WO2020066667A1 - 多層積層フィルム - Google Patents
多層積層フィルム Download PDFInfo
- Publication number
- WO2020066667A1 WO2020066667A1 PCT/JP2019/035947 JP2019035947W WO2020066667A1 WO 2020066667 A1 WO2020066667 A1 WO 2020066667A1 JP 2019035947 W JP2019035947 W JP 2019035947W WO 2020066667 A1 WO2020066667 A1 WO 2020066667A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- monotonically increasing
- increasing region
- laminated film
- thickness
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
- G02B5/3041—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0816—Multilayer mirrors, i.e. having two or more reflecting layers
- G02B5/0825—Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only
- G02B5/0841—Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only comprising organic materials, e.g. polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/286—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/285—Interference filters comprising deposited thin solid films
- G02B5/286—Interference filters comprising deposited thin solid films having four or fewer layers, e.g. for achieving a colour effect
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/285—Interference filters comprising deposited thin solid films
- G02B5/287—Interference filters comprising deposited thin solid films comprising at least one layer of organic material
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
- G02F1/133536—Reflective polarizers
Definitions
- the present disclosure relates to a multilayer laminated film capable of widely reflecting light in a visible light region.
- a multilayer laminated film in which a number of layers having a low refractive index and a number of layers having a high refractive index are alternately laminated can be an optical interference film that selectively reflects or transmits light of a specific wavelength by structural light interference between layers.
- such a multilayer laminated film reflects light over a wide wavelength range by gradually changing the film thickness of each layer along the thickness direction or by bonding films having different reflection peaks. It can transmit light and can obtain a high reflectance equivalent to a film using metal, and can be used as a metallic glossy film or a reflection mirror.
- Patent Documents 1 to 4 etc. it is known that by stretching such a multilayer laminated film in one direction, it can be used as a reflective polarizing film that reflects only a specific polarized light component, and can be used as a brightness enhancement member of a liquid crystal display or the like.
- Patent Document 1 Japanese Patent Application Laid-Open No. 04-268505
- Patent Document 2 Japanese Patent Application Laid-Open No. 9-506837
- Patent Document 3 Japanese Patent Application Laid-Open No. 9-506984
- Patent Document 4 International Patent Publication No. WO 01/47711 Pamphlet
- the above-mentioned multilayer laminated film may be required to have a high degree of polarization in addition to maintaining a wide reflection wavelength band. Further, in the above-described multilayer laminated film, when observed from an oblique direction, the entire film may appear reddish (colored), and suppression of such redness (colored) may be required at the same time. . In particular, in a multilayer laminated film for which reduction in size and weight is desired, since the number of layers to be laminated is finite, it is desired to satisfy the above requirements within a limited thickness or weight range. It is an object of the present disclosure to provide a multilayer laminated film having a high degree of polarization while maintaining a wide reflection wavelength band, and having a suppressed color tone when observed from an oblique direction.
- the first layer has a layer thickness profile capable of reflecting light having a wavelength of 380 to 780 nm by optical interference, and the first layer has an optical thickness having a first monotonically increasing region.
- the inclination in the 1B monotonically increasing region with respect to the inclination 1A in the 1A monotonically increasing region.
- the ratio 1B / 1A of 1B is more than 0 and less than 0.8, and the layer thickness profile at the optical thickness of the second layer has a second monotonically increasing region, and the second monotonically increasing region has a maximum optical thickness.
- 200n thickness And a ratio 2B / 2A of the slope 2B in the 2B monotonically increasing region to the slope 2A in the 2A monotonically increasing region is 0.8 or more.
- ⁇ 3> The multilayer laminated film according to ⁇ 1> or ⁇ 2>, wherein the average optical thickness in the 2A monotonically increasing region is from 130 nm to 155 nm, and the average optical thickness in the 2B monotonically increasing region is from 250 nm to 290 nm.
- ⁇ 4> The multilayer laminated film according to any one of ⁇ 1> to ⁇ 3>, wherein an average reflectance in a wavelength region of 380 nm to 780 nm of light polarized parallel to the reflection axis at normal incidence is 82% or more.
- a multilayer laminated film that has a high degree of polarization while maintaining a wide reflection wavelength band, and that suppresses tint when observed from an oblique direction.
- FIG. 1 is a schematic diagram illustrating an example of a layer thickness profile of a multilayer laminated film of the present disclosure. It is a figure showing each transmission spectrum in a transmission axis and a reflection axis of a multilayer lamination film of this indication.
- a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
- a multilayer laminated film according to an embodiment of the present disclosure includes a multilayer alternate laminate of a birefringent first layer mainly composed of a first resin and an isotropic second layer mainly composed of a second resin. It can reflect light in a wide wavelength range in the visible light region having a wavelength of 380 to 780 nm due to the light interference effect of the first layer and the second layer. For example, the light can be reflected in the wavelength range of 400 to 760 nm, preferably in the wavelength range of 380 to 780 nm.
- the term “reflective” means that the average reflectance at a perpendicular incidence of polarized light parallel to such a direction is at least 50% in at least one arbitrary direction in the film plane. From the viewpoint that the multilayer laminated film retains a wide reflection wavelength band, the reflection may be 50% or more as an average reflectance in each wavelength range, preferably 60% or more, more preferably 70% or more, and still more preferably. Is 82% or more.
- the average reflectance is a value obtained by subtracting the average transmittance at a wavelength of 380 to 780 nm obtained from 100 using a polarizing film measuring device (“VAP7070S” manufactured by JASCO Corporation).
- “mainly composed of resin” means that the resin accounts for 70% by mass or more of the total mass of each layer in each layer, preferably 80% by mass or more, more preferably 90% by mass or more. .
- the multilayer alternating laminated body mainly includes a first resin, and has a birefringent first layer having a thickness of 10 to 1000 nm, a second resin, and a second resin. It is preferable to have a structure in which a total of 30 or more isotropic second layers having a thickness of 10 to 1000 nm are alternately laminated in the thickness direction.
- the resin constituting each layer will be described in detail later, but is not particularly limited as long as a birefringent layer and an isotropic layer can be formed.
- a thermoplastic resin is preferable from the viewpoint of easy production of a film.
- the refractive index in the vertical direction, the horizontal direction, and the thickness direction is defined as birefringence when the difference between the maximum and minimum is 0.1 or more, and isotropic when less than 0.1.
- the multilayer laminated film according to an embodiment of the present disclosure can reflect light in a wide wavelength range by having the first layer and the second layer having various optical thicknesses. This is because the reflection wavelength is caused by the optical thickness of each layer constituting the multilayer laminated film.
- the reflection wavelength of a multilayer laminated film is represented by the following (formula 1).
- ⁇ 2 (n1 ⁇ d1 + n2 ⁇ d2) (Equation 1) (In the above formula, ⁇ represents the reflection wavelength (nm), n1 and n2 represent the refractive index of each layer, and d1 and d2 represent the physical thickness (nm) of each layer.)
- the optical thickness ⁇ M (nm) is represented by the product of the refractive index nk and the physical thickness dk of each layer as shown in (Equation 2) below.
- the physical thickness obtained from a photograph taken using a transmission electron microscope can be employed.
- the thickness range in the monotonically increasing region to be described later can be widened, and it can be designed to reflect light in a wide wavelength range.In such a monotonically increasing region, light in a specific wavelength range can be reflected. It is also possible to design such that light outside the specific wavelength range is reflected in the region, and light is reflected as a whole in a wide wavelength range.
- the first layer and the second layer each have a specific layer thickness profile, thereby maintaining a wide reflection wavelength band, having a high degree of polarization, and in an oblique direction.
- a multilayer laminated film in which the tint when observed from is suppressed.
- the layer thickness profile at the optical thickness of the first layer has a first monotonically increasing region, and the first monotonically increasing region has a 1A monotonically increasing region up to a maximum optical thickness of 100 nm and a minimum optical thickness.
- a ratio 1B / 1A of the slope 1B in the 1B monotonically increasing region with respect to the slope 1A in the 1A monotonically increasing region is more than 0 and less than 0.8.
- the layer thickness profile at the optical thickness of the second layer has a second monotonically increasing region, wherein the second monotonically increasing region has a 2A monotonically increasing region up to a maximum optical thickness of 200 nm and a minimum optical thickness.
- FIG. 1 shows a schematic diagram of an example of the layer thickness profile of the multilayer laminated film of the present disclosure, and shows a graph of each transmission spectrum in the transmission axis and the reflection axis of the multilayer laminated film having the layer thickness profile shown in FIG. It is shown in FIG.
- the ratio 1B / 1A of the gradient 1B in the 1B monotonically increasing region to the gradient 1A in the 1A monotonically increasing region is 0.5
- the ratio 2B / of the gradient 2B in the 2B monotonically increasing region to the gradient 2A in the 2A monotonically increasing region is shown.
- FIG. 2 shows a transmission spectrum (dotted line) on the transmission axis of the multilayer laminated film having the layer thickness profile shown in FIG. 1 and a transmission spectrum (solid line) on the reflection axis. The degree of polarization of the multilayer laminated film calculated from the transmission spectrum shown in FIG.
- the multilayer laminated film of the present disclosure has a reflection wavelength band in a wide range of a wavelength of 380 to 780 nm.
- the 1A monotonically increasing region having the inclination 1A and the 1B monotonically increasing region having the inclination 1B, which constitute the first monotonically increasing region, have an optical thickness of 100 nm as a boundary, and the ratio 1B / 1A is 0. It is a continuous area satisfying less than 0.8.
- the 2A monotonically increasing region having the inclination 2A and the 2B monotonically increasing region having the inclination 2B constituting the second monotonically increasing region have an optical thickness of 200 nm as a boundary, and the ratio 2B / 2A is 0.8 or more and 1.5 or more. It is a continuous area that satisfies the following.
- a multilayer laminated film can be obtained. This is because, by simultaneously satisfying the above inclination ratio, a multilayer laminated film having a higher reflectance while having a broad reflection wavelength band can be realized. Conventionally, when the reflectance is high, the reflection wavelength band tends to be narrow, but an embodiment of the present disclosure has a high degree of polarization while maintaining a wide reflection wavelength band, and when observed from an oblique direction. That is, a multilayer laminated film with suppressed tint can be obtained.
- the existing ratio can be obtained.
- the inclination of the layer thickness profile is the inclination of a first-order approximation line obtained by the following method. That is, assuming that the inclination of the first-order approximation line of the layer thickness profile in the 1A monotonically increasing region of the first layer is 1A, and the inclination of the first-order approximation line of the layer thickness profile in the 1B monotonically increasing region is 1B, 1B is obtained from the obtained value. / 1A.
- the inclination of the first-order approximation line of the layer thickness profile in the 2A monotonically increasing region of the second layer is 2A
- the inclination of the first-order approximation line of the layer thickness profile in the 2B monotonically increasing region is 2B. / 2A.
- the number of layers can be increased by doubling or the like as described later.
- the layer thickness profile for one packet may be seen, and
- One packet can be a multilayer alternating stack.
- each of the packets can be regarded as a packet, and each packet is divided into an intermediate layer and the like. Can be regarded as different packets.
- the boundary in the first monotonically increasing region, has an optical thickness of 100 nm, and the inclination in the 1A monotonically increasing region where the optical thickness is small and the inclination in the 1B monotonically increasing region where the optical thickness is large.
- the ratio By setting the ratio to a specific range, it is possible to increase the reflection intensity around a wavelength of 550 nm having high visibility, while widening the wavelength region corresponding to the first monotonically increasing region, thereby improving the degree of polarization.
- setting the boundary to 100 nm makes it possible to further increase the reflection intensity around the wavelength of 550 nm.
- the boundary of the first layer is 150 nm or 200 nm, the effect of improving the reflection intensity in the above wavelength region tends to be low, and the effect of improving the degree of polarization tends to be low.
- the boundary in the second monotonically increasing region, is set to an optical thickness of 200 nm, and in the 2B monotonically increasing region, where the optical thickness is large with respect to the inclination in the 2A monotonically increasing region, where the optical thickness is small.
- the boundary is set to 200 nm, and the reflection intensity can be uniformly adjusted by making the inclination 2A relatively small in relation to the inclinations 2A and 2B.
- the slope 2B by making the slope 2B relatively large, it is possible to increase the reflection intensity in the target wavelength region by using high-order reflection such as secondary reflection and tertiary reflection while widening the reflection wavelength band. Become.
- the value of the ratio of 1B / 1A is more than 0 and less than 0.8, for example, the lower limit is 0.01, 0.02 or 0.19, the upper limit is 0.79, An embodiment in which 0.70 or 0.63 is set and an embodiment in which any lower limit and upper limit are combined are preferable. More specifically, an embodiment in the range of 0.01 to 0.79, an embodiment in the range of 0.02 to 0.70, and an embodiment in the range of 0.19 to 0.63 are preferable.
- the value of the ratio of 2B / 2A is 0.8 or more and 1.5 or less.
- the lower limit is 0.81, 0.90, 0.95, or 1.00, and the upper limit is 1.
- an embodiment in which the lower limit is 45, 1.40, 1.30 or 1.25, and an embodiment in which any lower limit and upper limit are combined is preferable. More specifically, an embodiment in the range of 0.81 to 1.45, an embodiment in the range of 0.90 to 1.40, an embodiment in the range of 0.95 to 1.30, 1.00 to 1 .25 is preferred.
- Such a layer thickness profile can be obtained by adjusting the comb teeth of the feed block.
- the inclination 1A of the 1A monotonically increasing region in the range up to the optical thickness of 100 nm is preferably 1.05 to 30, more preferably 1.25 to 26, and still more preferably 1.4 to 5. Particularly preferably, it is 1.5 to 4.0.
- the inclination 1B of the 1B monotonically increasing region in the range from the optical thickness of 100 nm is preferably 0.50 to 1.50, more preferably 0.70 to 1.20, and still more preferably 0.75 to 1.00. Particularly preferably, it is 0.80 to 0.98.
- the slope 2A of the 2A monotonically increasing region up to an optical thickness of 200 nm is preferably 1.50 to 2.50, more preferably 1.58 to 2.20, and further preferably 1. 65-2.00, particularly preferably 1.68-1.95.
- the slope 2B of the 2B monotonically increasing region in the range from the optical thickness of 200 nm is preferably 1.50 to 2.50, more preferably 1.70 to 2.35, further preferably 1.85 to 2.20, Particularly preferred is 1.90 to 2.15.
- the layer on the thinner side of the optical thickness of the 1A monotonically increasing region preferably has an optical thickness (nm) of 40 to 60, more preferably 43 to 57, and even more preferably 46. ⁇ 54.
- the layer at the end of the 1B monotonically increasing region on the side with the larger optical thickness preferably has an optical thickness of 180 to 220, more preferably 185 to 215, and still more preferably 190 to 210.
- the optical thickness (nm) of the layer on the thinner side of the 2A monotonically increasing region is preferably 70 to 90, more preferably 74 to 86, and still more preferably 78. ⁇ 82.
- the layer at the end of the 2B monotonically increasing region on the side with the larger optical thickness preferably has an optical thickness of 295 to 385, more preferably 310 to 370, and still more preferably 325 to 355.
- the average of the optical thickness of the first layer (hereinafter also referred to as the average optical thickness) may be 65 nm to 85 nm in the 1A monotonically increasing region in the first monotonically increasing region, and may be 140 nm to 160 nm in the 1B monotonically increasing region. preferable. By doing so, the effect of the layer thickness profile of the first layer as described above is more easily exerted, and the effect of suppressing a decrease in the degree of polarization is further improved.
- the average of the optical thickness of the second layer (hereinafter also referred to as the average optical thickness) is 130 nm to 155 nm in the 2A monotonically increasing region in the second monotonically increasing region, and 250 nm to 290 nm in the 2B monotonically increasing region. Is preferred. By doing so, the effect of the layer thickness profile of the second layer as described above is more easily exerted, and the effect of suppressing tint when observed from an oblique direction is further improved.
- the average of the optical thickness of the first layer is preferably 67 nm to 83 nm and 143 nm to 157 nm in the 1A monotonically increasing region and the 1B monotonically increasing region, respectively, from the viewpoint of further facilitating the effect. More preferably, they are 69 nm to 81 nm and 146 nm to 154 nm, respectively.
- the average of the optical thickness of the second layer is preferably 133 nm to 152 nm and 255 nm to 285 nm in the 2A monotonically increasing region and the 2B monotonically increasing region, respectively, from the viewpoint of further facilitating the effect. More preferably, they are 136 nm to 149 nm and 260 nm to 280 nm, respectively.
