WO2020066251A1 - 検査装置、ptp包装機及びptpシートの製造方法 - Google Patents

検査装置、ptp包装機及びptpシートの製造方法 Download PDF

Info

Publication number
WO2020066251A1
WO2020066251A1 PCT/JP2019/028999 JP2019028999W WO2020066251A1 WO 2020066251 A1 WO2020066251 A1 WO 2020066251A1 JP 2019028999 W JP2019028999 W JP 2019028999W WO 2020066251 A1 WO2020066251 A1 WO 2020066251A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectral
inspection
tablet
film
pocket portion
Prior art date
Application number
PCT/JP2019/028999
Other languages
English (en)
French (fr)
Inventor
田口 幸弘
Original Assignee
Ckd株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ckd株式会社 filed Critical Ckd株式会社
Priority to EP19866824.6A priority Critical patent/EP3859311A4/en
Priority to CN201980056223.0A priority patent/CN112639446A/zh
Publication of WO2020066251A1 publication Critical patent/WO2020066251A1/ja
Priority to US17/182,642 priority patent/US11360033B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9508Capsules; Tablets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1765Method using an image detector and processing of image signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/04Batch operation; multisample devices

Definitions

  • the present invention relates to an inspection apparatus, a PTP packaging machine, and a method of manufacturing a PTP sheet for inspecting the mixture of different types using spectroscopic analysis.
  • a PTP sheet is composed of a container film in which a pocket portion to be filled with an object such as a tablet is formed, and a cover film attached to the container film so as to seal the opening side of the pocket portion. I have.
  • a different kind mixing inspection for checking the mixing of different kinds is performed.
  • an inspection method an object is irradiated with near-infrared light, the reflected light is separated by a spectroscope, and analysis processing (for example, principal component analysis) is performed based on spectral data obtained by imaging the reflected light.
  • analysis processing for example, principal component analysis
  • the same tablet may be used due to the influence of shadows on concave portions (marks or score lines of tablets) on the target object, the outer edges of the target object, or the effects of shininess due to specular light generated on convex portions on the target object. Even if there is, there is a possibility that the data varies greatly from one coordinate point to another and uniformity cannot be maintained.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to manufacture an inspection apparatus, a PTP packaging machine, and a PTP sheet capable of improving the inspection accuracy relating to a different kind mixed inspection using spectroscopic analysis. It is to provide a method.
  • Irradiation means capable of irradiating near infrared light to the object
  • Spectral means capable of spectrally reflecting light reflected from the object irradiated with the near-infrared light
  • Imaging means capable of capturing a spectral image of the reflected light that has been spectrally separated by the spectral means
  • a spectrum data acquisition unit that can acquire spectrum data at a plurality of points (a plurality of coordinate positions) on the object based on the spectral image acquired by the imaging unit;
  • Median selection means for selecting a median for each wavelength (wavelength band) for the plurality of points of spectrum data;
  • Analysis means capable of detecting a different kind by performing predetermined analysis processing (for example, principal component analysis) on the object based on median spectrum data constituted by medians selected for each wavelength.
  • An inspection apparatus characterized in that:
  • Irradiation means capable of irradiating near infrared light to the object
  • Spectral means capable of spectrally reflecting light reflected from the object irradiated with the near-infrared light
  • Imaging means capable of capturing a spectral image of the reflected light that has been spectrally separated by the spectral means
  • a spectrum data acquisition unit that can acquire spectrum data at a plurality of points (a plurality of coordinate positions) on the object based on the spectral image acquired by the imaging unit; From the spectral data of the plurality of points, spectral data in which the luminance value at a predetermined wavelength (wavelength band) or the sum of the luminance values in a predetermined wavelength range (a plurality of wavelength band groups) is a median value
  • a representative spectrum selecting means for selecting as representative spectrum data representing An inspection apparatus, comprising: analysis means capable of detecting a different kind by performing a predetermined analysis process (for example, principal component analysis) on the object based on the representative spectrum data.
  • a PTP packaging machine for manufacturing a PTP sheet in which a target object is accommodated in a pocket formed in a container film and a cover film is attached so as to close the pocket, Pocket portion forming means for forming the pocket portion with respect to the strip-shaped container film, Filling means for filling the pocket portion with the object, Attachment means for attaching the band-shaped cover film to the container film filled with the object in the pocket portion so as to close the pocket portion, A separating unit (including a punching unit for punching out the sheet unit) for separating the PTP sheet from a band-shaped body (a band-shaped PTP film) having the cover film attached to the container film;
  • a PTP packaging machine comprising: the inspection device according to the above means 1 or 2.
  • the PTP packaging machine may be configured to include a discharge unit that discharges the PTP sheet determined to be defective by the inspection device.
  • the inspection device may be arranged in a "pre-process in which the pocket is filled with the object by the filling means". In such a case, it is possible to eliminate different types of products before the pocket is filled, and it is possible to reduce the number of PTP sheets that are defective.
  • the inspection apparatus may be arranged in a “process after the filling of the pocket portion with the filling means by the filling means and before the cover film is attached by the attaching means”. In such a case, the inspection can be performed in a state where there is no obstacle to the object, and the inspection accuracy can be further improved.
  • the inspection apparatus may be arranged in a “process after the cover film is attached by the attaching device and before the PTP sheet is separated by the separating device”. In such a case, the inspection can be performed in a state where the objects are not replaced, and the inspection accuracy can be further improved.
  • the above inspection apparatus may be arranged in a “post-process after the PTP sheet is cut off by the cutting means”. In such a case, it can be confirmed at the final stage whether or not defective products are mixed.
  • Means 4 A method of manufacturing a PTP sheet for manufacturing a PTP sheet in which an object is accommodated in a pocket formed in a container film and a cover film is attached so as to close the pocket, A pocket portion forming step of forming the pocket portion with respect to the band-shaped container film, A filling step of filling the pocket portion with the object, For the container film filled with the object in the pocket portion, an attaching step of attaching the band-shaped cover film so as to close the pocket portion, A separating step (including a punching step of punching a sheet unit) of separating the PTP sheet from a belt-shaped body (a belt-shaped PTP film) having the cover film attached to the container film; Inspection process to inspect the mixture of different varieties, In the inspection step, An irradiation step of irradiating the object with near-infrared light, A spectroscopic step of dispersing reflected light reflected from the object irradiated with the near-infrared light, An imaging step (exposure step) for
  • a method of manufacturing a PTP sheet for manufacturing a PTP sheet in which an object is accommodated in a pocket formed in a container film and a cover film is attached so as to close the pocket A pocket portion forming step of forming the pocket portion with respect to the band-shaped container film, A filling step of filling the pocket portion with the object, For the container film filled with the object in the pocket portion, an attaching step of attaching the band-shaped cover film so as to close the pocket portion, A separating step (including a punching step of punching a sheet unit) of separating the PTP sheet from a belt-shaped body (a belt-shaped PTP film) having the cover film attached to the container film; Inspection process to inspect the mixture of different varieties, In the inspection step, An irradiation step of irradiating the object with near-infrared light, A spectroscopic step of dispersing reflected light reflected from the object irradiated with the near-infrared light, An imaging step (exposure step) for capturing
  • the inspection step may be performed as "a step before the filling step". In such a case, it is possible to eliminate different types of products before the pocket is filled, and it is possible to reduce the number of PTP sheets that are defective.
  • the inspection step may be performed as “a step after the filling step and a step before the attaching step”. In such a case, the inspection can be performed in a state where there is no obstacle to the object, and the inspection accuracy can be improved.
  • the inspection step may be performed as “a step after the attaching step and a step before the separating step”. In such a case, the inspection can be performed in a state where the objects are not replaced, and the inspection accuracy can be improved.
  • the inspection step may be performed as a “post-separation step”. In such a case, it can be confirmed at the final stage whether or not defective products are mixed.
  • FIG. 1 is a perspective view showing a PTP sheet
  • (b) is a perspective view showing a PTP film. It is a partial expanded sectional view of a pocket part of a PTP sheet.
  • FIG. 2 is a block diagram illustrating an electrical configuration of the inspection device. It is a perspective view which shows the arrangement structure of an inspection apparatus typically. It is a schematic diagram which shows the schematic structure of an imaging device.
  • 9 is a flowchart illustrating a spectrum data acquisition routine.
  • FIG. 3 is a schematic diagram illustrating a spectrum spectrum projected on an image sensor. 9 is a flowchart illustrating an inspection routine.
  • FIG. 4 is an explanatory diagram for explaining a relationship between a transfer direction imaging range and a spectrum image. It is a schematic diagram which shows a spectrum image.
  • FIG. 3 is a schematic diagram illustrating an example of a plurality of coordinate points at which spectrum data has been acquired on a tablet.
  • 6 is a table showing an example of spectrum data acquired at a plurality of coordinate points on a tablet.
  • 14 is a graph in which various values shown in FIG. 13 are plotted.
  • the PTP sheet 1 has a container film 3 having a plurality of pockets 2 and a cover film 4 attached to the container film 3 so as to cover the pockets 2. ing.
  • the container film 3 in the present embodiment is formed of a transparent thermoplastic resin material such as PP (polypropylene) or PVC (polyvinyl chloride), and has translucency.
  • the cover film 4 is made of an opaque material (for example, aluminum foil or the like) having a surface provided with a sealant made of, for example, a polypropylene resin.
  • the PTP sheet 1 is formed in a substantially rectangular shape in plan view.
  • the PTP sheet 1 is formed with two rows of pockets composed of five pockets 2 arranged in the longitudinal direction thereof in the transverse direction. That is, a total of ten pocket portions 2 are formed.
  • Each pocket 2 accommodates one tablet 5 as an object.
  • the tablet 5 is a disc-shaped uncoated tablet having a circular shape in a plan view, and includes a side surface 5A, a flat surface 5B and a back surface 5C sandwiching the side surface 5A. It has a configuration having.
  • the tablets 5 are accommodated such that the front surface 5B faces the cover film 4 and the back surface 5C faces the bottom wall (top wall) of the pocket 2.
  • a tapered portion 5D is formed so as to chamfer a boundary portion between the side surface 5A and the front surface 5B
  • a tapered portion 5E is formed so as to chamfer a boundary portion between the side surface 5A and the back surface 5C.
  • a groove-like score line 5F extending straight through the center of the surface 5B is engraved on the surface 5B of the tablet 5.
  • the dividing line 5F is engraved only on the front surface 5B, and is not engraved on the back surface 5C.
  • the PTP sheet 1 (see FIG. 1A) is formed by punching a strip-shaped PTP film 6 (see FIG. 1B) formed from a strip-shaped container film 3 and a strip-shaped cover film 4 into a sheet. Manufactured.
  • the web of the strip-shaped container film 3 is wound in a roll shape.
  • the drawing end side of the container film 3 wound in a roll shape is guided by a guide roll 13.
  • the container film 3 is mounted on an intermittent feed roll 14 on the downstream side of the guide roll 13.
  • the intermittent feed roll 14 is connected to a motor that rotates intermittently, and conveys the container film 3 intermittently.
  • a heating device 15 and a pocket portion forming device 16 are sequentially arranged between the guide roll 13 and the intermittent feeding roll 14 along the transport path of the container film 3. Then, in a state where the container film 3 is heated by the heating device 15 and the container film 3 is relatively flexible, a plurality of pocket portions 2 are formed at predetermined positions of the container film 3 by the pocket portion forming device 16 ( Pocket part forming step).
  • the heating device 15 and the pocket portion forming device 16 constitute a pocket portion forming means in the present embodiment. The formation of the pocket portion 2 is performed at intervals during the operation of transporting the container film 3 by the intermittent feed roll 14.
  • the container film 3 sent out from the intermittent feed roll 14 is wound on a tension roll 18, a guide roll 19, and a film receiving roll 20 in this order. Since the film receiving roll 20 is connected to a motor that rotates at a constant speed, the film receiving roll 20 conveys the container film 3 continuously and at a constant speed.
  • the tension roll 18 is in a state where the container film 3 is pulled toward the side where the container film 3 is tensioned by the elastic force, and prevents the container film 3 from bending due to a difference in the transport operation between the intermittent feeding roll 14 and the film receiving roll 20.
  • the container film 3 is always kept in tension.
  • a tablet filling device 21 and an inspection device 22 are sequentially arranged between the guide roll 19 and the film receiving roll 20 along the transport path of the container film 3.
  • the tablet filling device 21 has a function as filling means for automatically filling the pocket 5 with the tablet 5.
  • the tablet filling device 21 drops the tablet 5 by opening the shutter at predetermined intervals in synchronization with the transport operation of the container film 3 by the film receiving roll 20. 2 are filled with tablets 5 (filling step).
  • the inspection device 22 is a spectroscopic analysis device that performs inspection using spectroscopic analysis, and is for inspecting the mixture of different varieties. Details of the inspection device 22 will be described later.
  • the raw material of the cover film 4 formed in a belt shape is wound in a roll shape on the most upstream side.
  • the drawn end of the cover film 4 wound in a roll shape is guided to the heating roll 25 via the guide roll 24.
  • the heating roll 25 can be pressed against the film receiving roll 20, and the container film 3 and the cover film 4 are fed between the two rolls 20 and 25.
  • the cover film 4 is adhered to the container film 3 by passing the container film 3 and the cover film 4 between the two rolls 20 and 25 in a heated and pressed state, and the pocket portion 2 is closed with the cover film 4. (Attachment process).
  • the PTP film 6 as a band-like body in which the tablet 5 is filled in each pocket portion 2 is manufactured.
  • fine mesh-like ridges for sealing are formed, and when they are strongly pressed against each other, a strong seal is realized.
  • the film receiving roll 20 and the heating roll 25 constitute an attaching means in the present embodiment.
