
  • the standard deviation ⁇ of the orientation angle ⁇ of the optical film is preferably 0 ° to 0.15 °, more preferably 0 ° to 0.14 °, and particularly preferably 0 ° to 0.13 °. .
  • the standard deviation ⁇ of the orientation angle ⁇ of the optical film can be measured by the following method.
  • the absolute value of the angle formed by the slow axis with respect to a certain reference direction of the optical film is measured as the orientation angle ⁇ .
  • This measurement is performed at a plurality of measurement positions at an interval of 50 mm in the width direction of the optical film and at an interval of 10 m in the length direction. Then, from these measurement results, the standard deviation ⁇ of the orientation angle ⁇ can be calculated.
  • an optical film is manufactured as a stretched film using a thermoplastic norbornene-based resin.
  • the thermoplastic norbornene-based resin has excellent birefringence, the stretching ratio required for exhibiting a retardation large enough to satisfy the formula (3) is small. Therefore, when producing an optical film as a stretched film formed of a thermoplastic norbornene-based resin, the draw ratio can be reduced. With such a small stretching ratio, the optical film can achieve high orientation angle accuracy.
  • the optical film according to the present embodiment is excellent in heat resistance. Specifically, the optical film can suppress a change in the retardation Rth in the thickness direction in a high-temperature environment.
  • An optical film having excellent heat resistance can be applied to a liquid crystal display device that can be used in a high-temperature environment.
  • the heat resistance of the optical film can be evaluated by the rate of change of the retardation Rth in the thickness direction by a durability test in a high temperature environment. For example, after measuring the retardation Rth0 in the thickness direction of the optical film, the optical film is subjected to a durability test in which the optical film is stored at 85 ° C. for 500 hours. After the durability test, the retardation Rth1 in the thickness direction of the optical film is measured. Then, the rate of change can be calculated by dividing the amount of change Rth0 ⁇ Rth1 of the retardation in the thickness direction of the optical film by the durability test by the retardation Rth0 in the thickness direction of the optical film before the durability test. According to the optical film of this embodiment, the rate of change of the retardation Rth in the thickness direction can be preferably 3% or less.
  • thermoplastic norbornene-based resin contained in the optical film has a high glass transition temperature Tg. Therefore, even in a high-temperature environment, the molecules of the norbornene-based polymer contained in the thermoplastic norbornene-based resin are unlikely to cause orientation relaxation. Therefore, as described above, the change in the retardation Rth in the thickness direction in a high-temperature environment can be suppressed.
  • the optical film according to the present embodiment preferably has high moisture resistance. Therefore, it is preferable that the optical film can suppress the change in the retardation Rth in the thickness direction in a high humidity environment.
  • An optical film having excellent moisture resistance can be applied to a liquid crystal display device that can be used in a high humidity environment.
  • the moisture resistance of the optical film can be evaluated by the rate of change of the retardation Rth in the thickness direction by a durability test in a high humidity environment. For example, after measuring the retardation Rth0 of the optical film in the thickness direction, the optical film is subjected to a durability test in which the optical film is stored in an environment of 60 ° C. and 90% humidity for 500 hours. After the durability test, the retardation Rth2 in the thickness direction of the optical film is measured. Then, the change rate Rth0 ⁇ Rth2 of the retardation in the thickness direction of the optical film by the durability test is divided by the retardation Rth0 in the thickness direction of the optical film before the durability test to calculate the rate of change. According to the present embodiment, the rate of change of the retardation Rth in the thickness direction can be made preferably 3% or less.
  • the optical film Since the norbornene-based polymer is preferably excellent in moisture resistance, the optical film easily suppresses the infiltration of moisture. Therefore, even in a high-humidity environment, the molecules of the norbornene-based polymer contained in the optical film hardly cause orientation relaxation. Therefore, as described above, a change in the retardation Rth in the thickness direction in a high humidity environment can be suppressed.
  • the optical film according to the present embodiment preferably has a low water absorption.
  • the water absorption by weight of the optical film is preferably 0% to 0.15%, more preferably 0% to 0.10%, and particularly preferably 0% to 0.1%. 0.05%.
  • the optical film can have excellent moisture resistance as described above.
  • the optical film according to the present embodiment can preferably suppress delamination. Therefore, when the optical film is bonded to a film such as a polarizing plate using an adhesive, the optical film can be hardly peeled off.
  • the in-plane retardation Re of the optical film according to the present embodiment is optional depending on the use of the optical film.
  • the in-plane retardation Re of the optical film is preferably 40 nm or more, more preferably 45 nm or more, particularly preferably 50 nm or more, preferably 80 nm or less, more preferably 75 nm or less, and particularly preferably. Is 70 nm or less.
  • the in-plane retardation Re of the optical film is equal to or more than the lower limit of the above range, it is easy to improve the expression of the retardation.
  • the in-plane retardation Re of the optical film is equal to or less than the upper limit of the above range, the in-plane variation of the retardation can be suppressed.
  • the in-plane retardation Re can be appropriately selected from the above range depending on the design of the image display device.
  • the retardation Rth in the thickness direction of the optical film according to the present embodiment is arbitrary depending on the use of the optical film.
  • the retardation Rth in the thickness direction of the optical film is preferably 100 nm or more, more preferably 120 nm or more, particularly preferably 150 nm or more, preferably 400 nm or less, more preferably 380 nm or less, particularly Preferably it is 360 nm or less.
  • the retardation Rth in the thickness direction of the optical film is equal to or more than the lower limit of the above range, the contrast of the image display device in the oblique direction can be increased.
  • the retardation Rth in the thickness direction of the optical film is equal to or less than the upper limit of the above range, the in-plane variation of the retardation Rth in the thickness direction and the orientation angle can be suppressed.
  • the retardation Rth in the thickness direction can be appropriately selected from the above range depending on the design of the image display device.
  • the optical film according to the present embodiment preferably has a high total light transmittance.
  • the specific total light transmittance of the optical film is preferably 85% to 100%, more preferably 87% to 100%, and particularly preferably 90% to 100%.
  • the total light transmittance can be measured using a commercially available spectrophotometer at a wavelength of 400 nm or more and 700 nm or less.
  • the optical film according to the present embodiment preferably has a small haze from the viewpoint of enhancing the image clarity of the liquid crystal display device incorporating the laminated film.
  • the haze of the optical film is preferably 1% or less, more preferably 0.8% or less, and particularly preferably 0.5% or less.
  • the haze can be measured using a turbidimeter according to JIS K7361-1997.
  • the optical film according to the present embodiment is preferably thin.
  • a large thickness direction retardation Rth can be obtained even when the optical film is thin.
  • the warpage of the optical film can be suppressed, so that a change in optical characteristics such as retardation due to the warpage can be reduced. Therefore, when the optical film is provided in the liquid crystal display device, it is possible to suppress the occurrence of light leakage due to the warpage of the optical film.
  • the specific thickness d of the optical film is preferably 120 ⁇ m or less, more preferably 100 ⁇ m or less, and particularly preferably 80 ⁇ m or less.
  • the lower limit of the thickness d is not particularly limited, but is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, and particularly preferably 40 ⁇ m or more from the viewpoint of suppressing delamination.
  • optical film can be manufactured by, for example, a manufacturing method including a step of forming a thermoplastic norbornene-based resin to obtain a resin film, and a step of stretching the resin film.
  • a film before stretching in order to distinguish the resin film before being stretched from the optical film obtained after stretching, it may be referred to as “a film before stretching” as appropriate.
  • the molding method includes an extrusion molding method, a solution casting method, and an inflation molding method. Among them, the extrusion molding method and the solution casting method are preferable, and the extrusion molding method is particularly preferable.
  • a step of stretching the film before stretching is performed.
  • the molecules of the norbornene-based polymer in the film can be oriented, so that an optical film having the above-described optical characteristics is obtained.
  • the stretching conditions in the step of stretching the film before stretching can be arbitrarily set as long as a desired optical film can be obtained.
  • the stretching mode of the film before stretching may be, for example, uniaxial stretching in which stretching is performed in one direction, or biaxial stretching in which stretching is performed in two non-parallel directions.
  • the biaxial stretching may be simultaneous biaxial stretching in which stretching in two directions is performed simultaneously, or sequential biaxial stretching in which stretching is performed in one direction and then stretching in the other direction. You may. Among these, from the viewpoint of easily producing an optical film having a large retardation Rth in the thickness direction, biaxial stretching is preferable, and sequential biaxial stretching is more preferable.
  • the stretching direction of the film before stretching can be set arbitrarily.
  • the stretching direction may be a vertical direction, a horizontal direction, or an oblique direction.
  • the longitudinal direction represents the length direction of the long film
  • the horizontal direction represents the width direction of the long film
  • the oblique direction is neither parallel nor perpendicular to the length direction of the long film. Indicates the direction.
  • the stretching ratio of the film before stretching is preferably 1.4 or more, more preferably 1.5 or more, preferably 2.2 or less, more preferably 2.1 or less.
  • the stretching ratio is equal to or more than the lower limit of the above range, an optical film having a large retardation Rth in the thickness direction can be easily obtained.
  • the stretching ratio is equal to or less than the upper limit of the above range, the orientation angle accuracy of the optical film can be easily increased.
  • the stretching temperature of the film before stretching is preferably Tg ° C or higher, more preferably Tg + 5 ° C or higher, preferably Tg + 40 ° C or lower, more preferably Tg + 30 ° C or lower.
  • Tg ° C or higher more preferably Tg + 5 ° C or higher
  • Tg + 40 ° C or lower more preferably Tg + 30 ° C or lower.
  • the optical film can be obtained by stretching the film before stretching, but the manufacturing method may further include an optional step.
  • the above manufacturing method may include a step of trimming the optical film, a step of performing a surface treatment on the optical film, and the like.
  • An optical laminate according to one embodiment of the present invention includes the above-described optical film and a polarizing plate. Since the thickness of the optical film can be reduced even if the retardation Rth in the thickness direction is large, it is possible to reduce the thickness of the optical laminate or to suppress the warpage of the optical laminate. Further, since the optical film has high orientation angle accuracy, the optical characteristics of the optical laminate can be made uniform within the plane. Furthermore, since the optical film has high heat resistance, the optical laminate can also have high heat resistance. Such an optical laminate can be suitably applied to an image display device such as a liquid crystal display device.
  • a film having a polarizer layer can be used.
  • the polarizer layer for example, a film obtained by performing an appropriate treatment on an appropriate vinyl alcohol-based polymer film in an appropriate order and method can be used.
  • a vinyl alcohol-based polymer include polyvinyl alcohol and partially formalized polyvinyl alcohol.
  • the film treatment include a dyeing treatment with a dichroic substance such as iodine and a dichroic dye, a stretching treatment, and a crosslinking treatment.
  • the polarizer layer is capable of absorbing linearly polarized light having a vibration direction parallel to the absorption axis, and is particularly preferably one having an excellent degree of polarization.
  • the thickness of the polarizer layer is generally 5 ⁇ m to 80 ⁇ m, but is not limited thereto.
  • the polarizing plate may include a protective film layer on one or both sides of the polarizer layer to protect the polarizer layer.
  • Any transparent film layer can be used as the protective film layer.
  • a resin film layer excellent in transparency, mechanical strength, heat stability, moisture shielding property and the like is preferable.
  • examples of such a resin include an acetate resin such as triacetyl cellulose, a polyester resin, a polyether sulfone resin, a polycarbonate resin, a polyamide resin, a polyimide resin, a polyolefin resin, a thermoplastic norbornene-based resin, and a (meth) acrylic resin. .
  • thermoplastic norbornene-based resin is particularly preferred from the viewpoints of transparency, low moisture absorption, dimensional stability, and light weight. preferable.
  • the polarizing plate can be manufactured by, for example, laminating a polarizer layer and a protective film layer. At the time of bonding, an adhesive may be used as necessary.
  • the optical laminate may further include an optional member in combination with the optical film and the polarizing plate.
  • the optical laminate may include an adhesive layer for bonding the optical film and the polarizing plate.
  • the thickness of the optical laminate is not particularly limited, but is preferably 30 ⁇ m or more, more preferably 50 ⁇ m or more, preferably 150 ⁇ m or less, more preferably 130 ⁇ m or less.
  • a liquid crystal display device includes the above-described optical laminate.
  • the optical film included in the optical laminate can be thin, the optical laminate hardly warps. Therefore, it is possible to suppress the occurrence of light leakage due to a change in the optical characteristics of the optical film in the warped portion.
  • the above-described warpage generally tends to occur at a corner of a screen of a liquid crystal display device.
  • the liquid crystal display device according to the present embodiment can have high alignment angle accuracy, the liquid crystal display device according to the present embodiment can make the display characteristics such as the brightness and contrast of the screen uniform within the screen.
  • the optical film has high heat resistance, the liquid crystal display device according to the present embodiment can suppress a change in display characteristics in a high-temperature environment.
  • a liquid crystal display device includes a liquid crystal cell, and an optical laminate on at least one side of the liquid crystal cell.
  • the optical laminated body is provided so that the liquid crystal cell, the optical film, and the viewing side polarizer are arranged in this order.
  • the optical film can function as a viewing angle compensation film.
  • the liquid crystal cell includes, for example, an in-plane switching (IPS) mode, a vertical alignment (VA) mode, a multi-domain vertical alignment (MVA) mode, a continuous spin wheel alignment (CPA) mode, a hybrid alignment nematic (HAN) mode, and a twisted nematic.
  • IPS in-plane switching
  • VA vertical alignment
  • MVA multi-domain vertical alignment
  • CPA continuous spin wheel alignment
  • HAN hybrid alignment nematic
  • twisted nematic twisted nematic
  • a liquid crystal cell of any mode such as a (TN) mode, a super twisted nematic (STN) mode, and an optically compensated bend (OCB) mode can be used.
  • the measurement was carried out using three Tosoh columns (TSKgelG5000HXL, TSKgelG4000HXL and TSKgelG2000HXL) connected in series at a flow rate of 1.0 mL / min, a sample injection volume of 100 ⁇ L, and a column temperature of 40 ° C.
  • the molecular weight distribution Mw / Mn was calculated using the measured values of the weight average molecular weight Mw and the number average molecular weight Mn measured by the above method.
  • the glass transition temperature Tg was measured using a differential scanning calorimeter ("DSC6220SII" manufactured by Nanotechnology) based on JIS K 6911 at a heating rate of 10 ° C / min.
  • the stretched sample sheet was returned to room temperature to obtain a measurement sample.
  • the in-plane retardation Re (a) [nm] at the center of the measurement sample was measured at a measurement wavelength of 550 nm using a phase difference meter (“AXOSCAN” manufactured by AXOMETRICS). Further, the thickness T (a) [mm] of the central portion of the measurement sample was measured.
  • Re (a) and T (a) the following equation (X1), and calculates an evaluation birefringence [Delta] n R of a resin.
  • ⁇ n R Re (a) ⁇ (1 / T (a)) ⁇ 10 ⁇ 6 (X1)
  • the resin was formed into a sheet having a size of 35 mm long ⁇ 10 mm wide ⁇ 1 mm thick to obtain a sample sheet. After fixing both ends of the sample sheet with clips, a weight of 160 g was fixed to one of the clips. Next, the sample sheet was hung in an oven in which the temperature was set to the glass transition temperature of the resin Tg + 5 ° C., starting from the clip with the unfixed weight as a starting point, and stretched for 1 hour. Thereafter, the sample sheet was slowly cooled and returned to room temperature to obtain a measurement sample.
  • the in-plane retardation Re (b) [nm] at the center of the measurement sample was measured at a measurement wavelength of 650 nm using a birefringence meter (“WPA-100” manufactured by Photonic Lattice). Further, the thickness T (b) [mm] of the central portion of the measurement sample was measured.
  • a ⁇ n value was calculated by the following equation (X2).
  • ⁇ n Re (b) ⁇ (1 / T (b)) ⁇ 10 ⁇ 6 (X2)
  • a stress F which added to the ⁇ n value and sample by the following formula (X3), was calculated stress birefringence C R.
  • C R ⁇ n / F (X3)
  • the absolute value of the angle formed by the slow axis with respect to the length direction of the optical film was measured as the orientation angle ⁇ .
  • This measurement was performed using a polarizing microscope (a polarizing microscope “BX51” manufactured by Olympus Corporation).
  • the measurement of the orientation angle ⁇ was performed at a plurality of measurement positions at intervals of 50 mm in the width direction of the optical film and at intervals of 10 m in the length direction of the optical film.
  • the standard deviation ⁇ of those measurement results was calculated as an evaluation index of the orientation angle accuracy. The smaller the standard deviation ⁇ of the orientation angle ⁇ is, the smaller the dispersion of the orientation angle ⁇ is.
  • an unstretched film formed of a resin containing a norbornene-based polymer (“Zeonor film” manufactured by Zeon Corporation, thickness of 100 ⁇ m, glass transition temperature of resin of 160 ° C., not stretched) Prepared.
  • Zeonor film manufactured by Zeon Corporation, thickness of 100 ⁇ m, glass transition temperature of resin of 160 ° C., not stretched
  • An adhesive UV adhesive CRB series manufactured by Toyochem
  • the adhesive was irradiated with ultraviolet rays using an electrodeless UV irradiation device (manufactured by Heraeus) to cure the adhesive.
  • the ultraviolet irradiation was performed using a D bulb as a lamp under the conditions of a peak illuminance of 100 mW / cm 2 and an integrated light amount of 3000 mJ / cm 2 .
  • a sample film having a layer structure of unstretched film / adhesive layer / optical film was obtained.
  • the obtained sample film was subjected to a 90-degree peel test according to the following procedure.
  • the sample film was cut into a width of 15 mm to obtain a film piece.
  • the surface of the film piece on the optical film side was bonded to the surface of a slide glass using an adhesive.
  • a double-sided adhesive tape (manufactured by Nitto Denko Corporation, product number “CS9621”) was used as the adhesive.
  • An unstretched film included in a film piece is sandwiched between the tip of a high-performance digital force gauge (“ZP-5N” manufactured by Imada) and the unstretched film is moved at a speed of 300 mm / min in a direction normal to the surface of the slide glass.
  • ZP-5N high-performance digital force gauge
  • the evaluation of the peel strength was performed according to the following evaluation criteria. Good: 1.0 N / 15 mm or more. Poor: less than 1.0 N / 15 mm.
  • the thickness d of the optical film was measured with a snap gauge (“ID-C112BS” manufactured by Mitutoyo Corporation).
  • RRth / d was calculated by dividing the measured retardation Rth in the thickness direction by the thickness d.
  • Rth change rate is 3% or less.
  • Poor Rth change rate is greater than 3%.
  • Rth change rate is 3% or less.
  • Poor Rth change rate is greater than 3%.
  • a part of the optical film was cut to prepare a test piece (size: 100 mm ⁇ 100 mm), and the weight w0 of the test piece was measured. Thereafter, the test piece was immersed in water at 23 ° C. for 24 hours. After immersion, the weight w1 of the test piece was measured. Then, the ratio (w1-w0) / w0 of the weight w1-w0 of the test piece increased by immersion to the weight w0 of the test piece before immersion was calculated as the water absorption (%). The smaller the water absorption, the better.
  • Example 1 Production of ring-opened polymer: 200 parts by weight of dehydrated cyclohexane, 0.75 mol% of 1-hexene, 0.15 mol% of diisopropyl ether, and 0.44 mol% was placed in the reactor at room temperature and mixed. Thereafter, while maintaining at 45 ° C., 29 parts by weight of tetracyclododecene (TCD), 68 parts by weight of dicyclopentadiene (DCPD), 3 parts by weight of norbornene (NB), and (0.65 wt% toluene solution) and 0.02 mol% were added continuously over 2 hours in parallel to carry out polymerization.
  • TCD tetracyclododecene
  • DCPD dicyclopentadiene
  • NB norbornene
  • the amounts represented by the unit “mol%” are values in which the total amount of the monomers is 100 mol%.
  • the weight-average molecular weight Mw of the obtained ring-opened norbornene polymer was 2.8 ⁇ 10 4 , and the molecular weight distribution (Mw / Mn) was 2.1.
  • the conversion of the monomer into the polymer was 100%.
  • the obtained solution was subjected to pressure filtration ("Fundaback filter” manufactured by Ishikawajima-Harima Heavy Industries, Ltd.) at a pressure of 0.25 MPa using Radiolite # 500 as a filtration bed to remove the hydrogenation catalyst.
  • pressure filtration (“Fundaback filter” manufactured by Ishikawajima-Harima Heavy Industries, Ltd.) at a pressure of 0.25 MPa using Radiolite # 500 as a filtration bed to remove the hydrogenation catalyst.
  • Radiolite # 500 as a filtration bed
  • the glass transition temperature Tg, the evaluation birefringence ⁇ n R , and the stress birefringence C R of the obtained thermoplastic norbornene-based resin were measured by the methods described above.
  • the glass transition temperature Tg of the thermoplastic norbornene resin is 110 ° C.
  • evaluation birefringence [Delta] n R is 0.0030
  • stress birefringence C R was 2600 ⁇ 10 -12 Pa -1.
  • thermoplastic norbornene-based resin obtained in the above step (1-2) was charged into a twin-screw extruder, and was formed into a strand-like molded body by hot melt extrusion molding. This molded body was cut into pieces using a strand cutter to obtain thermoplastic norbornene-based resin pellets.
  • the pellet was dried at 100 ° C for 5 hours. Thereafter, the pellets were supplied to an extruder by a conventional method and melted at 250 ° C. Then, the molten thermoplastic norbornene-based resin was discharged from the die onto a cooling drum to obtain a long unstretched film having a thickness of 110 ⁇ m.
  • the intermediate film is supplied to a transverse stretching machine using a tenter method, and is stretched 1.43 times in a transverse direction while adjusting a take-up tension and a tenter chain tension to obtain a biaxially stretched film.
  • the stretching temperature in the stretching using a transverse stretching machine was 120 ° C., which was 10 ° C. higher than the glass transition temperature Tg of the thermoplastic norbornene-based resin (Tg + 10 ° C.).
  • the obtained optical film had an in-plane retardation Re of 60 nm, a retardation Rth in the thickness direction of 320 nm, and a thickness d of 65 ⁇ m.
  • the obtained optical film was evaluated by the method described above.
  • the film was washed with a 3% aqueous solution of boric acid at 35 ° C. for 30 seconds. Thereafter, the film was stretched 6.0 times at 57 ° C. in an aqueous solution containing 3% of boric acid and 5% of potassium iodide. Thereafter, the film was subjected to a complementary color treatment at 35 ° C. in an aqueous solution containing 5% of potassium iodide and 1.0% of boric acid. Thereafter, the film was dried at 60 ° C. for 2 minutes to obtain a long polarizer layer having a thickness of 23 ⁇ m. The degree of polarization of this polarizer layer was measured with an ultraviolet-visible spectrophotometer (“V-7100” manufactured by JASCO Corporation) and found to be 99.996%.
  • V-7100 ultraviolet-visible spectrophotometer
  • Acrylic resin (“SUMIPEX HT55X” manufactured by Sumitomo Chemical Co., Ltd.) was supplied to a hot melt extruded film forming machine equipped with a T die. The acrylic resin was extruded from the T-die, and the acrylic resin was formed into a film. Thus, a long protective film layer formed of an acrylic resin and having a thickness of 40 ⁇ m was obtained.
  • One surface of the obtained protective film layer was subjected to a corona treatment. Thereafter, an ultraviolet-curing adhesive ("Arcles KRX-7007" manufactured by ADEKA) was applied to the surface of the protective film layer subjected to the corona treatment to form an adhesive layer.
  • the polarizer layer and the protective film layer were bonded via the adhesive layer using a pinch roll.
  • the adhesive layer was irradiated with ultraviolet light at 750 mJ / cm 2 by a UV irradiation device to cure the adhesive layer.
  • a long polarizing plate having a layer structure of polarizer layer / adhesive layer (thickness: 2 ⁇ m) / protective film layer was obtained.
  • One surface of the optical film was subjected to a corona treatment. Thereafter, an ultraviolet-curable adhesive ("Arcles KRX-7007" manufactured by ADEKA) was applied to the surface of the optical film that had been subjected to the corona treatment to form an adhesive layer.
  • the polarizing plate and the optical film were bonded via the adhesive layer using a pinch roll.
  • the adhesive layer was irradiated with ultraviolet light at 750 mJ / cm 2 by a UV irradiation device to cure the adhesive layer. Lamination was performed so that the slow axis of the optical film and the absorption axis of the polarizer layer were perpendicular to each other when viewed from the thickness direction.
  • a long optical laminate having a layer structure of optical film / adhesive layer / polarizer layer / adhesive layer / protective film layer was obtained.
  • VA liquid crystal display device A VA-type liquid crystal display device (a 40-inch TV “TH-40AX700” manufactured by Panasonic Corporation) was prepared. This liquid crystal display device had a polarizing plate on the viewing side bonded to a glass surface of a liquid crystal cell. The polarizing plate on the viewing side was peeled off from the liquid crystal display device. Thereafter, the long optical laminate manufactured in the above step (1-5) is cut into an appropriate size for a liquid crystal display device, and the surface on the optical film side is bonded to the glass surface of the liquid crystal cell. A test VA liquid crystal display device was manufactured.
  • the direction of the absorption axis of the polarizing plate on the viewing side originally provided in the liquid crystal display device matches the direction of the absorption axis of the polarizer layer of the optical laminate newly bonded to the liquid crystal cell. I went to do it.
  • the obtained liquid crystal display device was evaluated by the method described above.
  • Example 2 The combination of monomers used in the above step (1-1) was changed to 31 parts by weight of tetracyclododecene (TCD), 68 parts by weight of dicyclopentadiene (DCPD), and 1 part by weight of norbornene (NB).
  • TCD tetracyclododecene
  • DCPD dicyclopentadiene
  • NB norbornene
  • the stretching ratio in the longitudinal direction was changed to 1.28 times
  • the stretching ratio in the transverse direction was changed to 1.48 times.
  • the stretching temperature in the machine direction and the transverse direction was changed to 122.5 ° C., which was higher than the glass transition temperature Tg of the thermoplastic norbornene resin by 10 ° C. Tg + 10 ° C.).
  • Tg glass transition temperature
  • Example 3 The combination of monomers used in the above step (1-1) was combined with 29 parts by weight of tetracyclododecene (TCD), 68 parts by weight of dicyclopentadiene (DCPD), and 3 parts by weight of ethylidenetetracyclododecene (ETD).
  • TCD tetracyclododecene
  • DCPD dicyclopentadiene
  • ETD ethylidenetetracyclododecene
  • Example 4 The combination of the monomers used in the above step (1-1) was mixed with 31 parts by weight of tetracyclododecene (TCD), 68 parts by weight of dicyclopentadiene (DCPD), and 1 part by weight of ethylidenetetracyclododecene (ETD).
  • TCD tetracyclododecene
  • DCPD dicyclopentadiene
  • ETD ethylidenetetracyclododecene
  • Example 5 The combination of monomers used in the above step (1-1) was changed to 30 parts by weight of tetracyclododecene (TCD) and 70 parts by weight of dicyclopentadiene (DCPD).
  • TCD tetracyclododecene
  • DCPD dicyclopentadiene
  • the stretching ratio in the longitudinal direction was changed to 1.256 times.
  • the stretching temperature in the machine direction and the transverse direction was changed to 125.5 ° C., which was higher than the glass transition temperature Tg of the thermoplastic norbornene resin by 10 ° C. Tg + 10 ° C.).
  • Tg glass transition temperature
  • Example 5 The same operation as in step (1-1) of Example 1 was performed, except that 50 parts by weight of tetracyclododecene (TCD) and 50 parts by weight of 8-methyltetracyclododecene (MTD) were used as monomers. Thus, a ring-opened polymer was obtained.
  • the weight average molecular weight Mw of the ring-opened polymer was 4.0 ⁇ 10 4 , and the molecular weight distribution Mw / Mn was 2.0.
  • the conversion of the monomer into the polymer was 100%.
  • the obtained solution was subjected to pressure filtration ("Fundaback filter” manufactured by Ishikawajima-Harima Heavy Industries, Ltd.) at a pressure of 0.25 MPa using Radiolite # 500 as a filtration bed to remove the hydrogenation catalyst.
  • pressure filtration (“Fundaback filter” manufactured by Ishikawajima-Harima Heavy Industries, Ltd.) at a pressure of 0.25 MPa using Radiolite # 500 as a filtration bed to remove the hydrogenation catalyst.
  • the resulting solution was poured into a large amount of isopropanol to precipitate the polymer.
  • the precipitated polymer was collected by filtration, it was dried in a vacuum drier (220 ° C., 1 Torr) for 6 hours to obtain a hydride of the ring-opened polymer.
  • the glass transition temperature Tg of the hydride of the ring-opened polymer was 158 ° C.
  • the above-mentioned polar COP was used as a resin of the material of the film before stretching.
  • the stretching ratio in the longitudinal direction was changed to 1.62 times, and the stretching ratio in the transverse direction was changed to 1.82 times.
  • the stretching temperature in the machine direction and the transverse direction was changed to 180 ° C., which is higher by 10 ° C. than the glass transition temperature Tg of the hydrogenated maleic acid-modified ring-opening polymer. Temperature (Tg + 10 ° C.). Except for the above, the same operation as in Example 1 was performed to manufacture and evaluate the optical film and the liquid crystal display device.
  • T in the column of monomer: tetracyclododecene (TCD).
  • D in the column of monomer: dicyclopentadiene (DCPD).
  • N in the column of monomer: norbornene (NB).
  • E in the column of monomer: ethylidenetetracyclododecene (ETD).
  • M methanotetrahydrofluorene (MTF).
  • Rth change rate (85 ° C.): Change rate of retardation in the thickness direction of the optical film by a durability test in which the film is stored at 85 ° C. for 500 hours.
  • Rth change rate (60 ° C. 90%): Change rate of retardation in the thickness direction of the optical film by an endurance test in which the film is stored in an environment of 60 ° C. and 90% humidity for 500 hours.
  • a polarizing film and an adhesive were prepared by the same method as described in Example 1 of JP-A-2005-70140. Further, the optical film obtained in Example 1 of the present application was prepared as a film to be measured. One surface of the optical film was subjected to a corona treatment, and the corona treated surface was bonded to one surface of the polarizing film via an adhesive. A triacetyl cellulose film was bonded to the other surface of the polarizing film via an adhesive. Thereafter, the adhesive was cured by drying at 80 ° C. for 7 minutes to obtain a sample film. The obtained sample film was subjected to the same 90-degree peel test as described above (the method for evaluating delamination of an optical film). As a result, a peel strength value similar to the value obtained in Example 1 of the present application was obtained.