- ⁇ monotonically increasing '' is preferably that the thicker layer is thicker than the thinner layer in all of the multilayer alternating laminates in the multilayer laminated film, but is not limited thereto, and What is necessary is just to see a tendency that the thickness increases from the thinner side to the thicker side. More specifically, when the optical thicknesses are numbered from the thinner side to the thicker side, and the thickness is plotted on the vertical axis with the horizontal axis as the horizontal axis, the film thickness tends to increase. When the average value of the film thickness in each equally divided area increases in the direction of increasing the film thickness in the direction in which the film thickness increases, it is determined that the number of layers is monotonically increasing.
- the first layer and the second layer may be viewed separately, and the monotonic increase of the first layer and the monotonic increase of the second layer may have different slopes.
- the monotonic increase may be a mode in which the monotonous increase is performed in all the layers from one outermost layer to the other outermost layer in the multilayer alternate laminate, but in the multilayer alternate laminate, the number of layers is 80%.
- the aspect may be monotonously increasing in a portion of preferably 90% or more, more preferably 95% or more, and the thickness may be constant or decreasing in the other portion. .
- the first embodiment of the present disclosure is an embodiment in which the area is monotonically increasing in a portion of 100%, but an aspect in which a non-monotonically increasing region is provided on the side where the layer number is small and / or the layer number is large in such a thickness profile. It may be.
- a region where the above-described ratio 1B / 1A satisfies more than 0 and less than 0.8 among the monotonically increasing regions of the first layer is referred to as a first monotonically increasing region, and a monotonically increasing region of the second layer.
- a region where the above ratio 2B / 2A satisfies 0.8 or more and 1.5 or less is referred to as a second monotonically increasing region.
- the range of the monotonically increasing region of the first layer and the second layer is 380 to 780 nm due to optical interference as the multilayer alternating laminate. What is necessary is just to have the range which can reflect this light. Further, the range of the monotonically increasing region of the first layer and the second layer may have a width exceeding a range in which light having a wavelength of 380 to 780 nm can be reflected when the multilayer alternating laminate is formed.
- the first layer that constitutes the multilayer laminated film of one embodiment of the present disclosure is a birefringent layer, that is, the resin that constitutes it (also referred to as the first resin in the present disclosure) has a birefringent property.
- a layer can be formed.
- the resin constituting the first layer is preferably an oriented crystalline resin, and particularly preferably, the oriented crystalline resin is polyester.
- the polyester preferably contains an ethylene terephthalate unit and / or an ethylene naphthalate unit, more preferably an ethylene naphthalate unit in a range of 80 mol% or more and 100 mol% or less based on the repeating unit constituting the polyester. This is preferable because it is easy to form a layer having a higher refractive index, thereby easily increasing the refractive index difference from the second layer.
- it is the total content.
- a naphthalenedicarboxylic acid component is contained as a dicarboxylic acid component, and its content is preferably 80 mol% or more and 100 mol% or less based on the dicarboxylic acid component constituting the polyester.
- the naphthalenedicarboxylic acid component include a 2,6-naphthalenedicarboxylic acid component, a 2,7-naphthalenedicarboxylic acid component, a component derived from a combination thereof, and a derivative component thereof, and in particular, a 2,6-naphthalenedicarboxylic acid component.
- a preferred example is a naphthalenedicarboxylic acid component or a derivative component thereof.
- the content of the naphthalenedicarboxylic acid component is preferably 85 mol% or more, more preferably 90 mol% or more, and preferably less than 100 mol%, more preferably 98 mol% or less, and still more preferably 95 mol% or less. It is.
- the dicarboxylic acid component constituting the polyester of the first layer in addition to the naphthalenedicarboxylic acid component, a terephthalic acid component, an isophthalic acid component, and the like may be further contained as long as the object of the present disclosure is not impaired. It is preferred to contain.
- the content is preferably in the range of more than 0 mol% and 20 mol% or less.
- the content of the second dicarboxylic acid component is more preferably at least 2 mol%, further preferably at least 5 mol%, more preferably at most 15 mol%, further preferably at most 10 mol%.
- the first layer is a layer having a relatively higher refractive index characteristic than the second layer, and the second layer is more than the first layer. It is a layer having relatively low refractive index characteristics, and is preferably stretched in a uniaxial direction.
- the uniaxial stretching direction is the X direction
- the direction perpendicular to the X direction in the film plane is the Y direction (also referred to as a non-stretching direction)
- the direction perpendicular to the film plane is Z.
- Direction also referred to as a thickness direction).
- the polyester containing a naphthalenedicarboxylic acid component as a main component as described above for the first layer, it is possible to realize a high birefringence property while exhibiting a high refractive index in the X direction and a high uniaxial orientation.
- the difference in the refractive index from the second layer in the direction can be increased, which contributes to a high degree of polarization.
- the content of the naphthalenedicarboxylic acid component is less than the lower limit, the amorphous property tends to increase, and the difference between the refractive index nX in the X direction and the refractive index nY in the Y direction tends to decrease.
- a P-polarized component in the present disclosure which is defined as a polarized component parallel to an incident surface including a uniaxial stretching direction (X direction) with the film surface being a reflective surface.
- X direction uniaxial stretching direction
- the S-polarized light component is defined as a polarized light component that is perpendicular to an incident surface including a uniaxial stretching direction (X direction), with the film surface being a reflective surface in the multilayer laminated film.
- an ethylene glycol component is used, and its content is preferably 80 mol% or more and 100 mol% or less based on the diol component constituting the polyester. It is more preferably at least 85 mol% and at most 100 mol%, further preferably at least 90 mol% and at most 100 mol%, particularly preferably at least 90 mol% and at most 98 mol%. If the proportion of the diol component is less than the lower limit, the uniaxial orientation described above may be impaired.
- the diol component constituting the polyester of the first layer in addition to the ethylene glycol component, further contains a trimethylene glycol component, a tetramethylene glycol component, a cyclohexane dimethanol component, a diethylene glycol component, and the like within a range that does not impair the purpose of the present disclosure. Is also good.
- the melting point of the polyester used for the first layer is preferably in the range of 220 to 290 ° C, more preferably in the range of 230 to 280 ° C, and further preferably in the range of 240 to 270 ° C.
- the melting point can be determined by measuring with a differential scanning calorimeter (DSC). If the melting point of the polyester exceeds the upper limit, the fluidity of the polyester during melt-extrusion molding is poor, and discharge and the like may be likely to be non-uniform.
- the melting point is less than the lower limit, the film-forming properties are excellent, but the mechanical properties of the polyester are likely to be impaired, and the refraction when used as a brightness improving member of a liquid crystal display or a reflective polarizing plate. The rate characteristics tend to be difficult to develop.
- the glass transition temperature (hereinafter sometimes referred to as Tg) of the polyester used for the first layer is preferably from 80 to 120 ° C, more preferably from 82 to 118 ° C, further preferably from 85 to 118 ° C, and particularly preferably. It is in the range of 100-115 ° C. When Tg is in this range, heat resistance and dimensional stability are excellent, and a refractive index characteristic when used as a brightness improving member of a liquid crystal display or a reflective polarizing plate is easily exhibited.
- the melting point and the glass transition temperature can be adjusted by controlling the type and amount of the copolymerization component, diethylene glycol as a by-product, and the like.
- the polyester used for the first layer preferably has an intrinsic viscosity of 0.50 to 0.75 dl / g, more preferably 0.55 to 0.72 dl, measured at 35 ° C. using an o-chlorophenol solution. / G, more preferably 0.56 to 0.71 dl / g.
- the second layer that constitutes the multilayer laminated film of one embodiment of the present disclosure is an isotropic layer, that is, the resin that constitutes the layer (also referred to as the second resin in the present disclosure) is an isotropic layer.
- a layer can be formed. Therefore, an amorphous resin is preferable as the resin constituting the second layer. Among them, amorphous polyester is preferable. Note that the term “amorphous” here does not exclude that the second layer has an extremely slight crystallinity. Good.
- a copolymerized polyester As the resin constituting the second layer, a copolymerized polyester is preferable, and particularly, a copolymerized polyester containing a naphthalenedicarboxylic acid component, an ethylene glycol component and a trimethylene glycol component as a copolymer component is preferably used.
- the naphthalenedicarboxylic acid component include a 2,6-naphthalenedicarboxylic acid component, a 2,7-naphthalenedicarboxylic acid component, a component derived from a combination thereof, and a derivative component thereof.
- a preferred example is a 6-naphthalenedicarboxylic acid component or a derivative thereof.
- copolymer component in the present disclosure means any component that constitutes a polyester, and a subcomponent (less than 50 mol% based on the total acid component or the total diol component as a copolymerization amount).
- the component (A) is not limited to the copolymer component, and may be used including main components (copolymerization amount of 50 mol% or more based on all acid components or all diol components).
- a polyester having an ethylene naphthalate unit as a main component as the resin of the second layer, and at that time, use a naphthalenedicarboxylic acid component as the resin of the second layer.
- the use of a copolymerized polyester is preferred because the compatibility with the first layer is increased and the interlayer adhesion with the first layer tends to be improved, and delamination hardly occurs.
- the diol component preferably contains at least two components of an ethylene glycol component and a trimethylene glycol component.
- the ethylene glycol component is preferably used as the main diol component from the viewpoint of film forming properties and the like.
- the copolymerized polyester of the second layer preferably further contains a trimethylene glycol component as a diol component.
- a trimethylene glycol component as a diol component.
- Such a naphthalenedicarboxylic acid component is preferably at least 30 mol% and at most 100 mol% of all carboxylic acid components constituting the copolymerized polyester of the second layer, more preferably. Is from 30 mol% to 80 mol%, more preferably from 40 mol% to 70 mol%. Thereby, the adhesion to the first layer can be further increased. If the content of the naphthalenedicarboxylic acid component is less than the lower limit, the adhesion may decrease from the viewpoint of compatibility.
- the upper limit of the content of the naphthalenedicarboxylic acid component is not particularly limited, but if it is too large, a difference in refractive index from the first layer tends to be difficult to be exhibited.
- another dicarboxylic acid component may be copolymerized in order to adjust the refractive index relationship with the first layer.
- the ethylene glycol component is preferably 50 mol% or more and 95 mol% or less, more preferably 50 mol% or more and 90 mol% or less, and still more preferably the total diol component constituting the copolymerized polyester of the second layer. It is 50 mol% or more and 85 mol% or less, particularly preferably 50 mol% or more and 80 mol% or less. This tends to cause a difference in the refractive index between the first layer and the first layer.
- the trimethylene glycol component is preferably 3 mol% or more and 50 mol% or less, more preferably 5 mol% or more and 40 mol% or less of all diol components constituting the copolymerized polyester of the second layer. , More preferably 10 mol% or more and 40 mol% or less, particularly preferably 10 mol% or more and 30 mol% or less. Thereby, the interlayer adhesion with the first layer can be further increased. In addition, there is a tendency that a difference in refractive index from the first layer is easily expressed. If the content of the trimethylene glycol component is less than the lower limit, it tends to be difficult to ensure interlayer adhesion, and if it exceeds the upper limit, it becomes difficult to obtain a resin having a desired refractive index and glass transition temperature.
- the second layer according to an embodiment of the present disclosure may include a thermoplastic resin other than the copolymerized polyester in a range of 10% by mass or less based on the mass of the second layer as long as the object of the present disclosure is not impaired. It may be contained as a second polymer component.
- the copolyester of the second layer described above preferably has a glass transition temperature of 85 ° C or higher, more preferably 90 ° C or higher, and 150 ° C or lower, still more preferably 90 ° C or higher, It is 120 ° C or lower, particularly preferably 93 ° C or higher and 110 ° C or lower. This is more excellent in heat resistance. In addition, there is a tendency that a difference in refractive index from the first layer is easily expressed. When the glass transition temperature of the copolymerized polyester of the second layer is less than the lower limit, sufficient heat resistance may not be obtained.
- the crystallization of the second layer when a process such as heat treatment at around 90 ° C. is included.
- the haze increases due to the embrittlement or embrittlement, and the degree of polarization when used as a luminance improving member or a reflective polarizing plate may be accompanied.
- the polyester of the second layer may have birefringence due to stretching during stretching, and accordingly, the polyester with respect to the first layer in the stretching direction. The rate difference becomes small, and the reflection performance may decrease.
- amorphous copolyesters are preferable because the haze increase due to crystallization can be extremely excellently suppressed by heat treatment at 90 ° C. for 1000 hours.
- the term “amorphous” as used herein means that the heat of crystal fusion when the temperature is raised at a rate of 20 ° C./min in DSC is less than 0.1 mJ / mg.
- the copolymerized polyester of the second layer include (1) a copolymerized polyester containing a 2,6-naphthalenedicarboxylic acid component as a dicarboxylic acid component and an ethylene glycol component and a trimethylene glycol component as a diol component, and (2) Copolymerized polyesters containing a 2,6-naphthalenedicarboxylic acid component and a terephthalic acid component as a dicarboxylic acid component, and an ethylene glycol component and a trimethylene glycol component as a diol component.
- the copolyester of the second layer preferably has an intrinsic viscosity of 0.50 to 0.70 dl / g, more preferably 0.55 to 0.65 dl, measured at 35 ° C. using an o-chlorophenol solution. / G.
- the copolymerized polyester used for the second layer has a trimethylene glycol component as a copolymerization component, the film-forming property may be deteriorated, and by setting the intrinsic viscosity of the copolymerized polyester to the above range, the film-forming property is reduced. Can be further enhanced.
- the intrinsic viscosity when the above-described copolymerized polyester is used as the second layer is preferably higher from the viewpoint of film-forming properties, but the melt viscosity difference from the polyester of the second layer is increased in a range exceeding the upper limit, The thickness of each layer may be uneven.
- the multilayer laminated film of one embodiment of the present disclosure may have an outermost layer on one or both surfaces.
- the outermost layer is mainly composed of a resin.
- “mainly composed of a resin” means that the resin occupies 70% by mass or more of the total mass of the layer in the layer, preferably 80% by mass or more, more preferably 90% by mass or more.
- the outermost layer is preferably an isotropic layer, and may be the same resin as the second layer from the viewpoint of manufacturing easiness, and is composed of the above-described copolymer polyester of the second layer. Such an embodiment is preferable.
- the multilayer laminated film of one embodiment of the present disclosure may have an intermediate layer.
- the intermediate layer may be referred to as an internal thick film layer or the like in the present disclosure, but refers to a thick film layer existing inside the alternately laminated structure of the first layer and the second layer.
- a thick film means an optically thick film.
- a thick layer (sometimes referred to as a thickness adjusting layer or a buffer layer) is formed on both sides of the alternately laminated structure in an initial stage of manufacturing a multilayer laminated film, and then the number of layers is increased by doubling.
- a method is preferably used, in this case, an intermediate layer is formed by laminating two thick layers to each other, and a thick film layer formed inside becomes an intermediate layer and is formed outside. The thicker layer becomes the outermost layer.
- the intermediate layer preferably has a thickness of, for example, preferably 5 ⁇ m or more, more preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
- a thickness of the respective layers constituting the first layer and the second layer are uniformly adjusted without affecting the polarizing function. It will be easier.
- the intermediate layer may have the same composition as any of the first layer and the second layer, or a composition partially including these compositions. Since the thickness of the intermediate layer is large, it does not contribute to the reflection characteristics. On the other hand, since the transmission characteristics may be affected, when particles are included in the layer, the particle diameter and the particle concentration may be selected in consideration of the light transmittance.
- the thickness of the intermediate layer is less than the lower limit, the layer structure of the multilayer structure may be disturbed, and the reflection performance may be reduced.
- the thickness of the intermediate layer exceeds the upper limit, the thickness of the entire multilayer laminated film becomes large, and it may be difficult to save space when used as a reflective polarizing plate or a brightness enhancement member of a thin liquid crystal display.
- the thickness of each intermediate layer is preferably not less than the lower limit of the above range, and the total thickness of the intermediate layers is not more than the upper limit of the above range. It is preferred that
- the polymer used for the intermediate layer may be a resin different from the first layer or the second layer as long as it can be present in the multilayer structure using the method for producing a multilayer laminated film of the present disclosure.
- the composition be the same as that of either the first layer or the second layer or a composition partially including these compositions.
- the method of forming the intermediate layer is not particularly limited, but, for example, a thick layer is provided on both sides of the alternate lamination structure before performing doubling, and it is perpendicular to the alternate lamination direction using a branch block called a layer doubling block.
