WO2020066478A1 - Shaped-sheet manufacturing method - Google Patents

Shaped-sheet manufacturing method Download PDF

Info

Publication number
WO2020066478A1
WO2020066478A1 PCT/JP2019/034461 JP2019034461W WO2020066478A1 WO 2020066478 A1 WO2020066478 A1 WO 2020066478A1 JP 2019034461 W JP2019034461 W JP 2019034461W WO 2020066478 A1 WO2020066478 A1 WO 2020066478A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape
position information
functional
shape portion
area
Prior art date
Application number
PCT/JP2019/034461
Other languages
French (fr)
Japanese (ja)
Inventor
昭紀 落合
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020548259A priority Critical patent/JP6932271B2/en
Publication of WO2020066478A1 publication Critical patent/WO2020066478A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/20Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed
    • B26D5/30Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed having the cutting member controlled by scanning a record carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/44Cutters therefor; Dies therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms

Definitions

  • the present disclosure relates to a method for manufacturing a shaped sheet.
  • a sheet-fed method in which each sheet is shaped or a roll-to-roll method in which a continuous long roll film is formed
  • One of the methods is used.
  • a desired shaping pattern by a roll-to-roll method shaping a film unwound from a roll into various shapes selected from a convex shape and a concave shape, and then cutting the shaped sheet.
  • a punching process using a punching blade is applied for cutting the sheet.
  • a high-definition transfer mold In order to impart a function to a shaped sheet having fine irregularities such as a microlens and a tapered structure, a high-definition transfer mold is required.
  • a high-definition transfer mold is manufactured by a special processing machine, and manufacturing a mold for shaping a large area at one time is costly. For this reason, it is desired to improve the area of the effective area of the formed shaped film having the fine unevenness.
  • position information is printed separately from the shaping, and the punching process is positioned by reading the position information.
  • the steps are complicated, and the punching position may be shifted due to a shift in the printing position.
  • a conventional method for producing a shaped pattern for example, those described in JP-A-2003-181918, JP-A-2012-203244, and JP-A-2011-98443 are exemplified.
  • JP-A-2003-181918 discloses a shaping roller and a method of manufacturing a laminated film using the same.
  • the shaping roller is a metal sheet-shaped mold formed separately from the roller and wound around the roller, and the end portion is fixed by a welded portion. It is an object to suppress defects. For this reason, it is characterized in that the gap between the fixed molds is filled with solder and the surface is polished. It also describes that the polished area of the solder at the seam of the mold can be used for detecting the position of the shaping film.
  • Japanese Unexamined Patent Application Publication No. 2012-203244 discloses that an uneven pattern is formed on a belt-shaped sheet surface, and that at least both ends in the width direction of the sheet surface are provided along the longitudinal direction of the sheet in the uneven sheet wound up in a roll shape.
  • a concave-convex sheet in which a tall protruding ridge portion that is taller than the convex portions of the concave-convex pattern is formed.
  • Japanese Patent Application Laid-Open No. 2011-98443 discloses a mold roll for a shaping film, and a mark is formed as a mark near a roll end outside a region cut for shaping to form a die. It is characterized in that the cause of the defect generated in the mold roll can be easily specified.
  • Japanese Patent Application Laid-Open No. 2003-181918 also describes that positional information is formed by shaping.
  • manufacturing of a mold particularly polishing of a solder portion serving as positional information, is performed.
  • the manufacturing process of the mold roll is complicated.
  • the position information is formed only in the longitudinal direction of the sheet, and is not suitable for the position information. In some cases, the punching position of the shaped sheet was shifted. Further, the inscription formed outside the shaping area of the die roll described in Japanese Patent Application Laid-Open No.
  • 2011-98443 does not pay attention to use as position information at the time of cutting, and is formed for the purpose of specifying a defect position. It is a thing. Therefore, it is difficult to use it in applications requiring high-accuracy position information, such as trimming positioning, in terms of accuracy and contrast.
  • the problem to be solved by one embodiment of the present invention is to provide a method for manufacturing a shaped sheet in which positional information having high precision that can be used at the time of cutting is provided by a simple process, and positioning accuracy at the time of cutting is improved. It is.
  • Means for solving the above problems include the following aspects. ⁇ 1> The first shape portion forming region and the first shape portion forming region provided with a functional shape portion for imparting a function to the shaping sheet to the curable resin composition layer provided on the support.
  • a step A of simultaneously shaping a second shape portion forming region which is a surface shape and becomes positional information in the cutting step, curing the curable resin composition layer, and forming a first shape on the support and the support Forming a layered product including a resin layer in which a portion forming region and a second shape portion forming region are shaped, and detecting the second shape portion forming region of the resin layer, and detecting the detected second shape portion.
  • ⁇ 2> The method for producing a shaped sheet according to ⁇ 1>, wherein the second shape portion forming region exists outside the first shape portion forming region.
  • ⁇ 3> The method for producing a shaped sheet according to ⁇ 1>, wherein the second shape portion forming region exists in the first shape portion forming region.
  • the second shape portion forming region having a surface shape different from that of the first shape portion forming region has a position information shape portion serving as position information, and the second shape portion forming region has the following (I The method for producing a shaped sheet according to any one of ⁇ 1> to ⁇ 3>, wherein the shaped sheet is a surface shape selected from the following.
  • the position information shape part has a shape similar to the functional shape part.
  • the position information shape part in the second shape part formation region is arranged with a different number density per unit area from the functional shape part in the first shape part formation region.
  • the position information shape part has the same shape or a similar shape as the functional shape part, and the position information shape part differs from the functional shape part in the first shape part formation region per unit area. They are arranged in number density.
  • ⁇ 5> The method for producing a shaped sheet according to any one of ⁇ 1> to ⁇ 4>, wherein in the step C of cutting the laminate, the position of the laminate is corrected.
  • ⁇ 6> The method for producing a shaped sheet according to any one of ⁇ 1> to ⁇ 5>, wherein the functional shape portion is a microlens.
  • a method of manufacturing a shaped sheet in which positional information with high accuracy that can be used at the time of cutting is provided by a simple process, and positioning accuracy at the time of cutting with accurate position information is improved.
  • FIG. 1 It is the schematic which shows one Embodiment of the shaping apparatus which forms unevenness in the curable resin composition layer formed on the support body, and manufactures the laminated body which has the resin layer shaped on the support body.
  • FIG. 10 is a schematic plan view illustrating an example of a modification of the relative positional relationship between the functional area and the position information area, in which the position information area is formed outside the functional area and the cutting section. It is an aspect of a modified example of the relative positional relationship between the functional area and the position information area, and schematically illustrates an example of an aspect in which the position information area is formed inside the functional area and outside the effective area. It is a top view. It is an aspect of the modification of the relative positional relationship between the functional area and the position information area, and schematically illustrates an example of an aspect in which the position information area is formed inside the functional area and inside the effective area. It is a top view.
  • FIG. 1 is a schematic configuration diagram illustrating one embodiment of a cutting device that can be used in the manufacturing method of the present disclosure.
  • FIG. 9 is an enlarged view of a cutting unit in the cutting device shown in FIG. 8. It is a schematic sectional drawing of the cutting part shown in FIG.
  • the amount of each component in the composition means, when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified, means the total amount of the plurality of substances present in the composition. .
  • an upper limit or a lower limit described in a certain numerical range may be replaced with an upper limit or a lower limit of another numerical range described in a stepwise manner.
  • the upper limit or the lower limit described in a certain numerical range may be replaced with the value shown in the embodiment.
  • a combination of two or more preferred embodiments is a more preferred embodiment. Components shown with the same reference numerals in each drawing mean the same components.
  • the present disclosure will be described in detail.
  • the method for producing a shaped sheet according to the present disclosure includes a first shape portion forming region including a functional shape portion that imparts a function to the shaped sheet, to the curable resin composition layer provided on the support, and A step A of simultaneously shaping the second shape part forming region, which is a surface shape different from the shape part forming region and serving as positional information in the cutting step, and curing the curable resin composition layer, A step B of forming a laminate including a resin layer having a first shape portion forming region and a second shape portion forming region formed on a support; and a second shape portion forming region of the resin layer. Detecting and cutting the laminated body based on the detected position information of the second shape portion forming region.
  • a first shape portion forming region having a functional shape portion and a second shape portion forming region having a surface shape different from the first shape portion forming region are simultaneously formed. That is, "simultaneously shape” means that, on the same plane as the curable resin composition layer provided on the support, by the same mold, the first shape portion forming region including the functional shape portion is formed. This means that a second shape portion forming region having a surface shape different from the first shape portion forming region is formed in one step.
  • the functional shape portion may have a convex shape or a concave shape.
  • the first shape portion region is a region in which a plurality of hemispherical functional shape portions each having the shape of a convex lens are formed.
  • the first shape portion forming region is a region where a plurality of semi-cylindrical lens-shaped functional shape portions are formed in parallel in one direction. Become.
  • the “different surface shape” means that there is a change in the surface shape when the same surface is viewed in one direction
  • the first shape portion forming region and the second shape portion forming region Refers to a shape that can be distinguished by at least one of visual observation and optical system observation. Specifically, the following modes can be given, but the present invention is not limited to the following modes as long as they are combinations of shapes that can be distinguished by visual observation and / or optical system observation. Specific combinations of shapes will be described later.
  • the second shape portion forming region is a region where a convex portion or a concave portion having a shape different from the functional shape portion in the first shape portion forming region is arranged.
  • the second shape portion forming region is a region similar to the functional shape portion in the first shape portion forming region, that is, a region in which convex portions or concave portions having the same shape but different sizes are arranged.
  • the second shape portion formation region is a region in which protrusions or recesses having the same shape as the functional shape portion in the first shape portion formation region are arranged with different number densities per unit area.
  • the second shape portion forming region has a convex portion or a concave portion having the same shape in plan view as the functional shape portion in the first shape portion forming region, and the first shape portion forming region has a plan view. Are regions arranged at different axial angles.
  • the second shape portion forming region is a planar region in which no convex portion or concave portion of any shape is arranged.
  • the first shape portion forming region and the second shape portion forming region having different surface shapes are simultaneously formed using the same mold, so that a simple process can be used.
  • Position information is simultaneously formed at a desired accurate position with respect to the formation region of the functional shape portion. For this reason, according to the manufacturing method of the present disclosure, accurate positional information is formed without any gap between the functional shape portion and the positional information in the resin layer on the laminate. Further, the position information can be easily detected by visual observation or observation using an optical system such as a Charge-Coupled Device (CCD) camera. Even when the shaping sheet is cut, the readability is improved.
  • CCD Charge-Coupled Device
  • the shaped sheet can be cut at a highly accurate position by detecting the position information, and the effective area of the formation area of the functional shape portion formed in the shaped sheet can be improved.
  • visual observation or the like one or both of visual observation and observation using an optical system may be collectively referred to as “visual observation or the like”.
  • the curable resin composition layer provided on the support has a first shape portion forming region (hereinafter, referred to as a “functional region”) including a functional shape portion that imparts a function to the shaped sheet. And a second shape portion forming region (hereinafter, sometimes referred to as a “position information region”) having a surface shape different from that of the first shape portion forming region and serving as position information in the cutting process.
  • a first shape portion forming region hereinafter, referred to as a “functional region”
  • a second shape portion forming region hereinafter, sometimes referred to as a “position information region” having a surface shape different from that of the first shape portion forming region and serving as position information in the cutting process.
  • FIG. 1 is a schematic view showing one embodiment of a shaping apparatus 10 used in a process A and a process B described later.
  • the curable resin composition is supplied from the coating device 16 to the support 14 supplied from the supply roll 12, and a laminate 20 having the curable resin composition layer 18 formed on the support 14 is obtained.
  • laminate (I) the laminate before curing of the curable resin composition layer.
  • the obtained laminate (I) 20 is transported to the shaping roll 22.
  • a mold 24 disposed on the surface of the shaping roll 22 has a functional area providing section 26A for forming a functional area and a position information area providing section for forming a position information area.
  • a portion 28A is formed.
  • the mold 24 causes the surface of the curable resin composition layer 18 to be formed on the shaped sheet.
  • the functional area 26B and the position information area 28B to which a function is to be provided are simultaneously formed.
  • the shaping roll on which the mold is formed may be referred to as an embossing roll 22A.
  • the laminate (I) 20 has on its surface an inverted shape 26A of a concave-convex shape serving as a functional shape portion and an inverted shape 28A of a position information area as required.
  • the laminate (I) 20 having the support and the curable resin composition layer is pressed against the embossed roll 22A using the nip roll 22B. Due to the pressing, the functional region 26B and the position information region 28B, which are the inverted shapes of the concavo-convex shape formed on the surface of the embossing roll 22A, are transferred to the surface of the curable resin composition layer 18.
  • the position information region is a flat plate having no irregularities
  • the position information forming region on the surface of the mold 24 is formed into a flat shape having no irregularities, so that the surface of the curable resin composition layer is formed.
  • a position information area having no irregularities can be formed.
  • FIG. 1 using a laminate (I) 20 having a support 14 and a curable resin composition layer 18, the surface of the embossing roll 22 ⁇ / b> A is pressed in a direction in which the curable resin composition layer 18 comes into contact, and the uneven shape is obtained.
  • An embodiment of shaping is shown.
  • a mode in which nip rolls 22B are provided on the upstream side and the downstream side of the region of the embossing roll 22A where the die is pressed, respectively, is shown.
  • the method of shaping the surface of the curable resin composition layer is not limited to the embodiment illustrated in FIG.
  • the laminate of the support and the curable resin composition layer is made into a sheet-like shape, and irregularities are formed on a first surface, and the laminate is cured between a pair of molds having a planar second surface.
  • the resin composition layer side may be narrowed in the direction in contact with the first mold to form a functional region and a position information region on the surface of the curable resin composition layer at the same time.
  • FIG. 2 is a schematic plan view showing an example of a formation position and a cutting position of a position information area and a functional area of the laminate.
  • the position information area 28B formed in a T-shape is formed outside the functional area 26B.
  • a rectangle defined by a solid line 31 on the periphery of the functional region 26B in FIG. 2 indicates a planned cutting position of the shaped sheet.
  • the position information area 28B has a T-shape, and is formed at a corner outside the area of the functional area 26B and adjacent to the functional area 26B.
  • the functional area 26B is a rectangular area when viewed in plan, and the position information area 28B is formed at two opposing corners on the long side of the rectangle.
  • the position where the position information area is formed is not limited to the position shown in FIG. 2 as long as the cutting position can be accurately determined by detecting the position information.
  • four locations may be formed at the four corners of the rectangular functional area 26B.
  • the shape of the position information area is not limited to the T-shape, but may be various shapes such as an L-shape, a cross shape, and a circular shape.
  • FIG. 2 illustrates one of the functional region and the position information region formed after the shaping by the embossing roll shown in FIG. 1 is performed.
  • the same shaping area in which the same mold is formed as shown in FIG. 2 along the conveying direction of the long laminate shown by the arrow in FIG. A plurality is formed continuously. The same applies to FIG. 3 described later.
  • FIG. 3 is a schematic plan view showing another example of the formation position of the position information area and the functional area of the laminate.
  • the position information area 28B is formed in the area of the functional area 26B.
  • a rectangular area defined by a solid line 31 on the periphery of the functional area 26B indicates a planned cutting position of the shaped sheet.
  • the position information area 28B has an L shape and is formed at a corner in the area of the functional area 26B.
  • the functional area 26 ⁇ / b> B is a rectangular area in plan view, and the position information area 28 ⁇ / b> B is formed at two opposing corners of the long side of the rectangle.
  • the position where the position information is formed is not limited to the position shown in FIG. 3, and four positions can be formed at the four corners of the rectangular functional area 26B.
  • the shape of the position information area is not particularly limited, and may have various shapes such as an L shape, a T shape, a cross shape, and a circle shape.
  • the functional area 26B and the position information area 28B are provided adjacent to each other, and the position information area 28B is detected and stacked at the boundary between the functional area 26B and the position information area 28B. Cutting the body is preferable from the viewpoint that a product effective area including the functional area 26B can be efficiently obtained.
  • the functional region in the shaped sheet carries the function of the product.
  • the shaped sheet is incorporated into a product member and fixed.
  • the fixing part may not necessarily have a functional area.
  • FIGS. 4A, 4B, and 4C are schematic plan views each showing an aspect of a modification of the relative positional relationship between the functional area 26B and the positional information area 28B.
  • the periphery of the cut portion is indicated by a bold line
  • the periphery of the effective region that exhibits a function when the shaping sheet is incorporated into the product is indicated by a broken line.
  • the position information area 28B is formed outside the cut section defined by the thick line. Accordingly, in the embodiment shown in FIG. 4A, the position information area 28B is formed outside the periphery of the effective area existing inside the functional area 26B. In the case where the position information area 28B in FIG. 4A is detected and the shaped sheet is cut at a thick line portion, when the obtained shaped sheet is incorporated into a product, the entire area of the effective area becomes the functional area 26B. Thus, a shaped sheet that can exhibit functions up to the peripheral portion is obtained.
  • the position information area 28B partially exists inside the functional area 26B, and is formed outside the effective area whose peripheral edge is surrounded by a broken line.
  • the obtained shaping sheet has the position information area 28B inside the shaping sheet, but the effective area in the functional area 26B. Will exist outside the
  • the obtained shaped sheet is, when incorporated into a product, the entire area of the effective area as in FIG. 4A. It becomes the functional region 26B, and becomes a shaped sheet that can express functions up to the peripheral portion.
  • the position information area 28B exists inside the functional area 26B, and is formed inside the effective area whose peripheral edge is surrounded by a broken line.
  • the obtained shaped sheet has the position information area 28B in the effective area within the functional area 26B.
  • the position information area 28B is formed at the position shown in FIG. 4C. May not be a problem.
  • the position information area 28B has a surface shape different from the surface of the functional area 26B, and can be identified by visual observation or the like.
  • the functional area 26B and the position information area 28B are simultaneously formed of the same material, and therefore have the same hue. Therefore, the position information area existing at the corner of the effective area hardly affects the effective area of the product as compared with the position information area formed by a method other than the manufacturing method of the present disclosure. Therefore, if the application does not require a high-definition function over the entire effective area, such as a large-area optical material, a position information area as shown in FIG. 4C can be formed, and the functional area 26B can be effectively used. It will be possible to utilize it.
  • the area of the position information area is defined by a rectangular shape such as a T-shape or an L-shape from the viewpoint of discriminability by visual observation or the like, and from the viewpoint of reducing the influence of the presence of the position information area on the functional area.
  • the width and length of the rectangle are preferably 5 mm or less.
  • the lower limit of the size of the position information area is not particularly limited. From the viewpoint of distinguishability, the width and length of the above-described rectangular shape are preferably 0.1 mm or more.
  • the position information region having a surface shape different from the functional region has a position information shape portion serving as position information, and the position information region preferably has a surface shape selected from the following (I) to (III). .
  • the position information shape part has a shape similar to the functional shape part.
  • each position information shape portion formed in the position information region has a similar shape to each functional shape portion.
  • the position information shape portion is included.
  • the functional shape portion and the position information shape portion have similar shapes to each other in terms of easiness in manufacturing a mold. That is, since the functional shape portion and the position information shape portion are similar in shape to each other, the same cure is performed when the inverted shape of the functional shape portion and the inverted shape of the position information shape portion are formed in the mold. It can be formed using a tool.
  • the position information shape part in the position information area is formed with a different number density per unit area from the functional shape part in the functional area.
  • the position information shape portion and the functional shape portion may have the same shape or different shapes.
  • the same shape includes a mode in which each position information shape portion and each functional shape portion have the same shape and the same size.
  • the positional information shape portion and the functional shape portion only need to have different number densities formed per unit area.
  • the inverted shape of the functional shape part and the position information shape are formed in the mold as in the case of the aspect (I). Since the same jig can be used when forming the inverted shape of the portion, it is preferable from the viewpoint of workability.
  • the position information shape portion has the same shape or a similar shape as the functional shape portion, and the position information shape portion is formed with a different number density per unit area from the functional shape portion.
  • the position information shape part has the same shape or a similar shape as the functional shape part. Similarly, it can be performed by using the same jig, and since the formation density is different, it becomes easier to distinguish between the position information area and the functional area.
  • an ultra-hard jig for cutting used in the manufacture of metal fittings is expensive, and when manufacturing a metal mold using a plurality of different jigs, the metal mold is manufactured using only one kind of metal jig.
  • problems such as a decrease in the productivity for exchanging the jig and a remarkable increase in the manufacturing cost of the mold occur.
  • the surface shapes described in the above (I), (II) and (III), which can form different surface shapes by using the same jig in the production of the mold are all productivity and It can be said that there are great advantages in terms of mold manufacturing costs.
  • FIG. 5 shows an example of the functional shape portion in the functional region.
  • a hemispherical functional shape portion 34 such as a microlens is formed in the functional region.
  • An example shown in FIG. 5B-1 is an example of a position information area having a different planar shape from FIG. 5A-1.
  • hemispherical convex portions 34 having the same shape as the hemispherical functional shape portions 34 are formed with a higher number density per unit area than in FIG. 5 (A-1). ing. Therefore, due to the difference in the number density of the functional shape portions 34 per unit area, the functional area shown in FIG. 5A-1 and the position information area shown in FIG. It can be visually identified.
  • the above example is an embodiment of (II) described above.
  • the position information area is a hemispherical convex part having a similar shape to the hemispherical functional shape part 34 in the functional area, and the hemispherical convex part in the functional area.
  • a hemispherical convex portion 36 having a larger size than the functional shape portion 34 is formed. Since the convex portion has a similar shape and a different size from the functional shape portion 34 and a different number density per unit area, the functional region shown in FIG.
  • the position information area shown in B-2) can be identified visually or the like.
  • the above example can be said to be an embodiment of (III) described above.
  • the position information area has a flat plate shape without any unevenness.
  • a hemispherical functional shape portion 34 is formed, and since the position information region 28B has a flat plate shape, the functional region shown in FIG. 5A-1 and the functional region shown in FIG.
  • the position information area shown in ()) can be identified by visual observation or the like.
  • FIG. 6 shows another example of the functional shape portion in the functional region.
  • hexagonal convex portions in a plan view are formed adjacent to each other as functional shape portions.
  • the hexagonal projection in the same plan view as the functional shape part is different from the arrangement in FIG. 6 (A-2) in the plan view.
  • the shaft angle is formed at an angle of 90 °.
  • the functional area shown in FIG. 6 (B-4) can be identified by visual observation or the like. As shown in FIG.
  • an area that can be identified by visual observation or the like is formed by arranging the convex portions such as hexagons and triangles in plan view by changing the axis angle by 90 ° in plan view. Further, by arranging the convex portions having a square shape in a plan view by changing the axial angle by 45 ° in a plan view, an area that can be identified by visual observation or the like is formed.
  • the surface shape in the position information area which can be identified by visual observation and the surface shape of the functional area, is not limited to a mode having the same or similar shape as the functional shape section, and is completely different from the functional shape section. It may have differently shaped surfaces.
  • a position information area which can be visually identified from the functional area is formed.
  • the surface shape that can be performed include an aggregate of fine convex portions called a moth-eye structure, an aggregate of cylindrical convex portions having a fine diameter called a pillar structure, and an aggregate of a moth-eye structure having a lens shape. And the like.
  • a position information region that can be identified by visual observation or the like is different from the above-described functional region shown in FIG. 5 (A-1) or FIG. 6 (A-2). Can be formed.
  • the most common shape of the functional shape portion in the functional region includes a hemispherical lens shape (micro lens), a semi-cylindrical lens shape (cylindrical lens), and the like.
  • a functional shape part is a micro lens.
  • the functional region in which the general shape is formed is a region in which the microlenses or the cylindrical lenses are continuously arranged.
  • the arrangement of the lens shape in the functional shape portion when the functional region forms the microlens array is not particularly limited, and may be arranged in a square lattice shape or may be arranged in a honeycomb structure shape. Good.
  • the functional shape portion to be shaped is a fine shape portion.
  • the distance between adjacent convex portions is set. Is preferably 300 ⁇ m or less.
  • the maximum value of the interval between adjacent concave and convex portions is preferably 300 ⁇ m or less.
  • the maximum value of the lens pitch is preferably 200 ⁇ m or less, and more preferably 160 ⁇ m or less.
  • the minimum value of the lens pitch is not particularly limited, but is preferably 5 ⁇ m or more.
  • the lens pitch refers to a distance between vertices of convex portions of a lens shape.
  • the manufacturing method of the present disclosure is remarkably applied to the manufacturing of the microlens array having a small lens pitch. We think that effect can be obtained.
  • the functional shape portion in the present disclosure is not limited to the above-mentioned hemispherical shape or a convex shape having a semi-cylindrical diameter, and may take various shapes depending on purposes.
  • FIG. 7 is a perspective view showing a modified example of the convex portion as the functional shape portion.
  • examples of the shape of the convex portion which can function as the functional shape portion include (A-5), (A-6), and (A-7) in addition to the hemispherical shape (A-1). , (A-8), and (A-9), but are not limited to the above examples, and may be arbitrarily selected as long as the shapes exhibit necessary functions.
  • the functional shape portion may be not only a convex shape but also a concave shape in which a concave portion is formed on the surface of the curable resin composition layer.
  • the mold is a mold having a convex portion that is the inverted shape of the concave portion.
  • the functional region it goes without saying that not only the shape of the functional shape portion but also the formation density of each functional shape portion can be appropriately selected according to the purpose of use of the shaped sheet.
  • the support of the shaped sheet is preferably a sheet-like or film-like support.
  • the support is preferably a resin base material from the viewpoint of high-temperature stretchability.
  • the resin base material include polymethyl methacrylate resin (PMMA), polycarbonate resin (PC), polystyrene resin, methacrylate-styrene copolymer resin (MS resin), acrylonitrile-styrene copolymer resin (AS resin), and polypropylene resin ( PP), a polyethylene resin, a polyester resin such as polyethylene terephthalate resin (PET), a glycol-modified polyethylene terephthalate resin (PETG), a polyvinyl chloride resin (PVC), a thermoplastic elastomer, or a copolymer thereof, a cycloolefin polymer, or the like.
  • PMMA polymethyl methacrylate resin
  • PC polycarbonate resin
  • MS resin methacrylate-styrene copolymer resin
  • the resin to be used for example, polymethyl methacrylate resin (PMMA), polycarbonate resin, polystyrene resin, methacrylate -A resin having a relatively low melt viscosity such as a styrene copolymer resin (MS resin), a polyethylene resin, a polyethylene terephthalate resin, a glycol-modified polyethylene terephthalate resin, and the like are preferable, and a polyethylene terephthalate resin is more preferable.
  • PMMA polymethyl methacrylate resin
  • MS resin methacrylate copolymer resin
  • MS resin styrene copolymer resin
  • a polyethylene resin a polyethylene terephthalate resin
  • a glycol-modified polyethylene terephthalate resin a glycol-modified polyethylene terephthalate resin, and the like are preferable, and a polyethylene terephthalate resin is more preferable.
  • a polyethylene terephthalate resin a glycol-modified polyethylene terephthalate resin or a cycloolefin resin is preferable, and a polyethylene terephthalate resin is more preferable.
  • the support is preferably a stretched resin base material, more preferably a uniaxially stretched resin base material or a biaxially stretched resin base material.
  • the thickness of the support is not particularly limited, and is appropriately selected depending on the purpose of use of the shaped sheet. Generally, the thickness of the support is preferably in the range of 50 ⁇ m or more and 300 ⁇ m or less, and more preferably in the range of 50 ⁇ m or more and 200 ⁇ m or less from the viewpoint that uniform (shaping) can be performed at a high temperature.
  • the resin base material is not easily torn, and cracks and the like are unlikely to occur during transportation during molding and three-dimensional molding.
  • the support preferably has transparency to visible light, and the support has a wavelength of 400 nm.
  • the light transmittance at a wavelength of 700 nm is preferably 70% or more.
  • the upper limit of the light transmittance is not particularly limited, and may be 100% or less.
  • Visible light transmittance can be measured using a spectrophotometer. In the present disclosure, the light transmittance is measured using a spectrophotometer V-560 (manufactured by JASCO Corporation) equipped with an integrating sphere attachment device ARV-474.
  • the support when the curable resin composition layer described below is cured by applying energy such as ultraviolet rays, it is considered that the support may be irradiated with ultraviolet rays from the side opposite to the side on which the curable resin composition layer is formed.
  • the support preferably has a transmittance of ultraviolet light having a wavelength of less than 400 nm, and the support preferably has an ultraviolet transmittance of 70% or more at a wavelength of less than 400 nm.
  • the ultraviolet transmittance can be measured by changing the wavelength to be measured from visible light to ultraviolet light in the same manner as the above-described visible light transmittance.
  • a commercially available product may be used as the resin base material.
  • Commercially available products that can be used as the resin substrate include, for example, an acrylic resin film (Acryprene HBS010P, thickness: 125 ⁇ m) manufactured by Mitsubishi Chemical Corporation, and a polyethylene terephthalate resin film (Lumirror S10, thickness: 100 ⁇ m) manufactured by Toray Industries, Inc. And a cycloolefin polymer film (product name: ARTON) manufactured by JSR Corporation, a polycarbonate resin film (Iupilon H-3000, thickness 125 ⁇ m) manufactured by Teijin Chemicals Ltd., and the like.
  • the resin that can be included in the curable resin composition used to form the curable resin composition layer is not particularly limited as long as it is a curable resin.
  • the curable resin that can be used for forming the curable resin composition layer is preferably a photocurable (for example, ultraviolet curable) or thermosetting resin, and has a productivity, for example, a cooling mechanism after heat curing. It is more preferable that the resin is a photo-curable resin from the viewpoint that it is unnecessary and the equipment required for curing can be simplified.
  • an ultraviolet curable resin such as a urethane acrylate resin, a polyester acrylate resin, an epoxy acrylate resin, a polyether acrylate resin, an acrylic acrylate resin, a polythiol resin, and a butadiene acrylate resin
  • the thermosetting resin include glycol-modified polyethylene terephthalate resin (PETG).
  • the curable resin composition may contain a known additive as necessary in addition to the curable resin described above.
  • a known additive include known components generally used in a method for producing a shaped sheet, such as a release agent, a polymerization inhibitor, a curing accelerator, and a stabilizer.
  • the type and content of these additives can be appropriately selected and used depending on the purpose of use of the shaped sheet.
  • FIG. 1 illustrates an embodiment in which the curable resin composition layer 18 is formed by supplying the curable resin composition to the support 14 by the coating device 16.
  • the coating device 16 a known device can be arbitrarily used.
  • the method for forming the curable resin composition layer 18 on the support 14 to obtain the laminate (I) 20 is not limited to this. For example, a method in which a curable resin composition layer formed in advance is laminated on the support To form a laminate.
  • the thickness of the curable resin composition layer may be appropriately determined according to the size of the functional shape portion to be formed.
  • the thickness of the curable resin composition layer is preferably from 2 ⁇ m to 130 ⁇ m, more preferably from 2 ⁇ m to 110 ⁇ m, from the viewpoints of workability and ease of shaping of the functional shape portion and the like.
  • the laminate (I) is pressed against the embossing roll against the surface of the curable resin composition layer of the laminate (I) having the curable resin composition layer on the support.
  • the nip rolls provided on both sides of the mold forming portion of the embossing roll enable the laminate (I) to be stably transported and pressed, and the embossing roll simultaneously forms the functional area and the position information area.
  • step B the curable resin composition layer in which the functional region and the positional information region are simultaneously formed in step A is cured, and the support and the functional region and the positional information region are formed on the support. And forming a laminated body (II) including the cured resin layer.
  • a laminate having the resin layer after the curable resin composition layer formed in the step A is cured on the support is referred to as a laminate (II).
  • the laminate (I) in which the functional region 26B and the position information region 28B are simultaneously formed in the step A is, as shown in FIG. 1, from the side of the support 14 where the curable resin composition layer 18 is not provided.
  • Ultraviolet irradiation is performed by the ultraviolet irradiation device 30 to cure the curable resin composition layer 18, and the functional region 26 ⁇ / b> B and the position information region 28 ⁇ / b> B are formed on the support 14, and the cured resin layer 18 ⁇ / b> B is provided.
  • the laminate (II) 20 is obtained.
  • ultraviolet ray curing that is, an ultraviolet curing process called 2P method (Photo Polymer method). It is an aspect.
  • the laminate (II) 20 of the support 14 and the cured resin layer 18B is peeled off from the embossing roll 22A to perform shaping.
  • the curing is performed by ultraviolet irradiation, but the method of curing the curable resin composition layer is not limited to this, and is appropriately selected according to the composition of the curable resin composition.
  • the laminate (II) 20 peeled off from the embossing roll 22 ⁇ / b> A is wound into a roll by the winding device 32 as a strip-shaped shaped sheet.
  • the laminate (II) 20 having the shaped resin layer may be directly subjected to the next step, a step C of cutting the shaped sheet, without winding.
  • the laminate (II) may be supplied to a step of sequentially cutting the shaped sheet from the winding roll, if necessary.
  • Step C in the method of manufacturing a shaped sheet according to the present disclosure detects a position information area formed on the resin layer through steps A and B, and cuts the laminate based on the position information of the detected position information area. This is the step of performing The cutting of the laminate in the step C is also referred to as “punching”. Hereinafter, the step C will be described in detail with reference to the drawings.
  • FIG. 8 is a schematic configuration diagram of a cutting device used in the manufacturing method of the present disclosure.
  • the laminated body (II) 20 having the functional region and the positional information region in the resin layer manufactured through the process A and the process B is supplied from a supply roll 42 existing on the upstream side of the cutting device 40 illustrated in FIG. Then, the sheet is conveyed to the cutting section 44.
  • the laminate (II) for example, as shown in FIG. 4A, a T-shaped position information area is formed at two corners of an outer edge of a rectangular functional area.
  • the functional area 26B is described as a halftone area.
  • FIG. 4A the functional area 26B is described as a halftone area.
  • arrows indicate the transport direction of the stacked body 20, and a plurality of functional areas 26 ⁇ / b> B and position information areas 28 ⁇ / b> B are continuously formed in the stacked body 20 according to the transport direction, although not shown. .
  • the position information area 28B includes the functional area 26B and is formed outside the cut portion indicated by a solid line.
  • an area defined by a broken line inside the functional area 26B indicates an effective area in the final product including the functional area 26B
  • the position information area 28B It is formed outside the functional region 26B and outside the periphery of the effective region indicated by the broken line.
  • the center of the area defined by the broken line indicating the effective area of the product and the center of the functional area overlap each other.
  • the cutting position detected by the position information area and shown by a solid line shown in FIG. 4A indicates the most preferable punching position when cutting the shaped sheet into a product.
  • the manufacturing method of the present disclosure for example, when the position information area 28B exists inside the punched area as shown in FIG. 4B described above, or as shown in FIG. Even when the position information area 28B exists in the broken line area, which is the area, the functional area and the position information area are formed from the same resin layer, and the optical characteristics have the same characteristics except for the surface shape. In addition, the influence of the position information area 28B on the product is extremely low, and the position information area 28B may be formed at the position shown in FIG. 4B and FIG. Can be used effectively.
  • step C for example, when cutting the laminate (II) 20 shown in FIG. 4A, the position information area 28B is detected and the position to be cut is determined.
  • the functional region 26B and the positional information region 28B are simultaneously formed by the same mold, so that the positional deviation between the functional region 26B and the positional information region 28B is suppressed. I have. Accordingly, if the position information is determined using the position information area 28B in the process C, it becomes easy to punch out the laminate in an accurate area. That is, according to the method of manufacturing a shaped sheet of the present disclosure, the position information area is formed by a simple process, and the effect of high punching position accuracy is achieved.
  • the position information area is detected by a detecting means such as a CCD camera, and a punching process is performed after a punching position is determined.
  • FIG. 9 is an enlarged view of the cutting unit 44 in the cutting device 40 shown in FIG.
  • the laminate (II) 20 is positioned by detecting the position information area 28B in the cutting unit 44 of the cutting device 40, and is cut by the punching blade 46 provided in the cutting unit 44 to obtain a shaped sheet.
  • the position may be corrected using the information in the position information area as necessary, and then cut.
  • FIG. 10 is a schematic sectional view of the cutting section 44 shown in FIG.
  • the laminate (II) 20 positioned by the position information area 28B in the laminate (II) 20 is cut by the punching blade 46 at the boundary between the functional area 26B and the position information area 28B as shown in FIG. .
  • the punching blade 46 moves through the stacked body (II) 20 to a position where the punching blade 46 reaches a receiving blade plate 48 provided below the conveying position of the stacked body (II) 20 in the direction of gravity.
  • the punched shaped sheet is carried out of the cutting unit 44 by a known method.
  • the material of the receiving blade plate is not particularly limited. It may be a relatively soft metal plate such as aluminum or a resin plate having a certain degree of elasticity. Examples of the resin used for the receiving blade plate include PET, PETG, acrylic resin, silicone resin, polycarbonate resin, polystyrene resin, MS resin, AS resin, polyolefin resin, and PVC.
  • the cutting method in the process C is not particularly limited, and a known method is used.
  • a general-purpose machine commercially available from several punching machine manufacturers can be used as the punching machine with a punching posture correction function equipped with a CCD camera. .
  • an image positioning press "IPA series” with a CCD camera manufactured by Fuji Shoko Machinery Co., Ltd.
  • a roll material positioning die cutting machine manufactured by Sakamoto Zoki Co., Ltd.
  • a roll material die cutting machine "T261” Series “(manufactured by Yamaha Fine Tech Co., Ltd.).
  • the cutting may be performed after correcting the position of the laminate in the cutting using the position information area.
  • the position of the laminate is cut using the position information area, or cut. It is preferable to correct at least one of the rotation angles of the region.
  • the correction may be performed by a punching posture correction function or the like in the above-described punching machine.
  • the position information area can be detected by, for example, a CCD camera mounted on a punching machine.
  • the orientation of the laminate refers to at least one of the transport direction and the orthogonal direction of the laminate.
  • the angle of the region to be cut is fixed, the posture of the transported laminate is corrected, and the angle of the cut region indicated by a solid line in FIG. (Rotation angle of punched region) and the angle of the product effective region indicated by a broken line on the surface of laminate (II) 20 can be matched.
  • the cutting unit 44 shown in FIGS. 9 and 10 the conveying direction of the laminate is pressed and fixed by the fixing members 50A and 50B provided in the cutting unit 44, and the rotation angle of the cut region is set. By performing the correction, the angle of the punched area and the angle of the product effective area of the laminate can be matched.
  • both the posture of the laminate and the rotation angle of the region to be cut may be corrected.
  • ⁇ Rewinding process and unwinding process> When the method of manufacturing a shaped sheet according to the present disclosure is performed by a roll-to-roll method, it is preferable to include a winding step of winding the sheet material or an unwinding step of unwinding the sheet material.
  • the winding step and the unwinding step can be arbitrarily included before or after each step. For example, the steps can be performed in the order described in the following methods (1) to (5).
  • Step of unwinding the support using a roll-shaped support (2) Forming a curable resin composition layer on the unwound support and forming the curable resin of the obtained laminate (I) Step of shaping a functional area and a position information area in the composition layer (Step A) (3) Laminate (II) having a shaped resin layer obtained by applying energy to the laminate in which the functional region and the positional information region are shaped to cure the curable resin composition layer Winding step (Step B) (4) Step of unwinding the wound laminate (II) (5) Step of cutting the unwinded laminate (II) by detecting the position information area (Step C)
  • the winding step and the unwinding step described in (3) and (4) may be omitted, and the steps B and C may be continuously performed while transporting the laminate (II).
  • the method for manufacturing a shaped sheet according to the present disclosure may further include other steps.
  • steps for example, a step of forming a protective film on the shaped sheet, when the shaped sheet is used as a lenticular sheet, on the surface of the shaped sheet opposite to the surface on which the lens is formed, for printing Forming an ink receiving layer.
  • % and parts mean “% by mass” and “parts by mass”, respectively, unless otherwise specified.
  • Example 1 ⁇ Preparation of shaped sheet (shaping process)> The shaping device having the configuration shown in FIG. 1 was used. First, a laminate in which a microlens-shaped functional region and a position information region having a different surface shape from the functional region were formed on the resin layer by roll-to-roll was produced. A hemispherical lens-shaped convex part having a diameter of 60 ⁇ m and a height of 30 ⁇ m as a functional region is arranged in a honeycomb structure of a microlens array with a lens pitch of 60 ⁇ m and an inverted shape of a pattern having a length of 120 mm and a width of 160 mm.
  • a PET film (Cosmoshine (registered trademark) A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 50 ⁇ m, a width of 350 mm, and a length of 300 m as a support, an ultraviolet-curable resin (Z-977-7L, manufactured by Aika Kogyo Co., Ltd.)
  • the UV curable resin A) is applied in a thickness of 3 ⁇ m, and is pressed by using a nip roll on the embossing roll by the shaping apparatus shown in FIG. 1 equipped with the embossing roll obtained above, thereby inverting the pattern of the mold.
  • a cutting apparatus as shown in FIG. 8 which can continuously punch a base material of a sheet material, the stack obtained through the above steps A and B while detecting the position of the above positional information area using a CCD camera.
  • the body (II) was cut to obtain a shaped sheet.
  • Step C As a result, the position information area was detected and determined by the CCD camera incorporated in the cutting device.
  • a punching machine equipped with a punching posture correction function equipped with a CCD camera a roll material positioning die punching machine “SCP250E-APS series” (manufactured by Sakamoto Zoki Co., Ltd.) was used.
  • high-accuracy position information that can be used at the time of cutting can be provided by a simple process, and positioning accuracy at the time of cutting with accurate position information is improved, It can be seen that the area of the effective area of the film can be improved.

