WO2020066197A1 - Operating cost assessment method and operating cost assessment program - Google Patents

Operating cost assessment method and operating cost assessment program Download PDF

Info

Publication number
WO2020066197A1
WO2020066197A1 PCT/JP2019/026270 JP2019026270W WO2020066197A1 WO 2020066197 A1 WO2020066197 A1 WO 2020066197A1 JP 2019026270 W JP2019026270 W JP 2019026270W WO 2020066197 A1 WO2020066197 A1 WO 2020066197A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
operating
cost
plant equipment
model
Prior art date
Application number
PCT/JP2019/026270
Other languages
French (fr)
Japanese (ja)
Inventor
藤原良康
小田和則
Original Assignee
株式会社テイエルブイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テイエルブイ filed Critical 株式会社テイエルブイ
Priority to JP2020504429A priority Critical patent/JP6944586B2/en
Publication of WO2020066197A1 publication Critical patent/WO2020066197A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"

Definitions

  • the present invention relates to an operation cost evaluation method and an operation cost evaluation program for evaluating the operation cost for each model of plant equipment.
  • Evaluating the operating costs required for the operation of plant equipment that operates in a plant is necessary when drafting medium- to long-term maintenance plans and process improvement plans for the plant, and ensures stable operation and productivity of the plant. It contributes to improvement.
  • a failure such as a failure occurs in the plant equipment, a large amount of cost may be suddenly generated. Therefore, it is useful in plant management if the occurrence of such a cost can be predicted.
  • Patent Literature 1 and Patent Literature 2 information is collected only when the device falls into an abnormal state. For this reason, the quality and quantity of information collected to evaluate the life of the apparatus may be insufficient. For this reason, there is a case where the prediction accuracy of the device life becomes insufficient and a reliable operation cost evaluation cannot be performed.
  • plant equipment used in a plant for example, a steam trap used in a steam plant
  • a manager or supplier having specialty that is, plant equipment is inspected irrespective of whether or not a failure has occurred, and thus has a feature that information on not only equipment in an abnormal state but also equipment in a normal state can be obtained.
  • the operation cost evaluation method is an operation cost evaluation method for evaluating an operation cost for each model of plant equipment, and inspects a plurality of plant equipment of the evaluation target model that are operating in the plant. Based on the result of the inspection, for each of the plurality of plant equipment, a diagnostic step of diagnosing whether the operating state of the plant equipment is normal or abnormal, and each of the plurality of plant equipment About, the operation start information on the operation start when the plant equipment starts operating in the plant, the inspection time information on the inspection time when the inspection is performed on the plant equipment in the diagnostic process, and Storing operating state information on the operating state diagnosed in the diagnostic step in a storage device.
  • the operating cost evaluation program is an operating cost evaluation program that evaluates the operating cost of each model of plant equipment, and includes a plurality of plant equipment of the evaluation target model that are operating in the plant.
  • the result of the inspection performed on, and, based on the result of the inspection, for each of the plurality of plant equipment, the diagnosis of whether the operating state of the plant equipment is a normal state or an abnormal state As a result, for each of the plurality of plant equipment, the input function for receiving the input of the result, the operation start information relating to the operation start when the plant equipment starts operating in the plant, and the inspection is performed on the plant equipment.
  • Test time information about the test time that is the time when the A storage function for storing operating state information related to an operating state in a storage device, and the operation start information, the inspection time information, and the operating state information stored in the storage function.
  • a device life calculation function for calculating the life, and, based on the device life, prediction of the number of installations, replacements, inspections, and repairs of the plant equipment of the evaluation target model that occurs during a preset operation period.
  • An event prediction function for executing an event prediction, and a total operation cost that is a total operation cost generated for operating the plant device of the model to be evaluated over the operation period based on the result of the event prediction.
  • the cost calculation function is executed by a computer.
  • the cost calculation step further includes dividing the total operation cost by the operation period to generate one year for operating the plant equipment of the model to be evaluated. It is preferable to calculate a single-year operating cost, which is an operating cost per unit.
  • a survival rate curve of the evaluation target model is calculated, and a horizontal axis of the survival rate curve is an elapsed time from the operation start period.
