JP7380559B2 - Optical films, optical laminates, and liquid crystal display devices - Google Patents

Optical films, optical laminates, and liquid crystal display devices Download PDF

Info

Publication number
JP7380559B2
JP7380559B2 JP2020530064A JP2020530064A JP7380559B2 JP 7380559 B2 JP7380559 B2 JP 7380559B2 JP 2020530064 A JP2020530064 A JP 2020530064A JP 2020530064 A JP2020530064 A JP 2020530064A JP 7380559 B2 JP7380559 B2 JP 7380559B2
Authority
JP
Japan
Prior art keywords
polymer
film
optical film
optical
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020530064A
Other languages
Japanese (ja)
Other versions
JPWO2020012889A1 (en
Inventor
寛哉 西岡
健作 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Publication of JPWO2020012889A1 publication Critical patent/JPWO2020012889A1/en
Application granted granted Critical
Publication of JP7380559B2 publication Critical patent/JP7380559B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、光学フィルム、光学積層体、及び、液晶表示装置に関する。 The present invention relates to an optical film, an optical laminate, and a liquid crystal display device.

従来、熱可塑性樹脂からなる光学フィルムが知られている。例えば、特許文献1には、熱可塑性ノルボルネン樹脂を含む光学フィルムが開示されている。 Conventionally, optical films made of thermoplastic resin are known. For example, Patent Document 1 discloses an optical film containing a thermoplastic norbornene resin.

特開2003-238705号公報(対応公報:米国特許出願公開第2004/057141号明細書)Japanese Patent Application Publication No. 2003-238705 (corresponding publication: US Patent Application Publication No. 2004/057141)

液晶表示装置に用いる光学フィルムにおいては、位相差発現性に優れ、厚み方向のレタデーションRthが高いものが求められている。従来の熱可塑性樹脂からなるフィルムを用いて、厚み方向のレタデーションRthの高い光学フィルムを得る方法としては、高い延伸倍率で延伸することが考えられる。しかしながら、高い延伸倍率で延伸して得られたフィルムを、他の部材に接着した場合に、フィルムの表面近傍部分が破壊されることにより当該フィルムが他の部材から剥離する現象(デラミネーション)が発生することがあった。 Optical films used in liquid crystal display devices are required to have excellent retardation properties and high retardation Rth in the thickness direction. One possible method for obtaining an optical film with high retardation Rth in the thickness direction using a conventional film made of thermoplastic resin is to stretch it at a high stretching ratio. However, when a film obtained by stretching at a high stretching ratio is adhered to another member, there is a phenomenon (delamination) in which the film peels off from the other member due to destruction of the area near the surface of the film. Occasionally this occurred.

本発明は、前記の課題に鑑みて創案されたもので、位相差発現性に優れ、厚み方向のレタデーションが高く、かつデラミネーションの発生を抑制した光学フィルム、当該光学フィルムを備えた光学積層体、及び当該光学積層体を備えた液晶表示装置を提供することを目的とする。 The present invention was created in view of the above-mentioned problems, and includes an optical film that has excellent retardation properties, high retardation in the thickness direction, and suppresses the occurrence of delamination, and an optical laminate including the optical film. , and a liquid crystal display device including the optical laminate.

本発明者は、前記の課題を解決するべく鋭意検討した。その結果、本発明者は、光学フィルムの材料として、応力複屈折Cが大きく、ガラス転移温度Tgが高い熱可塑性ノルボルネン系樹脂を用い、かつ、光学フィルムの、厚みdに対する、厚み方向のレタデーションRthの比(Rth/d)を所定値以上とすることで、前記課題を解決できることを見出し、本発明を完成させた。
すなわち、本発明は、下記のものを含む。
The inventors of the present invention have made extensive studies to solve the above problems. As a result, the present inventor used a thermoplastic norbornene-based resin with a large stress birefringence C R and a high glass transition temperature Tg as the material of the optical film, and the retardation in the thickness direction with respect to the thickness d of the optical film. The inventors have discovered that the above problem can be solved by setting the ratio of Rth (Rth/d) to a predetermined value or more, and have completed the present invention.
That is, the present invention includes the following.

〔1〕 熱可塑性ノルボルネン系樹脂からなる光学フィルムであって、
前記熱可塑性ノルボルネン系樹脂は、応力複屈折Cが2900×10-12Pa-1より大きく、ガラス転移温度Tgが125℃以上であり、
前記光学フィルムの、厚みdに対する、厚み方向のレタデーションRthの比(Rth/d)は、3.5×10-3以上であり、
延伸フィルムである、光学フィルム。
〔2〕 面内方向のレタデーションReが40nm以上80nm以下である、〔1〕に記載の光学フィルム。
〔3〕 前記熱可塑性ノルボルネン系樹脂が、重合体を含み、
前記重合体が、芳香環構造を有するノルボルネン系単量体単位を含む、〔1〕又は〔2〕に記載の光学フィルム。
〔4〕 前記重合体が、前記芳香環構造を有するノルボルネン系単量体単位を25重量%以上含む、〔3〕に記載の光学フィルム。
〔5〕 〔1〕~〔4〕のいずれか一項に記載の光学フィルムと、
前記光学フィルムの上に設けられた偏光板と、を備える光学積層体。
〔6〕 〔5〕記載の光学積層体を備える液晶表示装置。
[1] An optical film made of thermoplastic norbornene resin,
The thermoplastic norbornene resin has a stress birefringence C R greater than 2900×10 −12 Pa −1 and a glass transition temperature Tg of 125° C. or higher,
The ratio of the retardation Rth in the thickness direction to the thickness d (Rth/d) of the optical film is 3.5×10 −3 or more,
An optical film that is a stretched film.
[2] The optical film according to [1], which has an in-plane retardation Re of 40 nm or more and 80 nm or less.
[3] The thermoplastic norbornene resin contains a polymer,
The optical film according to [1] or [2], wherein the polymer contains a norbornene monomer unit having an aromatic ring structure.
[4] The optical film according to [3], wherein the polymer contains 25% by weight or more of norbornene monomer units having the aromatic ring structure.
[5] The optical film according to any one of [1] to [4],
An optical laminate comprising: a polarizing plate provided on the optical film.
[6] A liquid crystal display device comprising the optical laminate according to [5].

本発明によれば、位相差発現性に優れ、厚み方向のレタデーションが高く、かつデラミネーションの発生を抑制した光学フィルム、当該光学フィルムを備えた光学積層体、及び当該光学積層体を備えた液晶表示装置を提供できる。 According to the present invention, an optical film having excellent retardation properties, high retardation in the thickness direction, and suppressing the occurrence of delamination, an optical laminate including the optical film, and a liquid crystal display including the optical laminate Display devices can be provided.

以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail by showing embodiments and examples. However, the present invention is not limited to the embodiments and examples shown below, and may be implemented with arbitrary changes within the scope of the claims of the present invention and equivalents thereof.

以下の説明において、フィルムの面内レタデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値である。また、フィルムの厚み方向のレタデーションRthは、別に断らない限り、Rth=[{(nx+ny)/2}-nz]×dで表される値である。ここで、nxは、フィルムの厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、前記面内方向であってnxの方向に直交する方向の屈折率を表す。nzは厚み方向の屈折率を表す。dは、フィルムの厚みを表す。測定波長は、別に断らない限り、550nmである。 In the following description, the in-plane retardation Re of the film is a value expressed by Re=(nx-ny)×d, unless otherwise specified. Further, the retardation Rth in the thickness direction of the film is a value expressed by Rth=[{(nx+ny)/2}-nz]×d, unless otherwise specified. Here, nx represents the refractive index in the direction perpendicular to the thickness direction of the film (in-plane direction) and giving the maximum refractive index. ny represents the refractive index in the in-plane direction and perpendicular to the direction nx. nz represents the refractive index in the thickness direction. d represents the thickness of the film. The measurement wavelength is 550 nm unless otherwise specified.

以下の説明において、構成要素の方向が「平行」、「垂直」又は「直交」とは、特に断らない限り、本発明の効果を損ねない範囲内、例えば、通常±5°、好ましくは±2°、より好ましくは±1°の範囲内での誤差を含んでいてもよい。 In the following description, unless otherwise specified, the direction of the constituent elements is "parallel", "perpendicular", or "orthogonal" within a range that does not impair the effects of the present invention, for example, usually ±5°, preferably ±2 It may include an error within a range of 1°, more preferably ±1°.

以下の説明において、MD方向(machine direction)は、製造ラインにおけるフィルムの流れ方向であり、TD方向(traverse direction)は、フィルム面に平行な方向であって、MD方向に垂直な方向である。また便宜上、長尺状のフィルムの長手方向をフィルムのMD方向、幅方向をフィルムのTD方向と呼ぶ場合もある。
以下の説明において、「長尺状」のフィルムとは、フィルムの幅に対して、5倍以上の長さを有するものをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するものをいう。フィルムの幅に対する長さの割合の上限は、特に限定されないが、例えば100,000倍以下としうる。
In the following description, the MD direction (machine direction) is the flow direction of the film in the production line, and the TD direction (traverse direction) is a direction parallel to the film surface and perpendicular to the MD direction. For convenience, the longitudinal direction of a long film may be referred to as the MD direction of the film, and the width direction may be referred to as the TD direction of the film.
In the following description, a "long" film refers to a film that has a length of 5 times or more, preferably 10 times or more, with respect to the width of the film. refers to something long enough to be rolled up and stored or transported. The upper limit of the ratio of the length to the width of the film is not particularly limited, but may be, for example, 100,000 times or less.

以下の説明において、「偏光板」とは、別に断らない限り、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。 In the following description, unless otherwise specified, the term "polarizing plate" includes not only rigid members but also flexible members such as resin films.

[1.光学フィルム]
本発明の、光学フィルムは、熱可塑性ノルボルネン系樹脂からなるフィルムである。光学フィルムは、光学フィルムの材料となるフィルムを延伸して得られる延伸フィルムである。以下の説明において、光学フィルムの材料となるフィルムを、「延伸前フィルム」ともいう。
[1. Optical film]
The optical film of the present invention is a film made of thermoplastic norbornene resin. The optical film is a stretched film obtained by stretching a film that is a material for the optical film. In the following description, a film that is a material for an optical film is also referred to as a "unstretched film."

(熱可塑性ノルボルネン系樹脂)
熱可塑性ノルボルネン系樹脂は重合体を含む。熱可塑性ノルボルネン系樹脂に含まれる重合体としては、例えば、ノルボルネン構造を有する単量体の開環重合体若しくはノルボルネン構造を有する単量体と他の単量体との開環共重合体、又はそれらの水素化物;ノルボルネン構造を有する単量体の付加重合体若しくはノルボルネン構造を有する単量体と他の単量体との付加共重合体、又はそれらの水素化物等を挙げることができる。
(Thermoplastic norbornene resin)
Thermoplastic norbornene-based resins include polymers. Examples of the polymer contained in the thermoplastic norbornene resin include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, or Hydrides thereof; examples include addition polymers of monomers having a norbornene structure, addition copolymers of monomers having a norbornene structure and other monomers, and hydrides thereof.

ノルボルネン構造を有する単量体としては、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン、「DCPD」ともいう)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン、「TCD」ともいう)、及びこれらの化合物の誘導体(例えば、環に置換基を有するもの)が挙げられる。ここで、置換基としては、例えばアルキル基、アルキレン基、極性基などを挙げることができる。また、これらの置換基は、同一又は相異なって複数個が環に結合していてもよい。ノルボルネン構造を有する単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。Monomers having a norbornene structure include bicyclo[2.2.1]hept-2-ene (common name: norbornene), tricyclo[4.3.0.1 2,5 ]deca-3,7-diene (common name: dicyclopentadiene, also referred to as "DCPD"), tetracyclo[4.4.0.1 2,5 . 17,10] dodec-3-ene (common name: tetracyclododecene, also referred to as "TCD"), and derivatives of these compounds (eg, those having a substituent on the ring). Here, examples of the substituent include an alkyl group, an alkylene group, and a polar group. Further, a plurality of these substituents, which are the same or different, may be bonded to the ring. Monomers having a norbornene structure can be used alone or in combination of two or more.

極性基の種類としては、ヘテロ原子、又はヘテロ原子を有する原子団などが挙げられる。ヘテロ原子としては、酸素原子、窒素原子、硫黄原子、ケイ素原子、ハロゲン原子などが挙げられる。極性基の具体例としては、カルボキシル基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシル基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、スルホン基などが挙げられる。飽和吸水率の小さいフィルムを得るためには、極性基の量が少ない方が好ましく、極性基を持たない方がより好ましい。 Examples of the polar group include a heteroatom or an atomic group having a heteroatom. Examples of heteroatoms include oxygen atoms, nitrogen atoms, sulfur atoms, silicon atoms, and halogen atoms. Specific examples of the polar group include carboxyl group, carbonyloxycarbonyl group, epoxy group, hydroxyl group, oxy group, ester group, silanol group, silyl group, amino group, nitrile group, and sulfone group. In order to obtain a film with a low saturated water absorption rate, it is preferable that the amount of polar groups is small, and it is more preferable that the film has no polar groups.

ノルボルネン構造を有する単量体としては、位相差発現性が優れるという観点から、上述のノルボルネン構造を有する単量体とともに、または、上述の単量体に代えて芳香環構造を有するノルボルネン系単量体を用いうる。 As the monomer having a norbornene structure, a norbornene monomer having an aromatic ring structure may be used together with the above-mentioned monomer having a norbornene structure, or in place of the above-mentioned monomer, from the viewpoint of excellent phase difference expression property. You can use your body.

芳香環構造を有するノルボルネン系単量体としては、5-フェニル-2-ノルボルネン、5-(4-メチルフェニル)-2-ノルボルネン、5-(1-ナフチル)-2-ノルボルネン、9-(2-ノルボルネン-5-イル)-カルバゾール等の芳香族置換基を有するノルボルネン系単量体;1,4-メタノ-1,4,4a,4b,5,8,8a,9a-オクタヒドロフルオレン、1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレン(慣用名:メタノテトラヒドロフルオレン、以下「MTF」ともいう)、1,4-メタノ-1,4,4a,9a-テトラヒドロジベンゾフラン、1,4-メタノ-1,4,4a,9a-テトラヒドロカルバゾール、1,4-メタノ-1,4,4a,9,9a,10-ヘキサヒドロアントラセン、1,4-メタノ-1,4,4a,9,10,10a-ヘキサヒドロフェナンスレン、などの縮合多環構造中にノルボルネン環構造と芳香環構造とを有するノルボルネン系単量体;等が挙げられる。これらの単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。 Examples of norbornene monomers having an aromatic ring structure include 5-phenyl-2-norbornene, 5-(4-methylphenyl)-2-norbornene, 5-(1-naphthyl)-2-norbornene, and 9-(2-norbornene). Norbornene monomer having an aromatic substituent such as -norbornen-5-yl)-carbazole; 1,4-methano-1,4,4a,4b,5,8,8a,9a-octahydrofluorene, 1 , 4-methano-1,4,4a,9a-tetrahydrofluorene (common name: methano-tetrahydrofluorene, hereinafter also referred to as "MTF"), 1,4-methano-1,4,4a,9a-tetrahydrodibenzofuran, 1, 4-methano-1,4,4a,9a-tetrahydrocarbazole, 1,4-methano-1,4,4a,9,9a,10-hexahydroanthracene, 1,4-methano-1,4,4a,9 , 10,10a-hexahydrophenanthrene; norbornene monomers having a norbornene ring structure and an aromatic ring structure in a condensed polycyclic structure; and the like. These monomers can be used alone or in combination of two or more.