- the intermediate layer can be provided in one layer by dividing the substrate into two in the direction and re-laminating them in the alternate laminating direction.
- a plurality of intermediate layers can be provided by dividing into three and four in the same manner.
- the multilayer laminated film of one embodiment of the present disclosure can have a coating layer on at least one surface.
- a coating layer examples include a slippery layer for imparting slipperiness, and a primer layer for imparting adhesion to a prism layer or a diffusion layer.
- the coating layer contains a binder component, and may contain, for example, particles in order to impart slipperiness. In order to provide easy adhesion, the binder component to be used may be chemically close to the component of the layer to be bonded.
- the coating solution for forming the coating layer is preferably an aqueous coating solution using water as a solvent from the viewpoint of the environment, but particularly in such a case, the wettability of the coating solution with respect to the multilayer film is reduced.
- a surfactant can be contained.
- a functional agent such as a crosslinking agent may be added to increase the strength of the coating layer.
- the multilayer laminated film according to an embodiment of the present disclosure is configured such that a polymer constituting the first layer and a polymer constituting the second layer are alternately superimposed in a molten state using a multilayer feed block device, for example, in total.
- An alternate layered structure having 30 or more layers is formed, buffer layers are provided on both sides thereof, and then the alternate layered structure having the buffer layer is divided into, for example, 2 to 4 using an apparatus called layer doubling, and the alternate layer having the buffer layer is divided. It can be obtained by increasing the number of layers by a method of stacking again so that the number of layers (the number of doublings) of the blocks is 2 to 4 times assuming that the stacked configuration is one block. According to such a method, it is possible to obtain a multilayer laminated film having on both sides an intermediate layer in which two buffer layers are laminated inside a multilayer structure and an outermost layer composed of one buffer layer.
- Such a multilayer structure is laminated so that the thickness of each of the first and second layers has a desired inclined structure. This can be obtained, for example, by changing the interval or length of the slit in the multilayer feed block device. For example, since the first layer and the second layer have different inclination change rates in at least two optical thickness regions, even in the multilayer feed block, the gap between the slits has at least one or more inflection points. And adjust the length.
- the multilayer unstretched film has at least one axial direction in the machine direction of the film-forming machine or in a direction orthogonal to the film plane (may be referred to as a transverse direction, a width direction, or a TD).
- the stretching temperature is preferably in the range of the glass transition temperature (Tg) to (Tg + 20) ° C. of the polymer of the first layer.
- the stretching ratio is preferably 2.0 to 7.0 times, and more preferably 4.5 to 6.5 times. Within this range, the larger the stretching ratio, the smaller the variation in the refractive index in the plane direction of each of the first and second layers due to the thinning by stretching, and the more uniform the optical interference of the multilayer laminated film in the plane direction. And the difference in the refractive index between the first layer and the second layer in the stretching direction becomes large.
- known stretching methods such as heating stretching by a rod-shaped heater, roll heating stretching, and tenter stretching can be used.From the viewpoint of reduction in scratches due to contact with rolls and stretching speed, tenter stretching is performed. preferable.
- the stretching process is also performed in a direction (Y direction) orthogonal to the stretching direction in the film plane and the biaxial stretching is performed, depending on the application, if it is desired to provide the reflective polarization characteristics, 1. It is preferable to keep the stretching ratio at about 01 to 1.20 times. If the stretching ratio in the Y direction is further increased, the polarization performance may decrease.
- the film After the stretching, the film is heat-set at a temperature of (Tg) to (Tg + 30) ° C. and is toe-out (re-stretched) in the stretching direction within a range of 5 to 15%, thereby obtaining an orientation property of the obtained multilayer laminated film.
- Tg temperature of (Tg) to (Tg + 30) ° C.
- Tg + 30 temperature of (Tg + 30) ° C.
- toe-out re-stretched
- application to the multilayer laminated film can be performed at any stage, but is preferably performed in the production process of the film, for the film before stretching It is preferable to apply by applying.
- a multilayer laminated film according to one embodiment of the present disclosure is obtained.
- a biaxially stretched film is preferable.
- either a sequential biaxial stretching method or a simultaneous biaxial stretching method is used. Is also good.
- the stretching ratio may be adjusted so that the refractive index and the thickness of each layer of the first layer and the second layer are adjusted so as to exhibit desired reflection characteristics. In consideration of the refractive index, it may be about 2.5 to 6.5 times in both the vertical and horizontal directions.
- the multilayer laminated film of the present disclosure is particularly preferably used as a brightness enhancement member or a reflective polarizing plate.
- the multilayer laminated film of the present disclosure by adopting the above-described polymer composition, layer configuration, and orientation, selectively reflects one polarized light component and selectively transmits the polarized light component and the polarized light component in the vertical direction. Performance can be achieved. More specifically, it is a uniaxially stretched embodiment. Utilizing such performance, it can be used as a brightness enhancement member for a liquid crystal display or the like. When used as a brightness enhancing member, light can be reused by transmitting one polarized light component and reflecting the other untransmitted polarized light component to the light source side without absorbing it, and a good brightness improving effect can be obtained. .
- a curable resin layer such as a prism layer or a diffusion layer may be laminated on at least one surface of the multilayer laminated film of the present disclosure.
- the curable resin layer is a thermosetting resin layer or an electron beam curable resin layer.
- these prism layers or diffusion layers can be laminated via a coating layer having a primer function or the like, which is preferable.
- the multilayer laminated film of the present disclosure is used as a brightness enhancement member, a liquid crystal display device in which a brightness enhancement member is disposed between a light source of a liquid crystal display and a liquid crystal panel including a polarizer / liquid crystal cell / polarizer is provided. Is exemplified.
- a prism layer or a prism is further provided, it is preferable to dispose the prism layer or the prism on the liquid crystal panel side of the brightness enhancement member.
- the multilayer laminated film of the present disclosure can be used as a polarizing plate for a liquid crystal display, etc., in combination with an absorbing polarizer or alone.
- a polarizing plate for a liquid crystal display etc.
- an absorbing polarizer or alone.
- P degree of polarization
- the laminated multilayer film of the present disclosure As a use of the laminated multilayer film of the present disclosure, more specifically, a liquid crystal display in which a first polarizing plate, a liquid crystal cell, and a second polarizing plate composed of the laminated multilayer film of the present disclosure are laminated in this order. No.
- the multilayer laminated film was cut out in a film length direction of 2 mm and a width direction of 2 cm, fixed in an embedding capsule, and embedded with an epoxy resin (Epomount manufactured by Refinetech Co., Ltd.).
- the embedded sample was cut perpendicularly in the width direction with a microtome (ULTRACUT UCT manufactured by LEICA) to obtain a thin film section having a thickness of 50 nm.
- the film was observed and photographed with a transmission electron microscope (Hitachi S-4300) at an acceleration voltage of 100 kV, and the thickness (physical thickness) of each layer was measured from the photograph.
- the layer existing inside the multilayer structure was defined as the intermediate layer
- the layer existing in the outermost layer was defined as the outermost layer, and the thickness of each layer was measured.
- the value of the physical thickness of each layer obtained above and the value of the refractive index (nX) of each layer obtained by the following (2) are used, and these values are substituted into the above (Equation 2) to obtain the optical thickness of each layer.
- the average optical thickness was determined for each of the range from the thinner end to 100 nm and the range from 100 nm to the thicker end.
- the average optical thickness was determined for each of the range from the thinner end to 200 nm and the range from 200 nm to the thicker end. It should be noted that whether the first layer or the second layer can be determined according to the mode of the refractive index. If it is difficult, it can be determined based on the electronic state obtained by analysis by NMR or analysis by TEM.
- the refractive index of the first layer and the second layer of the multilayer laminated film is such that the layer thickness ratio is 1: 1 under the same conditions as the production conditions of the obtained multilayer laminated film.
- the refractive indices of the first layer and the second layer measured using the two-layer laminated film are determined as the refractive indexes of the first layer and the second layer of the multilayer laminated film, respectively.
- the first layer, and the second layer the respective refractive indexes (referred to as nX, nY, and nZ) in the stretching direction (X direction), the direction perpendicular thereto (Y direction), and the thickness direction (Z direction), respectively.
- the refractive index at a wavelength of 633 nm was measured and determined using a Metricon prism coupler, and the refractive index was determined for each of the first layer and the second layer after stretching.
- the layer on the thinner side and the layer on the thicker side are determined, and a first-order approximation straight line of the layer thickness profile in a range of 100 nm from the edge on the thinner optical thickness side. Is set to 1A, and the inclination of the first-order approximation straight line of the layer thickness profile in the range where the optical thickness exceeds 100 nm to the end on the thick side is set to 1B. Further, in the monotonically increasing region of the second layer, the layer on the thinner side and the layer on the thicker side are determined, and the slope of the first-order approximation straight line of the layer thickness profile in the range of 200 nm from the thinner optical end.
- the reflection spectrum of the obtained multilayer laminated film was measured using a polarizing film measuring device (“VAP7070S” manufactured by JASCO Corporation). The measurement was performed using a spot diameter adjusting mask ⁇ 1.4 and a deflection angle stage, the incident angle of the measurement light was set to 0 °, and an axis orthogonal to the transmission axis of the multilayer laminated film determined by cross Nicol search (650 nm). The transmittance at each wavelength (referred to as a reflection axis) was measured at a wavelength of 380 to 780 nm at intervals of 5 nm.
- VAP7070S polarizing film measuring device
- the average value of the transmittance was taken in the wavelength range of 380 to 780 nm, and the value obtained by subtracting the average transmittance from 100 was taken as the average reflectance of the reflection axis at normal incidence.
- the average reflectance is 50% or more, it was determined that the light could be reflected on the reflection axis of the measured multilayer laminated film.
- the average reflectance is 82% or more, preferably 84% or more, and more preferably 85% or more.
- the maximum value of the transmittance of the multilayer laminated film at a wavelength of 750 to 850 nm is preferably 19.5% or less, more preferably 19% or less, further preferably 18% or less, and further preferably 17% or less.
- the degree of polarization (P) is preferably 68% or more. From the viewpoint of being preferred when used for optics such as a brightness enhancement member, the content is preferably 70% or more, more preferably 73% or more, and further preferably 75% or more.
- polyester A As the polyester for the first layer, transesterification reaction of dimethyl 2,6-naphthalenedicarboxylate, dimethyl terephthalate, and ethylene glycol in the presence of titanium tetrabutoxide is performed, followed by a polycondensation reaction to obtain an acid component. 95% by mole of a 2,6-naphthalenedicarboxylic acid component, 5% by mole of an acid component is a terephthalic acid component, and a glycol component is an ethylene glycol component (intrinsic viscosity 0.64 dl / g) (o-chlorophenol , 35 ° C, hereinafter the same).
- Polyester B As the polyester for the second layer, 2,6-naphthalenedicarboxylic acid dimethyl, dimethyl terephthalate, and ethylene glycol and trimethylene glycol are subjected to transesterification in the presence of titanium tetrabutoxide, followed by polycondensation. 50 mol% of the acid component is 2,6-naphthalenedicarboxylic acid component, 50 mol% of the acid component is terephthalic acid component, 85 mol% of the glycol component is ethylene glycol component, and 15 mol% of the glycol component is trimethylene glycol. A copolyester (intrinsic viscosity: 0.63 dl / g) as a component was prepared.
- polyester A was dried at 170 ° C for 5 hours for the first layer
- polyester B was dried at 85 ° C for 8 hours for the second layer, and then supplied to the first and second extruders, respectively, to 300 ° C.
- the first layer and the second layer are alternately laminated, and as shown in Table 1.
- a multi-layer feed block device provided with comb teeth having a layer thickness profile, a total of 275 layers of a melt in a laminated state are formed.
- the same polyester as the layer polyester was guided to a three-layer feed block, and buffer layers were further laminated on both sides in the laminating direction of the melt in a laminated state of 275 layers (both surface layers being the first layer).
- the supply amount of the third extruder was adjusted so that the total of the buffer layers on both sides was 47% of the whole.
- the laminated state is further branched into two layers by a layer doubling block and laminated at a ratio of 1: 1.
- An unstretched multilayer laminated film having a total number of 553 layers including an intermediate layer in the inside and two outermost layers in the outermost layer is formed. Produced.
- This unstretched multilayer laminated film was stretched 5.9 times in the width direction at a temperature of 130 ° C.
- the thickness of the obtained uniaxially stretched multilayer laminated film was 75 ⁇ m.
- Examples 2 to 8, Comparative Examples 1 to 6 A uniaxially stretched multilayer laminated film was obtained in the same manner as in Example 1, except that the multilayer feed block device used to obtain the layer thickness profile shown in Table 1 was changed.
- the region from the layer number 29 to the layer number 138 of the first layer has a reduced thickness and is not a monotonically increasing region, but such a region is regarded as a 1B monotonically increasing region.
- the slope 1B / 1A was calculated.
- the multilayer laminated film of the example has a high degree of polarization while maintaining a wide reflection wavelength band, and has a hue when observed from an oblique direction, as compared with the multilayer laminated film of the comparative example. A suppressed one was obtained.