  • the ordinate of the survival rate curve is a survival rate representing a ratio of plant equipment of the evaluation target model that operates in a normal state after the elapsed time has elapsed, and the device life of the evaluation target model is the survival time.
  • the elapsed time is the elapsed time at which the survival rate becomes a predetermined threshold value.
  • a highly accurate survival rate curve can be calculated based on the results of the inspection and diagnosis of the plant equipment.
  • a threshold suitable for the purpose of evaluation it is possible to calculate the life of the apparatus according to the purpose, and to calculate the operating cost according to the purpose.
  • the survival rate curve is calculated by the Kaplan-Meier method.
  • the event prediction step it is preferable that in the event prediction step, the event prediction is performed based on the device life and the survival rate curve.
  • the event prediction can be performed in consideration of the shape of the survival rate curve, that is, the change in the failure rate due to aging, and the like, so that the event that occurs during the expiration of the life of the device can be easily predicted with high accuracy.
  • the diagnosis step is executed a plurality of times, and an interval between the diagnosis steps executed a plurality of times is within a predetermined diagnosis cycle.
  • the diagnosis cycle is one year or less.
  • the device life can be calculated in units of one year or less, and the device life can be calculated with an accuracy suitable for use in calculating the operating cost.
  • the operating cost evaluation method according to the present invention is preferably configured such that the operating cost can be calculated for each use condition in which the plant equipment is used.
  • a fluid handled in the plant flows therein, and the use condition is such that the plant equipment is used in the plant. And at least one of a fluid physical quantity that is a physical quantity related to a fluid flowing through the plant equipment.
  • the operating cost evaluation method and the operating cost evaluation program according to the present embodiment can be applied as one of the asset management methods.
  • the steam plant P includes a turbine, a compressor, a heat exchanger, and the like, that is, a device driven by kinetic energy extracted from steam, a device that consumes heat energy of steam to heat an object, and the like.
  • Piping systems such as steam utilization equipment that consumes the energy of steam to operate, transport pipes that transport steam to the steam utilization equipment, drain pipes that discharge drain generated from the steam utilization equipment, and steam provided in the piping system It has components such as a trap 1, process equipment such as a control valve, a pump, a filter, and a separator, and a steam supply equipment such as a water supply tank, a deaerator, and a boiler.
  • the operating conditions of the steam trap 1 include the site where the steam trap 1 is used in the steam plant P, the purpose for which the steam trap 1 is used, and the temperature, pressure, and flow rate of the steam flowing through the steam plant. , Etc., are specified for each steam trap 1.
  • Etc. a model suitable for use conditions is selected and installed from a plurality of models circulating on the market.
  • the operation cost evaluation method according to the present embodiment is executed using the portable detector 2 and the arithmetic unit 3 (FIG. 2).
  • the portable detector 2 is configured to be portable by an inspector, and a detector 2a capable of detecting a trap physical quantity (an example of an apparatus physical quantity) that is a physical quantity related to the steam trap 1; And a display unit 2c capable of displaying information necessary for an inspector to perform an inspection.
  • the arithmetic unit 3 is configured to be communicable with the portable detector 2 via the network 4 and receives various information transmitted from the portable detector 2.
  • the arithmetic device 3 includes a storage unit 3a (an example of a storage device) that can store such information and an arithmetic unit 3b that can perform various calculations based on the information.
  • the operation cost evaluation method according to the present embodiment includes a diagnosis step, an accumulation step, a device life calculation step, an event prediction step, and a cost calculation step.
  • the diagnosis step includes inspection of the steam trap 1 by an inspector, and diagnosis of the operating state of the steam trap 1 by the inspector. Specifically, the inspector detects the trap physical quantity using the detection unit 2a of the portable detector 2 for each of the plurality of steam traps 1 operating in the steam plant P. The detected physical quantity of the trap is displayed on the display unit 2c, and the inspector can sequentially confirm this during the inspection work.
  • the detected physical quantities of the trap include vibration and temperature. If the detected vibration exceeds a predetermined threshold value, it is suspected that a steam leak has occurred in the steam trap 1. If the detected temperature is lower than a predetermined threshold, it is suspected that the steam trap 1 is clogged. The inspector performs a visual inspection in addition to the detection of these trap physical quantities.