芳香環構造を有するノルボルネン系単量体は、置換基を有していても良い。置換基としては、メチル基、エチル基、プロピル基、イソプロキル基などのアルキル基;アルキリデン基;アルケニル基;フルオロ基、クロル基、ブロモ基、ヨード基などのハロゲン基;ヒドロキシ基;エステル基;アルコキシ基;シアノ基;アミド基;イミド基;シリル基などが挙げられる。芳香環構造を有するノルボルネン系単量体は、これらの置換基を2種以上有していてもよい。 The norbornene monomer having an aromatic ring structure may have a substituent. Examples of substituents include alkyl groups such as methyl, ethyl, propyl, and isoprokyl groups; alkylidene groups; alkenyl groups; halogen groups such as fluoro, chloro, bromo, and iodo groups; hydroxy groups; ester groups; alkoxy group; cyano group; amide group; imide group; silyl group and the like. The norbornene monomer having an aromatic ring structure may have two or more of these substituents.

ノルボルネン構造を有する単量体と開環共重合可能な他の単量体としては、シクロヘキセン、シクロヘプテン、シクロオクテンなどのモノ環状オレフィン類及びその誘導体;シクロヘキサジエン、シクロヘプタジエンなどの環状共役ジエン及びその誘導体;などが挙げられる。 Other monomers that can be ring-opening copolymerized with the monomer having a norbornene structure include monocyclic olefins and derivatives thereof such as cyclohexene, cycloheptene, and cyclooctene; cyclic conjugated dienes such as cyclohexadiene and cycloheptadiene; Derivatives thereof; and the like.

ノルボルネン構造を有する単量体の開環重合体及びノルボルネン構造を有する単量体と共重合可能な他の単量体との開環共重合体は、単量体を公知の開環重合触媒の存在下に(共)重合することにより得ることができる。 Ring-opening polymers of monomers having a norbornene structure and ring-opening copolymers of monomers having a norbornene structure and other monomers that can be copolymerized can be prepared using a known ring-opening polymerization catalyst. It can be obtained by (co)polymerization in the presence of

ノルボルネン構造を有する単量体と付加共重合可能な他の単量体としては、例えば、エチレン、プロピレン、1-ブテンなどの炭素数2~20のα-オレフィン及びこれらの誘導体;シクロブテン、シクロペンテン、シクロヘキセンなどのシクロオレフィン及びこれらの誘導体;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエンなどの非共役ジエンなどが挙げられる。これらの単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。これらの中でも、α-オレフィンが好ましく、エチレンがより好ましい。 Other monomers that can be addition-copolymerized with the monomer having a norbornene structure include, for example, α-olefins having 2 to 20 carbon atoms such as ethylene, propylene, and 1-butene, and derivatives thereof; cyclobutene, cyclopentene, Examples include cycloolefins such as cyclohexene and derivatives thereof; non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, and 5-methyl-1,4-hexadiene. These monomers can be used alone or in combination of two or more. Among these, α-olefin is preferred, and ethylene is more preferred.

ノルボルネン構造を有する単量体の付加重合体及びノルボルネン構造を有する単量体と共重合可能な他の単量体との付加共重合体は、単量体を公知の付加重合触媒の存在下に重合することにより得ることができる。 Addition polymers of monomers having a norbornene structure and addition copolymers of monomers having a norbornene structure and other monomers that can be copolymerized are prepared by adding the monomers in the presence of a known addition polymerization catalyst. It can be obtained by polymerization.

ノルボルネン構造を有する単量体の開環重合体の水素化物、ノルボルネン構造を有する単量体とこれと開環共重合可能なその他の単量体との開環共重合体の水素化物、ノルボルネン構造を有する単量体の付加重合体の水素化物、及びノルボルネン構造を有する単量体とこれと付加共重合可能なその他の単量体との付加共重合体の水素化物は、これら開環(共)重合体又は付加(共)重合体の溶液に、ニッケル、パラジウムなどの遷移金属を含む公知の水素化触媒を添加し、水素を接触させて、炭素-炭素不飽和結合を水素化することによって得ることができる。 Hydrogenated products of ring-opening polymers of monomers having a norbornene structure, hydrides of ring-opening copolymers of monomers having a norbornene structure and other monomers that can be copolymerized with ring-opening, norbornene structures hydrides of addition polymers of monomers having a ) A known hydrogenation catalyst containing a transition metal such as nickel or palladium is added to a solution of the polymer or addition (co)polymer, and hydrogen is brought into contact with the solution to hydrogenate carbon-carbon unsaturated bonds. Obtainable.

本発明において、重合体としては、位相差発現性に優れるという観点から、非芳香族性の不飽和結合が選択的に水素化された開環(共)重合体であって、芳香環構造を有するノルボルネン系単量体単位を含むものが好ましい。ここで、「単量体単位」とは、その単量体を重合して形成される構造を有する、構造単位をいう。 In the present invention, the polymer used is a ring-opened (co)polymer in which non-aromatic unsaturated bonds are selectively hydrogenated, from the viewpoint of excellent retardation development properties, and which has an aromatic ring structure. It is preferable to use a norbornene monomer unit. Here, the term "monomer unit" refers to a structural unit having a structure formed by polymerizing the monomers.

芳香環構造を有するノルボルネン系単量体単位を含む重合体は、上記開環(共)重合体または付加(共)重合体の溶液にルテニウム触媒を添加して水素を接触させることにより得ることができる。ルテニウム触媒としては、(1,3-ジメシチルイミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム、ビス(トリシクロヘキシルホスフィン)ベンジリジンルテニウム(IV)ジクロリド、ジクロロトリス(トリフェニルホスフィン)ルテニウム、ジクロロカルボニルトリス(トリフェニルホスフィン)ルテニウムが挙げられる。かかる水素化の結果得られた生成物をH-NMRで分析することにより、主鎖構造中の炭素-炭素二重結合の存否を、芳香族環構造中の不飽和結合と区別して分析することができる。したがって、かかるH-NMRによる分析により、非芳香族性の不飽和結合が選択的に水素化されたか否かを確認しうる。A polymer containing a norbornene monomer unit having an aromatic ring structure can be obtained by adding a ruthenium catalyst to a solution of the ring-opened (co)polymer or addition (co)polymer and bringing it into contact with hydrogen. can. Ruthenium catalysts include (1,3-dimesitylimidazolidin-2-ylidene) (tricyclohexylphosphine) benzylidene ruthenium dichloride, chlorohydridocarbonyl tris (triphenylphosphine) ruthenium, bis (tricyclohexylphosphine) benzylidine ruthenium ( IV) Dichloride, dichlorotris(triphenylphosphine)ruthenium, dichlorocarbonyltris(triphenylphosphine)ruthenium. By analyzing the product obtained as a result of such hydrogenation by 1 H-NMR, the presence or absence of carbon-carbon double bonds in the main chain structure is analyzed separately from unsaturated bonds in the aromatic ring structure. be able to. Therefore, by such 1 H-NMR analysis, it can be confirmed whether or not non-aromatic unsaturated bonds have been selectively hydrogenated.

重合体が、芳香環構造を有するノルボルネン系単量体単位を含む場合、重合体中の芳香環構造を有するノルボルネン系単量体単位の量は、好ましくは25重量%以上、より好ましくは40重量%以上、好ましくは80重量%以下、より好ましくは60重量%以下である。重合体中の芳香環構造を有するノルボルネン系単量体単位の量が下限値以上であると、応力複屈折Cを高くすることができ、延伸前フィルムを延伸する際の延伸倍率を抑えつつ光学フィルムのRthを高くすることができる。When the polymer contains a norbornene monomer unit having an aromatic ring structure, the amount of the norbornene monomer unit having an aromatic ring structure in the polymer is preferably 25% by weight or more, more preferably 40% by weight. % or more, preferably 80% by weight or less, more preferably 60% by weight or less. When the amount of norbornene monomer units having an aromatic ring structure in the polymer is at least the lower limit, stress birefringence CR can be increased, while suppressing the stretching ratio when stretching the film before stretching. The Rth of the optical film can be increased.

熱可塑性ノルボルネン系樹脂に含まれる重合体の分子量は光学フィルムの使用目的に応じて適宜選定されるが、溶媒としてシクロヘキサン(樹脂が溶解しない場合はトルエン)を用いるゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレン(溶媒がトルエンのときは、ポリスチレン)換算の重量平均分子量(Mw)で、好ましくは10000~100000、より好ましくは15000~80000、特に好ましくは20000~60000である。重量平均分子量がこのような範囲にあるときに、フィルムの機械的強度及び成形性が高度にバランスされ好適である。 The molecular weight of the polymer contained in the thermoplastic norbornene resin is appropriately selected depending on the intended use of the optical film, but it can be measured by gel permeation chromatography using cyclohexane (or toluene if the resin does not dissolve) as a solvent. The weight average molecular weight (Mw) in terms of polyisoprene (polystyrene when the solvent is toluene) is preferably 10,000 to 100,000, more preferably 15,000 to 80,000, particularly preferably 20,000 to 60,000. When the weight average molecular weight is within this range, the mechanical strength and moldability of the film are highly balanced, which is preferable.

熱可塑性ノルボルネン系樹脂に含まれる重合体の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は、特に制限されないが、通常1.0~10.0、好ましくは1.0~5.0、より好ましくは1.0~3.5の範囲である。 The molecular weight distribution (weight average molecular weight (Mw)/number average molecular weight (Mn)) of the polymer contained in the thermoplastic norbornene resin is not particularly limited, but is usually 1.0 to 10.0, preferably 1.0 to 5.0, more preferably in the range of 1.0 to 3.5.

熱可塑性ノルボルネン系樹脂は、重合体以外の任意成分を含有しうる。任意成分としては、紫外線吸収剤、酸化防止剤、熱安定剤、光安定剤、帯電防止剤、分散剤、塩素捕捉剤、難燃剤、結晶化核剤、強化剤、ブロッキング防止剤、防曇剤、離型剤、顔料、有機又は無機の充填剤、中和剤、滑剤、分解剤、金属不活性化剤、汚染防止剤、及び抗菌剤が挙げられる。 The thermoplastic norbornene resin may contain arbitrary components other than the polymer. Optional ingredients include ultraviolet absorbers, antioxidants, heat stabilizers, light stabilizers, antistatic agents, dispersants, chlorine scavengers, flame retardants, crystallization nucleating agents, reinforcing agents, antiblocking agents, and antifogging agents. , mold release agents, pigments, organic or inorganic fillers, neutralizing agents, lubricants, decomposers, metal deactivators, antifouling agents, and antimicrobial agents.

紫外線吸収剤の例は、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、アクリロニトリル系紫外線吸収剤、トリアジン系化合物、ニッケル錯塩系化合物、及び無機粉体が挙げられる。好適な紫外線吸収剤の例は、2,2’-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2,4-ジ-tert-ブチル-6-(5-クロロベンゾトリアゾール-2-イル)フェノール、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノンが挙げられる。特に好適なものの例は、2,2’-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)が挙げられる。 Examples of UV absorbers include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone UV absorbers, benzotriazole UV absorbers, acrylonitrile UV absorbers, triazine compounds, nickel complex compounds, and inorganic powders. Examples of suitable UV absorbers are 2,2'-methylenebis(4-(1,1,3,3-tetramethylbutyl)-6-(2H-benzotriazol-2-yl)phenol), 2-( 2'-hydroxy-3'-tert-butyl-5'-methylphenyl)-5-chlorobenzotriazole, 2,4-di-tert-butyl-6-(5-chlorobenzotriazol-2-yl)phenol, Examples include 2,2'-dihydroxy-4,4'-dimethoxybenzophenone and 2,2',4,4'-tetrahydroxybenzophenone. A particularly suitable example is 2,2'-methylenebis(4-(1,1,3,3-tetramethylbutyl)-6-(2H-benzotriazol-2-yl)phenol).

熱可塑性ノルボルネン系樹脂が紫外線吸収剤を含有する場合、紫外線吸収剤の含有量は、熱可塑性ノルボルネン樹脂100重量%当たり0.5~5重量%が好ましい。 When the thermoplastic norbornene resin contains an ultraviolet absorber, the content of the ultraviolet absorber is preferably 0.5 to 5% by weight based on 100% by weight of the thermoplastic norbornene resin.

(熱可塑性ノルボルネン系樹脂の物性値)
本発明において、熱可塑性ノルボルネン系樹脂の応力複屈折Cは2900×10-12Pa-1よりも大きい。熱可塑性ノルボルネン系樹脂の応力複屈折Cは、好ましくは2910×10-12Pa-1以上、より好ましくは3000×10-12Pa-1以上であり、好ましくは8000×10-12Pa-1以下、より好ましくは6000×10-12Pa-1以下である。熱可塑性ノルボルネン系樹脂の応力複屈折Cを2900×10-12Pa-1よりも大きくすることにより、延伸前フィルムを延伸する際の延伸倍率を抑えつつ光学フィルムのRthを高くすることができる。熱可塑性ノルボルネン系樹脂の応力複屈折Cを上限値以下とすることにより、フィルムのReおよびRthを制御しやすくなり、面内のバラツキをおさえることができる。
(Physical property values of thermoplastic norbornene resin)
In the present invention, the stress birefringence C R of the thermoplastic norbornene resin is greater than 2900×10 −12 Pa −1 . The stress birefringence C R of the thermoplastic norbornene resin is preferably 2910×10 −12 Pa −1 or more, more preferably 3000×10 −12 Pa −1 or more, and preferably 8000×10 −12 Pa −1 It is more preferably 6000×10 −12 Pa −1 or less. By increasing the stress birefringence C R of the thermoplastic norbornene resin to be larger than 2900×10 −12 Pa −1 , the Rth of the optical film can be increased while suppressing the stretching ratio when stretching the film before stretching. . By controlling the stress birefringence C R of the thermoplastic norbornene resin to be less than or equal to the upper limit value, it becomes easier to control Re and Rth of the film, and in-plane variations can be suppressed.