Abstract

Provided is an optical film, formed from a thermoplastic norbornene-based resin that includes a norbornene-based polymer, wherein the glass transition temperature Tg of the thermoplastic norbornene-based resin satisfies expression (1), the birefringence ΔnR manifested when free-end uniaxial stretching is applied to the thermoplastic norbornene-based resin to a factor of 1.5 at Tg + 15°C satisfies expression (2), and the retardation Rth of the optical film in the thickness direction and the thickness d of the optical film satisfy expression (3). Expression (1): Tg ≥ 110°C Expression (2): ΔnR ≥ 0.0025 Expression (3): Rth / d ≥ 3.5 × 10 3

Description

光学フィルム及びその製造方法、光学積層体並びに液晶表示装置Optical film and manufacturing method thereof, optical laminate and liquid crystal display device
 本発明は、光学フィルム及びその製造方法、光学積層体並びに液晶表示装置に関する。 The present invention relates to an optical film, a method for producing the same, an optical laminate, and a liquid crystal display device.
 従来、熱可塑性樹脂で形成された光学フィルムが知られている。例えば、特許文献1~5には、熱可塑性ノルボルネン系樹脂で形成された光学フィルムが記載されている。 光学 Conventionally, an optical film formed of a thermoplastic resin is known. For example, Patent Documents 1 to 5 disclose optical films formed of a thermoplastic norbornene-based resin.
特開2005-043740号公報JP 2005-043740 A 特開2006-235085号公報JP 2006-235085 A 特開2006-327112号公報JP 2006-327112 A 特開2008-114369号公報JP 2008-114369 A 特開2003-238705号公報JP 2003-238705 A
 近年、液晶表示装置等の画像表示装置に適用するための光学フィルムには、レターデーションの発現性に優れることが求められており、特に、厚み方向のレターデーションRthの発現性に優れるフィルムが求められている。具体的には、当該光学フィルムの厚み当たりの厚み方向のレターデーションRthが大きい光学フィルムが求められている。従来の熱可塑性樹脂からなるフィルムを用いて、厚み当たりの厚み方向のレターデーションRthが大きい光学フィルムを得る方法としては、高い延伸倍率で延伸することが考えられる。しかしながら、高い延伸倍率で延伸して得られる光学フィルムは、配向角精度が低くなる傾向があった。 In recent years, an optical film for application to an image display device such as a liquid crystal display device has been required to have excellent retardation development, and in particular, a film excellent in thickness direction retardation Rth development is required. Have been. Specifically, there is a demand for an optical film having a large retardation Rth in the thickness direction per the thickness of the optical film. As a method for obtaining an optical film having a large retardation Rth in a thickness direction per thickness by using a conventional film made of a thermoplastic resin, stretching at a high stretching ratio may be considered. However, an optical film obtained by stretching at a high stretching ratio tends to have low orientation angle accuracy.
 また、画像表示装置は様々な環境で使用されることがあり、例えば、高温環境において使用されることがありえる。そこで、光学フィルムには、高い耐熱性が求められる。よって、厚み方向のレターデーションRthに着目すると、高温環境においてもその厚み方向のレターデーションRthの変化を抑制できることが求められる。 The image display device may be used in various environments, for example, it may be used in a high-temperature environment. Therefore, high heat resistance is required for the optical film. Therefore, when focusing on the retardation Rth in the thickness direction, it is required that the change in the retardation Rth in the thickness direction can be suppressed even in a high-temperature environment.
 本発明は、前記の課題に鑑みて創案されたもので、熱可塑性ノルボルネン系樹脂で形成され、厚み当たりの厚み方向のレターデーションRthが大きい光学フィルムであって、配向角精度が高く、且つ、高温環境における厚み方向のレターデーションRthの変化を抑制できる光学フィルム及びその製造方法;並びに、前記の光学フィルムを含む光学積層体及び液晶表示装置;を提供することを目的とする。 The present invention has been made in view of the above problems, and is an optical film formed of a thermoplastic norbornene-based resin and having a large retardation Rth in a thickness direction per thickness, having high orientation angle accuracy, and It is an object of the present invention to provide an optical film capable of suppressing a change in retardation Rth in a thickness direction in a high-temperature environment and a method for manufacturing the same; and an optical laminate and a liquid crystal display device including the optical film.
 本発明者は、前記の課題を解決するべく鋭意検討した。その結果、本発明者は、熱可塑性ノルボルネン系樹脂として、所定の範囲のガラス転移温度Tgを有し、且つ、所定の条件で延伸した場合に所定の複屈折Δnを発現するものを用いることにより、厚み当たりの厚み方向のレターデーションの大きく、配向角精度が高く、且つ、耐熱性に優れる光学フィルムを製造できることを見い出し、本発明を完成させた。
 すなわち、本発明は、下記のものを含む。
The present inventor has made intensive studies to solve the above-mentioned problems. As a result, the present inventors, as a thermoplastic norbornene resin has a glass transition temperature Tg of the predetermined range, and, the use of those expressing predetermined birefringence [Delta] n R when stretched under a predetermined condition As a result, the present inventors have found that an optical film having a large retardation per thickness in the thickness direction, a high orientation angle accuracy, and excellent heat resistance can be produced, and the present invention has been completed.
That is, the present invention includes the following.
 〔1〕 ノルボルネン系重合体を含む熱可塑性ノルボルネン系樹脂で形成された光学フィルムであって、
 前記熱可塑性ノルボルネン系樹脂のガラス転移温度Tgが、下記式(1)を満たし、
 前記熱可塑性ノルボルネン系樹脂に、Tg+15℃、1分間で1.5倍に自由端一軸延伸を施した場合に発現する複屈折Δnが、下記式(2)を満たし、
 前記光学フィルムの厚み方向のレターデーションRth、及び、前記光学フィルムの厚みdが、下記式(3)を満たす、光学フィルム。
 (1)Tg≧110℃
 (2)Δn≧0.0025
 (3)Rth/d≧3.5×10-3
 〔2〕 前記ノルボルネン系重合体の分子量分布が、2.4以下である、〔1〕に記載の光学フィルム。
 〔3〕 前記ノルボルネン系重合体が、テトラシクロドデセン系単量体を25重量%以上含む単量体の重合体及びその水素化物からなる群より選ばれ、
 前記テトラシクロドデセン系単量体が、テトラシクロドデセン、及び、テトラシクロドデセンの環に置換基が結合したテトラシクロドデセン誘導体からなる群より選ばれる、〔1〕又は〔2〕に記載の光学フィルム。
 〔4〕 前記光学フィルムの光弾性係数が8Brewster以下である、〔1〕~〔3〕のいずれか一項に記載の光学フィルム。
 〔5〕 前記光学フィルムの面内レターデーションReが、40nm以上80nm以下である、〔1〕~〔4〕のいずれか一項に記載の光学フィルム。
 〔6〕 〔1〕~〔5〕のいずれか一項に記載の光学フィルムの製造方法であって、
 前記熱可塑性ノルボルネン系樹脂を、押出成形法又は溶液キャスト法によって成形することを含む、光学フィルムの製造方法。
 〔7〕 〔1〕~〔5〕のいずれか一項に記載の光学フィルムと、偏光板と、を備える光学積層体。
 〔8〕 〔7〕に記載の光学積層体を備える、液晶表示装置。
[1] An optical film formed of a thermoplastic norbornene-based resin containing a norbornene-based polymer,
The glass transition temperature Tg of the thermoplastic norbornene resin satisfies the following formula (1),
The birefringence Δn R which is expressed when the thermoplastic norbornene-based resin is subjected to free-end uniaxial stretching 1.5 times in 1 minute at Tg + 15 ° C. satisfies the following formula (2):
An optical film, wherein a retardation Rth in a thickness direction of the optical film and a thickness d of the optical film satisfy the following formula (3).
(1) Tg ≧ 110 ° C.
(2) Δn R ≧ 0.0025
(3) Rth / d ≧ 3.5 × 10 −3
[2] The optical film according to [1], wherein the molecular weight distribution of the norbornene-based polymer is 2.4 or less.
[3] the norbornene-based polymer is selected from the group consisting of a polymer of a monomer containing 25% by weight or more of a tetracyclododecene-based monomer and a hydride thereof;
The tetracyclododecene-based monomer is selected from the group consisting of tetracyclododecene, and a tetracyclododecene derivative in which a substituent is bonded to a ring of tetracyclododecene; [1] or [2]. The optical film of the above.
[4] The optical film according to any one of [1] to [3], wherein the optical film has a photoelastic coefficient of 8 Brewster or less.
[5] The optical film according to any one of [1] to [4], wherein the in-plane retardation Re of the optical film is from 40 nm to 80 nm.
[6] The method for producing an optical film according to any one of [1] to [5],
A method for producing an optical film, comprising molding the thermoplastic norbornene-based resin by an extrusion molding method or a solution casting method.
[7] An optical laminate comprising the optical film according to any one of [1] to [5] and a polarizing plate.
[8] A liquid crystal display device comprising the optical laminate according to [7].
 本発明によれば、熱可塑性ノルボルネン系樹脂で形成され、厚み当たりの厚み方向のレターデーションRthが大きい光学フィルムであって、配向角精度が高く、且つ、高温環境における厚み方向のレターデーションRthの変化を抑制できる光学フィルム及びその製造方法;並びに、前記の光学フィルムを含む光学積層体及び液晶表示装置;を提供できる。 According to the present invention, an optical film formed of a thermoplastic norbornene-based resin and having a large retardation Rth in the thickness direction per thickness, having a high orientation angle accuracy, and having a retardation Rth in the thickness direction in a high-temperature environment. It is possible to provide an optical film capable of suppressing the change and a method for producing the same; and an optical laminate and a liquid crystal display device including the optical film.
 以下、本発明について、実施形態及び例示物を示して詳細に説明する。ただし、本発明は、以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail with reference to embodiments and examples. However, the present invention is not limited to the following embodiments and examples, and may be arbitrarily modified and implemented without departing from the scope of the claims and the equivalents thereof.
 以下の説明において、フィルムの面内レターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値である。また、フィルムの厚み方向のレターデーションRthは、別に断らない限り、Rth=[{(nx+ny)/2}-nz]×dで表される値である。ここで、nxは、フィルムの厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、前記面内方向であってnxの方向に直交する方向の屈折率を表す。nzは厚み方向の屈折率を表す。dは、フィルムの厚みを表す。測定波長は、別に断らない限り、550nmである。 に お い て In the following description, the in-plane retardation Re of the film is a value represented by Re = (nx−ny) × d unless otherwise specified. The retardation Rth in the thickness direction of the film is a value represented by Rth = [{(nx + ny) / 2} −nz] × d unless otherwise specified. Here, nx represents a refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the film and in a direction giving the maximum refractive index. ny represents a refractive index in the in-plane direction and a direction orthogonal to the direction of nx. nz represents the refractive index in the thickness direction. d represents the thickness of the film. The measurement wavelength is 550 nm unless otherwise specified.
 以下の説明において、「長尺」のフィルムとは、フィルムの幅に対して、5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。フィルムの幅に対する長さの割合の上限は、特に限定されないが、例えば100,000倍以下としうる。 In the following description, a “long” film refers to a film having a length of 5 times or more with respect to the width of the film, preferably having a length of 10 times or more, and specifically, Refers to a film that is long enough to be wound up in a roll and stored or transported. The upper limit of the ratio of the length to the width of the film is not particularly limited, but may be, for example, 100,000 times or less.
 以下の説明において、「偏光板」とは、別に断らない限り、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。 In the following description, the term “polarizing plate” includes not only a rigid member but also a flexible member such as a resin film, unless otherwise specified.
[1.光学フィルムの概要]
 本発明の一実施形態に係る光学フィルムは、熱可塑性ノルボルネン系樹脂で形成されたフィルムである。前記の熱可塑性ノルボルネン系樹脂は、ノルボルネン系重合体を含む。そして、本実施形態に係る光学フィルムは、下記の第一~第三の要件を満たす。
[1. Outline of optical film]
The optical film according to one embodiment of the present invention is a film formed of a thermoplastic norbornene-based resin. The thermoplastic norbornene-based resin contains a norbornene-based polymer. The optical film according to the present embodiment satisfies the following first to third requirements.
 第一に、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgは、下記式(1)を満たす。
 (1)Tg≧110℃
First, the glass transition temperature Tg of the thermoplastic norbornene resin satisfies the following equation (1).
(1) Tg ≧ 110 ° C.
 第二に、熱可塑性ノルボルネン系樹脂の評価複屈折Δnは、下記式(2)を満たす。ここで、評価複屈折は、ある材料に、当該材料のガラス転移温度より15℃高い延伸温度、1分間で、1.5倍に自由端一軸延伸を施した場合に発現する複屈折を表す。
 (2)Δn≧0.0025
Second, the evaluation birefringence Δn R of the thermoplastic norbornene resin satisfies the following expression (2). Here, the evaluation birefringence refers to the birefringence that appears when a certain material is subjected to a free-end uniaxial stretching at a stretching temperature 15 ° C. higher than the glass transition temperature of the material by 1.5 times in one minute.
(2) Δn R ≧ 0.0025
 第三に、光学フィルムの厚み方向のレターデーションRth、及び、光学フィルムの厚みdが、下記式(3)を満たす。
 (3)Rth/d≧3.5×10-3
Third, the retardation Rth in the thickness direction of the optical film and the thickness d of the optical film satisfy the following expression (3).
(3) Rth / d ≧ 3.5 × 10 −3
 前記の第一~第三の要件を満たす本実施形態に係る光学フィルムは、式(3)で表されるように、厚みd当たりの厚み方向のレターデーションRthが大きい。また、この光学フィルムは、高温環境において、厚み方向のレターデーションRthの変化を抑制できる。さらに、この光学フィルムは、前記のように厚みdに比して大きい厚み方向のレターデーションRthを有しながら、高い配向角精度を達成できる。 光学 The optical film according to the present embodiment that satisfies the above first to third requirements has a large retardation Rth in the thickness direction per thickness d as represented by the formula (3). In addition, this optical film can suppress a change in the retardation Rth in the thickness direction in a high-temperature environment. Further, this optical film can achieve high orientation angle accuracy while having a retardation Rth in the thickness direction which is larger than the thickness d as described above.
[2.熱可塑性ノルボルネン系樹脂]
 熱可塑性ノルボルネン系樹脂は、ノルボルネン系重合体を含む熱可塑性樹脂である。ノルボルネン系重合体は、ノルボルネン系単量体を重合させ、必要に応じて更に水素化を行って、得られる構造を含む重合体である。よって、ノルボルネン系重合体は、通常、ノルボルネン系単量体を重合させて得られる繰り返し構造、及び、前記繰り返し構造を水素化して得られる構造、からなる群より選ばれる一以上の構造を含む。このようなノルボルネン系重合体には、例えば、ノルボルネン系単量体の開環重合体、ノルボルネン系単量体と任意の単量体との開環共重合体、並びに、それらの水素化物;ノルボルネン系単量体の付加重合体、ノルボルネン系単量体と任意の単量体との付加共重合体、並びに、それらの水素化物;が包含される。また、熱可塑性ノルボルネン系樹脂が含むノルボルネン系重合体は、1種類でもよく、2種類以上でもよい。
[2. Thermoplastic norbornene resin]
The thermoplastic norbornene-based resin is a thermoplastic resin containing a norbornene-based polymer. The norbornene-based polymer is a polymer having a structure obtained by polymerizing a norbornene-based monomer and further performing hydrogenation as necessary. Therefore, the norbornene-based polymer usually includes at least one structure selected from the group consisting of a repeating structure obtained by polymerizing a norbornene-based monomer and a structure obtained by hydrogenating the repeating structure. Such norbornene-based polymers include, for example, ring-opened polymers of norbornene-based monomers, ring-opened copolymers of norbornene-based monomers and arbitrary monomers, and hydrides thereof. And an addition copolymer of a norbornene-based monomer and an arbitrary monomer, and a hydride thereof. The number of the norbornene-based polymer contained in the thermoplastic norbornene-based resin may be one, or two or more.
 ノルボルネン系単量体は、ノルボルネン構造を分子内に含む単量体である。このノルボルネン系単量体としては、例えば、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)等の、芳香環構造を含まないノルボルネン系単量体;5-フェニル-2-ノルボルネン、5-(4-メチルフェニル)-2-ノルボルネン、5-(1-ナフチル)-2-ノルボルネン、9-(2-ノルボルネン-5-イル)-カルバゾール等の、芳香族置換基を有するノルボルネン系単量体;1,4-メタノ-1,4,4a,4b,5,8,8a,9a-オクタヒドロフルオレン、1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレン(慣用名:メタノテトラヒドロフルオレン)、1,4-メタノ-1,4,4a,9a-テトラヒドロジベンゾフラン、1,4-メタノ-1,4,4a,9a-テトラヒドロカルバゾール、1,4-メタノ-1,4,4a,9,9a,10-ヘキサヒドロアントラセン、1,4-メタノ-1,4,4a,9,10,10a-ヘキサヒドロフェナンスレン等の、縮合多環構造中にノルボルネン環構造と芳香環構造とを含むノルボルネン系単量体;並びに、これらの化合物の誘導体(例えば、環に置換基を有するもの);などが挙げられる。 The norbornene-based monomer is a monomer containing a norbornene structure in a molecule. Examples of the norbornene-based monomer include bicyclo [2.2.1] hept-2-ene (common name: norbornene) and tricyclo [4.3.0.1 2,5 ] deca-3,7- Diene (common name: dicyclopentadiene), tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodeca-3-ene (common name: tetracyclododecene), norbornene-based monomer having no aromatic ring structure; 5-phenyl-2-norbornene, 5- (4-methylphenyl) Norbornene-based monomers having an aromatic substituent, such as -2-norbornene, 5- (1-naphthyl) -2-norbornene, and 9- (2-norbornen-5-yl) -carbazole; 1,4-methano -1,4,4a, 4b, 5,8,8a, 9a-octahydrofluorene, 1,4-methano-1,4,4a, 9a-tetrahydrofluorene (common name: methanotetrahydrofluorene), 1,4- Methano-1,4,4a, 9a-tetrahydrodibenzofuran, 1,4-methano-1,4,4a, 9a-tetrahydrocarbazole, 1,4-methano-1,4,4a, 9,9 , 10-hexahydroanthracene, 1,4-methano-1,4,4a, 9,10,10a-hexahydrophenanthrene, etc., having a norbornene ring structure and an aromatic ring structure in a condensed polycyclic structure Series monomers; and derivatives of these compounds (for example, those having a substituent on the ring); and the like.
 置換基としては、例えば、メチル基、エチル基、プロピル基、イソプロキル基等のアルキル基;アルキリデン基;アルケニル基;極性基;などが挙げられる。極性基としては、例えば、ヘテロ原子、又はヘテロ原子を有する原子団などが挙げられる。ヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子、ハロゲン原子などが挙げられる。極性基の具体例としては、フルオロ基、クロル基、ブロモ基、ヨード基等のハロゲン基;カルボキシル基;カルボニルオキシカルボニル基;エポキシ基;ヒドロキシ基;オキシ基;アルコキシ基;エステル基;シラノール基;シリル基;アミノ基;ニトリル基;スルホン基;シアノ基;アミド基;イミド基;などが挙げられる。置換基の数は、1でもよく、2以上でもよい。また、2以上の置換基の種類は、同じでもよく、異なっていてもよい。ただし、飽和吸水率が低く耐湿性に優れる光学フィルムを得る観点では、ノルボルネン系単量体は、極性基の量が少ないことが好ましく、極性基を有さないことがより好ましい。 Examples of the substituent include an alkyl group such as a methyl group, an ethyl group, a propyl group, and an isopropyl group; an alkylidene group; an alkenyl group; Examples of the polar group include a hetero atom and an atomic group having a hetero atom. Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom. Specific examples of the polar group include a halogen group such as a fluoro group, a chloro group, a bromo group, and an iodo group; a carboxyl group; a carbonyloxycarbonyl group; an epoxy group; a hydroxy group; an oxy group; an alkoxy group; an ester group; A silyl group; an amino group; a nitrile group; a sulfone group; a cyano group; an amide group; an imide group; The number of substituents may be one or two or more. The types of two or more substituents may be the same or different. However, from the viewpoint of obtaining an optical film having a low saturated water absorption and excellent moisture resistance, the norbornene-based monomer preferably has a small amount of a polar group, and more preferably has no polar group.
 ノルボルネン系単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 One of the norbornene-based monomers may be used alone, or two or more thereof may be used in combination at an arbitrary ratio.
 前記のノルボルネン系単量体の具体的な種類及び重合比は、所望のガラス転移温度Tg及び評価複屈折Δnを有する熱可塑性ノルボルネン系樹脂が得られるように選択することが望ましい。通常、ノルボルネン系重合体のガラス転移温度及び複屈折発現性は、当該ノルボルネン系重合体の原料となるノルボルネン系単量体の種類及び重合比に依存する。よって、ノルボルネン系単量体の種類及び重合比を適切に調整することにより、ノルボルネン系重合体のガラス転移温度及び複屈折発現性を調整できるので、そのノルボルネン系重合体を含む熱可塑性ノルボルネン系樹脂のガラス転移温度Tg及び評価複屈折Δnを式(1)及び式(2)を満たすように調整できる。 Specific types and polymerization ratio of the norbornene monomer of above, it is desirable to select such a thermoplastic norbornene resin having a desired glass transition temperature Tg and evaluation birefringence [Delta] n R is obtained. Usually, the glass transition temperature and birefringence manifestation of the norbornene-based polymer depend on the type and polymerization ratio of the norbornene-based monomer which is a raw material of the norbornene-based polymer. Therefore, by appropriately adjusting the type and polymerization ratio of the norbornene-based monomer, the glass transition temperature and the birefringence manifestation of the norbornene-based polymer can be adjusted, so that the thermoplastic norbornene-based resin containing the norbornene-based polymer can be adjusted. adjust a glass transition temperature Tg and evaluation birefringence [Delta] n R in to satisfy equation (1) and (2).
 ノルボルネン系重合体のガラス転移温度及び複屈折発現性を大きくして、ガラス転移温度Tg及び評価複屈折Δnが大きい熱可塑性ノルボルネン系樹脂を容易に得る観点では、ノルボルネン系単量体として、テトラシクロドデセン系単量体を用いることが好ましい。よって、ノルボルネン系重合体は、テトラシクロドデセン系単量体を含む単量体の重合体及びその水素化物からなる群より選ばれるものが好ましい。このようなノルボルネン系重合体は、通常、テトラシクロドデセン系単量体を重合させて得られる繰り返し構造、及び、前記繰り返し構造を水素化して得られる構造、からなる群より選ばれる一以上の構造(以下、適宜「テトラシクロドデセン系構造」ということがある。)を含む。 By increasing the glass transition temperature and birefringence expression of norbornene polymers, in view of obtaining a glass transition temperature Tg and evaluation birefringence [Delta] n R is greater thermoplastic norbornene resin easily, as the norbornene-based monomer, tetra It is preferable to use a cyclododecene monomer. Therefore, the norbornene-based polymer is preferably selected from the group consisting of a polymer of a monomer containing a tetracyclododecene-based monomer and a hydride thereof. Such a norbornene-based polymer is usually a repeating structure obtained by polymerizing a tetracyclododecene-based monomer, and one or more members selected from the group consisting of a structure obtained by hydrogenating the repeating structure. (Hereinafter sometimes referred to as “tetracyclododecene-based structure” as appropriate).
 テトラシクロドデセン系単量体は、テトラシクロドデセン及びテトラシクロドデセン誘導体からなる群より選ばれる単量体を表す。テトラシクロドデセン誘導体とは、テトラシクロドデセンの環に置換基が結合した構造を有する化合物である。置換基の数は、1でもよく、2以上でもよい。また、2以上の置換基の種類は、同じでもよく、異なっていてもよい。好ましいテトラシクロドデセン誘導体としては、例えば、8-エチリデン-テトラシクロ〔4.4.0.12,5.17,10〕-ドデカ-3-エン(慣用名:エチリデンテトラシクロドデセン)、8-エチル-テトラシクロ〔4.4.0.12,5.17,10〕-ドデカ-3-エン、8-エトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン、8-メチル-8-メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセンなどが挙げられる。テトラシクロドデセン系単量体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 The tetracyclododecene-based monomer represents a monomer selected from the group consisting of tetracyclododecene and a tetracyclododecene derivative. A tetracyclododecene derivative is a compound having a structure in which a substituent is bonded to a ring of tetracyclododecene. The number of substituents may be one or two or more. The types of two or more substituents may be the same or different. Preferred tetracyclododecene derivatives include, for example, 8-ethylidene-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] -dodec-3-ene (common name: ethylidenetetracyclododecene), 8-ethyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] -dodec-3-ene, 8-ethoxycarbonyltetracyclo [4.4.0.1 2,5 . 17, 10 ] -3-dodecene, 8-methyl-8-methoxycarbonyltetracyclo [4.4.0.1 2,5 . 17, 10 ] -3-dodecene and the like. As the tetracyclododecene-based monomer, one type may be used alone, or two or more types may be used in combination.
 ノルボルネン系重合体の原料としての単量体の全量100重量%に対して、それに含まれるテトラシクロドデセン系単量体の割合(重合比)は、好ましくは25重量%以上、より好ましくは27重量%以上、特に好ましくは29重量%以上であり、好ましくは60重量%以下、より好ましくは55重量%以下、特に好ましくは50重量%以下である。テトラシクロドデセン系単量体の重合比が前記の範囲にある場合、ノルボルネン系重合体のガラス転移温度及び複屈折発現性を大きくできるので、熱可塑性ノルボルネン系樹脂のガラス転移温度Tg及び評価複屈折Δnを式(1)及び式(2)の範囲に収め易い。 The ratio (polymerization ratio) of the tetracyclododecene-based monomer contained in the total amount of the monomer as a raw material of the norbornene-based polymer to 100% by weight is preferably 25% by weight or more, more preferably 27% by weight or more. % By weight, particularly preferably at least 29% by weight, preferably at most 60% by weight, more preferably at most 55% by weight, particularly preferably at most 50% by weight. When the polymerization ratio of the tetracyclododecene-based monomer is within the above range, the glass transition temperature and the birefringence of the norbornene-based polymer can be increased, so that the glass transition temperature Tg of the thermoplastic norbornene-based resin and the evaluation The refraction Δn R can easily fall within the range of the expressions (1) and (2).
 通常、ある単量体に由来する繰り返し構造(単量体単位)のノルボルネン系重合体における割合は、その単量体の全単量体における割合(重合比)に一致する。よって、通常、テトラシクロドデセン系構造のノルボルネン系重合体における割合は、単量体の全量に対するテトラシクロドデセン系単量体の重合比に一致する。したがって、ノルボルネン系重合体100重量%に対するテトラシクロドデセン系構造の割合は、好ましくは、前記のテトラシクロドデセン系単量体の重合比と同じ範囲に収まる。 Normally, the ratio of the repeating structure (monomer unit) derived from a certain monomer in the norbornene-based polymer coincides with the ratio (polymerization ratio) of the monomer in all the monomers. Therefore, the ratio of the tetracyclododecene-based structure in the norbornene-based polymer usually coincides with the polymerization ratio of the tetracyclododecene-based monomer to the total amount of the monomers. Therefore, the ratio of the tetracyclododecene-based structure to 100% by weight of the norbornene-based polymer is preferably within the same range as the polymerization ratio of the tetracyclododecene-based monomer.
 さらに、ノルボルネン系重合体のガラス転移温度及び複屈折発現性を大きくして、ガラス転移温度Tg及び評価複屈折Δnが大きい熱可塑性ノルボルネン系樹脂を容易に得る観点では、ノルボルネン系単量体として、ジシクロペンタジエン系単量体を用いることが好ましい。よって、ノルボルネン系重合体は、ジシクロペンタジエン系単量体を含む単量体の重合体及びその水素化物からなる群より選ばれるものが好ましい。このようなノルボルネン系重合体は、通常、ジシクロペンタジエン系単量体を重合させて得られる繰り返し構造、及び、前記繰り返し構造を水素化して得られる構造、からなる群より選ばれる一以上の構造(以下、適宜「ジシクロペンタジエン系構造」ということがある。)を含む。 Furthermore, from the viewpoint of increasing the glass transition temperature and birefringence manifestation of the norbornene-based polymer and easily obtaining a thermoplastic norbornene-based resin having a large glass transition temperature Tg and a large evaluation birefringence Δn R , the norbornene-based monomer is used as a norbornene-based monomer. It is preferable to use a dicyclopentadiene monomer. Therefore, the norbornene-based polymer is preferably selected from the group consisting of a polymer of a monomer containing a dicyclopentadiene-based monomer and a hydride thereof. Such a norbornene-based polymer usually has a repeating structure obtained by polymerizing a dicyclopentadiene-based monomer, and one or more structures selected from the group consisting of a structure obtained by hydrogenating the repeating structure. (Hereinafter may be referred to as “dicyclopentadiene-based structure” as appropriate).
 ジシクロペンタジエン系単量体は、ジシクロペンタジエン及びジシクロペンタジエン誘導体からなる群より選ばれる単量体を表す。ジシクロペンタジエン誘導体とは、ジシクロペンタジエンの環に置換基が結合した構造を有する化合物である。置換基の数は、1でもよく、2以上でもよい。また、2以上の置換基の種類は、同じでもよく、異なっていてもよい。ジシクロペンタジエン系単量体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Dicyclopentadiene-based monomer represents a monomer selected from the group consisting of dicyclopentadiene and dicyclopentadiene derivatives. A dicyclopentadiene derivative is a compound having a structure in which a substituent is bonded to a ring of dicyclopentadiene. The number of substituents may be one or two or more. The types of two or more substituents may be the same or different. One type of dicyclopentadiene-based monomer may be used alone, or two or more types may be used in combination.
 ノルボルネン系重合体の原料としての単量体の全量100重量%に対して、それに含まれるジシクロペンタジエン系単量体の割合(重合比)は、好ましくは50重量%以上、より好ましくは55重量%以上、特に好ましくは60重量%以上であり、好ましくは80重量%以下、より好ましくは75重量%以下、特に好ましくは70重量%以下である。ジシクロペンタジエン系単量体の重合比が前記の範囲にある場合、ノルボルネン系重合体のガラス転移温度及び複屈折発現性を大きくできるので、熱可塑性ノルボルネン系樹脂のガラス転移温度Tg及び評価複屈折Δnを式(1)及び式(2)の範囲に収め易い。 The ratio (polymerization ratio) of the dicyclopentadiene-based monomer contained in the total amount of the monomer as a raw material of the norbornene-based polymer to 100% by weight is preferably 50% by weight or more, more preferably 55% by weight. %, Particularly preferably at least 60% by weight, preferably at most 80% by weight, more preferably at most 75% by weight, particularly preferably at most 70% by weight. When the polymerization ratio of the dicyclopentadiene-based monomer is in the above range, the glass transition temperature and the birefringence manifestation of the norbornene-based polymer can be increased, so that the glass transition temperature Tg and the evaluation birefringence of the thermoplastic norbornene-based resin can be increased. Δn R easily falls within the range of the expressions (1) and (2).