  • diagnosis cycle is one year, and the next diagnosis step is executed within a period not exceeding one year from the execution of the previous diagnosis step.
  • the input of the basic information is omitted if the basic information is not changed from the previous accumulation step in the second and subsequent accumulation steps for the steam trap 1.
  • the basic information input to the input unit 2b is transmitted to the arithmetic unit 3 via the network 4, and is stored in the storage unit 3a.
  • the inspector inputs operating state information on the operating state of the steam trap 1 diagnosed in the diagnostic process, that is, whether the operating state of the steam trap 1 is normal or abnormal, to the input unit 2b.
  • the operating state information input to the input unit 2b is transmitted to the arithmetic unit 3 via the network 4 together with the inspection time information on the inspection time when the inspection based on the operating state information is performed, and is stored. It is stored in the unit 3a.
  • Table 1 shows a part of the information stored in the storage unit 3a in the above-described storage process. As shown in Table 1, it is stored in the storage unit 3a that the steam traps A to H are the model a and the steam traps I to L are the model b. In addition, with respect to all the steam traps, the operation start period (year) and the operation state information in the diagnostic process performed every year from 2011 to 2017 are stored in the storage unit 3a. In the column of the operating state information, a portion indicated by a hyphen (-) indicates that the steam trap was not present, the diagnosis process of the steam trap was not performed, and the like. It means that the information of the year has not been accumulated. In Table 1, the description relating to the portion having the ID D indicates that the steam trap D1 was replaced with the steam trap D2 of the same model (model a) after the abnormality was discovered in the diagnosis process of 2015. Show.
  • Table 1 Example of information stored in storage process
  • the calculation unit 3b calculates the survival rate curve of the evaluation target model, and determines the device life of the evaluation target model based on the survival rate curve.
  • the survival rate curve is calculated by the Kaplan-Meier method. The specific method will be described below. In the following description, “model a” in Table 1 will be described as a model to be evaluated.
  • the information shown in Table 1 is arranged for each number of years elapsed from the start of operation.
  • the information on the model b is excluded from the calculation target.
  • the steam trap A was in a normal state in 2011, which is one year after the operation start period of 2010, so that the column of the elapsed year "1 year” indicates that "normal”. It is remembered. Further, the steam trap C, whose operation is started in 2011, is in a normal state from 2012 (one year after the start of operation) to 2016 (five years after the start of operation), and in 2017 (six years after the start of operation). ), It was confirmed that the state was abnormal, so the column of elapsed years “1 year” to “5 years” was “normal” and the column of elapsed years “6 years” was “abnormal”. Is stored.
  • Table 2 Examples of information organized by years elapsed since the beginning of operation
  • Table 3 Example of total number of operation, normal number, and normal rate for each year after installation
  • the normal rate for each year after installation as shown in Table 3 is integrated to calculate the survival rate for each elapsed year.
  • the horizontal axis is the elapsed years (an example of the elapsed time from the start of operation), and the vertical axis is plotted as the survival rate for each elapsed year, thereby obtaining a survival rate curve (FIG. 3).
  • the elapsed years at which the survival rate becomes a predetermined threshold value is determined as the device life of the model a which is the evaluation target model. For example, assuming that the threshold is 70%, in FIG. 3, the survival rate is 80% at the age of 4 years and the survival rate is 60% at the age of 5 years. %. Therefore, the device life of the model a is determined to be 4.5 years.
  • the information accumulated in the storage unit 3a in the accumulation process and calculated in the device life calculation process is not limited to the information relating to the steam trap 1 operating in a specific steam plant P, but also operates in a plurality of steam plants P.
  • Information about the steam trap 1 to be performed is not only is the life of the steam trap 1 in a specific steam plant P evaluated, but also a general product of the steam trap 1 flowing out from the manufacturer to the market. This is for the purpose of evaluating the life. Note that it is advantageous to target the steam traps 1 that operate in a plurality of steam plants P from the viewpoint of easily obtaining a statistically significant sample quantity.
  • the calculation unit 3b predicts an event occurring during a predetermined operation period based on the device life and the survival rate curve calculated in the device life calculation step.