Abstract

A shaped-sheet manufacturing method according to the present invention includes: a step A in which, on a curable-resin-composition layer provided on a support body, a first-shape-part forming area having a functional shape part that gives a function to a shaped sheet and a second-shape-part forming area having a different surface shape from the first-shape-part forming area and serving as position information in a cutting step are simultaneously imparted; a step B in which the curable-resin-composition layer is cured, thus forming a layered product including the support body and a resin layer formed on the support body and having the first-shape-part forming area and the second-shape-part forming area imparted thereto; and a step C in which the second-shape-part forming area in the resin layer is detected, and the layered product is cut on the basis of the position information of the detected second-shape-part forming area.

Description

賦形シートの製造方法Manufacturing method of shaped sheet
 本開示は、賦形シートの製造方法に関する。 The present disclosure relates to a method for manufacturing a shaped sheet.
 マイクロレンズアレイ(MLA)等の賦形パターンが形成された賦形シートの製造としては、シート1枚ごとに賦形する枚葉方式と、連続した長尺のロールフィルムに賦形するロールツーロール方式のいずれかが用いられる。
 ロールツーロール方式により所望の賦形パターンを製造する場合、ロールから巻き出されたフィルムに凸形状及び凹形状から選ばれる種々の形状を賦形し、その後、賦形されたシートを断裁することにより、所望の賦形パターンを有する特定の大きさの部材が得られる。シートの断裁には、例えば、打ち抜き刃を用いた打抜き加工等が適用される。
As a method of manufacturing a shaped sheet having a shaped pattern such as a microlens array (MLA), a sheet-fed method in which each sheet is shaped or a roll-to-roll method in which a continuous long roll film is formed One of the methods is used.
When manufacturing a desired shaping pattern by a roll-to-roll method, shaping a film unwound from a roll into various shapes selected from a convex shape and a concave shape, and then cutting the shaped sheet. Thereby, a member of a specific size having a desired shaping pattern can be obtained. For cutting the sheet, for example, a punching process using a punching blade is applied.
 マイクロレンズ、テーパ構造などの微細な凹凸形状を有する賦形シートに機能を付与するためには、高精細な転写用金型が必要となる。高精細な転写用金型は特殊な加工機により製造され、大面積を一度に賦形する金型の製造にはコストがかかる。このため、形成された微細な凹凸形状を有する賦形フィルムの有効領域の面積を向上させることが望まれている。
 従来のロールツーロール方式における打ち抜き加工時には、位置情報を上記賦形とは別に印刷し、上記位置情報を読み取ることにより上記打ち抜き加工の位置決めを行うことが行われている。しかし、このような態様によれば、位置情報の付与に2つの異なる工程を要するために、工程が煩雑であり、且つ、印刷位置のズレにより打ち抜き位置がズレてしまう場合があった。
 従来の賦形パターンの製造方法としては、例えば、特開2003-181918号公報、特開2012-203244号公報、及び特開2011-98443号公報に記載されたものが挙げられる。
In order to impart a function to a shaped sheet having fine irregularities such as a microlens and a tapered structure, a high-definition transfer mold is required. A high-definition transfer mold is manufactured by a special processing machine, and manufacturing a mold for shaping a large area at one time is costly. For this reason, it is desired to improve the area of the effective area of the formed shaped film having the fine unevenness.
At the time of the punching process in the conventional roll-to-roll method, position information is printed separately from the shaping, and the punching process is positioned by reading the position information. However, according to such an embodiment, since two different steps are required to provide the position information, the steps are complicated, and the punching position may be shifted due to a shift in the printing position.
As a conventional method for producing a shaped pattern, for example, those described in JP-A-2003-181918, JP-A-2012-203244, and JP-A-2011-98443 are exemplified.
 特開2003-181918号公報には、賦形用ローラ及びそれを用いた積層フィルムの製造方法が開示されている。賦形用ローラは、ローラとは別体で形成された金属シート状の型をローラに巻付け、端部を溶接部で固定したものであり、固定部の金型の継ぎ目が賦形フィルムに欠陥を与えることの抑制を課題とする。このため、固定した金型の隙間にハンダを充填して、表面を研磨することを特徴とする。また、金型の継ぎ目におけるハンダの研磨領域が、賦形フィルムの位置検出に使用しうることが記載されている。 JP-A-2003-181918 discloses a shaping roller and a method of manufacturing a laminated film using the same. The shaping roller is a metal sheet-shaped mold formed separately from the roller and wound around the roller, and the end portion is fixed by a welded portion. It is an object to suppress defects. For this reason, it is characterized in that the gap between the fixed molds is filled with solder and the surface is polished. It also describes that the polished area of the solder at the seam of the mold can be used for detecting the position of the shaping film.
 特開2012-203244号公報には、帯状のシート面に凹凸パターンが形成され、ロール状に巻き取られる凹凸シートにおいて、上記シート面の幅方向における少なくとも両端部に、上記シートの長手方向に沿って上記凹凸パターンの凸部よりも背の高い背高凸条部が形成されて成る凹凸シートが記載されている。 Japanese Unexamined Patent Application Publication No. 2012-203244 discloses that an uneven pattern is formed on a belt-shaped sheet surface, and that at least both ends in the width direction of the sheet surface are provided along the longitudinal direction of the sheet in the uneven sheet wound up in a roll shape. Thus, there is described a concave-convex sheet in which a tall protruding ridge portion that is taller than the convex portions of the concave-convex pattern is formed.
 特開2011-98443号公報には、賦形フィルム用の金型ロールが開示され、賦形のために切削加工した領域の外側のロール端部近傍に、目印となる刻印を施すことで、金型ロールに発生した欠陥原因箇所を容易に特定できることを特徴とする。 Japanese Patent Application Laid-Open No. 2011-98443 discloses a mold roll for a shaping film, and a mark is formed as a mark near a roll end outside a region cut for shaping to form a die. It is characterized in that the cause of the defect generated in the mold roll can be easily specified.
 また、特開2003-181918号公報においては、位置情報を賦形により形成することも記載されているが、上記文献に記載の方法では、金型の製造、特に位置情報となるハンダ部の研磨など、金型ロールの製造工程が煩雑であった。また、特開2012-203244号公報に記載の態様においては、位置情報はシートの長手方向のみに形成されており、位置情報には適さず、結果として断裁時の位置決め精度が低く、得られる賦形シートにおいて打ち抜き位置のズレが発生する場合があった。
 また、特開2011-98443号公報に記載の金型ロールの賦形領域外に形成された刻印は、断裁時の位置情報として使用するという着目はなく、欠陥位置の特定を目的にして形成されたものである。従って、断裁の位置決めの如き高精度の位置情報を必要とする用途には、精度及びコントラストの点から使用し難い。
Japanese Patent Application Laid-Open No. 2003-181918 also describes that positional information is formed by shaping. However, in the method described in the above-mentioned document, manufacturing of a mold, particularly polishing of a solder portion serving as positional information, is performed. For example, the manufacturing process of the mold roll is complicated. Further, in the mode described in JP-A-2012-203244, the position information is formed only in the longitudinal direction of the sheet, and is not suitable for the position information. In some cases, the punching position of the shaped sheet was shifted.
Further, the inscription formed outside the shaping area of the die roll described in Japanese Patent Application Laid-Open No. 2011-98443 does not pay attention to use as position information at the time of cutting, and is formed for the purpose of specifying a defect position. It is a thing. Therefore, it is difficult to use it in applications requiring high-accuracy position information, such as trimming positioning, in terms of accuracy and contrast.
 本発明の一実施形態が解決しようとする課題は、断裁時に使用しうる精度が高い位置情報を簡易な工程により付与し、断裁時の位置決め精度が向上する賦形シートの製造方法を提供することである。 The problem to be solved by one embodiment of the present invention is to provide a method for manufacturing a shaped sheet in which positional information having high precision that can be used at the time of cutting is provided by a simple process, and positioning accuracy at the time of cutting is improved. It is.
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 支持体上に設けられた硬化性樹脂組成物層に、賦形シートに機能を付与する機能性形状部を備える第1の形状部形成領域及び第1の形状部形成領域とは異なる表面形状であり、断裁工程における位置情報となる第2の形状部形成領域を同時に賦形する工程Aと、硬化性樹脂組成物層を硬化し、支持体と、支持体上に第1の形状部形成領域及び第2の形状部形成領域が賦形された樹脂層と、を備える積層体を形成する工程Bと、樹脂層の第2の形状部形成領域を検出し、検出された第2の形状部形成領域の位置情報に基づき、積層体を断裁する工程Cと、を有する、賦形シートの製造方法。
Means for solving the above problems include the following aspects.
<1> The first shape portion forming region and the first shape portion forming region provided with a functional shape portion for imparting a function to the shaping sheet to the curable resin composition layer provided on the support. A step A of simultaneously shaping a second shape portion forming region which is a surface shape and becomes positional information in the cutting step, curing the curable resin composition layer, and forming a first shape on the support and the support Forming a layered product including a resin layer in which a portion forming region and a second shape portion forming region are shaped, and detecting the second shape portion forming region of the resin layer, and detecting the detected second shape portion. And C. cutting the laminate based on the positional information of the shaped part forming region.
<2> 第2の形状部形成領域は、第1の形状部形成領域外に存在する<1>に記載の賦形シートの製造方法。
<3> 第2の形状部形成領域は、第1の形状部形成領域内に存在する<1>に記載の賦形シートの製造方法。
<2> The method for producing a shaped sheet according to <1>, wherein the second shape portion forming region exists outside the first shape portion forming region.
<3> The method for producing a shaped sheet according to <1>, wherein the second shape portion forming region exists in the first shape portion forming region.
<4> 第1の形状部形成領域とは異なる表面形状を有する第2の形状部形成領域は、位置情報となる位置情報形状部を有し、第2の形状部形成領域は、下記(I)~(III)から選ばれる表面形状である<1>~<3>のいずれか1つに記載の賦形シートの製造方法。
(I)位置情報形状部は、機能性形状部と相似形状である。
(II)第2の形状部形成領域における位置情報形状部は、第1の形状部形成領域における機能性形状部とは、単位面積あたりに異なる個数密度で配置されている。
(III)位置情報形状部は、機能性形状部と同一形状または相似形状であり、且つ、位置情報形状部は、第1の形状部形成領域における機能性形状部とは、単位面積あたりに異なる個数密度で配置されている。
<5> 積層体を断裁する工程Cにおいて、積層体の位置を補正する<1>~<4>のいずれか1つに記載の賦形シートの製造方法。
<6> 機能性形状部がマイクロレンズである<1>~<5>のいずれか1つに記載の賦形シートの製造方法。
<4> The second shape portion forming region having a surface shape different from that of the first shape portion forming region has a position information shape portion serving as position information, and the second shape portion forming region has the following (I The method for producing a shaped sheet according to any one of <1> to <3>, wherein the shaped sheet is a surface shape selected from the following.
(I) The position information shape part has a shape similar to the functional shape part.
(II) The position information shape part in the second shape part formation region is arranged with a different number density per unit area from the functional shape part in the first shape part formation region.
(III) The position information shape part has the same shape or a similar shape as the functional shape part, and the position information shape part differs from the functional shape part in the first shape part formation region per unit area. They are arranged in number density.
<5> The method for producing a shaped sheet according to any one of <1> to <4>, wherein in the step C of cutting the laminate, the position of the laminate is corrected.
<6> The method for producing a shaped sheet according to any one of <1> to <5>, wherein the functional shape portion is a microlens.
 本発明の一実施形態によれば、断裁時に使用しうる精度が高い位置情報を簡易な工程により付与し、正確な位置情報による断裁時の位置決め精度が向上する賦形シートの製造方法が提供される。 According to one embodiment of the present invention, there is provided a method of manufacturing a shaped sheet, in which positional information with high accuracy that can be used at the time of cutting is provided by a simple process, and positioning accuracy at the time of cutting with accurate position information is improved. You.
支持体上に形成された硬化性樹脂組成物層に凹凸を形成し、支持体上に賦形された樹脂層を有する積層体を製造する賦形装置の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the shaping apparatus which forms unevenness in the curable resin composition layer formed on the support body, and manufactures the laminated body which has the resin layer shaped on the support body. 積層体の位置情報領域が機能性領域の領域外に形成された態様における各領域の形成位置及び断裁位置の一例を示す概略平面図である。It is a schematic plan view showing an example of formation position and cutting position of each field in a mode in which the position information field of a layered product was formed outside the field of a functional field. 積層体の位置情報領域が機能性領域の領域内に形成された態様における各領域の形成位置及び断裁位置の一例を示す概略平面図である。It is a schematic plan view showing an example of a formation position and a cutting position of each field in a mode in which a position information field of a layered product was formed in a field of a functional field. 機能性領域と位置情報領域の相対的な位置関係の変形例の一態様であり、位置情報領域が、機能性領域及び断裁部の外側に形成された態様の一例を示す概略平面図である。FIG. 10 is a schematic plan view illustrating an example of a modification of the relative positional relationship between the functional area and the position information area, in which the position information area is formed outside the functional area and the cutting section. 機能性領域と位置情報領域の相対的な位置関係の変形例の一態様であり、位置情報領域が、機能性領域の内側であって、有効領域の外側に形成された態様の一例を示す概略平面図である。It is an aspect of a modified example of the relative positional relationship between the functional area and the position information area, and schematically illustrates an example of an aspect in which the position information area is formed inside the functional area and outside the effective area. It is a top view. 機能性領域と位置情報領域の相対的な位置関係の変形例の一態様であり、位置情報領域が、機能性領域の内側であって、有効領域の内側に形成された態様の一例を示す概略平面図である。It is an aspect of the modification of the relative positional relationship between the functional area and the position information area, and schematically illustrates an example of an aspect in which the position information area is formed inside the functional area and inside the effective area. It is a top view. 機能性領域の例である(A-1)と、(A-1)とは平面形状が異なる位置情報領域の例である(B-1)、(B-2)、及び(B-3)を示す概略平面図である。(A-1), which is an example of the functional area, and (B-1), (B-2), and (B-3), which are examples of position information areas having different planar shapes from (A-1). FIG. 機能性領域の例である(A-2)と、(A-2)とは平面形状が異なる位置情報領域の例である(B-4)を示す概略平面図である。It is a schematic plan view showing (A-2) which is an example of a functional area, and (B-4) which is an example of a position information area having a different planar shape from (A-2). 機能性形状部としての凸部の変形例を示す斜視図である。It is a perspective view which shows the modification of the convex part as a functional shape part. 本開示の製造方法に用い得る断裁装置の一態様を示す概略構成図である。1 is a schematic configuration diagram illustrating one embodiment of a cutting device that can be used in the manufacturing method of the present disclosure. 図8に示す断裁装置における断裁部の拡大図である。FIG. 9 is an enlarged view of a cutting unit in the cutting device shown in FIG. 8. 図9に示す断裁部の概略断面図である。It is a schematic sectional drawing of the cutting part shown in FIG.
 以下、本開示の内容について詳細に説明する。以下に記載する構成要件の説明は、本開示の代表的な実施態様に基づいてなされることがあるが、本開示はそのような実施態様に限定されない。
 なお、本開示において、数値範囲を示す「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 また、本開示中の「工程」の用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば本用語に含まれる。
 また、本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 本開示において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本開示中に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 また、本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 各図面において同一の符号を用いて示される構成要素は、同一の構成要素であることを意味する。
 以下、本開示を詳細に説明する。
Hereinafter, the contents of the present disclosure will be described in detail. The description of the constituent elements described below may be made based on typical embodiments of the present disclosure, but the present disclosure is not limited to such embodiments.
In the present disclosure, “to” indicating a numerical range is used to mean that the numerical values described before and after it are included as the lower limit and the upper limit.
In addition, the term “step” in the present disclosure is not limited to an independent step, and is included in the term even if it cannot be clearly distinguished from other steps if the intended purpose of the step is achieved. It is.
In the present disclosure, “mass%” and “wt%” have the same meaning, and “mass part” and “part by weight” have the same meaning.
In the present disclosure, the amount of each component in the composition means, when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified, means the total amount of the plurality of substances present in the composition. .
In the numerical ranges described stepwise in the present disclosure, an upper limit or a lower limit described in a certain numerical range may be replaced with an upper limit or a lower limit of another numerical range described in a stepwise manner. Further, in the numerical ranges described in the present disclosure, the upper limit or the lower limit described in a certain numerical range may be replaced with the value shown in the embodiment.
Further, in the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
Components shown with the same reference numerals in each drawing mean the same components.
Hereinafter, the present disclosure will be described in detail.
(賦形シートの製造方法)
 本開示の賦形シートの製造方法は、支持体上に設けられた硬化性樹脂組成物層に、賦形シートに機能を付与する機能性形状部を備える第1の形状部形成領域及び第1の形状部形成領域とは異なる表面形状であり、断裁工程における位置情報となる第2の形状部形成領域を同時に賦形する工程Aと、硬化性樹脂組成物層を硬化し、支持体と、支持体上に第1の形状部形成領域及び第2の形状部形成領域が賦形された樹脂層と、を備える積層体を形成する工程Bと、樹脂層の第2の形状部形成領域を検出し、検出された第2の形状部形成領域の位置情報に基づき、積層体を断裁する工程Cと、を有する。
(Method of manufacturing shaped sheets)
The method for producing a shaped sheet according to the present disclosure includes a first shape portion forming region including a functional shape portion that imparts a function to the shaped sheet, to the curable resin composition layer provided on the support, and A step A of simultaneously shaping the second shape part forming region, which is a surface shape different from the shape part forming region and serving as positional information in the cutting step, and curing the curable resin composition layer, A step B of forming a laminate including a resin layer having a first shape portion forming region and a second shape portion forming region formed on a support; and a second shape portion forming region of the resin layer. Detecting and cutting the laminated body based on the detected position information of the second shape portion forming region.
 本開示における工程Aでは、機能性形状部を備える第1の形状部形成領域と、上記第1の形状部形成領域とは異なる表面形状の第2の形状部形成領域とを同時に賦形する。即ち、「同時に賦形する」とは、支持体上に設けられた硬化性樹脂組成物層という同一平面上に、同一の金型により、機能性形状部を備える第1の形状部形成領域と、上記第1の形状部形成領域とは異なる表面形状の第2の形状部形成領域とを一工程で形成することをいう。 工程 In step A of the present disclosure, a first shape portion forming region having a functional shape portion and a second shape portion forming region having a surface shape different from the first shape portion forming region are simultaneously formed. That is, "simultaneously shape" means that, on the same plane as the curable resin composition layer provided on the support, by the same mold, the first shape portion forming region including the functional shape portion is formed. This means that a second shape portion forming region having a surface shape different from the first shape portion forming region is formed in one step.