 通常、ジシクロペンタジエン系構造のノルボルネン系重合体における割合は、単量体の全量に対するジシクロペンタジエン系単量体の重合比に一致する。したがって、ノルボルネン系重合体100重量%に対するジシクロペンタジエン系構造の割合は、好ましくは、前記のジシクロペンタジエン系単量体の重合比と同じ範囲に収まる。 Normally, the ratio of the dicyclopentadiene-based structure in the norbornene-based polymer coincides with the polymerization ratio of the dicyclopentadiene-based monomer to the total amount of the monomers. Accordingly, the ratio of the dicyclopentadiene-based structure to 100% by weight of the norbornene-based polymer preferably falls within the same range as the polymerization ratio of the dicyclopentadiene-based monomer.
 特に、ノルボルネン系単量体としてテトラシクロドデセン系単量体及びジシクロペンタジエン系単量体を組み合わせて用いる場合、それらの量の比は、所定の範囲にあることが好ましい。具体的には、テトラシクロドデセン系単量体100重量部に対して、ジシクロペンタジエン系単量体の量は、好ましくは100重量部以上、より好ましくは150重量部以上、特に好ましくは200重量部以上であり、好ましくは500重量部以下、より好ましくは450重量部以下、特に好ましくは400重量部以下である。よって、ノルボルネン系重合体において、テトラシクロドデセン系構造100重量部に対して、ジシクロペンタジエン系構造の量は、好ましくは100重量部以上、より好ましくは150重量部以上、特に好ましくは200重量部以上であり、好ましくは500重量部以下、より好ましくは450重量部以下、特に好ましくは400重量部以下である。前記の量比が前記範囲にある場合、ノルボルネン系重合体のガラス転移温度及び複屈折発現性を大きくできるので、熱可塑性ノルボルネン系樹脂のガラス転移温度Tg及び評価複屈折Δnを式(1)及び式(2)の範囲に収め易い。 In particular, when a tetracyclododecene-based monomer and a dicyclopentadiene-based monomer are used in combination as the norbornene-based monomer, the ratio of the amounts thereof is preferably in a predetermined range. Specifically, the amount of the dicyclopentadiene-based monomer is preferably 100 parts by weight or more, more preferably 150 parts by weight or more, and particularly preferably 200 parts by weight, based on 100 parts by weight of the tetracyclododecene-based monomer. It is at least 500 parts by weight, preferably at most 500 parts by weight, more preferably at most 450 parts by weight, particularly preferably at most 400 parts by weight. Therefore, in the norbornene-based polymer, the amount of the dicyclopentadiene-based structure is preferably 100 parts by weight or more, more preferably 150 parts by weight or more, and particularly preferably 200 parts by weight, based on 100 parts by weight of the tetracyclododecene-based structure. Parts by weight, preferably 500 parts by weight or less, more preferably 450 parts by weight or less, particularly preferably 400 parts by weight or less. When the above ratio is in the above range, the glass transition temperature and birefringence manifestation of the norbornene-based polymer can be increased. Therefore, the glass transition temperature Tg of the thermoplastic norbornene-based resin and the evaluated birefringence Δn R are calculated by the formula (1). And it is easy to fit in the range of the expression (2).
 ノルボルネン系単量体と共重合させる任意の単量体を用いる場合、その任意の単量体の種類は、所望のガラス転移温度Tg及び評価複屈折Δnを有する熱可塑性ノルボルネン系樹脂が得られる範囲で、制限は無い。ノルボルネン系単量体と開環共重合が可能な任意の単量体としては、例えば、シクロヘキセン、シクロヘプテン、シクロオクテン等のモノ環状オレフィン類及びその誘導体;シクロヘキサジエン、シクロヘプタジエン等の環状共役ジエン及びその誘導体;などが挙げられる。また、ノルボルネン系単量体と付加共重合が可能な任意の単量体としては、例えば、エチレン、プロピレン、1-ブテン等の炭素数2~20のα-オレフィン及びこれらの誘導体;シクロブテン、シクロペンテン、シクロヘキセン等のシクロオレフィン及びこれらの誘導体;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン等の非共役ジエン;などが挙げられる。任意の単量体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 When an arbitrary monomer to be copolymerized with the norbornene-based monomer is used, a thermoplastic norbornene-based resin having a desired glass transition temperature Tg and an evaluation birefringence Δn R is obtained as the type of the arbitrary monomer. There is no limit in the range. Examples of the optional monomer capable of ring-opening copolymerization with the norbornene-based monomer include monocyclic olefins such as cyclohexene, cycloheptene and cyclooctene and derivatives thereof; and cyclic conjugated dienes such as cyclohexadiene and cycloheptadiene. And derivatives thereof; Examples of the optional monomer capable of addition copolymerization with the norbornene-based monomer include α-olefins having 2 to 20 carbon atoms such as ethylene, propylene and 1-butene and derivatives thereof; cyclobutene and cyclopentene , Cyclohexene and the like, and derivatives thereof; non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene and 5-methyl-1,4-hexadiene; One kind of the arbitrary monomer may be used alone, or two or more kinds may be used in combination.
 ノルボルネン系重合体としては、ノルボルネン系単量体を重合させ更に水素化を行って得られる構造を含む水素化物が好ましい。この水素化物は、重合体中の非芳香族性の不飽和結合が水素化されたものでもよく、重合体中の芳香族性の不飽和結合が水素化されたものでもよく、重合体中の非芳香族性の不飽和結合及び芳香族性の不飽和結合の両方が水素化されたものであってもよい。中でも、重合体中の非芳香族性の不飽和結合及び芳香族性の不飽和結合の両方が水素化されたノルボルネン系重合体が好ましい。このように水素化されたノルボルネン系重合体を用いることにより、厚み方向のレターデーションRthの発現性を効果的に高めることができ、光弾性係数を小さくすることができる。よって、大きい厚み方向のレターデーションRthと低い光弾性係数との両立が可能となる。さらに、通常は、光学フィルムの機械的強度、耐湿性、耐熱性等の特性を効果的に改善することができる。 As the norbornene-based polymer, a hydride having a structure obtained by polymerizing a norbornene-based monomer and further performing hydrogenation is preferable. This hydride may be one in which the non-aromatic unsaturated bond in the polymer is hydrogenated, one in which the aromatic unsaturated bond in the polymer is hydrogenated, Both the non-aromatic unsaturated bond and the aromatic unsaturated bond may be hydrogenated. Among them, a norbornene-based polymer in which both the non-aromatic unsaturated bond and the aromatic unsaturated bond in the polymer are hydrogenated is preferable. By using such a hydrogenated norbornene-based polymer, the development of retardation Rth in the thickness direction can be effectively increased, and the photoelastic coefficient can be reduced. Therefore, it is possible to achieve both a large thickness direction retardation Rth and a low photoelastic coefficient. Further, usually, properties such as mechanical strength, moisture resistance and heat resistance of the optical film can be effectively improved.
 ノルボルネン系重合体のガラス転移温度は、好ましくは110℃以上、より好ましくは112℃以上、特に好ましくは114℃以上である。このように高いガラス転移温度を有するノルボルネン系重合体を用いることにより、高温環境におけるノルボルネン系重合体の配向の緩和を抑制できる。よって、高温環境における光学フィルムの厚み方向のレターデーションRthの変化を抑制できる。また、通常、前記範囲のガラス転移温度を有するようにノルボルネン系単量体の種類及び重合比を調整されたノルボルネン系重合体を含むフィルムは、延伸による複屈折の発現性が大きい傾向があり、そのため、光学フィルムの厚み方向のレターデーションRthを大きくし易い。ノルボルネン系重合体のガラス転移温度の上限は、特段の制限は無いが、好ましくは180℃以下、より好ましくは170℃以下、特に好ましくは160℃以下である。ノルボルネン系重合体のガラス転移温度が前記の上限値以下である場合、光学フィルムの厚み方向のレターデーションRthを大きくし易い。 The glass transition temperature of the penorbornene-based polymer is preferably 110 ° C. or higher, more preferably 112 ° C. or higher, and particularly preferably 114 ° C. or higher. By using the norbornene-based polymer having such a high glass transition temperature, relaxation of the orientation of the norbornene-based polymer in a high-temperature environment can be suppressed. Therefore, a change in the retardation Rth in the thickness direction of the optical film in a high-temperature environment can be suppressed. Further, usually, a film containing a norbornene-based polymer in which the type and the polymerization ratio of the norbornene-based monomer are adjusted so as to have a glass transition temperature in the above range, the birefringence due to stretching tends to have a large expression, Therefore, it is easy to increase the retardation Rth in the thickness direction of the optical film. The upper limit of the glass transition temperature of the norbornene-based polymer is not particularly limited, but is preferably 180 ° C or lower, more preferably 170 ° C or lower, and particularly preferably 160 ° C or lower. When the glass transition temperature of the norbornene-based polymer is equal to or lower than the above upper limit, the retardation Rth in the thickness direction of the optical film is easily increased.
 ノルボルネン系重合体のガラス転移温度は、示差走査熱量分析計を用いて、JIS K 6911に基づき、昇温速度10℃/分の条件で測定できる。 The glass transition temperature of the norbornene-based polymer can be measured using a differential scanning calorimeter in accordance with JIS K 6911 at a heating rate of 10 ° C./min.
 ノルボルネン系重合体のガラス転移温度は、例えば、ノルボルネン系重合体の原料としてのノルボルネン系単量体の種類及び重合比によって調整できる。 The glass transition temperature of the norbornene-based polymer can be adjusted by, for example, the type and polymerization ratio of the norbornene-based monomer as a raw material of the norbornene-based polymer.
 ノルボルネン系重合体は、大きい複屈折発現性を有することが好ましい。よって、ノルボルネン系重合体は、大きい評価複屈折を有することが好ましい。詳細には、ノルボルネン系重合体の評価複屈折は、好ましくは0.0025以上、より好ましくは0.0026以上、特に好ましくは0.0027以上である。このように大きい評価複屈折を有するノルボルネン系重合体を用いることにより、延伸倍率が低くでも大きなレターデーションを発現させることができる。よって、小さい延伸倍率で光学フィルムに大きな厚み方向のレターデーションRthを発現させることができるので、光学フィルムの配向角精度を効果的に改善することができる。ノルボルネン系重合体の評価複屈折の上限は、特段の制限は無いが、好ましくは0.0050以下、より好ましくは0.0047以下、特に好ましくは0.0045以下である。ノルボルネン系重合体の評価複屈折が前記の上限値以下である場合、ノルボルネン系重合体の製造を容易に行うことができる。 The norbornene-based polymer preferably has a large birefringence developing property. Therefore, the norbornene-based polymer preferably has a large evaluation birefringence. Specifically, the evaluation birefringence of the norbornene-based polymer is preferably 0.0025 or more, more preferably 0.0026 or more, and particularly preferably 0.0027 or more. By using a norbornene-based polymer having such a large evaluation birefringence, a large retardation can be exhibited even if the stretching ratio is low. Accordingly, a large retardation Rth in the thickness direction can be expressed in the optical film with a small stretching ratio, so that the orientation angle accuracy of the optical film can be effectively improved. The upper limit of the evaluation birefringence of the norbornene-based polymer is not particularly limited, but is preferably 0.0050 or less, more preferably 0.0047 or less, and particularly preferably 0.0045 or less. When the evaluation birefringence of the norbornene-based polymer is equal to or less than the above upper limit, the production of the norbornene-based polymer can be easily performed.
 ノルボルネン系重合体の評価複屈折は、下記の方法によって測定できる。
 ノルボルネン系重合体を成形して、シートを得る。このシートに、自由端一軸延伸を施す。自由端一軸延伸とは、一方向への延伸であって、その延伸方向以外にシートに拘束力を加えない延伸を表す。前記の自由端一軸延伸の延伸温度は、ノルボルネン系重合体のガラス転移温度より15℃高い温度である。また、延伸時間は1分間であり、自由端一軸延伸の延伸倍率は、1.5倍である。延伸後、シート中央部の面内レターデーションを測定波長550nmで測定し、この面内レターデーションをシート中央部の厚みで割算することで、評価複屈折が得られる。
The evaluation birefringence of the norbornene-based polymer can be measured by the following method.
A sheet is obtained by molding a norbornene-based polymer. This sheet is subjected to free-end uniaxial stretching. The free-end uniaxial stretching is stretching in one direction, and means stretching in which a restraining force is not applied to a sheet other than the stretching direction. The stretching temperature of the free-end uniaxial stretching is a temperature 15 ° C. higher than the glass transition temperature of the norbornene-based polymer. The stretching time is 1 minute, and the stretching ratio of the free-end uniaxial stretching is 1.5 times. After the stretching, the in-plane retardation of the central portion of the sheet is measured at a measurement wavelength of 550 nm, and the in-plane retardation is divided by the thickness of the central portion of the sheet to obtain an evaluation birefringence.
 ノルボルネン系重合体の評価複屈折は、例えば、ノルボルネン系重合体の原料としてのノルボルネン系単量体の種類及び重合比、並びに、ノルボルネン系重合体の分子量分布、によって調整できる。 評 価 Evaluation of norbornene-based polymer The birefringence can be adjusted, for example, by the type and polymerization ratio of the norbornene-based monomer as a raw material of the norbornene-based polymer, and the molecular weight distribution of the norbornene-based polymer.
 ノルボルネン系重合体の重量平均分子量Mwは、好ましくは10000~100000、より好ましくは15000~80000、特に好ましくは20000~60000である。重量平均分子量が前記の範囲にある場合、光学フィルムの機械的強度及び成形性が高度にバランスされる。 The weight average molecular weight Mw of the norbornene-based polymer is preferably 10,000 to 100,000, more preferably 15,000 to 80,000, and particularly preferably 20,000 to 60,000. When the weight average molecular weight is in the above range, the mechanical strength and moldability of the optical film are highly balanced.
 ノルボルネン系重合体の分子量分布Mw/Mnは、好ましくは2.4以下、より好ましくは2.35以下、特に好ましくは2.3以下である。ノルボルネン系重合体の分子量分布Mw/Mnが前記範囲にある場合、光学フィルムの接着強度を高めることができるので、光学フィルムのデラミネーションを抑制できる。分子量分布とは、重量平均分子量と数平均分子量との比であり、「重量平均分子量Mw/数平均分子量Mn」で表される。ノルボルネン系重合体の分子量分布の下限は、通常1.0以上である。 The molecular weight distribution Mw / Mn of the norbornene-based polymer is preferably 2.4 or less, more preferably 2.35 or less, and particularly preferably 2.3 or less. When the molecular weight distribution Mw / Mn of the norbornene-based polymer is within the above range, the adhesive strength of the optical film can be increased, so that delamination of the optical film can be suppressed. The molecular weight distribution is a ratio between the weight average molecular weight and the number average molecular weight, and is represented by “weight average molecular weight Mw / number average molecular weight Mn”. The lower limit of the molecular weight distribution of the norbornene-based polymer is usually 1.0 or more.
 ノルボルネン系重合体の重量平均分子量及び数平均分子量は、溶離液としてシクロヘキサンを用いるゲル・パーミエーション・クロマトグラフィーにより、ポリイソプレン換算で測定できる。ノルボルネン系重合体がシクロヘキサンに溶解しない場合、前記のゲル・パーミエーション・クロマトグラフィーでは、溶離液としてトルエンを用いてもよい。溶離液がトルエンのときは、ポリスチレン換算で重量平均分子量及び数平均分子量を測定できる。 The weight average molecular weight and the number average molecular weight of the norbornene-based polymer can be measured in terms of polyisoprene by gel permeation chromatography using cyclohexane as an eluent. When the norbornene-based polymer does not dissolve in cyclohexane, toluene may be used as an eluent in the gel permeation chromatography. When the eluent is toluene, the weight average molecular weight and the number average molecular weight can be measured in terms of polystyrene.
 ノルボルネン系重合体の応力複屈折は、好ましくは2350×10-12Pa-1以上、より好ましくは2400×10-12Pa-1以上、特に好ましくは2550×10-12Pa-1以上であり、好ましくは3000×10-12Pa-1以下、より好ましくは2950×10-12Pa-1以下、特に好ましくは2800×10-12Pa-1以下である。ノルボルネン系重合体の応力複屈折が前記範囲の下限値以上である場合、そのノルボルネン系重合体を含むフィルムは、延伸による複屈折の発現性が大きい傾向があり、そのため、光学フィルムの厚み方向のレターデーションRthを大きくし易い。また、ノルボルネン系重合体の応力複屈折が前記範囲の上限値以下である場合、光学フィルムのレターデーションRe及びRthを制御しやすくなり、レターデーションの面内のバラツキを抑えることができる。 The stress birefringence of the norbornene-based polymer is preferably at least 2350 × 10 −12 Pa −1 , more preferably at least 2400 × 10 −12 Pa −1 , particularly preferably at least 2550 × 10 −12 Pa −1 , It is preferably at most 3000 × 10 −12 Pa −1 , more preferably at most 2950 × 10 −12 Pa −1 , particularly preferably at most 2800 × 10 −12 Pa −1 . When the stress birefringence of the norbornene-based polymer is equal to or more than the lower limit of the above range, the film containing the norbornene-based polymer tends to have a large birefringence due to stretching, and therefore, in the thickness direction of the optical film. It is easy to increase the retardation Rth. When the stress birefringence of the norbornene-based polymer is equal to or less than the upper limit of the above range, the retardation Re and Rth of the optical film can be easily controlled, and the in-plane variation of the retardation can be suppressed.
 ノルボルネン系重合体の応力複屈折は、下記の方法で測定できる。
 ノルボルネン系重合体をシート状に成形して、シートを得る。このシートの両端をクリップで固定した後に、片方のクリップに所定の重さ(例えば160g)の重りを固定する。次いで、所定温度(例えば、ノルボルネン系重合体のガラス転移温度より5℃高い温度)に設定したオーブン内に、重りを固定していない方のクリップを起点にして、所定時間(例えば1時間)シートを吊るして延伸処理を行う。延伸処理を行ったシートを、ゆっくりと冷やして室温まで戻す。このシートについて、シート中心部の面内レターデーションを測定波長650nmで測定し、この面内レターデーションをシート中心部の厚みで割算することで、δn値を算出する。そして、このδn値を、シートに加えた応力(上記の場合は、所定の重りを固定した際に加わった応力)で割算して、応力複屈折を求めることができる。
The stress birefringence of the norbornene-based polymer can be measured by the following method.
The norbornene-based polymer is formed into a sheet to obtain a sheet. After fixing both ends of the sheet with clips, a weight having a predetermined weight (for example, 160 g) is fixed to one of the clips. Next, a sheet is placed in an oven set at a predetermined temperature (for example, a temperature higher by 5 ° C. than the glass transition temperature of the norbornene-based polymer) for a predetermined time (for example, one hour) starting from the clip with the unfixed weight as a starting point. And a stretching process is performed. The stretched sheet is cooled slowly and returned to room temperature. For this sheet, the in-plane retardation at the center of the sheet is measured at a measurement wavelength of 650 nm, and this in-plane retardation is divided by the thickness at the center of the sheet to calculate a δn value. Then, the δn value is divided by the stress applied to the sheet (in the above case, the stress applied when a predetermined weight is fixed) to obtain the stress birefringence.
 ノルボルネン系重合体の応力複屈折は、ノルボルネン系重合体の原料としてのノルボルネン系単量体の種類及び重合比によって調整できる。 応 力 The stress birefringence of the norbornene-based polymer can be adjusted by the type and polymerization ratio of the norbornene-based monomer as a raw material of the norbornene-based polymer.
 ノルボルネン系重合体は、例えば、ノルボルネン系単量体、及び、必要に応じて用いられる任意の単量体を、適切な触媒の存在下で重合することを含む製造方法により、製造できる。また、ノルボルネン系重合体として水素化物を製造する場合、ノルボルネン系重合体の製造方法は、前記の重合の後で、得られた重合体に対し、ニッケル、パラジウム、ルテニウム等の遷移金属を含む水素化触媒の存在下で水素を接触させて、炭素-炭素不飽和結合を水素化することを含んでいてもよい。 The norbornene-based polymer can be produced, for example, by a production method including polymerizing a norbornene-based monomer and any monomer used as needed in the presence of a suitable catalyst. In the case of producing a hydride as a norbornene-based polymer, the method for producing a norbornene-based polymer includes, after the above-described polymerization, a hydrogen containing a transition metal such as nickel, palladium, and ruthenium with respect to the obtained polymer. Contacting hydrogen in the presence of a hydrogenation catalyst to hydrogenate carbon-carbon unsaturated bonds.
 熱可塑性ノルボルネン系樹脂に含まれるノルボルネン系重合体の割合は、式(1)及び式(2)を満たす熱可塑性ノルボルネン系樹脂が得られる範囲で任意である。ノルボルネン系重合体の優れた特性を活用する観点では、熱可塑性ノルボルネン系樹脂に含まれるノルボルネン系重合体の割合は、好ましくは80重量%~100重量%、より好ましくは90重量%~100重量%、特に好ましくは95重量%~100重量%である。 割 合 The proportion of the norbornene-based polymer contained in the thermoplastic norbornene-based resin is arbitrary within a range where a thermoplastic norbornene-based resin satisfying the formulas (1) and (2) can be obtained. From the viewpoint of utilizing the excellent properties of the norbornene-based polymer, the proportion of the norbornene-based polymer contained in the thermoplastic norbornene-based resin is preferably 80% by weight to 100% by weight, more preferably 90% by weight to 100% by weight. And particularly preferably from 95% by weight to 100% by weight.
 熱可塑性ノルボルネン系樹脂は、ノルボルネン系重合体以外の任意の成分を含んでいてもよい。任意の成分としては、例えば、紫外線吸収剤、酸化防止剤、熱安定剤、光安定剤、帯電防止剤、分散剤、塩素捕捉剤、難燃剤、結晶化核剤、強化剤、ブロッキング防止剤、防曇剤、離型剤、顔料、有機又は無機の充填剤、中和剤、滑剤、分解剤、金属不活性化剤、汚染防止剤、抗菌剤などが挙げられる。任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The thermoplastic norbornene-based resin may contain an arbitrary component other than the norbornene-based polymer. As optional components, for example, ultraviolet absorbers, antioxidants, heat stabilizers, light stabilizers, antistatic agents, dispersants, chlorine scavengers, flame retardants, crystallization nucleating agents, reinforcing agents, antiblocking agents, Examples include anti-fogging agents, release agents, pigments, organic or inorganic fillers, neutralizing agents, lubricants, decomposers, metal deactivators, stain inhibitors, antibacterial agents and the like. One type of optional component may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 熱可塑性ノルボルネン系樹脂は、前記式(1)を満たすガラス転移温度Tgを有する。詳細には、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgは、通常110℃以上、好ましくは112℃以上、特に好ましくは114℃以上である。このように高いガラス転移温度Tgを有する熱可塑性ノルボルネン系樹脂を用いることにより、高温環境におけるノルボルネン系重合体の配向の緩和を抑制できる。よって、高温環境における光学フィルムの厚み方向のレターデーションRthの変化を抑制できる。また、通常、前記範囲のガラス転移温度Tgを有する熱可塑性ノルボルネン系樹脂を含むフィルムは、延伸による複屈折の発現性が大きい傾向があり、そのため、光学フィルムの厚み方向のレターデーションRthを大きくし易い。熱可塑性ノルボルネン系樹脂のガラス転移温度Tgの上限は、特段の制限は無いが、好ましくは180℃以下、より好ましくは170℃以下、特に好ましくは160℃以下である。熱可塑性ノルボルネン系樹脂のガラス転移温度Tgが前記の上限値以下である場合、光学フィルムの厚み方向のレターデーションRthを大きくし易い。 The thermoplastic norbornene-based resin has a glass transition temperature Tg that satisfies the formula (1). Specifically, the glass transition temperature Tg of the thermoplastic norbornene-based resin is usually 110 ° C. or higher, preferably 112 ° C. or higher, and particularly preferably 114 ° C. or higher. By using the thermoplastic norbornene-based resin having such a high glass transition temperature Tg, relaxation of the orientation of the norbornene-based polymer in a high-temperature environment can be suppressed. Therefore, a change in the retardation Rth in the thickness direction of the optical film in a high-temperature environment can be suppressed. Further, usually, a film containing a thermoplastic norbornene-based resin having a glass transition temperature Tg in the above-mentioned range tends to have a large birefringence due to stretching, and therefore, increases the retardation Rth in the thickness direction of the optical film. easy. The upper limit of the glass transition temperature Tg of the thermoplastic norbornene-based resin is not particularly limited, but is preferably 180 ° C or lower, more preferably 170 ° C or lower, and particularly preferably 160 ° C or lower. When the glass transition temperature Tg of the thermoplastic norbornene resin is equal to or lower than the above upper limit, the retardation Rth in the thickness direction of the optical film is easily increased.
 熱可塑性ノルボルネン系樹脂のガラス転移温度Tgは、示差走査熱量分析計を用いて、JIS K 6911に基づき、昇温速度10℃/分の条件で測定できる。 ガ ラ ス The glass transition temperature Tg of the thermoplastic norbornene-based resin can be measured using a differential scanning calorimeter in accordance with JIS K 6911 at a heating rate of 10 ° C / min.
 熱可塑性ノルボルネン系樹脂のガラス転移温度Tgは、例えば、ノルボルネン系重合体の原料としてのノルボルネン系単量体の種類及び重合比、並びにノルボルネン系重合体の含有率によって調整できる。 ガ ラ ス The glass transition temperature Tg of the thermoplastic norbornene-based resin can be adjusted by, for example, the type and polymerization ratio of the norbornene-based monomer as a raw material of the norbornene-based polymer, and the content of the norbornene-based polymer.
 熱可塑性ノルボルネン系樹脂は、前記式(2)を満たす評価複屈折Δnを有する。詳細には、熱可塑性ノルボルネン系樹脂の評価複屈折Δnは、通常0.0025以上、好ましくは0.0026以上、特に好ましくは0.0027以上である。このように大きい評価複屈折Δnを有する熱可塑性ノルボルネン系樹脂を用いることにより、延伸倍率が低くでも大きなレターデーションを発現させることができる。よって、小さい延伸倍率で光学フィルムに大きな厚み方向のレターデーションRthを発現させることができるので、光学フィルムの配向角精度を効果的に改善することができる。熱可塑性ノルボルネン系樹脂の評価複屈折Δnの上限は、特段の制限は無いが、好ましくは0.0050以下、より好ましくは0.0047以下、特に好ましくは0.0045以下である。熱可塑性ノルボルネン系樹脂の評価複屈折Δnが前記の上限値以下である場合、熱可塑性ノルボルネン系樹脂の製造を容易に行うことができる。 Thermoplastic norbornene resin has a rating birefringence [Delta] n R satisfying the equation (2). Specifically, the evaluation birefringence Δn R of the thermoplastic norbornene-based resin is usually 0.0025 or more, preferably 0.0026 or more, and particularly preferably 0.0027 or more. By using the thermoplastic norbornene resin having such high rating birefringence [Delta] n R, it can be expressed a large retardation stretch ratio even lower. Accordingly, a large retardation Rth in the thickness direction can be expressed in the optical film with a small stretching ratio, so that the orientation angle accuracy of the optical film can be effectively improved. The upper limit of the evaluation birefringence [Delta] n R of the thermoplastic norbornene resin is no particular restriction is not, preferably 0.0050 or less, more preferably 0.0047 or less, particularly preferably 0.0045 or less. If the evaluation birefringence [Delta] n R of the thermoplastic norbornene resin is more than the upper limit of the above, it is possible to easily manufacture the thermoplastic norbornene resin.
 熱可塑性ノルボルネン系樹脂の評価複屈折Δnは、下記の方法によって測定できる。
 熱可塑性ノルボルネン系樹脂を成形して、シートを得る。このシートに、自由端一軸延伸を施す。前記の自由端一軸延伸の延伸温度は、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgより15℃高い温度(即ち、Tg+15℃)である。また、延伸時間は1分間であり、自由端一軸延伸の延伸倍率は、1.5倍である。延伸後、シート中央部の面内レターデーションRe(a)を測定波長550nmで測定し、この面内レターデーションRe(a)をシート中央部の厚みT(a)で割算することで、評価複屈折Δnが得られる。
Evaluation birefringence [Delta] n R of the thermoplastic norbornene resin can be measured by the following methods.
A sheet is obtained by molding a thermoplastic norbornene-based resin. This sheet is subjected to free-end uniaxial stretching. The stretching temperature of the free-end uniaxial stretching is a temperature 15 ° C. higher than the glass transition temperature Tg of the thermoplastic norbornene-based resin (that is, Tg + 15 ° C.). The stretching time is 1 minute, and the stretching ratio of the free-end uniaxial stretching is 1.5 times. After stretching, the in-plane retardation Re (a) at the center of the sheet is measured at a measurement wavelength of 550 nm, and the in-plane retardation Re (a) is divided by the thickness T (a) at the center of the sheet to evaluate. A birefringence Δn R is obtained.
 熱可塑性ノルボルネン系樹脂の評価複屈折Δnは、例えば、ノルボルネン系重合体の原料としてのノルボルネン系単量体の種類及び重合比、ノルボルネン系重合体の分子量分布、並びに、ノルボルネン系重合体の含有率によって調整できる。 The evaluation birefringence Δn R of the thermoplastic norbornene-based resin is, for example, the type and polymerization ratio of the norbornene-based monomer as a raw material of the norbornene-based polymer, the molecular weight distribution of the norbornene-based polymer, and the content of the norbornene-based polymer. Can be adjusted by rate.
 熱可塑性ノルボルネン系樹脂の応力複屈折Cは、好ましくは2350×10-12Pa-1以上、より好ましくは2400×10-12Pa-1以上、特に好ましくは2550×10-12Pa-1以上であり、好ましくは3000×10-12Pa-1以下、より好ましくは2950×10-12Pa-1以下、特に好ましくは2800×10-12Pa-1以下である。熱可塑性ノルボルネン系樹脂の応力複屈折Cが前記範囲の下限値以上である場合、その熱可塑性ノルボルネン系樹脂を含むフィルムは、延伸による複屈折の発現性が大きい傾向があり、そのため、光学フィルムの厚み方向のレターデーションRthを大きくし易い。また、熱可塑性ノルボルネン系樹脂の応力複屈折Cが前記範囲の上限値以下である場合、光学フィルムのレターデーションRe及びRthを制御しやすくなり、レターデーションの面内のバラツキを抑えることができる。 Stress birefringence C R of the thermoplastic norbornene resin is preferably 2350 × 10 -12 Pa -1 or higher, more preferably 2400 × 10 -12 Pa -1 or higher, particularly preferably 2550 × 10 -12 Pa -1 or higher And preferably at most 3000 × 10 −12 Pa −1 , more preferably at most 2950 × 10 −12 Pa −1 , particularly preferably at most 2800 × 10 −12 Pa −1 . If stress birefringence C R of the thermoplastic norbornene resin is not less than the lower limit of the range, the film containing the thermoplastic norbornene resin tends expression greater of birefringence by stretching, therefore, the optical film Is easy to increase the retardation Rth in the thickness direction. Also, if the stress birefringence C R of the thermoplastic norbornene resin is more than the upper limit of the above range, it becomes easy to control the retardation Re and Rth of the optical film, it is possible to suppress the variation in in-plane retardation .
 熱可塑性ノルボルネン系樹脂の応力複屈折Cは、下記の方法で測定できる。