- the multilayer laminated film of the present disclosure has a wide reflection wavelength band by appropriately designing the optical thickness of the birefringent layer and the isotropic layer that are alternately laminated. It is possible to realize a high degree of polarization and suppression of the color tone when observed from an oblique direction while maintaining. Therefore, for example, when used as a brightness enhancement member requiring polarization performance, a reflective polarizing plate, etc., the degree of polarization is high in a wide reflection wavelength band, and the tint when observed from an oblique direction is suppressed. It is possible to provide a highly efficient luminance improving member, a polarizing plate for a liquid crystal display, and the like.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
- Laminated Bodies (AREA)
Abstract
第1層の光学厚みでの層厚みプロファイルは、第1の単調増加領域を有し、第1の単調増加領域は、最大光学厚みが100nmまでの1A単調増加領域および最小光学厚みが100nm超である1B単調増加領域からなり、1A単調増加領域における傾き1Aに対する、1B単調増加領域における傾き1Bの比1B/1Aが0超0.8未満であり、第2層の光学厚みでの層厚みプロファイルは、第2の単調増加領域を有し、第2の単調増加領域は、最大光学厚みが200nmまでの2A単調増加領域および最小光学厚みが200nm超である2B単調増加領域からなり、2A単調増加領域における傾き2Aに対する、2B単調増加領域における傾き2Bの比2B/2Aが0.8以上1.5以下である。
Description
本開示は、可視光領域の光を幅広く反射可能な多層積層フィルムに関する。
屈折率の低い層と高い層とを交互に多数積層させた多層積層フィルムは、層間の構造的な光干渉によって特定波長の光を選択的に反射または透過する光学干渉フィルムとすることができる。また、このような多層積層フィルムは、各層の膜厚を厚み方向に沿って徐々に変化させたり、異なる反射ピークを有するフィルムを貼り合わせたりすることで、幅広い波長範囲に渡って光を反射または透過することができ、金属を使用したフィルムと同等の高い反射率を得ることもでき、金属光沢フィルムや反射ミラーとして使用することもできる。さらには、このような多層積層フィルムを1方向に延伸することで、特定の偏光成分のみを反射する反射偏光フィルムとしても使用でき、液晶ディスプレイなどの輝度向上部材等に使用できることが知られている(特許文献1~4など)。
これらの多層積層フィルムは、任意の波長領域においてより高い反射率が求められることが多い。しかし、積層する層数は有限であるため、その反射波長領域がブロードな場合、高反射率も両立することは非常に困難である。また、特定の波長領域の反射率のみを増加させることは他の反射波長領域の反射率の低下を招き、光学的な品質問題を引き起こすことが懸念される。
[特許文献1]特開平04-268505号公報
[特許文献2]特表平9-506837号公報
[特許文献3]特表平9-506984号公報
[特許文献4]国際公開第01/47711号パンフレット
[特許文献2]特表平9-506837号公報
[特許文献3]特表平9-506984号公報
[特許文献4]国際公開第01/47711号パンフレット
一方、上記の多層積層フィルムでは、広い反射波長帯域を保持することに加え、高い偏光度を有することが要求されることがある。また、上記の多層積層フィルムでは、斜め方向から観察した場合にフィルム全体が赤み(色目)を帯びてみえることがあり、このような赤み(色目)を抑制することも同時に要求されることがある。特に、小型軽量化が望まれる多層積層フィルムにおいて、積層する層数は有限であるため、限られた厚み又は重量の範囲内で、上記の要求を満たすことが望まれる。
本開示の課題は、広い反射波長帯域を保持しながら、高い偏光度を有し、かつ斜め方向から観察したときの色目が抑制された多層積層フィルムを提供することである。
本開示の課題は、広い反射波長帯域を保持しながら、高い偏光度を有し、かつ斜め方向から観察したときの色目が抑制された多層積層フィルムを提供することである。
上記課題を解決するための手段には、以下の態様が含まれる。
<1>
第1の樹脂を含む複屈折性の第1層と第2の樹脂を含む等方性の第2層との多層交互積層体を有する多層積層フィルムであって、前記第1層と前記第2層の光学干渉により波長380~780nmにある光を反射可能である層厚みプロファイルを有し、第1層の光学厚みでの層厚みプロファイルは、第1の単調増加領域を有し、前記第1の単調増加領域は、最大光学厚みが100nmまでの1A単調増加領域および最小光学厚みが100nm超である1B単調増加領域からなり、前記1A単調増加領域における傾き1Aに対する、前記1B単調増加領域における傾き1Bの比1B/1Aが0超0.8未満であり、第2層の光学厚みでの層厚みプロファイルは、第2の単調増加領域を有し、前記第2の単調増加領域は、最大光学厚みが200nmまでの2A単調増加領域および最小光学厚みが200nm超である2B単調増加領域からなり、前記2A単調増加領域における傾き2Aに対する、前記2B単調増加領域における傾き2Bの比2B/2Aが0.8以上1.5以下である、多層積層フィルム。
<2>
前記1A単調増加領域における平均光学厚みが65nm以上85nm以下であり、前記1B単調増加領域における平均光学厚みが140nm以上160nm以下である、<1>に記載の多層積層フィルム。
<3>
前記2A単調増加領域における平均光学厚みが130nm以上155nm以下であり、前記2B単調増加領域における平均光学厚みが250nm以上290nm以下である、<1>または<2>に記載の多層積層フィルム。
<4>
法線入射において反射軸に平行に偏光された光の380nm~780nmの波長領域における平均反射率が82%以上である、<1>~<3>のいずれか1つに記載の多層積層フィルム。
<1>
第1の樹脂を含む複屈折性の第1層と第2の樹脂を含む等方性の第2層との多層交互積層体を有する多層積層フィルムであって、前記第1層と前記第2層の光学干渉により波長380~780nmにある光を反射可能である層厚みプロファイルを有し、第1層の光学厚みでの層厚みプロファイルは、第1の単調増加領域を有し、前記第1の単調増加領域は、最大光学厚みが100nmまでの1A単調増加領域および最小光学厚みが100nm超である1B単調増加領域からなり、前記1A単調増加領域における傾き1Aに対する、前記1B単調増加領域における傾き1Bの比1B/1Aが0超0.8未満であり、第2層の光学厚みでの層厚みプロファイルは、第2の単調増加領域を有し、前記第2の単調増加領域は、最大光学厚みが200nmまでの2A単調増加領域および最小光学厚みが200nm超である2B単調増加領域からなり、前記2A単調増加領域における傾き2Aに対する、前記2B単調増加領域における傾き2Bの比2B/2Aが0.8以上1.5以下である、多層積層フィルム。
<2>
前記1A単調増加領域における平均光学厚みが65nm以上85nm以下であり、前記1B単調増加領域における平均光学厚みが140nm以上160nm以下である、<1>に記載の多層積層フィルム。
<3>
前記2A単調増加領域における平均光学厚みが130nm以上155nm以下であり、前記2B単調増加領域における平均光学厚みが250nm以上290nm以下である、<1>または<2>に記載の多層積層フィルム。
<4>
法線入射において反射軸に平行に偏光された光の380nm~780nmの波長領域における平均反射率が82%以上である、<1>~<3>のいずれか1つに記載の多層積層フィルム。
本開示によれば、広い反射波長帯域を保持しながら、高い偏光度を有し、かつ斜め方向から観察したときの色目が抑制された多層積層フィルムが提供される。
以下、本開示の一例である実施形態について説明する。本開示は、以下の実施形態に何ら限定されるものではなく、本開示の目的の範囲内において、適宜変更を加えて実施することができる。
本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
[多層積層フィルム]
本開示の一実施形態の多層積層フィルムは、第1の樹脂を主体とする複屈折性の第1層と第2の樹脂を主体とする等方性の第2層との多層交互積層体を有し、第1層と第2層とによる光の干渉効果により、波長380~780nmの可視光領域において、幅広い波長範囲で反射可能である。例えば波長400~760nmの波長範囲において反射可能であり、好ましくは波長380~780nmの波長範囲において反射可能である。本開示において、反射可能とは、少なくともフィルム面内の任意の一方向において、かかる方向と平行な偏光の垂直入射での平均反射率が50%以上であることをいう。かかる反射は、多層積層フィルムが広い反射波長帯域を保持する観点から、各波長範囲での平均反射率として50%以上であればよく、好ましくは60%以上、より好ましくは70%以上、さらに好ましくは82%以上である。
本開示の一実施形態の多層積層フィルムは、第1の樹脂を主体とする複屈折性の第1層と第2の樹脂を主体とする等方性の第2層との多層交互積層体を有し、第1層と第2層とによる光の干渉効果により、波長380~780nmの可視光領域において、幅広い波長範囲で反射可能である。例えば波長400~760nmの波長範囲において反射可能であり、好ましくは波長380~780nmの波長範囲において反射可能である。本開示において、反射可能とは、少なくともフィルム面内の任意の一方向において、かかる方向と平行な偏光の垂直入射での平均反射率が50%以上であることをいう。かかる反射は、多層積層フィルムが広い反射波長帯域を保持する観点から、各波長範囲での平均反射率として50%以上であればよく、好ましくは60%以上、より好ましくは70%以上、さらに好ましくは82%以上である。
本開示において、平均反射率とは、偏光フィルム測定装置(日本分光株式会社製「VAP7070S」)を用いて求めた、波長380~780nmでの平均透過率を100から引いた値である。
本開示において、「樹脂を主体とする」とは、各層において樹脂が各層の全質量に対し70質量%以上を占めることをいい、好ましくは80質量%以上、より好ましくは90質量%以上である。
このような反射特性とするために、多層交互積層体は、第1の樹脂を主体とし、膜厚が10~1000nmの複屈折性の第1層と、第2の樹脂を主体とし、膜厚が10~1000nmの等方性の第2層とが合計30層以上で厚み方向に交互に積層した構造を有することが好ましい。また、各層を構成する樹脂については、詳細は後述するが、複屈折性の層および等方性の層を形成し得るものであれば特に制限されない。いずれも、フィルムを製造し易い観点から、熱可塑性樹脂が好ましい。なお、本開示においては、縦方向、横方向、厚み方向の屈折率につき、最大と最小の差が0.1以上のものを複屈折性、0.1未満のものを等方性とする。
[層厚みプロファイル]
本開示の一実施形態の多層積層フィルムは、様々な光学厚みの第1層および第2層を有することで、広い波長範囲の光を反射することが可能となる。これは、反射波長が多層積層フィルムを構成する各層の光学厚みに起因するためである。一般的に多層積層フィルムの反射波長は、下記(式1)で示される。
本開示の一実施形態の多層積層フィルムは、様々な光学厚みの第1層および第2層を有することで、広い波長範囲の光を反射することが可能となる。これは、反射波長が多層積層フィルムを構成する各層の光学厚みに起因するためである。一般的に多層積層フィルムの反射波長は、下記(式1)で示される。
λ=2(n1×d1+n2×d2) (式1)
(上式中、λは反射波長(nm)、n1、n2はそれぞれの層の屈折率、d1、d2はそれぞれの層の物理厚み(nm)を表わす)
(上式中、λは反射波長(nm)、n1、n2はそれぞれの層の屈折率、d1、d2はそれぞれの層の物理厚み(nm)を表わす)
また、光学厚みλM(nm)は、下記(式2)のように、各層それぞれの屈折率nkおよび物理厚みdkの積で表される。ここでの物理厚みは透過型電子顕微鏡を用いて撮影した写真から求めたものが採用され得る。
λM(nm)=nk×dk (式2)
上記のことを鑑みれば、波長380~780nmにある光を広く反射可能である層厚みプロファイルとすることができる。例えば、後述する単調増加領域における厚み範囲を広くして、幅広い波長範囲の光を反射するように設計することもできるし、かかる単調増加領域では特定の波長範囲の光を反射するようにし、他の領域でかかる特定の波長範囲以外の光を反射するようにし、全体として幅広い波長範囲の光を反射するように設計することもできる。
本開示の一実施形態においては、第1層と第2層のそれぞれの層厚みプロファイルを特定の態様とすることにより、広い反射波長帯域を保持しながら、高い偏光度を有し、かつ斜め方向から観察したときの色目が抑制された多層積層フィルムを得ることができる。
すなわち、第1層の光学厚みでの層厚みプロファイルは、第1の単調増加領域を有し、前記第1の単調増加領域は、最大光学厚みが100nmまでの1A単調増加領域および最小光学厚みが100nm超である1B単調増加領域からなり、前記1A単調増加領域における傾き1Aに対する、前記1B単調増加領域における傾き1Bの比1B/1Aが0超0.8未満である。同時に、第2層の光学厚みでの層厚みプロファイルは、第2の単調増加領域を有し、前記第2の単調増加領域は、最大光学厚みが200nmまでの2A単調増加領域および最小光学厚みが200nm超である2B単調増加領域からなり、前記2A単調増加領域における傾き2Aに対する、前記2B単調増加領域における傾き2Bの比2B/2Aが0.8以上1.5以下である。図1に本開示の多層積層フィルムの層厚みプロファイルの一例の模式図を示し、図1で示された層厚みプロファイルを有する多層積層フィルムの透過軸及び反射軸におけるそれぞれの透過スペクトルのグラフを図2に示す。
図1では、1A単調増加領域における傾き1Aに対する1B単調増加領域における傾き1Bの比1B/1Aが0.5であり、2A単調増加領域における傾き2Aに対する2B単調増加領域における傾き2Bの比2B/2Aが1.0である層厚みプロファイルが示されている。また、図2では、図1で示された層厚みプロファイルを有する多層積層フィルム透過軸における透過スペクトル(点線)及び反射軸における透過スペクトル(実線)が示されている。図2で示された透過スペクトルにより算出された多層積層フィルムの偏光度は75.0%であり、波長380~780nmでの反射軸の平均透過率が12.8%(平均反射率が87.2%)である。
すなわち、本開示の多層積層フィルムは、波長380~780nmの広い範囲で反射波長帯域を有しているといえる。
すなわち、本開示の多層積層フィルムは、波長380~780nmの広い範囲で反射波長帯域を有しているといえる。
図1に例示するように、第1の単調増加領域を構成する、傾き1Aを有する1A単調増加領域および傾き1Bを有する1B単調増加領域は、光学厚み100nmを境界とし、比1B/1Aが0超0.8未満を満たす、連続する領域である。また、第2の単調増加領域を構成する、傾き2Aを有する2A単調増加領域および傾き2Bを有する2B単調増加領域は、光学厚み200nmを境界とし、比2B/2Aが0.8以上1.5以下を満たす、連続する領域である。
上記傾きの比1B/1Aの範囲と2B/2Aの範囲とを同時に満たすことによって、広い反射波長帯域を保持しながら、高い偏光度を有し、かつ斜め方向から観察したときの色目が抑制された多層積層フィルムを得ることができる。これは、上記傾きの比を同時に満たすことで、ブロードな反射波長帯域を有しつつ、より高反射率の多層積層フィルムが実現できるからである。従来では、高反射率にすると反射波長帯域は狭くなる傾向にあるところ、本開示の一実施形態は広い反射波長帯域を保持しながら、高い偏光度を有し、かつ斜め方向から観察したときの色目が抑制された多層積層フィルムを得ることができるというものである。
層数を増加すれば、理論的には、広い反射波長帯域でありながら高い偏光度とすることができるが、層数の増加は、通常、設備の変更が必要となる。したがって、本実施形態の多層積層フィルムについて、上記傾きの比1B/1Aを0超0.8未満、及び上記傾きの比2B/2Aを0.8以上1.5以下に調整すれば、既存の設備においても設備を拡張することなく、広い反射波長帯域を保持しながら、高い偏光度を有し、かつ斜め方向から観察したときの色目が抑制された多層積層フィルムの作製が可能であり、また、多層積層フィルムの層数を既存のものから変更させることなく作製することも可能である。
なお、本開示において層厚みプロファイルの傾きとは、以下の方法による1次近似直線の傾きである。すなわち、第1層の1A単調増加領域における層厚みプロファイルの1次近似直線の傾きを1Aとし、1B単調増加領域における層厚みプロファイルの1次近似直線の傾きを1Bとして、得られた値から1B/1Aを求める。また、第2層の2A単調増加領域における層厚みプロファイルの1次近似直線の傾きを2Aとし、2B単調増加領域における層厚みプロファイルの1次近似直線の傾きを2Bとして、得られた値から2B/2Aを求める。また、本開示の一実施形態においては後述のようにダブリング等により層数増加することも可能であるが、このような場合においては、1つのパケットについての層厚みプロファイルを見ればよく、かかる1つのパケットは多層交互積層体になり得る。パケットは、多層積層フィルムの全体の層厚みプロファイルを見たときに、例えば、同じような層厚みプロファイルの部分が複数あれば、それぞれがパケットであるとみなせるし、中間層等に区切られたそれぞれの多層構造部分は異なるパケットであるとみなせる。