応力複屈折Cは、熱可塑性ノルボルネン系樹脂に含まれる重合体を製造する際に用いる単量体の割合を変えることによって制御することが可能である。例えば上述の芳香環構造を有するノルボルネン系単量体の割合を多くすると応力複屈折Cを大きくしうる。Stress birefringence C R can be controlled by changing the proportion of monomers used in producing the polymer contained in the thermoplastic norbornene resin. For example, stress birefringence C R can be increased by increasing the proportion of the norbornene monomer having the above-mentioned aromatic ring structure.

応力複屈折Cは、例えば以下の方法により測定しうる。
熱可塑性ノルボルネン系樹脂をシート状に成形してサンプルを作製し、このサンプルの両端をクリップで固定した後に、片方のクリップに所定の重さ(例えば160g)の重りを固定する。次いで、所定温度(例えば樹脂のガラス転移温度(Tg)+5℃)に設定したオーブン内に、重りを固定していない方のクリップを支持点にして、所定時間(例えば1時間)シートを吊るして延伸処理を行う。延伸処理を行ったサンプルシートを、ゆっくりと冷やして室温まで戻し、これを測定試料とする。当該測定試料について、複屈折を用いて、測定試料中心部のレタデーション値(anm)と、測定試料中心部の厚み(bmm)とを測定する。当該測定値(a、b)を用いて、下記式(1)によりδn値を算出する。
δn=a×(1/b)×10-6 (1)
Stress birefringence C R can be measured, for example, by the following method.
A sample is prepared by molding a thermoplastic norbornene resin into a sheet, and after fixing both ends of the sample with clips, a weight of a predetermined weight (for example, 160 g) is fixed to one of the clips. Next, the sheet is hung in an oven set at a predetermined temperature (for example, the glass transition temperature (Tg) of the resin + 5°C) for a predetermined period of time (for example, 1 hour) using the clip to which the weight is not fixed as a support point. Perform stretching process. The stretched sample sheet is slowly cooled down to room temperature and used as a measurement sample. Regarding the measurement sample, the retardation value (anm) at the center of the measurement sample and the thickness (bmm) at the center of the measurement sample are measured using birefringence. Using the measured values (a, b), the δn value is calculated by the following formula (1).
δn=a×(1/b)× 10-6 (1)

当該δn値及びサンプルに加えた応力(上記の場合は、所定の重りを固定した際に加わった応力)を用いて、下記式(2)によりCを算出することができる。
=δn/応力 (2)
Using the δn value and the stress applied to the sample (in the above case, the stress applied when a predetermined weight was fixed), C R can be calculated using the following formula (2).
C R = δn/stress (2)

熱可塑性ノルボルネン樹脂のガラス転移温度Tgは、125℃以上である。ガラス転移温度Tgは、好ましくは130℃以上、より好ましくは135℃以上であり、好ましくは180℃以下、より好ましくは160℃以下である。ガラス転移温度Tgを125℃以上とすることにより、光学フィルムの耐熱性及び耐久性を優れたものとしうる。Tgは、示差走査熱量分析計を用いて測定しうる。 The glass transition temperature Tg of the thermoplastic norbornene resin is 125°C or higher. The glass transition temperature Tg is preferably 130°C or higher, more preferably 135°C or higher, and preferably 180°C or lower, more preferably 160°C or lower. By setting the glass transition temperature Tg to 125° C. or higher, the optical film can have excellent heat resistance and durability. Tg can be measured using a differential scanning calorimeter.

(延伸前フィルム)
光学フィルムの材料となる、延伸前フィルムは、上述の熱可塑性ノルボルネン系樹脂からなるフィルムである。
延伸前フィルムは、熱可塑性ノルボルネン系樹脂を、公知の方法、例えば、キャスト成形法、押出成形法、インフレーション成形法などにより、フィルム状に成形することにより製造しうる。
(Film before stretching)
The pre-stretched film, which is the material of the optical film, is a film made of the above-mentioned thermoplastic norbornene resin.
The pre-stretched film can be produced by molding a thermoplastic norbornene resin into a film by a known method, such as a cast molding method, an extrusion molding method, an inflation molding method, or the like.

(光学フィルム)
光学フィルムは、延伸前フィルムを延伸することにより得られる。延伸前フィルムを延伸して光学フィルムとする際の延伸の条件は、所望の光学特性が得られるよう適宜選択しうる。例えば、延伸前フィルムを延伸して光学フィルムとする際の延伸の態様は、一軸延伸、二軸延伸(同時二軸延伸、遂次二軸延伸)等の任意の態様としうる。これらの態様のうち、二軸延伸が好ましい。また、延伸前フィルムが長尺状のフィルムである場合、延伸の方向は、縦方向(長尺状のフィルムの長手方向に平行な方向)、横方向(長尺状のフィルムの幅方向に平行な方向)、及び斜め方向(縦方向でも横方向でも無い方向)のいずれであってもよい。
(optical film)
The optical film is obtained by stretching a pre-stretched film. The conditions for stretching the pre-stretched film to form an optical film can be appropriately selected so as to obtain desired optical properties. For example, the stretching mode when stretching the pre-stretched film to form an optical film may be any mode such as uniaxial stretching, biaxial stretching (simultaneous biaxial stretching, sequential biaxial stretching), etc. Among these embodiments, biaxial stretching is preferred. In addition, when the film before stretching is a long film, the direction of stretching is the longitudinal direction (parallel to the longitudinal direction of the long film), the transverse direction (parallel to the width direction of the long film). direction) or diagonal direction (direction that is neither vertical nor horizontal).

延伸前フィルムを延伸して光学フィルムとする際の延伸倍率は、好ましくは1.4以上、より好ましくは1.5以上であり、好ましくは2.2以下、より好ましくは2.1以下である。延伸倍率を前記範囲の上限値以下とすると、より有効にデラミネーションの発生を抑制することができ、延伸倍率を前記範囲の下限値以上とすると、Rthを高くすることができる。MD方向及びTD方向の二軸延伸により延伸前フィルムを延伸する場合は、MD方向の延伸倍率とTD方向の延伸倍率との積が上記範囲となるようにすると好ましい。 The stretching ratio when stretching the film before stretching to form an optical film is preferably 1.4 or more, more preferably 1.5 or more, and preferably 2.2 or less, more preferably 2.1 or less. . When the stretching ratio is at most the upper limit of the range, the occurrence of delamination can be more effectively suppressed, and when the stretching ratio is at least the lower limit of the range, Rth can be increased. When the unstretched film is stretched by biaxial stretching in the MD direction and the TD direction, it is preferable that the product of the stretching ratio in the MD direction and the stretching ratio in the TD direction falls within the above range.

延伸前フィルムを延伸して光学フィルムとする際の延伸温度は、好ましくはTg℃以上、より好ましくは(Tg+5)℃以上であり、一方好ましくは(Tg+40)℃以下、より好ましくは(Tg+30)℃以下である。延伸温度が前記範囲であることにより均一な膜厚の光学フィルムが得られる。 The stretching temperature when stretching the pre-stretched film to form an optical film is preferably Tg°C or higher, more preferably (Tg+5)°C or higher, while preferably (Tg+40)°C or lower, more preferably (Tg+30)°C. It is as follows. By setting the stretching temperature within the above range, an optical film with a uniform thickness can be obtained.

(光学フィルムの物性値)
光学フィルムの厚みdは、好ましくは30μm以上、より好ましくは40μm以上であり、好ましくは150μm以下、より好ましくは100μm以下である。光学フィルムの厚みを下限値以上とすることによりデラミネーションの発生を有効に抑制することができ、光学フィルムの厚みを上限値以下とすることにより、光学フィルムの組み込まれる装置を薄型化することができる。
(Physical property values of optical film)
The thickness d of the optical film is preferably 30 μm or more, more preferably 40 μm or more, and preferably 150 μm or less, more preferably 100 μm or less. By setting the thickness of the optical film at or above the lower limit, the occurrence of delamination can be effectively suppressed, and by setting the thickness of the optical film at or below the upper limit, the device in which the optical film is incorporated can be made thinner. can.

本発明において、光学フィルムの厚みdに対する、厚み方向のレタデーションRthの比(Rth/d)は、3.5×10-3以上である。Rth/dは好ましくは3.5×10-3以上、より好ましくは4.0×10-3以上であり、好ましくは8.0×10-3以下、より好ましくは6.0×10-3以下である。Rth/dを3.5×10-3以上とすることによりRthが高く厚みの小さい光学フィルムとすることができ、これにより光学補償性に優れたフィルムを得ることができる。Rth/dを上限値以下とすることによりデラミネーションの発生をより有効に抑制することができる。In the present invention, the ratio of the retardation Rth in the thickness direction to the thickness d of the optical film (Rth/d) is 3.5×10 −3 or more. Rth/d is preferably 3.5×10 −3 or more, more preferably 4.0×10 −3 or more, and preferably 8.0×10 −3 or less, more preferably 6.0×10 −3 It is as follows. By setting Rth/d to 3.5×10 −3 or more, an optical film with a high Rth and a small thickness can be obtained, and thereby a film with excellent optical compensation properties can be obtained. By setting Rth/d below the upper limit value, the occurrence of delamination can be more effectively suppressed.

光学フィルムの面内方向のレタデーションReは好ましくは40nm以上、より好ましくは50nm以上であり、好ましくは80nm以下、より好ましくは70nm以下である。Reを下限値以上とすることにより位相差発現性を良好とすることができ、Reを上限値以下とすることにより、面内のバラツキを抑えることができる。レタデーションReは表示装置の設計に適合するよう、上記範囲内から適宜選択されうる。 The in-plane retardation Re of the optical film is preferably 40 nm or more, more preferably 50 nm or more, and preferably 80 nm or less, more preferably 70 nm or less. By setting Re to be equal to or greater than the lower limit value, it is possible to improve the phase difference development property, and by setting Re to be equal to or less than the upper limit value, in-plane variation can be suppressed. The retardation Re can be appropriately selected from within the above range to suit the design of the display device.

(光学積層体)
本発明の光学積層体は、本発明の光学フィルムと、その上に設けられた偏光板とを備える。
(optical laminate)
The optical laminate of the present invention includes the optical film of the present invention and a polarizing plate provided thereon.

偏光板としては、二色性物質含有のポリビニルアルコール系偏光フィルム等からなる偏光子の片側又は両側に、例えば接着層を介して、保護層となるフィルム(保護フィルム)を接着したものを用いうる。 As a polarizing plate, a polarizer made of a polyvinyl alcohol-based polarizing film containing a dichroic substance, etc., with a film (protective film) bonded to one side or both sides to serve as a protective layer, for example, via an adhesive layer, can be used. .

偏光子(偏光フィルム)としては、例えばポリビニルアルコールや部分ホルマール化ポリビニルアルコール等のビニルアルコール系重合体よりなるフィルムに、ヨウ素や二色性染料等の二色性物質による染色処理、延伸処理、架橋処理等の処理を施したものを用いることができる。偏光子としては、自然光を入射させると直線偏光を透過するものを用いうる。 As a polarizer (polarizing film), for example, a film made of a vinyl alcohol polymer such as polyvinyl alcohol or partially formalized polyvinyl alcohol is dyed with a dichroic substance such as iodine or a dichroic dye, stretched, or crosslinked. It is possible to use a material that has been subjected to processing such as treatment. As the polarizer, one that transmits linearly polarized light when natural light is incident can be used.

偏光子(偏光フィルム)の片側又は両側に設ける透明保護層となる保護フィルム素材としては、透明フィルムを用いることができる。透明フィルムとしては、透明性や機械的強度、熱安定性や水分遮蔽性等に優れる樹脂からなるフィルム等が好ましく用いられる。このような樹脂の例としては、トリアセチルセルロースの如きアセテート系樹脂やポリエステル系樹脂、ポリエーテルスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、ノルボルネン系樹脂、アクリル系樹脂等があげられる。複屈折が小さいという観点から、アセテート系樹脂又はノルボルネン系樹脂が好ましく、透明性、低吸湿性、寸法安定性、軽量性などの観点から、ノルボルネン系樹脂が特に好ましい。
保護フィルムの厚さは、任意であるが一般には偏光板の薄型化などを目的に500μm以下、好ましくは5~300μm、特に好ましくは5~150μmである。
A transparent film can be used as the protective film material that becomes the transparent protective layer provided on one or both sides of the polarizer (polarizing film). As the transparent film, a film made of a resin having excellent transparency, mechanical strength, thermal stability, moisture shielding property, etc. is preferably used. Examples of such resins include acetate resins such as triacetylcellulose, polyester resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, norbornene resins, and acrylic resins. Examples include resin. From the viewpoint of low birefringence, acetate-based resins or norbornene-based resins are preferred, and from the viewpoints of transparency, low hygroscopicity, dimensional stability, lightweight, etc., norbornene-based resins are particularly preferred.
Although the thickness of the protective film is arbitrary, it is generally 500 μm or less, preferably 5 to 300 μm, particularly preferably 5 to 150 μm, for the purpose of making the polarizing plate thinner.

光学フィルムと、偏光板との積層は、これらを接着する層を介して、これらを貼り合わせることにより行いうる。かかる層の例としては、接着剤の層、及び粘着剤の層が挙げられる。接着剤又は粘着剤としては、例えば、アクリル系、シリコーン系、ポリエステル系、ポリウレタン系、ポリエーテル系、ゴム系等が挙げられる。これらの中でも、耐熱性や透明性等の観点から、アクリル系のものが好ましい。
本発明の光学積層体においては、積層する偏光板の保護フィルムを本発明の光学フィルムが兼ねることができ、部材の薄型化が可能である。また、光学フィルムと偏光板の積層を、ロールトゥロールで行うことができ、長尺状の光学積層体を得ることができる。光学積層体における光学フィルムの遅相軸と偏光板の吸収軸とのなす角は90°±1°の範囲内としうる。
The optical film and the polarizing plate can be laminated by bonding them together via a layer that adheres them. Examples of such layers include adhesive layers and adhesive layers. Examples of the adhesive or pressure-sensitive adhesive include acrylic, silicone, polyester, polyurethane, polyether, and rubber adhesives. Among these, acrylic materials are preferred from the viewpoint of heat resistance, transparency, etc.
In the optical laminate of the present invention, the optical film of the present invention can also serve as a protective film for the polarizing plates to be laminated, and the member can be made thinner. Further, the optical film and the polarizing plate can be laminated by roll-to-roll, and a long optical laminate can be obtained. The angle between the slow axis of the optical film and the absorption axis of the polarizing plate in the optical laminate may be within the range of 90°±1°.