 熱可塑性ノルボルネン系樹脂をシート状に成形して、シートを得る。このシートの両端をクリップで固定した後に、片方のクリップに所定の重さ(例えば160g)の重りを固定する。次いで、所定温度(例えば、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgより5℃高い温度)に設定したオーブン内に、重りを固定していない方のクリップを起点にして、所定時間(例えば1時間)シートを吊るして延伸処理を行う。延伸処理を行ったシートを、ゆっくりと冷やして室温まで戻す。このシートについて、シート中心部の面内レターデーションRe(b)を測定波長650nmで測定し、この面内レターデーションRe(b)をシート中心部の厚みT(b)[mm]で割算することで、δn値を算出する。そして、このδn値を、シートに加えた応力(上記の場合は、所定の重りを固定した際に加わった応力)で割算して、応力複屈折Cを求めることができる。
Stress birefringence C R of the thermoplastic norbornene resin can be measured by the following method.
A sheet is obtained by molding a thermoplastic norbornene-based resin into a sheet. After fixing both ends of the sheet with clips, a weight having a predetermined weight (for example, 160 g) is fixed to one of the clips. Next, in an oven set at a predetermined temperature (for example, a temperature higher by 5 ° C. than the glass transition temperature Tg of the thermoplastic norbornene-based resin), starting from the clip on which the weight is not fixed, for a predetermined time (for example, 1 hour) ) The sheet is suspended and stretched. The stretched sheet is cooled slowly and returned to room temperature. For this sheet, the in-plane retardation Re (b) at the center of the sheet is measured at a measurement wavelength of 650 nm, and this in-plane retardation Re (b) is divided by the thickness T (b) [mm] at the center of the sheet. Thus, the δn value is calculated. Then, the δn value, (in the above case, stress applied when fixing the predetermined weight) stress applied to the seat by dividing, to calculate stress birefringence C R.
 熱可塑性ノルボルネン系樹脂の応力複屈折Cは、ノルボルネン系重合体の原料としてのノルボルネン系単量体の種類及び重合比、並びに、ノルボルネン系重合体の含有率によって調整できる。 Stress birefringence C R of the thermoplastic norbornene resin, the kind and the polymerization ratio of norbornene-based monomers as the raw material of the norbornene-based polymer, and can be adjusted by the content of the norbornene-based polymer.
[3.光学フィルムの特性]
 本実施形態に係る光学フィルムは、上述した熱可塑性ノルボルネン系樹脂で形成されたフィルムであり、その厚み方向のレターデーションRth及び厚みdが、前記の式(3)を満たす。詳細には、比Rth/dは、通常3.5×10-3以上、好ましくは3.7×10-3以上、特に好ましくは4.0×10-3以上である。本実施形態に係る光学フィルムは、このように、厚みd当たりの厚み方向のレターデーションRthを大きくすることができる。よって、厚みdを薄くしながら、厚み方向のレターデーションRthを大きくすることが可能である。比Rth/dの上限は、特段の制限は無いが、光学フィルムのデラミネーションを効果的に抑制する観点では、好ましくは8.0×10-3以下、より好ましくは6.0×10-3以下である。
[3. Characteristics of optical film]
The optical film according to the present embodiment is a film formed of the above-described thermoplastic norbornene-based resin, and the retardation Rth and the thickness d in the thickness direction satisfy the above-described formula (3). Specifically, the ratio Rth / d is usually at least 3.5 × 10 −3 , preferably at least 3.7 × 10 −3 , particularly preferably at least 4.0 × 10 −3 . As described above, the optical film according to the present embodiment can increase the retardation Rth in the thickness direction per the thickness d. Therefore, it is possible to increase the retardation Rth in the thickness direction while reducing the thickness d. The upper limit of the ratio Rth / d is not particularly limited, but is preferably 8.0 × 10 −3 or less, and more preferably 6.0 × 10 −3 from the viewpoint of effectively suppressing the delamination of the optical film. It is as follows.
 ノルボルネン系重合体のガラス転移温度及び複屈折発現性は、通常、当該ノルボルネン系重合体の材料となるノルボルネン系単量体の種類及び重合比に依存する。よって、このノルボルネン系重合体を含む熱可塑性ノルボルネン系樹脂のガラス転移温度Tg及び評価複屈折Δnは、ノルボルネン系重合体の材料となるノルボルネン系単量体の種類及び重合比に相関を有する。よって、熱可塑性ノルボルネン系樹脂のガラス転移温度Tg及び評価複屈折Δnは、通常、その熱可塑性ノルボルネン系樹脂に含まれるノルボルネン系重合体の原料としてのノルボルネン系単量体の種類及び重合比を反映している。本発明者の検討によれば、このように所定の範囲のガラス転移温度Tg及び評価複屈折Δnを有するように選択された種類及び量のノルボルネン系単量体を採用したノルボルネン系重合体を含む熱可塑性ノルボルネン系樹脂は、延伸による厚み方向のレターデーションRthの発現性に優れることが判明している。よって、上述したように高いRth/dを有する光学フィルムは、上述したノルボルネン系重合体を含む熱可塑性ノルボルネン系樹脂を用いて延伸フィルムとして製造することが可能である。 The glass transition temperature and birefringence manifestation of the norbornene-based polymer usually depend on the type and polymerization ratio of the norbornene-based monomer used as the material of the norbornene-based polymer. Therefore, the glass transition temperature Tg and evaluation birefringence [Delta] n R of the thermoplastic norbornene-based resin containing the norbornene-based polymer has a correlation to the type and polymerization ratio of the norbornene monomer which is a material of the norbornene-based polymer. Therefore, the glass transition temperature Tg and evaluation birefringence [Delta] n R of a thermoplastic norbornene resin, usually, a norbornene-based monomer type and polymerization ratio of the raw material of the norbornene-based polymer included in the thermoplastic norbornene resin Reflects. According to the studies of the present inventors, thus the glass transition temperature Tg and evaluation birefringence Δn selected type to have R and amount of norbornene norbornene polymer employing the monomer in a predetermined range It has been found that the thermoplastic norbornene-based resin contained therein has excellent retardation Rth in the thickness direction due to stretching. Therefore, an optical film having a high Rth / d as described above can be manufactured as a stretched film using the above-described thermoplastic norbornene-based resin containing a norbornene-based polymer.
 本実施形態に係る光学フィルムの光弾性係数は、小さいことが好ましい。光学フィルムの具体的な光弾性係数は、好ましくは8Brewster以下、より好ましくは7Brewster以下、特に好ましくは6Brewster以下である。ここで、1Brewster=1×10-13cm/dynである。光学フィルムの光弾性係数が小さい場合、その光学フィルムは、反りを生じてもレターデーション等の光学特性に変化を生じ難い。よって、光学フィルムを液晶表示装置に設けた場合に、光学フィルムの反りに起因する光漏れの発生を抑制することができる。光漏れとは、液晶表示装置を黒表示状態にした場合に、遮蔽すべき光が画面から漏れだし、画面が明るくなる現象をいう。光弾性係数の下限は、特段の制限は無いが、好ましくは0.5Brewster以上、より好ましくは1.0Brewster以上、特に好ましくは1.5Brewster以上である。 The photoelastic coefficient of the optical film according to the present embodiment is preferably small. The specific photoelastic coefficient of the optical film is preferably 8 Brewster or less, more preferably 7 Brewster or less, and particularly preferably 6 Brewster or less. Here, 1 Brewster = 1 × 10 −13 cm 2 / dyn. When the photoelastic coefficient of the optical film is small, the optical film hardly causes a change in optical characteristics such as retardation even if warpage occurs. Therefore, when the optical film is provided in the liquid crystal display device, it is possible to suppress the occurrence of light leakage due to the warpage of the optical film. The light leakage refers to a phenomenon in which, when the liquid crystal display device is set to a black display state, light to be shielded leaks from the screen and the screen becomes bright. The lower limit of the photoelastic coefficient is not particularly limited, but is preferably 0.5 Brewster or more, more preferably 1.0 Brewster or more, and particularly preferably 1.5 Brewster or more.
 光学フィルムの光弾性係数は、エリプソメーターによって測定できる。 光 The photoelastic coefficient of the optical film can be measured by an ellipsometer.
 小さい光弾性係数を有する光学フィルムは、例えば、水素化されたノルボルネン系重合体を含む熱可塑性ノルボルネン系樹脂を用いることによって実現できる。 光学 An optical film having a small photoelastic coefficient can be realized by using, for example, a thermoplastic norbornene-based resin containing a hydrogenated norbornene-based polymer.
 本実施形態に係る光学フィルムは、高い配向角精度を達成できる。具体的には、光学フィルムは、その厚み方向に垂直な面内方向に、遅相軸を有している。そして、光学フィルムは、この遅相軸の方向のバラツキを抑制することができる。したがって、ある基準方向に対して遅相軸がなす角度としての配向角θのバラツキを抑制できるので、高い配向角精度を達成できる。配向角精度の高い光学フィルムは、液晶表示装置に設けた場合に、画面の輝度、コントラスト等の表示特性を面内で均一にすることができる。 光学 The optical film according to the present embodiment can achieve high orientation angle accuracy. Specifically, the optical film has a slow axis in an in-plane direction perpendicular to the thickness direction. The optical film can suppress the variation in the direction of the slow axis. Therefore, since the dispersion of the orientation angle θ as an angle formed by the slow axis with respect to a certain reference direction can be suppressed, high orientation angle accuracy can be achieved. An optical film having a high alignment angle accuracy can make display characteristics such as screen brightness and contrast uniform in a plane when provided in a liquid crystal display device.
 光学フィルムの配向角精度は、配向角θの標準偏差θσによって評価できる。光学フィルムの配向角θの標準偏差θσは、小さいほど好ましい。具体的には、光学フィルムの配向角θの標準偏差θσは、好ましくは0°~0.15°、より好ましくは0°~0.14°、特に好ましくは0°~0.13°である。 配 向 The orientation angle accuracy of the optical film can be evaluated by the standard deviation θσ of the orientation angle θ. The smaller the standard deviation θσ of the orientation angle θ of the optical film, the better. Specifically, the standard deviation θσ of the orientation angle θ of the optical film is preferably 0 ° to 0.15 °, more preferably 0 ° to 0.14 °, and particularly preferably 0 ° to 0.13 °. .
 光学フィルムの配向角θの標準偏差θσは、下記の方法によって測定できる。
 光学フィルムのある基準方向に対して遅相軸がなす角度の絶対値を、配向角θとして測定する。この測定は、光学フィルムの幅方向に50mmの間隔、長さ方向に10mの間隔の、複数の測定位置で行なう。そして、それらの測定結果から、配向角θの標準偏差θσを計算できる。
The standard deviation θσ of the orientation angle θ of the optical film can be measured by the following method.
The absolute value of the angle formed by the slow axis with respect to a certain reference direction of the optical film is measured as the orientation angle θ. This measurement is performed at a plurality of measurement positions at an interval of 50 mm in the width direction of the optical film and at an interval of 10 m in the length direction. Then, from these measurement results, the standard deviation θσ of the orientation angle θ can be calculated.
 通常、光学フィルムは、熱可塑性ノルボルネン系樹脂を用いて、延伸フィルムとして製造される。また、熱可塑性ノルボルネン系樹脂が複屈折の発現性に優れるので、式(3)を満たす程度に大きいレターデーションを発現させるために求められる延伸倍率は、小さい。したがって、熱可塑性ノルボルネン系樹脂で形成された延伸フィルムとして光学フィルムを製造する際に、延伸倍率を小さくできる。このように延伸倍率が小さいことにより、前記の光学フィルムは、高い配向角精度を達成できる。 Usually, an optical film is manufactured as a stretched film using a thermoplastic norbornene-based resin. In addition, since the thermoplastic norbornene-based resin has excellent birefringence, the stretching ratio required for exhibiting a retardation large enough to satisfy the formula (3) is small. Therefore, when producing an optical film as a stretched film formed of a thermoplastic norbornene-based resin, the draw ratio can be reduced. With such a small stretching ratio, the optical film can achieve high orientation angle accuracy.
 本実施形態に係る光学フィルムは、耐熱性に優れる。具体的には、光学フィルムは、高温環境における厚み方向のレターデーションRthの変化を抑制できる。耐熱性に優れる光学フィルムは、高温環境で使用されうる液晶表示装置に対して、適用できる。 光学 The optical film according to the present embodiment is excellent in heat resistance. Specifically, the optical film can suppress a change in the retardation Rth in the thickness direction in a high-temperature environment. An optical film having excellent heat resistance can be applied to a liquid crystal display device that can be used in a high-temperature environment.
 光学フィルムの耐熱性は、高温環境での耐久試験による厚み方向のレターデーションRthの変化率によって評価できる。例えば、光学フィルムの厚み方向のレターデーションRth0を測定した後で、その光学フィルムに、85℃の環境で500時間保管する耐久試験を行う。耐久試験の後、光学フィルムの厚み方向のレターデーションRth1を測定する。そして、耐久試験による光学フィルムの厚み方向のレターデーションの変化量Rth0-Rth1を、耐久試験前の光学フィルムの厚み方向のレターデーションRth0で割算して、その変化率を計算できる。本実施形態に係る光学フィルムによれば、前記の厚み方向のレターデーションRthの変化率を、好ましくは3%以下にできる。 耐熱 The heat resistance of the optical film can be evaluated by the rate of change of the retardation Rth in the thickness direction by a durability test in a high temperature environment. For example, after measuring the retardation Rth0 in the thickness direction of the optical film, the optical film is subjected to a durability test in which the optical film is stored at 85 ° C. for 500 hours. After the durability test, the retardation Rth1 in the thickness direction of the optical film is measured. Then, the rate of change can be calculated by dividing the amount of change Rth0−Rth1 of the retardation in the thickness direction of the optical film by the durability test by the retardation Rth0 in the thickness direction of the optical film before the durability test. According to the optical film of this embodiment, the rate of change of the retardation Rth in the thickness direction can be preferably 3% or less.
 光学フィルムが含む熱可塑性ノルボルネン系樹脂は、高いガラス転移温度Tgを有する。よって、高温環境においても、熱可塑性ノルボルネン系樹脂に含まれるノルボルネン系重合体の分子は、配向緩和を生じ難い。そのため、前記のように高温環境における厚み方向のレターデーションRthの変化を抑制できる。 熱 The thermoplastic norbornene-based resin contained in the optical film has a high glass transition temperature Tg. Therefore, even in a high-temperature environment, the molecules of the norbornene-based polymer contained in the thermoplastic norbornene-based resin are unlikely to cause orientation relaxation. Therefore, as described above, the change in the retardation Rth in the thickness direction in a high-temperature environment can be suppressed.
 本実施形態に係る光学フィルムは、好ましくは、高い耐湿性を有する。よって、光学フィルムは、高湿度環境における厚み方向のレターデーションRthの変化を抑制できることが好ましい。耐湿性に優れる光学フィルムは、高湿度環境で使用されうる液晶表示装置に対して、適用できる。 光学 The optical film according to the present embodiment preferably has high moisture resistance. Therefore, it is preferable that the optical film can suppress the change in the retardation Rth in the thickness direction in a high humidity environment. An optical film having excellent moisture resistance can be applied to a liquid crystal display device that can be used in a high humidity environment.
 光学フィルムの耐湿性は、高湿度環境での耐久試験による厚み方向のレターデーションRthの変化率によって評価できる。例えば、光学フィルムの厚み方向のレターデーションRth0を測定した後で、その光学フィルムに、60℃、湿度90%の環境で500時間保管する耐久試験を行う。耐久試験の後、光学フィルムの厚み方向のレターデーションRth2を測定する。そして、耐久試験による光学フィルムの厚み方向のレターデーションの変化量Rth0-Rth2を、耐久試験前の光学フィルムの厚み方向のレターデーションRth0で割算して、その変化率を計算できる。本実施形態によれば、前記の厚み方向のレターデーションRthの変化率を、好ましくは3%以下にできる。 湿 The moisture resistance of the optical film can be evaluated by the rate of change of the retardation Rth in the thickness direction by a durability test in a high humidity environment. For example, after measuring the retardation Rth0 of the optical film in the thickness direction, the optical film is subjected to a durability test in which the optical film is stored in an environment of 60 ° C. and 90% humidity for 500 hours. After the durability test, the retardation Rth2 in the thickness direction of the optical film is measured. Then, the change rate Rth0−Rth2 of the retardation in the thickness direction of the optical film by the durability test is divided by the retardation Rth0 in the thickness direction of the optical film before the durability test to calculate the rate of change. According to the present embodiment, the rate of change of the retardation Rth in the thickness direction can be made preferably 3% or less.
 ノルボルネン系重合体が好ましくは耐湿性に優れるので、光学フィルムは、湿気の浸入を抑制し易い。よって、高湿度環境においても、光学フィルムに含まれるノルボルネン系重合体の分子は、配向緩和を生じ難い。そのため、前記のように高湿度環境における厚み方向のレターデーションRthの変化を抑制できる。 Since the norbornene-based polymer is preferably excellent in moisture resistance, the optical film easily suppresses the infiltration of moisture. Therefore, even in a high-humidity environment, the molecules of the norbornene-based polymer contained in the optical film hardly cause orientation relaxation. Therefore, as described above, a change in the retardation Rth in the thickness direction in a high humidity environment can be suppressed.
 本実施形態に係る光学フィルムは、好ましくは、低い吸水率を有する。例えば、23℃の水中に24時間浸漬した場合の光学フィルムの重量基準の吸水率は、好ましくは0%~0.15%、より好ましくは0%~0.10%、特に好ましくは0%~0.05%である。このように低い吸水率を有する場合、光学フィルムは、前記のように優れた耐湿性を有することができる。 光学 The optical film according to the present embodiment preferably has a low water absorption. For example, when the optical film is immersed in water at 23 ° C. for 24 hours, the water absorption by weight of the optical film is preferably 0% to 0.15%, more preferably 0% to 0.10%, and particularly preferably 0% to 0.1%. 0.05%. When the optical film has such a low water absorption, the optical film can have excellent moisture resistance as described above.
 本実施形態に係る光学フィルムは、好ましくは、デラミネーションを抑制できる。よって、光学フィルムは、偏光板等のフィルムに対して接着剤を用いて貼り合わせを行う場合に、光学フィルムを剥がれ難くできる。ノルボルネン系重合体を含む従来の延伸フィルムは、一般にデラミネーションを生じ易かったことに鑑みれば、本実施形態に係る光学フィルムがデラミネーションを抑制できることは、当該光学フィルムの優れた利点の一つである。 光学 The optical film according to the present embodiment can preferably suppress delamination. Therefore, when the optical film is bonded to a film such as a polarizing plate using an adhesive, the optical film can be hardly peeled off. A conventional stretched film containing a norbornene-based polymer, in view of the fact that generally delamination is likely to occur, that the optical film according to the present embodiment can suppress delamination is one of the excellent advantages of the optical film. is there.
 本実施形態に係る光学フィルムの面内レターデーションReは、当該光学フィルムの用途に応じて任意である。具体的な範囲を示すと、光学フィルムの面内レターデーションReは、好ましくは40nm以上、より好ましくは45nm以上、特に好ましくは50nm以上であり、好ましくは80nm以下、より好ましくは75nm以下、特に好ましくは70nm以下である。光学フィルムの面内レターデーションReが前記範囲の下限値以上である場合、レターデーションの発現性を良好にし易い。また、光学フィルムの面内レターデーションReが前記範囲の上限値以下である場合、レターデーションの面内でのバラツキを抑制できる。面内レターデーションReは、画像表示装置の設計によって、上記範囲内から適宜選択されうる。 内 The in-plane retardation Re of the optical film according to the present embodiment is optional depending on the use of the optical film. When a specific range is shown, the in-plane retardation Re of the optical film is preferably 40 nm or more, more preferably 45 nm or more, particularly preferably 50 nm or more, preferably 80 nm or less, more preferably 75 nm or less, and particularly preferably. Is 70 nm or less. When the in-plane retardation Re of the optical film is equal to or more than the lower limit of the above range, it is easy to improve the expression of the retardation. When the in-plane retardation Re of the optical film is equal to or less than the upper limit of the above range, the in-plane variation of the retardation can be suppressed. The in-plane retardation Re can be appropriately selected from the above range depending on the design of the image display device.
 本実施形態に係る光学フィルムの厚み方向のレターデーションRthは、当該光学フィルムの用途に応じて任意である。具体的な範囲を示すと、光学フィルムの厚み方向のレターデーションRthは、好ましくは100nm以上、より好ましくは120nm以上、特に好ましくは150nm以上であり、好ましくは400nm以下、より好ましくは380nm以下、特に好ましくは360nm以下である。光学フィルムの厚み方向のレターデーションRthが前記範囲の下限値以上である場合、画像表示装置の斜め方向のコントラストを高めることができる。また、光学フィルムの厚み方向のレターデーションRthが前記範囲の上限値以下である場合、厚み方向のレターデーションRth及び配向角の面内におけるバラツキを抑制できる。厚み方向のレターデーションRthは、画像表示装置の設計によって、上記範囲内から適宜選択されうる。 レ タ ー The retardation Rth in the thickness direction of the optical film according to the present embodiment is arbitrary depending on the use of the optical film. When showing a specific range, the retardation Rth in the thickness direction of the optical film is preferably 100 nm or more, more preferably 120 nm or more, particularly preferably 150 nm or more, preferably 400 nm or less, more preferably 380 nm or less, particularly Preferably it is 360 nm or less. When the retardation Rth in the thickness direction of the optical film is equal to or more than the lower limit of the above range, the contrast of the image display device in the oblique direction can be increased. When the retardation Rth in the thickness direction of the optical film is equal to or less than the upper limit of the above range, the in-plane variation of the retardation Rth in the thickness direction and the orientation angle can be suppressed. The retardation Rth in the thickness direction can be appropriately selected from the above range depending on the design of the image display device.
 本実施形態に係る光学フィルムは、高い全光線透過率を有することが好ましい。光学フィルムの具体的な全光線透過率は、好ましくは85%~100%、より好ましくは87%~100%、特に好ましくは90%~100%である。全光線透過率は、市販の分光光度計を用いて、波長400nm以上700nm以下の範囲で測定しうる。 光学 The optical film according to the present embodiment preferably has a high total light transmittance. The specific total light transmittance of the optical film is preferably 85% to 100%, more preferably 87% to 100%, and particularly preferably 90% to 100%. The total light transmittance can be measured using a commercially available spectrophotometer at a wavelength of 400 nm or more and 700 nm or less.
 本実施形態に係る光学フィルムは、積層フィルムを組み込んだ液晶表示装置の画像鮮明性を高める観点から、ヘイズが小さいことが好ましい。光学フィルムのヘイズは、好ましくは1%以下、より好ましくは0.8%以下、特に好ましくは0.5%以下である。ヘイズは、JIS K7361-1997に準拠して、濁度計を用いて測定しうる。 光学 The optical film according to the present embodiment preferably has a small haze from the viewpoint of enhancing the image clarity of the liquid crystal display device incorporating the laminated film. The haze of the optical film is preferably 1% or less, more preferably 0.8% or less, and particularly preferably 0.5% or less. The haze can be measured using a turbidimeter according to JIS K7361-1997.
 本実施形態に係る光学フィルムは、薄いことが好ましい。上述した熱可塑性ノルボルネン系樹脂を用いることにより、光学フィルムが薄くても、大きい厚み方向のレターデーションRthを得ることができる。また、光学フィルムが薄い場合、光学フィルムの反りを抑制できるので、反りによるレターデーション等の光学特性の変化を小さくできる。よって、光学フィルムを液晶表示装置に設けた場合に、光学フィルムの反りに起因する光漏れの発生を抑制することができる。光学フィルムの具体的な厚みdは、好ましくは120μm以下、より好ましくは100μm以下、特に好ましくは80μm以下である。厚みdの下限は、特段の制限は無いが、デラミネーションを抑制する観点では、好ましくは20μm以上、より好ましくは30μm以上、特に好ましくは40μm以上である。 光学 The optical film according to the present embodiment is preferably thin. By using the above-mentioned thermoplastic norbornene-based resin, a large thickness direction retardation Rth can be obtained even when the optical film is thin. In addition, when the optical film is thin, the warpage of the optical film can be suppressed, so that a change in optical characteristics such as retardation due to the warpage can be reduced. Therefore, when the optical film is provided in the liquid crystal display device, it is possible to suppress the occurrence of light leakage due to the warpage of the optical film. The specific thickness d of the optical film is preferably 120 μm or less, more preferably 100 μm or less, and particularly preferably 80 μm or less. The lower limit of the thickness d is not particularly limited, but is preferably 20 μm or more, more preferably 30 μm or more, and particularly preferably 40 μm or more from the viewpoint of suppressing delamination.
[4.光学フィルムの製造方法]
 上述した光学フィルムは、例えば、熱可塑性ノルボルネン系樹脂を成形して樹脂フィルムを得る工程と、この樹脂フィルムを延伸する工程と、を含む製造方法によって、製造できる。延伸される前の樹脂フィルムを、延伸後に得られる光学フィルムと区別するため、以下、適宜「延伸前フィルム」ということがある。
[4. Production method of optical film]
The above-described optical film can be manufactured by, for example, a manufacturing method including a step of forming a thermoplastic norbornene-based resin to obtain a resin film, and a step of stretching the resin film. Hereinafter, in order to distinguish the resin film before being stretched from the optical film obtained after stretching, it may be referred to as “a film before stretching” as appropriate.
 熱可塑性ノルボルネン系樹脂を成形して延伸前フィルムを得る工程において、成形方法に制限は無い。成形方法としては、例えば、押出成形法、溶液キャスト法、インフレーション成型法などが挙げられる。中でも、押出成形法及び溶液キャスト法が好ましく、押出成形法が特に好ましい。 工程 In the step of molding the thermoplastic norbornene resin to obtain a film before stretching, there is no limitation on the molding method. Examples of the molding method include an extrusion molding method, a solution casting method, and an inflation molding method. Among them, the extrusion molding method and the solution casting method are preferable, and the extrusion molding method is particularly preferable.
 延伸前フィルムを用意した後で、その延伸前フィルムを延伸する工程を行う。この延伸により、フィルム中のノルボルネン系重合体の分子を配向させられるので、上述した光学特性を有する光学フィルムが得られる。延伸前フィルムを延伸する工程での延伸条件は、所望の光学フィルムが得られる範囲で、任意に設定できる。 後 で After preparing the film before stretching, a step of stretching the film before stretching is performed. By this stretching, the molecules of the norbornene-based polymer in the film can be oriented, so that an optical film having the above-described optical characteristics is obtained. The stretching conditions in the step of stretching the film before stretching can be arbitrarily set as long as a desired optical film can be obtained.
 延伸前フィルムの延伸の態様は、例えば、1方向に延伸を行う一軸延伸であってもよく、非平行な2方向に延伸を行う二軸延伸であってもよい。また、二軸延伸は、2方向への延伸を同時に行う同時二軸延伸であってもよく、一方の方向への延伸を行った後で他方の方向への延伸を行う逐次二軸延伸であってもよい。これらのうち、厚み方向のレターデーションRthが大きい光学フィルムを容易に製造する観点から、二軸延伸が好ましく、逐次二軸延伸がより好ましい。 態 様 The stretching mode of the film before stretching may be, for example, uniaxial stretching in which stretching is performed in one direction, or biaxial stretching in which stretching is performed in two non-parallel directions. The biaxial stretching may be simultaneous biaxial stretching in which stretching in two directions is performed simultaneously, or sequential biaxial stretching in which stretching is performed in one direction and then stretching in the other direction. You may. Among these, from the viewpoint of easily producing an optical film having a large retardation Rth in the thickness direction, biaxial stretching is preferable, and sequential biaxial stretching is more preferable.
 延伸前フィルムの延伸方向は、任意に設定しうる。例えば、延伸前フィルムが長尺のフィルムである場合、延伸方向は、縦方向でもよく、横方向でもよく、斜め方向でもよい。縦方向とは、長尺のフィルムの長さ方向を表し、横方向とは、長尺のフィルムの幅方向を表し、斜め方向とは、長尺のフィルムの長さ方向に平行でも垂直でもない方向を表す。 延伸 The stretching direction of the film before stretching can be set arbitrarily. For example, when the film before stretching is a long film, the stretching direction may be a vertical direction, a horizontal direction, or an oblique direction. The longitudinal direction represents the length direction of the long film, the horizontal direction represents the width direction of the long film, and the oblique direction is neither parallel nor perpendicular to the length direction of the long film. Indicates the direction.
 延伸前フィルムの延伸倍率は、好ましくは1.4以上、より好ましくは1.5以上であり、好ましくは2.2以下、より好ましくは2.1以下である。延伸倍率が前記範囲の下限値以上である場合、厚み方向のレターデーションRthが大きい光学フィルムを容易に得ることができる。また、延伸倍率が前記範囲の上限値以下である場合、光学フィルムの配向角精度を容易に高めることができる。二軸延伸を行う場合、一方の方向への延伸の延伸倍率と他方の方向への延伸の延伸倍率との積で表される全体の延伸倍率が、前記範囲に収まることが好ましい。 延伸 The stretching ratio of the film before stretching is preferably 1.4 or more, more preferably 1.5 or more, preferably 2.2 or less, more preferably 2.1 or less. When the stretching ratio is equal to or more than the lower limit of the above range, an optical film having a large retardation Rth in the thickness direction can be easily obtained. When the stretching ratio is equal to or less than the upper limit of the above range, the orientation angle accuracy of the optical film can be easily increased. When performing biaxial stretching, it is preferable that the entire stretching ratio represented by the product of the stretching ratio of stretching in one direction and the stretching ratio of stretching in the other direction falls within the above range.
 延伸前フィルムの延伸温度は、好ましくはTg℃以上、より好ましくはTg+5℃以上であり、好ましくはTg+40℃以下、より好ましくはTg+30℃以下である。延伸温度が前記範囲である場合、光学フィルムの厚みを均一にし易い。 延伸 The stretching temperature of the film before stretching is preferably Tg ° C or higher, more preferably Tg + 5 ° C or higher, preferably Tg + 40 ° C or lower, more preferably Tg + 30 ° C or lower. When the stretching temperature is in the above range, it is easy to make the thickness of the optical film uniform.
 前記の製造方法では、上述したように、延伸前フィルムを延伸することによって光学フィルムを得ることができるが、前記の製造方法は、更に任意の工程を含んでいてもよい。