  • the PTP film 6 sent out from the film receiving roll 20 is loaded on a tension roll 27 and an intermittent feed roll 28 in this order. Since the intermittent feed roll 28 is connected to a motor that rotates intermittently, it intermittently conveys the PTP film 6.
  • the tension roll 27 is in a state where the PTP film 6 is pulled toward the side where the PTP film 6 is tensioned by the elastic force, and prevents the PTP film 6 from bending due to a difference in the transport operation between the film receiving roll 20 and the intermittent feeding roll 28.
  • the PTP film 6 is always kept in tension.
  • the PTP film 6 sent out from the intermittent feed roll 28 is mounted on the tension roll 31 and the intermittent feed roll 32 in this order. Since the intermittent feed roll 32 is connected to a motor that rotates intermittently, it intermittently conveys the PTP film 6.
  • the tension roll 31 is in a state where the PTP film 6 is pulled toward the side where the PTP film 6 is tensioned by elastic force, and prevents the PTP film 6 from bending between the intermittent feed rolls 28 and 32.
  • a slit forming device 33 and a marking device 34 are sequentially arranged between the intermittent feeding roll 28 and the tension roll 31 along the transport path of the PTP film 6.
  • the slit forming device 33 has a function of forming a cutting slit at a predetermined position of the PTP film 6.
  • the marking device 34 has a function of marking a predetermined position (for example, a tag portion) of the PTP film 6.
  • the PTP film 6 fed from the intermittent feed roll 32 is mounted on the downstream side in the order of the tension roll 35 and the continuous feed roll 36.
  • a sheet punching device 37 is disposed between the intermittent feed roll 32 and the tension roll 35 along the transport path of the PTP film 6.
  • the sheet punching device 37 has a function as a sheet punching unit (separating unit) for punching the outer edge of the PTP film 6 per PTP sheet.
  • the PTP sheet 1 punched by the sheet punching device 37 is conveyed by the conveyor 39 and temporarily stored in the finished product hopper 40 (separation step). However, if the inspection device 22 determines that the PTP sheet 1 is defective, the PTP sheet 1 determined to be defective is not sent to the finished product hopper 40 but is separately sent by a defective sheet discharge mechanism (not shown) as discharge means. Is discharged.
  • a cutting device 41 is provided downstream of the continuous feed roll 36. Then, the unnecessary film portion 42 constituting the remaining material portion (scrap portion) remaining in a band shape after the punching by the sheet punching device 37 is guided by the tension roll 35 and the continuous feed roll 36, and then guided to the cutting device 41.
  • the continuous feed roll 36 is pressed against a driven roll, and performs a transport operation while nipping the unnecessary film portion 42.
  • the cutting device 41 has a function of cutting the unnecessary film portion 42 to a predetermined size and performing scrap processing. This scrap is stored in the scrap hopper 43 and then discarded separately.
  • the rolls 14, 20, 28, 31, 32, and the like have a positional relationship in which the roll surface and the pocket portion 2 face each other. Since the recessed portion to be accommodated is formed, the pocket portion 2 does not collapse. Further, by performing the feeding operation while the pocket portion 2 is accommodated in each concave portion such as the intermittent feeding roll 14, the intermittent feeding operation and the continuous feeding operation are reliably performed.
  • an accumulation device, a transfer device, a packaging device, and the like are sequentially installed downstream of the PTP packaging machine 10.
  • the loose PTP sheets 1 housed in the completed product hopper 40 are, for example, put into a set of two sheets, and then stacked in the stacking device in plural sets.
  • the stack composed of the stacked PTP sheets 1 is transported to the packaging device while being bound by a transport device, and pillow-packed in the packaging device.
  • FIG. 4 is a block diagram illustrating an electrical configuration of the inspection device 22
  • FIG. 5 is a perspective view schematically illustrating an arrangement configuration of the inspection device 22.
  • the inspection device 22 performs various controls, image processing, arithmetic processing, and the like in the inspection device 22 such as a lighting device 52, an imaging device 53, and drive control of the illumination device 52 and the imaging device 53. And a control processing device 54 to be implemented.
  • the illumination device 52 and the imaging device 53 are arranged on the side of the pocket portion 2 of the container film 3.
  • the different kind mixed inspection is performed from the opening side of the pocket portion 2 of the container film 3 before the cover film 4 is attached.
  • the illumination device 52 is a known device configured to emit near-infrared light, and constitutes an irradiation unit in the present embodiment.
  • the illuminating device 52 is arranged so as to be able to irradiate near-infrared light from obliquely upward toward a predetermined area on the container film 3 that is continuously transported.
  • the illumination device 52 employs a halogen lamp as a light source capable of emitting near-infrared light having a continuous spectrum (for example, a near-infrared region having a wavelength of 700 to 2500 nm).
  • a deuterium discharge tube, a tungsten lamp, a xenon lamp, or the like can be used as the light source.
  • the imaging device 53 includes an optical lens 61, a two-dimensional spectroscope 62 as a spectral unit, and a camera 63 as an imaging unit.
  • the optical lens 61 is composed of a plurality of lenses (not shown) and the like, and is configured to be able to collimate incident light.
  • the optical axis of the optical lens 61 is set along the vertical direction (Z direction).
  • the optical lens 61 is set so that incident light can be imaged at a position of a slit 62a of a two-dimensional spectroscope 62 described later.
  • a double-sided telecentric lens is used as the optical lens 61
  • an image-side telecentric lens may be used as a matter of course.
  • the two-dimensional spectroscope 62 includes a slit 62a, an incident-side lens 62b, a spectroscopic unit 62c, and an output-side lens 62d.
  • the light splitting unit 62c includes an incident-side prism 62ca, a transmission-type diffraction grating 62cb, and an output-side prism 62cc.
  • the light that has passed through the slit 62a is collimated by the incident-side lens 62b, is then split by the splitting unit 62c, and is output by the output-side lens 62d to the imaging element 65 of the camera 63, which will be described later.
  • the splitting unit 62c splits the light that has passed through the slit 62a.
  • the slit 62a is formed in an elongated, substantially rectangular (linear) opening, the opening width direction (short direction) is provided along the film transport direction (X direction) of the container film 3, and the longitudinal direction is defined as It is provided along the film width direction (Y direction) of the container film 3 orthogonal to the transport direction. Accordingly, the two-dimensional spectroscope 62 splits the incident light in the opening width direction of the slit 62a, that is, in the film transport direction (X direction).
  • the camera 63 includes an image sensor 65 having a light receiving surface 65a in which a plurality of light receiving elements (light receiving sections) 64 are two-dimensionally arranged in a matrix.
  • a known CCD area sensor having a sufficient sensitivity to a wavelength range of, for example, 900 to 2000 nm in the near infrared region is used as the imaging element 65.
  • the imaging element is not limited to this, and another sensor having sensitivity in the near infrared region may be employed.
  • a CMOS sensor or an MCT (HgCdTe) sensor may be used.
  • the field of view (imaging area) of the imaging device 53 is a linear area extending along the film width direction (Y direction) and includes at least the entire area of the container film 3 in the film width direction (2 in FIG. 5). (See the dotted line).
  • the viewing area of the imaging device 53 in the film transport direction (X direction) is an area corresponding to the width of the slit 62a. That is, the light (slit light) that has passed through the slit 62a is an area where an image is formed on the light receiving surface 65a of the image sensor 65.
  • each light receiving element 64 of the image sensor 65 receives each wavelength component (for example, every 20 nm bandwidth) of the spectral spectrum of the reflected light reflected at each position in the film width direction (Y direction) of the container film 3. Hence, a signal corresponding to the intensity of the light received by each light receiving element 64 is converted into a digital signal and then output from the camera 63 to the control processing device 54. That is, an image signal (spectral image data) for one screen imaged on the entire light receiving surface 65a of the image sensor 65 is output to the control processing device 54.
  • the control processing device 54 includes a CPU that controls the entire inspection device 22 and an input / output interface 71 (hereinafter, referred to as “CPU 71”), and an input device 72 as an “input unit” including a keyboard, a mouse, a touch panel, and the like.
  • a display device 73 as a "display means" having a display screen such as a CRT or a liquid crystal, an image data storage device 74 for storing various image data and the like, a calculation result storage device 75 for storing various calculation results and the like, A setting data storage device 76 for storing various information in advance is provided. These devices 72 to 76 are electrically connected to a CPU 71 and the like.
  • the CPU 71 is connected to the PTP packaging machine 10 so that various signals can be transmitted and received. Thus, for example, a defective sheet discharging mechanism of the PTP packaging machine 10 can be controlled.
  • the image data storage device 74 is for storing spectral image data captured by the image capturing device 53, spectral image data obtained based on the spectral image data, binarized image data after binarization processing, and the like. It is.
  • the operation result storage device 75 stores inspection result data, statistical data obtained by processing the inspection result data in a probabilistic manner, and the like. These inspection result data and statistical data can be displayed on the display device 73 as appropriate.
  • the setting data storage device 76 stores, for example, a loading vector and a determination range used for principal component analysis, and shapes and dimensions of the PTP sheet 1, the pocket 2, and the tablet 5.
  • This routine is a process that is repeatedly executed each time the container film 3 is transported by a predetermined amount.
  • step S01 the control processing device 54 irradiates near-infrared light from the illumination device 52 to the continuously transported container film 3 (tablet 5) (irradiation process), and performs an imaging process (exposure process) by the imaging device 53. ).
  • control processing device 54 drives and controls the imaging device 53 based on a signal from an encoder (not shown) provided in the PTP packaging machine 10 and stores the spectral image data captured by the imaging device 53 in the image data storage device 74. Take in.
  • the near-infrared light emitted from the illumination device 52 toward the container film 3 is reflected in the conveyance direction imaging range W (see FIG. 10) during the execution period (exposure period) of the imaging process in step S01.
  • each time the container film 3 is transported by a predetermined amount the above-described imaging processing is executed, so that spectral spectra at a plurality of locations in the transport direction of one tablet 5 are captured. Configuration.
  • the reflected light that has entered the imaging device 53 is split by the two-dimensional spectroscope 62 (spectral process), and is imaged as a spectral image (spectral spectrum) by the image sensor 65 of the camera 63 (imaging process).
  • FIG. 8 is a schematic diagram showing a state where the spectral spectrum H of the reflected light reflected at a predetermined position on the tablet 5 is projected on the light receiving surface 65a of the image sensor 65.
  • FIG. 8 for convenience, only the spectral spectrum H of the tablet 5 is shown, and the spectral spectrum of other parts is not shown.
  • the spectral image (spectral spectrum) data captured by the image capturing device 53 is output to the control processing device 54 during the interval period and stored in the image data storage device 74.
  • the interval period is a period for reading image data. That is, the imaging cycle by the imaging device 53 can be represented by the total time of the exposure period, which is the execution period of the imaging process, and the interval period.
  • control processing device 54 starts the data generation process in step S02.
  • spectrum data is generated based on the spectral image data acquired in step S01.
  • the spectrum data is generated, it is stored in the image data storage device 74, and this routine is temporarily ended.
  • the transport direction imaging range W intermittently moves relative to each other, and the above-described spectrum data acquisition routine is repeated.
  • spectral data corresponding to each imaging direction W in the transport direction is sequentially stored in chronological order together with positional information in the film transport direction (X direction) and the film width direction (Y direction).
  • a two-dimensional spectrum image Q having spectrum data for each pixel is generated (see FIG. 11).
  • the spectrum image Q in the present embodiment will be described.
  • the spectrum image Q is image data in which a plurality of pixels Qa are two-dimensionally arranged.
  • Each pixel Qa includes spectral data [data indicating spectral intensity (luminance value) related to a plurality of wavelength components (wavelength bands)].
  • the control processing device 54 executes an inspection routine. .
  • the control processing device 54 first executes a tablet pixel extraction process in step S11.
  • a pixel hereinafter, referred to as “tablet pixel”
  • Qb a pixel corresponding to the tablet 5 to be analyzed is extracted from each pixel Qa of the spectral image Q.
  • a binarization process is performed on the spectral image Q. Then, a tablet pixel Qb is extracted based on the obtained binarized image data (see FIGS. 10 and 11).
  • FIG. 10 is an explanatory diagram for explaining the relationship between the transport direction imaging range W and the spectrum image Q. 10 and 11, the pixels extracted as the tablet pixels Qb are indicated by oblique lines.
  • the method of extracting the tablet pixel Qb is not limited to this, and another method may be adopted.
  • a configuration in which an integrated value of spectral data (spectral intensity of each wavelength component) is calculated for each pixel Qa, and whether or not such a value is equal to or greater than a predetermined threshold value is extracted to extract a tablet pixel Qb. It may be.
  • control processing device 54 executes a tablet area specifying process in step S12. By this processing, the area of the ten tablets 5 accommodated in each pocket part 2 in the inspection range is specified.
  • a labeling process is performed on the tablet pixel Qb obtained in step S11, and all adjacent tablet pixels Qb are regarded as connected components of the tablet pixels Qb belonging to the same tablet 5.
  • the range of one connected component can be specified as a tablet area related to one tablet 5 stored in the predetermined pocket portion 2 (see FIGS. 10 and 11).
  • a connected component (tablet region) of a plurality of tablet pixels Qb belonging to each tablet 5 is surrounded by a thick frame.
  • the spectrum data of the plurality of tablet pixels Qb included in one connected component (tablet region) can be handled as the spectrum data at a plurality of points (a plurality of coordinate positions) on one tablet 5.
  • a series of processing steps such as the data generation processing in step S02, the tablet pixel extraction processing in step S11, and the tablet area identification processing in step S12 constitute a spectrum data acquisition step in the present embodiment, and control for executing this processing is performed.
  • the function of the processing device 54 constitutes a spectrum data acquisition unit in the present embodiment.
  • the method for specifying the region of the tablet 5 is not limited to this, and another method may be adopted.