本発明の光学積層体の厚みは、好ましくは30μm以上、より好ましくは40μm以上であり、好ましくは150μm以下、より好ましくは100μm以下である。 The thickness of the optical laminate of the present invention is preferably 30 μm or more, more preferably 40 μm or more, and preferably 150 μm or less, more preferably 100 μm or less.

[液晶表示装置]
本発明の液晶表示装置は本発明の光学積層体を備える。本発明の液晶表示装置は、本発明の光学積層体を液晶セルの少なくとも片側に備える。
液晶表示装置において、光学フィルムは、通常、液晶表示装置の液晶セルと視認側偏光子との間に設けられる。このような構成において、光学フィルムは、視野角補償フィルムとして機能できる。
[Liquid crystal display device]
The liquid crystal display device of the present invention includes the optical laminate of the present invention. The liquid crystal display device of the present invention includes the optical laminate of the present invention on at least one side of a liquid crystal cell.
In a liquid crystal display device, an optical film is usually provided between a liquid crystal cell and a viewing side polarizer of the liquid crystal display device. In such a configuration, the optical film can function as a viewing angle compensation film.

液晶セルは、例えば、インプレーンスイッチング(IPS)モード、バーチカルアラインメント(VA)モード、マルチドメインバーチカルアラインメント(MVA)モード、コンティニュアスピンホイールアラインメント(CPA)モード、ハイブリッドアラインメントネマチック(HAN)モード、ツイステッドネマチック(TN)モード、スーパーツイステッドネマチック(STN)モード、オプチカルコンペンセイテッドベンド(OCB)モードなど、任意のモードの液晶セルを用いうる。 The liquid crystal cell can be operated in, for example, in-plane switching (IPS) mode, vertical alignment (VA) mode, multi-domain vertical alignment (MVA) mode, continuous spin wheel alignment (CPA) mode, hybrid alignment nematic (HAN) mode, or twisted nematic mode. A liquid crystal cell in any mode, such as (TN) mode, super twisted nematic (STN) mode, or optically compensated bend (OCB) mode, can be used.

液晶セルの両側に偏光板を設ける場合、偏光板は同じものであってもよいし、異なるものであってもよい。 When polarizing plates are provided on both sides of the liquid crystal cell, the polarizing plates may be the same or different.

本発明の液晶表示装置においては、本発明の光学積層体と液晶セルとを接着するために、粘着層を設けうる。粘着層は、アクリル系等の従来公知の粘着剤を用いて適宜形成することができる。中でも、吸湿による発泡現象や剥がれ現象の防止、熱膨張差等による光学特性の低下や液晶セルの反り防止、ひいては高品質で耐久性に優れる液晶表示装置の形成性等の点より、吸湿率が低くて耐熱性に優れる粘着層であることが好ましい。また、微粒子を含有して光拡散性を示す粘着層等としうる。 In the liquid crystal display device of the present invention, an adhesive layer may be provided to adhere the optical laminate of the present invention and the liquid crystal cell. The adhesive layer can be appropriately formed using a conventionally known adhesive such as an acrylic adhesive. Among these, moisture absorption is important because it prevents foaming and peeling phenomena caused by moisture absorption, decreases in optical properties due to differences in thermal expansion, prevents warpage of liquid crystal cells, and the formability of high-quality and durable liquid crystal display devices. It is preferable that the adhesive layer has low heat resistance and excellent heat resistance. Further, it may be an adhesive layer or the like that contains fine particles and exhibits light diffusing properties.

以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。以下の操作は、別に断らない限り、常温常圧大気中にて行った。
The present invention will be specifically described below with reference to Examples. However, the present invention is not limited to the following examples, and may be implemented with arbitrary changes within the scope of the claims of the present invention and equivalents thereof.
In the following description, "%" and "part" expressing amounts are based on weight unless otherwise specified. The following operations were performed in the atmosphere at room temperature and pressure unless otherwise specified.

[重合体の物性値の測定方法及び算出方法]
(重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布(Mw/Mn)の測定)
重合体(開環重合体及び重合体(1)~(3)、重合体(C1)~(C5))の重量平均分子量(Mw)及び数平均分子量(Mn)は、シクロヘキサンを溶離液とするゲル・パーミエーション・クロマトグラフィー(GPC)により測定し、標準ポリイソプレン換算値として求めた。
標準ポリイソプレンとしては、東ソー社製標準ポリイソプレン(Mw=602、1390、3920、8050、13800、22700、58800、71300、109000、280000)を用いた。
測定は、東ソー社製カラム(TSKgelG5000HXL、TSKgelG4000HXL及びTSKgel G2000HXL)を3本直列に繋いで用い、流速1.0mL/分、サンプル注入量100μL、カラム温度40℃の条件で行った。
分子量分布(Mw/Mn)は、上記方法により測定した測定値を用いて算出した。
[Measurement method and calculation method of physical property values of polymer]
(Measurement of weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw/Mn))
The weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymers (ring-opening polymer, polymers (1) to (3), and polymers (C1) to (C5)) are determined by using cyclohexane as an eluent. It was measured by gel permeation chromatography (GPC) and calculated as a standard polyisoprene equivalent value.
As the standard polyisoprene, standard polyisoprene manufactured by Tosoh Corporation (Mw=602, 1390, 3920, 8050, 13800, 22700, 58800, 71300, 109000, 280000) was used.
The measurement was performed using three Tosoh columns (TSKgelG5000HXL, TSKgelG4000HXL, and TSKgel G2000HXL) connected in series under the conditions of a flow rate of 1.0 mL/min, a sample injection amount of 100 μL, and a column temperature of 40°C.
The molecular weight distribution (Mw/Mn) was calculated using the measured values measured by the above method.

(ガラス転移温度(Tg)の測定)
重合体(1)~(3)、重合体(C1)~(C5)のガラス転移温度(Tg)は、示差走査熱量分析計(ナノテクノロジー社製、製品名:DSC6220SII)を用いて、JIS K 6911に基づき、昇温速度10℃/分の条件で測定した。
(Measurement of glass transition temperature (Tg))
The glass transition temperature (Tg) of Polymers (1) to (3) and Polymers (C1) to (C5) was measured using a differential scanning calorimeter (manufactured by Nano Technology Co., Ltd., product name: DSC6220SII) according to JIS K. 6911, and measured at a temperature increase rate of 10° C./min.

(応力複屈折Cの測定)
重合体(1)~(3)、重合体(C1)~(C5)をそれぞれ、35mm×10mm×1mmのシート状に成形してサンプルを作製した。このサンプルの両端をクリップで固定した後に、片方のクリップに160gの重りを固定した。次いで、温度を重合体のガラス転移温度(Tg)+5℃に設定したオーブン内に、重りを固定していない方のクリップを支持点にして、1時間シートを吊るして延伸処理を行った後、ゆっくりと冷やして室温まで戻し、これを測定試料とした。
前記測定試料について、複屈折計(フォトニックラティス製、WPA-100)を用いて波長650nmの光における、測定試料中心部のレタデーション値を測定した(この測定値をanmとする。)。また、測定試料中心部の厚みを測定した(この測定値をbmmとする。)。
測定値a及びbを用い、下記式(1)によりδn値を算出した。
δn=a×(1/b)×10-6 (1)
当該δn値及びサンプルに加えた応力を用い、下記式(2)によりCを算出した。
=δn/応力 (2)
(Measurement of stress birefringence CR )
Samples were prepared by molding each of Polymers (1) to (3) and Polymers (C1) to (C5) into a sheet of 35 mm x 10 mm x 1 mm. After fixing both ends of this sample with clips, a 160 g weight was fixed to one of the clips. Next, the sheet was suspended for 1 hour in an oven with the temperature set to the glass transition temperature (Tg) of the polymer + 5°C using the clip to which no weight was fixed as a support point, and then stretched. The sample was slowly cooled down to room temperature and used as a measurement sample.
Regarding the measurement sample, the retardation value at the center of the measurement sample was measured using a birefringence meter (manufactured by Photonic Lattice, WPA-100) at a wavelength of 650 nm (this measurement value is referred to as anm). In addition, the thickness of the center of the measurement sample was measured (this measured value is referred to as bmm).
Using the measured values a and b, the δn value was calculated using the following formula (1).
δn=a×(1/b)× 10-6 (1)
Using the δn value and the stress applied to the sample, CR was calculated using the following formula (2).
C R = δn/stress (2)

(ノルボルネン系開環共重合体水素化物における、芳香環の存否の確認)
水素化前の重合体及び水素化された重合体を、H-NMRにより分析した。分析に際して、溶媒としては重クロロホルムを用いた。分析の結果から、非芳香族性の不飽和結合の水素化率及び芳香族性の不飽和結合の水素化率を求めた。これらの結果から、ノルボルネン系開環共重合体水素化物における、芳香環の存否を確認した。
(Confirmation of presence or absence of aromatic ring in norbornene-based ring-opening copolymer hydrogenated product)
The polymer before hydrogenation and the hydrogenated polymer were analyzed by 1 H-NMR. During the analysis, deuterated chloroform was used as a solvent. From the results of the analysis, the hydrogenation rate of non-aromatic unsaturated bonds and the hydrogenation rate of aromatic unsaturated bonds were determined. From these results, the presence or absence of an aromatic ring in the hydrogenated norbornene-based ring-opening copolymer was confirmed.

[製造例1:重合体(1)の製造]
(1-1)開環重合体の製造
内部を窒素置換したガラス製反応容器に、重合触媒である(1,3-ジメシチルイミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド0.05重量部、トルエン500重量部、単量体として1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレン(MTF)50重量部、テトラシクロドデセン(TCD)20重量部、ジシクロペンタジエン(DCPD)30重量部、及び連鎖移動剤として1-ヘキセンを0.75重量部加え、全容を60℃で2時間撹拌し、開環重合を行った。得られた開環重合体のMwは3.3×10、分子量分布(Mw/Mn)は2.3であった。また単量体の重合体への転化率は100%であった。
[Production Example 1: Production of polymer (1)]
(1-1) Production of ring-opening polymer A polymerization catalyst (1,3-dimesitylimidazolidin-2-ylidene) (tricyclohexylphosphine) benzylidene ruthenium dichloride 0 .05 parts by weight, 500 parts by weight of toluene, 50 parts by weight of 1,4-methano-1,4,4a,9a-tetrahydrofluorene (MTF) as a monomer, 20 parts by weight of tetracyclododecene (TCD), dicyclo 30 parts by weight of pentadiene (DCPD) and 0.75 parts by weight of 1-hexene as a chain transfer agent were added, and the entire mixture was stirred at 60°C for 2 hours to perform ring-opening polymerization. The resulting ring-opened polymer had a Mw of 3.3×10 4 and a molecular weight distribution (Mw/Mn) of 2.3. Moreover, the conversion rate of monomer to polymer was 100%.

(1-2)重合体(1)の製造
次いで、(1-1)で得られた開環重合体を含む反応溶液300部を攪拌器付きオートクレーブに移し、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム(以下、「ルテニウム触媒」と略記する。)0.0043部を添加し、水素圧4.5MPa、160℃で4時間水素添加反応を行なった。
水素化反応終了後、得られた溶液を大量のイソプロパノール中に注ぎ、重合体(水素化物)を沈殿させた。得られた重合体を濾取した後に、真空乾燥機(220℃、1Torr)で6時間乾燥させ、重合体(1)を得た。重合体(1)のMwは4.3×10、Mw/Mnは2.5であった。また重合体(1)のTgは128℃、Cは、3900×10-12Pa-1であった。
得られた重合体の、H-NMRによる分析の結果、重合体(1)においては、非芳香族性の不飽和結合が選択的に水素化され、一方芳香族性の不飽和結合が残っていることが確認された。
(1-2) Production of polymer (1) Next, 300 parts of the reaction solution containing the ring-opened polymer obtained in (1-1) was transferred to an autoclave equipped with a stirrer, and chlorohydridocarbonyl tris(triphenylphosphine) 0.0043 part of ruthenium (hereinafter abbreviated as "ruthenium catalyst") was added, and a hydrogenation reaction was carried out at a hydrogen pressure of 4.5 MPa and 160° C. for 4 hours.
After the hydrogenation reaction was completed, the obtained solution was poured into a large amount of isopropanol to precipitate the polymer (hydride). After the obtained polymer was collected by filtration, it was dried in a vacuum dryer (220° C., 1 Torr) for 6 hours to obtain a polymer (1). Polymer (1) had an Mw of 4.3×10 4 and an Mw/Mn of 2.5. Further, the Tg of the polymer (1) was 128° C., and the CR was 3900×10 −12 Pa −1 .
As a result of 1 H-NMR analysis of the obtained polymer, it was found that in polymer (1), non-aromatic unsaturated bonds were selectively hydrogenated, while aromatic unsaturated bonds remained. It was confirmed that

[製造例2:重合体(2)の製造]
(2-1)開環重合体の製造
製造例1の(1-1)において、単量体(MTF、TCD及びDCPD)の添加量を、MTF40重量部、TCD35重量部、DCPD25重量部としたこと以外は製造例1の(1-1)と同一の操作を行い、開環重合体を得た。開環重合体のMwは3.1×10、分子量分布は2.2であった。単量体の重合体への転化率は100%であった。
[Production Example 2: Production of polymer (2)]
(2-1) Production of ring-opening polymer In (1-1) of Production Example 1, the amounts of monomers (MTF, TCD, and DCPD) added were 40 parts by weight of MTF, 35 parts by weight of TCD, and 25 parts by weight of DCPD. Except for the above, the same operation as in Production Example 1 (1-1) was performed to obtain a ring-opened polymer. The ring-opened polymer had an Mw of 3.1×10 4 and a molecular weight distribution of 2.2. The conversion rate of monomer to polymer was 100%.