  • the event includes installation of the steam trap 1, repair and replacement due to failure of the steam trap 1, and inspection and diagnosis of the steam trap 1 (that is, a diagnosis process).
  • the prediction for such an event includes a prediction about when each event is predicted to occur.
  • an "installation" event occurs once when the steam trap 1 of the model a is installed at the target location. Since the equipment life of the installed steam trap 1 of the model a is 4.5 years, when replacing the steam trap 1 of the model a with a new one for each equipment life, the "replacement" during the operation period of 20 years is required. It is expected that the event will occur four times. In addition, since the failure may be resolved by the repair, occurrence of a “repair” event is also predicted.
  • the number of occurrences of the event of “repair” is predicted based on appropriate information such as statistical information on repair of the model a, statistical information of repair on the steam plant P, and physical quantities detected in the diagnostic process.
  • the event of “repair” is predicted to occur five times during the operation period of 20 years.
  • the diagnostic process is executed once a year, so that each of the “test” and “diagnosis” events occurs 20 times.
  • Cost Calculation Step the calculation unit 3b accumulates the costs caused by the occurrence of each event predicted in the event prediction step, so that the total operation generated for operating the plant device of the model to be evaluated is performed. Calculate the total operating cost, which is the cost.
  • the cost is calculated in the form of the cost.
  • the purchase cost of equipment for the steam trap 1 of the model a and the construction cost for installing it are incurred.
  • the equipment purchase cost and the construction cost for five times are recorded as the operating cost.
  • the cost of recovering from an abnormal condition can be evaluated by leveling out the effects of sudden costs caused by abnormal conditions that occur once every several years over the entire operation period.
  • FIG. 4 shows a steam trap of a specific evaluation target model in which the pressure of the flowing steam (hereinafter, referred to as operating pressure) is 0.5 MPa or less, 0.5 to 1.0 MPa or less, and This is an example in which the survival rate is calculated for each of the classifications of 1.0 to 1.5 MPa or less.
  • the operating pressure is 9.0 years when the operating pressure is 0.5 MPa, and 7.3 years when the operating pressure is 0.5 to 1.0 MPa. 4.8 years when the pressure is 1.0-1.5MPa.
  • the survival rate curve and the device life for each operating pressure are calculated, and the operation cost is calculated by applying the curve.
  • the operation cost is calculated by applying the uniform device life to all the steam traps 1. Compared with the case, the accuracy of the calculated operation cost is higher.
  • the steam traps may be classified according to the temperature and flow rate of the flowing steam in addition to the pressure, that is, according to an arbitrary steam physical quantity. Further, such totalization for each use condition may be performed, for example, for each site (application of the trap) where the steam trap 1 is used in the steam plant P, in addition to the totalization for each steam physical quantity exemplified above. . For example, if the steam trap is installed on the main pipe, installed on an iron trace, installed on a copper trace, etc. It can be objectively evaluated that the life of the device differs depending on the location where the device 1 is installed. Further, in the operating cost evaluation method according to the present invention, the trap physical quantity is detected by using a permanent detector provided in advance in the steam trap 1 instead of detecting the trap physical quantity by using the detection unit 2a of the portable detector 2. May be configured.
  • plant equipment to be evaluated includes a turbine, a compressor, a generator, a heat exchanger, a transport pipe, a drain pipe, a control valve, a pump, a filter, a separator, a water supply tank, It may be a deaerator, a boiler, a reboiler, or the like.
  • the survival rate curve is calculated by the Kaplan-Meier method.
  • the survival curve is calculated by a survival time analysis method assuming a known distribution such as a Weibull distribution, an exponential distribution, a lognormal distribution, a gamma distribution or a logistic distribution. You may.
  • the configuration in which the operating cost is calculated in the form of the cost has been described as an example.
  • the operating cost is calculated in a form such as a loss amount of a fluid generated due to an abnormal state of the plant equipment or a decrease amount of the production amount of the plant product.
  • it may be calculated in the form of energy consumption or steam consumption required for operation of the plant equipment.
  • the diagnosis cycle may be any period.