第1層については、第1の単調増加領域において、境界を100nmの光学厚みとし、光学厚みが薄い範囲である1A単調増加領域における傾きと光学厚みが厚い範囲である1B単調増加領域における傾きの比を特定の範囲とすることで、かかる第1の単調増加領域に対応する波長領域を広げつつ、視感度の高い波長550nm付近での反射強度を高くすることができ、偏光度を向上させることが可能となる。ここで境界を100nmとすることで波長550nm付近での反射強度をより高くすることが可能となる。第1層について境界が150nmや200nmであったりすると、上記波長領域での反射強度の向上効果が低くなり、偏光度の向上効果が低くなる傾向にある。
第2層については、第2の単調増加領域において、境界を200nmの光学厚みとし、光学厚みが薄い範囲である2A単調増加領域における傾きに対して光学厚みが厚い範囲である2B単調増加領域における傾きを特定の範囲とすることで、反射波長帯域を広げ、高い偏光度が得られやすく、かつ斜め方向から観察したときの色目が抑制されやすくなる。
また、ここで境界を200nmとし、傾き2Aおよび2Bとの関係において、傾き2Aを比較的小さくすることで、反射強度を均一に調整することが可能となる。また、傾き2Bを比較的大きくすることで、反射波長帯域を広げながらも、2次反射、3次反射といった高次反射を利用することで目的の波長領域の反射強度を増加させることが可能となる。
また、ここで境界を200nmとし、傾き2Aおよび2Bとの関係において、傾き2Aを比較的小さくすることで、反射強度を均一に調整することが可能となる。また、傾き2Bを比較的大きくすることで、反射波長帯域を広げながらも、2次反射、3次反射といった高次反射を利用することで目的の波長領域の反射強度を増加させることが可能となる。
このような観点から、1B/1Aの比の値は、0超0.8未満であり、例えば下限値として0.01、0.02または0.19とする態様、上限値として0.79、0.70または0.63とする態様、およびこれらの任意の下限値および上限値を組み合わせた態様が好ましい。より具体的には、0.01~0.79の範囲とする態様、0.02~0.70の範囲とする態様、0.19~0.63の範囲とする態様等が好ましい。
また、2B/2Aの比の値は、0.8以上1.5以下であり、例えば下限値として0.81、0.90、0.95または1.00とする態様、上限値として1.45、1.40、1.30または1.25とする態様、およびこれらの任意の下限値および上限値を組み合わせた態様が好ましい。より具体的には、0.81~1.45の範囲とする態様、0.90~1.40の範囲とする態様、0.95~1.30の範囲とする態様、1.00~1.25の範囲とする態様等が好ましい。
また、2B/2Aの比の値は、0.8以上1.5以下であり、例えば下限値として0.81、0.90、0.95または1.00とする態様、上限値として1.45、1.40、1.30または1.25とする態様、およびこれらの任意の下限値および上限値を組み合わせた態様が好ましい。より具体的には、0.81~1.45の範囲とする態様、0.90~1.40の範囲とする態様、0.95~1.30の範囲とする態様、1.00~1.25の範囲とする態様等が好ましい。
このような層厚みプロファイルは、フィードブロックにおける櫛歯の調整などにより得ることができる。
第1の単調増加領域において、光学厚み100nmまでの範囲における1A単調増加領域の傾き1Aは、好ましくは1.05~30、より好ましくは1.25~26、さらに好ましくは1.4~5、特に好ましくは1.5~4.0である。また、光学厚み100nmからの範囲における1B単調増加領域の傾き1Bは、好ましくは0.50~1.50、より好ましくは0.70~1.20、さらに好ましくは0.75~1.00、特に好ましくは0.80~0.98である。このようにすることで上記した傾きの比による効果にさらに優れ、偏光度の低下がより抑制され得る。
第2の単調増加領域において、光学厚み200nmまでの範囲における2A単調増加領域の傾き2Aは、好ましくは1.50~2.50、より好ましくは1.58~2.20、さらに好ましくは1.65~2.00、特に好ましくは1.68~1.95である。また、光学厚み200nmからの範囲における2B単調増加領域の傾き2Bは、好ましくは1.50~2.50、より好ましくは1.70~2.35、さらに好ましくは1.85~2.20、特に好ましくは1.90~2.15である。このようにすることで上記した傾きの比による効果にさらに優れ、斜め方向から観察したときの色目がより抑制され得る。
第1の単調増加領域において、1A単調増加領域の光学厚みの薄い側の端の層は、光学厚み(nm)が40~60であることが好ましく、より好ましくは43~57、さらに好ましくは46~54である。また、1B単調増加領域の光学厚みの厚い側の端の層は、光学厚みが180~220であることが好ましく、より好ましくは185~215、さらに好ましくは190~210である。このようにすることで上記した傾きの比による効果にさらに優れ、偏光度の低下がより抑制され得る。また、広い反射波長帯域とすることができる。
第2の単調増加領域において、2A単調増加領域の光学厚みの薄い側の端の層は、光学厚み(nm)が70~90であることが好ましく、より好ましくは74~86、さらに好ましくは78~82である。また、2B単調増加領域の光学厚みの厚い側の端の層は、光学厚みが295~385であることが好ましく、より好ましくは310~370、さらに好ましくは325~355である。このようにすることで上記した傾きの比による効果にさらに優れ、色むらがより抑制され得る。また、広い反射波長帯域とすることができる。
第1層の光学厚みの平均(以下、平均光学厚みとも称する)は、第1の単調増加領域において、1A単調増加領域において65nm~85nmであり、1B単調増加領域において140nm~160nmであることが好ましい。このようにすることで上述したような第1層の層厚みプロファイルによる効果をより奏し易くなり、偏光度の低下抑制の効果がより向上する。
第2層の光学厚みの平均(以下、平均光学厚みとも称する)は、第2の単調増加領域において、2A単調増加領域において130nm~155nmであり、2B単調増加領域において、250nm~290nmであることが好ましい。このようにすることで上述したような第2層の層厚みプロファイルによる効果をより奏し易くなり、斜め方向から観察したときの色目抑制の効果がより向上する。
さらにこれらを同時に満たすことで、より高い偏光度を示し、かつ斜め方向から観察したときの色目が抑制された多層積層フィルムを得ることが出来る。
上記第1層の光学厚みの平均は、上記効果をさらに奏し易くする観点から、1A単調増加領域と1B単調増加領域とで、それぞれ67nm~83nmと143nm~157nmとであることが好ましい。さらに好ましくはそれぞれ69nm~81nmと146nm~154nmとである。
上記第2層の光学厚みの平均は、上記効果をさらに奏し易くする観点から、2A単調増加領域と2B単調増加領域とで、それぞれ133nm~152nmと255nm~285nmとであることが好ましい。さらに好ましくはそれぞれ136nm~149nmと260nm~280nmとである。
[単調増加領域]
本開示において「単調増加」とは、多層積層フィルムにおける多層交互積層体の全てにおいてより厚い側の層がより薄い側の層よりも厚くなっていることが好ましいが、それに限定されず、全体を見て厚みがより薄い側からより厚い側に厚みが増加している傾向が見られればよい。より具体的には、光学厚みがより薄い側からより厚い側に向かって層に番号を付し、それを横軸として、各層の膜厚を縦軸にプロットしたときに、膜厚が増加傾向を示す範囲内での層数を5等分し、膜厚が厚くなる方向に、等分された各エリアでの膜厚の平均値が全て増加している場合は単調増加であるとし、そうでない場合は単調増加でないとした。
なお、第1層と第2層とはそれぞれ個別に見ればよく、第1層の単調増加と第2層の単調増加とは、それぞれ異なる傾きであり得る。また、上記単調増加については、多層交互積層体における一方の最表層から他方の最表層までの全てにおいて単調増加している態様であってもよいが、多層交互積層体において、層数で80%以上、好ましくは90%以上、より好ましくは95%以上の部分において単調増加している態様であってもよく、その余の部分においては厚みが一定であったり減少していたりしていてもよい。例えば本開示の実施例1は、100%の部分において単調増加している態様であるが、かかる厚みプロファイルの層番号が小さい側および/または層番号が大きい側に単調増加でない領域を設けた態様であってもよい。
本開示において「単調増加」とは、多層積層フィルムにおける多層交互積層体の全てにおいてより厚い側の層がより薄い側の層よりも厚くなっていることが好ましいが、それに限定されず、全体を見て厚みがより薄い側からより厚い側に厚みが増加している傾向が見られればよい。より具体的には、光学厚みがより薄い側からより厚い側に向かって層に番号を付し、それを横軸として、各層の膜厚を縦軸にプロットしたときに、膜厚が増加傾向を示す範囲内での層数を5等分し、膜厚が厚くなる方向に、等分された各エリアでの膜厚の平均値が全て増加している場合は単調増加であるとし、そうでない場合は単調増加でないとした。
なお、第1層と第2層とはそれぞれ個別に見ればよく、第1層の単調増加と第2層の単調増加とは、それぞれ異なる傾きであり得る。また、上記単調増加については、多層交互積層体における一方の最表層から他方の最表層までの全てにおいて単調増加している態様であってもよいが、多層交互積層体において、層数で80%以上、好ましくは90%以上、より好ましくは95%以上の部分において単調増加している態様であってもよく、その余の部分においては厚みが一定であったり減少していたりしていてもよい。例えば本開示の実施例1は、100%の部分において単調増加している態様であるが、かかる厚みプロファイルの層番号が小さい側および/または層番号が大きい側に単調増加でない領域を設けた態様であってもよい。
本開示の一実施形態において、第1層の単調増加領域のうち、上述の比1B/1Aが0超0.8未満を満たす領域を第1の単調増加領域といい、第2層の単調増加領域のうち、上述の比2B/2Aが0.8以上1.5以下を満たす領域を第2の単調増加領域という。
第1層と第2層とは交互に多層積層され多層交互積層体を形成するところ、第1層および第2層の単調増加領域の範囲は、多層交互積層体として光学干渉により波長380~780nmの光を反射可能である範囲を有していればよい。また、第1層および第2層の単調増加領域の範囲は、多層交互積層体を形成した際に波長380~780nmの光を反射可能な範囲を超える広さを有してもよい。
[多層積層フィルムの構成]
[第1層]
本開示の一実施形態の多層積層フィルムを構成する第1層は、複屈折性の層であり、すなわちこれを構成する樹脂(本開示において、第1の樹脂ともいう)は、複屈折性の層を形成し得るものである。従って、第1層を構成する樹脂としては配向結晶性の樹脂が好ましく、かかる配向結晶性の樹脂として特にポリエステルが好ましい。該ポリエステルは、それを構成する繰り返し単位を基準として好ましくはエチレンテレフタレート単位および/またはエチレンナフタレート単位を、より好ましくはエチレンナフタレート単位を、80モル%以上、100モル%以下の範囲で含有することが、より高い屈折率の層とし易く、それにより第2層との屈折率差を大きくしやすいことから好ましい。ここで樹脂の併用の場合は、合計の含有量である。
[第1層]
本開示の一実施形態の多層積層フィルムを構成する第1層は、複屈折性の層であり、すなわちこれを構成する樹脂(本開示において、第1の樹脂ともいう)は、複屈折性の層を形成し得るものである。従って、第1層を構成する樹脂としては配向結晶性の樹脂が好ましく、かかる配向結晶性の樹脂として特にポリエステルが好ましい。該ポリエステルは、それを構成する繰り返し単位を基準として好ましくはエチレンテレフタレート単位および/またはエチレンナフタレート単位を、より好ましくはエチレンナフタレート単位を、80モル%以上、100モル%以下の範囲で含有することが、より高い屈折率の層とし易く、それにより第2層との屈折率差を大きくしやすいことから好ましい。ここで樹脂の併用の場合は、合計の含有量である。
(第1層のポリエステル)
第1層の好ましいポリエステルとして、ジカルボン酸成分としてナフタレンジカルボン酸成分を含有し、その含有量は該ポリエステルを構成するジカルボン酸成分を基準として80モル%以上、100モル%以下であることが好ましい。かかるナフタレンジカルボン酸成分としては、2,6-ナフタレンジカルボン酸成分、2,7-ナフタレンジカルボン酸成分、またはこれらの組み合わせから誘導される成分、もしくはそれらの誘導体成分が挙げられ、特に2,6-ナフタレンジカルボン酸成分もしくはその誘導体成分が好ましく例示される。ナフタレンジカルボン酸成分の含有量は、好ましくは85モル%以上、より好ましくは90モル%以上であり、また、好ましくは100モル%未満、より好ましくは98モル%以下、さらに好ましくは95モル%以下である。
第1層の好ましいポリエステルとして、ジカルボン酸成分としてナフタレンジカルボン酸成分を含有し、その含有量は該ポリエステルを構成するジカルボン酸成分を基準として80モル%以上、100モル%以下であることが好ましい。かかるナフタレンジカルボン酸成分としては、2,6-ナフタレンジカルボン酸成分、2,7-ナフタレンジカルボン酸成分、またはこれらの組み合わせから誘導される成分、もしくはそれらの誘導体成分が挙げられ、特に2,6-ナフタレンジカルボン酸成分もしくはその誘導体成分が好ましく例示される。ナフタレンジカルボン酸成分の含有量は、好ましくは85モル%以上、より好ましくは90モル%以上であり、また、好ましくは100モル%未満、より好ましくは98モル%以下、さらに好ましくは95モル%以下である。
第1層のポリエステルを構成するジカルボン酸成分としては、ナフタレンジカルボン酸成分以外にさらに本開示の目的を損なわない範囲でテレフタル酸成分、イソフタル酸成分などを含有してもよく、中でもテレフタル酸成分を含有することが好ましい。含有量は0モル%を超え、20モル%以下の範囲であることが好ましい。かかる第2のジカルボン酸成分の含有量は、より好ましくは2モル%以上、さらに好ましくは5モル%以上であり、また、より好ましくは15モル%以下、さらに好ましくは10モル%以下である。
液晶ディスプレイ等に用いられる輝度向上部材や反射型偏光板として使用する場合、第1層が第2層よりも相対的に高屈折率特性を有する層であり、第2層が第1層よりも相対的に低屈折率特性を有する層であり、また1軸方向に延伸することが好ましい。なお、この場合、本開示においては、1軸延伸方向をX方向、フィルム面内においてX方向と直交する方向をY方向(非延伸方向ともいう。)、フィルム面に対して垂直な方向をZ方向(厚み方向ともいう。)と称する場合がある。
第1層に、上記のようにナフタレンジカルボン酸成分を主成分として含有するポリエステルを用いることで、X方向に高屈折率を示すと同時に1軸配向性の高い複屈折率特性を実現でき、X方向について第2層との屈折率差を大きくすることができ、高偏光度に寄与する。一方、ナフタレンジカルボン酸成分の含有量が下限値に満たないと、非晶性の特性が大きくなり、X方向の屈折率nXと、Y方向の屈折率nYとの差異が小さくなる傾向にあるため、多層積層フィルムにおいて、フィルム面を反射面とし、1軸延伸方向(X方向)を含む入射面に対して平行な偏光成分と定義される本開示におけるP偏光成分について十分な反射性能が得難くなる傾向にある。なお、本開示におけるS偏光成分とは、多層積層フィルムにおいて、フィルム面を反射面とし、1軸延伸方向(X方向)を含む入射面に対して垂直な偏光成分と定義される。
第1層の好ましいポリエステルを構成するジオール成分としては、エチレングリコール成分が用いられ、その含有量は該ポリエステルを構成するジオール成分を基準として80モル%以上、100モル%以下であることが好ましく、より好ましくは85モル%以上、100モル%以下、さらに好ましくは90モル%以上、100モル%以下、特に好ましくは90モル%以上、98モル%以下である。該ジオール成分の割合が下限値に満たない場合は、前述の1軸配向性が損なわれることがある。
第1層のポリエステルを構成するジオール成分として、エチレングリコール成分以外に、さらに本開示の目的を損なわない範囲でトリメチレングリコール成分、テトラメチレングリコール成分、シクロヘキサンジメタノール成分、ジエチレングリコール成分などを含有してもよい。
(第1層のポリエステルの特性)
第1層に用いられるポリエステルの融点は、好ましくは220~290℃の範囲、より好ましくは230~280℃の範囲、さらに好ましくは240~270℃の範囲である。融点は示差走査熱量計(DSC)で測定して求めることができる。該ポリエステルの融点が上限値を越えると、溶融押出して成形する際に流動性が劣り、吐出などが不均一化しやすくなることがある。一方、融点が下限値に満たないと、製膜性は優れるものの、ポリエステルの持つ機械的特性などが損なわれやすくなり、また液晶ディスプレイの輝度向上部材や反射型偏光板として使用される際の屈折率特性が発現し難い傾向にある。
第1層に用いられるポリエステルの融点は、好ましくは220~290℃の範囲、より好ましくは230~280℃の範囲、さらに好ましくは240~270℃の範囲である。融点は示差走査熱量計(DSC)で測定して求めることができる。該ポリエステルの融点が上限値を越えると、溶融押出して成形する際に流動性が劣り、吐出などが不均一化しやすくなることがある。一方、融点が下限値に満たないと、製膜性は優れるものの、ポリエステルの持つ機械的特性などが損なわれやすくなり、また液晶ディスプレイの輝度向上部材や反射型偏光板として使用される際の屈折率特性が発現し難い傾向にある。
第1層に用いられるポリエステルのガラス転移温度(以下、Tgと称することがある。)は、好ましくは80~120℃、より好ましくは82~118℃、さらに好ましくは85~118℃、特に好ましくは100~115℃の範囲にある。Tgがこの範囲にあると、耐熱性および寸法安定性に優れ、また液晶ディスプレイの輝度向上部材や反射型偏光板として使用される際の屈折率特性を発現し易い。かかる融点やガラス転移温度は、共重合成分の種類と共重合量、そして副生物であるジエチレングリコールの制御などによって調整できる。
第1層に用いられるポリエステルは、o-クロロフェノール溶液を用いて35℃で測定した固有粘度が0.50~0.75dl/gであることが好ましく、より好ましくは0.55~0.72dl/g、さらに好ましくは0.56~0.71dl/gである。これにより適度な配向結晶性を有し易くなる傾向にあり、第2層との屈折率差を発現し易くなる傾向にある。
[第2層]