  • a pixel included in a predetermined range around a specific pixel may be determined as a pixel belonging to the same tablet 5 as the specific pixel.
  • control processing device 54 executes a median spectrum acquisition process in step S13.
  • the median spectrum data of each tablet 5 is obtained using the spectrum data of a plurality of tablet pixels Qb included therein.
  • a median of spectral intensities (luminance values) is selected for each wavelength component. Then, a set of median values of these wavelength components is stored in the calculation result storage device 75 as median spectrum data relating to the tablet 5.
  • the process of selecting the median for each wavelength component constitutes the median selection process of the present embodiment
  • the function of the control processing device 54 that executes the process constitutes the median selection means of the present embodiment. Will be done.
  • FIG. 12 is a schematic diagram showing an example of a plurality of coordinate points A to E at which spectrum data has been acquired on one tablet 5.
  • FIG. 13 is a table showing an example of spectrum data (spectral intensity for each wavelength component) and the like acquired at these coordinate points A to E, and
  • FIG. 14 is a graph plotting the data.
  • the coordinate point A is located within the dividing line 5F, and includes a shadow portion where the luminance of the reflected light becomes low. Therefore, as shown in FIGS. 13 and 14, the spectral data relating to the coordinate point A has low luminance as a whole.
  • the coordinate point B is located on the tapered portion 5D located on the far side from the lighting device 52 (see FIG. 12), and includes a shadow portion in which the brightness of the reflected light is low similarly to the coordinate point A. For this reason, the spectrum data related to the coordinate point B is also data with low luminance as a whole (see FIGS. 13 and 14).
  • the coordinate point E is located at the boundary between the tapered portion 5D located closer to the lighting device 52 and the flat surface 5B (see FIG. 12), and the corner where the brightness of the reflected light is higher. Etc. are included.
  • the spectrum data relating to the coordinate point E is data having a high luminance as a whole (see FIGS. 13 and 14).
  • the coordinate points C and D are located on the flat surface of the surface 5B (see FIG. 12), and do not include the shadow portion or the regular reflection portion.
  • the spectrum data relating to the coordinate points C and D is data that relatively appropriately reflects the components of the tablet 5 (see FIGS. 13 and 14).
  • the spectral intensity “3” of the 900 nm wavelength band related to the coordinate point D is selected as the median value of the 900 nm wavelength band.
  • a dotted pattern is attached to a portion corresponding to the median value so that the median value can be easily recognized.
  • the spectrum intensity “4” of the wavelength band of 1000 nm related to the coordinate point C is selected.
  • the spectrum intensities “7”, “4”, and “4” of each wavelength component in the wavelength band of 1100 nm to 1700 nm related to the coordinate point C are set. , “4”, “4.5”, “5”, and “7”.
  • the spectral intensity “7”, “4”, “3” of each wavelength component of the wavelength 1800 nm band to the wavelength 2000 nm band related to the coordinate point D is set to the median value of each wavelength component of the wavelength band of 1800 nm to 2000 nm. elect.
  • the spectral data related to the coordinate points A, B, and E are affected by the spectral data related to the coordinate points A, B, and E (the effect of the shadow generated in the secant line 5F and the tapered portion 5D, and the effect of the shininess due to the regular reflection), and the coordinate points C and D are relatively appropriate. This is data that does not approximate the spectrum data.
  • the median value spectrum data is data that approximates the spectrum data relating to the relatively appropriate coordinate points C and D.
  • the control processing device 54 converts the median spectrum data into the central data of one inspection range.
  • the data is collectively stored in the calculation result storage device 75 as a value spectrum data group.
  • step S14 the control processing device 54 sets the counter value P of the pocket number counter set in the calculation result storage device 75 to "1" which is an initial value.
  • the “pocket number” is a serial number set corresponding to each of the ten pocket portions 2 in one inspection range, and is a counter value P of the pocket number counter (hereinafter simply referred to as “pocket number counter value”). P "), the position of the pocket portion 2 can be specified (see FIG. 11).
  • the uppermost pocket portion 2 in the left column is set as the pocket portion 2 corresponding to the pocket number counter value [1]
  • the lowermost pocket portion 2 in the right column is the pocket number counter value [ 10].
  • step S15 the control processing device 54 executes an analysis target data extraction process.
  • the median spectrum data of the tablet 5 stored in the corresponding pocket 2 is extracted.
  • control processing device 54 performs an analysis process on the median spectrum data of the tablet 5 extracted in step S15 (step S16).
  • Such a process corresponds to an analysis step in the present embodiment, and the function of the control processing device 54 that executes the process constitutes an analysis unit in the present embodiment.
  • the principal component analysis is performed on the median spectrum data of the tablet 5 obtained in step S13 using the loading vector acquired in advance. More specifically, the main component score is calculated by calculating the loading vector and the median spectrum data of the tablet 5.
  • step S17 the control processing device 54 executes a tablet quality determination process.
  • the principal component score calculated in step S16 is plotted on a PCA diagram, and if the plotted data is within a preset good range, it is good (same product). ).
  • control processing device 54 stores the determination result (“good” or “bad”) of the tablet 5 in the calculation result storage device 75.
  • control processing device 54 adds “1” to the current pocket number counter value P in step S18, and then proceeds to step S19 to determine whether the newly set pocket number counter value P exceeds the maximum value Pmax. Determine whether or not.
  • the maximum value Pmax is the maximum value (“10” in the present embodiment) of the number of the pocket portions 2 in one inspection range.
  • step S20 If a negative determination is made here, the process returns to step S15 again to execute the above series of processing. On the other hand, when an affirmative determination is made, it is considered that the quality determination of the tablets 5 related to all the pocket portions 2 has been completed, and the process proceeds to step S20.
  • step S20 the control processing device 54 executes a sheet quality determination process. In this process, it is determined whether the PTP sheet 1 corresponding to the inspection range is non-defective or defective based on the determination result in the tablet quality determination process in step S17.
  • the PTP sheet 1 corresponding to the inspection range is determined to be “defective”, and the process proceeds to step S21. .
  • the PTP sheet 1 corresponding to the inspection range is determined to be “non-defective”, and the process proceeds to step S22.
  • control processing device 54 stores the result of the “defective product” determination relating to the PTP sheet 1 in the calculation result storage device 75, and informs the PTP packing machine 10 of that fact. Output to a mechanism or the like and end the inspection routine.
  • control processing device 54 stores the “non-defective” determination result relating to the PTP sheet 1 (inspection range) in the calculation result storage device, and ends the inspection routine.
  • a singular point on the tablet 5 can be obtained by relatively simple arithmetic processing.
  • Spectral data relating to for example, the coordinate points A, B, E, etc. in FIG. 12
  • appropriate spectral data for performing the spectral analysis of the tablet 5 can be obtained.
  • the target is the tablet 5
  • the type of the target is not particularly limited.
  • the target is a capsule, a supplement, a food, etc. Good.
  • Tablets include solid preparations such as uncoated tablets and sugar-coated tablets.
  • the specularly reflected light reflected on the capsule portion becomes shiny, which may affect the inspection on the medicine inside the capsule.
  • the occurrence of defects can be suppressed.
  • the tablet 5 is a disc-shaped uncoated tablet having a circular shape in a plan view, in which tapered portions 5D and 5E are formed at the outer edges of the front and back surfaces 5B and 5C, and a score line 5F is engraved on the surface 5B. What is done is illustrated.
  • the target object may be a tablet from which the tapered portions 5D and 5E and / or the score line 5F are omitted. Further, a tablet marked as a concave portion may be used as the target.
  • a lens tablet having a circular shape in a plan view and having different thicknesses at a central portion and a peripheral portion or a tablet having a substantially elliptical shape, a substantially elliptical shape, a substantially polygonal shape, and the like in a plan view may be used as the target object.
  • the material of the container film 3 and the cover film 4 is not limited to the above-described embodiment, and other materials may be used.
  • the container film 3 may be formed of a metal material mainly composed of aluminum, such as an aluminum laminated film.
  • the arrangement and the number of the pockets 2 in the PTP sheet 1 are not limited to the above-described embodiment at all, and include various arrangements and numbers including, for example, a type having three rows of 12 pockets. PTP sheets can be employed.
  • the inspection device 22 uses the inspection device 22 from the opening side of the pocket 2.
  • the configuration is such that the tablet 5 is illuminated and imaged, and a different kind mixture inspection is performed.
  • the inspection device 22 may be configured to illuminate and image the tablet 5 through the pocket portion 2 (container film 3), and to perform an inspection for mixing different kinds.
  • the specularly reflected light reflected by the pocket portion 2 becomes shiny, which may affect the inspection. The occurrence of such a problem can be suppressed.
  • the inspection device 22 causes the pocket portion 2 from the container film 3 side of the PTP film 6.
  • the tablet 5 may be illuminated and imaged through it, and a different kind mixed test may be performed.
  • the inspection device 22 illuminates and images the tablet 5 from the container film 3 side of the PTP sheet 1 being conveyed by the conveyor 39 through the pocket portion 2.
  • a configuration may be adopted in which a different kind mixed inspection is performed.
  • the inspection device 22 is provided as an apparatus for inspecting the PTP sheet 1 offline separately from the PTP packaging machine 10. Is also good.
  • the inspection device 22 may be provided with a transport unit capable of transporting the PTP sheet 1.
  • the inspection device 22 performs an inspection for mixing different kinds of products.
  • the inspection may be performed before the tablet 5 is put into the tablet filling device 21. That is, the inspection device 22 may be provided as an apparatus for inspecting the tablets 5 off-line separately from the PTP packaging machine 10.
  • the inspection may be performed in a stopped state without continuously transporting the PTP sheet 1 or the tablet 5.
  • the configurations of the illumination device 52 and the imaging device 53 are not limited to the above-described embodiment.
  • a configuration in which a reflection type diffraction grating, a prism, or the like is used as a spectral unit may be adopted.
  • the spectrum data is analyzed by the principal component analysis (PCA).
  • PCA principal component analysis
  • the present invention is not limited to this, and the analysis may be performed using another known method such as PLS regression analysis. Good.
  • the median of the spectrum intensity is selected for each wavelength component with respect to the spectrum data of a plurality of coordinate points on one tablet 5, and for each of these wavelength components, The collection of the selected medians is acquired as the median spectrum data of the tablet 5 and the analysis processing of step S16 is performed on the median spectrum data to thereby prevent the mixed variety of the tablet 5 from being mixed. Inspection is performed.
  • the present invention is not limited to this. Instead of the median spectrum acquisition process of step S13, a representative spectrum acquisition process of selecting representative spectrum data representing the tablet 5 from the spectrum data of a plurality of coordinate points on one tablet 5 And the analysis processing of step S16 may be performed on the representative spectrum data to thereby perform a different kind of mixture inspection on the tablet 5.
  • the step of performing the representative spectrum acquisition processing constitutes a representative spectrum selection step in the present embodiment
  • the function of the control processing device 54 that executes the representative spectrum selection step configures the representative spectrum selection means in the present embodiment.
  • the sum of the spectral intensities (luminance values) in a predetermined wavelength range is selected from among the spectral data of a plurality of coordinate points on one tablet 5.
  • spectrum data serving as a value is selected as representative spectrum data representing the tablet 5.
  • the entire wavelength range of the spectrum data acquired at a plurality of coordinate points A to E on one tablet 5 (wavelength band of 900 nm to wavelength
  • the total sum of the spectral intensities of the respective wavelength components (wavelength bands) in the 2000 nm band) is calculated.
  • the total sum of the spectral intensities for the plurality of coordinate points A to E is “6”, “11”, “59”, “62.5”, and “114”, respectively.
  • the spectrum data corresponding to the coordinate point C is selected as the representative spectrum data representing the tablet 5.
  • a spectrum in which the sum of the spectral intensities of the respective wavelength components in a part of the wavelength range (for example, a wavelength band of 1800 nm to a wavelength of 2000 nm) is a median value.
  • the data may be selected as representative spectrum data representing the tablet 5.
  • the spectrum data having the median value of the sum of the spectrum intensities of the respective wavelength components in the wavelength band of 1800 nm to 2000 nm is the spectrum data relating to the coordinate point D.
  • Means that the spectrum data relating to the coordinate point D is selected as representative spectrum data representing the tablet 5.
  • spectral data in which the spectral intensity (luminance value) at a predetermined wavelength (one wavelength band) is the median is Alternatively, a configuration may be adopted in which the tablet 5 is selected as representative spectrum data.
  • the spectrum data in which the spectrum intensity in the wavelength 1500 nm band of the spectrum data obtained at each of the plurality of coordinate points A to E on one tablet 5 has a median value is a representative of the tablet 5.
  • the spectrum data related to the coordinate point C is selected as the representative spectrum data representing the tablet 5.
  • the spectrum data having the median spectrum intensity in the wavelength band of 900 nm is selected as the representative spectrum data representing the tablet 5
  • the spectrum data related to the coordinate point D represents the tablet 5. Will be selected as representative spectrum data.
  • the spectral data in which the sum of the spectral intensities of the plurality of wavelength band groups is a median value is obtained. It is preferable to select a representative spectrum data representing the tablet 5.
  • the imaging process is executed each time the container film 3 is transported by the predetermined amount, so that spectral data at a plurality of locations in the film transport direction (X direction) is obtained for one tablet 5.
  • Configuration. The present invention is not limited to this, and a configuration may be adopted in which spectral data is acquired at only one location in the film transport direction (X direction) for one tablet 5. In such a case as well, spectral data at a plurality of locations in the film width direction (Y direction) of the container film 3 for one tablet 5 will be obtained.