(2-2)重合体(2)の製造
製造例1の(1-2)において、(1-1)で得られた開環重合体を含む反応溶液300部に代えて、(2-1)で得られた開環重合体を含む反応溶液300部を用いたこと以外は(1-2)と同一の操作を行い、重合体(2)を得た。重合体(2)のMwは4.0×10、Mw/Mnは2.4であった。重合体(2)のTgは136℃、Cは、3200×10-12Pa-1であった。
得られた重合体の、H-NMRによる分析の結果、重合体(2)においては、非芳香族性の不飽和結合が選択的に水素化され、一方芳香族性の不飽和結合が残っていることが確認された。
(2-2) Production of polymer (2) In (1-2) of Production Example 1, instead of 300 parts of the reaction solution containing the ring-opened polymer obtained in (1-1), (2-1 Polymer (2) was obtained by carrying out the same operation as in (1-2) except for using 300 parts of the reaction solution containing the ring-opened polymer obtained in ). Polymer (2) had an Mw of 4.0×10 4 and an Mw/Mn of 2.4. Polymer (2) had a Tg of 136° C. and a CR of 3200×10 −12 Pa −1 .
As a result of 1 H-NMR analysis of the obtained polymer, it was found that in polymer (2), non-aromatic unsaturated bonds were selectively hydrogenated, while aromatic unsaturated bonds remained. It was confirmed that

[製造例3:重合体(3)の製造]
(3-1)開環重合体の製造
製造例1の(1-1)において、単量体(MTF、TCD及びDCPD)の添加量を、MTF25重量部、TCD35重量部、DCPD40重量部としたこと以外は製造例1の(1-1)と同一の操作を行い、開環重合体を得た。開環重合体のMwは3.2×10、分子量分布は2.4であった。単量体の重合体への転化率は100%であった。
[Production Example 3: Production of polymer (3)]
(3-1) Production of ring-opening polymer In (1-1) of Production Example 1, the amounts of monomers (MTF, TCD, and DCPD) added were 25 parts by weight of MTF, 35 parts by weight of TCD, and 40 parts by weight of DCPD. Except for the above, the same operation as in Production Example 1 (1-1) was performed to obtain a ring-opened polymer. The ring-opened polymer had an Mw of 3.2×10 4 and a molecular weight distribution of 2.4. The conversion rate of monomer to polymer was 100%.

(3-2)重合体(3)の製造
製造例1の(1-2)において、(1-1)で得られた開環重合体を含む反応溶液300部に代えて、(3-1)で得られた開環重合体を含む反応溶液300部を用いたこと以外は(1-2)と同一の操作を行い、重合体(3)を得た。重合体(3)のMwは4.2×10、Mw/Mnは2.6であった。重合体(3)のTgは128℃、Cは、3000×10-12Pa-1であった。
得られた重合体の、H-NMRによる分析の結果、重合体(3)においては、非芳香族性の不飽和結合が選択的に水素化され、一方芳香族性の不飽和結合が残っていることが確認された。
(3-2) Production of polymer (3) In (1-2) of Production Example 1, instead of 300 parts of the reaction solution containing the ring-opened polymer obtained in (1-1), (3-1 Polymer (3) was obtained by carrying out the same operation as in (1-2) except that 300 parts of the reaction solution containing the ring-opened polymer obtained in ) was used. Polymer (3) had an Mw of 4.2×10 4 and an Mw/Mn of 2.6. Polymer (3) had a Tg of 128° C. and a CR of 3000×10 −12 Pa −1 .
As a result of 1 H-NMR analysis of the obtained polymer, it was found that in polymer (3), non-aromatic unsaturated bonds were selectively hydrogenated, while aromatic unsaturated bonds remained. It was confirmed that

[製造例4:重合体(C1)の製造]
(4-1)開環重合体の製造
製造例1の(1-1)において、単量体(MTF、TCD及びDCPD)の添加量を、MTF22重量部、TCD38重量部、DCPD40重量部としたこと以外は同一の操作を行い、開環重合体を得た。開環重合体のMwは3.2×10、分子量分布は2.3であった。単量体の重合体への転化率は100%であった。
[Production Example 4: Production of polymer (C1)]
(4-1) Production of ring-opening polymer In (1-1) of Production Example 1, the amounts of monomers (MTF, TCD, and DCPD) added were 22 parts by weight of MTF, 38 parts by weight of TCD, and 40 parts by weight of DCPD. Except for the above, the same operation was performed to obtain a ring-opened polymer. The ring-opened polymer had an Mw of 3.2×10 4 and a molecular weight distribution of 2.3. The conversion rate of monomer to polymer was 100%.

(4-2)重合体(C1)の製造
製造例1の(1-2)において、(1-1)で得られた開環重合体を含む反応溶液300部に代えて、(4-1)で得られた開環重合体を含む反応溶液300部を用いたこと以外は(1-2)と同一の操作を行い、重合体(C1)を得た。重合体(C1)のMwは4.1×10、Mw/Mnは2.5であった。重合体(C1)のTgは129℃、Cは、2850×10-12Pa-1であった。
得られた重合体の、H-NMRによる分析の結果、重合体(C1)においては、非芳香族性の不飽和結合が選択的に水素化され、一方芳香族性の不飽和結合が残っていることが確認された。
(4-2) Production of polymer (C1) In (1-2) of Production Example 1, instead of 300 parts of the reaction solution containing the ring-opened polymer obtained in (1-1), (4-1 Polymer (C1) was obtained by carrying out the same operation as in (1-2) except that 300 parts of the reaction solution containing the ring-opened polymer obtained in ) was used. The Mw of the polymer (C1) was 4.1×10 4 and the Mw/Mn was 2.5. The polymer (C1) had a Tg of 129° C. and a C R of 2850×10 −12 Pa −1 .
As a result of 1 H-NMR analysis of the obtained polymer, it was found that in polymer (C1), non-aromatic unsaturated bonds were selectively hydrogenated, while aromatic unsaturated bonds remained. It was confirmed that

[製造例5:重合体(C2)の製造]
(5-1)開環重合体の製造
製造例1の(1-1)において、単量体(MTF、TCD及びDCPD)の添加量を、MTF25重量部、TCD35重量部、DCPD40重量部としたこと以外は製造例1の(1-1)と同一の操作を行い、開環重合体を得た。開環重合体のMwは3.2××10、分子量分布は2.4であった。単量体の重合体への転化率は100%であった。
[Production Example 5: Production of polymer (C2)]
(5-1) Production of ring-opening polymer In (1-1) of Production Example 1, the amounts of monomers (MTF, TCD, and DCPD) added were 25 parts by weight of MTF, 35 parts by weight of TCD, and 40 parts by weight of DCPD. Except for the above, the same operation as in Production Example 1 (1-1) was performed to obtain a ring-opened polymer. The ring-opened polymer had an Mw of 3.2×10 4 and a molecular weight distribution of 2.4. The conversion rate of monomer to polymer was 100%.

(5-2)重合体(C2)の製造
次いで、(5-1)で得られた開環重合体を含む反応溶液300部を攪拌器付きオートクレーブに移し、ケイソウ土担持ニッケル触媒(日揮化学社製、製品名「T8400RL」、ニッケル担持率57%)3部添加し、水素圧4.5MPa、160℃で4時間水素添加反応を行なった。
水素化反応終了後、得られた溶液をラジオライト#500を濾過床として、圧力0.25MPaで加圧濾過(石川島播磨重工社製、製品名「フンダバックフィルター」)して水素化触媒を除去し、無色透明な溶液を得た。得られた溶液を大量のイソプロパノール中に注ぎ、重合体を沈殿させた。得られた重合体を濾取した後に、真空乾燥機(220℃、1Torr)で6時間乾燥させ重合体(C2)を得た。重合体(C2)のMwは4.3×10、Mw/Mnは2.6であった。重合体(C2)のTgは136℃、Cは、1900×10-12Pa-1であった。
得られた重合体の、H-NMRによる分析の結果、重合体(C2)においては、非芳香族性の不飽和結合及び芳香族性の不飽和結合の両方が水素化されていることが確認された。
(5-2) Production of polymer (C2) Next, 300 parts of the reaction solution containing the ring-opened polymer obtained in (5-1) was transferred to an autoclave equipped with a stirrer, and diatomaceous earth supported nickel catalyst (JGC Chemical Co., Ltd. Co., Ltd., product name "T8400RL", nickel loading rate 57%) was added thereto, and a hydrogenation reaction was carried out at a hydrogen pressure of 4.5 MPa and 160° C. for 4 hours.
After completion of the hydrogenation reaction, the resulting solution was filtered under pressure at a pressure of 0.25 MPa using Radiolite #500 as a filter bed (manufactured by Ishikawajima-Harima Heavy Industries, product name: Fundavac Filter) to remove the hydrogenation catalyst. A colorless and transparent solution was obtained. The resulting solution was poured into a large amount of isopropanol to precipitate the polymer. After the obtained polymer was collected by filtration, it was dried in a vacuum dryer (220° C., 1 Torr) for 6 hours to obtain a polymer (C2). The Mw of the polymer (C2) was 4.3×10 4 and the Mw/Mn was 2.6. The polymer (C2) had a Tg of 136° C. and a CR of 1900×10 −12 Pa −1 .
As a result of 1 H-NMR analysis of the obtained polymer, it was found that both non-aromatic unsaturated bonds and aromatic unsaturated bonds were hydrogenated in polymer (C2). confirmed.

[製造例6:重合体(C3)の製造]
(6-1)開環重合体の製造
製造例1の(1-1)において、単量体(MTF、TCD及びDCPD)の添加量を、MTF10重量部、TCD40重量部、DCPD50重量部としたこと以外は製造例1の(1-1)と同一の操作を行い、開環重合体を得た。開環重合体のMwは3.2×10、分子量分布は2.3であった。単量体の重合体への転化率は100%であった。
[Production Example 6: Production of polymer (C3)]
(6-1) Production of ring-opening polymer In (1-1) of Production Example 1, the amounts of monomers (MTF, TCD, and DCPD) added were 10 parts by weight of MTF, 40 parts by weight of TCD, and 50 parts by weight of DCPD. Except for the above, the same operation as in Production Example 1 (1-1) was performed to obtain a ring-opened polymer. The ring-opened polymer had an Mw of 3.2×10 4 and a molecular weight distribution of 2.3. The conversion rate of monomer to polymer was 100%.

(6-2)重合体(C3)の製造
次いで、(6-1)で得られた開環重合体を含む反応溶液300部を攪拌器付きオートクレーブに移し、ケイソウ土担持ニッケル触媒(日揮化学社製、製品名「T8400RL」、ニッケル担持率57%)3部添加し、水素圧4.5MPa、160℃で4時間水素添加反応を行なった。
水素化反応終了後、得られた溶液をラジオライト#500を濾過床として、圧力0.25MPaで加圧濾過(石川島播磨重工社製、製品名「フンダバックフィルター」)して水素化触媒を除去し、無色透明な溶液を得た。得られた溶液を大量のイソプロパノール中に注ぎ、重合体を沈殿させた。得られた重合体を濾取した後に、真空乾燥機(220℃、1Torr)で6時間乾燥させ重合体(C3)を得た。重合体(C3)のMwは4.1×10、Mw/Mnは2.5であった。重合体(C3)のTgは128℃、Cは、2200×10-12Pa-1であった。
得られた重合体の、H-NMRによる分析の結果、重合体(C3)においては、非芳香族性の不飽和結合及び芳香族性の不飽和結合の両方が水素化されていることが確認された。
(6-2) Production of polymer (C3) Next, 300 parts of the reaction solution containing the ring-opened polymer obtained in (6-1) was transferred to an autoclave equipped with a stirrer, and diatomaceous earth supported nickel catalyst (JGC Chemical Co., Ltd. Co., Ltd., product name "T8400RL", nickel loading rate 57%) was added thereto, and a hydrogenation reaction was carried out at a hydrogen pressure of 4.5 MPa and 160° C. for 4 hours.
After completion of the hydrogenation reaction, the resulting solution was filtered under pressure at a pressure of 0.25 MPa using Radiolite #500 as a filter bed (manufactured by Ishikawajima-Harima Heavy Industries, product name: Fundavac Filter) to remove the hydrogenation catalyst. A colorless and transparent solution was obtained. The resulting solution was poured into a large amount of isopropanol to precipitate the polymer. After the obtained polymer was filtered, it was dried in a vacuum dryer (220° C., 1 Torr) for 6 hours to obtain a polymer (C3). The Mw of the polymer (C3) was 4.1×10 4 and the Mw/Mn was 2.5. The polymer (C3) had a Tg of 128° C. and a C R of 2200×10 −12 Pa −1 .
As a result of 1 H-NMR analysis of the obtained polymer, it was found that in the polymer (C3), both non-aromatic unsaturated bonds and aromatic unsaturated bonds were hydrogenated. confirmed.

[製造例7:重合体(C4)の製造]
(7-1)開環重合体の製造
製造例1の(1-1)において、単量体(MTF、TCD及びDCPD)の添加量を、MTF5重量部、TCD5重量部、DCPD90重量部としたこと以外は製造例1の(1-1)と同一の操作を行い、開環重合体を得た。開環重合体のMwは3.3×10、分子量分布は2.3であった。単量体の重合体への転化率は100%であった。
[Production Example 7: Production of polymer (C4)]
(7-1) Production of ring-opening polymer In (1-1) of Production Example 1, the amounts of monomers (MTF, TCD, and DCPD) added were 5 parts by weight of MTF, 5 parts by weight of TCD, and 90 parts by weight of DCPD. Except for the above, the same operation as in Production Example 1 (1-1) was performed to obtain a ring-opened polymer. The ring-opened polymer had an Mw of 3.3×10 4 and a molecular weight distribution of 2.3. The conversion rate of monomer to polymer was 100%.

(7-2)重合体(C4)の製造
次いで、(7-1)で得られた開環重合体を含む反応溶液300部を攪拌器付きオートクレーブに移し、ケイソウ土担持ニッケル触媒(日揮化学社製、製品名「T8400RL」、ニッケル担持率57%)3部添加し、水素圧4.5MPa、160℃で4時間水素添加反応を行なった。
水素化反応終了後、得られた溶液をラジオライト#500を濾過床として、圧力0.25MPaで加圧濾過(石川島播磨重工社製、製品名「フンダバックフィルター」)して水素化触媒を除去し、無色透明な溶液を得た。得られた溶液を大量のイソプロパノール中に注ぎ、重合体を沈殿させた。得られた重合体を濾取した後に、真空乾燥機(220℃、1Torr)で6時間乾燥させ重合体(C4)を得た。重合体(C4)のMwは3.9×10、Mw/Mnは2.7であった。重合体(C4)のTgは102℃、Cは、3100×10-12Pa-1であった。
得られた重合体の、H-NMRによる分析の結果、重合体(C4)においては、非芳香族性の不飽和結合及び芳香族性の不飽和結合の両方が水素化されていることが確認された。
(7-2) Production of polymer (C4) Next, 300 parts of the reaction solution containing the ring-opened polymer obtained in (7-1) was transferred to an autoclave equipped with a stirrer, and diatomaceous earth supported nickel catalyst (JGC Chemical Co., Ltd. Co., Ltd., product name "T8400RL", nickel loading rate 57%) was added thereto, and a hydrogenation reaction was carried out at a hydrogen pressure of 4.5 MPa and 160° C. for 4 hours.
After completion of the hydrogenation reaction, the resulting solution was filtered under pressure at a pressure of 0.25 MPa using Radiolite #500 as a filter bed (manufactured by Ishikawajima-Harima Heavy Industries, product name: Fundavac Filter) to remove the hydrogenation catalyst. A colorless and transparent solution was obtained. The resulting solution was poured into a large amount of isopropanol to precipitate the polymer. After the obtained polymer was collected by filtration, it was dried in a vacuum dryer (220° C., 1 Torr) for 6 hours to obtain a polymer (C4). The Mw of the polymer (C4) was 3.9×10 4 and the Mw/Mn was 2.7. The polymer (C4) had a Tg of 102° C. and a CR of 3100×10 −12 Pa −1 .
As a result of 1 H-NMR analysis of the obtained polymer, it was found that in the polymer (C4), both non-aromatic unsaturated bonds and aromatic unsaturated bonds were hydrogenated. confirmed.