  • the diagnosis cycle is short, the accuracy of the calculated device life and operating cost tends to be improved, and when the diagnosis cycle is long, the man-hour and cost required for inspection and diagnosis tend to be reduced. Therefore, the diagnostic cycle should be appropriately determined in consideration of the required accuracy of the device life and operating cost and man-hours and costs that can be spent.
  • the diagnosis cycle be within one year, because the device life and operating cost can be calculated with sufficiently high accuracy for many plant devices.
  • a predetermined threshold for determining the device life is the structure, material, and use conditions of the plant equipment to be evaluated, and the user of the plant equipment or Any value can be used according to the conditions required by the supplier.
  • the configuration in which the operation period of the steam trap 1 is set to 20 years has been described as an example.
  • the predetermined operation period for calculating the operation cost depends on the structure, material, and use conditions of the plant equipment to be evaluated, and the user of the plant equipment. Alternatively, an arbitrary value can be used according to conditions required by the supplier.
  • the present invention can be used, for example, for evaluating the equipment life of a steam trap operating in a steam plant.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Tourism & Hospitality (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

This operating cost assessment method has: a diagnosis step for inspecting a plurality of plant devices (1) of a model to be assessed which are operating in a plant (P), and diagnosing the operating status of each of the plant devices (1) on the basis of the inspection results; an accumulation step for accumulating operation start time information, inspection time period information and operating status information in a storage device for each of the plant devices (1); a device lifespan calculation step for calculating the device lifespan of the model to be assessed; an event prediction step which, on the basis of the device lifespan, predicts the frequency of installation, maintenance and the like which will occur during the period of operation of the plant devices (1) of the model being assessed; and a cost calculation step for calculating the total operating cost incurred in order to operate the plant devices (1) of the model being assessed over the period of operation thereof on the basis of the prediction.

Description

稼働コスト評価方法および稼働コスト評価プログラムOperating cost evaluation method and operating cost evaluation program
 本発明は、プラント機器の機種ごとの稼働コストを評価するための稼働コスト評価方法および稼働コスト評価プログラムに関する。 The present invention relates to an operation cost evaluation method and an operation cost evaluation program for evaluating the operation cost for each model of plant equipment.
 プラントにおいて稼働するプラント機器について、その稼働に要する稼働コストを評価することは、当該プラントの中長期の保守計画や工程改善計画を立案する際に必要であり、プラントの安定的な運転や生産性の改善に資するものである。特に、プラント機器に故障などの不具合が生じると、突発的に多大なコストが発生する場合があるので、そのようなコストの発生を予測することができればプラント管理上有用である。 Evaluating the operating costs required for the operation of plant equipment that operates in a plant is necessary when drafting medium- to long-term maintenance plans and process improvement plans for the plant, and ensures stable operation and productivity of the plant. It contributes to improvement. In particular, if a failure such as a failure occurs in the plant equipment, a large amount of cost may be suddenly generated. Therefore, it is useful in plant management if the occurrence of such a cost can be predicted.
 そのような稼働コストの予測は、一般的にプラント機器の製品寿命の予測に基づいて行われるため、稼働コストの予測の精度は製品寿命の予測の精度に左右される。このような稼働コストの予測の基礎とする製品寿命の予測を行うための技術として、たとえば日本国特開2008-234572号公報(特許文献1)や日本国特開2009-266029号公報(特許文献2)のような技術が公知である。これらの技術では、市場に流出し実際に使用されている製品の故障に関する情報を収集し、当該情報に基づいてその製品の寿命を予測する。 (4) Since such an operation cost is generally predicted based on the prediction of the product life of the plant equipment, the accuracy of the operation cost prediction depends on the accuracy of the prediction of the product life. Techniques for estimating product life as the basis for such operation cost estimation include, for example, Japanese Patent Application Laid-Open No. 2008-234572 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2009-26629 (Patent Document 1). Techniques such as 2) are known. In these technologies, information on a failure of a product that has been leaked to the market and actually used is collected, and the life of the product is predicted based on the information.