 第1の形状部形成領域が備える「賦形シートに機能を付与する機能性形状部」には、特に制限はない。機能性形状部は凸状の形状であっても、凹状の形状であってもよい。
 例えば、賦形シートがマイクロレンズアレイに適用される場合、第1の形状部領域は、凸状のレンズの形状をなす半球形の機能性形状部が複数形成された領域となる。また、賦形シートが、レンチキュラーシートに適用される場合には、第1の形状部形成領域は、半円柱型のレンズ形状の機能性形状部が、一方向に平行に複数形成された領域となる。
There is no particular limitation on the “functional shaped portion that imparts a function to the shaped sheet” provided in the first shaped portion forming region. The functional shape portion may have a convex shape or a concave shape.
For example, when the shaping sheet is applied to a microlens array, the first shape portion region is a region in which a plurality of hemispherical functional shape portions each having the shape of a convex lens are formed. Further, when the shaping sheet is applied to a lenticular sheet, the first shape portion forming region is a region where a plurality of semi-cylindrical lens-shaped functional shape portions are formed in parallel in one direction. Become.
 ここで、「異なる表面形状」とは、同一面を一方向に見た場合に、表面の形状に変化があることをいい、第1の形状部形成領域と、第2の形状部形成領域とが、目視による観察及び光学系による観察の少なくともいずれかにより区別しうる形状をいう。
 具体的には、以下の如き態様が挙げられるが、目視による観察及び光学系による観察の少なくともいずれかにより区別しうる形状同士の組合せであれば、以下の態様に限定されない。具体的な形状の組合せについては、後述する。
(1)第2の形状部形成領域は、第1の形状部形成領域における機能性形状部とは異なる形状の凸部又は凹部が配置された領域である。
(2)第2の形状部形成領域は、第1の形状部形成領域における機能性形状部と相似形状、即ち、同一形状でサイズが異なる形状の凸部又は凹部が配置された領域である。
(3)第2の形状部形成領域は、第1の形状部形成領域における機能性形状部と同一の形状の凸部又は凹部が、単位面積あたりに異なる個数密度で配置された領域である。
(4)第2の形状部形成領域は、第1の形状部形成領域における機能性形状部と平面視において同一の形状の凸部又は凹部が、第1の形状部形成領域とは、平面視において異なる軸角度で配置された領域である。
(5)第2の形状部形成領域は、いかなる形状の凸部又は凹部も配置されない平面領域である。
Here, the “different surface shape” means that there is a change in the surface shape when the same surface is viewed in one direction, and the first shape portion forming region and the second shape portion forming region Refers to a shape that can be distinguished by at least one of visual observation and optical system observation.
Specifically, the following modes can be given, but the present invention is not limited to the following modes as long as they are combinations of shapes that can be distinguished by visual observation and / or optical system observation. Specific combinations of shapes will be described later.
(1) The second shape portion forming region is a region where a convex portion or a concave portion having a shape different from the functional shape portion in the first shape portion forming region is arranged.
(2) The second shape portion forming region is a region similar to the functional shape portion in the first shape portion forming region, that is, a region in which convex portions or concave portions having the same shape but different sizes are arranged.
(3) The second shape portion formation region is a region in which protrusions or recesses having the same shape as the functional shape portion in the first shape portion formation region are arranged with different number densities per unit area.
(4) The second shape portion forming region has a convex portion or a concave portion having the same shape in plan view as the functional shape portion in the first shape portion forming region, and the first shape portion forming region has a plan view. Are regions arranged at different axial angles.
(5) The second shape portion forming region is a planar region in which no convex portion or concave portion of any shape is arranged.
 本開示の製造方法によれば、異なる表面形状を有する第1の形状部形成領域と第2の形状部形成領域とを、同じ金型を用いて同時に賦形することにより、簡易な工程により、位置情報が、機能性形状部の形成領域に対し、所望の正確な位置に同時に形成される。このため、本開示の製造方法によれば、積層体上の樹脂層における機能性形状部と位置情報とのズレが発生する余地なく、正確な位置情報が形成される。
 また、上記位置情報の検出は、目視の観察、又は、Charge-Coupled Device(CCD)カメラなどの光学系を用いた観察により、簡易に行うことができるため、簡易に形成された位置情報であっても、賦形シートの断裁時における読み取り性が良好となる。従って、賦形シートを位置情報の検出により高精度の位置で断裁することができ、賦形シート内に形成された機能性形状部の形成領域の有効面積を向上しうると考えられる。
 なお、本開示では、以下、目視による観察及び光学系を用いた観察のいずれか又は双方を、「目視等による観察」と総称することがある。
 以下、本開示に係る製造方法における各工程、及び賦形シートの構成要件の詳細について説明する。
According to the manufacturing method of the present disclosure, the first shape portion forming region and the second shape portion forming region having different surface shapes are simultaneously formed using the same mold, so that a simple process can be used. Position information is simultaneously formed at a desired accurate position with respect to the formation region of the functional shape portion. For this reason, according to the manufacturing method of the present disclosure, accurate positional information is formed without any gap between the functional shape portion and the positional information in the resin layer on the laminate.
Further, the position information can be easily detected by visual observation or observation using an optical system such as a Charge-Coupled Device (CCD) camera. Even when the shaping sheet is cut, the readability is improved. Therefore, it is considered that the shaped sheet can be cut at a highly accurate position by detecting the position information, and the effective area of the formation area of the functional shape portion formed in the shaped sheet can be improved.
In the present disclosure, one or both of visual observation and observation using an optical system may be collectively referred to as “visual observation or the like”.
Hereinafter, each step in the manufacturing method according to the present disclosure and details of the constituent requirements of the shaped sheet will be described.
<工程A>
 工程Aは支持体上に設けられた硬化性樹脂組成物層に、賦形シートに機能を付与する機能性形状部を備える第1の形状部形成領域(以下、「機能性領域」と称することがある)及び第1の形状部形成領域とは異なる表面形状であり、断裁工程における位置情報となる第2の形状部形成領域(以下、「位置情報領域」と称することがある)とを同時に賦形する工程である。
 図1は、工程A及び後述の工程Bに用いられる賦形装置10の一実施形態を示す概略図である。供給ロール12から供給された支持体14に、コーティング装置16から硬化性樹脂組成物が供給され、支持体14上に硬化性樹脂組成物層18が形成された積層体20が得られる。以下、硬化性樹脂組成物層の硬化前の積層体を「積層体(I)」と称する。得られた積層体(I)20は、賦形ロール22へと搬送される。
 図1に示す如く、賦形ロール22の表面に配置された金型24には、機能性領域を形成するための機能性領域付与部26Aと、位置情報領域を形成するための位置情報領域付与部28Aとが形成されている。
 積層体(I)20における硬化性樹脂組成物層18が、賦形ロール22表面の金型24と接触することで、金型24により、硬化性樹脂組成物層18表面に、賦形シートに機能を付与する機能性領域26B及び位置情報領域28Bとが同時に賦形される。以下、金型が形成された賦形ロールをエンボスロール22Aと称することがある。
<Step A>
In step A, the curable resin composition layer provided on the support has a first shape portion forming region (hereinafter, referred to as a “functional region”) including a functional shape portion that imparts a function to the shaped sheet. And a second shape portion forming region (hereinafter, sometimes referred to as a “position information region”) having a surface shape different from that of the first shape portion forming region and serving as position information in the cutting process. This is the step of shaping.
FIG. 1 is a schematic view showing one embodiment of a shaping apparatus 10 used in a process A and a process B described later. The curable resin composition is supplied from the coating device 16 to the support 14 supplied from the supply roll 12, and a laminate 20 having the curable resin composition layer 18 formed on the support 14 is obtained. Hereinafter, the laminate before curing of the curable resin composition layer is referred to as “laminate (I)”. The obtained laminate (I) 20 is transported to the shaping roll 22.
As shown in FIG. 1, a mold 24 disposed on the surface of the shaping roll 22 has a functional area providing section 26A for forming a functional area and a position information area providing section for forming a position information area. A portion 28A is formed.
When the curable resin composition layer 18 in the laminate (I) 20 comes into contact with the mold 24 on the surface of the shaping roll 22, the mold 24 causes the surface of the curable resin composition layer 18 to be formed on the shaped sheet. The functional area 26B and the position information area 28B to which a function is to be provided are simultaneously formed. Hereinafter, the shaping roll on which the mold is formed may be referred to as an embossing roll 22A.
 詳細には、例えば、図1に示す如く、積層体(I)20は、機能性形状部となる凹凸形状の反転形状26A、及び、必要に応じて位置情報領域の反転形状28Aが表面に形成されたエンボスロール22Aを用い、支持体及び硬化性樹脂組成物層を有する積層体(I)20をエンボスロール22Aに、ニップロール22Bを用いて押圧する。
 上記押圧により、エンボスロール22Aの表面に形成された凹凸形状の反転形状である機能性領域26B及び位置情報領域28Bが、硬化性樹脂組成物層18の表面に転写される。
 なお、位置情報領域が凹凸形状を有しない平板状である場合には、金型24表面の位置情報形成領域を、凹凸を有しない平面形状とすることで、硬化性樹脂組成物層の表面に凹凸を有しない位置情報領域を形成することができる。
In detail, for example, as shown in FIG. 1, the laminate (I) 20 has on its surface an inverted shape 26A of a concave-convex shape serving as a functional shape portion and an inverted shape 28A of a position information area as required. Using the embossed roll 22A, the laminate (I) 20 having the support and the curable resin composition layer is pressed against the embossed roll 22A using the nip roll 22B.
Due to the pressing, the functional region 26B and the position information region 28B, which are the inverted shapes of the concavo-convex shape formed on the surface of the embossing roll 22A, are transferred to the surface of the curable resin composition layer 18.
In the case where the position information region is a flat plate having no irregularities, the position information forming region on the surface of the mold 24 is formed into a flat shape having no irregularities, so that the surface of the curable resin composition layer is formed. A position information area having no irregularities can be formed.
 図1では、支持体14及び硬化性樹脂組成物層18を有する積層体(I)20を用いて、エンボスロール22Aの表面を、硬化性樹脂組成物層18が接する方向に押しつけて、凹凸形状を賦形する態様を示す。図1に示す例では、積層体(I)20をエンボスロール22Aの表面に十分に押しつける目的で、エンボスロール22Aにおける金型を押圧する領域の上流側及び下流側にそれぞれニップロール22Bを備える態様をとる。
 硬化性樹脂組成物層表面に賦形する方法は、図1に例示された態様には限定されず、硬化性樹脂組成物層に金型を押し付けて凹凸形状を賦形する方法であれば公知の賦形方法を適宜用いることができる。
 例えば、支持体と硬化性樹脂組成物層の積層体を枚葉状として、第1の面に凹凸が形成され、第2の面が平面状の一対の金型間に、積層体を、硬化性樹脂組成物層側が、第1の金型と接する方向に挟んで狭圧し、硬化性樹脂組成物層の面上に機能性領域と位置情報領域とを同時に形成してもよい。
In FIG. 1, using a laminate (I) 20 having a support 14 and a curable resin composition layer 18, the surface of the embossing roll 22 </ b> A is pressed in a direction in which the curable resin composition layer 18 comes into contact, and the uneven shape is obtained. An embodiment of shaping is shown. In the example shown in FIG. 1, in order to sufficiently press the laminate (I) 20 against the surface of the embossing roll 22A, a mode in which nip rolls 22B are provided on the upstream side and the downstream side of the region of the embossing roll 22A where the die is pressed, respectively, is shown. Take.
The method of shaping the surface of the curable resin composition layer is not limited to the embodiment illustrated in FIG. 1, and any known method may be used as long as it is a method of pressing a mold against the curable resin composition layer to form an uneven shape. Can be used as appropriate.
For example, the laminate of the support and the curable resin composition layer is made into a sheet-like shape, and irregularities are formed on a first surface, and the laminate is cured between a pair of molds having a planar second surface. The resin composition layer side may be narrowed in the direction in contact with the first mold to form a functional region and a position information region on the surface of the curable resin composition layer at the same time.
〔機能性領域と位置情報領域の相対位置〕
 第2の形状部形成領域である位置情報領域と、第1の形状部形成領域である機能性領域との相対的な位置関係は、目的に応じて適宜選択することができる。
 第2の形状部形成領域は、第1の形状部形成領域内に存在してもよく、第1の形状部形成領域外に存在してもよい。
 図2は、積層体の位置情報領域と機能性領域との形成位置及び断裁位置の一例を示す概略平面図である。図2では、T字型の形状に形成された位置情報領域28Bは、機能性領域26Bの領域外に形成されている。図2における機能性領域26Bの周縁に実線31で区画された長方形は、賦形シートの断裁予定位置を示す。
 図2に示す例では、位置情報領域28BはT字型をなし、機能性領域26Bの領域外の隅部に、機能性領域26Bに隣接して形成されている。図2に示す形態では、機能性領域26Bは平面視によれば長方形の領域であり、位置情報領域28Bは、長方形の長辺の対向する隅部2箇所に位置に形成されている。
[Relative position between functional area and position information area]
The relative positional relationship between the position information area that is the second shape part formation area and the functional area that is the first shape part formation area can be appropriately selected depending on the purpose.
The second shape portion formation region may exist in the first shape portion formation region, or may exist outside the first shape portion formation region.
FIG. 2 is a schematic plan view showing an example of a formation position and a cutting position of a position information area and a functional area of the laminate. In FIG. 2, the position information area 28B formed in a T-shape is formed outside the functional area 26B. A rectangle defined by a solid line 31 on the periphery of the functional region 26B in FIG. 2 indicates a planned cutting position of the shaped sheet.
In the example shown in FIG. 2, the position information area 28B has a T-shape, and is formed at a corner outside the area of the functional area 26B and adjacent to the functional area 26B. In the embodiment shown in FIG. 2, the functional area 26B is a rectangular area when viewed in plan, and the position information area 28B is formed at two opposing corners on the long side of the rectangle.
 なお、位置情報を検出して正確に断裁位置を決めることができれば、位置情報領域の形成箇所は、図2の位置に限定されない。例えば、長方形の機能性領域26Bの四隅に4箇所形成してもよい。また、位置情報領域の形状もT字型には限定されず、L字型、十字型、円型等の種々の形状をとることができる。
 図2は、図1で示したエンボスロールによる賦形を行った後に形成された機能性領域と位置情報領域の1つを例示している。既述のエンボスロールによる賦形により、図2に矢印で示す長尺の積層体の搬送方向に添って、図2に示すのと同じ金型賦形された賦形領域が、図示はされないが連続して複数形成される。後述の図3も同様である。
Note that the position where the position information area is formed is not limited to the position shown in FIG. 2 as long as the cutting position can be accurately determined by detecting the position information. For example, four locations may be formed at the four corners of the rectangular functional area 26B. Further, the shape of the position information area is not limited to the T-shape, but may be various shapes such as an L-shape, a cross shape, and a circular shape.
FIG. 2 illustrates one of the functional region and the position information region formed after the shaping by the embossing roll shown in FIG. 1 is performed. By the shaping by the above-described embossing roll, the same shaping area in which the same mold is formed as shown in FIG. 2 along the conveying direction of the long laminate shown by the arrow in FIG. A plurality is formed continuously. The same applies to FIG. 3 described later.
 図3は、積層体の位置情報領域と機能性領域との形成位置の別の一例を示す概略平面図である。図3では、位置情報領域28Bは、機能性領域26Bの領域内に形成されている。図3においても、図2と同様に、機能性領域26Bの周縁に実線31により区画された長方形の領域は、賦形シートの断裁予定位置を示す。
 図3では、位置情報領域28BはL字型をなし、機能性領域26Bの領域内の隅部に形成されている。図3では、機能性領域26Bは平面視によれば長方形の領域であり、位置情報領域28Bは、長方形の長辺の対向する隅部2箇所に位置に形成されている。位置情報を検出して正確に断裁位置を決めることができれば、位置情報の形成箇所は、図3の位置に限定されず、長方形の機能性領域26Bの四隅に4箇所形成することもできる。
 位置情報領域の形状は、既述のように、特に限定されず、L字型、T字型、十字型、円型等の種々の形状をとることができる。
 図2及び図3に示すように、機能性領域26Bと位置情報領域28Bとは互いに隣接して設けられ、位置情報領域28Bを検出し、機能性領域26Bと位置情報領域28Bとの境界で積層体を断裁することが、機能性領域26Bを含む製品有効領域を効率よくとり得る観点から好ましい。
FIG. 3 is a schematic plan view showing another example of the formation position of the position information area and the functional area of the laminate. In FIG. 3, the position information area 28B is formed in the area of the functional area 26B. In FIG. 3, as in FIG. 2, a rectangular area defined by a solid line 31 on the periphery of the functional area 26B indicates a planned cutting position of the shaped sheet.
In FIG. 3, the position information area 28B has an L shape and is formed at a corner in the area of the functional area 26B. In FIG. 3, the functional area 26 </ b> B is a rectangular area in plan view, and the position information area 28 </ b> B is formed at two opposing corners of the long side of the rectangle. If the cutting position can be accurately determined by detecting the position information, the position where the position information is formed is not limited to the position shown in FIG. 3, and four positions can be formed at the four corners of the rectangular functional area 26B.
As described above, the shape of the position information area is not particularly limited, and may have various shapes such as an L shape, a T shape, a cross shape, and a circle shape.
As shown in FIGS. 2 and 3, the functional area 26B and the position information area 28B are provided adjacent to each other, and the position information area 28B is detected and stacked at the boundary between the functional area 26B and the position information area 28B. Cutting the body is preferable from the viewpoint that a product effective area including the functional area 26B can be efficiently obtained.
 なお、賦形シートを断裁片の1枚が、製品に組込まれる際には、賦形シートにおける機能性領域が製品の機能を担持することになる。賦形シートを製品に適用する際には、賦形シートを製品の部材に組込み、固定することが行われる。このとき、固定部には、必ずしも機能性領域を有する必要がない場合がある。 (4) When one of the cut pieces of the shaped sheet is incorporated into a product, the functional region in the shaped sheet carries the function of the product. When a shaped sheet is applied to a product, the shaped sheet is incorporated into a product member and fixed. At this time, the fixing part may not necessarily have a functional area.
 断裁部と、機能性領域及び位置情報領域の関係について、図4A、図4B及び図4Cを用いて説明する。図4A、図4B及び図4Cは、それぞれ、機能性領域26Bと位置情報領域28Bの相対的な位置関係の変形例の一態様を示す概略平面図である。
 図4A、図4B及び図4Cにおいて、断裁部の周縁部を太線で示し、賦形シートが製品に組込まれた際に機能を発現する有効領域の周縁部を破線で示す。
The relationship between the cutting unit, the functional area, and the position information area will be described with reference to FIGS. 4A, 4B, and 4C. FIGS. 4A, 4B, and 4C are schematic plan views each showing an aspect of a modification of the relative positional relationship between the functional area 26B and the positional information area 28B.
4A, 4B, and 4C, the periphery of the cut portion is indicated by a bold line, and the periphery of the effective region that exhibits a function when the shaping sheet is incorporated into the product is indicated by a broken line.
 図4Aでは、位置情報領域28Bは、太線で区画された断裁部の外側に形成されている。従って、図4Aに示す形態では、位置情報領域28Bは、機能性領域26Bの内側に存在する有効領域周縁部の外側に形成されている。図4Aにおける位置情報領域28Bを検知して、賦形シートを太線部分で断裁した場合、得られた賦形シートは、製品に組込まれた際に、有効領域の全領域が機能性領域26Bとなり、周縁部まで機能を発現しうる賦形シートとなる。 で は In FIG. 4A, the position information area 28B is formed outside the cut section defined by the thick line. Accordingly, in the embodiment shown in FIG. 4A, the position information area 28B is formed outside the periphery of the effective area existing inside the functional area 26B. In the case where the position information area 28B in FIG. 4A is detected and the shaped sheet is cut at a thick line portion, when the obtained shaped sheet is incorporated into a product, the entire area of the effective area becomes the functional area 26B. Thus, a shaped sheet that can exhibit functions up to the peripheral portion is obtained.