Abstract

分光分析を利用した異品種混入検査に係る検査精度の向上を図ることのできる検査装置、PTP包装機及びPTPシートの製造方法を提供する。検査装置22は、搬送される容器フィルム3のポケット部2に充填された錠剤5に対し近赤外光を照射可能な照明装置52と、錠剤5から反射される近赤外光の反射光を分光し、反射光の分光画像を撮像可能な撮像装置53とを備え、該撮像装置53により撮像された分光画像を基に錠剤5上の複数点におけるスペクトルデータを取得し、該複数点のスペクトルデータについて波長毎に中央値を選出し、該波長毎に選出された中央値によって構成される中央値スペクトルデータを基に錠剤5について所定の分析処理を行い、異品種の混入を検査する。

Description

検査装置、PTP包装機及びPTPシートの製造方法
 本発明は、分光分析を利用して異品種の混入を検査する検査装置、PTP包装機及びPTPシートの製造方法に関するものである。
 一般にPTPシートは、錠剤等の対象物が充填されるポケット部が形成された容器フィルムと、その容器フィルムに対しポケット部の開口側を密封するように取着されるカバーフィルムとから構成されている。
 PTPシートの製造に際しては、異品種の混入を検査する異品種混入検査が行われる。かかる検査の手法としては、近赤外光を対象物に照射し、その反射光を分光器により分光し、それを撮像して得られるスペクトルデータを基に分析処理(例えば主成分分析)を行うことで異品種の混入を検出する方法が知られている。
 一般にスペクトルデータを基に分析処理を行う際には、各対象物上の複数点におけるスペクトルデータを平均化することで、該対象物に係る平均スペクトルデータを算出し、該平均スペクトルデータに基づいて、該対象物の種類を判別する(例えば、特許文献1参照)。
 または、各対象物の中心位置を検出し、該中心位置の近傍の複数点におけるスペクトルデータを平均化することで、該対象物に係る平均スペクトルデータを算出し、該平均スペクトルデータに基づいて、該対象物の種類を判別する(例えば、特許文献2参照)。
国際公開第2013/002291号 国際公開第2005/038443号
 しかしながら、上記特許文献1,2などの従来技術のように、単純に対象物上の所定領域内のスペクトルデータを平均化するだけでは、該対象物に係る適切な平均スペクトルデータとならない場合がある。
 例えば対象物上の凹部(錠剤の刻印や割線等)や対象物の外縁部などに生じる影部の影響、あるいは対象物上の凸部などに生じる正反射光によるテカリの影響により、同一錠剤であっても座標点毎にデータのばらつきが大きく均一性が保てないおそれがある。
 本発明は、上記事情に鑑みてなされたものであり、その目的は、分光分析を利用した異品種混入検査に係る検査精度の向上を図ることのできる検査装置、PTP包装機及びPTPシートの製造方法を提供することにある。
 以下、上記課題を解決するのに適した各手段につき項分けして説明する。なお、必要に応じて対応する手段に特有の作用効果を付記する。
 手段1.対象物に対し近赤外光を照射可能な照射手段と、
 前記近赤外光が照射された前記対象物から反射される反射光を分光可能な分光手段と、
 前記分光手段にて分光された前記反射光の分光画像を撮像可能な撮像手段と、
 前記撮像手段により取得された前記分光画像を基に、前記対象物上の複数点(複数の座標位置)におけるスペクトルデータを取得可能なスペクトルデータ取得手段と、
 前記複数点のスペクトルデータについて、波長(波長帯域)毎に中央値を選出する中央値選出手段と、
 前記波長毎に選出された中央値によって構成される中央値スペクトルデータを基に、前記対象物について所定の分析処理(例えば主成分分析)を行うことにより異品種を検出可能な分析手段とを備えたことを特徴とする検査装置。
 上記手段1によれば、1つの対象物上における複数の座標点のデータにばらつきがある場合においても、比較的簡単な演算処理等により、該対象物上の特異点に係るスペクトルデータを除外し、該対象物の分光分析を行う上で適切なスペクトルデータ(中央値スペクトルデータ)を取得することができる。
 これにより、例えば対象物上に凹部や凸部などが存在する場合においても、凹部に生じる影部や凸部に生じるテカリ等の影響を回避しつつ、適切に対象物に係る検査を行うことができる。
 結果として、対象物上における複数点のスペクトルデータを単純に平均化する構成などと比較して、異品種混入検査に係る検査精度の飛躍的な向上を図ることができる。
 手段2.対象物に対し近赤外光を照射可能な照射手段と、
 前記近赤外光が照射された前記対象物から反射される反射光を分光可能な分光手段と、
 前記分光手段にて分光された前記反射光の分光画像を撮像可能な撮像手段と、
 前記撮像手段により取得された前記分光画像を基に、前記対象物上の複数点(複数の座標位置)におけるスペクトルデータを取得可能なスペクトルデータ取得手段と、
 前記複数点のスペクトルデータの中から、所定の波長(波長帯域)における輝度値又は所定の波長範囲(複数の波長帯域群)における輝度値の加算値が中央値となるスペクトルデータを、前記対象物を代表する代表スペクトルデータとして選出する代表スペクトル選出手段と、
 前記代表スペクトルデータを基に、前記対象物について所定の分析処理(例えば主成分分析)を行うことにより異品種を検出可能な分析手段とを備えたことを特徴とする検査装置。
 上記手段2によれば、上記手段1と同様の作用効果が奏される。
 手段3.容器フィルムに形成されたポケット部に対象物が収容され、該ポケット部を塞ぐようにカバーフィルムが取着されてなるPTPシートを製造するためのPTP包装機であって、
 帯状の前記容器フィルムに対し前記ポケット部を形成するポケット部形成手段と、
 前記ポケット部に前記対象物を充填する充填手段と、
 前記ポケット部に前記対象物が充填された前記容器フィルムに対し、前記ポケット部を塞ぐようにして帯状の前記カバーフィルムを取着する取着手段と、
 前記容器フィルムに前記カバーフィルムが取着された帯状体(帯状のPTPフィルム)から前記PTPシートを切離す切離手段(シート単位に打抜く打抜手段を含む)と、
 上記手段1又は2に記載の検査装置とを備えたことを特徴とするPTP包装機。
 上記手段3のように、上記手段1又は2に係る検査装置をPTP包装機に備えることで、PTPシートの製造過程において異品種を含む不良品を効率的に除外できる等のメリットが生じる。また、PTP包装機は、上記検査装置によって不良と判定されたPTPシートを排出する排出手段を備える構成としてもよい。
 尚、上記手段3において、上記検査装置を「充填手段によりポケット部に対象物が充填される前工程」に配置した構成としてもよい。かかる場合、ポケット部に充填される前段階に異品種を排除することが可能となり、不良品となるPTPシートを低減することができる。
 また、上記検査装置を「充填手段によりポケット部に対象物が充填された後工程かつ取着手段によりカバーフィルムが取着される前工程」に配置した構成としてもよい。かかる場合、対象物を遮るものがない状態で検査を実行することができ、さらなる検査精度の向上を図ることができる。
 また、上記検査装置を「取着手段によりカバーフィルムが取着された後工程かつ切離手段によりPTPシートが切離される前工程」に配置した構成としてもよい。かかる場合、対象物が入れ替わることがない状態で検査を実行することができ、さらなる検査精度の向上を図ることができる。
 また、上記検査装置を「切離手段によりPTPシートが切離された後工程」に配置した構成としてもよい。かかる場合、不良品が混ざっていないかを最終段階で確認することができる。
 手段4.容器フィルムに形成されたポケット部に対象物が収容され、該ポケット部を塞ぐようにカバーフィルムが取着されてなるPTPシートを製造するためのPTPシートの製造方法であって、
 帯状の前記容器フィルムに対し前記ポケット部を形成するポケット部形成工程と、
 前記ポケット部に前記対象物を充填する充填工程と、
 前記ポケット部に前記対象物が充填された前記容器フィルムに対し、前記ポケット部を塞ぐようにして帯状の前記カバーフィルムを取着する取着工程と、
 前記容器フィルムに前記カバーフィルムが取着された帯状体(帯状のPTPフィルム)から前記PTPシートを切離す切離工程(シート単位に打抜く打抜工程を含む)と、
 異品種の混入を検査する検査工程とを備え、
 前記検査工程において、
 前記対象物に対し近赤外光を照射する照射工程と、
 前記近赤外光が照射された前記対象物から反射される反射光を分光する分光工程と、
 分光された前記反射光の分光画像を撮像する撮像工程(露光工程)と、
 前記分光画像を基に、前記対象物上の複数点におけるスペクトルデータを取得するスペクトルデータ取得工程と、
 前記複数点のスペクトルデータについて、波長毎に中央値を選出する中央値選出工程と、
 前記波長毎に選出された中央値によって構成される中央値スペクトルデータを基に、前記対象物について所定の分析処理(例えば主成分分析)を行うことにより異品種を検出する分析工程とを備えたことを特徴とするPTPシートの製造方法。
 上記手段4によれば、上記手段3と同様の作用効果が奏される。
 手段5.容器フィルムに形成されたポケット部に対象物が収容され、該ポケット部を塞ぐようにカバーフィルムが取着されてなるPTPシートを製造するためのPTPシートの製造方法であって、
 帯状の前記容器フィルムに対し前記ポケット部を形成するポケット部形成工程と、
 前記ポケット部に前記対象物を充填する充填工程と、
 前記ポケット部に前記対象物が充填された前記容器フィルムに対し、前記ポケット部を塞ぐようにして帯状の前記カバーフィルムを取着する取着工程と、
 前記容器フィルムに前記カバーフィルムが取着された帯状体(帯状のPTPフィルム)から前記PTPシートを切離す切離工程(シート単位に打抜く打抜工程を含む)と、
 異品種の混入を検査する検査工程とを備え、
 前記検査工程において、
 前記対象物に対し近赤外光を照射する照射工程と、
 前記近赤外光が照射された前記対象物から反射される反射光を分光する分光工程と、
 分光された前記反射光の分光画像を撮像する撮像工程(露光工程)と、
 前記分光画像を基に、前記対象物上の複数点におけるスペクトルデータを取得するスペクトルデータ取得工程と、
 前記複数点のスペクトルデータの中から、所定の波長における輝度値又は所定の波長範囲における輝度値の加算値が中央値となるスペクトルデータを、前記対象物を代表する代表スペクトルデータとして選出する代表スペクトル選出工程と、
 前記代表スペクトルデータを基に、前記対象物について所定の分析処理(例えば主成分分析)を行うことにより異品種を検出する分析工程とを備えたことを特徴とするPTPシートの製造方法。
 上記手段5によれば、上記手段3と同様の作用効果が奏される。
 尚、上記手段4,5において、上記検査工程を「充填工程の前工程」に行う構成としてもよい。かかる場合、ポケット部に充填される前段階に異品種を排除することが可能となり、不良品となるPTPシートを低減することができる。
 また、上記検査工程を「充填工程の後工程かつ取着工程の前工程」に行う構成としてもよい。かかる場合、対象物を遮るものがない状態で検査を実行することができ、検査精度の向上を図ることができる。
 また、上記検査工程を「取着工程の後工程かつ切離工程の前工程」に行う構成としてもよい。かかる場合、対象物が入れ替わることがない状態で検査を実行することができ、検査精度の向上を図ることができる。
 また、上記検査工程を「切離工程の後工程」に行う構成としてもよい。かかる場合、不良品が混ざっていないかを最終段階で確認することができる。
(a)はPTPシートを示す斜視図であり、(b)はPTPフィルムを示す斜視図である。 PTPシートのポケット部の部分拡大断面図である。 PTP包装機の概略構成を示す模式図である。 検査装置の電気的構成を示すブロック図である。 検査装置の配置構成を模式的に示す斜視図である。 撮像装置の概略構成を示す模式図である。 スペクトルデータ取得ルーチンを示すフローチャートである。 撮像素子に投射された分光スペクトルを示す模式図である。 検査ルーチンを示すフローチャートである。 搬送方向撮像範囲とスペクトル画像との関係を説明するための説明図である。 スペクトル画像を示す模式図である。 錠剤上においてスペクトルデータを取得した複数の座標点の一例を示した模式図である。 錠剤上の複数の座標点において取得したスペクトルデータの一例を示した表である。 図13に示した各種値をプロットしたグラフである。
 以下に、一実施形態について図面を参照しつつ説明する。まずPTPシートの構成について詳しく説明する。
 図1,2に示すように、PTPシート1は、複数のポケット部2を備えた容器フィルム3と、ポケット部2を塞ぐようにして容器フィルム3に取着されたカバーフィルム4とを有している。
 本実施形態における容器フィルム3は、例えばPP(ポリプロピレン)やPVC(ポリ塩化ビニル)等の透明の熱可塑性樹脂材料により形成され、透光性を有している。一方、カバーフィルム4は、例えばポリプロピレン樹脂等からなるシーラントが表面に設けられた不透明材料(例えばアルミニウム箔等)により構成されている。