 例えば、前記の製造方法は、光学フィルムをトリミングする工程、光学フィルムに表面処理を施す工程、などを含んでいてもよい。
In the above manufacturing method, as described above, the optical film can be obtained by stretching the film before stretching, but the manufacturing method may further include an optional step.
For example, the above manufacturing method may include a step of trimming the optical film, a step of performing a surface treatment on the optical film, and the like.
[5.光学積層体]
 本発明の一実施形態に係る光学積層体は、上述した光学フィルムと、偏光板とを備える。光学フィルムが、厚み方向のレターデーションRthが大きくても厚みを薄くできるので、光学積層体を薄くしたり、光学積層体の反りを抑制したりできる。また、光学フィルムが高い配向角精度を有するので、光学積層体の光学特性を面内で均一にできる。さらに、光学フィルムが高い耐熱性を有するので、光学積層体も、高い耐熱性を有することができる。このような光学積層体は、液晶表示装置等の画像表示装置に好適に適用できる。
[5. Optical laminate]
An optical laminate according to one embodiment of the present invention includes the above-described optical film and a polarizing plate. Since the thickness of the optical film can be reduced even if the retardation Rth in the thickness direction is large, it is possible to reduce the thickness of the optical laminate or to suppress the warpage of the optical laminate. Further, since the optical film has high orientation angle accuracy, the optical characteristics of the optical laminate can be made uniform within the plane. Furthermore, since the optical film has high heat resistance, the optical laminate can also have high heat resistance. Such an optical laminate can be suitably applied to an image display device such as a liquid crystal display device.
 偏光板としては、例えば、偏光子層を備えるフィルムを用いうる。偏光子層としては、例えば、適切なビニルアルコール系重合体のフィルムに、適切な処理を適切な順序及び方式で施したものを用いうる。かかるビニルアルコール系重合体の例としては、ポリビニルアルコール及び部分ホルマール化ポリビニルアルコールが挙げられる。フィルムの処理の例としては、ヨウ素及び二色性染料等の二色性物質による染色処理、延伸処理、及び架橋処理が挙げられる。偏光子層は、吸収軸と平行な振動方向を有する直線偏光を吸収しうるものであり、特に、偏光度に優れるものが好ましい。偏光子層の厚さは、5μm~80μmが一般的であるが、これに限定されない。 フ ィ ル ム As the polarizing plate, for example, a film having a polarizer layer can be used. As the polarizer layer, for example, a film obtained by performing an appropriate treatment on an appropriate vinyl alcohol-based polymer film in an appropriate order and method can be used. Examples of such a vinyl alcohol-based polymer include polyvinyl alcohol and partially formalized polyvinyl alcohol. Examples of the film treatment include a dyeing treatment with a dichroic substance such as iodine and a dichroic dye, a stretching treatment, and a crosslinking treatment. The polarizer layer is capable of absorbing linearly polarized light having a vibration direction parallel to the absorption axis, and is particularly preferably one having an excellent degree of polarization. The thickness of the polarizer layer is generally 5 μm to 80 μm, but is not limited thereto.
 偏光板は、偏光子層を保護するために、偏光子層の一側又は両側に、保護フィルム層を備えていてもよい。保護フィルム層としては、任意の透明フィルム層を用いうる。中でも、透明性、機械的強度、熱安定性、水分遮蔽性等に優れる樹脂のフィルム層が好ましい。そのような樹脂としては、トリアセチルセルロース等のアセテート樹脂、ポリエステル樹脂、ポリエーテルスルホン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリオレフィン樹脂、熱可塑性ノルボルネン系樹脂、(メタ)アクリル樹脂等が挙げられる。中でも、複屈折が小さい点でアセテート樹脂、熱可塑性ノルボルネン系樹脂、(メタ)アクリル樹脂が好ましく、透明性、低吸湿性、寸法安定性、軽量性などの観点から、熱可塑性ノルボルネン系樹脂が特に好ましい。 The polarizing plate may include a protective film layer on one or both sides of the polarizer layer to protect the polarizer layer. Any transparent film layer can be used as the protective film layer. Above all, a resin film layer excellent in transparency, mechanical strength, heat stability, moisture shielding property and the like is preferable. Examples of such a resin include an acetate resin such as triacetyl cellulose, a polyester resin, a polyether sulfone resin, a polycarbonate resin, a polyamide resin, a polyimide resin, a polyolefin resin, a thermoplastic norbornene-based resin, and a (meth) acrylic resin. . Among them, acetate resin, thermoplastic norbornene-based resin, and (meth) acrylic resin are preferred in terms of low birefringence, and thermoplastic norbornene-based resin is particularly preferred from the viewpoints of transparency, low moisture absorption, dimensional stability, and light weight. preferable.
 前記の偏光板は、例えば、偏光子層と保護フィルム層とを貼り合わせて製造できる。貼り合わせの際には、必要に応じて、接着剤を用いてもよい。 偏光 The polarizing plate can be manufactured by, for example, laminating a polarizer layer and a protective film layer. At the time of bonding, an adhesive may be used as necessary.
 光学積層体は、光学フィルム及び偏光板に組み合わせて、更に任意の部材を含んでいてもよい。例えば、光学積層体は、光学フィルムと偏光板とを貼り合わせるための接着層を備えていてもよい。 The optical laminate may further include an optional member in combination with the optical film and the polarizing plate. For example, the optical laminate may include an adhesive layer for bonding the optical film and the polarizing plate.
 光学積層体の厚みは、特段の制限は無いが、好ましくは30μm以上、より好ましくは50μm以上であり、好ましくは150μm以下、より好ましくは130μm以下である。 厚 み The thickness of the optical laminate is not particularly limited, but is preferably 30 µm or more, more preferably 50 µm or more, preferably 150 µm or less, more preferably 130 µm or less.
[6.液晶表示装置]
 本発明の一実施形態に係る液晶表示装置は、上述した光学積層体を備える。上述したように、光学積層体が備える光学フィルムは薄くできるので、光学積層体は反りを生じ難い。よって、反った部分での光学フィルムの光学特性の変化による光漏れの発生を抑制することができる。前記の反りは、一般に液晶表示装置の画面のコーナーにおいて生じ易いが、本実施形態に係る液晶表示装置では、このようなコーナーでの光漏れを抑制することが可能である。また、光学フィルムが高い配向角精度を有することができるので、本実施形態に係る液晶表示装置は、画面の輝度、コントラスト等の表示特性を画面の面内で均一にできる。さらに、光学フィルムが高い耐熱性を有するので、本実施形態に係る液晶表示装置は、高温環境における表示特性の変化を抑制することができる。
[6. Liquid crystal display]
A liquid crystal display device according to one embodiment of the present invention includes the above-described optical laminate. As described above, since the optical film included in the optical laminate can be thin, the optical laminate hardly warps. Therefore, it is possible to suppress the occurrence of light leakage due to a change in the optical characteristics of the optical film in the warped portion. The above-described warpage generally tends to occur at a corner of a screen of a liquid crystal display device. However, in the liquid crystal display device according to the present embodiment, light leakage at such a corner can be suppressed. In addition, since the optical film can have high alignment angle accuracy, the liquid crystal display device according to the present embodiment can make the display characteristics such as the brightness and contrast of the screen uniform within the screen. Furthermore, since the optical film has high heat resistance, the liquid crystal display device according to the present embodiment can suppress a change in display characteristics in a high-temperature environment.
 通常、液晶表示装置は、液晶セルを備え、この液晶セルの少なくとも片側に光学積層体を備える。中でも、光学積層体は、液晶セル、光学フィルム及び視認側偏光子がこの順に並ぶように設けられることが好ましい。このような構成において、光学フィルムは、視野角補償フィルムとして機能できる。 Typically, a liquid crystal display device includes a liquid crystal cell, and an optical laminate on at least one side of the liquid crystal cell. Especially, it is preferable that the optical laminated body is provided so that the liquid crystal cell, the optical film, and the viewing side polarizer are arranged in this order. In such a configuration, the optical film can function as a viewing angle compensation film.
 液晶セルは、例えば、インプレーンスイッチング(IPS)モード、バーチカルアラインメント(VA)モード、マルチドメインバーチカルアラインメント(MVA)モード、コンティニュアスピンホイールアラインメント(CPA)モード、ハイブリッドアラインメントネマチック(HAN)モード、ツイステッドネマチック(TN)モード、スーパーツイステッドネマチック(STN)モード、オプチカルコンペンセイテッドベンド(OCB)モードなど、任意のモードの液晶セルを用いうる。 The liquid crystal cell includes, for example, an in-plane switching (IPS) mode, a vertical alignment (VA) mode, a multi-domain vertical alignment (MVA) mode, a continuous spin wheel alignment (CPA) mode, a hybrid alignment nematic (HAN) mode, and a twisted nematic. A liquid crystal cell of any mode such as a (TN) mode, a super twisted nematic (STN) mode, and an optically compensated bend (OCB) mode can be used.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。以下の操作は、別に断らない限り、常温常圧大気中にて行った。
Hereinafter, the present invention will be described specifically with reference to examples. However, the present invention is not limited to the following embodiments, and can be arbitrarily modified and implemented without departing from the scope of the claims of the present invention and equivalents thereof.
In the following description, “%” and “parts” representing amounts are based on weight unless otherwise specified. The following operations were performed in the normal temperature and normal pressure atmosphere unless otherwise specified.
[I.重合体の物性値の測定方法及び算出方法]
 (重合体の重量平均分子量Mw、数平均分子量Mn及び分子量分布Mw/Mnの測定方法)
 重合体の重量平均分子量Mw及び数平均分子量Mnは、シクロヘキサンを溶離液とするゲル・パーミエーション・クロマトグラフィー(GPC)により測定し、標準ポリイソプレン換算値として求めた。
 標準ポリイソプレンとしては、東ソー社製標準ポリイソプレン(Mw=602、1390、3920、8050、13800、22700、58800、71300、109000、280000)を用いた。
 測定は、東ソー社製カラム(TSKgelG5000HXL、TSKgelG4000HXL及びTSKgelG2000HXL)を3本直列に繋いで用い、流速1.0mL/分、サンプル注入量100μL、カラム温度40℃の条件で行った。
 分子量分布Mw/Mnは、上記方法により測定した重量平均分子量Mw及び数平均分子量Mnの測定値を用いて算出した。
[I. Method for measuring and calculating physical properties of polymer]
(Method for Measuring Weight Average Molecular Weight Mw, Number Average Molecular Weight Mn, and Molecular Weight Distribution Mw / Mn of Polymer)
The weight average molecular weight Mw and the number average molecular weight Mn of the polymer were measured by gel permeation chromatography (GPC) using cyclohexane as an eluent, and were obtained as standard polyisoprene conversion values.
As standard polyisoprene, standard polyisoprene manufactured by Tosoh Corporation (Mw = 602, 1390, 3920, 8050, 13800, 22700, 58800, 71300, 109000, 280000) was used.
The measurement was carried out using three Tosoh columns (TSKgelG5000HXL, TSKgelG4000HXL and TSKgelG2000HXL) connected in series at a flow rate of 1.0 mL / min, a sample injection volume of 100 μL, and a column temperature of 40 ° C.
The molecular weight distribution Mw / Mn was calculated using the measured values of the weight average molecular weight Mw and the number average molecular weight Mn measured by the above method.
 (ガラス転移温度Tgの測定方法)
 ガラス転移温度Tgは、示差走査熱量分析計(ナノテクノロジー社製「DSC6220SII」)を用いて、JIS K 6911に基づき、昇温速度10℃/分の条件で測定した。
(Method of measuring glass transition temperature Tg)
The glass transition temperature Tg was measured using a differential scanning calorimeter ("DSC6220SII" manufactured by Nanotechnology) based on JIS K 6911 at a heating rate of 10 ° C / min.
 (評価複屈折Δnの測定方法)
 樹脂を、縦50mm×横100mm×厚み100μmのシート状に成形して、サンプルシートを得た。このサンプルシートに、恒温槽付引張試験機(インストロン ジャパン カンパニー リミテッド社製「5564型」)を用いて、自由端一軸延伸を施した。この延伸の条件は、下記の通りである。
  延伸温度:Tg+15℃
  チャック間距離:65mm
  延伸倍率:1.5倍(延伸距離32.5mm)
  延伸時間:1分
  延伸速度:32.5mm/分
(Method of Measuring Evaluation Birefringence Δn R )
The resin was formed into a sheet having a size of 50 mm long × 100 mm wide × 100 μm thick to obtain a sample sheet. This sample sheet was subjected to free-end uniaxial stretching using a tensile tester equipped with a thermostat (“5564” manufactured by Instron Japan Company Limited). The conditions for this stretching are as follows.
Stretching temperature: Tg + 15 ° C
Chuck distance: 65mm
Stretch ratio: 1.5 times (stretch distance 32.5 mm)
Stretching time: 1 minute Stretching speed: 32.5 mm / min
 延伸処理を行った後、延伸されたサンプルシートを室温に戻し、測定試料を得た。 (4) After the stretching treatment, the stretched sample sheet was returned to room temperature to obtain a measurement sample.
 この測定試料について、位相差計(AXOMETRICS社製「AXOSCAN」)を用いて、測定波長550nmで、測定試料の中心部の面内レターデーションRe(a)[nm]を測定した。また、測定試料の前記中心部の厚みT(a)[mm]を測定した。これらの測定値Re(a)及びT(a)を用いて、下記式(X1)により、樹脂の評価複屈折Δnを計算した。
  Δn=Re(a)×(1/T(a))×10-6   (X1)
With respect to this measurement sample, the in-plane retardation Re (a) [nm] at the center of the measurement sample was measured at a measurement wavelength of 550 nm using a phase difference meter (“AXOSCAN” manufactured by AXOMETRICS). Further, the thickness T (a) [mm] of the central portion of the measurement sample was measured. Using these measurements Re (a) and T (a), the following equation (X1), and calculates an evaluation birefringence [Delta] n R of a resin.
Δn R = Re (a) × (1 / T (a)) × 10 −6 (X1)
 (応力複屈折Cの測定方法)
 樹脂を、縦35mm×横10mm×厚み1mmのシート状に成形して、サンプルシートを得た。このサンプルシートの両端をクリップで固定した後に、片方のクリップに160gの重りを固定した。次いで、樹脂のガラス転移温度Tg+5℃に温度を設定したオーブン内に、重りを固定していない方のクリップを起点にして、1時間サンプルシートを吊るして延伸処理を行った。その後、サンプルシートをゆっくりと冷やして室温まで戻し、測定試料を得た。
(Measurement method of stress birefringence C R)
The resin was formed into a sheet having a size of 35 mm long × 10 mm wide × 1 mm thick to obtain a sample sheet. After fixing both ends of the sample sheet with clips, a weight of 160 g was fixed to one of the clips. Next, the sample sheet was hung in an oven in which the temperature was set to the glass transition temperature of the resin Tg + 5 ° C., starting from the clip with the unfixed weight as a starting point, and stretched for 1 hour. Thereafter, the sample sheet was slowly cooled and returned to room temperature to obtain a measurement sample.
 この測定試料について、複屈折計(フォトニックラティス製「WPA-100」)を用いて、測定波長650nmで、測定試料の中心部の面内レターデーションRe(b)[nm]を測定した。また、測定試料の前記中心部の厚みT(b)[mm]を測定した。これらの測定値Re(b)及びT(b)を用いて、下記式(X2)により、δn値を算出した。
 δn=Re(b)×(1/T(b))×10-6   (X2)
 当該δn値及びサンプルに加えた応力Fを用い、下記式(X3)により、応力複屈折Cを計算した。
 C=δn/F   (X3)
For this measurement sample, the in-plane retardation Re (b) [nm] at the center of the measurement sample was measured at a measurement wavelength of 650 nm using a birefringence meter (“WPA-100” manufactured by Photonic Lattice). Further, the thickness T (b) [mm] of the central portion of the measurement sample was measured. Using these measured values Re (b) and T (b), a δn value was calculated by the following equation (X2).
δn = Re (b) × (1 / T (b)) × 10 −6 (X2)
Using a stress F which added to the δn value and sample, by the following formula (X3), was calculated stress birefringence C R.
C R = δn / F (X3)
[II.光学フィルムの特性の評価方法]
 (光学フィルムの光弾性係数の測定方法)
 光学フィルムの光弾性係数は、エリプソメーターによって測定した。
[II. Method for evaluating characteristics of optical film]
(Method of measuring photoelastic coefficient of optical film)
The photoelastic coefficient of the optical film was measured by an ellipsometer.
 (光学フィルムの配向角精度の評価方法)
 光学フィルムの長さ方向に対して遅相軸がなす角度の絶対値を、配向角θとして測定した。この測定は、偏光顕微鏡(オリンパス社製の偏光顕微鏡「BX51」)を用いて行った。また、前記の配向角θの測定を、光学フィルムの幅方向に50mmの間隔、長さ方向に10mの間隔で、複数の測定位置で行った。それらの測定結果の標準偏差θσを、配向角精度の評価指標として計算した。配向角θの標準偏差θσは、小さいほうが配向角θのばらつきが小さく、好ましい。
(Evaluation method of orientation angle accuracy of optical film)
The absolute value of the angle formed by the slow axis with respect to the length direction of the optical film was measured as the orientation angle θ. This measurement was performed using a polarizing microscope (a polarizing microscope “BX51” manufactured by Olympus Corporation). The measurement of the orientation angle θ was performed at a plurality of measurement positions at intervals of 50 mm in the width direction of the optical film and at intervals of 10 m in the length direction of the optical film. The standard deviation θσ of those measurement results was calculated as an evaluation index of the orientation angle accuracy. The smaller the standard deviation θσ of the orientation angle θ is, the smaller the dispersion of the orientation angle θ is.
 (光学フィルムのデラミネーションの評価方法)
 被着体として、ノルボルネン系重合体を含む樹脂で形成された未延伸フィルム(日本ゼオン社製「ゼオノアフィルム」、厚み100μm、樹脂のガラス転移温度160℃、延伸処理は施されていないもの)を用意した。測定対象フィルムとしての光学フィルムの片面、及び、前記の未延伸フィルムの片面に、コロナ処理を施した。光学フィルムのコロナ処理を施した面、及び、未延伸フィルムのコロナ処理を施した面の両方に、接着剤(トーヨーケム社製のUV接着剤CRBシリーズ)を付着させた。接着剤を付着させた面同士を貼り合わせた。その後、無電極UV照射装置(ヘレウス社製)を用い、接着剤に紫外線照射を行って、接着剤を硬化させた。前記の紫外線照射は、ランプとしてDバルブを使用し、ピーク照度100mW/cm、積算光量3000mJ/cmの条件で行った。これにより、未延伸フィルム/接着剤の層/光学フィルムの層構成を有するサンプルフィルムを得た。
(Evaluation method of delamination of optical film)
As an adherend, an unstretched film formed of a resin containing a norbornene-based polymer (“Zeonor film” manufactured by Zeon Corporation, thickness of 100 μm, glass transition temperature of resin of 160 ° C., not stretched) Prepared. One side of the optical film as a film to be measured and one side of the unstretched film were subjected to corona treatment. An adhesive (UV adhesive CRB series manufactured by Toyochem) was attached to both the corona-treated surface of the optical film and the corona-treated surface of the unstretched film. The surfaces to which the adhesive was attached were stuck together. Thereafter, the adhesive was irradiated with ultraviolet rays using an electrodeless UV irradiation device (manufactured by Heraeus) to cure the adhesive. The ultraviolet irradiation was performed using a D bulb as a lamp under the conditions of a peak illuminance of 100 mW / cm 2 and an integrated light amount of 3000 mJ / cm 2 . As a result, a sample film having a layer structure of unstretched film / adhesive layer / optical film was obtained.
 得られたサンプルフィルムについて、下記の手順で、90度剥離試験を実施した。
 サンプルフィルムを15mmの幅に裁断して、フィルム片を得た。このフィルム片の光学フィルム側の面を、スライドガラスの表面に、粘着剤を用いて貼り合わせた。この際、粘着剤としては、両面粘着テープ(日東電工社製、品番「CS9621」)を用いた。高性能型デジタルフォースゲージ(イマダ社製「ZP-5N」)の先端に、フィルム片に含まれる未延伸フィルムを挟み、スライドガラスの表面の法線方向に300mm/分の速度でその未延伸フィルムを牽引して、牽引の力の大きさを剥離強度として測定した。剥離強度の評価は、以下の評価基準により行った。
 良:1.0N/15mm以上。
 不良:1.0N/15mm未満。
The obtained sample film was subjected to a 90-degree peel test according to the following procedure.
The sample film was cut into a width of 15 mm to obtain a film piece. The surface of the film piece on the optical film side was bonded to the surface of a slide glass using an adhesive. At this time, a double-sided adhesive tape (manufactured by Nitto Denko Corporation, product number “CS9621”) was used as the adhesive. An unstretched film included in a film piece is sandwiched between the tip of a high-performance digital force gauge (“ZP-5N” manufactured by Imada) and the unstretched film is moved at a speed of 300 mm / min in a direction normal to the surface of the slide glass. And the magnitude of the pulling force was measured as the peel strength. The evaluation of the peel strength was performed according to the following evaluation criteria.
Good: 1.0 N / 15 mm or more.
Poor: less than 1.0 N / 15 mm.
 (光学フィルムのレターデーションRth,Re及び厚みdの測定方法、並びに、Rth/dの評価方法)
 光学フィルムの、厚み方向のレターデーションRth及び面内レターデーションReは、位相差計(AXOMETRICS社製「AXOSCAN」)を用いて、測定波長550nmで測定した。
(Method for Measuring Retardation Rth, Re and Thickness d of Optical Film, and Method for Evaluating Rth / d)
The retardation Rth and the in-plane retardation Re in the thickness direction of the optical film were measured at a measurement wavelength of 550 nm using a phase difference meter ("AXOSCAN" manufactured by AXOMETRICS).
 光学フィルムの厚みdは、スナップゲージ(ミツトヨ社製「ID-C112BS」)により測定した。 厚 み The thickness d of the optical film was measured with a snap gauge (“ID-C112BS” manufactured by Mitutoyo Corporation).
 測定した厚み方向のレターデーションRthを、厚みdで割算して、Rth/dを算出した。 RRth / d was calculated by dividing the measured retardation Rth in the thickness direction by the thickness d.
 (85℃、500時間経過後の光学フィルムの厚み方向のレターデーションRthの変化率の評価方法)
 後述の耐久試験の前に、光学フィルムの厚み方向のレターデーションRth0を測定した。その後、光学フィルムに、85℃の環境で500時間保管する耐久試験を行った。耐久試験の後、光学フィルムの厚み方向のレターデーションRth1を測定した。これらの測定値Rth0及びRth1から、下記の式(X4)により、耐久試験による光学フィルムの厚み方向のレターデーションの変化率(Rth変化率)を計算した。
 Rth変化率(%)={(Rth0-Rth1)/Rth0}×100   (X4)
(Evaluation method of change rate of retardation Rth in thickness direction of optical film after lapse of 500 hours at 85 ° C.)
Before the durability test described below, the retardation Rth0 in the thickness direction of the optical film was measured. Thereafter, an endurance test of storing the optical film in an environment of 85 ° C. for 500 hours was performed. After the durability test, the retardation Rth1 in the thickness direction of the optical film was measured. From these measured values Rth0 and Rth1, the change rate (Rth change rate) of the retardation in the thickness direction of the optical film by the durability test was calculated by the following equation (X4).
Rth change rate (%) = {(Rth0−Rth1) / Rth0} × 100 (X4)
 前記のRth変化率が小さいほど、光学フィルムの耐熱性が優れることを表す。そこで、求めたRth変化率を、下記の評価基準によって評価した。
 良:Rth変化率が3%以下。
 不良:Rth変化率が3%より大きい。
The smaller the Rth change rate, the better the heat resistance of the optical film. Therefore, the obtained Rth change rate was evaluated according to the following evaluation criteria.
Good: Rth change rate is 3% or less.
Poor: Rth change rate is greater than 3%.
 (60℃、湿度90%、500時間経過後の光学フィルムの厚み方向のレターデーションRthの変化率の評価方法)
 後述の耐久試験の前に、光学フィルムの厚み方向のレターデーションRth0を測定した。その後、光学フィルムに、60℃、湿度90%の環境で500時間保管する耐久試験を行った。耐久試験の後、光学フィルムの厚み方向のレターデーションRth2を測定した。これらの測定値Rth0及びRth2から、下記の式(X5)により、耐久試験による光学フィルムの厚み方向のレターデーションの変化率(Rth変化率)を計算した。
 Rth変化率(%)={(Rth0-Rth2)/Rth0}×100   (X5)
(Evaluation method of the rate of change of the retardation Rth in the thickness direction of the optical film after elapse of 500 hours at 60 ° C. and 90% humidity)
Before the durability test described below, the retardation Rth0 in the thickness direction of the optical film was measured. Thereafter, a durability test was performed in which the optical film was stored in an environment of 60 ° C. and 90% humidity for 500 hours. After the durability test, the retardation Rth2 in the thickness direction of the optical film was measured. From these measured values Rth0 and Rth2, the change rate (Rth change rate) of the retardation in the thickness direction of the optical film by the durability test was calculated by the following equation (X5).
Rth change rate (%) = {(Rth0−Rth2) / Rth0} × 100 (X5)
 前記のRth変化率が小さいほど、光学フィルムの耐熱性及び耐湿性が優れることを示す。そこで、求めたRth変化率を、下記の評価基準によって評価した。
 良:Rth変化率が3%以下。
 不良:Rth変化率が3%より大きい。
The smaller the Rth change ratio, the better the heat resistance and moisture resistance of the optical film. Therefore, the obtained Rth change rate was evaluated according to the following evaluation criteria.
Good: Rth change rate is 3% or less.
Poor: Rth change rate is greater than 3%.
 (光学フィルムの吸水率の測定方法)
 光学フィルムの一部を切断して、試験片(サイズ:100mm×100mm)を用意し、その試験片の重量w0を測定した。その後、この試験片を、23℃の水中に24時間浸漬した。浸漬後、試験片の重量w1を測定した。そして、浸漬前の試験片の重量w0に対する、浸漬によって増加した試験片の重量w1-w0の割合(w1-w0)/w0を、吸水率(%)として算出した。吸水率は小さい方が好ましい。
(Method of measuring water absorption of optical film)
A part of the optical film was cut to prepare a test piece (size: 100 mm × 100 mm), and the weight w0 of the test piece was measured. Thereafter, the test piece was immersed in water at 23 ° C. for 24 hours. After immersion, the weight w1 of the test piece was measured. Then, the ratio (w1-w0) / w0 of the weight w1-w0 of the test piece increased by immersion to the weight w0 of the test piece before immersion was calculated as the water absorption (%). The smaller the water absorption, the better.
[III.液晶表示装置の特性の評価方法]
 (コーナームラの評価)
 液晶表示装置を、85℃の環境に100時間保管する耐久試験を行った。その後、液晶表示装置の画面を黒表示状態にして、画面周辺の光漏れ(コーナームラ)の有無を目視で確認した。
 良:画面周辺の光漏れは全く認められない。
 不良:画面周辺の光漏れが著しい。
[III. Method for evaluating characteristics of liquid crystal display device]
(Evaluation of corner unevenness)
A durability test was conducted in which the liquid crystal display device was stored in an environment at 85 ° C. for 100 hours. Thereafter, the screen of the liquid crystal display device was set to a black display state, and the presence or absence of light leakage (corner unevenness) around the screen was visually checked.
Good: No light leakage around the screen.
Poor: Light leakage around the screen is remarkable.
[実施例1]
(1-1)開環重合体の製造:
 内部を窒素置換したガラス製反応容器に、後述する単量体の合計100重量部に対して200部の脱水したシクロヘキサン、1-ヘキセン0.75mol%、ジイソプロピルエーテル0.15mol%、及びトリイソブチルアルミニウム0.44mol%を、室温で反応器に入れ、混合した。その後、45℃に保ちながら、反応器に、単量体としてのテトラシクロドデセン(TCD)29重量部、ジシクロペンタジエン(DCPD)68重量部及びノルボルネン(NB)3重量部と、六塩化タングステン(0.65重量%トルエン溶液)0.02mol%とを、並行して2時間かけて連続的に添加し、重合した。次いで、重合溶液に、イソプロピルアルコール0.2mol%を加えて重合触媒を不活性化し、重合反応を停止させた。前記の説明において、単位「mol%」で示される量は、いずれも、単量体の合計量を100mol%とした値である。得られたノルボルネン系開環重合体の重量平均分子量Mwは2.8×10、分子量分布(Mw/Mn)は2.1であった。また、単量体の重合体への転化率は、100%であった。
[Example 1]
(1-1) Production of ring-opened polymer:
200 parts by weight of dehydrated cyclohexane, 0.75 mol% of 1-hexene, 0.15 mol% of diisopropyl ether, and 0.44 mol% was placed in the reactor at room temperature and mixed. Thereafter, while maintaining at 45 ° C., 29 parts by weight of tetracyclododecene (TCD), 68 parts by weight of dicyclopentadiene (DCPD), 3 parts by weight of norbornene (NB), and (0.65 wt% toluene solution) and 0.02 mol% were added continuously over 2 hours in parallel to carry out polymerization. Next, 0.2 mol% of isopropyl alcohol was added to the polymerization solution to inactivate the polymerization catalyst, and the polymerization reaction was stopped. In the above description, the amounts represented by the unit “mol%” are values in which the total amount of the monomers is 100 mol%. The weight-average molecular weight Mw of the obtained ring-opened norbornene polymer was 2.8 × 10 4 , and the molecular weight distribution (Mw / Mn) was 2.1. The conversion of the monomer into the polymer was 100%.
(1-2)水素化によるノルボルネン系重合体の製造:
 次いで、前記の工程(1-1)で得られた開環重合体を含む反応溶液300部を攪拌器付きオートクレーブに移し、ケイソウ土担持ニッケル触媒(日揮化学社製「T8400RL」、ニッケル担持率57%)3部を添加し、水素圧4.5MPa、160℃で4時間、水素化反応を行なった。
(1-2) Production of norbornene-based polymer by hydrogenation:
Next, 300 parts of the reaction solution containing the ring-opening polymer obtained in the above step (1-1) was transferred to an autoclave equipped with a stirrer, and a diatomaceous earth-supported nickel catalyst (“T8400RL” manufactured by JGC Chemical Co., Ltd .; %) And a hydrogenation reaction was carried out at a hydrogen pressure of 4.5 MPa and 160 ° C. for 4 hours.
 水素化反応の終了後、得られた溶液を、ラジオライト#500を濾過床として、圧力0.25MPaで加圧濾過(石川島播磨重工社製「フンダバックフィルター」)して、水素化触媒を除去し、無色透明な溶液を得た。得られた溶液を、大量のイソプロパノール中に注ぎ、開環重合体の水素化物としてのノルボルネン系重合体を沈殿させた。沈殿したノルボルネン系重合体を濾取した後に、ノルボルネン系重合体100部当り、酸化防止剤〔ペンタエリスリトール-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](チバ・スペシャルティ・ケミカルズ社製、製品名「イルガノックス(登録商標)1010」)〕0.1部を溶解したキシレン溶液2.0部を添加した。次いで、真空乾燥機(220℃、1Torr)で6時間乾燥させて、熱可塑性ノルボルネン系樹脂を得た。ノルボルネン系重合体の重量平均分子量は4.0×10、分子量分布Mw/Mnは2.3であった。 After the completion of the hydrogenation reaction, the obtained solution was subjected to pressure filtration ("Fundaback filter" manufactured by Ishikawajima-Harima Heavy Industries, Ltd.) at a pressure of 0.25 MPa using Radiolite # 500 as a filtration bed to remove the hydrogenation catalyst. Thus, a colorless and transparent solution was obtained. The obtained solution was poured into a large amount of isopropanol to precipitate a norbornene-based polymer as a hydride of the ring-opening polymer. After the precipitated norbornene-based polymer was collected by filtration, an antioxidant [pentaerythritol-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (100 parts) per 100 parts of the norbornene-based polymer was used. 2.0 parts of a xylene solution in which 0.1 part of a product of "Irganox (registered trademark) 1010" manufactured by Ciba Specialty Chemicals) was dissolved. Next, it was dried in a vacuum dryer (220 ° C., 1 Torr) for 6 hours to obtain a thermoplastic norbornene resin. The weight average molecular weight of the norbornene-based polymer was 4.0 × 10 4 , and the molecular weight distribution Mw / Mn was 2.3.