[製造例8:重合体(C5)の製造]
(8-1)開環重合体の製造
製造例1の(1-1)において、単量体として、MTF、TCD及びDCPDに代えて、TCD50重量部及び8-メチルテトラシクロドデセン(以下MTDと略すことがある)50重量部を用いたこと以外は製造例1の(1-1)と同一の操作を行い、開環重合体を得た。開環重合体のMwは4.0×10、分子量分布は2.0であった。単量体の重合体への転化率は100%であった。
[Production Example 8: Production of polymer (C5)]
(8-1) Production of ring-opening polymer In (1-1) of Production Example 1, 50 parts by weight of TCD and 8-methyltetracyclododecene (hereinafter referred to as MTD) were used as monomers instead of MTF, TCD and DCPD. A ring-opened polymer was obtained by carrying out the same operation as in (1-1) of Production Example 1, except that 50 parts by weight (sometimes abbreviated as ) was used. The ring-opened polymer had an Mw of 4.0×10 4 and a molecular weight distribution of 2.0. The conversion rate of monomer to polymer was 100%.

(8-2)重合体(C5)の製造
次いで、(8-1)で得られた重合反応溶液300部を攪拌器付きオートクレーブに移し、ケイソウ土担持ニッケル触媒(日揮化学社製、製品名「T8400RL」、ニッケル担持率57%)3部添加し、水素圧4.5MPa、160℃で4時間水素添加反応を行なった。
水素化反応終了後、得られた溶液をラジオライト#500を濾過床として、圧力0.25MPaで加圧濾過(石川島播磨重工社製、製品名「フンダバックフィルター」)して水素化触媒を除去し、無色透明な溶液を得た。得られた溶液を大量のイソプロパノール中に注ぎ、重合体を沈殿させた。得られた重合体を濾取した後に、真空乾燥機(220℃、1Torr)で6時間乾燥させ重合体を得た。当該重合体のTgは158℃であった。
この重合体28重量部、無水マレイン酸10重量部及びジクミルパーオキシド3重量部をt-ブチルベンゼン130重量部に溶解し、140℃で6時間反応させた。反応生成物溶液をメタノール中に注ぎ、反応生成物を凝固させた。この凝固物を真空乾燥機(220℃、1Torr)で6時間乾燥させ、マレイン酸変性開環重合体水素添加物(重合体(C5))を得た。重合体(C5)のMwは5.6×10、Mw/Mnは2.5であった。重合体(C5)のTgは170℃、Cは、2000×10-12Pa-1、マレイン酸基含有率が25モル%であった。
(8-2) Production of polymer (C5) Next, 300 parts of the polymerization reaction solution obtained in (8-1) was transferred to an autoclave equipped with a stirrer, and diatomaceous earth supported nickel catalyst (manufactured by JGC Chemical Co., Ltd., product name: 3 parts of "T8400RL" with a nickel loading rate of 57%) were added thereto, and a hydrogenation reaction was carried out at a hydrogen pressure of 4.5 MPa and 160° C. for 4 hours.
After completion of the hydrogenation reaction, the resulting solution was filtered under pressure at a pressure of 0.25 MPa using Radiolite #500 as a filter bed (manufactured by Ishikawajima-Harima Heavy Industries, product name: Fundavac Filter) to remove the hydrogenation catalyst. A colorless and transparent solution was obtained. The resulting solution was poured into a large amount of isopropanol to precipitate the polymer. After the obtained polymer was collected by filtration, it was dried in a vacuum dryer (220° C., 1 Torr) for 6 hours to obtain a polymer. The Tg of the polymer was 158°C.
28 parts by weight of this polymer, 10 parts by weight of maleic anhydride, and 3 parts by weight of dicumyl peroxide were dissolved in 130 parts by weight of t-butylbenzene, and reacted at 140° C. for 6 hours. The reaction product solution was poured into methanol to solidify the reaction product. This coagulated product was dried in a vacuum dryer (220° C., 1 Torr) for 6 hours to obtain a hydrogenated maleic acid-modified ring-opening polymer (polymer (C5)). The Mw of the polymer (C5) was 5.6×10 4 and the Mw/Mn was 2.5. The polymer (C5) had a Tg of 170° C., a CR of 2000×10 −12 Pa −1 , and a maleic acid group content of 25 mol%.

[評価方法]
(延伸フィルムのRth、Re、dの測定及びRth/dの算出)
実施例および比較例のそれぞれで得られた延伸フィルムの、厚み方向のレタデーションRth及び面内方向のレタデーションReは、位相差計(AXOMETRICS社製「AXOSCAN」)を用いて、測定波長550nmで測定した。実施例および比較例のそれぞれで得られた延伸フィルムの厚みdは、スナップゲージID-C112BS((株)ミツトヨ製)により測定した。
測定したRth値を、延伸フィルムの厚みdで割算して、Rth/dを算出し、以下の評価基準により評価し、結果を表1及び表2に示した。表1及び表2においては、Rth/dを上段に、評価結果を下段の括弧内に記載した。
良:3.5×10-3以上
不良:3.5×10-3未満
[Evaluation method]
(Measurement of Rth, Re, d of stretched film and calculation of Rth/d)
The retardation Rth in the thickness direction and the retardation Re in the in-plane direction of the stretched films obtained in each of the examples and comparative examples were measured at a measurement wavelength of 550 nm using a retardation meter ("AXOSCAN" manufactured by AXOMETRICS). . The thickness d of the stretched films obtained in each of the Examples and Comparative Examples was measured using a snap gauge ID-C112BS (manufactured by Mitutoyo Co., Ltd.).
The measured Rth value was divided by the thickness d of the stretched film to calculate Rth/d, which was evaluated according to the following evaluation criteria, and the results are shown in Tables 1 and 2. In Tables 1 and 2, Rth/d is shown in the upper row, and the evaluation results are shown in parentheses in the lower row.
Good: 3.5×10 -3 or more Bad: Less than 3.5×10 -3

(配向角精度)
実施例および比較例のそれぞれで得られた延伸フィルムの配向角θは、偏光顕微鏡(オリンパス製、偏光顕微鏡「BX51」)を用いて測定を行い、絶対値を配向角として算出した。延伸フィルムの幅方向に対して50mmの間隔、長さ方向に対して10mの間隔で配向角θの測定を行った。それらの測定結果の標準偏差を算出し、配向角精度θσとし、結果を表1および表2に示した。配向角精度は、小さいほうが配向角のばらつきが小さく、好ましい。
(Orientation angle accuracy)
The orientation angle θ of the stretched films obtained in each of the examples and comparative examples was measured using a polarizing microscope (manufactured by Olympus, polarizing microscope "BX51"), and the absolute value was calculated as the orientation angle. The orientation angle θ was measured at intervals of 50 mm in the width direction of the stretched film and at intervals of 10 m in the length direction. The standard deviation of these measurement results was calculated, and the orientation angle precision θσ was determined, and the results are shown in Tables 1 and 2. The smaller the orientation angle precision is, the smaller the variation in the orientation angle is, which is preferable.

(デラミネーションの評価方法)
<剥離強度の測定方法>
被着体として、ノルボルネン系重合体を含む樹脂のフィルム(ゼオノアフィルム、ガラス転移温度160℃、厚み100μm、日本ゼオン社製、延伸処理は特にされていないもの)を用意した。測定対象フィルム(実施例および比較例のそれぞれで得られた延伸フィルム)の片面及び被着体の片面に、コロナ処理を施した。測定対象フィルムのコロナ処理を施した面、及び被着体のコロナ処理した面の両方に接着剤を付着させ、接着剤を付着させた面同士を貼り合わせた。この際、接着剤としてはUV接着剤CRBシリーズ(トーヨーケム社製)を用いた。その後、無電極UV照射装置(ヘレウス社製)を用い、ランプとしてDバルブを使用し、ピーク照度100mW/cm、積算光量3000mJ/cmの条件でUV照射を行い、接着剤を硬化させた。これにより、測定対象フィルム及び被着体を備えるサンプルフィルムを得た。
(Delamination evaluation method)
<Method for measuring peel strength>
As an adherend, a resin film containing a norbornene polymer (Zeonor film, glass transition temperature 160° C., thickness 100 μm, manufactured by Nippon Zeon Co., Ltd., without any particular stretching treatment) was prepared. One side of the film to be measured (stretched films obtained in each of the examples and comparative examples) and one side of the adherend were subjected to corona treatment. An adhesive was applied to both the corona-treated surface of the film to be measured and the corona-treated surface of the adherend, and the surfaces to which the adhesive was applied were bonded together. At this time, UV adhesive CRB series (manufactured by Toyochem) was used as the adhesive. Thereafter, using an electrodeless UV irradiation device (manufactured by Heraeus) and using a D bulb as a lamp, UV irradiation was performed under conditions of a peak illuminance of 100 mW/cm 2 and a cumulative light amount of 3000 mJ/cm 2 to cure the adhesive. . Thereby, a sample film including a film to be measured and an adherend was obtained.

得られたサンプルフィルムについて、90度剥離試験を実施した。即ち、サンプルフィルムを15mmの幅に裁断して、測定対象フィルム側をスライドガラスの表面に粘着剤にて貼り合わせた。この際、粘着剤としては、両面粘着テープ(日東電工社製、品番「CS9621」)を用いた。高性能型デジタルフォースゲージZP-5N(イマダ社製)の先端に被着体を挟み、スライドガラスの表面の法線方向に300mm/分の速度で被着体を牽引し、牽引の力の大きさを剥離強度として測定した。剥離強度の評価は以下の評価基準により行い、結果を表1および表2に示した。表1及び表2においては、測定値を上段に、評価結果を下段の括弧内に記載した。
良:1.0N/15mm以上
不良:1.0N/15mm未満
A 90 degree peel test was conducted on the obtained sample film. That is, the sample film was cut into a width of 15 mm, and the side of the film to be measured was attached to the surface of a slide glass using an adhesive. At this time, double-sided adhesive tape (manufactured by Nitto Denko Corporation, product number "CS9621") was used as the adhesive. The adherend is held between the tips of a high-performance digital force gauge ZP-5N (manufactured by Imada Corporation), and the adherend is pulled at a speed of 300 mm/min in the normal direction of the surface of the slide glass to determine the magnitude of the pulling force. The peel strength was measured as peel strength. Peel strength was evaluated using the following evaluation criteria, and the results are shown in Tables 1 and 2. In Tables 1 and 2, the measured values are listed in the upper row, and the evaluation results are listed in parentheses in the lower row.
Good: 1.0N/15mm or more Bad: Less than 1.0N/15mm

<参考例:剥離強度の測定方法の妥当性の評価>
上述の測定方法による剥離強度の測定が、被着体が偏光子である場合の剥離強度の評価を反映したものであると言えるか否かを評価する実験を行った。
特開2005-70140号公報の実施例1に記載される方法と同様の方法により、偏光フィルム及び接着剤を用意した。また、測定対象フィルムとして、本願の実施例1で得られた延伸フィルムを用意した。測定対象フィルムの片面にコロナ処理を施し、この面を、偏光フィルムの片方の表面に、接着剤を介して貼合した。偏光フィルムのもう片方の表面には、トリアセチルセルロースフィルムを、接着剤を介して貼合した。その後、80℃で7分間乾燥させて接着剤を硬化させて、サンプルフィルムを得た。得られたサンプルフィルムについて、上に述べた<剥離強度の測定方法>におけるものと同様の90度剥離試験を行った。その結果、本願実施例1で得られた値と同様の剥離強度の値が得られた。このことから、上に述べた測定方法による剥離強度の測定が、被着体が偏光子である場合の剥離強度の評価を反映したものであると言える。
<Reference example: Evaluation of validity of peel strength measurement method>
An experiment was conducted to evaluate whether the measurement of peel strength by the above-mentioned measurement method can be said to reflect the evaluation of peel strength when the adherend is a polarizer.
A polarizing film and an adhesive were prepared by a method similar to that described in Example 1 of JP-A-2005-70140. Moreover, the stretched film obtained in Example 1 of the present application was prepared as a film to be measured. One side of the film to be measured was subjected to corona treatment, and this side was bonded to one surface of the polarizing film via an adhesive. A triacetyl cellulose film was bonded to the other surface of the polarizing film via an adhesive. Thereafter, the adhesive was cured by drying at 80° C. for 7 minutes to obtain a sample film. The obtained sample film was subjected to a 90 degree peel test similar to that in <Method for measuring peel strength> described above. As a result, peel strength values similar to those obtained in Example 1 of the present application were obtained. From this, it can be said that the measurement of peel strength by the measurement method described above reflects the evaluation of peel strength when the adherend is a polarizer.