 PTPシート1は、平面視略矩形状に形成されている。PTPシート1には、その長手方向に沿って配列された5個のポケット部2からなるポケット列が、その短手方向に2列形成されている。つまり、計10個のポケット部2が形成されている。各ポケット部2には、対象物として錠剤5が1つずつ収容されている。
 図2に示すように、本実施形態に係る錠剤5は、平面視円形状をなす円盤状の素錠であって、側面5Aと、該側面5Aを挟む平坦状の表面5B及び裏面5Cとを有した構成となっている。尚、本実施形態において、錠剤5は、表面5Bがカバーフィルム4側を向き、裏面5Cがポケット部2の底壁部(天壁部)側を向くように収容される。
 また、錠剤5には、側面5Aと表面5Bとの境界部を面取りするようにテーパ部5Dが形成され、側面5Aと裏面5Cの境界部を面取りするようにテーパ部5Eが形成されている。
 さらに、錠剤5の表面5Bには、該表面5Bの中心を通り直線状に延びる溝状の割線5Fが刻設されている。尚、割線5Fは、表面5Bにのみ刻設されており、裏面5Cには刻設されていない。
 PTPシート1〔図1(a)参照〕は、帯状の容器フィルム3及び帯状のカバーフィルム4から形成された帯状のPTPフィルム6〔図1(b)参照〕がシート状に打抜かれることにより製造される。
 次に、上記PTPシート1を製造するPTP包装機10の概略構成について図3を参照して説明する。
 図3に示すように、PTP包装機10の最上流側では、帯状の容器フィルム3の原反がロール状に巻回されている。ロール状に巻回された容器フィルム3の引出し端側は、ガイドロール13に案内されている。容器フィルム3は、ガイドロール13の下流側において間欠送りロール14に掛装されている。間欠送りロール14は、間欠的に回転するモータに連結されており、容器フィルム3を間欠的に搬送する。
 ガイドロール13と間欠送りロール14との間には、容器フィルム3の搬送経路に沿って、加熱装置15及びポケット部形成装置16が順に配設されている。そして、加熱装置15によって容器フィルム3が加熱されて該容器フィルム3が比較的柔軟になった状態において、ポケット部形成装置16によって容器フィルム3の所定位置に複数のポケット部2が成形される(ポケット部形成工程)。加熱装置15及びポケット部形成装置16によって、本実施形態におけるポケット部形成手段が構成される。ポケット部2の形成は、間欠送りロール14による容器フィルム3の搬送動作間のインターバルの際に行われる。
 間欠送りロール14から送り出された容器フィルム3は、テンションロール18、ガイドロール19及びフィルム受けロール20の順に掛装されている。フィルム受けロール20は、一定回転するモータに連結されているため、容器フィルム3を連続的に且つ一定速度で搬送する。テンションロール18は、容器フィルム3を弾性力によって緊張する側へ引っ張った状態とされており、前記間欠送りロール14とフィルム受けロール20との搬送動作の相違による容器フィルム3の撓みを防止して容器フィルム3を常時緊張状態に保持する。
 ガイドロール19とフィルム受けロール20との間には、容器フィルム3の搬送経路に沿って、錠剤充填装置21及び検査装置22が順に配設されている。
 錠剤充填装置21は、ポケット部2に錠剤5を自動的に充填する充填手段としての機能を有する。錠剤充填装置21は、フィルム受けロール20による容器フィルム3の搬送動作と同期して、所定間隔毎にシャッタを開くことで錠剤5を落下させるものであり、このシャッタ開放動作に伴って各ポケット部2に錠剤5が充填される(充填工程)。
 検査装置22は、分光分析を利用して検査を行う分光分析装置であって、異品種の混入を検査するためのものである。検査装置22の詳細については後述する。
 一方、帯状に形成されたカバーフィルム4の原反は、最上流側においてロール状に巻回されている。
 ロール状に巻回されたカバーフィルム4の引出し端は、ガイドロール24を介して加熱ロール25の方へと案内されている。加熱ロール25は、前記フィルム受けロール20に圧接可能となっており、両ロール20,25間に容器フィルム3及びカバーフィルム4が送り込まれるようになっている。
 そして、容器フィルム3及びカバーフィルム4が、両ロール20,25間を加熱圧接状態で通過することで、容器フィルム3にカバーフィルム4が貼着され、ポケット部2がカバーフィルム4で塞がれる(取着工程)。これにより、錠剤5が各ポケット部2に充填された帯状体としてのPTPフィルム6が製造されるようになっている。加熱ロール25の表面には、シール用の網目状の微細な凸条が形成されており、これが強く圧接することで、強固なシールが実現されるようになっている。フィルム受けロール20及び加熱ロール25により本実施形態における取着手段が構成される。
 フィルム受けロール20から送り出されたPTPフィルム6は、テンションロール27及び間欠送りロール28の順に掛装されている。間欠送りロール28は、間欠的に回転するモータに連結されているため、PTPフィルム6を間欠的に搬送する。テンションロール27は、PTPフィルム6を弾性力によって緊張する側へ引っ張った状態とされており、前記フィルム受けロール20と間欠送りロール28との搬送動作の相違によるPTPフィルム6の撓みを防止してPTPフィルム6を常時緊張状態に保持する。
 間欠送りロール28から送り出されたPTPフィルム6は、テンションロール31及び間欠送りロール32の順に掛装されている。間欠送りロール32は、間欠的に回転するモータに連結されているため、PTPフィルム6を間欠的に搬送する。テンションロール31は、PTPフィルム6を弾性力によって緊張する側へ引っ張った状態とされており、前記間欠送りロール28,32間でのPTPフィルム6の撓みを防止する。
 間欠送りロール28とテンションロール31との間には、PTPフィルム6の搬送経路に沿って、スリット形成装置33及び刻印装置34が順に配設されている。スリット形成装置33は、PTPフィルム6の所定位置に切離用スリットを形成する機能を有する。また、刻印装置34はPTPフィルム6の所定位置(例えばタグ部)に刻印を付す機能を有する。
 間欠送りロール32から送り出されたPTPフィルム6は、その下流側においてテンションロール35及び連続送りロール36の順に掛装されている。間欠送りロール32とテンションロール35との間には、PTPフィルム6の搬送経路に沿って、シート打抜装置37が配設されている。シート打抜装置37は、PTPフィルム6をPTPシート1単位にその外縁を打抜くシート打抜手段(切離手段)としての機能を有する。
 シート打抜装置37によって打抜かれたPTPシート1は、コンベア39によって搬送され、完成品用ホッパ40に一旦貯留される(切離工程)。但し、上記検査装置22によって不良品と判定された場合、その不良品と判定されたPTPシート1は、完成品用ホッパ40へ送られることなく、図示しない排出手段としての不良シート排出機構によって別途排出される。
 前記連続送りロール36の下流側には、裁断装置41が配設されている。そして、シート打抜装置37による打抜き後に帯状に残った残材部(スクラップ部)を構成する不要フィルム部42は、前記テンションロール35及び連続送りロール36に案内された後、裁断装置41に導かれる。なお、前記連続送りロール36は従動ロールが圧接されており、前記不要フィルム部42を挟持しながら搬送動作を行う。裁断装置41では、不要フィルム部42を所定寸法に裁断しスクラップ処理する機能を有する。このスクラップはスクラップ用ホッパ43に貯留された後、別途廃棄処理される。
 なお、上記各ロール14,20,28,31,32などは、そのロール表面とポケット部2とが対向する位置関係となっているが、間欠送りロール14等の表面には、ポケット部2が収容される凹部が形成されているため、ポケット部2が潰れてしまうことがない。また、ポケット部2が間欠送りロール14等の各凹部に収容されながら送り動作が行われることで、間欠送り動作や連続送り動作が確実に行われる。
 また、図示は省略するが、PTP包装機10の下流側には、集積装置、移送装置、包装装置等が順に設置されている。そして、上記完成品用ホッパ40に収容されたバラのPTPシート1は、例えば2枚一組の抱き合せ状態とされた上で、集積装置において複数組ずつ積上げられる。積み上げられた複数のPTPシート1からなる集積体は、移送装置によってバンド結束されつつ包装装置へと移送され、包装装置においてピロー包装等される。
 PTP包装機10の概略は以上のとおりであるが、以下に上記検査装置22の構成について図面を参照して詳しく説明する。図4は検査装置22の電気的構成を示すブロック図であり、図5は検査装置22の配置構成を模式的に示す斜視図である。
 図4,5に示すように、検査装置22は、照明装置52と、撮像装置53と、照明装置52や撮像装置53の駆動制御など検査装置22内における各種制御や画像処理、演算処理等を実施する制御処理装置54とを備えている。
 照明装置52及び撮像装置53は、容器フィルム3のポケット部2開口側に配置されている。つまり、本実施形態では、カバーフィルム4が取着される前段階における容器フィルム3のポケット部2開口側から異品種混入検査が行われる。
 照明装置52は、近赤外光を照射可能に構成された公知のものであり、本実施形態における照射手段を構成する。照明装置52は、連続搬送される容器フィルム3上の所定領域へ向け斜め上方から近赤外光を照射可能に配置されている。
 本実施形態に係る照明装置52では、連続スペクトルを持つ近赤外光(例えば波長700~2500nmの近赤外領域)を出射可能な光源としてハロゲンランプを採用している。この他、光源としては、重水素放電管、タングステンランプ、キセノンランプなどを用いることができる。
 図6に示すように、撮像装置53は、光学レンズ61と、分光手段としての二次元分光器62と、撮像手段としてのカメラ63とを備えている。
 光学レンズ61は、図示しない複数のレンズ等により構成され、入射光を平行光化可能に構成されている。光学レンズ61は、その光軸が鉛直方向(Z方向)に沿って設定されている。
 また、光学レンズ61は、入射光を後述する二次元分光器62のスリット62aの位置に結像可能なように設定されている。尚、ここでは便宜上、光学レンズ61として両側テレセントリックレンズを採用した例を示すが、当然、像側テレセントリックレンズであってもよい。
 二次元分光器62は、スリット62aと、入射側レンズ62bと、分光部62cと、出射側レンズ62dとから構成されている。分光部62cは、入射側プリズム62caと、透過型回折格子62cbと、出射側プリズム62ccとから構成されている。
 かかる構成の下、スリット62aを通過した光は、入射側レンズ62bにより平行光化された後、分光部62cにより分光され、出射側レンズ62dによって後述するカメラ63の撮像素子65に二次元分光画像(分光スペクトル像)として結像される。
 スリット62aは、細長い略矩形状(線状)に開口形成され、その開口幅方向(短手方向)が容器フィルム3のフィルム搬送方向(X方向)に沿って配設され、その長手方向が前記搬送方向と直交する容器フィルム3のフィルム幅方向(Y方向)に沿って配設されている。これにより、二次元分光器62は、スリット62aの開口幅方向すなわちフィルム搬送方向(X方向)に入射光を分光することとなる。
 カメラ63は、複数の受光素子(受光部)64が行列状に二次元配列された受光面65aを有する撮像素子65を備えている。本実施形態では、撮像素子65として、近赤外領域のうち例えば波長900~2000nmの波長範囲に対して十分な感度を有した公知のCCDエリアセンサを採用している。
 勿論、撮像素子は、これに限定されるものではなく、近赤外領域に感度を持つ他のセンサを採用してもよい。例えばCMOSセンサやMCT(HgCdTe)センサ等を採用してもよい。
 撮像装置53の視野領域(撮像領域)は、フィルム幅方向(Y方向)に沿って延びる線状の領域であって、少なくとも容器フィルム3のフィルム幅方向全域を含む領域となる(図5の2点鎖線部参照)。一方、フィルム搬送方向(X方向)における撮像装置53の視野領域は、スリット62aの幅に相当する領域となる。つまり、スリット62aを通過した光(スリット光)が撮像素子65の受光面65a上に像を結ぶ領域である。
 これにより、容器フィルム3のフィルム幅方向(Y方向)の各位置で反射した反射光の分光スペクトルの各波長成分(例えば20nm帯域幅毎)を撮像素子65の各受光素子64がそれぞれ受光することとなる。そして、各受光素子64が受光した光の強度に応じた信号が、デジタル信号に変換された上でカメラ63から制御処理装置54に対し出力される。つまり、撮像素子65の受光面65a全体で撮像された1画面分の画像信号(分光画像データ)が制御処理装置54へ出力されることとなる。
 制御処理装置54は、検査装置22全体の制御を司るCPU及び入出力インターフェース71(以下、「CPU等71」という)、キーボードやマウス、タッチパネル等で構成される「入力手段」としての入力装置72、CRTや液晶などの表示画面を有する「表示手段」としての表示装置73、各種画像データ等を記憶するための画像データ記憶装置74、各種演算結果等を記憶するための演算結果記憶装置75、各種情報を予め記憶しておくための設定データ記憶装置76などを備えている。尚、これら各装置72~76は、CPU等71に対し電気的に接続されている。