 得られた熱可塑性ノルボルネン系樹脂のガラス転移温度Tg、評価複屈折Δn、及び、応力複屈折Cを、上述した方法で測定した。熱可塑性ノルボルネン系樹脂のガラス転移温度Tgは110℃、評価複屈折Δnは0.0030、応力複屈折Cは2600×10-12Pa-1であった。 The glass transition temperature Tg, the evaluation birefringence Δn R , and the stress birefringence C R of the obtained thermoplastic norbornene-based resin were measured by the methods described above. The glass transition temperature Tg of the thermoplastic norbornene resin is 110 ° C., evaluation birefringence [Delta] n R is 0.0030, stress birefringence C R was 2600 × 10 -12 Pa -1.
(1-3)延伸前フィルムの製造:
 前記の工程(1-2)で得られた熱可塑性ノルボルネン系樹脂を二軸押出機に投入し、熱溶融押出成形によりストランド状の成形体に成形した。この成形体をストランドカッターを用いて細断して、熱可塑性ノルボルネン系樹脂のペレットを得た。
(1-3) Production of film before stretching:
The thermoplastic norbornene-based resin obtained in the above step (1-2) was charged into a twin-screw extruder, and was formed into a strand-like molded body by hot melt extrusion molding. This molded body was cut into pieces using a strand cutter to obtain thermoplastic norbornene-based resin pellets.
 このペレットを100℃で5時間乾燥した。その後、常法によって該ペレットを押出機に供給し、250℃で溶融させた。そして、溶融した熱可塑性ノルボルネン系樹脂を、ダイから冷却ドラム上に吐出させて、厚さ110μmの長尺の延伸前フィルムを得た。 The pellet was dried at 100 ° C for 5 hours. Thereafter, the pellets were supplied to an extruder by a conventional method and melted at 250 ° C. Then, the molten thermoplastic norbornene-based resin was discharged from the die onto a cooling drum to obtain a long unstretched film having a thickness of 110 µm.
(1-4)光学フィルムの製造:
 ロール間でのフロート方式を用いた縦延伸機を用意した。この縦延伸機を用いて、前記の延伸前フィルムを、縦方向に1.26倍に延伸して、中間フィルムを得た。縦延伸機を用いた前記の延伸の延伸温度は、120℃であり、これは、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。
(1-4) Production of optical film:
A longitudinal stretching machine using a float system between rolls was prepared. Using this longitudinal stretching machine, the above-mentioned film before stretching was stretched 1.26 times in the machine direction to obtain an intermediate film. The stretching temperature in the stretching using a longitudinal stretching machine was 120 ° C., which was a temperature (Tg + 10 ° C.) higher by 10 ° C. than the glass transition temperature Tg of the thermoplastic norbornene-based resin.
 その後、前記の中間フィルムを、テンター法を用いた横延伸機に供給し、引取り張力とテンターチェーン張力とを調整しながら、横方向に1.43倍に延伸して、二軸延伸フィルムとしての長尺の光学フィルムを得た。横延伸機を用いた前記の延伸の延伸温度は、120℃であり、これは、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。得られた光学フィルムは、面内レターデーションReが60nm、厚み方向のレターデーションRthが320nm、厚さdが65μmであった。
 得られた光学フィルムについて、上述した方法によって、評価を行った。
Thereafter, the intermediate film is supplied to a transverse stretching machine using a tenter method, and is stretched 1.43 times in a transverse direction while adjusting a take-up tension and a tenter chain tension to obtain a biaxially stretched film. Was obtained. The stretching temperature in the stretching using a transverse stretching machine was 120 ° C., which was 10 ° C. higher than the glass transition temperature Tg of the thermoplastic norbornene-based resin (Tg + 10 ° C.). The obtained optical film had an in-plane retardation Re of 60 nm, a retardation Rth in the thickness direction of 320 nm, and a thickness d of 65 μm.
The obtained optical film was evaluated by the method described above.
(1-5)光学積層体の製造:
 長尺の原反フィルムとして、厚み65μmの未延伸ポリビニルアルコールフィルム(ビニロンフィルム、平均重合度約2400、ケン化度99.9モル%)を用意した。ガイドロールを介してこの原反フィルムを長手方向に連続搬送しながら、当該フィルムに対して、30℃で1分間純水に浸漬する膨潤処理、並びに、染色溶液(ヨウ素及びヨウ化カリウムをモル比1:23で含む染色剤溶液、染色剤濃度1.2mmol/L)に32℃で2分間浸漬する染色処理を行い、フィルムにヨウ素を吸着させた。その後、フィルムを35℃で30秒間、ホウ酸3%水溶液で洗浄した。その後、57℃で、ホウ酸3%及びヨウ化カリウム5%を含む水溶液中で、フィルムを6.0倍に延伸した。その後、フィルムに対して、35℃で、ヨウ化カリウム5%及びホウ酸1.0%を含む水溶液中で補色処理を行った。その後、フィルムを60℃で2分間乾燥させて、厚み23μmの長尺の偏光子層を得た。この偏光子層の偏光度を紫外可視分光光度計(日本分光社製「V-7100」)で測定したところ、99.996%であった。
(1-5) Production of optical laminate:
An unstretched polyvinyl alcohol film (vinylon film, average degree of polymerization of about 2400, degree of saponification of 99.9 mol%) having a thickness of 65 μm was prepared as a long raw film. While continuously transporting this raw film in the longitudinal direction via a guide roll, the film is swelled by immersing it in pure water at 30 ° C. for 1 minute, and a dyeing solution (molar ratio of iodine and potassium iodide is used). Dyeing treatment was performed by immersing in a dye solution containing 1:23 (dye concentration: 1.2 mmol / L) at 32 ° C. for 2 minutes to adsorb iodine on the film. Thereafter, the film was washed with a 3% aqueous solution of boric acid at 35 ° C. for 30 seconds. Thereafter, the film was stretched 6.0 times at 57 ° C. in an aqueous solution containing 3% of boric acid and 5% of potassium iodide. Thereafter, the film was subjected to a complementary color treatment at 35 ° C. in an aqueous solution containing 5% of potassium iodide and 1.0% of boric acid. Thereafter, the film was dried at 60 ° C. for 2 minutes to obtain a long polarizer layer having a thickness of 23 μm. The degree of polarization of this polarizer layer was measured with an ultraviolet-visible spectrophotometer (“V-7100” manufactured by JASCO Corporation) and found to be 99.996%.
 アクリル樹脂(住友化学社製「スミペックスHT55X」)を、Tダイを備える熱溶融押出フィルム成形機に供給した。Tダイからアクリル樹脂を押し出し、アクリル樹脂をフィルム状に成形した。これにより、アクリル樹脂で形成された厚み40μmの長尺の保護フィルム層を得た。 Acrylic resin (“SUMIPEX HT55X” manufactured by Sumitomo Chemical Co., Ltd.) was supplied to a hot melt extruded film forming machine equipped with a T die. The acrylic resin was extruded from the T-die, and the acrylic resin was formed into a film. Thus, a long protective film layer formed of an acrylic resin and having a thickness of 40 μm was obtained.
 得られた保護フィルム層の片方の面に、コロナ処理を施した。その後、コロナ処理を施した保護フィルム層の面に、紫外線硬化型接着剤(ADEKA社製「アークルズKRX-7007」)を塗工して、接着層を形成した。この接着層を介して、偏光子層と保護フィルム層とを、ピンチロールを用いて貼り合わせた。その直後に、UV照射装置により接着層に750mJ/cmの紫外線照射を行って、接着層を硬化させた。これにより、偏光子層/接着層(厚み2μm)/保護フィルム層の層構成を有する長尺の偏光板を得た。 One surface of the obtained protective film layer was subjected to a corona treatment. Thereafter, an ultraviolet-curing adhesive ("Arcles KRX-7007" manufactured by ADEKA) was applied to the surface of the protective film layer subjected to the corona treatment to form an adhesive layer. The polarizer layer and the protective film layer were bonded via the adhesive layer using a pinch roll. Immediately thereafter, the adhesive layer was irradiated with ultraviolet light at 750 mJ / cm 2 by a UV irradiation device to cure the adhesive layer. As a result, a long polarizing plate having a layer structure of polarizer layer / adhesive layer (thickness: 2 μm) / protective film layer was obtained.
 光学フィルムの片方の面に、コロナ処理を施した。その後、コロナ処理を施した光学フィルムの面に、紫外線硬化型接着剤(ADEKA社製「アークルズKRX-7007」)を塗工して、接着層を形成した。この接着層を介して、偏光板と光学フィルムとを、ピンチロールを用いて貼り合わせた。その直後に、UV照射装置により接着層に750mJ/cmの紫外線照射を行って、接着層を硬化させた。貼り合わせは、光学フィルムの遅相軸と偏光子層の吸収軸とが、厚み方向から見て垂直になるように行った。これより、光学フィルム/接着層/偏光子層/接着層/保護フィルム層の層構成を有する長尺の光学積層体を得た。 One surface of the optical film was subjected to a corona treatment. Thereafter, an ultraviolet-curable adhesive ("Arcles KRX-7007" manufactured by ADEKA) was applied to the surface of the optical film that had been subjected to the corona treatment to form an adhesive layer. The polarizing plate and the optical film were bonded via the adhesive layer using a pinch roll. Immediately thereafter, the adhesive layer was irradiated with ultraviolet light at 750 mJ / cm 2 by a UV irradiation device to cure the adhesive layer. Lamination was performed so that the slow axis of the optical film and the absorption axis of the polarizer layer were perpendicular to each other when viewed from the thickness direction. Thus, a long optical laminate having a layer structure of optical film / adhesive layer / polarizer layer / adhesive layer / protective film layer was obtained.
(1-6)VA型液晶表示装置の製造:
 VA型の液晶表示装置(パナソニック社製の40型テレビ「TH-40AX700」)を用意した。この液晶表示装置は、液晶セルのガラス面に貼合された視認側の偏光板を備えていた。液晶表示装置からこの視認側の偏光板を剥がした。その後、前記の工程(1-5)で製造した長尺の光学積層体を液晶表示装置の適切な大きさに裁断し、光学フィルム側の面を、液晶セルのガラス面に貼合して、試験用のVA型液晶表示装置を製造した。前記の貼合は、液晶表示装置が元々備えていた視認側の偏光板の吸収軸の方向と、新たに液晶セルに貼合された光学積層体の偏光子層の吸収軸の方向とが一致するように行った。
 得られた液晶表示装置について、上述した方法で評価を行った。
(1-6) Production of VA liquid crystal display device:
A VA-type liquid crystal display device (a 40-inch TV “TH-40AX700” manufactured by Panasonic Corporation) was prepared. This liquid crystal display device had a polarizing plate on the viewing side bonded to a glass surface of a liquid crystal cell. The polarizing plate on the viewing side was peeled off from the liquid crystal display device. Thereafter, the long optical laminate manufactured in the above step (1-5) is cut into an appropriate size for a liquid crystal display device, and the surface on the optical film side is bonded to the glass surface of the liquid crystal cell. A test VA liquid crystal display device was manufactured. In the bonding, the direction of the absorption axis of the polarizing plate on the viewing side originally provided in the liquid crystal display device matches the direction of the absorption axis of the polarizer layer of the optical laminate newly bonded to the liquid crystal cell. I went to do it.
The obtained liquid crystal display device was evaluated by the method described above.
[実施例2]
 前記の工程(1-1)において用いる単量体の組み合わせを、テトラシクロドデセン(TCD)31重量部、ジシクロペンタジエン(DCPD)68重量部、及びノルボルネン(NB)1重量部に変更した。
 前記の工程(1-4)において、縦方向の延伸倍率を1.28倍、横方向の延伸倍率を1.48倍に変更した。また、前記の工程(1-4)において、縦方向及び横方向の延伸温度を、122.5℃に変更し、これは、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。
 以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂、光学フィルム及び液晶表示装置の製造及び評価を行った。
[Example 2]
The combination of monomers used in the above step (1-1) was changed to 31 parts by weight of tetracyclododecene (TCD), 68 parts by weight of dicyclopentadiene (DCPD), and 1 part by weight of norbornene (NB).
In the above step (1-4), the stretching ratio in the longitudinal direction was changed to 1.28 times, and the stretching ratio in the transverse direction was changed to 1.48 times. In the step (1-4), the stretching temperature in the machine direction and the transverse direction was changed to 122.5 ° C., which was higher than the glass transition temperature Tg of the thermoplastic norbornene resin by 10 ° C. Tg + 10 ° C.).
Except for the above, the production and evaluation of a thermoplastic norbornene-based resin, an optical film and a liquid crystal display were performed by the same operation as in Example 1.
[実施例3]
 前記の工程(1-1)において用いる単量体の組み合わせを、テトラシクロドデセン(TCD)29重量部、ジシクロペンタジエン(DCPD)68重量部、及びエチリデンテトラシクロドデセン(ETD)3重量部に変更した。
 前記の工程(1-4)において、縦方向の延伸倍率を1.27倍、横方向の延伸倍率を1.44倍に変更した。また、前記の工程(1-4)において、縦方向及び横方向の延伸温度を、124℃に変更し、これは、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。
 以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂、光学フィルム及び液晶表示装置の製造及び評価を行った。
[Example 3]
The combination of monomers used in the above step (1-1) was combined with 29 parts by weight of tetracyclododecene (TCD), 68 parts by weight of dicyclopentadiene (DCPD), and 3 parts by weight of ethylidenetetracyclododecene (ETD). Changed to
In the above step (1-4), the stretching ratio in the longitudinal direction was changed to 1.27 times, and the stretching ratio in the transverse direction was changed to 1.44 times. In the above step (1-4), the stretching temperature in the machine direction and the transverse direction was changed to 124 ° C., which was higher than the glass transition temperature Tg of the thermoplastic norbornene resin by 10 ° C. (Tg + 10 ° C.). )Met.
Except for the above, the production and evaluation of a thermoplastic norbornene-based resin, an optical film and a liquid crystal display were performed by the same operation as in Example 1.
[実施例4]
 前記の工程(1-1)において用いる単量体の組み合わせを、テトラシクロドデセン(TCD)31重量部、ジシクロペンタジエン(DCPD)68重量部、及びエチリデンテトラシクロドデセン(ETD)1重量部に変更した。
 前記の工程(1-4)において、縦方向の延伸倍率を1.30倍、横方向の延伸倍率を1.50倍に変更した。また、前記の工程(1-4)において、縦方向及び横方向の延伸温度を、125℃に変更し、これは、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。
 以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂、光学フィルム及び液晶表示装置の製造及び評価を行った。
[Example 4]
The combination of the monomers used in the above step (1-1) was mixed with 31 parts by weight of tetracyclododecene (TCD), 68 parts by weight of dicyclopentadiene (DCPD), and 1 part by weight of ethylidenetetracyclododecene (ETD). Changed to
In the above step (1-4), the stretching ratio in the longitudinal direction was changed to 1.30 times, and the stretching ratio in the transverse direction was changed to 1.50 times. In the above step (1-4), the stretching temperature in the machine direction and the transverse direction was changed to 125 ° C., which was higher by 10 ° C. than the glass transition temperature Tg of the thermoplastic norbornene resin (Tg + 10 ° C.). )Met.
Except for the above, the production and evaluation of a thermoplastic norbornene-based resin, an optical film and a liquid crystal display were performed by the same operation as in Example 1.
[実施例5]
 前記の工程(1-1)において用いる単量体の組み合わせを、テトラシクロドデセン(TCD)30重量部及びジシクロペンタジエン(DCPD)70重量部に変更した。
 前記の工程(1-4)において、縦方向の延伸倍率を1.256倍に変更した。また、前記の工程(1-4)において、縦方向及び横方向の延伸温度を、125.5℃に変更し、これは、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。
 以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂、光学フィルム及び液晶表示装置の製造及び評価を行った。
[Example 5]
The combination of monomers used in the above step (1-1) was changed to 30 parts by weight of tetracyclododecene (TCD) and 70 parts by weight of dicyclopentadiene (DCPD).
In the above step (1-4), the stretching ratio in the longitudinal direction was changed to 1.256 times. In the step (1-4), the stretching temperature in the machine direction and the transverse direction was changed to 125.5 ° C., which was higher than the glass transition temperature Tg of the thermoplastic norbornene resin by 10 ° C. Tg + 10 ° C.).
Except for the above, the production and evaluation of a thermoplastic norbornene-based resin, an optical film and a liquid crystal display were performed by the same operation as in Example 1.
[比較例1]
 前記の工程(1-1)において用いる単量体の組み合わせを、テトラシクロドデセン(TCD)31重量部、ジシクロペンタジエン(DCPD)68重量部、及びノルボルネン(NB)1重量部に変更した。さらに、前記の工程(1-1)における重合温度を、55℃に変更した。
 前記の工程(1-4)において、縦方向の延伸倍率を1.25倍、横方向の延伸倍率を1.45倍に変更した。また、前記の工程(1-4)において、縦方向及び横方向の延伸温度を、122℃に変更し、これは、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。
 以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂、光学フィルム及び液晶表示装置の製造及び評価を行った。
[Comparative Example 1]
The combination of monomers used in the above step (1-1) was changed to 31 parts by weight of tetracyclododecene (TCD), 68 parts by weight of dicyclopentadiene (DCPD), and 1 part by weight of norbornene (NB). Further, the polymerization temperature in the above step (1-1) was changed to 55 ° C.
In the above step (1-4), the stretching ratio in the longitudinal direction was changed to 1.25 times, and the stretching ratio in the transverse direction was changed to 1.45 times. In the step (1-4), the stretching temperature in the machine direction and the transverse direction was changed to 122 ° C., which was higher than the glass transition temperature Tg of the thermoplastic norbornene resin by 10 ° C. (Tg + 10 ° C.). )Met.
Except for the above, the production and evaluation of a thermoplastic norbornene-based resin, an optical film and a liquid crystal display were performed by the same operation as in Example 1.
[比較例2]
 前記の工程(1-1)において用いる単量体の組み合わせを、テトラシクロドデセン(TCD)5重量部、ジシクロペンタジエン(DCPD)80重量部、及びエチリデンテトラシクロドデセン(ETD)15重量部に変更した。
 前記の工程(1-4)において、縦方向の延伸倍率を1.35倍、横方向の延伸倍率を1.55倍に変更した。また、前記の工程(1-4)において、縦方向及び横方向の延伸温度を、114℃に変更し、これは、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。
 以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂、光学フィルム及び液晶表示装置の製造及び評価を行った。
[Comparative Example 2]
The combination of monomers used in the above step (1-1) was mixed with 5 parts by weight of tetracyclododecene (TCD), 80 parts by weight of dicyclopentadiene (DCPD), and 15 parts by weight of ethylidenetetracyclododecene (ETD). Changed to
In the above step (1-4), the stretching ratio in the longitudinal direction was changed to 1.35 times, and the stretching ratio in the transverse direction was changed to 1.55 times. In the above step (1-4), the stretching temperature in the longitudinal and transverse directions was changed to 114 ° C., which was higher than the glass transition temperature Tg of the thermoplastic norbornene resin by 10 ° C. (Tg + 10 ° C.). )Met.
Except for the above, the production and evaluation of a thermoplastic norbornene-based resin, an optical film and a liquid crystal display were performed by the same operation as in Example 1.
[比較例3]
 前記の工程(1-1)において用いる単量体の組み合わせを、メタノテトラヒドロフルオレン(MTF)10重量部、テトラシクロドデセン(TCD)40重量部、及びジシクロペンタジエン(DCPD)50重量部に変更した。
 前記の工程(1-4)において、縦方向の延伸倍率を1.60倍、横方向の延伸倍率を1.80倍に変更した。また、前記の工程(1-4)において、縦方向及び横方向の延伸温度を、138℃に変更し、これは、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。
 以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂、光学フィルム及び液晶表示装置の製造及び評価を行った。
[Comparative Example 3]
The combination of monomers used in the step (1-1) was changed to 10 parts by weight of methanotetrahydrofluorene (MTF), 40 parts by weight of tetracyclododecene (TCD), and 50 parts by weight of dicyclopentadiene (DCPD). did.
In the above step (1-4), the stretching ratio in the longitudinal direction was changed to 1.60 times and the stretching ratio in the transverse direction was changed to 1.80 times. In the above step (1-4), the stretching temperature in the machine direction and the transverse direction was changed to 138 ° C., which was higher than the glass transition temperature Tg of the thermoplastic norbornene resin by 10 ° C. (Tg + 10 ° C.). )Met.
Except for the above, the production and evaluation of a thermoplastic norbornene-based resin, an optical film and a liquid crystal display were performed by the same operation as in Example 1.
[比較例4]
 前記の工程(1-1)において用いる単量体の組み合わせを、メタノテトラヒドロフルオレン(MTF)10重量部、テトラシクロドデセン(TCD)40重量部、及びジシクロペンタジエン(DCPD)50重量部に変更した。
 前記の工程(1-4)において、縦方向の延伸倍率を1.20倍、横方向の延伸倍率を1.40倍に変更した。また、前記の工程(1-4)において、縦方向及び横方向の延伸温度を、138℃に変更し、これは、熱可塑性ノルボルネン系樹脂のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。
 以上の事項以外は、実施例1と同じ操作により、熱可塑性ノルボルネン系樹脂、光学フィルム及び液晶表示装置の製造及び評価を行った。
[Comparative Example 4]
The combination of monomers used in the step (1-1) was changed to 10 parts by weight of methanotetrahydrofluorene (MTF), 40 parts by weight of tetracyclododecene (TCD), and 50 parts by weight of dicyclopentadiene (DCPD). did.
In the above step (1-4), the stretching ratio in the longitudinal direction was changed to 1.20 times, and the stretching ratio in the transverse direction was changed to 1.40 times. In the above step (1-4), the stretching temperature in the machine direction and the transverse direction was changed to 138 ° C., which was higher than the glass transition temperature Tg of the thermoplastic norbornene resin by 10 ° C. (Tg + 10 ° C.). )Met.
Except for the above, the production and evaluation of a thermoplastic norbornene-based resin, an optical film and a liquid crystal display were performed by the same operation as in Example 1.
[比較例5]
 単量体としてテトラシクロドデセン(TCD)50重量部及び8-メチルテトラシクロドデセン(MTD)50重量部を用いたこと以外は、実施例1の工程(1-1)と同じ操作を行って、開環重合体を得た。開環重合体の重量平均分子量Mwは4.0×10、分子量分布Mw/Mnは2.0であった。単量体の重合体への転化率は100%であった。
[Comparative Example 5]
The same operation as in step (1-1) of Example 1 was performed, except that 50 parts by weight of tetracyclododecene (TCD) and 50 parts by weight of 8-methyltetracyclododecene (MTD) were used as monomers. Thus, a ring-opened polymer was obtained. The weight average molecular weight Mw of the ring-opened polymer was 4.0 × 10 4 , and the molecular weight distribution Mw / Mn was 2.0. The conversion of the monomer into the polymer was 100%.
 こうして得られた開環重合体を含む重合反応溶液300部を攪拌器付きオートクレーブに移し、ケイソウ土担持ニッケル触媒(日揮化学社製「T8400RL」、ニッケル担持率57%)3部を添加し、水素圧4.5MPa、160℃で4時間、水素化反応を行なった。 300 parts of the polymerization reaction solution containing the ring-opening polymer thus obtained was transferred to an autoclave equipped with a stirrer, and 3 parts of a diatomaceous earth-supported nickel catalyst ("T8400RL" manufactured by JGC Chemicals, nickel support rate 57%) was added, and hydrogen was added. The hydrogenation reaction was performed at a pressure of 4.5 MPa and 160 ° C. for 4 hours.
 水素化反応の終了後、得られた溶液を、ラジオライト#500を濾過床として、圧力0.25MPaで加圧濾過(石川島播磨重工社製「フンダバックフィルター」)して、水素化触媒を除去し、無色透明な溶液を得た。得られた溶液を、大量のイソプロパノール中に注ぎ、重合体を沈殿させた。沈殿した重合体を濾取した後に、真空乾燥機(220℃、1Torr)で6時間乾燥させて、前記の開環重合体の水素化物を得た。当該開環重合体の水素化物のガラス転移温度Tgは、158℃であった。 After the completion of the hydrogenation reaction, the obtained solution was subjected to pressure filtration ("Fundaback filter" manufactured by Ishikawajima-Harima Heavy Industries, Ltd.) at a pressure of 0.25 MPa using Radiolite # 500 as a filtration bed to remove the hydrogenation catalyst. Thus, a colorless and transparent solution was obtained. The resulting solution was poured into a large amount of isopropanol to precipitate the polymer. After the precipitated polymer was collected by filtration, it was dried in a vacuum drier (220 ° C., 1 Torr) for 6 hours to obtain a hydride of the ring-opened polymer. The glass transition temperature Tg of the hydride of the ring-opened polymer was 158 ° C.
 この開環重合体の水素化物28重量部、無水マレイン酸10重量部、及びジクミルパーオキシド3重量部をt-ブチルベンゼン130重量部に溶解し、140℃で6時間反応させた。得られた反応生成物溶液をメタノール中に注ぎ、反応生成物を凝固させた。この凝固物を真空乾燥機(220℃、1Torr)で6時間乾燥させて、マレイン酸変性開環重合体水素化物を得た。このマレイン酸変性開環重合体水素化物を、以下、「極性COP」ということがある。極性COPのマレイン酸基含有率は25モル%であった。 2828 parts by weight of the hydride of this ring-opened polymer, 10 parts by weight of maleic anhydride, and 3 parts by weight of dicumyl peroxide were dissolved in 130 parts by weight of t-butylbenzene and reacted at 140 ° C. for 6 hours. The obtained reaction product solution was poured into methanol to coagulate the reaction product. The coagulated product was dried in a vacuum dryer (220 ° C., 1 Torr) for 6 hours to obtain a hydrogenated maleic acid-modified ring-opened polymer. This hydrogenated maleic acid-modified ring-opening polymer may be hereinafter referred to as “polar COP”. The polar COP had a maleic acid group content of 25 mol%.
 前記の工程(1-3)において、延伸前フィルムの材料の樹脂として、前記の極性COPを用いた。
 前記の工程(1-4)において、縦方向の延伸倍率を1.62倍、横方向の延伸倍率を1.82倍に変更した。また、前記の工程(1-4)において、縦方向及び横方向の延伸温度を、180℃に変更し、これは、マレイン酸変性開環重合体水素化物のガラス転移温度Tgよりも10℃高い温度(Tg+10℃)であった。
 以上の事項以外は、実施例1と同じ操作により、光学フィルム及び液晶表示装置の製造及び評価を行った。
In the above step (1-3), the above-mentioned polar COP was used as a resin of the material of the film before stretching.
In the above step (1-4), the stretching ratio in the longitudinal direction was changed to 1.62 times, and the stretching ratio in the transverse direction was changed to 1.82 times. In the step (1-4), the stretching temperature in the machine direction and the transverse direction was changed to 180 ° C., which is higher by 10 ° C. than the glass transition temperature Tg of the hydrogenated maleic acid-modified ring-opening polymer. Temperature (Tg + 10 ° C.).
Except for the above, the same operation as in Example 1 was performed to manufacture and evaluate the optical film and the liquid crystal display device.
[結果]
 前記の実施例及び比較例の結果を、下記の表1及び表2に示す。下記の表1及び表2において、略称の意味は、下記の通りである。
 モノマーの欄の「T」:テトラシクロドデセン(TCD)。
 モノマーの欄の「D」:ジシクロペンタジエン(DCPD)。
 モノマーの欄の「N」:ノルボルネン(NB)。
 モノマーの欄の「E」:エチリデンテトラシクロドデセン(ETD)。
 モノマーの欄の「M」:メタノテトラヒドロフルオレン(MTF)。
 Rth変化率(85℃):85℃の環境で500時間保管する耐久試験による光学フィルムの厚み方向のレターデーションの変化率。
 Rth変化率(60℃90%):60℃、湿度90%の環境で500時間保管する耐久試験による光学フィルムの厚み方向のレターデーションの変化率。
[result]
The results of the above examples and comparative examples are shown in Tables 1 and 2 below. In Tables 1 and 2 below, the meanings of the abbreviations are as follows.
"T" in the column of monomer: tetracyclododecene (TCD).
"D" in the column of monomer: dicyclopentadiene (DCPD).
“N” in the column of monomer: norbornene (NB).
"E" in the column of monomer: ethylidenetetracyclododecene (ETD).
“M” in the column of monomer: methanotetrahydrofluorene (MTF).
Rth change rate (85 ° C.): Change rate of retardation in the thickness direction of the optical film by a durability test in which the film is stored at 85 ° C. for 500 hours.
Rth change rate (60 ° C. 90%): Change rate of retardation in the thickness direction of the optical film by an endurance test in which the film is stored in an environment of 60 ° C. and 90% humidity for 500 hours.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[参考例1.剥離強度の測定方法の妥当性について]
 上述した実施例及び比較例で採用した剥離強度の測定方法が、被着体が偏光板である場合の剥離強度の評価を反映したものであると言えるか否かを評価する実験を行った。
[Reference Example 1. The validity of the peel strength measurement method]
An experiment was conducted to evaluate whether or not the peel strength measurement method employed in the above-described Examples and Comparative Examples reflects the evaluation of the peel strength when the adherend is a polarizing plate.
 特開2005-70140号公報の実施例1に記載された方法と同じ方法により、偏光フィルム及び接着剤を用意した。また、測定対象フィルムとして、本願の実施例1で得られた光学フィルムを用意した。この光学フィルムの片面にコロナ処理を施し、このコロナ処理面を、偏光フィルムの片方の表面に、接着剤を介して貼合した。偏光フィルムのもう片方の表面には、トリアセチルセルロースフィルムを、接着剤を介して貼合した。その後、80℃で7分間乾燥させて接着剤を硬化させて、サンプルフィルムを得た。得られたサンプルフィルムについて、上述した(光学フィルムのデラミネーションの評価方法)におけるものと同じ90度剥離試験を行った。その結果、本願実施例1で得られた値と同様の剥離強度の値が得られた。 偏光 A polarizing film and an adhesive were prepared by the same method as described in Example 1 of JP-A-2005-70140. Further, the optical film obtained in Example 1 of the present application was prepared as a film to be measured. One surface of the optical film was subjected to a corona treatment, and the corona treated surface was bonded to one surface of the polarizing film via an adhesive. A triacetyl cellulose film was bonded to the other surface of the polarizing film via an adhesive. Thereafter, the adhesive was cured by drying at 80 ° C. for 7 minutes to obtain a sample film. The obtained sample film was subjected to the same 90-degree peel test as described above (the method for evaluating delamination of an optical film). As a result, a peel strength value similar to the value obtained in Example 1 of the present application was obtained.
 この結果から、上述した実施例及び比較例で採用した剥離強度の測定方法による剥離強度の測定結果が、被着体が偏光板である場合の剥離強度の評価を反映したものであることが確認された。 From this result, it was confirmed that the measurement results of the peel strength by the peel strength measuring method adopted in the above-described Examples and Comparative Examples reflected the evaluation of the peel strength when the adherend was a polarizing plate. Was done.