 図4Bでは、位置情報領域28Bは、一部が機能性領域26Bの内側に存在し、且つ、周縁部を破線で囲まれた有効領域の外側に形成されている。図4Bにおける位置情報領域28Bを検知して太線部で断裁することで、得られた賦形シートは、位置情報領域28Bは、賦形シートの内側に存在するが、機能性領域26Bにおける有効領域の外側に存在することとなる。図4Bにおける位置情報領域28Bを検知して、賦形シートを断裁した場合、得られた賦形シートは、製品に組込まれた際に、図4Aにおけるのと同様に、有効領域の全領域が機能性領域26Bとなり、周縁部まで機能を発現しうる賦形シートとなる。 In FIG. 4B, the position information area 28B partially exists inside the functional area 26B, and is formed outside the effective area whose peripheral edge is surrounded by a broken line. By detecting the position information area 28B in FIG. 4B and cutting it at the thick line portion, the obtained shaping sheet has the position information area 28B inside the shaping sheet, but the effective area in the functional area 26B. Will exist outside the When the shaped sheet is cut by detecting the position information area 28B in FIG. 4B, the obtained shaped sheet is, when incorporated into a product, the entire area of the effective area as in FIG. 4A. It becomes the functional region 26B, and becomes a shaped sheet that can express functions up to the peripheral portion.
 図4Cでは、位置情報領域28Bは、機能性領域26Bの内側に存在し、且つ、周縁部を破線で囲まれた有効領域の内側に形成されている。図4Cにおける位置情報領域28Bを検知して断裁することで、得られた賦形シートは、機能性領域26B内の有効領域に位置情報領域28Bが存在することとなる。しかし、例えば、大面積の賦形シートを大型ディスプレイに適用する用途など、周縁部まで精細な精度を要求されない用途に使用する場合には、図4Cに示す位置に位置情報領域28Bを形成しても差し支えがない場合がある。 CIn FIG. 4C, the position information area 28B exists inside the functional area 26B, and is formed inside the effective area whose peripheral edge is surrounded by a broken line. By detecting and cutting the position information area 28B in FIG. 4C, the obtained shaped sheet has the position information area 28B in the effective area within the functional area 26B. However, for example, when using a large-area shaped sheet for an application that does not require fine precision up to the periphery, such as an application for a large display, the position information area 28B is formed at the position shown in FIG. 4C. May not be a problem.
 本開示の賦形シートの製造方法によれば、位置情報領域28Bは、機能性領域26Bにおける表面とは異なる表面形状を有し、目視等の観察により識別可能ではある。しかし、機能性領域26Bと位置情報領域28Bとは、同一の材料で同時に賦形され、従って色相は同一である。よって、有効領域の隅部に存在する位置情報領域は、本開示の製造方法以外の方法で形成された位置情報領域に比較し、製品の有効領域に影響を与え難い。従って、大面積の光学材料など、有効領域の全域に亘って高精細な機能を要求されない用途であれば、図4Cに示す如き位置情報領域の形成も可能であり、機能性領域26Bを有効に活用することが可能となると考えられる。 According to the method for manufacturing a shaped sheet of the present disclosure, the position information area 28B has a surface shape different from the surface of the functional area 26B, and can be identified by visual observation or the like. However, the functional area 26B and the position information area 28B are simultaneously formed of the same material, and therefore have the same hue. Therefore, the position information area existing at the corner of the effective area hardly affects the effective area of the product as compared with the position information area formed by a method other than the manufacturing method of the present disclosure. Therefore, if the application does not require a high-definition function over the entire effective area, such as a large-area optical material, a position information area as shown in FIG. 4C can be formed, and the functional area 26B can be effectively used. It will be possible to utilize it.
〔位置情報領域の形状〕
 位置情報領域の面積は、目視等の観察による識別性、及び、位置情報領域の存在が、機能性領域に与える影響をより小さくする観点から、領域がT字型、L字型などの矩形を組合せた形状の領域である場合には、矩形の幅及び長さはいずれも5mm以下であることが好ましい。位置情報領域のサイズの下限は、特に限定されない。
 識別性の観点から、既述の矩形形状の幅及び長さは0.1mm以上であることが好ましい。
 同一面上に複数の位置情報領域を形成する場合、位置情報領域の平面視による形状は、位置情報領域による断裁位置が明確である限り、互いに同一の形状でもよく、互いに形状の異なる2種以上を組合せて形成してもよい。
[Shape of location information area]
The area of the position information area is defined by a rectangular shape such as a T-shape or an L-shape from the viewpoint of discriminability by visual observation or the like, and from the viewpoint of reducing the influence of the presence of the position information area on the functional area. In the case of a region having a combined shape, the width and length of the rectangle are preferably 5 mm or less. The lower limit of the size of the position information area is not particularly limited.
From the viewpoint of distinguishability, the width and length of the above-described rectangular shape are preferably 0.1 mm or more.
When a plurality of position information areas are formed on the same surface, the shape of the position information area in plan view may be the same shape as long as the cutting position by the position information area is clear, and two or more types having different shapes from each other May be formed in combination.
〔機能性領域における機能性形状部と位置情報領域における機能性領域とは異なる表面形状の例〕
 機能性領域とは異なる表面形状を有する位置情報領域は、位置情報となる位置情報形状部を有し、位置情報領域は、下記(I)~(III)から選ばれる表面形状であることが好ましい。
(I)位置情報形状部は、機能性形状部と相似形状である。
 (I)の態様では、位置情報領域に形成される個々の位置情報形状部が、個々の機能性形状部と類似形状であり、例えば、機能性形状部が半球形である場合、位置情報形状部が機能性形状部における半球形とはサイズの異なる半球形である場合などを包含する。
 機能性形状部と位置情報形状部とが互いに相似形状であることは、金型の製造における容易性の点で好ましい。即ち、機能性形状部と位置情報形状部とが互いに相似形状であることにより、金型に機能性形状部の反転形状と、位置情報形状部の反転形状とを形成する際に、同一の治具を用いて形成し得る。
[Example of surface shape different from functional shape part in functional area and functional area in position information area]
The position information region having a surface shape different from the functional region has a position information shape portion serving as position information, and the position information region preferably has a surface shape selected from the following (I) to (III). .
(I) The position information shape part has a shape similar to the functional shape part.
In the aspect of (I), each position information shape portion formed in the position information region has a similar shape to each functional shape portion. For example, when the functional shape portion is hemispherical, the position information shape portion The case where the part is a hemisphere having a different size from the hemisphere in the functional shape part is included.
It is preferable that the functional shape portion and the position information shape portion have similar shapes to each other in terms of easiness in manufacturing a mold. That is, since the functional shape portion and the position information shape portion are similar in shape to each other, the same cure is performed when the inverted shape of the functional shape portion and the inverted shape of the position information shape portion are formed in the mold. It can be formed using a tool.
(II)位置情報領域における位置情報形状部は、機能性領域における機能性形状部とは、単位面積あたりに異なる個数密度で形成される。
 (II)の態様では、位置情報形状部と機能性形状部とは同じ形状であってもよく、互いに異なる形状であってもよい。ここで、同じ形状とは、個々の位置情報形状部と機能性形状部とが同一形状であり、且つ、同一サイズである態様を包含する。
 (II)の態様によれば、位置情報形状部と機能性形状部とは、互いに単位面積あたりに形成される個数密度が異なっていればよい。
 (II)の態様において、位置情報形状部と機能性形状部とが同じ形状である場合には、(I)の態様と同様に、金型に機能性形状部の反転形状と、位置情報形状部の反転形状とを形成する際に、同一の治具を用いて形成し得るため、作業の容易性の観点から好ましい。
(II) The position information shape part in the position information area is formed with a different number density per unit area from the functional shape part in the functional area.
In the mode (II), the position information shape portion and the functional shape portion may have the same shape or different shapes. Here, the same shape includes a mode in which each position information shape portion and each functional shape portion have the same shape and the same size.
According to the mode (II), the positional information shape portion and the functional shape portion only need to have different number densities formed per unit area.
In the aspect (II), when the position information shape part and the functional shape part have the same shape, the inverted shape of the functional shape part and the position information shape are formed in the mold as in the case of the aspect (I). Since the same jig can be used when forming the inverted shape of the portion, it is preferable from the viewpoint of workability.
(III)位置情報形状部は、機能性形状部と、同一形状または相似形状であり、且つ、位置情報形状部は、機能性形状部とは、単位面積あたりに異なる個数密度で形成される。
 (III)の態様では、位置情報形状部は、機能性形状部と、同一形状または相似形状であることで、金型の加工が、(I)の態様及び(II)の一部の態様と同様に、同じ治具を用いて行うことができ、且つ、形成密度が異なることにより、位置情報領域と、機能性領域との識別がより容易となる。
(III) The position information shape portion has the same shape or a similar shape as the functional shape portion, and the position information shape portion is formed with a different number density per unit area from the functional shape portion.
In the aspect (III), the position information shape part has the same shape or a similar shape as the functional shape part. Similarly, it can be performed by using the same jig, and since the formation density is different, it becomes easier to distinguish between the position information area and the functional area.
 一般に、金具の製造において用いられる切削用の超硬質の治具は高価であり、異なる複数の治具を用いて金型を製造する場合、1種の治具のみを用いて金型を製造する場合と比較して、治具交換のための生産性の低下、金型の製造コストの著しい上昇などの問題が生じる場合がある。このため、金型の製造に際し、同一の治具を用いて、異なる表面形状を形成しうる上記(I)、(II)及び(III)に記載の表面形状は、いずれも、生産性、及び金型の製造コストの点で利点が大きいと言える。 Generally, an ultra-hard jig for cutting used in the manufacture of metal fittings is expensive, and when manufacturing a metal mold using a plurality of different jigs, the metal mold is manufactured using only one kind of metal jig. As compared with the case, there are cases where problems such as a decrease in the productivity for exchanging the jig and a remarkable increase in the manufacturing cost of the mold occur. For this reason, the surface shapes described in the above (I), (II) and (III), which can form different surface shapes by using the same jig in the production of the mold, are all productivity and It can be said that there are great advantages in terms of mold manufacturing costs.
 図5に、機能性領域における機能性形状部の一例を示す。図5(A-1)では、機能性領域には、マイクロレンズに適用される如き半球形の機能性形状部34が形成されている。
 図5(A-1)に対し、異なる平面形状を有する位置情報領域の例として、図5(B-1)に示す例が挙げられる。図5(B-1)では、半球形の機能性形状部34と同じ形状の半球形の凸部34が、図5(A-1)におけるよりも、単位面積あたりにより高い個数密度で形成されている。よって、単位面積あたりの機能性形状部34の個数密度の違いに起因して、図5(A-1)に示す機能性領域と、図5(B-1)に示す位置情報領域とは、目視等により識別しうる。上記の例は、既述の(II)の一実施形態である。
FIG. 5 shows an example of the functional shape portion in the functional region. In FIG. 5A-1, a hemispherical functional shape portion 34 such as a microlens is formed in the functional region.
An example shown in FIG. 5B-1 is an example of a position information area having a different planar shape from FIG. 5A-1. In FIG. 5 (B-1), hemispherical convex portions 34 having the same shape as the hemispherical functional shape portions 34 are formed with a higher number density per unit area than in FIG. 5 (A-1). ing. Therefore, due to the difference in the number density of the functional shape portions 34 per unit area, the functional area shown in FIG. 5A-1 and the position information area shown in FIG. It can be visually identified. The above example is an embodiment of (II) described above.
 図5(B-2)に示す例では、位置情報領域では、機能性領域における半球形の機能性形状部34と相似形状である半球形の凸部であって、機能性領域における半球形の機能性形状部34に比較して、サイズがより大きい半球形の凸部36が形成されている。凸部が相似形状であって、機能性形状部34とはサイズが異なり、且つ、単位面積あたりの個数密度が異なるために、図5(A-1)に示す機能性領域と、図5(B-2)に示す位置情報領域とは、目視等により識別しうる。上記の例は、既述の(III)の一実施形態であるといえる。 In the example shown in FIG. 5B-2, the position information area is a hemispherical convex part having a similar shape to the hemispherical functional shape part 34 in the functional area, and the hemispherical convex part in the functional area. A hemispherical convex portion 36 having a larger size than the functional shape portion 34 is formed. Since the convex portion has a similar shape and a different size from the functional shape portion 34 and a different number density per unit area, the functional region shown in FIG. The position information area shown in B-2) can be identified visually or the like. The above example can be said to be an embodiment of (III) described above.
 図5(B-3)に示す例では、位置情報領域は、何らの凹凸が形成されない平板状である。機能性領域26Bでは、半球形の機能性形状部34が形成され、位置情報領域28Bは平板状であるために、図5(A-1)に示す機能性領域と、図5(B-3)に示す位置情報領域とは、目視等による観察で識別しうる。 で は In the example shown in FIG. 5 (B-3), the position information area has a flat plate shape without any unevenness. In the functional region 26B, a hemispherical functional shape portion 34 is formed, and since the position information region 28B has a flat plate shape, the functional region shown in FIG. 5A-1 and the functional region shown in FIG. The position information area shown in ()) can be identified by visual observation or the like.
 図6に、機能性領域における機能性形状部の他の一例を示す。図6(A-2)に示す機能性領域では、機能性形状部として平面視で六角形の凸部が、互いに隣接して形成されている。これに対し、図6(B-4)に示す位置情報領域の例では、機能性形状部と同じ平面視で六角形の凸部が、図6(A-2)における配置とは平面視において軸角度が90°の角度をなして形成されている。機能性領域と、位置情報領域とでは、同じ平面視で六角形の凸部38が軸角度を90°変えて形成されているために、図6(A-2)に示す機能性領域と、図6(B-4)に示す位置情報領域とは、目視等による観察で識別しうる。
 図6に示す如く、平面視で六角形、三角形等の凸部は、平面視において軸角度を90°変えて配置することにより目視等の観察により識別しうる領域が形成される。また、平面視で正方形の凸部は、平面視において軸角度を45°変えて配置することにより、目視等の観察により識別しうる領域が形成される。
FIG. 6 shows another example of the functional shape portion in the functional region. In the functional region shown in FIG. 6 (A-2), hexagonal convex portions in a plan view are formed adjacent to each other as functional shape portions. On the other hand, in the example of the position information area shown in FIG. 6 (B-4), the hexagonal projection in the same plan view as the functional shape part is different from the arrangement in FIG. 6 (A-2) in the plan view. The shaft angle is formed at an angle of 90 °. In the functional area and the position information area, since the hexagonal convex portions 38 are formed by changing the axial angle by 90 ° in the same plan view, the functional area shown in FIG. The position information area shown in FIG. 6 (B-4) can be identified by visual observation or the like.
As shown in FIG. 6, an area that can be identified by visual observation or the like is formed by arranging the convex portions such as hexagons and triangles in plan view by changing the axis angle by 90 ° in plan view. Further, by arranging the convex portions having a square shape in a plan view by changing the axial angle by 45 ° in a plan view, an area that can be identified by visual observation or the like is formed.
 機能性領域の表面形状と目視等の観察により識別しうる、位置情報領域における表面形状は、上記機能性形状部と同一又は類似の形状による態様には限定されず、機能性形状部とは全く異なる形状の表面を有していてもよい。
 例えば、機能性領域が、既述の図5(A-1)又は図6(A-2)に示す表面形状を有する場合、機能性領域と目視で識別することが可能な位置情報領域を形成し得る表面形状としては、いわゆるモスアイ構造と称される微細な凸部の集合体、ピラー構造と称される微細な直径を有する円柱状凸部の集合体、モスアイ構造の集合体がレンズ形状をなす態様等が挙げられる。上記例示したいずれの表面形状も、既述の図5(A-1)又は図6(A-2)に示す機能性領域とは、目視等の観察により識別することが可能な位置情報領域を形成し得る。
The surface shape in the position information area, which can be identified by visual observation and the surface shape of the functional area, is not limited to a mode having the same or similar shape as the functional shape section, and is completely different from the functional shape section. It may have differently shaped surfaces.
For example, when the functional area has the surface shape shown in FIG. 5 (A-1) or FIG. 6 (A-2), a position information area which can be visually identified from the functional area is formed. Examples of the surface shape that can be performed include an aggregate of fine convex portions called a moth-eye structure, an aggregate of cylindrical convex portions having a fine diameter called a pillar structure, and an aggregate of a moth-eye structure having a lens shape. And the like. In any of the surface shapes exemplified above, a position information region that can be identified by visual observation or the like is different from the above-described functional region shown in FIG. 5 (A-1) or FIG. 6 (A-2). Can be formed.
 なお、機能性領域における機能性形状部の最も一般的な形状としては、半球型のレンズ形状(マイクロレンズ)、半円柱型のレンズ形状(シリンドリカルレンズ)等が挙げられる。なかでも、機能性形状部はマイクロレンズであることが好ましい。
 また、上記一般的な形状が形成される機能性領域としては、上記マイクロレンズ又はシリンドリカルレンズが連続して配列された領域であることも好ましい態様である。
 機能性領域がマイクロレンズアレイを形成する場合の機能性形状部におけるレンズ形状の配列としては、特に限定されず、正方形格子状に配列していてもよいし、ハニカム構造状に配列していてもよい。
The most common shape of the functional shape portion in the functional region includes a hemispherical lens shape (micro lens), a semi-cylindrical lens shape (cylindrical lens), and the like. Especially, it is preferable that a functional shape part is a micro lens.
In a preferred embodiment, the functional region in which the general shape is formed is a region in which the microlenses or the cylindrical lenses are continuously arranged.
The arrangement of the lens shape in the functional shape portion when the functional region forms the microlens array is not particularly limited, and may be arranged in a square lattice shape or may be arranged in a honeycomb structure shape. Good.
 賦形される機能性形状部は、微細な形状部であることが好ましい。例えば、基準面、具体的には、硬化性樹脂組成物層の支持体とは反対側の表面に対して、凸部を連続させた凹凸形状を形成する場合は、隣接する凸部同士の間隔の最大値が300μm以下であることが好ましい。また、例えば基準面に対して凹部と凸部を交互に繰り返す凹凸形状の場合は、隣りあう凹と凸の間隔の最大値が300μm以下であることが好ましい。 機能 It is preferable that the functional shape portion to be shaped is a fine shape portion. For example, in the case of forming a concavo-convex shape having continuous convex portions on the reference surface, specifically, on the surface of the curable resin composition layer opposite to the support, the distance between adjacent convex portions is set. Is preferably 300 μm or less. Further, for example, in the case of a concavo-convex shape in which concave portions and convex portions are alternately repeated with respect to the reference plane, the maximum value of the interval between adjacent concave and convex portions is preferably 300 μm or less.
 なかでも、機能性形状部がレンズ形状である場合、レンズピッチの最大値は、200μm以下であることが好ましく、160μm以下であることがより好ましい。
 レンズピッチの最小値は、特に限定されないが、5μm以上であることが好ましい。
 本開示において、レンズピッチとは、レンズ形状の凸部の頂点同士の距離をいう。
 賦形シートをマイクロレンズアレイに適用する際に、レンズピッチが小さいために、打ち抜き加工時の位置合わせの精度が重要となる。本開示に係る賦形シートの製造方法によれば、賦形シートにおける機能性領域と位置情報領域とが同時に賦形される。このため、位置情報領域による打ち抜きの精度が高く、得られる賦形シートにおいて打ち抜き位置のズレが抑制され、レンズピッチが小さいマイクロレンズアレイの製造に本開示の製造方法を適用することにより、顕著な効果が得られると考えている。
In particular, when the functional shape portion has a lens shape, the maximum value of the lens pitch is preferably 200 μm or less, and more preferably 160 μm or less.
The minimum value of the lens pitch is not particularly limited, but is preferably 5 μm or more.
In the present disclosure, the lens pitch refers to a distance between vertices of convex portions of a lens shape.
When the shaped sheet is applied to a microlens array, the accuracy of positioning at the time of punching is important because the lens pitch is small. According to the method for manufacturing a shaped sheet according to the present disclosure, the functional region and the positional information region in the shaped sheet are formed simultaneously. For this reason, the accuracy of the punching by the position information area is high, the deviation of the punching position in the obtained shaped sheet is suppressed, and the manufacturing method of the present disclosure is remarkably applied to the manufacturing of the microlens array having a small lens pitch. We think that effect can be obtained.