 CPU等71は、PTP包装機10と各種信号を送受信可能に接続されている。これにより、例えばPTP包装機10の不良シート排出機構などを制御することができる。
 画像データ記憶装置74は、撮像装置53により撮像された分光画像データや、これを基に取得されるスペクトル画像データ、二値化処理された後の二値化画像データなどを記憶するためのものである。
 演算結果記憶装置75は、検査結果データや、該検査結果データを確率統計的に処理した統計データなどを記憶するものである。これらの検査結果データや統計データは、適宜表示装置73に表示させることができる。
 設定データ記憶装置76は、例えば主成分分析に用いるローディングベクトルや判定範囲や、PTPシート1、ポケット部2及び錠剤5の形状及び寸法などを記憶するものである。
 次に検査装置22によって行われる異品種混入検査(検査工程)の手順について説明する。
 まずスペクトルデータを取得するスペクトルデータ取得ルーチンについて図7のフローチャートを参照して説明する。尚、本ルーチンは、容器フィルム3が所定量搬送される毎に繰り返し実行される処理である。
 制御処理装置54は、まずステップS01において、連続搬送される容器フィルム3(錠剤5)に対し照明装置52から近赤外光を照射しつつ(照射工程)、撮像装置53による撮像処理(露光処理)を実行する。
 ここで、制御処理装置54は、PTP包装機10に設けられた図示しないエンコーダからの信号に基づいて撮像装置53を駆動制御し、該撮像装置53が撮像する分光画像データを画像データ記憶装置74に取り込む。
 これにより、照明装置52から容器フィルム3に向け照射された近赤外光のうち、ステップS01の撮像処理の実行期間(露光期間)中において、搬送方向撮像範囲W(図10参照)にて反射した反射光が撮像装置53に入射する。つまり、1回の撮像処理で搬送方向撮像範囲Wが撮像されることとなる。
 尚、図10に示すように、本実施形態では、容器フィルム3が所定量搬送される毎に上記撮像処理が実行されることによって、1つの錠剤5について搬送方向複数箇所の分光スペクトルが撮像される構成となっている。
 撮像装置53に入射した反射光は二次元分光器62により分光され(分光工程)、カメラ63の撮像素子65により分光画像(分光スペクトル)として撮像される(撮像工程)。
 図8は、錠剤5上の所定位置にて反射した反射光の分光スペクトルHが撮像素子65の受光面65aに投射された状態を示す模式図である。図8においては、便宜上、錠剤5に係る分光スペクトルHのみ図示し、その他の部位に係る分光スペクトルについては図示を省略している。
 撮像装置53により撮像された分光画像(分光スペクトル)データは、インターバル期間中に制御処理装置54へ出力され、画像データ記憶装置74に記憶される。尚、ここでいうインターバル期間とは、画像データの読出期間のことである。つまり、撮像装置53による撮像サイクルは、撮像処理の実行期間である露光期間と、インターバル期間の合計時間で表すことができる。
 制御処理装置54は、分光画像データが取得されると、ステップS02のデータ生成処理を開始する。
 データ生成処理では、ステップS01において取得した分光画像データを基にスペクトルデータを生成する。スペクトルデータが生成されると、これを画像データ記憶装置74に記憶し、本ルーチンを一旦終了する。
 そして、図10に示すように、容器フィルム3(錠剤5)が所定量搬送される毎に、搬送方向撮像範囲Wが断続的に相対移動していき、上記スペクトルデータ取得ルーチンが繰り返されることにより、画像データ記憶装置74には、各搬送方向撮像範囲Wに対応するスペクトルデータがフィルム搬送方向(X方向)及びフィルム幅方向(Y方向)の位置情報と共に時系列に順次記憶されていく。これにより、画素毎にスペクトルデータを有した二次元的なスペクトル画像Qが生成されていくこととなる(図11参照)。
 ここで、本実施形態におけるスペクトル画像Qについて説明する。図11に示すように、スペクトル画像Qは、複数の画素Qaが二次元配列された画像データである。各画素Qaには、それぞれスペクトルデータ〔複数の波長成分(波長帯域)に係るスペクトル強度(輝度値)を示すデータ〕が含まれている。
 そして、検査対象となる1つ分のPTPシート1に相当する所定の検査範囲(図11の二点鎖線部参照)のスペクトル画像Qが取得されると、制御処理装置54は検査ルーチンを実行する。
 次に検査ルーチンについて図9のフローチャートを参照して説明する。尚、本ルーチンは、上記検査範囲のスペクトル画像Qが取得される毎に繰り返し行われるものである。
 制御処理装置54は、まずステップS11において錠剤画素抽出処理を実行する。本処理においては、スペクトル画像Qの各画素Qaのうち、分析対象となる錠剤5に対応する画素(以下、「錠剤画素」という)Qbを抽出する。
 本実施形態では、例えば各画素Qaのスペクトルデータ中の所定波長のスペクトル強度が予め定めた閾値以上であるか否かを判定し、スペクトル画像Qに対し二値化処理を行う。そして、得られた二値化画像データを基に錠剤画素Qbを抽出する(図10,11参照)。
 図10に示すように、本実施形態では、背景の影響を受けることなく錠剤5の範囲のみを撮像したデータを含んだ画素Qaが錠剤画素Qbとして抽出される。図10は、搬送方向撮像範囲Wとスペクトル画像Qとの関係を説明するための説明図である。図10,11では、錠剤画素Qbとして抽出された画素を斜線で示している。
 尚、錠剤画素Qbの抽出方法は、これに限られるものではなく、他の方法を採用してもよい。例えば、各画素Qa毎にスペクトルデータ(各波長成分のスペクトル強度)の積算値を算出し、かかる値が予め定めた閾値以上であるか否かを判定することにより、錠剤画素Qbを抽出する構成としてもよい。
 次に、制御処理装置54は、ステップS12において錠剤領域特定処理を実行する。本処理によって、検査範囲内の各ポケット部2に収容された10個の錠剤5の領域を特定する。
 本実施形態では、例えば上記ステップS11で得られた錠剤画素Qbについてラベリング処理を行い、隣接する全ての錠剤画素Qbを同一の錠剤5に属する錠剤画素Qbの連結成分とみなす。
 これにより、1つの連結成分の範囲を所定のポケット部2内に収容された1つの錠剤5に係る錠剤領域として特定することができる(図10,11参照)。図10,11では、各錠剤5に属する複数の錠剤画素Qbの連結成分(錠剤領域)をそれぞれ太枠により囲んでいる。
 そして、1つの連結成分(錠剤領域)に含まれる複数の錠剤画素Qbのスペクトルデータを、1つの錠剤5上の複数点(複数の座標位置)におけるスペクトルデータとして取り扱うことができる。
 つまり、上記ステップS02のデータ生成処理、ステップS11の錠剤画素抽出処理、ステップS12の錠剤領域特定処理などの一連の処理工程により、本実施形態におけるスペクトルデータ取得工程が構成され、これを実行する制御処理装置54の機能により、本実施形態におけるスペクトルデータ取得手段が構成されることとなる。
 尚、錠剤5の領域特定方法は、これに限られるものではなく、他の方法を採用してもよい。例えば特定の画素を中心とした所定の範囲に含まれる画素を該特定の画素と同一の錠剤5に属する画素と判断するようにしてもよい。
 次に、制御処理装置54は、ステップS13において中央値スペクトル取得処理を実行する。本処理では、上記ステップS12において特定された各錠剤5の錠剤領域それぞれについて、そこに含まれる複数の錠剤画素Qbのスペクトルデータを用いて、各錠剤5に係る中央値スペクトルデータを取得する。
 より詳しくは、1つの錠剤5の錠剤領域に属する複数の錠剤画素Qbのスペクトルデータについて、波長成分毎にスペクトル強度(輝度値)の中央値を選出する。そして、これら各波長成分の中央値の集まりを、該錠剤5に係る中央値スペクトルデータとして演算結果記憶装置75に記憶する。
 つまり、上記波長成分毎に中央値を選出する処理工程により、本実施形態における中央値選出工程が構成され、これを実行する制御処理装置54の機能により、本実施形態における中央値選出手段が構成されることとなる。
 以下、波長成分毎にスペクトル強度の中央値を選出し、中央値スペクトルデータを取得する処理について図12~図14に示す具体例を参照して説明する。
 図12は、1つの錠剤5上においてスペクトルデータを取得した複数の座標点A~Eの一例を示した模式図である。図13は、これらの座標点A~Eにおいて取得したスペクトルデータ(波長成分毎のスペクトル強度)等の一例を示した表であり、図14は、それをプロットしたグラフである。
 図12に示すように、座標点Aは割線5F内に位置しており、反射光の輝度が低くなる影部を含んでいる。このため、図13,14に示すように、座標点Aに係るスペクトルデータは全体的に輝度が低いデータとなる。
 座標点Bは、照明装置52から遠い側に位置したテーパ部5Dに位置しており(図12参照)、座標点Aと同様に反射光の輝度が低くなる影部を含んでいる。このため、座標点Bに係るスペクトルデータも全体的に輝度が低いデータとなる(図13,14参照)。
 一方、座標点Eは、照明装置52から近い側に位置したテーパ部5Dと、表面5Bの平坦面との境界部に位置しており(図12参照)、反射光の輝度が高くなる角部等の正反射部(テカリ部)を含んでいる。このため、座標点Eに係るスペクトルデータは全体的に輝度が高いデータとなる(図13,14参照)。
 これに対し、座標点C,Dは、表面5Bの平坦面に位置しており(図12参照)、影部も正反射部も含んでいない。このため、座標点C,Dに係るスペクトルデータは、錠剤5の成分を比較的適切に反映したデータとなる(図13,14参照)。
 そして、図13,14に示す例では、複数の座標点A~Eのスペクトルデータを基に、波長900nm帯域の中央値として、座標点Dに係る波長900nm帯域のスペクトル強度「3」を選出する。尚、図13では、中央値を認識しやすくするため、該中央値に対応する部分に散点模様を付している。
 続いて、波長1000nm帯域の中央値として、座標点Cに係る波長1000nm帯域のスペクトル強度「4」を選出する。
 同様に、波長1100nm帯域~波長1700nm帯域の各波長成分の中央値については、座標点Cに係る波長1100nm帯域~波長1700nm帯域の各波長成分のスペクトル強度「7」,「4」,「4」,「4」,「4.5」,「5」,「7」を選出する。
 また、波長1800nm帯域~波長2000nm帯域の各波長成分の中央値には、座標点Dに係る波長1800nm帯域~波長2000nm帯域の各波長成分のスペクトル強度「7」,「4」,「3」を選出する。
 そして、このように選出した各波長成分の中央値の集まり(図13の表の右端欄参照)を、錠剤5に係る中央値スペクトルデータとして取得する。
 ここで、図13,14に示した複数の座標点A~Eのスペクトルデータの波長成分毎のスペクトル強度(輝度値)の平均値を見て判るとおり、該平均値は、実質的にノイズ成分となる座標点A,B,Eに係るスペクトルデータの影響(割線5Fやテーパ部5Dに生じる影部の影響や、正反射によるテカリの影響)を受け、比較的適正な座標点C,Dに係るスペクトルデータと近似しないデータとなる。
 一方、上記平均値と比較して判るとおり、上記中央値スペクトルデータは、比較的適正な座標点C,Dに係るスペクトルデータと近似したデータとなる。
 このようにして、検査範囲内の各ポケット部2に収容された10個の錠剤5それぞれに係る中央値スペクトルデータが取得されると、制御処理装置54は、これらを1つの検査範囲に係る中央値スペクトルデータ群としてまとめて演算結果記憶装置75に記憶する。
 続くステップS14において、制御処理装置54は、演算結果記憶装置75に設定されたポケット番号カウンタのカウンタ値Pに初期値である「1」を設定する。
 尚、「ポケット番号」とは、1つの検査範囲内の10個のポケット部2にそれぞれ対応して設定された通し番号であり、前記ポケット番号カウンタのカウンタ値P(以下、単に「ポケット番号カウンタ値P」という)によりポケット部2の位置を特定することができる(図11参照)。
 図11に示す例では、例えば左側列の最上部のポケット部2がポケット番号カウンタ値[1]に対応するポケット部2として設定され、右側列の最下部のポケット部2がポケット番号カウンタ値[10]に対応するポケット部2として設定されている。
 続いて、制御処理装置54は、ステップS15において分析対象データ抽出処理を実行する。本処理においては、上記ステップS13において取得した1つの検査範囲に係る中央値スペクトルデータ群(10個の錠剤5の中央値スペクトルデータ)から、現在のポケット番号カウンタ値P(例えばP=1)に対応するポケット部2に収容された錠剤5の中央値スペクトルデータを抽出する。
 次に、制御処理装置54は、ステップS15において抽出した錠剤5の中央値スペクトルデータについて分析処理を実行する(ステップS16)。かかる処理が本実施形態における分析工程に相当し、かかる処理を実行する制御処理装置54の機能により、本実施形態における分析手段が構成されることとなる。
 例えば本実施形態では、予め取得したローディングベクトルを用いて、上記ステップS13で求めた錠剤5の中央値スペクトルデータに対し主成分分析(PCA)を行う。より詳しくは、前記ローディングベクトルと、錠剤5の中央値スペクトルデータとを演算することによって主成分得点を算出する。