(85℃、500時間経過後のRth変化率)
実施例および比較例のそれぞれの延伸フィルムについて、85℃、500時間の耐久試験を行い、試験前後の延伸フィルムのRthを測定し、その変化率を下記式により算出し、以下の基準により評価した。変化率は小さい方が耐熱性が高く、好ましい。表1及び表2においては、変化率を上段に、評価結果を下段の括弧内に記載した。
変化率(%)=(試験前のRth-試験後のRth)/試験前のRth×100
良:変化率が3%以下
不良:変化率が3%より大きい
(Rth change rate after 500 hours at 85°C)
A durability test was conducted at 85° C. for 500 hours for each stretched film of Examples and Comparative Examples, Rth of the stretched film before and after the test was measured, and the rate of change was calculated using the following formula, and evaluated using the following criteria. . The smaller the rate of change, the higher the heat resistance, which is preferable. In Tables 1 and 2, the rate of change is shown in the upper row, and the evaluation results are shown in parentheses in the lower row.
Rate of change (%) = (Rth before test - Rth after test) / Rth before test x 100
Good: Change rate is 3% or less Bad: Change rate is greater than 3%

(60℃、湿度90%、500時間経過後のRth変化率)
実施例および比較例のそれぞれの延伸フィルムについて、60℃、湿度90%、500時間の耐久試験を行い、試験前後の延伸フィルムのRthを測定し、その変化率を下記式により算出し、以下の基準により評価した。変化率は小さい方が耐熱性及び耐湿性が高く好ましい。表1及び表2においては、変化率を上段に、評価結果を下段の括弧内に記載した。
変化率(%)=(試験前のRth-試験後のRth)/試験前のRth×100
良:変化率が3%以下
不良:変化率が3%より大きい
(60℃, humidity 90%, Rth change rate after 500 hours)
The stretched films of the examples and comparative examples were subjected to a durability test at 60°C and 90% humidity for 500 hours, the Rth of the stretched films before and after the test was measured, and the rate of change was calculated using the following formula. Evaluation was made according to the criteria. The smaller the rate of change, the higher the heat resistance and moisture resistance, which is preferable. In Tables 1 and 2, the rate of change is shown in the upper row, and the evaluation results are shown in parentheses in the lower row.
Rate of change (%) = (Rth before test - Rth after test) / Rth before test x 100
Good: Change rate is 3% or less Bad: Change rate is greater than 3%

(吸水率の測定)
実施例および比較例のそれぞれの延伸フィルムの一部を切断して試験片(サイズ:100mm×100mm)を用意し、その試験片の質量を測定する。その後、この試験片を、23℃の水中に24時間浸漬して、浸漬後の試験片の質量を測定する。そして、浸漬前の試験片の質量に対する、浸漬によって増加した試験片の質量の割合を、吸水率(%)として算出した。吸水率は小さい方が好ましい。
(Measurement of water absorption rate)
A test piece (size: 100 mm x 100 mm) is prepared by cutting a part of each of the stretched films of Examples and Comparative Examples, and the mass of the test piece is measured. Thereafter, this test piece is immersed in water at 23° C. for 24 hours, and the mass of the test piece after immersion is measured. Then, the ratio of the mass of the test piece increased by immersion to the mass of the test piece before immersion was calculated as water absorption rate (%). The smaller the water absorption rate, the better.

(実施例1)
(1-1)延伸前フィルムの製造
製造例1で製造した重合体(1)を二軸押出機に投入し、熱溶融押出成形によりストランド状の成形体に成形した。この成形体をストランドカッターにて細断して、重合体(1)を含む樹脂のペレットを得た。
(Example 1)
(1-1) Production of pre-stretched film The polymer (1) produced in Production Example 1 was charged into a twin-screw extruder and molded into a strand-shaped body by hot melt extrusion molding. This molded body was cut into pieces using a strand cutter to obtain resin pellets containing the polymer (1).

樹脂のペレットを100℃で5時間乾燥した後、常法によって該ペレットを押出し機に供給して250℃で溶融してダイから冷却ドラム上に吐出し、厚さ110μmの延伸前フィルムを得た。 After drying the resin pellets at 100°C for 5 hours, the pellets were fed to an extruder using a conventional method, melted at 250°C, and discharged from a die onto a cooling drum to obtain a pre-stretched film with a thickness of 110 μm. .

(1-2)延伸フィルムの製造
次に、ロール間でのフロート方式を用いた縦延伸機にて、延伸前フィルムを138℃(Tg+10℃)で、縦方向に1.2倍に延伸した。縦延伸されたフィルムをさらに、テンター法を用いた横延伸機に供給し、引取り張力とテンターチェーン張力とを調整しながら、138℃(Tg+10℃)の温度で横方向に1.4倍に延伸し、二軸延伸フィルムを得た。得られた二軸延伸フィルムは、Reが60nm、Rthが320nm、厚さdが65μmであった。得られた二軸延伸フィルムについて、評価試験を行い、結果を表1に示した。
(1-2) Production of Stretched Film Next, the unstretched film was stretched 1.2 times in the longitudinal direction at 138° C. (Tg+10° C.) using a longitudinal stretching machine using a float method between rolls. The longitudinally stretched film is further fed to a transverse stretching machine using a tenter method, and is stretched 1.4 times in the transverse direction at a temperature of 138°C (Tg + 10°C) while adjusting the take-up tension and tenter chain tension. The film was stretched to obtain a biaxially stretched film. The obtained biaxially stretched film had Re of 60 nm, Rth of 320 nm, and thickness d of 65 μm. An evaluation test was conducted on the obtained biaxially stretched film, and the results are shown in Table 1.

[実施例2]
(2-1)延伸前フィルムの製造
実施例1の(1-1)において、重合体(1)に代えて、製造例2で製造した重合体(2)を用いたこと以外は、実施例1の(1-1)と同様の操作を行い、重合体(2)を含む厚さ118μmの延伸前フィルムを得た。
[Example 2]
(2-1) Production of film before stretching In (1-1) of Example 1, except that polymer (2) produced in Production Example 2 was used instead of polymer (1), The same operation as in (1-1) of 1 was performed to obtain a 118 μm thick unstretched film containing polymer (2).

(2-2)延伸フィルムの製造
次に、ロール間でのフロート方式を用いた縦延伸機にて、延伸前フィルムを146℃(Tg+10℃)で、縦方向に1.25倍に延伸した。縦延伸されたフィルムをさらに、テンター法を用いた横延伸機に供給し、引取り張力とテンターチェーン張力とを調整しながら、146℃(Tg+10℃)の温度で横方向に1.45倍に延伸し、二軸延伸フィルムを得た。得られた二軸延伸フィルムは、Reが60nm、Rthが310nm、厚さdが65μmであった。得られた二軸延伸フィルムについて、評価試験を行い、結果を表1に示した。
(2-2) Production of Stretched Film Next, the unstretched film was stretched 1.25 times in the longitudinal direction at 146° C. (Tg+10° C.) using a longitudinal stretching machine using a float method between rolls. The longitudinally stretched film is further fed to a transverse stretching machine using a tenter method, and is stretched by 1.45 times in the transverse direction at a temperature of 146°C (Tg + 10°C) while adjusting the take-up tension and tenter chain tension. The film was stretched to obtain a biaxially stretched film. The obtained biaxially stretched film had Re of 60 nm, Rth of 310 nm, and thickness d of 65 μm. An evaluation test was conducted on the obtained biaxially stretched film, and the results are shown in Table 1.

[実施例3]
(3-1)延伸前フィルムの製造
実施例1の(1-1)において、重合体(1)に代えて、製造例3で製造した重合体(3)を用いたこと以外は、実施例1の(1-1)と同様の操作を行い、重合体(3)を含む厚さ127μmの延伸前フィルムを得た。
[Example 3]
(3-1) Production of film before stretching In (1-1) of Example 1, except that polymer (3) produced in Production Example 3 was used instead of polymer (1), The same operation as in (1-1) of 1 was performed to obtain a 127 μm thick unstretched film containing polymer (3).

(3-2)延伸フィルムの製造
次に、ロール間でのフロート方式を用いた縦延伸機にて、延伸前フィルムを138℃(Tg+10℃)で、縦方向に1.3倍に延伸した。縦延伸されたフィルムをさらに、テンター法を用いた横延伸機に供給し、引取り張力とテンターチェーン張力とを調整しながら、138℃(Tg+10℃)の温度で横方向に1.5倍に延伸し、二軸延伸フィルムを得た。得られた二軸延伸フィルムは、Reが60nm、Rthが300nm、厚さdが65μmであった。得られた二軸延伸フィルムについて、評価試験を行い、結果を表1に示した。
(3-2) Production of Stretched Film Next, the unstretched film was stretched 1.3 times in the longitudinal direction at 138° C. (Tg+10° C.) using a longitudinal stretching machine using a float method between rolls. The longitudinally stretched film is further fed to a transverse stretching machine using a tenter method, and is stretched 1.5 times in the transverse direction at a temperature of 138°C (Tg + 10°C) while adjusting the take-up tension and tenter chain tension. The film was stretched to obtain a biaxially stretched film. The obtained biaxially stretched film had Re of 60 nm, Rth of 300 nm, and thickness d of 65 μm. An evaluation test was conducted on the obtained biaxially stretched film, and the results are shown in Table 1.

[比較例1]
(C1-1)延伸前フィルムの製造
実施例1の(1-1)において、重合体(1)に代えて、製造例4で製造した重合体(C1)を用いたこと及び溶融樹脂の吐出量を増やしたこと以外は、実施例1の(1-1)と同様の操作を行い、重合体(C1)を含む厚さ180μmの延伸前フィルムを得た。
[Comparative example 1]
(C1-1) Production of film before stretching In (1-1) of Example 1, the polymer (C1) produced in Production Example 4 was used instead of polymer (1), and the molten resin was discharged. The same operation as in (1-1) of Example 1 was performed except that the amount was increased to obtain a 180 μm thick unstretched film containing the polymer (C1).

(C1-2)延伸フィルムの製造
次に、ロール間でのフロート方式を用いた縦延伸機にて、延伸前フィルムを139℃(Tg+10℃)で、縦方向に1.4倍に延伸した。縦延伸されたフィルムをさらに、テンター法を用いた横延伸機に供給し、引取り張力とテンターチェーン張力とを調整しながら、139℃(Tg+10℃)の温度で横方向に1.6倍に延伸し、二軸延伸フィルムを得た。得られた二軸延伸フィルムは、Reが60nm、Rthが300nm、厚さが80μmであった。得られた二軸延伸フィルムについて、評価試験を行い、結果を表1に示した。
(C1-2) Production of Stretched Film Next, the unstretched film was stretched 1.4 times in the longitudinal direction at 139° C. (Tg+10° C.) using a longitudinal stretching machine using a float method between rolls. The longitudinally stretched film is further fed to a transverse stretching machine using a tenter method, and is stretched 1.6 times in the transverse direction at a temperature of 139°C (Tg + 10°C) while adjusting the take-up tension and tenter chain tension. The film was stretched to obtain a biaxially stretched film. The obtained biaxially stretched film had Re of 60 nm, Rth of 300 nm, and thickness of 80 μm. An evaluation test was conducted on the obtained biaxially stretched film, and the results are shown in Table 1.

[比較例2]
(C2-1)延伸前フィルムの製造
実施例1の(1-1)において、重合体(1)に代えて、製造例5で製造した重合体(C2)を用いたこと及び溶融樹脂の吐出量を増やしたこと以外は、実施例1の(1-1)と同様の操作を行い、重合体(C2)を含む厚さ198μmの延伸前フィルムを得た。
[Comparative example 2]
(C2-1) Production of pre-stretched film In (1-1) of Example 1, the polymer (C2) produced in Production Example 5 was used instead of the polymer (1), and the molten resin was discharged. The same operation as in Example 1 (1-1) was performed except that the amount was increased to obtain a pre-stretched film containing the polymer (C2) with a thickness of 198 μm.

(C2-2)延伸フィルムの製造
次に、ロール間でのフロート方式を用いた縦延伸機にて、延伸前フィルムを146℃(Tg+10℃)で、縦方向に1.65倍に延伸した。縦延伸されたフィルムをさらに、テンター法を用いた横延伸機に供給し、引取り張力とテンターチェーン張力とを調整しながら、146℃(Tg+10℃)の温度で横方向に1.85倍に延伸し、二軸延伸フィルムを得た。得られた二軸延伸フィルムは、Reが60nm、Rthが250nm、厚さdが65μmであった。得られた二軸延伸フィルムについて、評価試験を行い、結果を表1に示した。
(C2-2) Production of Stretched Film Next, the unstretched film was stretched 1.65 times in the longitudinal direction at 146° C. (Tg+10° C.) using a longitudinal stretching machine using a float method between rolls. The longitudinally stretched film is further fed to a transverse stretching machine using a tenter method, and is stretched 1.85 times in the transverse direction at a temperature of 146°C (Tg + 10°C) while adjusting the take-up tension and tenter chain tension. The film was stretched to obtain a biaxially stretched film. The obtained biaxially stretched film had Re of 60 nm, Rth of 250 nm, and thickness d of 65 μm. An evaluation test was conducted on the obtained biaxially stretched film, and the results are shown in Table 1.

[比較例3]
(C3-1)延伸前フィルムの製造
実施例1の(1-1)において、重合体(1)に代えて、製造例6で製造した重合体(C3)を用いたこと及び溶融樹脂の吐出量を増やしたこと以外は、実施例1の(1-1)と同様の操作を行い、重合体(C3)を含む厚さ188μmの延伸前フィルムを得た。
[Comparative example 3]
(C3-1) Production of pre-stretched film In (1-1) of Example 1, the polymer (C3) produced in Production Example 6 was used instead of the polymer (1), and the molten resin was discharged. Except for increasing the amount, the same operation as in Example 1 (1-1) was performed to obtain a 188 μm thick unstretched film containing the polymer (C3).

(C3-2)延伸フィルムの製造
次に、ロール間でのフロート方式を用いた縦延伸機にて、延伸前フィルムを138℃(Tg+10℃)で、縦方向に1.6倍に延伸した。縦延伸されたフィルムをさらに、テンター法を用いた横延伸機に供給し、引取り張力とテンターチェーン張力とを調整しながら、138℃(Tg+10℃)の温度で横方向に1.8倍に延伸し、二軸延伸フィルムを得た。得られた二軸延伸フィルムは、Reが60nm、Rthが250nm、厚さdが65μmであった。得られた二軸延伸フィルムについて、評価試験を行い、結果を表2に示した。
(C3-2) Production of Stretched Film Next, the unstretched film was stretched 1.6 times in the longitudinal direction at 138° C. (Tg+10° C.) using a longitudinal stretching machine using a float method between rolls. The longitudinally stretched film is further fed to a transverse stretching machine using a tenter method, and is stretched 1.8 times in the transverse direction at a temperature of 138°C (Tg + 10°C) while adjusting the take-up tension and tenter chain tension. The film was stretched to obtain a biaxially stretched film. The obtained biaxially stretched film had Re of 60 nm, Rth of 250 nm, and thickness d of 65 μm. An evaluation test was conducted on the obtained biaxially stretched film, and the results are shown in Table 2.

[比較例4]
(C4-1)延伸前フィルムの製造
実施例1の(1-1)において、重合体(1)に代えて、製造例7で製造した重合体(C4)を用いたこと以外は、実施例1の(1-1)と同様の操作を行い、重合体(C4)を含む厚さ136μmの延伸前フィルムを得た。
[Comparative example 4]
(C4-1) Production of film before stretching In (1-1) of Example 1, except that the polymer (C4) produced in Production Example 7 was used instead of polymer (1), The same operation as in 1(1-1) was performed to obtain a 136 μm thick unstretched film containing the polymer (C4).