本開示の一実施形態の多層積層フィルムを構成する第2層は、等方性の層であり、すなわちこれを構成する樹脂(本開示において、第2の樹脂ともいう)は、等方性の層を形成し得るものである。従い、第2層を構成する樹脂としては非晶性の樹脂が好ましい。中でも非晶性であるポリエステルが好ましい。なおここで「非晶性」とは、極めて僅かな結晶性を有することを排除するものではなく、本願発明の多層積層フィルムが目的とする機能を奏する程度に第2層を等方性にできればよい。
本開示の一実施形態の多層積層フィルムを構成する第2層は、等方性の層であり、すなわちこれを構成する樹脂(本開示において、第2の樹脂ともいう)は、等方性の層を形成し得るものである。従い、第2層を構成する樹脂としては非晶性の樹脂が好ましい。中でも非晶性であるポリエステルが好ましい。なおここで「非晶性」とは、極めて僅かな結晶性を有することを排除するものではなく、本願発明の多層積層フィルムが目的とする機能を奏する程度に第2層を等方性にできればよい。
(第2層の共重合ポリエステル)
第2層を構成する樹脂としては、共重合ポリエステルが好ましく、特に、ナフタレンジカルボン酸成分、エチレングリコール成分およびトリメチレングリコール成分を共重合成分として含む共重合ポリエステルを用いることが好ましい。なお、かかるナフタレンジカルボン酸成分としては、2,6-ナフタレンジカルボン酸成分、2,7-ナフタレンジカルボン酸成分、またはこれらの組み合わせから誘導される成分、もしくはそれらの誘導体成分が挙げられ、特に2,6-ナフタレンジカルボン酸成分もしくはその誘導体成分が好ましく例示される。なお、本開示における共重合成分とは、ポリエステルを構成するいずれかの成分であることを意味しており、従たる成分(共重合量として全酸成分または全ジオール成分に対して50モル%未満)としての共重合成分に限定されず、主たる成分(共重合量として全酸成分または全ジオール成分に対して50モル%以上)も含めて用いられる。
第2層を構成する樹脂としては、共重合ポリエステルが好ましく、特に、ナフタレンジカルボン酸成分、エチレングリコール成分およびトリメチレングリコール成分を共重合成分として含む共重合ポリエステルを用いることが好ましい。なお、かかるナフタレンジカルボン酸成分としては、2,6-ナフタレンジカルボン酸成分、2,7-ナフタレンジカルボン酸成分、またはこれらの組み合わせから誘導される成分、もしくはそれらの誘導体成分が挙げられ、特に2,6-ナフタレンジカルボン酸成分もしくはその誘導体成分が好ましく例示される。なお、本開示における共重合成分とは、ポリエステルを構成するいずれかの成分であることを意味しており、従たる成分(共重合量として全酸成分または全ジオール成分に対して50モル%未満)としての共重合成分に限定されず、主たる成分(共重合量として全酸成分または全ジオール成分に対して50モル%以上)も含めて用いられる。
本開示の一実施形態においては、上述したように、第2層の樹脂としてエチレンナフタレート単位を主成分とするポリエステルを用いることが好ましく、そのとき、第2層の樹脂としてナフタレンジカルボン酸成分を含む共重合ポリエステルを用いることで、第1層との相溶性が高くなり、第1層との層間密着性が向上する傾向にあり、層間剥離が生じ難くなるため好ましい。
第2層の共重合ポリエステルは、ジオール成分がエチレングリコール成分と、トリメチレングリコール成分の少なくとも2成分を含むことが好ましい。このうち、エチレングリコール成分は、フィルム製膜性などの観点より主たるジオール成分として用いられることが好ましい。
本開示の一実施形態における第2層の共重合ポリエステルは、さらにジオール成分としてトリメチレングリコール成分を含有することが好ましい。トリメチレングリコール成分を含有することで、層構造の弾性を補い、層間剥離を抑制する効果が高まる。
かかるナフタレンジカルボン酸成分、好ましくは2,6-ナフタレンジカルボン酸成分は、第2層の共重合ポリエステルを構成する全カルボン酸成分の30モル%以上、100モル%以下であることが好ましく、より好ましくは30モル%以上、80モル%以下、さらに好ましくは40モル%以上、70モル%以下である。これにより第1層との密着性をより高くできる。ナフタレンジカルボン酸成分の含有量が下限に満たないと相溶性の観点から密着性が低下することがある。また、ナフタレンジカルボン酸成分の含有量の上限は特に制限されないが、多すぎると第1層との屈折率差を発現し難くなる傾向にある。なお、第1層との屈折率の関係を調整するために他のジカルボン酸成分を共重合させてもよい。
エチレングリコール成分は、第2層の共重合ポリエステルを構成する全ジオール成分の50モル%以上、95モル%以下であることが好ましく、より好ましくは50モル%以上、90モル%以下、さらに好ましくは50モル%以上、85モル%以下、特に好ましくは50モル%以上、80モル%以下である。これにより第1層との屈折率差を発現し易くなる傾向にある。
トリメチレングリコール成分は、第2層の共重合ポリエステルを構成する全ジオール成分の3モル%以上、50モル%以下であることが好ましく、さらに5モル%以上、40モル%以下であることが好ましく、より好ましくは10モル%以上、40モル%以下、特に好ましくは10モル%以上、30モル%以下である。これにより第1層との層間密着性をより高くできる。また、第1層との屈折率差を発現し易くなる傾向にある。トリメチレングリコール成分の含有量が下限に満たないと層間密着性の確保が難しくなる傾向にあり、上限を超えると所望の屈折率とガラス転移温度の樹脂とすることがし難くなる。
本開示の一実施形態における第2層は、本開示の目的を損ねない範囲であれば、第2層の質量を基準として10質量%以下の範囲内で該共重合ポリエステル以外の熱可塑性樹脂を第2のポリマー成分として含有してもよい。
(第2層のポリエステルの特性)
本開示の一実施形態において、上述する第2層の共重合ポリエステルは、85℃以上のガラス転移温度を有することが好ましく、より好ましくは90℃以上、150℃以下、さらに好ましくは90℃以上、120℃以下、特に好ましくは93℃以上、110℃以下である。これにより耐熱性により優れる。また、第1層との屈折率差を発現し易くなる傾向にある。第2層の共重合ポリエステルのガラス転移温度が下限に満たない場合、耐熱性が十分に得られないことがあり、例えば90℃近辺での熱処理などの工程を含むときに第2層の結晶化や脆化によってヘーズが上昇し、輝度向上部材や反射型偏光板として使用される際の偏光度の低下を伴うことがある。また、第2層の共重合ポリエステルのガラス転移温度が高すぎる場合には、延伸時に第2層のポリエステルも延伸による複屈折性が生じることがあり、それに伴い延伸方向において第1層との屈折率差が小さくなり、反射性能が低下することがある。
本開示の一実施形態において、上述する第2層の共重合ポリエステルは、85℃以上のガラス転移温度を有することが好ましく、より好ましくは90℃以上、150℃以下、さらに好ましくは90℃以上、120℃以下、特に好ましくは93℃以上、110℃以下である。これにより耐熱性により優れる。また、第1層との屈折率差を発現し易くなる傾向にある。第2層の共重合ポリエステルのガラス転移温度が下限に満たない場合、耐熱性が十分に得られないことがあり、例えば90℃近辺での熱処理などの工程を含むときに第2層の結晶化や脆化によってヘーズが上昇し、輝度向上部材や反射型偏光板として使用される際の偏光度の低下を伴うことがある。また、第2層の共重合ポリエステルのガラス転移温度が高すぎる場合には、延伸時に第2層のポリエステルも延伸による複屈折性が生じることがあり、それに伴い延伸方向において第1層との屈折率差が小さくなり、反射性能が低下することがある。
上述した共重合ポリエステルの中でも、90℃×1000時間の熱処理で結晶化によるヘーズ上昇を極めて優れて抑制できる点から、非晶性の共重合ポリエステルであることが好ましい。ここでいう非晶性とは、DSCにおいて昇温速度20℃/分で昇温させたときの結晶融解熱量が0.1mJ/mg未満であることを指す。
第2層の共重合ポリエステルの具体例として、(1)ジカルボン酸成分として2,6-ナフタレンジカルボン酸成分を含み、ジオール成分としてエチレングリコール成分およびトリメチレングリコール成分を含む共重合ポリエステル、(2)ジカルボン酸成分として2,6-ナフタレンジカルボン酸成分およびテレフタル酸成分を含み、ジオール成分としてエチレングリコール成分およびトリメチレングリコール成分を含む共重合ポリエステル、が挙げられる。
第2層の共重合ポリエステルは、o-クロロフェノール溶液を用いて35℃で測定した固有粘度が0.50~0.70dl/gであることが好ましく、さらに好ましくは0.55~0.65dl/gである。第2層に用いられる共重合ポリエステルが共重合成分としてトリメチレングリコール成分を有する場合、製膜性が低下することがあり、該共重合ポリエステルの固有粘度を上述の範囲とすることで製膜性をより高めることができる。第2層として上述する共重合ポリエステルを用いる場合の固有粘度は、製膜性の観点からはより高い方が好ましいものの、上限を超える範囲では第2層のポリエステルとの溶融粘度差が大きくなり、各層の厚みが不均一になることがある。
[その他の層]
(最外層)
本開示の一実施形態の多層積層フィルムは、片方または両方の表面に最外層を有していても良い。かかる最外層は、樹脂を主体とする。なお、ここで「樹脂を主体とする」とは、層において樹脂が層の全質量に対し70質量%以上を占めることをいい、好ましくは80質量%以上、より好ましくは90質量%以上である。また、最外層は、等方性の層であることが好ましく、製造上の容易性の観点からは第2層と同一樹脂であってもよく、上述した第2層の共重合ポリエステルから構成することができ、そのような態様が好ましい。
(最外層)
本開示の一実施形態の多層積層フィルムは、片方または両方の表面に最外層を有していても良い。かかる最外層は、樹脂を主体とする。なお、ここで「樹脂を主体とする」とは、層において樹脂が層の全質量に対し70質量%以上を占めることをいい、好ましくは80質量%以上、より好ましくは90質量%以上である。また、最外層は、等方性の層であることが好ましく、製造上の容易性の観点からは第2層と同一樹脂であってもよく、上述した第2層の共重合ポリエステルから構成することができ、そのような態様が好ましい。
(中間層)
本開示の一実施形態の多層積層フィルムは、中間層を有していてもよい。
該中間層は、本開示において内部厚膜層などと称することがあるが、第1層と第2層の交互積層構成の内部に存在する厚膜の層を指す。なお、ここで厚膜とは、光学的に厚膜であることをいう。本開示においては、多層積層フィルムの製造の初期段階で交互積層構成の両側に膜厚の厚い層(厚み調整層、バッファ層と称することがある。)を形成し、その後ダブリングにより積層数を増やす方法が好ましく用いられるが、その場合は、膜厚の厚い層同士が2層積層されて中間層が形成されることとなり、内部に形成された厚膜の層が中間層となり、外側に形成された厚膜の層が最外層となる。
本開示の一実施形態の多層積層フィルムは、中間層を有していてもよい。
該中間層は、本開示において内部厚膜層などと称することがあるが、第1層と第2層の交互積層構成の内部に存在する厚膜の層を指す。なお、ここで厚膜とは、光学的に厚膜であることをいう。本開示においては、多層積層フィルムの製造の初期段階で交互積層構成の両側に膜厚の厚い層(厚み調整層、バッファ層と称することがある。)を形成し、その後ダブリングにより積層数を増やす方法が好ましく用いられるが、その場合は、膜厚の厚い層同士が2層積層されて中間層が形成されることとなり、内部に形成された厚膜の層が中間層となり、外側に形成された厚膜の層が最外層となる。
中間層は、たとえば層厚みが好ましくは5μm以上、また、好ましくは100μm以下、より好ましくは50μm以下の厚さであることが好ましい。このような中間層を第1層と第2層の交互積層構成の一部に有する場合、偏光機能に影響をおよぼすことなく、第1層および第2層を構成する各層厚みを均一に調整しやすくなる。中間層は、第1層、第2層のいずれかと同じ組成、またはこれらの組成を部分的に含む組成であってもよく、層厚みが厚いため、反射特性には寄与しない。一方、透過特性には影響することがあるため、層中に粒子を含める場合は光線透過率を考慮して粒子径や粒子濃度を選択すればよい。
該中間層の厚さが下限に満たない場合は、多層構造の層構成に乱れが生じることがあり、反射性能が低下することがある。一方、該中間層の厚さが上限を超える場合は、多層積層フィルム全体の厚みが厚くなり、薄型の液晶ディスプレイの反射型偏光板や輝度向上部材として用いた場合に省スペース化しにくいことがある。また、多層積層フィルム内に複数の中間層を含む場合には、それぞれの中間層の厚みは、上記範囲の下限以上であることが好ましく、また中間層の厚みの合計は、上記範囲の上限以下であることが好ましい。
中間層に用いられるポリマーは、本開示の多層積層フィルムの製造方法を用いて多層構造中に存在させることができれば、第1層あるいは第2層と異なる樹脂を用いてもよいが、層間接着性の観点より、第1層または第2層のいずれかと同じ組成か、これらの組成を部分的に含む組成であることが好ましい。
該中間層の形成方法は特に限定されないが、例えばダブリングを行う前の交互積層構成の両側に膜厚の厚い層を設け、それをレイヤーダブリングブロックと呼ばれる分岐ブロックを用いて交互積層方向に垂直な方向に2分割し、それらを交互積層方向に再積層することで中間層を1層設けることができる。同様の手法で3分割、4分割することにより中間層を複数設けることもできる。
(塗布層)
本開示の一実施形態の多層積層フィルムは、少なくとも一方の表面に塗布層を有することができる。
かかる塗布層としては、滑り性を付与するための易滑層や、プリズム層や拡散層等との接着性を付与するためのプライマー層などが挙げられる。塗布層は、バインダー成分を含み、滑り性を付与するためにはたとえば粒子を含有させるとよい。易接着性を付与するためには、用いるバインダー成分を、接着したい層の成分と化学的に近いものとすることが挙げられる。また、塗布層を形成するための塗布液は、環境の観点から水を溶媒とする水系塗布液であることが好ましいが、特にそのような場合等において、積層多層フィルムに対する塗布液の濡れ性を向上させる目的で、界面活性剤を含有することができる。その他、塗布層の強度を高めるために架橋剤を添加したりなど、機能剤を添加してもよい。
本開示の一実施形態の多層積層フィルムは、少なくとも一方の表面に塗布層を有することができる。
かかる塗布層としては、滑り性を付与するための易滑層や、プリズム層や拡散層等との接着性を付与するためのプライマー層などが挙げられる。塗布層は、バインダー成分を含み、滑り性を付与するためにはたとえば粒子を含有させるとよい。易接着性を付与するためには、用いるバインダー成分を、接着したい層の成分と化学的に近いものとすることが挙げられる。また、塗布層を形成するための塗布液は、環境の観点から水を溶媒とする水系塗布液であることが好ましいが、特にそのような場合等において、積層多層フィルムに対する塗布液の濡れ性を向上させる目的で、界面活性剤を含有することができる。その他、塗布層の強度を高めるために架橋剤を添加したりなど、機能剤を添加してもよい。
[多層積層フィルムの製造方法]
本開示の一実施形態の多層積層フィルムの製造方法について詳述する。なお、ここで以下に示す製造方法は一例であり、本開示はこれに限定されない。また、異なる態様についても、以下を参照して得ることができる。
本開示の一実施形態の多層積層フィルムの製造方法について詳述する。なお、ここで以下に示す製造方法は一例であり、本開示はこれに限定されない。また、異なる態様についても、以下を参照して得ることができる。
本開示の一実施形態の多層積層フィルムは、第1層を構成するポリマーと第2層を構成するポリマーとを、多層フィードブロック装置を用いて溶融状態で交互に重ね合わせて、例えば、合計で30層以上の交互積層構成を作成し、その両面にバッファ層を設け、その後レイヤーダブリングと呼ばれる装置を用いて該バッファ層を有する交互積層構成を例えば2~4分割し、該バッファ層を有する交互積層構成を1ブロックとしてブロックの積層数(ダブリング数)が2~4倍になるように再度積層する方法で積層数を増やすことで得ることができる。かかる方法によると、多層構造の内部にバッファ層同士が2層積層された中間層と、バッファ層1層からなる最外層を両面に有する多層積層フィルムを得ることができる。
かかる多層構造は、第1層と第2層の各層の厚みが所望の傾斜構造を有するように積層される。これは、たとえば、多層フィードブロック装置においてスリットの間隔や長さを変化させることで得られる。例えば、第1層および第2層は、少なくとも2つの光学厚み領域で異なる傾きの変化率を有することから、該多層フィードブロックにおいても、少なくとも1つ以上の変曲点を有するようにスリットの間隔や長さを調整すればよい。
上述した方法で所望の積層数に積層したのち、ダイより押出し、キャスティングドラム上で冷却し、多層未延伸フィルムを得る。多層未延伸フィルムは、製膜機械軸方向、またはそれにフィルム面内で直交する方向(横方向、幅方向またはTDという場合がある)の少なくとも1軸方向(かかる1軸方向はフィルム面に沿った方向である。)に延伸されることが好ましい。延伸温度は、第1層のポリマーのガラス転移点温度(Tg)~(Tg+20)℃の範囲で行うことが好ましい。従来よりも低めの温度で延伸を行うことにより、フィルムの配向特性をより高度に制御することができる。
延伸倍率は2.0~7.0倍で行うことが好ましく、さらに好ましくは4.5~6.5倍である。かかる範囲内で延伸倍率が大きいほど、第1層および第2層における個々の層の面方向の屈折率のバラツキが延伸による薄層化により小さくなり、多層積層フィルムの光干渉が面方向に均一化され、また第1層と第2層の延伸方向の屈折率差が大きくなるので好ましい。このときの延伸方法は、棒状ヒータによる加熱延伸、ロール加熱延伸、テンター延伸など公知の延伸方法を用いることができるが、ロールとの接触によるキズの低減や延伸速度などの観点から、テンター延伸が好ましい。
また、かかる延伸方向とフィルム面内で直交する方向(Y方向)にも延伸処理を施し、2軸延伸を行う場合は、用途にもよるが、反射偏光特性を具備させたいときは、1.01~1.20倍程度の延伸倍率にとどめることが好ましい。Y方向の延伸倍率をこれ以上高くすると、偏光性能が低下することがある。
また、延伸後にさらに(Tg)~(Tg+30)℃の温度で熱固定を行いながら、5~15%の範囲で延伸方向にトーアウト(再延伸)させることにより、得られた多層積層フィルムの配向特性を高度に制御することができる。