 本開示における機能性形状部は、上記半球形、又は半円柱径の凸状の形状には限定されず、目的に応じて種々の形状をとり得る。
 図7に、機能性形状部としての凸部の変形例を示す斜視図を示す。
 図7に示す如く、機能性形状部として機能しうる凸部の形状の例としては、半球形(A-1)の他、(A-5)、(A-6)、(A-7)、(A-8)、及び(A-9)に示す形状などが挙げられるが、上記の例に制限されず、必要な機能を発現する形状であれば、任意に選択することができる。
The functional shape portion in the present disclosure is not limited to the above-mentioned hemispherical shape or a convex shape having a semi-cylindrical diameter, and may take various shapes depending on purposes.
FIG. 7 is a perspective view showing a modified example of the convex portion as the functional shape portion.
As shown in FIG. 7, examples of the shape of the convex portion which can function as the functional shape portion include (A-5), (A-6), and (A-7) in addition to the hemispherical shape (A-1). , (A-8), and (A-9), but are not limited to the above examples, and may be arbitrarily selected as long as the shapes exhibit necessary functions.
 機能性形状部としては、凸状の形状のみならず、硬化性樹脂組成物層表面に対し凹部を形成した凹状の形状とすることもできる。凹状の形状を有する機能性領域を形成する際には、金型は凹部の反転形状である凸状部を有する金型となる。
 また、機能性領域では、機能性形状部の形状のみならず、個々の機能性形状部の形成密度についても、賦形シートの使用目的に応じて適宜選択できることはいうまでもない。
The functional shape portion may be not only a convex shape but also a concave shape in which a concave portion is formed on the surface of the curable resin composition layer. When forming a functional region having a concave shape, the mold is a mold having a convex portion that is the inverted shape of the concave portion.
In addition, in the functional region, it goes without saying that not only the shape of the functional shape portion but also the formation density of each functional shape portion can be appropriately selected according to the purpose of use of the shaped sheet.
〔賦形シートの材料〕
 本開示の製造方法には、支持体と硬化性樹脂組成物層との積層体が用いられる。
[Shape sheet material]
In the production method of the present disclosure, a laminate of a support and a curable resin composition layer is used.
-支持体-
 賦形シートの支持体は、シート状又はフィルム状の支持体であることが好ましい。
 支持体は、高温延伸性の観点から、樹脂基材が好ましく挙げられる。
 樹脂基材の例としては、ポリメチルメタクリレート樹脂(PMMA)、ポリカーボネート樹脂(PC)、ポリスチレン樹脂、メタクリレート-スチレン共重合樹脂(MS樹脂)、アクリロニトリル-スチレン共重合樹脂(AS樹脂)、ポリプロピレン樹脂(PP)、ポリエチレン樹脂、ポリエチレンテレフタレート樹脂(PET)等のポリエステル樹脂、グリコール変性ポリエチレンテレフタレート樹脂(PETG)、ポリ塩化ビニル樹脂(PVC)、熱可塑性エラストマー、又はこれらの共重合体、シクロオレフィンポリマー等を含む基材が挙げられる。
 樹脂を用いてシート状又はフィルム状の支持体を形成する方法は公知の方法が適用できる。なかでも、厚みが均一なシートの形成しやすさの観点からは、溶融押出し法が好ましい。
-Support-
The support of the shaped sheet is preferably a sheet-like or film-like support.
The support is preferably a resin base material from the viewpoint of high-temperature stretchability.
Examples of the resin base material include polymethyl methacrylate resin (PMMA), polycarbonate resin (PC), polystyrene resin, methacrylate-styrene copolymer resin (MS resin), acrylonitrile-styrene copolymer resin (AS resin), and polypropylene resin ( PP), a polyethylene resin, a polyester resin such as polyethylene terephthalate resin (PET), a glycol-modified polyethylene terephthalate resin (PETG), a polyvinyl chloride resin (PVC), a thermoplastic elastomer, or a copolymer thereof, a cycloolefin polymer, or the like. Substrate.
A known method can be used for forming a sheet-like or film-like support using a resin. Among them, the melt extrusion method is preferred from the viewpoint of easy formation of a sheet having a uniform thickness.
 支持体の成形に溶融押出し法を適用する場合には、溶融押出しがより容易に行なえるという観点からは、用いる樹脂としては、例えば、ポリメチルメタクリレート樹脂(PMMA)、ポリカーボネート樹脂、ポリスチレン樹脂、メタクリレート-スチレン共重合樹脂(MS樹脂)、ポリエチレン樹脂、ポリエチレンテレフタレート樹脂、グリコール変性ポリエチレンテレフタレート樹脂等の如き溶融粘度の比較的低い樹脂が好ましく、ポリエチレンテレフタレート樹脂がより好ましい。
 また、得られた支持体の透明性(可視光透過性)及び耐熱性の観点からは、用いる樹脂として、ポリエチレンテレフタレート樹脂、グリコール変性ポリエチレンテレフタレート樹脂又はシクロオレフィン樹脂が好ましく、ポリエチレンテレフタレート樹脂がより好ましい。
When the melt extrusion method is applied to the formation of the support, from the viewpoint that the melt extrusion can be performed more easily, as the resin to be used, for example, polymethyl methacrylate resin (PMMA), polycarbonate resin, polystyrene resin, methacrylate -A resin having a relatively low melt viscosity such as a styrene copolymer resin (MS resin), a polyethylene resin, a polyethylene terephthalate resin, a glycol-modified polyethylene terephthalate resin, and the like are preferable, and a polyethylene terephthalate resin is more preferable.
Further, from the viewpoint of transparency (visible light transmittance) and heat resistance of the obtained support, as the resin to be used, a polyethylene terephthalate resin, a glycol-modified polyethylene terephthalate resin or a cycloolefin resin is preferable, and a polyethylene terephthalate resin is more preferable. .
 支持体は、平滑性及び厚みの均一性の観点から、延伸された樹脂基材が好ましく、一軸延伸樹脂基材又は二軸延伸樹脂基材がより好ましく挙げられる。
 支持体の厚みは、特に制限はなく、賦形シートの使用目的に応じて適宜選択される。一般的には、支持体の厚みは50μm以上300μm以下の範囲が好ましく、高温で均一に成型(賦形)し得るという観点から、50μm以上200μm以下の範囲がより好ましい。支持体の厚みが上記範囲であると、樹脂基材が破れ難く、成形加工する際の搬送時、及び3次元成型加工時においても、割れなどが発生し難い。
From the viewpoints of smoothness and uniformity of thickness, the support is preferably a stretched resin base material, more preferably a uniaxially stretched resin base material or a biaxially stretched resin base material.
The thickness of the support is not particularly limited, and is appropriately selected depending on the purpose of use of the shaped sheet. Generally, the thickness of the support is preferably in the range of 50 μm or more and 300 μm or less, and more preferably in the range of 50 μm or more and 200 μm or less from the viewpoint that uniform (shaping) can be performed at a high temperature. When the thickness of the support is in the above range, the resin base material is not easily torn, and cracks and the like are unlikely to occur during transportation during molding and three-dimensional molding.
 本開示の製造方法により得られる賦形シートを、例えば、マイクロレンズアレイ等の光学部材として用いる場合には、支持体は可視光に透過性を有していることが好ましく、支持体の波長400nm~波長700nmにおける光線透過率が70%以上であることが好ましい。上記光線透過率の上限は特に限定されず、100%以下であればよい。
 可視光線透過率は、分光光度計を用いて測定することができる。本開示では、光線透過率を、分光光度計V-560(日本分光(株)製)に積分球付属装置ARV-474を取り付けた装置により測定している。
When the shaped sheet obtained by the production method of the present disclosure is used, for example, as an optical member such as a microlens array, the support preferably has transparency to visible light, and the support has a wavelength of 400 nm. The light transmittance at a wavelength of 700 nm is preferably 70% or more. The upper limit of the light transmittance is not particularly limited, and may be 100% or less.
Visible light transmittance can be measured using a spectrophotometer. In the present disclosure, the light transmittance is measured using a spectrophotometer V-560 (manufactured by JASCO Corporation) equipped with an integrating sphere attachment device ARV-474.
 また、後述の硬化性樹脂組成物層を、紫外線などのエネルギーを付与して硬化させる場合、支持体の、硬化性樹脂組成物層形成側とは反対側から紫外線を照射し得ることを考慮すれば、支持体は、波長400nm未満の紫外光の透過性を有していることが好ましく、支持体の波長400nm未満の紫外線透過率が70%以上であることが好ましい。紫外線透過率の上限には特に制限はなく、100%以下であればよい。
 紫外線透過率は、既述の可視光透過率と同様の方法で、測定対象波長を可視光から紫外線に変更することで測定しうる。
In addition, when the curable resin composition layer described below is cured by applying energy such as ultraviolet rays, it is considered that the support may be irradiated with ultraviolet rays from the side opposite to the side on which the curable resin composition layer is formed. For example, the support preferably has a transmittance of ultraviolet light having a wavelength of less than 400 nm, and the support preferably has an ultraviolet transmittance of 70% or more at a wavelength of less than 400 nm. There is no particular upper limit on the ultraviolet transmittance, and it may be 100% or less.
The ultraviolet transmittance can be measured by changing the wavelength to be measured from visible light to ultraviolet light in the same manner as the above-described visible light transmittance.
 樹脂基材としては、市販品を用いてもよい。樹脂基材として用い得る市販品としては、例えば、三菱ケミカル(株)製のアクリル樹脂フィルム(アクリプレンHBS010P、厚み:125μm)、東レ(株)製のポリエチレンテレフタレート樹脂フィルム(ルミラーS10、厚み:100μm)、JSR(株)製のシクロオレフィンポリマーフィルム(製品名 ARTON)、帝人化成(株)製のポリカーボネート樹脂フィルム(ユーピロンH-3000、厚み125μm)等が挙げられる。 市 販 A commercially available product may be used as the resin base material. Commercially available products that can be used as the resin substrate include, for example, an acrylic resin film (Acryprene HBS010P, thickness: 125 μm) manufactured by Mitsubishi Chemical Corporation, and a polyethylene terephthalate resin film (Lumirror S10, thickness: 100 μm) manufactured by Toray Industries, Inc. And a cycloolefin polymer film (product name: ARTON) manufactured by JSR Corporation, a polycarbonate resin film (Iupilon H-3000, thickness 125 μm) manufactured by Teijin Chemicals Ltd., and the like.
-硬化性樹脂組成物-
 硬化性樹脂組成物層の形成に用いる硬化性樹脂組成物に含まれうる樹脂は、硬化性の樹脂であれば特に制限はない。硬化性樹脂組成物層の形成に用い得る硬化性樹脂としては、光硬化性(例えば、紫外線硬化性)又は熱硬化性の樹脂であることが好ましく、生産性、例えば、加熱硬化後の冷却機構が不要であり、硬化に必要な設備をより簡易とし得るという観点からは、光硬化性の樹脂であることがより好ましい。
 硬化性の樹脂としては、ウレタンアクリレート樹脂、ポリエステルアクリレート樹脂、エポキシアクリレート樹脂、ポリエーテルアクリレート樹脂、アクリルアクリレート樹脂、ポリチオール樹脂、ブタジエンアクリレート樹脂等の紫外線硬化樹脂を用いることができる。
 また、熱硬化性の樹脂としては、グリコール変性ポリエチレンテレフタレート樹脂(PETG)等が挙げられる。
-Curable resin composition-
The resin that can be included in the curable resin composition used to form the curable resin composition layer is not particularly limited as long as it is a curable resin. The curable resin that can be used for forming the curable resin composition layer is preferably a photocurable (for example, ultraviolet curable) or thermosetting resin, and has a productivity, for example, a cooling mechanism after heat curing. It is more preferable that the resin is a photo-curable resin from the viewpoint that it is unnecessary and the equipment required for curing can be simplified.
As the curable resin, an ultraviolet curable resin such as a urethane acrylate resin, a polyester acrylate resin, an epoxy acrylate resin, a polyether acrylate resin, an acrylic acrylate resin, a polythiol resin, and a butadiene acrylate resin can be used.
Examples of the thermosetting resin include glycol-modified polyethylene terephthalate resin (PETG).
 硬化性樹脂組成物は、既述の硬化性樹脂に加え、必要に応じて公知の添加剤を含むことができる。
 添加剤としては、離型剤、重合禁止剤、硬化促進剤、安定化剤等の、一般に賦形シートの製造方法において用いられる公知の成分が挙げられる。これら添加剤の種類及び含有量は、賦形シートの使用目的に応じて適宜選択して用いることができる。
The curable resin composition may contain a known additive as necessary in addition to the curable resin described above.
Examples of the additive include known components generally used in a method for producing a shaped sheet, such as a release agent, a polymerization inhibitor, a curing accelerator, and a stabilizer. The type and content of these additives can be appropriately selected and used depending on the purpose of use of the shaped sheet.
 硬化性樹脂を含む硬化性樹脂組成物を、既述の支持体の片面に適用して硬化性樹脂組成物層を形成する。
 図1では、硬化性樹脂組成物層18は、支持体14に、コーティング装置16により硬化性樹脂組成物を供給して形成される態様が記載されている。
 コーティング装置16は、公知の装置を任意に用いることができる。
 支持体14上に硬化性樹脂組成物層18を形成して積層体(I)20を得る方法は、これに限定されず、例えば、予め形成した硬化性樹脂組成物層を、支持体にラミネートして積層体を形成してもよい。
A curable resin composition containing a curable resin is applied to one surface of the support described above to form a curable resin composition layer.
FIG. 1 illustrates an embodiment in which the curable resin composition layer 18 is formed by supplying the curable resin composition to the support 14 by the coating device 16.
As the coating device 16, a known device can be arbitrarily used.
The method for forming the curable resin composition layer 18 on the support 14 to obtain the laminate (I) 20 is not limited to this. For example, a method in which a curable resin composition layer formed in advance is laminated on the support To form a laminate.
 硬化性樹脂組成物層の厚みは、形成される機能性形状部のサイズに応じて適宜決定すればよい。
 加工性、及び機能性形状部等の賦形容易性の観点から、硬化性樹脂組成物層の厚みは、2μm~130μmであることが好ましく、2μm~110μmであることがより好ましい。
The thickness of the curable resin composition layer may be appropriately determined according to the size of the functional shape portion to be formed.
The thickness of the curable resin composition layer is preferably from 2 μm to 130 μm, more preferably from 2 μm to 110 μm, from the viewpoints of workability and ease of shaping of the functional shape portion and the like.
 上記工程Aでは、支持体上に硬化性樹脂組成物層を有する積層体(I)の硬化性樹脂組成物層表面に、積層体(I)がエンボスロールに押しつけられる。エンボスロールの金型形成部の両側に備えられたニップロールにより、積層体(I)は安定した搬送及び押しつけが可能となり、エンボスロールにより機能性領域と位置情報領域とが同時に賦形される。 In the step A, the laminate (I) is pressed against the embossing roll against the surface of the curable resin composition layer of the laminate (I) having the curable resin composition layer on the support. The nip rolls provided on both sides of the mold forming portion of the embossing roll enable the laminate (I) to be stably transported and pressed, and the embossing roll simultaneously forms the functional area and the position information area.
<工程B>
 工程Bは、工程Aにより機能性領域と位置情報領域とが同時に賦形された硬化性樹脂組成物層を硬化し、支持体と、上記支持体上に機能性領域及び位置情報領域が賦形された樹脂層と、を備える積層体(II)を形成する工程である。ここで、支持体上に、工程Aで賦形された硬化性樹脂組成物層が硬化された後の樹脂層を有する積層体を積層体(II)と称する。
 工程Aで機能性領域26B及び位置情報領域28Bが同時に賦形された積層体(I)は、図1に示すように、支持体14の、硬化性樹脂組成物層18を有しない面側から、紫外線照射装置30により紫外線が照射され、硬化性樹脂組成物層18が硬化して、支持体14上に、機能性領域26B及び位置情報領域28Bが形成され、硬化された樹脂層18Bを有する積層体(II)20が得られる。
 このように、硬化性樹脂組成物層を硬化して硬化された樹脂層を得る場合には、紫外線照射による硬化、即ち、2P法(Photo Polymer法)と呼ばれる紫外線硬化プロセスを適用することも好ましい態様である。
 硬化後に、エンボスロール22Aから上記支持体14と硬化された樹脂層18Bとの積層体(II)20を剥離することで、賦形が行われる。
 上記の例では、硬化は紫外線照射により行われるが、硬化性樹脂組成物層の硬化方法はこれに限定されず、硬化性樹脂組成物の組成に応じて適宜選択される。
<Step B>
In step B, the curable resin composition layer in which the functional region and the positional information region are simultaneously formed in step A is cured, and the support and the functional region and the positional information region are formed on the support. And forming a laminated body (II) including the cured resin layer. Here, a laminate having the resin layer after the curable resin composition layer formed in the step A is cured on the support is referred to as a laminate (II).
The laminate (I) in which the functional region 26B and the position information region 28B are simultaneously formed in the step A is, as shown in FIG. 1, from the side of the support 14 where the curable resin composition layer 18 is not provided. Ultraviolet irradiation is performed by the ultraviolet irradiation device 30 to cure the curable resin composition layer 18, and the functional region 26 </ b> B and the position information region 28 </ b> B are formed on the support 14, and the cured resin layer 18 </ b> B is provided. The laminate (II) 20 is obtained.
As described above, when the curable resin composition layer is cured to obtain a cured resin layer, it is also preferable to apply ultraviolet ray curing, that is, an ultraviolet curing process called 2P method (Photo Polymer method). It is an aspect.
After the curing, the laminate (II) 20 of the support 14 and the cured resin layer 18B is peeled off from the embossing roll 22A to perform shaping.
In the above example, the curing is performed by ultraviolet irradiation, but the method of curing the curable resin composition layer is not limited to this, and is appropriately selected according to the composition of the curable resin composition.
 図1に示す実施形態では、エンボスロール22Aから剥離された積層体(II)20は、帯状の賦形されたシートとして、巻取装置32によってロール状に巻き取られる態様が記載される。しかし、賦形された樹脂層を有する積層体(II)20は、巻き取りを行わず、そのまま、次工程である賦形シートを断裁する工程Cに供してもよい。
 また、一旦、積層体(II)をロール状に巻取った後、必要に応じて、積層体(II)を、巻取りロールから順次、賦形シートを断裁する工程に供給してもよい。
In the embodiment shown in FIG. 1, a mode is described in which the laminate (II) 20 peeled off from the embossing roll 22 </ b> A is wound into a roll by the winding device 32 as a strip-shaped shaped sheet. However, the laminate (II) 20 having the shaped resin layer may be directly subjected to the next step, a step C of cutting the shaped sheet, without winding.
Further, once the laminate (II) is wound into a roll, the laminate (II) may be supplied to a step of sequentially cutting the shaped sheet from the winding roll, if necessary.
<工程C>
 本開示の賦形シートの製造方法における工程Cは、工程A及び工程Bを経て樹脂層に形成された位置情報領域を検出し、検出した位置情報領域の位置情報に基づいて、積層体を断裁する工程である。
 工程Cにおける積層体の断裁加工を、「打ち抜き加工」とも称する。
 以下、図面を用いて工程Cについて詳細に説明する。
<Step C>
Step C in the method of manufacturing a shaped sheet according to the present disclosure detects a position information area formed on the resin layer through steps A and B, and cuts the laminate based on the position information of the detected position information area. This is the step of performing
The cutting of the laminate in the step C is also referred to as “punching”.
Hereinafter, the step C will be described in detail with reference to the drawings.
 図8は、本開示の製造方法に用いられる断裁装置の概略構成図である。
 工程A及び工程Bを経て作製された、樹脂層に機能性領域と位置情報領域とを有する積層体(II)20は、図8に示す断裁装置40の上流側に存在する供給ロール42から供給され、断裁部44へ搬送される。
 積層体(II)には、例えば、図4Aに示す如く、矩形に形成された機能性領域の外縁部の2箇所の隅部にT字型の位置情報領域が形成されている。
 図4Aにおいては、機能性領域26Bは、網点の領域として記載されている。
 図4A中、矢印は積層体20の搬送方向を示しており、積層体20には、図示されないが、搬送方向に従い複数の機能性領域26Bと位置情報領域28Bとが連続して形成されている。
FIG. 8 is a schematic configuration diagram of a cutting device used in the manufacturing method of the present disclosure.
The laminated body (II) 20 having the functional region and the positional information region in the resin layer manufactured through the process A and the process B is supplied from a supply roll 42 existing on the upstream side of the cutting device 40 illustrated in FIG. Then, the sheet is conveyed to the cutting section 44.
In the laminate (II), for example, as shown in FIG. 4A, a T-shaped position information area is formed at two corners of an outer edge of a rectangular functional area.
In FIG. 4A, the functional area 26B is described as a halftone area.
In FIG. 4A, arrows indicate the transport direction of the stacked body 20, and a plurality of functional areas 26 </ b> B and position information areas 28 </ b> B are continuously formed in the stacked body 20 according to the transport direction, although not shown. .
 図4Aでは、位置情報領域28Bは、機能性領域26Bを含んで実線で示される断裁部の外側に形成されている。なお、既述の如く、図4Aに示す形態において、機能性領域26Bの内側に破線で区画された領域は、機能性領域26Bを含む、最終製品における有効領域を示し、位置情報領域28Bは、機能性領域26Bの外側であって、かつ、破線で示される有効領域の周縁部の外側に形成されている。
 図4Aにおける位置情報領域を検知して、積層体(II)20を実線部にて断裁した場合、得られた賦形シートは、既述のように製品に組込まれた際に、有効領域の全領域が機能性領域となり、周縁部まで機能を発現しうる賦形シートとなる。
In FIG. 4A, the position information area 28B includes the functional area 26B and is formed outside the cut portion indicated by a solid line. As described above, in the embodiment shown in FIG. 4A, an area defined by a broken line inside the functional area 26B indicates an effective area in the final product including the functional area 26B, and the position information area 28B It is formed outside the functional region 26B and outside the periphery of the effective region indicated by the broken line.