(C4-2)延伸フィルムの製造
次に、ロール間でのフロート方式を用いた縦延伸機にて、延伸前フィルムを112℃(Tg+10℃)で、縦方向に1.35倍に延伸した。縦延伸されたフィルムをさらに、テンター法を用いた横延伸機に供給し、引取り張力とテンターチェーン張力とを調整しながら、112℃(Tg+10℃)の温度で横方向に1.55倍に延伸し、二軸延伸フィルムを得た。得られた二軸延伸フィルムは、Reが60nm、Rthが300nm、厚さが65μmであった。得られた二軸延伸フィルムについて、評価試験を行い、結果を表2に示した。
(C4-2) Production of Stretched Film Next, the unstretched film was stretched 1.35 times in the longitudinal direction at 112° C. (Tg+10° C.) using a longitudinal stretching machine using a float method between rolls. The longitudinally stretched film is further fed to a transverse stretching machine using a tenter method, and is stretched 1.55 times in the transverse direction at a temperature of 112°C (Tg + 10°C) while adjusting the take-up tension and tenter chain tension. The film was stretched to obtain a biaxially stretched film. The obtained biaxially stretched film had Re of 60 nm, Rth of 300 nm, and thickness of 65 μm. An evaluation test was conducted on the obtained biaxially stretched film, and the results are shown in Table 2.

[比較例5]
(C5-1)延伸前フィルムの製造
実施例1の(1-1)において、重合体(1)に代えて、製造例6で製造した重合体(C3)を用いたこと以外は、実施例1の(1-1)と同様の操作を行い、重合体(C3)を含む厚さ134μmの延伸前フィルムを得た。
[Comparative example 5]
(C5-1) Production of film before stretching In (1-1) of Example 1, except that the polymer (C3) produced in Production Example 6 was used instead of the polymer (1), The same operation as in 1(1-1) was performed to obtain a 134 μm thick unstretched film containing the polymer (C3).

(C5-2)延伸フィルムの製造
次に、ロール間でのフロート方式を用いた縦延伸機にて、延伸前フィルムを138℃(Tg+10℃)で、縦方向に1.2倍に延伸した。縦延伸されたフィルムをさらに、テンター法を用いた横延伸機に供給し、引取り張力とテンターチェーン張力とを調整しながら、138℃(Tg+10℃)の温度で横方向に1.4倍に延伸し、二軸延伸フィルムを得た。得られた二軸延伸フィルムは、Reが60nm、Rthが260nm、厚さが80μmであった。得られた二軸延伸フィルムについて、評価試験を行い、結果を表2に示した。
(C5-2) Production of Stretched Film Next, the unstretched film was stretched 1.2 times in the longitudinal direction at 138° C. (Tg+10° C.) using a longitudinal stretching machine using a float method between rolls. The longitudinally stretched film is further fed to a transverse stretching machine using a tenter method, and is stretched 1.4 times in the transverse direction at a temperature of 138°C (Tg + 10°C) while adjusting the take-up tension and tenter chain tension. The film was stretched to obtain a biaxially stretched film. The obtained biaxially stretched film had Re of 60 nm, Rth of 260 nm, and thickness of 80 μm. An evaluation test was conducted on the obtained biaxially stretched film, and the results are shown in Table 2.

[比較例6]
(C6-1)延伸前フィルムの製造
実施例1の(1-1)において、重合体(1)に代えて、製造例8で製造した重合体(C5)を用いたこと及び溶融樹脂の吐出量を増やしたこと以外は、実施例1の(1-1)と同様の操作を行い、重合体(C5)を含む厚さ192μmの延伸前フィルムを得た。
[Comparative example 6]
(C6-1) Production of pre-stretched film In (1-1) of Example 1, the polymer (C5) produced in Production Example 8 was used instead of the polymer (1), and the molten resin was discharged. The same operation as in Example 1 (1-1) was performed except that the amount was increased to obtain a 192 μm thick unstretched film containing the polymer (C5).

(C6-2)延伸フィルムの製造
次に、ロール間でのフロート方式を用いた縦延伸機にて、延伸前フィルムを180℃(Tg+10℃)で、縦方向に1.62倍に延伸した。縦延伸されたフィルムをさらに、テンター法を用いた横延伸機に供給し、引取り張力とテンターチェーン張力とを調整しながら、180℃(Tg+10℃)の温度で横方向に1.82倍に延伸し、二軸延伸フィルムを得た。得られた二軸延伸フィルムは、Reが60nm、Rthが250nm、厚さが65μmであった。得られた二軸延伸フィルムについて、評価試験を行い、結果を表2に示した。
(C6-2) Production of Stretched Film Next, the unstretched film was stretched 1.62 times in the longitudinal direction at 180° C. (Tg+10° C.) using a longitudinal stretching machine using a float method between rolls. The longitudinally stretched film is further fed to a transverse stretching machine using a tenter method, and is stretched 1.82 times in the transverse direction at a temperature of 180°C (Tg + 10°C) while adjusting the take-up tension and tenter chain tension. The film was stretched to obtain a biaxially stretched film. The obtained biaxially stretched film had Re of 60 nm, Rth of 250 nm, and thickness of 65 μm. An evaluation test was conducted on the obtained biaxially stretched film, and the results are shown in Table 2.

実施例及び比較例の評価結果を、下記の表に示す。下記の表において、略称の意味は、下記の通りである。
MRu:非芳香族性の不飽和結合が選択的に水素化され、芳香族性の不飽和結合が残っているMTF。
T:水素化TCD。
D:水素化DCPD。
M:水素化MTF(即ち、非芳香族性の不飽和結合及び芳香族性の不飽和結合の両方が水素化されたMTF)。
極性COP:極性基を有する環状オレフィン重合体。
MD×TD:縦方向の延伸倍率×横方向の延伸倍率。
The evaluation results of Examples and Comparative Examples are shown in the table below. In the table below, the meanings of abbreviations are as follows.
MRu: MTF in which non-aromatic unsaturated bonds are selectively hydrogenated and aromatic unsaturated bonds remain.
T: Hydrogenated TCD.
D: Hydrogenated DCPD.
M: Hydrogenated MTF (ie, MTF in which both non-aromatic unsaturated bonds and aromatic unsaturated bonds are hydrogenated).
Polar COP: cyclic olefin polymer having polar groups.
MD×TD: Stretching magnification in the longitudinal direction×Stretching magnification in the lateral direction.

Figure 0007380559000001
Figure 0007380559000001

Figure 0007380559000002
Figure 0007380559000002

[結果]
表1および表2に示すように、本発明の要件を満たす実施例の延伸フィルムでは、延伸倍率が低いにもかかわらずRth/dが高く、デラミネーションの発生が抑制された。その結果、本発明の要件を満たす実施例のフィルムでは位相差発現性に優れ、厚み方向のレタデーションが高い視野角補償フィルムを提供することができることがわかった。
[result]
As shown in Tables 1 and 2, in the stretched films of Examples that meet the requirements of the present invention, Rth/d was high despite the low stretching ratio, and the occurrence of delamination was suppressed. As a result, it was found that the films of Examples that meet the requirements of the present invention can provide viewing angle compensation films that have excellent retardation properties and high retardation in the thickness direction.

Claims (6)

熱可塑性ノルボルネン系樹脂からなる光学フィルムであって、
前記熱可塑性ノルボルネン系樹脂は、応力複屈折C2910×10 -12 Pa -1 以上3900×10 -12 Pa -1 以下であり、ガラス転移温度Tgが125℃以上であり、
前記応力複屈折C は、前記熱可塑性ノルボルネン系樹脂から作製されたシート状サンプルを、前記熱可塑性ノルボルネン系樹脂のガラス転移温度Tg+5℃において応力を与え延伸して測定試料を得て、前記測定試料の波長650nmの光におけるレタデーション値a(nm)及び前記測定試料の厚みb(mm)から下記式(1):
δn=a×(1/b)×10 -6 (1)
によりδn値を算出し、算出された前記δn値及び前記応力(Pa)から下記式(2):
=δn/応力 (2)
により算出された値であり、
前記光学フィルムの、厚みdに対する、厚み方向のレタデーションRthの比(Rth/d)は、3.5×10-3以上8.0×10 -3 以下であり、
延伸フィルムである、光学フィルム。
An optical film made of thermoplastic norbornene resin,
The thermoplastic norbornene resin has a stress birefringence C R of 2910×10 −12 Pa −1 to 3900×10 −12 Pa −1 and a glass transition temperature Tg of 125° C. or higher,
The stress birefringence C R is determined by applying stress to a sheet sample made from the thermoplastic norbornene resin at +5°C, the glass transition temperature Tg of the thermoplastic norbornene resin, to obtain a measurement sample. From the retardation value a (nm) of the sample in light with a wavelength of 650 nm and the thickness b (mm) of the measurement sample, the following formula (1):
δn=a×(1/b)×10-6 ( 1)
The δn value is calculated by the following formula (2) from the calculated δn value and the stress (Pa):
C R = δn/stress (2)
This is the value calculated by
The ratio of the retardation Rth in the thickness direction to the thickness d of the optical film (Rth/d) is 3.5×10 −3 or more and 8.0×10 −3 or less ,
An optical film that is a stretched film.
面内方向のレタデーションReが40nm以上80nm以下である、請求項1記載の光学フィルム。 The optical film according to claim 1, having an in-plane retardation Re of 40 nm or more and 80 nm or less. 前記熱可塑性ノルボルネン系樹脂が、重合体を含み、
前記重合体が、芳香環構造を有するノルボルネン系単量体単位を含む、請求項1又は2記載の光学フィルム。
The thermoplastic norbornene resin contains a polymer,
The optical film according to claim 1 or 2, wherein the polymer contains a norbornene monomer unit having an aromatic ring structure.
前記重合体が、前記芳香環構造を有するノルボルネン系単量体単位を25重量%以上含む、請求項3に記載の光学フィルム。 The optical film according to claim 3, wherein the polymer contains 25% by weight or more of norbornene monomer units having the aromatic ring structure. 請求項1~4のいずれか一項に記載の光学フィルムと、
前記光学フィルムの上に設けられた偏光板と、を備える光学積層体。
The optical film according to any one of claims 1 to 4,
An optical laminate comprising: a polarizing plate provided on the optical film.
請求項5記載の光学積層体を備える液晶表示装置。 A liquid crystal display device comprising the optical laminate according to claim 5.
JP2020530064A 2018-07-13 2019-06-18 Optical films, optical laminates, and liquid crystal display devices Active JP7380559B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018133614 2018-07-13
JP2018133614 2018-07-13
PCT/JP2019/024151 WO2020012889A1 (en) 2018-07-13 2019-06-18 Optical film, optical multilayer body and liquid crystal display device

Publications (2)

Publication Number Publication Date
JPWO2020012889A1 JPWO2020012889A1 (en) 2021-08-26
JP7380559B2 true JP7380559B2 (en) 2023-11-15

Family

ID=69141877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020530064A Active JP7380559B2 (en) 2018-07-13 2019-06-18 Optical films, optical laminates, and liquid crystal display devices

Country Status (5)

Country Link
JP (1) JP7380559B2 (en)
KR (1) KR20210029164A (en)
CN (1) CN112384833B (en)
TW (1) TWI794524B (en)
WO (1) WO2020012889A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235185A (en) 1998-12-18 2000-08-29 Sharp Corp Liquid crystal display device
JP2003238705A (en) 2001-04-27 2003-08-27 Jsr Corp Thermoplastic norbornene resin optical film
US6646701B2 (en) 1997-05-29 2003-11-11 Samsung Electronics Co., Ltd. Liquid crystal display device having wide viewing angle and improved contrast ratio
JP2008046147A (en) 2006-08-10 2008-02-28 Nitto Denko Corp Laminated optical film, elliptically polarizing plate and image display device
JP2009139685A (en) 2007-12-07 2009-06-25 Nitto Denko Corp Liquid crystal panel and liquid crystal display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6646701B2 (en) 1997-05-29 2003-11-11 Samsung Electronics Co., Ltd. Liquid crystal display device having wide viewing angle and improved contrast ratio
JP2000235185A (en) 1998-12-18 2000-08-29 Sharp Corp Liquid crystal display device
JP2003238705A (en) 2001-04-27 2003-08-27 Jsr Corp Thermoplastic norbornene resin optical film
JP2008046147A (en) 2006-08-10 2008-02-28 Nitto Denko Corp Laminated optical film, elliptically polarizing plate and image display device
JP2009139685A (en) 2007-12-07 2009-06-25 Nitto Denko Corp Liquid crystal panel and liquid crystal display

Also Published As

Publication number Publication date
JPWO2020012889A1 (en) 2021-08-26
TW202006004A (en) 2020-02-01
WO2020012889A1 (en) 2020-01-16
CN112384833B (en) 2022-08-26
CN112384833A (en) 2021-02-19
TWI794524B (en) 2023-03-01
KR20210029164A (en) 2021-03-15

Similar Documents

Publication Publication Date Title
JP5587063B2 (en) Biaxial optical polynorbornene-based film and manufacturing method thereof, integrated optical compensation polarizing plate including the same, manufacturing method thereof, and liquid crystal display device including the film and / or polarizing plate
TWI668474B (en) Long circular polarizing plate, long wide-band λ/4 plate, organic electroluminescence display device and liquid crystal display device
WO2017094485A1 (en) Multilayer film, manufacturing method, circular-polarizing plate, antireflective film, and organic electroluminescence display device
JP4655973B2 (en) Stretched laminated film
JP2023024447A (en) Retardation film and method for manufacturing the same
JP7463965B2 (en) Optical film and method for producing the same, optical laminate, and liquid crystal display device
KR102550087B1 (en) Optical laminates, polarizers and liquid crystal displays
JP7380559B2 (en) Optical films, optical laminates, and liquid crystal display devices
JP6075033B2 (en) Retardation film laminate and production method thereof, polarizing plate and liquid crystal display device
JP7322889B2 (en) Molded article and its manufacturing method
JP6477921B2 (en) Optical laminate, polarizing plate, and display device manufacturing method
JP7405013B2 (en) Long circularly polarizing plate, long broadband λ/4 plate, organic electroluminescent display device, and liquid crystal display device
JP2004317812A (en) Optical retardation compensation film, compound polarizing plate, polarizing plate and liquid crystal display device
JP5130958B2 (en) TN mode liquid crystal display element, manufacturing method thereof, and retardation film for TN mode liquid crystal display element
JP2007316609A (en) Optical film, its use, and method for manufacturing optical film
KR20150134783A (en) Phase difference film layered body and method for producing the same, polarizing plate, and liquid crystal display
JP2010054804A (en) Laminate film, method for manufacturing laminate film, polarizing plate having laminate film, and liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R150 Certificate of patent or registration of utility model

Ref document number: 7380559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150