本開示の一実施形態において上述の塗布層を設ける場合、多層積層フィルムへの塗布は任意の段階で実施することができるが、フィルムの製造過程で実施することが好ましく、延伸前のフィルムに対して塗布することが好ましい。
かくして本開示の一実施形態の多層積層フィルムが得られる。
かくして本開示の一実施形態の多層積層フィルムが得られる。
なお、金属光沢フィルムや反射ミラーの用途に用いる多層積層フィルムである場合は、2軸延伸フィルムとすることが好ましく、この場合は、逐次2軸延伸法、同時2軸延伸法のいずれであってもよい。また、延伸倍率は、第1層および第2層の各層の屈折率および膜厚が、所望の反射特性を奏するように調整されるようにすればよいが、例えばこれら層を構成する樹脂の通常の屈折率を考慮すると、縦方向および横方向ともに2.5~6.5倍程度とすればよい。
[用途]
以下、本開示の多層積層フィルムが好ましく適用され得る用途について説明する。本開示の多層積層フィルムは、輝度向上部材あるいは反射型偏光板として使用されることが特に好ましい。
以下、本開示の多層積層フィルムが好ましく適用され得る用途について説明する。本開示の多層積層フィルムは、輝度向上部材あるいは反射型偏光板として使用されることが特に好ましい。
(輝度向上部材としての用途)
本開示の多層積層フィルムは、上述したポリマー組成や層構成、配向の態様とすることで、一方の偏光成分を選択的に反射し、該偏光成分と垂直方向の偏光成分を選択的に透過させる性能を奏することができる。より具体的には1軸延伸した態様である。かかる性能を利用し、液晶ディスプレイなどの輝度向上部材として用いることができる。輝度向上部材として用いた場合、一方の偏光成分は透過し、他方の透過しなかった偏光成分は吸収せずに光源側に反射させることによって光を再利用でき、良好な輝度向上効果が得られる。
また、本開示の多層積層フィルムの少なくとも一方の面にプリズム層や拡散層等の硬化性樹脂層を積層してもよい。ここで硬化性樹脂層は、熱硬化性樹脂層や電子線硬化性樹脂層である。その際、プライマー機能等を有する塗布層を介してこれらプリズム層あるいは拡散層を積層することもでき、好ましい。
本開示の多層積層フィルムを用いてプリズム層などの部材と貼り合わせ、または本開示の多層積層フィルムの表面にプリズム等を形成し、ユニット化することにより、組み立て時の部材数を低減でき、また液晶ディスプレイの厚みをより薄くすることができる。また、本開示の多層積層フィルムを用いてこれらの部材と貼り合せることにより、加工時などに加わる外力による層間剥離を抑制できるため、より信頼性の高い輝度向上部材を提供できる。
本開示の多層積層フィルムを輝度向上部材として用いる場合、液晶ディスプレイの光源と、偏光板/液晶セル/偏光板で構成される液晶パネルとの間に輝度向上部材を配置する態様の液晶ディスプレイ装置が例示される。プリズム層またはプリズムをさらに設ける場合は、輝度向上部材の液晶パネル側にプリズム層またはプリズムを配置することが好ましい。
本開示の多層積層フィルムは、上述したポリマー組成や層構成、配向の態様とすることで、一方の偏光成分を選択的に反射し、該偏光成分と垂直方向の偏光成分を選択的に透過させる性能を奏することができる。より具体的には1軸延伸した態様である。かかる性能を利用し、液晶ディスプレイなどの輝度向上部材として用いることができる。輝度向上部材として用いた場合、一方の偏光成分は透過し、他方の透過しなかった偏光成分は吸収せずに光源側に反射させることによって光を再利用でき、良好な輝度向上効果が得られる。
また、本開示の多層積層フィルムの少なくとも一方の面にプリズム層や拡散層等の硬化性樹脂層を積層してもよい。ここで硬化性樹脂層は、熱硬化性樹脂層や電子線硬化性樹脂層である。その際、プライマー機能等を有する塗布層を介してこれらプリズム層あるいは拡散層を積層することもでき、好ましい。
本開示の多層積層フィルムを用いてプリズム層などの部材と貼り合わせ、または本開示の多層積層フィルムの表面にプリズム等を形成し、ユニット化することにより、組み立て時の部材数を低減でき、また液晶ディスプレイの厚みをより薄くすることができる。また、本開示の多層積層フィルムを用いてこれらの部材と貼り合せることにより、加工時などに加わる外力による層間剥離を抑制できるため、より信頼性の高い輝度向上部材を提供できる。
本開示の多層積層フィルムを輝度向上部材として用いる場合、液晶ディスプレイの光源と、偏光板/液晶セル/偏光板で構成される液晶パネルとの間に輝度向上部材を配置する態様の液晶ディスプレイ装置が例示される。プリズム層またはプリズムをさらに設ける場合は、輝度向上部材の液晶パネル側にプリズム層またはプリズムを配置することが好ましい。
(反射型偏光板としての用途)
本開示の多層積層フィルムは、吸収型偏光板と併用して、或いは単独で用いて液晶ディスプレイなどの偏光板として用いることができる。特に反射偏光性能を高め、後述する偏光度(P)で85%以上、好ましくは90%以上、より好ましくは99.5%以上となる高偏光度を有するものについては、吸収型偏光板を併用することなく、単独で液晶セルに隣接して用いられる液晶ディスプレイの偏光板として用いることができる。
本開示の積層多層フィルムの用途としては、より具体的には、本開示の積層多層フィルムからなる第1の偏光板、液晶セル、および第2の偏光板がこの順で積層された液晶ディスプレイが挙げられる。
本開示の多層積層フィルムは、吸収型偏光板と併用して、或いは単独で用いて液晶ディスプレイなどの偏光板として用いることができる。特に反射偏光性能を高め、後述する偏光度(P)で85%以上、好ましくは90%以上、より好ましくは99.5%以上となる高偏光度を有するものについては、吸収型偏光板を併用することなく、単独で液晶セルに隣接して用いられる液晶ディスプレイの偏光板として用いることができる。
本開示の積層多層フィルムの用途としては、より具体的には、本開示の積層多層フィルムからなる第1の偏光板、液晶セル、および第2の偏光板がこの順で積層された液晶ディスプレイが挙げられる。
以下に、本開示の実施形態を実施例を挙げて説明するが、本開示は以下に示した実施例に制限されるものではない。なお、実施例中の物性や特性は、下記の方法にて測定または評価した。
(1)各層の厚み
多層積層フィルムをフィルム長手方向2mm、幅方向2cmに切り出し、包埋カプセルに固定後、エポキシ樹脂(リファインテック(株)製エポマウント)にて包埋した。包埋されたサンプルをミクロトーム(LEICA製ULTRACUT UCT)で幅方向に垂直に切断し、50nm厚の薄膜切片にした。透過型電子顕微鏡(日立S-4300)を用いて加速電圧100kVにて観察撮影し、写真から各層の厚み(物理厚み)を測定した。
1μmを超える厚さの層について、多層構造の内部に存在しているものを中間層、最表層に存在しているものを最外層とし、それぞれの厚みを測定した。
多層積層フィルムをフィルム長手方向2mm、幅方向2cmに切り出し、包埋カプセルに固定後、エポキシ樹脂(リファインテック(株)製エポマウント)にて包埋した。包埋されたサンプルをミクロトーム(LEICA製ULTRACUT UCT)で幅方向に垂直に切断し、50nm厚の薄膜切片にした。透過型電子顕微鏡(日立S-4300)を用いて加速電圧100kVにて観察撮影し、写真から各層の厚み(物理厚み)を測定した。
1μmを超える厚さの層について、多層構造の内部に存在しているものを中間層、最表層に存在しているものを最外層とし、それぞれの厚みを測定した。
上記で得られた各層の物理厚みの値と、下記(2)により求めた各層の屈折率(nX)の値を用い、これらを上記(式2)に代入することで各層の光学厚みを求め、第1層について、単調増加領域において、光学厚みが薄い側の端~100nmの範囲および100nm~厚い側の端の範囲のそれぞれについて平均光学厚みを求めた。第2層についても同様にして、単調増加領域において、光学厚みが薄い側の端~200nmの範囲および200nm~厚い側の端の範囲のそれぞれについて平均光学厚みを求めた。
なお、第1層か第2層かは、屈折率の態様により判断できるが、それが困難な場合は、NMRでの解析や、TEMでの解析による電子状態により判断することも可能である。
なお、第1層か第2層かは、屈折率の態様により判断できるが、それが困難な場合は、NMRでの解析や、TEMでの解析による電子状態により判断することも可能である。
(2)各方向の延伸後の屈折率
多層積層フィルムの第1層及び第2層の屈折率は、得られた多層積層フィルムの製造条件と同様の条件で、層の厚み比率が1:1である2層積層フィルムを作成し、それを用いて測定した第1層及び第2層の屈折率を、それぞれ多層積層フィルムの第1層及び第2層の屈折率として求める。
例えば、本実施形態においては、厚み比率が第1層:第2層=1:1である2層積層フィルムとする以外は後述する実施例1と同様の条件で合計厚み75μmのフィルムを作成し、第1層、第2層のそれぞれについて、それぞれ延伸方向(X方向)とその直交方向(Y方向)、厚み方向(Z方向)のそれぞれの屈折率(それぞれnX、nY、nZとする)を、メトリコン製プリズムカプラを用いて波長633nmにおける屈折率を測定して求め、第1層及び第2層それぞれの延伸後の屈折率とした。
多層積層フィルムの第1層及び第2層の屈折率は、得られた多層積層フィルムの製造条件と同様の条件で、層の厚み比率が1:1である2層積層フィルムを作成し、それを用いて測定した第1層及び第2層の屈折率を、それぞれ多層積層フィルムの第1層及び第2層の屈折率として求める。
例えば、本実施形態においては、厚み比率が第1層:第2層=1:1である2層積層フィルムとする以外は後述する実施例1と同様の条件で合計厚み75μmのフィルムを作成し、第1層、第2層のそれぞれについて、それぞれ延伸方向(X方向)とその直交方向(Y方向)、厚み方向(Z方向)のそれぞれの屈折率(それぞれnX、nY、nZとする)を、メトリコン製プリズムカプラを用いて波長633nmにおける屈折率を測定して求め、第1層及び第2層それぞれの延伸後の屈折率とした。
(3)単調増加の判断
第1層と第2層とを個別に、各層の光学厚みの値を縦軸に入力し、各層の層番号を横軸に入力した際の層厚みプロファイルの任意の領域において、膜厚が増加傾向を示す範囲内での層数を5等分し、膜厚が厚くなる方向に、等分された各エリアでの膜厚の平均値が全て増加している場合は単調増加であるとし、そうでない場合は単調増加でないとした。
第1層と第2層とを個別に、各層の光学厚みの値を縦軸に入力し、各層の層番号を横軸に入力した際の層厚みプロファイルの任意の領域において、膜厚が増加傾向を示す範囲内での層数を5等分し、膜厚が厚くなる方向に、等分された各エリアでの膜厚の平均値が全て増加している場合は単調増加であるとし、そうでない場合は単調増加でないとした。
ここで、第1層の上記単調増加領域において、薄い側の端の層および厚い側の端の層を確定し、光学厚みが薄い側の端から100nmの範囲における層厚みプロファイルの1次近似直線の傾きを1Aとし、光学厚みが100nmを越え厚い側の端までの範囲における層厚みプロファイルの1次近似直線の傾きを1Bとした。また、第2層の上記単調増加領域において薄い側の端の層および厚い側の端の層を確定し、光学厚みが薄い側の端から200nmの範囲における層厚みプロファイルの1次近似直線の傾きを2Aとし、光学厚みが200nmを超え厚い側の端までの範囲における層厚みプロファイルの1次近似直線の傾きを2Bとした。これら得られた値から1B/1Aおよび2B/2Aを求めた。
(4)平均反射率
偏光フィルム測定装置(日本分光株式会社製「VAP7070S」)を用いて、得られた多層積層フィルムの反射スペクトルを測定した。なお、測定はスポット径調整用マスクΦ1.4、および偏角ステージを使用し、測定光の入射角は0度設定とし、クロスニコルサーチ(650nm)で定まる多層積層フィルムの透過軸と直交する軸(反射軸という。)の各波長における透過率を波長380~780nmの範囲で5nm間隔で測定した。波長380~780nmの範囲で透過率の平均値をとり、平均透過率を100から引いた値を法線入射における反射軸の平均反射率とした。平均反射率が50%以上であれば、測定した多層積層フィルムの反射軸において反射可能であると判断した。輝度向上部材等の光学用に用いる場合は、かかる平均反射率は82%以上、好ましくは84%以上、より好ましくは85%以上である。
偏光フィルム測定装置(日本分光株式会社製「VAP7070S」)を用いて、得られた多層積層フィルムの反射スペクトルを測定した。なお、測定はスポット径調整用マスクΦ1.4、および偏角ステージを使用し、測定光の入射角は0度設定とし、クロスニコルサーチ(650nm)で定まる多層積層フィルムの透過軸と直交する軸(反射軸という。)の各波長における透過率を波長380~780nmの範囲で5nm間隔で測定した。波長380~780nmの範囲で透過率の平均値をとり、平均透過率を100から引いた値を法線入射における反射軸の平均反射率とした。平均反射率が50%以上であれば、測定した多層積層フィルムの反射軸において反射可能であると判断した。輝度向上部材等の光学用に用いる場合は、かかる平均反射率は82%以上、好ましくは84%以上、より好ましくは85%以上である。
(5)波長750~850nmでの透過率の最大値
分光光度計(島津製作所製、UV-3101PCおよびMPC-3100)を用い、波長300nmから1200nmの範囲での、得られた多層積層フィルムの透過軸における透過率と、該透過軸と直交する軸(反射軸)における透過率とをそれぞれ測定し、分光スペクトルを得た。なお、測定光の入射角は0度設定とした。
波長750~850nmの範囲は、多層積層フィルムを斜め方向(入射角度で45度~60度の方向)から観察した際に、スペクトルの短波長側へのシフトにより、可視光領域(特に赤色の領域)に掛かる波長範囲である。したがって、かかる波長範囲において透過率の最大値が大きいと、多層積層フィルムを斜め方向から観測した際に、多層積層フィルムの着色がより顕著になる傾向にある。かかる観点から、波長750~850nmにおける多層積層フィルムの透過率の最大値は、好ましくは19.5%以下、より好ましくは19%以下、更に好ましくは18%以下、更に好ましくは17%以下である。
分光光度計(島津製作所製、UV-3101PCおよびMPC-3100)を用い、波長300nmから1200nmの範囲での、得られた多層積層フィルムの透過軸における透過率と、該透過軸と直交する軸(反射軸)における透過率とをそれぞれ測定し、分光スペクトルを得た。なお、測定光の入射角は0度設定とした。
波長750~850nmの範囲は、多層積層フィルムを斜め方向(入射角度で45度~60度の方向)から観察した際に、スペクトルの短波長側へのシフトにより、可視光領域(特に赤色の領域)に掛かる波長範囲である。したがって、かかる波長範囲において透過率の最大値が大きいと、多層積層フィルムを斜め方向から観測した際に、多層積層フィルムの着色がより顕著になる傾向にある。かかる観点から、波長750~850nmにおける多層積層フィルムの透過率の最大値は、好ましくは19.5%以下、より好ましくは19%以下、更に好ましくは18%以下、更に好ましくは17%以下である。
(6)偏光度
偏光フィルム測定装置(日本分光株式会社製「VAP7070S」)を用いて、得られた多層積層フィルムの視感度補正偏光度を測定し、偏光度(P)(単位:%)とした。なお、測定はスポット径調整用マスクΦ1.4、および偏角ステージを使用し、測定光の入射角は0度設定とし、クロスニコルサーチ(650nm)で定まる多層積層フィルムの透過軸と該透過軸と直交する軸の各々の平均透過率(波長範囲400~800nm)をもとに算出される。
偏光度(P)は、68%以上あれば好ましい。輝度向上部材等の光学用に用いる際に好ましいという観点から、好ましくは70%以上、より好ましくは73%以上、さらに好ましくは75%以上である。
偏光フィルム測定装置(日本分光株式会社製「VAP7070S」)を用いて、得られた多層積層フィルムの視感度補正偏光度を測定し、偏光度(P)(単位:%)とした。なお、測定はスポット径調整用マスクΦ1.4、および偏角ステージを使用し、測定光の入射角は0度設定とし、クロスニコルサーチ(650nm)で定まる多層積層フィルムの透過軸と該透過軸と直交する軸の各々の平均透過率(波長範囲400~800nm)をもとに算出される。
偏光度(P)は、68%以上あれば好ましい。輝度向上部材等の光学用に用いる際に好ましいという観点から、好ましくは70%以上、より好ましくは73%以上、さらに好ましくは75%以上である。
[製造例1]ポリエステルA
第1層用ポリエステルとして、2,6-ナフタレンジカルボン酸ジメチル、テレフタル酸ジメチル、そしてエチレングリコールを、チタンテトラブトキシドの存在下でエステル交換反応を行い、さらに引き続いて重縮合反応を行って、酸成分の95モル%が2,6-ナフタレンジカルボン酸成分、酸成分の5モル%がテレフタル酸成分、グリコール成分がエチレングリコール成分である共重合ポリエステル(固有粘度0.64dl/g)(o―クロロフェノール、35℃、以下同様)を準備した。
第1層用ポリエステルとして、2,6-ナフタレンジカルボン酸ジメチル、テレフタル酸ジメチル、そしてエチレングリコールを、チタンテトラブトキシドの存在下でエステル交換反応を行い、さらに引き続いて重縮合反応を行って、酸成分の95モル%が2,6-ナフタレンジカルボン酸成分、酸成分の5モル%がテレフタル酸成分、グリコール成分がエチレングリコール成分である共重合ポリエステル(固有粘度0.64dl/g)(o―クロロフェノール、35℃、以下同様)を準備した。
[製造例2]ポリエステルB
第2層用ポリエステルとして、2,6-ナフタレンジカルボン酸ジメチル、テレフタル酸ジメチル、そしてエチレングリコールとトリメチレングリコールを、チタンテトラブトキシドの存在下でエステル交換反応を行い、さらに引き続いて重縮合反応を行って、酸成分の50モル%が2,6-ナフタレンジカルボン酸成分、酸成分の50モル%がテレフタル酸成分、グリコール成分の85モル%がエチレングリコール成分、グリコール成分の15モル%がトリメチレングリコール成分である共重合ポリエステル(固有粘度0.63dl/g)を準備した。
第2層用ポリエステルとして、2,6-ナフタレンジカルボン酸ジメチル、テレフタル酸ジメチル、そしてエチレングリコールとトリメチレングリコールを、チタンテトラブトキシドの存在下でエステル交換反応を行い、さらに引き続いて重縮合反応を行って、酸成分の50モル%が2,6-ナフタレンジカルボン酸成分、酸成分の50モル%がテレフタル酸成分、グリコール成分の85モル%がエチレングリコール成分、グリコール成分の15モル%がトリメチレングリコール成分である共重合ポリエステル(固有粘度0.63dl/g)を準備した。
[実施例1]