Claims (8)

  1.  ノルボルネン系重合体を含む熱可塑性ノルボルネン系樹脂で形成された光学フィルムであって、
     前記熱可塑性ノルボルネン系樹脂のガラス転移温度Tgが、下記式(1)を満たし、
     前記熱可塑性ノルボルネン系樹脂に、Tg+15℃、1分間で1.5倍に自由端一軸延伸を施した場合に発現する複屈折Δnが、下記式(2)を満たし、
     前記光学フィルムの厚み方向のレターデーションRth、及び、前記光学フィルムの厚みdが、下記式(3)を満たす、光学フィルム。
     (1)Tg≧110℃
     (2)Δn≧0.0025
     (3)Rth/d≧3.5×10-3
    An optical film formed of a thermoplastic norbornene-based resin containing a norbornene-based polymer,
    The glass transition temperature Tg of the thermoplastic norbornene resin satisfies the following formula (1),
    The birefringence Δn R which is expressed when the thermoplastic norbornene-based resin is subjected to free-end uniaxial stretching 1.5 times in 1 minute at Tg + 15 ° C. satisfies the following formula (2):
    An optical film, wherein a retardation Rth in a thickness direction of the optical film and a thickness d of the optical film satisfy the following formula (3).
    (1) Tg ≧ 110 ° C.
    (2) Δn R ≧ 0.0025
    (3) Rth / d ≧ 3.5 × 10 −3
  2.  前記ノルボルネン系重合体の分子量分布が、2.4以下である、請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein the molecular weight distribution of the norbornene-based polymer is 2.4 or less.
  3.  前記ノルボルネン系重合体が、テトラシクロドデセン系単量体を25重量%以上含む単量体の重合体及びその水素化物からなる群より選ばれ、
     前記テトラシクロドデセン系単量体が、テトラシクロドデセン、及び、テトラシクロドデセンの環に置換基が結合したテトラシクロドデセン誘導体からなる群より選ばれる、請求項1又は2に記載の光学フィルム。
    The norbornene-based polymer is selected from the group consisting of a polymer of a monomer containing at least 25% by weight of a tetracyclododecene-based monomer and a hydride thereof;
    3. The method according to claim 1, wherein the tetracyclododecene-based monomer is selected from the group consisting of tetracyclododecene and a tetracyclododecene derivative in which a substituent is bonded to a ring of tetracyclododecene. 4. Optical film.
  4.  前記光学フィルムの光弾性係数が8Brewster以下である、請求項1~3のいずれか一項に記載の光学フィルム。 (4) The optical film according to any one of (1) to (3), wherein the optical film has a photoelastic coefficient of 8 Brewster or less.
  5.  前記光学フィルムの面内レターデーションReが、40nm以上80nm以下である、請求項1~4のいずれか一項に記載の光学フィルム。 The optical film according to any one of claims 1 to 4, wherein the in-plane retardation Re of the optical film is from 40 nm to 80 nm.
  6.  請求項1~5のいずれか一項に記載の光学フィルムの製造方法であって、
     前記熱可塑性ノルボルネン系樹脂を、押出成形法又は溶液キャスト法によって成形することを含む、光学フィルムの製造方法。
    A method for producing an optical film according to any one of claims 1 to 5,
    A method for producing an optical film, comprising molding the thermoplastic norbornene-based resin by an extrusion molding method or a solution casting method.
  7.  請求項1~5のいずれか一項に記載の光学フィルムと、偏光板と、を備える光学積層体。 光学 An optical laminate comprising the optical film according to any one of claims 1 to 5 and a polarizing plate.
  8.  請求項7に記載の光学積層体を備える、液晶表示装置。 (8) A liquid crystal display device comprising the optical laminate according to claim 7.
PCT/JP2019/036994 2018-09-28 2019-09-20 Optical film, method for manufacturing same, optical layered body, and liquid crystal display device WO2020066899A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217007152A KR20210070272A (en) 2018-09-28 2019-09-20 Optical film and manufacturing method thereof, optical laminate and liquid crystal display device
JP2020549125A JP7463965B2 (en) 2018-09-28 2019-09-20 Optical film and method for producing the same, optical laminate, and liquid crystal display device
CN201980059082.8A CN112703435B (en) 2018-09-28 2019-09-20 Optical film, method for producing same, optical laminate, and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018185184 2018-09-28
JP2018-185184 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020066899A1 true WO2020066899A1 (en) 2020-04-02