When the position information area in FIG. 4A is detected and the laminate (II) 20 is cut at a solid line portion, the obtained shaped sheet becomes an effective area when incorporated into a product as described above. The entire region becomes a functional region, and becomes a shaped sheet capable of expressing functions up to the peripheral portion.
 図4Aでは、製品の有効領域を示す破線で区画された領域の中心と、機能性領域の中心とが重なる位置に記載されている。図4Aに記載した、位置情報領域により検知され、実線で示された断裁位置が、賦形シートを製品とする際に断裁する場合の最も好ましい打ち抜き位置を示している。 In FIG. 4A, the center of the area defined by the broken line indicating the effective area of the product and the center of the functional area overlap each other. The cutting position detected by the position information area and shown by a solid line shown in FIG. 4A indicates the most preferable punching position when cutting the shaped sheet into a product.
 なお、本開示の製造方法によれば、例えば、既述の図4Bに示すように、打ち抜かれる領域の内側に、位置情報領域28Bが存在する場合、或いは、図4Cに示すように、製品有効領域である破線領域内に位置情報領域28Bが存在する場合でも、機能性領域と位置情報領域とは同一の樹脂層から賦形され、光学特性が表面形状を除いては同一の特性を有するために、位置情報領域28Bの製品に与える影響は極めて低く、賦形シートの使用目的によっては、図4B及び図4Cに示す位置に位置情報領域28Bを形成しうる場合があり、機能性領域26Bを有効に使用することができる。 According to the manufacturing method of the present disclosure, for example, when the position information area 28B exists inside the punched area as shown in FIG. 4B described above, or as shown in FIG. Even when the position information area 28B exists in the broken line area, which is the area, the functional area and the position information area are formed from the same resin layer, and the optical characteristics have the same characteristics except for the surface shape. In addition, the influence of the position information area 28B on the product is extremely low, and the position information area 28B may be formed at the position shown in FIG. 4B and FIG. Can be used effectively.
 工程Cにおいては、例えば、図4Aに示す積層体(II)20を断裁する場合、位置情報領域28Bを検出し、断裁を行う位置を決定する。
 本開示における工程Cにおいて、機能性領域26Bと位置情報領域28Bとは、同じ型により同時に賦形されているため、機能性領域26Bと位置情報領域28Bとの間の位置のズレが抑制されている。従って、工程Cにおいて位置情報領域28Bを用いて位置情報を決定すれば、正確な領域で積層体を打ち抜くことが容易となる。すなわち、本開示の賦形シートの製造方法によれば、簡易な工程で位置情報領域が形成され、打ち抜きの位置精度が高いという効果を奏する。
In step C, for example, when cutting the laminate (II) 20 shown in FIG. 4A, the position information area 28B is detected and the position to be cut is determined.
In step C of the present disclosure, the functional region 26B and the positional information region 28B are simultaneously formed by the same mold, so that the positional deviation between the functional region 26B and the positional information region 28B is suppressed. I have. Accordingly, if the position information is determined using the position information area 28B in the process C, it becomes easy to punch out the laminate in an accurate area. That is, according to the method of manufacturing a shaped sheet of the present disclosure, the position information area is formed by a simple process, and the effect of high punching position accuracy is achieved.
 工程Cにおいては、位置情報領域はCCDカメラ等の検出手段により検出し、打ち抜き位置を決めた後に打ち抜き加工が行われる。 In the step C, the position information area is detected by a detecting means such as a CCD camera, and a punching process is performed after a punching position is determined.
 図9は、図8で示す断裁装置40における断裁部44の拡大図である。積層体(II)20は、断裁装置40の断裁部44において、位置情報領域28Bが検知されて位置決めがなされ、断裁部44に備えられた打抜き刃46で断裁され、賦形シートが得られる。なお、位置決めに際しては、既述の如く、必要に応じて、位置情報領域の情報を利用して位置を補正した後、断裁されてもよい。
 図10は、図9で示す断裁部44の概略断面図である。積層体(II)20における位置情報領域28Bにより位置決めされた積層体(II)20は、図10に示す如く、機能性領域26Bと位置情報領域28Bとの境目において、打抜き刃46で断裁される。
 打抜き刃46は、積層体(II)20を貫通し、積層体(II)20の搬送位置よりも重力方向の下部に備えられた受け刃板48に到達する位置まで移動する。打ち抜かれた賦形シートは、公知の方法で断裁部44から搬出される。
 受け刃板の材質としては、特に限定されない。アルミニウムなどの比較的柔らかい金属板であってもよく、ある程度の弾性を有する樹脂板であってもよい。
 受け刃板に用いられる樹脂としては、PET、PETG、アクリル樹脂、シリコーン樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、MS樹脂、AS樹脂、ポリオレフィン樹脂、PVC等が挙げられる。
FIG. 9 is an enlarged view of the cutting unit 44 in the cutting device 40 shown in FIG. The laminate (II) 20 is positioned by detecting the position information area 28B in the cutting unit 44 of the cutting device 40, and is cut by the punching blade 46 provided in the cutting unit 44 to obtain a shaped sheet. When positioning, as described above, the position may be corrected using the information in the position information area as necessary, and then cut.
FIG. 10 is a schematic sectional view of the cutting section 44 shown in FIG. The laminate (II) 20 positioned by the position information area 28B in the laminate (II) 20 is cut by the punching blade 46 at the boundary between the functional area 26B and the position information area 28B as shown in FIG. .
The punching blade 46 moves through the stacked body (II) 20 to a position where the punching blade 46 reaches a receiving blade plate 48 provided below the conveying position of the stacked body (II) 20 in the direction of gravity. The punched shaped sheet is carried out of the cutting unit 44 by a known method.
The material of the receiving blade plate is not particularly limited. It may be a relatively soft metal plate such as aluminum or a resin plate having a certain degree of elasticity.
Examples of the resin used for the receiving blade plate include PET, PETG, acrylic resin, silicone resin, polycarbonate resin, polystyrene resin, MS resin, AS resin, polyolefin resin, and PVC.
 工程Cにおける断裁方法としては、特に限定されず公知の方法が用いられる
 CCDカメラを搭載した打ち抜き姿勢補正機能付き打抜機は、打抜機メーカー数社より市販されている汎用機を使用することができる。例えば、CCDカメラ付き画像位置決めプレス”IPAシリーズ”(富士商工マシナリー(株)製)、ロール材位置決め型抜き機”SCP250E-APSシリーズ”(坂本造機(株)製)、ロール材型抜き機”T261シリーズ”(ヤマハファインテック(株)製)などが挙げられる。
The cutting method in the process C is not particularly limited, and a known method is used. A general-purpose machine commercially available from several punching machine manufacturers can be used as the punching machine with a punching posture correction function equipped with a CCD camera. . For example, an image positioning press "IPA series" with a CCD camera (manufactured by Fuji Shoko Machinery Co., Ltd.), a roll material positioning die cutting machine "SCP250E-APS series" (manufactured by Sakamoto Zoki Co., Ltd.), and a roll material die cutting machine "T261" Series "(manufactured by Yamaha Fine Tech Co., Ltd.).
 工程Cにおいては、積層体における樹脂層の位置情報領域を検出した後に、位置情報領域を利用して断裁において、積層体の位置を補正した後、断裁を行ってもよい。
 即ち、得られる賦形シートにおける打ち抜き位置のズレの抑制及び生産性の観点から、位置情報領域により位置情報を検出した後に、位置情報領域を利用して、積層体の姿勢、又は、断裁される領域の回転角度の少なくともいずれかを補正することが好ましい。
 上記補正は、上述の打抜機における打ち抜き姿勢補正機能等により行われてもよい。
 位置情報領域の検出は、例えば打抜機に搭載されたCCDカメラにより行なうことができる。
In the process C, after detecting the position information area of the resin layer in the laminate, the cutting may be performed after correcting the position of the laminate in the cutting using the position information area.
In other words, from the viewpoint of suppressing the shift of the punching position and the productivity of the obtained shaped sheet, after detecting the position information by the position information area, the position of the laminate is cut using the position information area, or cut. It is preferable to correct at least one of the rotation angles of the region.
The correction may be performed by a punching posture correction function or the like in the above-described punching machine.
The position information area can be detected by, for example, a CCD camera mounted on a punching machine.
 ここで、積層体の姿勢とは、積層体の搬送方向及び直交方向の少なくともいずれかの方向をいう。
 例えば、図4Aに記載された積層体を断裁する工程Cにおいては、断裁される領域の角度を固定し、搬送される積層体の姿勢を補正して図4Aに実線で示される断裁領域の角度(打ち抜かれる領域の回転角度)と、積層体(II)20の面上に破線で示される製品有効領域の角度とを整合させることができる。
 また、図9及び図10に記載された断裁部44では、積層体の搬送方向を、断裁部44に備えられた固定部材50A、50Bで押圧して固定し、断裁される領域の回転角度を補正することにより、打ち抜かれる領域の角度と、積層体の製品有効領域の角度とを整合させることができる。
 なお、積層体を断裁する際には、積層体の姿勢及び断裁される領域の回転角度の両方を補正してもよい。
Here, the orientation of the laminate refers to at least one of the transport direction and the orthogonal direction of the laminate.
For example, in the step C of cutting the laminate described in FIG. 4A, the angle of the region to be cut is fixed, the posture of the transported laminate is corrected, and the angle of the cut region indicated by a solid line in FIG. (Rotation angle of punched region) and the angle of the product effective region indicated by a broken line on the surface of laminate (II) 20 can be matched.
In the cutting unit 44 shown in FIGS. 9 and 10, the conveying direction of the laminate is pressed and fixed by the fixing members 50A and 50B provided in the cutting unit 44, and the rotation angle of the cut region is set. By performing the correction, the angle of the punched area and the angle of the product effective area of the laminate can be matched.
When cutting the laminate, both the posture of the laminate and the rotation angle of the region to be cut may be corrected.
<巻き取り工程、巻き出し工程>
 本開示に係る賦形シートの製造方法をロールツーロール方式により行う場合、シート状材料を巻き取る巻き取り工程、又は、シート状材料を巻き出す巻き出し工程を含むことが好ましい。
 巻き取り工程及び巻き出し工程は、各工程の前又は後に任意に含むことができるが、例えば、下記方法(1)~(5)に記載した順序により行うことができる。
 (1)ロール状の支持体を用い、支持体を巻き出す工程
 (2)巻き出された支持体上に硬化性樹脂組成物層を形成し、得られた積層体(I)の硬化性樹脂組成物層に機能性領域と位置情報領域とを賦形する工程(工程A)
 (3)機能性領域と位置情報領域とが賦形された積層体にエネルギーを付与して硬化性樹脂組成物層を硬化させ、得られた賦形後の樹脂層を有する積層体(II)を巻き取る工程(工程B)
 (4)巻き取られた積層体(II)を巻き出す工程
 (5)巻き出された積層体(II)を、位置情報領域を検知して断裁する工程(工程C)
 上記方法において、(3)及び(4)に記載された巻き取り工程及び巻き出し工程を省略し、工程B及び工程Cを、積層体(II)を搬送しながら連続して行ってもよい。
<Rewinding process and unwinding process>
When the method of manufacturing a shaped sheet according to the present disclosure is performed by a roll-to-roll method, it is preferable to include a winding step of winding the sheet material or an unwinding step of unwinding the sheet material.
The winding step and the unwinding step can be arbitrarily included before or after each step. For example, the steps can be performed in the order described in the following methods (1) to (5).
(1) Step of unwinding the support using a roll-shaped support (2) Forming a curable resin composition layer on the unwound support and forming the curable resin of the obtained laminate (I) Step of shaping a functional area and a position information area in the composition layer (Step A)
(3) Laminate (II) having a shaped resin layer obtained by applying energy to the laminate in which the functional region and the positional information region are shaped to cure the curable resin composition layer Winding step (Step B)
(4) Step of unwinding the wound laminate (II) (5) Step of cutting the unwinded laminate (II) by detecting the position information area (Step C)
In the above method, the winding step and the unwinding step described in (3) and (4) may be omitted, and the steps B and C may be continuously performed while transporting the laminate (II).
<その他の工程>
 本開示に係る賦形シートの製造方法は、その他の工程を更に含んでいてもよい。
 その他の工程としては、例えば、賦形シートに保護フィルムを形成する工程、賦形シートがレンチキュラーシートとして用いられる場合、賦形シートのレンズが形成された面とは反対側の面に、印刷用のインク受容層を形成する工程等が挙げられる。
<Other steps>
The method for manufacturing a shaped sheet according to the present disclosure may further include other steps.
As other steps, for example, a step of forming a protective film on the shaped sheet, when the shaped sheet is used as a lenticular sheet, on the surface of the shaped sheet opposite to the surface on which the lens is formed, for printing Forming an ink receiving layer.
 以下、実施例により本開示を詳細に説明するが、本開示はこれらに限定されるものではない。なお、本実施例において、「%」、「部」とは、特に断りのない限り、それぞれ「質量%」、「質量部」を意味する。 Hereinafter, the present disclosure will be described in detail with reference to Examples, but the present disclosure is not limited thereto. In this example, “%” and “parts” mean “% by mass” and “parts by mass”, respectively, unless otherwise specified.
(実施例1)
<賦形シートの作製(賦形工程)>
 図1に示す構成の賦形装置を用い。まず、ロールツーロールで樹脂層にマイクロレンズ形の機能性領域と、上記機能性領域とは表面形状が異なる位置情報領域とを賦形した積層体を作製した。
 機能性領域としての直径60μm、高さ30μmの半球形のレンズ形凸部をレンズピッチが60μmにてマイクロレンズアレイのハニカム構造状に配列したパターンの反転形状を長さ120mm、幅160mmの領域に、且つ、位置情報領域としての直径150μm、高さ75μmの半球形のレンズ形凸部をレンズピッチが150μmにてハニカム構造状に配列したパターンの反転形状を、長さ7mm幅2mmの矩形を組合せたT字型に配置し、既述の機能性領域の対向する2つの隅に形成したロール金型を準備した。
 こうして、図2に示す形状の機能性領域と位置情報領域とを形成しうるエンボスロールを得た。
(Example 1)
<Preparation of shaped sheet (shaping process)>
The shaping device having the configuration shown in FIG. 1 was used. First, a laminate in which a microlens-shaped functional region and a position information region having a different surface shape from the functional region were formed on the resin layer by roll-to-roll was produced.
A hemispherical lens-shaped convex part having a diameter of 60 μm and a height of 30 μm as a functional region is arranged in a honeycomb structure of a microlens array with a lens pitch of 60 μm and an inverted shape of a pattern having a length of 120 mm and a width of 160 mm. The inverted shape of a pattern in which hemispherical lens-shaped protrusions having a diameter of 150 μm and a height of 75 μm as a position information area are arranged in a honeycomb structure at a lens pitch of 150 μm is combined with a rectangle having a length of 7 mm and a width of 2 mm. A roll mold was arranged in a T-shape and formed at two opposing corners of the above-described functional region.
Thus, an embossing roll capable of forming the functional area and the position information area having the shape shown in FIG. 2 was obtained.
 厚み50μm、幅350mm、長さ300mのPETフィルム(東洋紡(株)製、コスモシャイン(登録商標) A4300)を支持体として、片面に、紫外線硬化性樹脂(アイカ工業製、Z-977-7L、UV硬化樹脂A)を厚み3μmで塗工し、上記で得られたエンボスロールを備えた図1に示す賦形装置により、エンボスロールにニップロールを用いて押圧して、金型のパターンの反転形状を転写し、紫外線を照射し硬化させた後、ロール金型から硬化した積層体(II)を剥離した。そして、支持体上に、機能性領域と位置情報領域とが形成された積層体(II)を巻取り装置によってロール状に巻き取った。
 支持体に用いたPETフィルムの波長400nm~波長700nmにおける光線透過率を、分光光度計V-560(日本分光(株)製)に積分球付属装置ARV-474を取り付けた装置により測定したところ、透過率は70%以上であった。(工程A及び工程B)
Using a PET film (Cosmoshine (registered trademark) A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 50 μm, a width of 350 mm, and a length of 300 m as a support, an ultraviolet-curable resin (Z-977-7L, manufactured by Aika Kogyo Co., Ltd.) The UV curable resin A) is applied in a thickness of 3 μm, and is pressed by using a nip roll on the embossing roll by the shaping apparatus shown in FIG. 1 equipped with the embossing roll obtained above, thereby inverting the pattern of the mold. Was transferred and cured by irradiating ultraviolet rays, and then the cured laminate (II) was peeled off from the roll mold. Then, the laminate (II) in which the functional region and the position information region were formed on the support was wound into a roll by a winding device.
The light transmittance at a wavelength of 400 nm to 700 nm of the PET film used for the support was measured with a spectrophotometer V-560 (manufactured by JASCO Corporation) equipped with an integrating sphere attachment device ARV-474. The transmittance was 70% or more. (Step A and Step B)
<賦形シートの打ち抜き(断裁工程)>
 シート材の基材を連続して打抜くことができる図8に示す如き断裁装置において、CCDカメラを用いて上記位置情報領域の位置を検出しながら上記工程A及び工程Bを経て得られた積層体(II)を断裁して賦形シートを得た。(工程C)
 その結果、位置情報領域は、断裁装置に組み込まれたCCDカメラで検出、判別された。
 CCDカメラを搭載した打ち抜き姿勢補正機能付き打抜機は、ロール材位置決め型抜き機”SCP250E-APSシリーズ”(坂本造機(株)製)を使用した。
<Punching of shaped sheet (cutting process)>
In a cutting apparatus as shown in FIG. 8 which can continuously punch a base material of a sheet material, the stack obtained through the above steps A and B while detecting the position of the above positional information area using a CCD camera. The body (II) was cut to obtain a shaped sheet. (Step C)
As a result, the position information area was detected and determined by the CCD camera incorporated in the cutting device.
As a punching machine equipped with a punching posture correction function equipped with a CCD camera, a roll material positioning die punching machine “SCP250E-APS series” (manufactured by Sakamoto Zoki Co., Ltd.) was used.
(評価)
<打ち抜き位置のズレの評価>
 実施例1の賦形シートの製造方法における打抜きの打ち抜き位置のズレについて、パターンの配列方向、すなわち、各レンズの中心線と、打抜いたシートの長辺との角度の差によって目視にて評価した。
 各レンズの中心線とは、マイクロレンズアレイにおいては、最も多くのレンズの中心を通る位置に引いた2本の直線のうち、長辺との角度が小さい方をいう。
 その結果、目標とする打ち抜き位置の長辺と短辺の位置と、賦形された位置情報領域の位置との間には、目視にて殆ど差異が認められず、差異は0.2°未満であった。
 本開示の賦形シートの製造方法によれば、断裁時に使用しうる精度が高い位置情報を簡易な工程により付与することができ、正確な位置情報による断裁時の位置決め精度を向上させ、賦形フィルムの有効領域の面積を向上し得ることがわかる。
(Evaluation)
<Evaluation of deviation of punching position>
The deviation of the punching position in the punching in the manufacturing method of the shaped sheet of Example 1 is visually evaluated by the pattern arrangement direction, that is, the difference in the angle between the center line of each lens and the long side of the punched sheet. did.
In the microlens array, the center line of each lens refers to a line having a smaller angle with the long side among two straight lines drawn at positions passing through the centers of the most lenses.
As a result, little difference is visually observed between the positions of the long side and the short side of the target punching position and the position of the shaped position information area, and the difference is less than 0.2 °. Met.
According to the manufacturing method of the shaped sheet of the present disclosure, high-accuracy position information that can be used at the time of cutting can be provided by a simple process, and positioning accuracy at the time of cutting with accurate position information is improved, It can be seen that the area of the effective area of the film can be improved.
〔符号の説明〕
10 賦形装置
12 供給ロール
14 支持体
16 コーティング装置
18 硬化性樹脂組成物層
18B 硬化された樹脂層
20 積層体
22 賦形ローラ
22A エンボスロール
22B ニップロール
24 金型
26A 機能性領域付与部
26B 機能性領域
28A 位置情報領域付与部
28B 位置情報領域
30  紫外線照射装置
32 巻取装置
34 半球形の凸部
36 半球形の凸部
38 平面視で六角形の凸部
40 断裁装置
42 供給ロール
44 断裁部
46 断裁刃(打ち抜き刃)
48 受け刃板
50A、50B 固定部材
[Explanation of symbols]
REFERENCE SIGNS LIST 10 shaping device 12 supply roll 14 support 16 coating device 18 curable resin composition layer 18B hardened resin layer 20 laminate 22 shaping roller 22A emboss roll 22B nip roll 24 mold 26A functional area providing section 26B functionality Region 28A Positional information region providing unit 28B Positional information region 30 Ultraviolet irradiation device 32 Winding device 34 Hemispherical convex portion 36 Hemispherical convex portion 38 Hexagonal convex portion 40 in plan view Cutting device 42 Supply roll 44 Cutting portion 46 Cutting blade (punching blade)
48 Receiving blade plate 50A, 50B fixing member
 2018年9月28日に出願された日本国特許出願2018-183796の開示は参照により本明細書に取り込まれる。 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2018-183796 filed on Sep. 28, 2018 is incorporated herein by reference. All documents, patent applications, and technical standards mentioned herein are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (6)