 続いて、制御処理装置54は、ステップS17において錠剤良否判定処理を実行する。本処理においては、上記ステップS16の分析処理における分析結果を基に、現在のポケット番号カウンタ値P(例えばP=1)に対応するポケット部2に収容された錠剤5が良品(同品種)であるか、不良(異品種)であるか判定する。
 より詳しくは、上記ステップS16で算出した主成分得点をPCA図にプロットし、該プロットされたデータが予め設定された良品範囲内にあれば良品(同品種)、良品範囲外なら不良(異品種)として判定する。
 そして、制御処理装置54は、該錠剤5に係る判定結果(「良」又は「不良」)を演算結果記憶装置75に記憶する。
 その後、制御処理装置54は、ステップS18において現在のポケット番号カウンタ値Pに「1」を加えた後、ステップS19へ移行し、新たに設定したポケット番号カウンタ値Pが最大値Pmaxを超えているか否かを判定する。尚、最大値Pmaxは、1つの検査範囲におけるポケット部2の個数の最大値(本実施形態では「10」)である。
 ここで否定判定された場合には、再度、ステップS15へ戻り、上記一連の処理を実行する。一方、肯定判定された場合には、すべてのポケット部2に係る錠剤5の良否判定が終了したとみなし、ステップS20へ移行する。
 続くステップS20において、制御処理装置54は、シート良否判定処理を実行する。本処理においては、上記ステップS17の錠剤良否判定処理における判定結果を基に、検査範囲に対応するPTPシート1が良品であるか、不良品であるか判定する。
 具体的には、検査範囲内に「不良」判定された錠剤5が1つでも存在する場合には、該検査範囲に対応するPTPシート1を「不良品」と判定し、ステップS21へ移行する。
 一方、検査範囲内に「不良」判定された錠剤5が1つも存在しない場合には、該検査範囲に対応するPTPシート1を「良品」と判定し、ステップS22へ移行する。
 そして、制御処理装置54は、ステップS21の不良品処理において、該PTPシート1に係る「不良品」判定結果を演算結果記憶装置75に記憶すると共に、その旨をPTP包装機10の不良シート排出機構等へ出力し、検査ルーチンを終了する。
 一方、制御処理装置54は、ステップS22の良品処理において、該PTPシート1(検査範囲)に係る「良品」判定結果を演算結果記憶装置に記憶し、検査ルーチンを終了する。
 以上詳述したように、本実施形態によれば、1つの錠剤5上における複数の座標点のデータにばらつきがある場合においても、比較的簡単な演算処理等により、該錠剤5上の特異点(例えば図12の座標点A,B,Eなど)に係るスペクトルデータを除外し、該錠剤5の分光分析を行う上で適切なスペクトルデータ(中央値スペクトルデータ)を取得することができる。
 これにより、例えば錠剤5上に割線5Fやテーパ部5Dなどが存在する場合においても、割線5F等に生じる影部や、角部等に生じるテカリ等の影響を回避しつつ、適切に錠剤5に係る検査を行うことができる。
 結果として、錠剤5上における複数点のスペクトルデータを単純に平均化する構成などと比較して、異品種混入検査に係る検査精度の飛躍的な向上を図ることができる。
 尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。
 (a)上記実施形態では、対象物が錠剤5である場合について具体化しているが、対象物の種別等については特に限定されるものではなく、例えばカプセル剤やサプリメント、食品等であってもよい。また、錠剤には素錠や糖衣錠などの固形製剤が含まれる。
 尚、カプセル剤について検査を行う場合には、カプセル部分にて反射した正反射光がテカリとなり、その内部の薬剤に係る検査に影響を与えるおそれがあるが、本発明によれば、このような不具合の発生を抑制することができる。
 対象物の形状等についても上記実施形態に限定されるものではない。上記実施形態では、錠剤5として、平面視円形状をなす円盤状の素錠であって、表裏両面5B,5Cの外縁部にテーパ部5D,5Eが形成され、表面5Bに割線5Fが刻設されたものが例示されている。
 これに限らず、テーパ部5D,5E及び/又は割線5Fが省略された錠剤を対象物としてもよい。また、凹部として刻印が付された錠剤を対象物としてもよい。
 また、例えば平面視円形状で中央部と周縁部とで厚みの異なるレンズ錠や、平面視で略楕円形状、略長円形状、略多角形状等となる錠剤などを対象物としてもよい。
 (b)容器フィルム3やカバーフィルム4の材料は、上記実施形態に限定されるものではなく、他の材質のものを採用してもよい。例えば容器フィルム3がアルミラミネートフィルムなど、アルミニウムを主材料とした金属材料により形成された構成としてもよい。
 (c)PTPシート1におけるポケット部2の配列や個数に関しては、上記実施形態に何ら限定されるものではなく、例えば3列12個のポケット部を有するタイプをはじめ、様々な配列、個数からなるPTPシートを採用することができる。
 (d)上記実施形態では、ポケット部2に錠剤5が充填された後工程かつ容器フィルム3に対しカバーフィルム4が取着される前工程において、検査装置22によって、ポケット部2の開口側から錠剤5を照明及び撮像し、異品種混入検査を行う構成となっている。
 これに限らず、容器フィルム3が透明材料により形成されている場合には、ポケット部2に錠剤5が充填された後工程かつ容器フィルム3に対しカバーフィルム4が取着される前工程において、検査装置22によって、ポケット部2(容器フィルム3)越しに錠剤5を照明及び撮像し、異品種混入検査を行う構成としてもよい。
 尚、ポケット部2越しに錠剤5を照明及び撮像し検査を行う場合には、ポケット部2にて反射した正反射光がテカリとなり、検査に影響を与えるおそれがあるが、本発明によれば、このような不具合の発生を抑制することができる。
 また、容器フィルム3に対しカバーフィルム4が取着された後工程かつPTPフィルム6からPTPシート1が打抜かれる前工程において、検査装置22によって、PTPフィルム6の容器フィルム3側からポケット部2越しに錠剤5を照明及び撮像し、異品種混入検査を行う構成としてもよい。
 また、PTPフィルム6からPTPシート1が打抜かれた後工程において、検査装置22によって、コンベア39にて搬送されているPTPシート1の容器フィルム3側からポケット部2越しに錠剤5を照明及び撮像し、異品種混入検査を行う構成としてもよい。
 この際、検査装置22がPTP包装機10内に設けられた構成(インライン)に代えて、PTP包装機10とは別に、オフラインでPTPシート1を検査する装置として検査装置22を備えた構成としてもよい。また、かかる場合に、PTPシート1を搬送可能な搬送手段を検査装置22に備えた構成としてもよい。
 また、ポケット部2に錠剤5が充填される前工程において、検査装置22による異品種混入検査が行われる構成としてもよい。例えば錠剤充填装置21に錠剤5を投入する前段階に検査を行う構成としてもよい。つまり、PTP包装機10とは別に、オフラインで錠剤5を検査する装置として検査装置22を備えた構成としてもよい。
 尚、オフラインで検査を行う場合には、PTPシート1や錠剤5を連続搬送せず、停止した状態で検査を行う構成としてもよい。但し、PTPシート1、又は、PTPフィルム6若しくは容器フィルム3を連続搬送しつつ、インラインで検査を実行した方が生産性の向上を図る上では好ましい。
 近年、PTPシート1の製造分野などにおいては、生産速度の高速化に伴い、異品種混入検査など各種検査の高速化が求められている。例えばPTP包装機10上で検査を行う場合には、1秒当たり100個以上の錠剤5を検査することが求められる場合もある。
 (e)照明装置52及び撮像装置53の構成は上記実施形態に限定されるものではない。例えば二次元分光器62に代えて、分光手段として反射型回折格子やプリズム等を採用した構成としてもよい。
 (f)上記実施形態では、スペクトルデータを主成分分析(PCA)により分析する構成となっているが、これに限らず、PLS回帰分析など、他の公知の方法を用いて分析する構成としてもよい。
 (g)上記実施形態では、ステップS13の中央値スペクトル取得処理において、1つの錠剤5上における複数の座標点のスペクトルデータについて波長成分毎にスペクトル強度の中央値を選出し、これら波長成分毎に選出された中央値の集まりを該錠剤5に係る中央値スペクトルデータとして取得すると共に、ステップS16の分析処理において、該中央値スペクトルデータについて分析処理を行うことによって、該錠剤5に係る異品種混入検査を行う構成となっている。
 これに限らず、ステップS13の中央値スペクトル取得処理に代えて、1つの錠剤5上における複数の座標点のスペクトルデータの中から、該錠剤5を代表する代表スペクトルデータを選出する代表スペクトル取得処理を実行すると共に、ステップS16の分析処理において、該代表スペクトルデータについて分析処理を行うことによって、該錠剤5に係る異品種混入検査を行う構成としてもよい。
 ここで、代表スペクトル取得処理を実行する工程により、本実施形態における代表スペクトル選出工程が構成され、これを実行する制御処理装置54の機能により、本実施形態における代表スペクトル選出手段が構成されることとなる。
 尚、代表スペクトル取得処理としては、例えば1つの錠剤5上における複数の座標点のスペクトルデータの中から、所定の波長範囲(複数の波長帯域群)におけるスペクトル強度(輝度値)の加算値が中央値となるスペクトルデータを、該錠剤5を代表する代表スペクトルデータとして選出する構成が挙げられる。
 図13に示す具体例において、上記代表スペクトル取得処理を実行する場合には、例えば1つの錠剤5上における複数の座標点A~Eにおいてそれぞれ取得したスペクトルデータの全波長範囲(波長900nm帯域~波長2000nm帯域)における各波長成分(波長帯域)のスペクトル強度の総加算値を算出する。ここで、複数の座標点A~Eに係るスペクトル強度の総加算値は、それぞれ「6」,「11」,「59」,「62.5」,「114」となる。そして、総加算値「59」がこれらの中央値となるため、これに対応する座標点Cに係るスペクトルデータを、該錠剤5を代表する代表スペクトルデータとして選出することとなる。
 これに代えて、複数の座標点A~Eのスペクトルデータの中から、一部の波長範囲(例えば波長1800nm帯域~波長2000nm帯域)における各波長成分のスペクトル強度の加算値が中央値となるスペクトルデータを、該錠剤5を代表する代表スペクトルデータとして選出する構成としてもよい。
 尚、図13に示す例において、上記波長1800nm帯域~波長2000nm帯域における各波長成分のスペクトル強度の加算値が中央値となるスペクトルデータは、座標点Dに係るスペクトルデータであるため、かかる場合には、該座標点Dに係るスペクトルデータが錠剤5を代表する代表スペクトルデータとして選出されることとなる。
 また、代表スペクトル取得処理として、例えば1つの錠剤5上における複数の座標点のスペクトルデータの中から、所定の波長(1つの波長帯域)におけるスペクトル強度(輝度値)が中央値となるスペクトルデータを、該錠剤5を代表する代表スペクトルデータとして選出する構成としてもよい。
 例えば図13に示す例において、1つの錠剤5上における複数の座標点A~Eにおいてそれぞれ取得したスペクトルデータの波長1500nm帯域におけるスペクトル強度が中央値となるスペクトルデータを、該錠剤5を代表する代表スペクトルデータとして選出する構成とした場合には、座標点Cに係るスペクトルデータが、該錠剤5を代表する代表スペクトルデータとして選出されることとなる。
 一方、波長900nm帯域におけるスペクトル強度が中央値となるスペクトルデータを、該錠剤5を代表する代表スペクトルデータとして選出する構成とした場合には、座標点Dに係るスペクトルデータが、該錠剤5を代表する代表スペクトルデータとして選出されることとなる。
 但し、光源から出射される近赤外光に含まれる各波長帯域のスペクトル強度は均一ではないため、好ましくは、複数の波長帯域群のスペクトル強度の加算値が中央値となるスペクトルデータを、該錠剤5を代表する代表スペクトルデータとして選出する構成とすることが好ましい。
 かかる点においては、代表スペクトルデータを基に錠剤5の異品種混入検査を行う構成よりも、波長成分毎に選出された中央値によって構成される中央値スペクトルデータを基に錠剤5の異品種混入検査を行う上記実施形態の方が、さらに好ましい。
 (h)上記実施形態では、容器フィルム3が所定量搬送される毎に撮像処理が実行されることによって、1つの錠剤5について、フィルム搬送方向(X方向)における複数箇所のスペクトルデータが取得される構成となっている。これに限らず、1つの錠剤5について、フィルム搬送方向(X方向)における1箇所のみスペクトルデータが取得される構成としてもよい。尚、かかる場合においても、1つの錠剤5について、容器フィルム3のフィルム幅方向(Y方向)における複数箇所のスペクトルデータは取得されることとなる。
 1…PTPシート、2…ポケット部、3…容器フィルム、4…カバーフィルム、5…錠剤、5D,5E…テーパ部、5F…割線、10…PTP包装機、22…検査装置、52…照明装置、53…撮像装置、54…制御処理装置、62…二次元分光器、63…カメラ、Q…スペクトル画像、Qa…画素、Qb…錠剤画素。