第1層用にポリエステルAを170℃で5時間乾燥した後、第2層用にポリエステルBを85℃で8時間乾燥した後、それぞれ第1、第2の押し出し機に供給し、300℃まで加熱して溶融状態とし、第1層用ポリエステルを138層、第2層用ポリエステルを137層に分岐させた後、第1層と第2層が交互に積層され、かつ表1に示すような層厚みプロファイルとなるような櫛歯を備える多層フィードブロック装置を使用して、総数275層の積層状態の溶融体とし、その積層状態を保持したまま、その両側に第3の押し出し機から第2層用ポリエステルと同じポリエステルを3層フィードブロックへと導き、層数275層の積層状態(両表層は第1層である)の溶融体の積層方向の両側にバッファ層をさらに積層した。両側のバッファ層の合計が全体の47%となるよう第3の押し出し機の供給量を調整した。その積層状態をさらにレイヤーダブリングブロックにて、2分岐して1:1の比率で積層し、内部に中間層、最表層に2つの最外層を含む全層数553層の未延伸多層積層フィルムを作製した。
この未延伸多層積層フィルムを130℃の温度で幅方向に5.9倍に延伸した。得られた1軸延伸多層積層フィルムの厚みは75μmであった。
第1層用にポリエステルAを170℃で5時間乾燥した後、第2層用にポリエステルBを85℃で8時間乾燥した後、それぞれ第1、第2の押し出し機に供給し、300℃まで加熱して溶融状態とし、第1層用ポリエステルを138層、第2層用ポリエステルを137層に分岐させた後、第1層と第2層が交互に積層され、かつ表1に示すような層厚みプロファイルとなるような櫛歯を備える多層フィードブロック装置を使用して、総数275層の積層状態の溶融体とし、その積層状態を保持したまま、その両側に第3の押し出し機から第2層用ポリエステルと同じポリエステルを3層フィードブロックへと導き、層数275層の積層状態(両表層は第1層である)の溶融体の積層方向の両側にバッファ層をさらに積層した。両側のバッファ層の合計が全体の47%となるよう第3の押し出し機の供給量を調整した。その積層状態をさらにレイヤーダブリングブロックにて、2分岐して1:1の比率で積層し、内部に中間層、最表層に2つの最外層を含む全層数553層の未延伸多層積層フィルムを作製した。
この未延伸多層積層フィルムを130℃の温度で幅方向に5.9倍に延伸した。得られた1軸延伸多層積層フィルムの厚みは75μmであった。
[実施例2~8、比較例1~6]
表1に示す層厚みプロファイルとなるように用いる多層フィードブロック装置を変更した以外は実施例1と同様にして、1軸延伸多層積層フィルムを得た。
なお、比較例1、2では、第1層の層番号29から層番号138までの領域は、厚みが減少しており、単調増加領域ではないが、かかる範囲を1B単調増加領域とみなして、傾き1B/1Aを算出した。
表1に示す層厚みプロファイルとなるように用いる多層フィードブロック装置を変更した以外は実施例1と同様にして、1軸延伸多層積層フィルムを得た。
なお、比較例1、2では、第1層の層番号29から層番号138までの領域は、厚みが減少しており、単調増加領域ではないが、かかる範囲を1B単調増加領域とみなして、傾き1B/1Aを算出した。
表1からわかるように、実施例の多層積層フィルムでは、比較例の多層積層フィルムと比べ、広い反射波長帯域を保持しながら、高い偏光度を有し、かつ斜め方向から観察したときの色目が抑制されたものが得られた。
本開示の一実施形態によれば、本開示の多層積層フィルムは、交互に積層した複屈折性の層と等方性の層の光学的厚みを適切に設計することで、広い反射波長帯域を保持しながら、高い偏光度で、かつ斜め方向から観察したときの色目の抑制を実現させることが可能となる。そのため、例えば偏光性能が求められる輝度向上部材、反射型偏光板などとして用いる場合に、広い反射波長帯域において高偏光度、及び斜め方向から観察したときの色目が抑制されていることから、より信頼性の高い輝度向上部材、液晶ディスプレイ用偏光板などを提供できる。
2018年9月27日に出願された日本国特許出願2018-182866の開示はその全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
Claims (4)
- 第1の樹脂を含む複屈折性の第1層と第2の樹脂を含む等方性の第2層との多層交互積層体を有する多層積層フィルムであって、
前記第1層と前記第2層の光学干渉により波長380~780nmにある光を反射可能である層厚みプロファイルを有し、
第1層の光学厚みでの層厚みプロファイルは、第1の単調増加領域を有し、前記第1の単調増加領域は、最大光学厚みが100nmまでの1A単調増加領域および最小光学厚みが100nm超である1B単調増加領域からなり、前記1A単調増加領域における傾き1Aに対する、前記1B単調増加領域における傾き1Bの比1B/1Aが0超0.8未満であり、
第2層の光学厚みでの層厚みプロファイルは、第2の単調増加領域を有し、前記第2の単調増加領域は、最大光学厚みが200nmまでの2A単調増加領域および最小光学厚みが200nm超である2B単調増加領域からなり、前記2A単調増加領域における傾き2Aに対する、前記2B単調増加領域における傾き2Bの比2B/2Aが0.8以上1.5以下である、
多層積層フィルム。 - 前記1A単調増加領域における平均光学厚みが65nm以上85nm以下であり、前記1B単調増加領域における平均光学厚みが140nm以上160nm以下である、請求項1に記載の多層積層フィルム。
- 前記2A単調増加領域における平均光学厚みが130nm以上155nm以下であり、前記2B単調増加領域における平均光学厚みが250nm以上290nm以下である、請求項1または請求項2に記載の多層積層フィルム。
- 法線入射において反射軸に平行に偏光された光の380nm~780nmの波長領域における平均反射率が82%以上である、請求項1~請求項3のいずれか1項に記載の多層積層フィルム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980063876.1A CN112805602B (zh) | 2018-09-27 | 2019-09-12 | 多层层叠膜 |
KR1020217009812A KR102642890B1 (ko) | 2018-09-27 | 2019-09-12 | 다층 적층 필름 |
US17/278,216 US20210349249A1 (en) | 2018-09-27 | 2019-09-12 | Multilayer laminate film |
JP2020548440A JP7400724B2 (ja) | 2018-09-27 | 2019-09-12 | 多層積層フィルム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018182866 | 2018-09-27 | ||
JP2018-182866 | 2018-09-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020066667A1 true WO2020066667A1 (ja) | 2020-04-02 |
Family
ID=69952080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/035947 WO2020066667A1 (ja) | 2018-09-27 | 2019-09-12 | 多層積層フィルム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210349249A1 (ja) |
JP (1) | JP7400724B2 (ja) |
KR (1) | KR102642890B1 (ja) |
CN (1) | CN112805602B (ja) |
WO (1) | WO2020066667A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020066668A1 (ja) * | 2018-09-27 | 2021-10-28 | 東洋紡株式会社 | 多層積層フィルム |
JPWO2020066666A1 (ja) * | 2018-09-27 | 2021-10-28 | 東洋紡株式会社 | 多層積層フィルム |
WO2021224799A1 (en) * | 2020-05-08 | 2021-11-11 | 3M Innovative Properties Company | Optical film |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018181841A1 (ja) * | 2017-03-31 | 2018-10-04 | 帝人フィルムソリューション株式会社 | 多層積層フィルム |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002509280A (ja) * | 1998-01-13 | 2002-03-26 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | 急峻な帯域端部を有する光学フィルム |
US20140240829A1 (en) * | 2011-10-20 | 2014-08-28 | 3M Innovative Properties Company | Apodized broadband partial reflectors |
WO2018013784A2 (en) * | 2016-07-13 | 2018-01-18 | 3M Innovative Properties Company | Optical film |
WO2018052872A1 (en) * | 2016-09-13 | 2018-03-22 | 3M Innovative Properties Company | Single packet reflective polarizer with thickness profile tailored for low color at oblique angles |
WO2018181841A1 (ja) * | 2017-03-31 | 2018-10-04 | 帝人フィルムソリューション株式会社 | 多層積層フィルム |
WO2019163891A1 (ja) * | 2018-02-22 | 2019-08-29 | 帝人フィルムソリューション株式会社 | 多層積層フィルム |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5486949A (en) | 1989-06-20 | 1996-01-23 | The Dow Chemical Company | Birefringent interference polarizer |
MY131527A (en) | 1993-12-21 | 2007-08-30 | Minnesota Mining & Mfg | Reflective polarizer display |
EP0735952B1 (en) | 1993-12-21 | 2000-03-22 | Minnesota Mining And Manufacturing Company | Multilayered optical film |
US6025897A (en) * | 1993-12-21 | 2000-02-15 | 3M Innovative Properties Co. | Display with reflective polarizer and randomizing cavity |
JP3752410B2 (ja) | 1999-12-24 | 2006-03-08 | 帝人株式会社 | 多層積層延伸フィルム |
JP2012513608A (ja) * | 2008-12-22 | 2012-06-14 | スリーエム イノベイティブ プロパティズ カンパニー | 空間的に選択的な複屈折性の低減を使用する内部パターン化多層光学フィルム |
KR101399425B1 (ko) * | 2013-12-16 | 2014-05-27 | 에스케이씨 주식회사 | 다층 연신 필름 |
US9823395B2 (en) * | 2014-10-17 | 2017-11-21 | 3M Innovative Properties Company | Multilayer optical film having overlapping harmonics |
CN107615117B (zh) * | 2015-06-01 | 2020-05-19 | 柯尼卡美能达株式会社 | 光学反射膜 |
TWI797381B (zh) | 2018-09-27 | 2023-04-01 | 日商東洋紡股份有限公司 | 多層積層膜 |
CN112805601B (zh) | 2018-09-27 | 2022-09-27 | 东洋纺株式会社 | 多层层叠膜 |
-
2019
- 2019-09-12 CN CN201980063876.1A patent/CN112805602B/zh active Active
- 2019-09-12 KR KR1020217009812A patent/KR102642890B1/ko active IP Right Grant
- 2019-09-12 WO PCT/JP2019/035947 patent/WO2020066667A1/ja active Application Filing
- 2019-09-12 US US17/278,216 patent/US20210349249A1/en not_active Abandoned
- 2019-09-12 JP JP2020548440A patent/JP7400724B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002509280A (ja) * | 1998-01-13 | 2002-03-26 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | 急峻な帯域端部を有する光学フィルム |
US20140240829A1 (en) * | 2011-10-20 | 2014-08-28 | 3M Innovative Properties Company | Apodized broadband partial reflectors |
WO2018013784A2 (en) * | 2016-07-13 | 2018-01-18 | 3M Innovative Properties Company | Optical film |
WO2018052872A1 (en) * | 2016-09-13 | 2018-03-22 | 3M Innovative Properties Company | Single packet reflective polarizer with thickness profile tailored for low color at oblique angles |
WO2018181841A1 (ja) * | 2017-03-31 | 2018-10-04 | 帝人フィルムソリューション株式会社 | 多層積層フィルム |
WO2019163891A1 (ja) * | 2018-02-22 | 2019-08-29 | 帝人フィルムソリューション株式会社 | 多層積層フィルム |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020066668A1 (ja) * | 2018-09-27 | 2021-10-28 | 東洋紡株式会社 | 多層積層フィルム |
JPWO2020066666A1 (ja) * | 2018-09-27 | 2021-10-28 | 東洋紡株式会社 | 多層積層フィルム |
JP7400723B2 (ja) | 2018-09-27 | 2023-12-19 | 東洋紡株式会社 | 多層積層フィルム |
JP7400725B2 (ja) | 2018-09-27 | 2023-12-19 | 東洋紡株式会社 | 多層積層フィルム |
US12001041B2 (en) | 2018-09-27 | 2024-06-04 | Toyobo Co., Ltd. | Multilayer laminate film |
US12001040B2 (en) | 2018-09-27 | 2024-06-04 | Toyobo Co., Ltd | Multilayer laminate film |
WO2021224799A1 (en) * | 2020-05-08 | 2021-11-11 | 3M Innovative Properties Company | Optical film |
Also Published As
Publication number | Publication date |
---|---|
JP7400724B2 (ja) | 2023-12-19 |
CN112805602B (zh) | 2023-05-26 |
CN112805602A (zh) | 2021-05-14 |
US20210349249A1 (en) | 2021-11-11 |
KR20210068032A (ko) | 2021-06-08 |
JPWO2020066667A1 (ja) | 2021-10-28 |
KR102642890B1 (ko) | 2024-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020066667A1 (ja) | 多層積層フィルム | |
WO2020066668A1 (ja) | 多層積層フィルム | |
WO2020066666A1 (ja) | 多層積層フィルム | |
JP7143878B2 (ja) | 多層積層フィルム | |
WO2018181841A1 (ja) | 多層積層フィルム | |
JP7392344B2 (ja) | 多層積層フィルム | |
JP2023052241A (ja) | 多層積層フィルム | |
JP7238520B2 (ja) | 多層積層フィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19867899 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020548440 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19867899 Country of ref document: EP Kind code of ref document: A1 |