  1.  支持体上に設けられた硬化性樹脂組成物層に、賦形シートに機能を付与する機能性形状部を備える第1の形状部形成領域及び前記第1の形状部形成領域とは異なる表面形状であり、断裁工程における位置情報となる第2の形状部形成領域を同時に賦形する工程Aと、
     前記硬化性樹脂組成物層を硬化し、支持体と、前記支持体上に第1の形状部形成領域及び第2の形状部形成領域が賦形された樹脂層と、を備える積層体を形成する工程Bと、
     前記樹脂層の前記第2の形状部形成領域を検出し、検出された第2の形状部形成領域の位置情報に基づき、前記積層体を断裁する工程Cと、
     を有する、賦形シートの製造方法。
    A first shape portion forming region including a functional shape portion that imparts a function to a shaped sheet to a curable resin composition layer provided on a support, and a surface shape different from the first shape portion forming region. And a step A of simultaneously shaping the second shape portion forming region serving as positional information in the cutting step;
    The curable resin composition layer is cured to form a laminate including a support, and a resin layer in which a first shape portion forming region and a second shape portion forming region are formed on the support. Performing step B;
    A step C of detecting the second shape portion forming region of the resin layer and cutting the laminate based on the detected position information of the second shape portion forming region;
    A method for producing a shaped sheet, comprising:
  2.  前記第2の形状部形成領域は、前記第1の形状部形成領域外に存在する請求項1に記載の賦形シートの製造方法。 2. The method according to claim 1, wherein the second shape portion forming region exists outside the first shape portion forming region. 3.
  3.  前記第2の形状部形成領域は、前記第1の形状部形成領域内に存在する請求項1に記載の賦形シートの製造方法。 2. The method according to claim 1, wherein the second shape portion forming region is present in the first shape portion forming region. 3.
  4.  前記第1の形状部形成領域とは異なる表面形状を有する前記第2の形状部形成領域は、位置情報となる位置情報形状部を有し、
     前記第2の形状部形成領域は、下記(I)~(III)から選ばれる表面形状である請求項1~請求項3のいずれか1項に記載の賦形シートの製造方法。
    (I)前記位置情報形状部は、前記機能性形状部と相似形状である。
    (II)前記第2の形状部形成領域における前記位置情報形状部は、前記第1の形状部形成領域における前記機能性形状部とは、単位面積あたりに異なる個数密度で配置されている。
    (III)前記位置情報形状部は、前記機能性形状部と同一形状または相似形状であり、且つ、前記位置情報形状部は、前記第1の形状部形成領域における前記機能性形状部とは、単位面積あたりに異なる個数密度で配置されている。
    The second shape portion forming region having a surface shape different from the first shape portion forming region has a position information shape portion serving as position information,
    The method for producing a shaped sheet according to any one of claims 1 to 3, wherein the second shape portion forming region has a surface shape selected from the following (I) to (III).
    (I) The position information shape portion has a shape similar to the functional shape portion.
    (II) The position information shape portion in the second shape portion formation region is arranged at a different number density per unit area from the functional shape portion in the first shape portion formation region.
    (III) The position information shape part has the same shape or a similar shape as the functional shape part, and the position information shape part is the same as the functional shape part in the first shape part formation region, They are arranged with different number densities per unit area.
  5.  前記積層体を断裁する工程Cにおいて、前記積層体の位置を補正する請求項1~請求項4のいずれか1項に記載の賦形シートの製造方法。 (5) The method according to any one of (1) to (4), wherein in the step C of cutting the laminate, the position of the laminate is corrected.
  6.  前記機能性形状部がマイクロレンズである請求項1~請求項5のいずれか1項に記載の賦形シートの製造方法。 The method for producing a shaped sheet according to any one of claims 1 to 5, wherein the functional shape portion is a microlens.
PCT/JP2019/034461 2018-09-28 2019-09-02 Shaped-sheet manufacturing method WO2020066478A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020548259A JP6932271B2 (en) 2018-09-28 2019-09-02 Manufacturing method of excipient sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-183796 2018-09-28
JP2018183796 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020066478A1 true WO2020066478A1 (en) 2020-04-02