Claims (5)

  1.  対象物に対し近赤外光を照射可能な照射手段と、
     前記近赤外光が照射された前記対象物から反射される反射光を分光可能な分光手段と、
     前記分光手段にて分光された前記反射光の分光画像を撮像可能な撮像手段と、
     前記撮像手段により取得された前記分光画像を基に、前記対象物上の複数点におけるスペクトルデータを取得可能なスペクトルデータ取得手段と、
     前記複数点のスペクトルデータについて、波長毎に中央値を選出する中央値選出手段と、
     前記波長毎に選出された中央値によって構成される中央値スペクトルデータを基に、前記対象物について所定の分析処理を行うことにより異品種を検出可能な分析手段とを備えたことを特徴とする検査装置。
  2.  対象物に対し近赤外光を照射可能な照射手段と、
     前記近赤外光が照射された前記対象物から反射される反射光を分光可能な分光手段と、
     前記分光手段にて分光された前記反射光の分光画像を撮像可能な撮像手段と、
     前記撮像手段により取得された前記分光画像を基に、前記対象物上の複数点におけるスペクトルデータを取得可能なスペクトルデータ取得手段と、
     前記複数点のスペクトルデータの中から、所定の波長における輝度値又は所定の波長範囲における輝度値の加算値が中央値となるスペクトルデータを、前記対象物を代表する代表スペクトルデータとして選出する代表スペクトル選出手段と、
     前記代表スペクトルデータを基に、前記対象物について所定の分析処理を行うことにより異品種を検出可能な分析手段とを備えたことを特徴とする検査装置。
  3.  容器フィルムに形成されたポケット部に対象物が収容され、該ポケット部を塞ぐようにカバーフィルムが取着されてなるPTPシートを製造するためのPTP包装機であって、
     帯状の前記容器フィルムに対し前記ポケット部を形成するポケット部形成手段と、
     前記ポケット部に前記対象物を充填する充填手段と、
     前記ポケット部に前記対象物が充填された前記容器フィルムに対し、前記ポケット部を塞ぐようにして帯状の前記カバーフィルムを取着する取着手段と、
     前記容器フィルムに前記カバーフィルムが取着された帯状体から前記PTPシートを切離す切離手段と、
     請求項1又は2に記載の検査装置とを備えたことを特徴とするPTP包装機。
  4.  容器フィルムに形成されたポケット部に対象物が収容され、該ポケット部を塞ぐようにカバーフィルムが取着されてなるPTPシートを製造するためのPTPシートの製造方法であって、
     帯状の前記容器フィルムに対し前記ポケット部を形成するポケット部形成工程と、
     前記ポケット部に前記対象物を充填する充填工程と、
     前記ポケット部に前記対象物が充填された前記容器フィルムに対し、前記ポケット部を塞ぐようにして帯状の前記カバーフィルムを取着する取着工程と、
     前記容器フィルムに前記カバーフィルムが取着された帯状体から前記PTPシートを切離す切離工程と、
     異品種の混入を検査する検査工程とを備え、
     前記検査工程において、
     前記対象物に対し近赤外光を照射する照射工程と、
     前記近赤外光が照射された前記対象物から反射される反射光を分光する分光工程と、
     分光された前記反射光の分光画像を撮像する撮像工程と、
     前記分光画像を基に、前記対象物上の複数点におけるスペクトルデータを取得するスペクトルデータ取得工程と、
     前記複数点のスペクトルデータについて、波長毎に中央値を選出する中央値選出工程と、
     前記波長毎に選出された中央値によって構成される中央値スペクトルデータを基に、前記対象物について所定の分析処理を行うことにより異品種を検出する分析工程とを備えたことを特徴とするPTPシートの製造方法。
  5.  容器フィルムに形成されたポケット部に対象物が収容され、該ポケット部を塞ぐようにカバーフィルムが取着されてなるPTPシートを製造するためのPTPシートの製造方法であって、
     帯状の前記容器フィルムに対し前記ポケット部を形成するポケット部形成工程と、
     前記ポケット部に前記対象物を充填する充填工程と、
     前記ポケット部に前記対象物が充填された前記容器フィルムに対し、前記ポケット部を塞ぐようにして帯状の前記カバーフィルムを取着する取着工程と、
     前記容器フィルムに前記カバーフィルムが取着された帯状体から前記PTPシートを切離す切離工程と、
     異品種の混入を検査する検査工程とを備え、
     前記検査工程において、
     前記対象物に対し近赤外光を照射する照射工程と、
     前記近赤外光が照射された前記対象物から反射される反射光を分光する分光工程と、
     分光された前記反射光の分光画像を撮像する撮像工程と、
     前記分光画像を基に、前記対象物上の複数点におけるスペクトルデータを取得するスペクトルデータ取得工程と、
     前記複数点のスペクトルデータの中から、所定の波長における輝度値又は所定の波長範囲における輝度値の加算値が中央値となるスペクトルデータを、前記対象物を代表する代表スペクトルデータとして選出する代表スペクトル選出工程と、
     前記代表スペクトルデータを基に、前記対象物について所定の分析処理を行うことにより異品種を検出する分析工程とを備えたことを特徴とするPTPシートの製造方法。
PCT/JP2019/028999 2018-09-28 2019-07-24 検査装置、ptp包装機及びptpシートの製造方法 WO2020066251A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19866824.6A EP3859311A4 (en) 2018-09-28 2019-07-24 TESTING DEVICE, PTP PACKAGING MACHINE AND METHOD OF MANUFACTURING PTP FILM
CN201980056223.0A CN112639446A (zh) 2018-09-28 2019-07-24 检查装置、ptp包装机和ptp片的制造方法
US17/182,642 US11360033B2 (en) 2018-09-28 2021-02-23 Inspection apparatus, PTP packaging machine, and method for manufacturing PTP sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-185204 2018-09-28
JP2018185204A JP6706301B2 (ja) 2018-09-28 2018-09-28 検査装置、ptp包装機及びptpシートの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/182,642 Continuation US11360033B2 (en) 2018-09-28 2021-02-23 Inspection apparatus, PTP packaging machine, and method for manufacturing PTP sheet

Publications (1)

Publication Number Publication Date
WO2020066251A1 true WO2020066251A1 (ja) 2020-04-02

Family

ID=69949922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028999 WO2020066251A1 (ja) 2018-09-28 2019-07-24 検査装置、ptp包装機及びptpシートの製造方法

Country Status (5)

Country Link
US (1) US11360033B2 (ja)
EP (1) EP3859311A4 (ja)
JP (1) JP6706301B2 (ja)
CN (1) CN112639446A (ja)
WO (1) WO2020066251A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6568245B2 (ja) * 2018-01-24 2019-08-28 Ckd株式会社 検査装置、ptp包装機、及び、検査装置の較正方法
JP6786565B2 (ja) * 2018-10-10 2020-11-18 Ckd株式会社 検査装置、ptp包装機及びptpシートの製造方法
JP6763059B1 (ja) * 2019-05-16 2020-09-30 Ckd株式会社 検査装置、包装機及び包装体の検査方法
JP7466613B1 (ja) 2022-11-25 2024-04-12 Ckd株式会社 検査装置及びブリスタ包装機

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329668B2 (ja) * 1978-11-30 1988-06-14 Tsuaanraatofuaburiiku Furiidoritsuhisuhaafuen Ag
US20020108892A1 (en) * 2001-02-12 2002-08-15 Alexander Goetz System and method for grouping refelectance data
WO2005038443A1 (ja) 2003-10-17 2005-04-28 Astellas Pharma, Inc. 平面分光器を用いた異種品検出装置
WO2013002291A1 (ja) 2011-06-28 2013-01-03 大塚製薬株式会社 薬剤検査装置及び薬剤検査方法
JP2014215177A (ja) * 2013-04-25 2014-11-17 住友電気工業株式会社 検査装置及び検査方法
JP2015077113A (ja) * 2013-10-18 2015-04-23 富士通株式会社 植物判定装置、植物判定方法、及びプログラム
JP2017032371A (ja) * 2015-07-31 2017-02-09 富士通株式会社 情報処理装置、情報処理方法、及びプログラム
JP2018136189A (ja) * 2017-02-21 2018-08-30 Jfeテクノリサーチ株式会社 異種品検出装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040208385A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for visually enhancing images
US7459696B2 (en) * 2003-04-18 2008-12-02 Schomacker Kevin T Methods and apparatus for calibrating spectral data
CA2840565A1 (en) * 2011-06-28 2013-01-03 Otsuka Pharmaceutical Co., Ltd. Drug detection device and drug detection method
JP5697168B2 (ja) * 2012-08-07 2015-04-08 Ckd株式会社 検査装置及びptp包装機
CN103487426B (zh) * 2013-09-18 2015-12-23 胡建明 高灵敏、高重现性表面增强拉曼光谱的检测方法及装置
CN105372198B (zh) * 2015-10-28 2019-04-30 中北大学 基于集成l1正则化的红外光谱波长选择方法
JP6448697B2 (ja) * 2017-03-23 2019-01-09 Ckd株式会社 検査装置、ptp包装機及びptpシートの製造方法
JP6329668B1 (ja) * 2017-04-18 2018-05-23 Ckd株式会社 検査装置、ptp包装機及びptpシートの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329668B2 (ja) * 1978-11-30 1988-06-14 Tsuaanraatofuaburiiku Furiidoritsuhisuhaafuen Ag
US20020108892A1 (en) * 2001-02-12 2002-08-15 Alexander Goetz System and method for grouping refelectance data
WO2005038443A1 (ja) 2003-10-17 2005-04-28 Astellas Pharma, Inc. 平面分光器を用いた異種品検出装置
WO2013002291A1 (ja) 2011-06-28 2013-01-03 大塚製薬株式会社 薬剤検査装置及び薬剤検査方法
JP2014215177A (ja) * 2013-04-25 2014-11-17 住友電気工業株式会社 検査装置及び検査方法
JP2015077113A (ja) * 2013-10-18 2015-04-23 富士通株式会社 植物判定装置、植物判定方法、及びプログラム
JP2017032371A (ja) * 2015-07-31 2017-02-09 富士通株式会社 情報処理装置、情報処理方法、及びプログラム
JP2018136189A (ja) * 2017-02-21 2018-08-30 Jfeテクノリサーチ株式会社 異種品検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3859311A4

Also Published As

Publication number Publication date
JP6706301B2 (ja) 2020-06-03
US11360033B2 (en) 2022-06-14
CN112639446A (zh) 2021-04-09
EP3859311A4 (en) 2022-06-15
US20210278350A1 (en) 2021-09-09
EP3859311A1 (en) 2021-08-04
JP2020056587A (ja) 2020-04-09

Similar Documents

Publication Publication Date Title
WO2020066251A1 (ja) 検査装置、ptp包装機及びptpシートの製造方法
JP6329668B1 (ja) 検査装置、ptp包装機及びptpシートの製造方法
JP6786565B2 (ja) 検査装置、ptp包装機及びptpシートの製造方法
JP6568245B2 (ja) 検査装置、ptp包装機、及び、検査装置の較正方法
JP6448697B2 (ja) 検査装置、ptp包装機及びptpシートの製造方法
WO2018198403A1 (ja) 検査装置、ptp包装機及びptpシートの製造方法
US11338950B2 (en) Inspection device, PTP packaging machine and PTP sheet manufacturing method
JP6595662B1 (ja) 検査装置及びptp包装機
KR102362846B1 (ko) 검사 장치, ptp 포장기 및 ptp 시트의 제조 방법
WO2019187253A1 (ja) 検査装置、ptp包装機、及び、検査方法
JP6539371B1 (ja) 検査装置、ptp包装機、及び、検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019866824

Country of ref document: EP

Effective date: 20210428