Family

ID=69950099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036994 WO2020066899A1 (en) 2018-09-28 2019-09-20 Optical film, method for manufacturing same, optical layered body, and liquid crystal display device

Country Status (5)

Country Link
JP (1) JP7463965B2 (en)
KR (1) KR20210070272A (en)
CN (1) CN112703435B (en)
TW (1) TWI808262B (en)
WO (1) WO2020066899A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024007505A1 (en) * 2022-07-04 2024-01-11 广东新华粤石化集团股份公司 Cycloolefin polymer film with optical anisotropy and preparation method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115677879A (en) * 2021-07-31 2023-02-03 华为技术有限公司 Catalyst for preparing cycloolefin copolymer, preparation method of cycloolefin copolymer, cycloolefin copolymer and application of cycloolefin copolymer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038478A1 (en) * 2004-10-01 2006-04-13 Jsr Corporation Thermoplastic resin composition, optical film and retardation film
JP2009237534A (en) * 2007-11-30 2009-10-15 Jsr Corp Method for producing optical film laminate, and the optical film laminate and use thereof
WO2017150375A1 (en) * 2016-02-29 2017-09-08 日本ゼオン株式会社 Image display device
US20170336675A1 (en) * 2016-05-18 2017-11-23 Samsung Display Co. Ltd. Display device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3899511B2 (en) 2001-04-27 2007-03-28 Jsr株式会社 Thermoplastic norbornene resin-based optical film
JP4337454B2 (en) 2003-07-24 2009-09-30 日本ゼオン株式会社 Optical compensation film, optical compensation film manufacturing method, optical laminate, and liquid crystal display device
JP4525381B2 (en) 2005-02-23 2010-08-18 日本ゼオン株式会社 Method for producing stretched polyolefin film
JP2006327112A (en) 2005-05-27 2006-12-07 Nippon Zeon Co Ltd Manufacturing method of stretched film
JP2008114369A (en) 2006-10-31 2008-05-22 Nippon Zeon Co Ltd Manufacturing method of stretched film and use of stretched film
WO2014148261A1 (en) * 2013-03-18 2014-09-25 日本ゼオン株式会社 Optical laminated body, polarizing plate complex, liquid crystal display device, and production method
JP2015100984A (en) * 2013-11-25 2015-06-04 日本ゼオン株式会社 Laminate and polarizing plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038478A1 (en) * 2004-10-01 2006-04-13 Jsr Corporation Thermoplastic resin composition, optical film and retardation film
JP2009237534A (en) * 2007-11-30 2009-10-15 Jsr Corp Method for producing optical film laminate, and the optical film laminate and use thereof
WO2017150375A1 (en) * 2016-02-29 2017-09-08 日本ゼオン株式会社 Image display device
US20170336675A1 (en) * 2016-05-18 2017-11-23 Samsung Display Co. Ltd. Display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024007505A1 (en) * 2022-07-04 2024-01-11 广东新华粤石化集团股份公司 Cycloolefin polymer film with optical anisotropy and preparation method therefor

Also Published As

Publication number Publication date
JP7463965B2 (en) 2024-04-09
CN112703435A (en) 2021-04-23
TWI808262B (en) 2023-07-11
TW202016184A (en) 2020-05-01
JPWO2020066899A1 (en) 2021-10-07
CN112703435B (en) 2023-03-24
KR20210070272A (en) 2021-06-14

Similar Documents

Publication Publication Date Title
CN107076905B (en) Long strip circular polarizing plate, long strip wide band lambda/4 plate, organic electroluminescent display device and liquid crystal display device
KR102526886B1 (en) liquid crystal display
KR101509276B1 (en) Stretched film, process for producing the same, and liquid-crystal display
JP4655973B2 (en) Stretched laminated film
WO2017170346A1 (en) Circularly polarizing plate and image display device
JP7463965B2 (en) Optical film and method for producing the same, optical laminate, and liquid crystal display device
JP6451645B2 (en) Method for producing stretched film
JP2005017435A (en) Optical retardation compensation film, onjugated polarizer and liquid crystal display
JP2005004096A (en) Phase difference compensating film, method for manufacturing the same composite polarizing plate, polarizing plate, and liquid crystal display device
JP2010160238A (en) Liquid crystal panel and liquid crystal display apparatus
JP7322889B2 (en) Molded article and its manufacturing method
JP7380559B2 (en) Optical films, optical laminates, and liquid crystal display devices
JP7405013B2 (en) Long circularly polarizing plate, long broadband λ/4 plate, organic electroluminescent display device, and liquid crystal display device
JP2023091457A (en) Phase difference film, polarizer, and image display device
JP2006301522A (en) Method for manufacturing retardation film, and retardation film
JP2009126080A (en) Method of manufacturing stretched film
JP2005077450A (en) Optical laminate, optical element, and liquid crystal display
JP2005004095A (en) Phase difference compensating film, composite polarizing plate, polarizing plate, liquid crystal display device, and method for manufacturing phase difference compensating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549125

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865612

Country of ref document: EP

Kind code of ref document: A1