Family

ID=69950556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034461 WO2020066478A1 (en) 2018-09-28 2019-09-02 Shaped-sheet manufacturing method

Country Status (2)

Country Link
JP (1) JP6932271B2 (en)
WO (1) WO2020066478A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296943A (en) * 2003-03-27 2004-10-21 Kyocera Corp Fabricating method of ic wafer, and flip-chip ic using the ic wafer
JP2007033597A (en) * 2005-07-25 2007-02-08 Seiko Epson Corp Optical sheet, backlight unit, electro-optical device, electronic equipment, manufacturing method of the optical sheet and cutting method of the optical sheet
JP2012187762A (en) * 2011-03-09 2012-10-04 Hitachi Maxell Ltd Method of manufacturing fine pattern molding, stamper, and the fine pattern molding
JP2015207655A (en) * 2014-04-21 2015-11-19 大日本印刷株式会社 Imprint mold, blank for imprint mold, method for manufacturing imprint mold substrate, and method for manufacturing imprint mold
JP2018122384A (en) * 2017-01-31 2018-08-09 大日本印刷株式会社 Method for cutting optical sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6887559B2 (en) * 2018-03-14 2021-06-16 富士フイルム株式会社 Manufacturing method of excipient sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296943A (en) * 2003-03-27 2004-10-21 Kyocera Corp Fabricating method of ic wafer, and flip-chip ic using the ic wafer
JP2007033597A (en) * 2005-07-25 2007-02-08 Seiko Epson Corp Optical sheet, backlight unit, electro-optical device, electronic equipment, manufacturing method of the optical sheet and cutting method of the optical sheet
JP2012187762A (en) * 2011-03-09 2012-10-04 Hitachi Maxell Ltd Method of manufacturing fine pattern molding, stamper, and the fine pattern molding
JP2015207655A (en) * 2014-04-21 2015-11-19 大日本印刷株式会社 Imprint mold, blank for imprint mold, method for manufacturing imprint mold substrate, and method for manufacturing imprint mold
JP2018122384A (en) * 2017-01-31 2018-08-09 大日本印刷株式会社 Method for cutting optical sheet

Also Published As

Publication number Publication date
JP6932271B2 (en) 2021-09-08
JPWO2020066478A1 (en) 2021-08-30

Similar Documents

Publication Publication Date Title
US7359120B1 (en) Manufacture of display devices with ultrathin lens arrays for viewing interlaced images
US7414790B2 (en) Ultrathin lens arrays for viewing interlaced images with dual lens structures
JP6522591B2 (en) Method and apparatus for producing a pattern on a substrate web
KR102497982B1 (en) Secure lens layer
US7307790B1 (en) Ultrathin lens arrays for viewing interlaced images
JP2001225376A (en) Method for producing continuous sheet having optical function
US9360751B2 (en) Imprinting stamp and nano-imprinting method using the same
WO2014010516A1 (en) Imprint method, and imprinting device
JP2007057866A (en) Reflection type winding screen and its manufacturing method
CN113204062A (en) Double-sided structure optical film and manufacturing method thereof
US20080304287A1 (en) Microstructure transfer medium and application thereof
CN111247004A (en) Optical device providing optical effects such as flicker
WO2020066478A1 (en) Shaped-sheet manufacturing method
CN111770822B (en) Method for manufacturing shaped sheet
JP6357361B2 (en) Retroreflector and stereoscopic image display device using the same
JP6274102B2 (en) Light diffusing sheet
WO2020145265A1 (en) Indicator body and labeled printed matter
JP5509566B2 (en) Optical component and liquid crystal display unit
WO2012132649A1 (en) Concave-convex sheet and manufacturing method therefor
JP5699686B2 (en) Method for manufacturing columnar lens sheet for stereoscopic image display
JPH09311204A (en) Lenticular lens sheet and its production
JP2007078884A (en) Manufacturing method of display optical sheet
CN218956931U (en) Micro-optical imaging system
JPH09311202A (en) Lenticular lens sheet and its production
RU2629150C1 (en) Dynamic image forming device and method of its obtaining

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866836

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020548259

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866836

Country of ref document: EP

Kind code of ref document: A1