日本国特開2008-234572号公報Japanese Patent Application Laid-Open No. 2008-234572 日本国特開2009-266029号公報Japanese Patent Application Laid-Open No. 2009-266029
 しかし、特許文献1および特許文献2のいずれの技術においても、機器が異常状態に陥ったときに初めて情報が収集される。そのため、装置寿命を評価するために収集される情報の質および量が不十分な場合があった。そのため、装置寿命の予測精度が不十分となり、信頼性の高い稼働コスト評価を行えない場合があった。 However, in each of the techniques of Patent Literature 1 and Patent Literature 2, information is collected only when the device falls into an abnormal state. For this reason, the quality and quantity of information collected to evaluate the life of the apparatus may be insufficient. For this reason, there is a case where the prediction accuracy of the device life becomes insufficient and a reliable operation cost evaluation cannot be performed.
 一方、プラントにおいて用いられるプラント機器(たとえば、蒸気プラントにおいて用いられる蒸気トラップ)については、専門性を有する管理者や供給者などにより定期的に検査が行われることが一般的である。すなわちプラント機器は、故障が生じているか否かに関わらず検査が行われるため、異常状態の機器のみならず正常状態の機器に関する情報も入手することができるという特徴がある。 On the other hand, plant equipment used in a plant (for example, a steam trap used in a steam plant) is generally inspected regularly by a manager or supplier having specialty. That is, plant equipment is inspected irrespective of whether or not a failure has occurred, and thus has a feature that information on not only equipment in an abnormal state but also equipment in a normal state can be obtained.
 そこで、プラント機器について行われる検査を活用した精度の高い装置寿命の評価を行い、これに基づいて当該プラント機器の稼働コストを信頼性高く評価する方法の実現が求められる。 Therefore, there is a need for a method of evaluating the life of a plant with high accuracy by utilizing inspections performed on plant equipment, and realizing a method for highly reliably evaluating the operating cost of the plant equipment based on the evaluation.
 本発明に係る稼働コスト評価方法は、プラント機器の機種ごとの稼働コストを評価する稼働コスト評価方法であって、評価対象機種の複数のプラント機器であってプラントにおいて稼働しているものの検査を行い、当該検査の結果に基づいて、前記複数のプラント機器のそれぞれについて、当該プラント機器の稼働状態が正常状態であるか異常状態であるかの診断を行う診断工程と、前記複数のプラント機器のそれぞれについて、当該プラント機器が前記プラントにおいて稼働を開始した時である稼動始期に関する稼働始期情報、前記診断工程において当該プラント機器に対して前記検査が行われた時である検査時期に関する検査時期情報、および、前記診断工程において診断された前記稼働状態に関する稼働状態情報、を記憶装置に蓄積する蓄積工程と、前記蓄積工程において蓄積された前記稼働始期情報、前記検査時期情報、および、前記稼働状態情報に基づいて、前記評価対象機種の装置寿命を演算する装置寿命演算工程と、前記装置寿命に基づいて、あらかじめ設定された稼働期間の間に発生する前記評価対象機種のプラント機器の、設置、修理および交換、ならびに、検査および診断、の回数についての予測であるイベント予測を実行するイベント予測工程と、前記イベント予測の結果に基づいて、前記稼働期間にわたって前記評価対象機種のプラント機器を稼働するために生じる通算の稼働コストである通算稼働コストを演算するコスト演算工程と、を有することを特徴とする。 The operation cost evaluation method according to the present invention is an operation cost evaluation method for evaluating an operation cost for each model of plant equipment, and inspects a plurality of plant equipment of the evaluation target model that are operating in the plant. Based on the result of the inspection, for each of the plurality of plant equipment, a diagnostic step of diagnosing whether the operating state of the plant equipment is normal or abnormal, and each of the plurality of plant equipment About, the operation start information on the operation start when the plant equipment starts operating in the plant, the inspection time information on the inspection time when the inspection is performed on the plant equipment in the diagnostic process, and Storing operating state information on the operating state diagnosed in the diagnostic step in a storage device. An accumulating step, an apparatus life calculating step of calculating an apparatus life of the evaluation target model based on the operation start information, the inspection time information, and the operating state information accumulated in the accumulating step; and An event that executes an event prediction that is a prediction of the number of times of installation, repair and replacement, and inspection and diagnosis of the plant equipment of the evaluation target model that occurs during a preset operation period based on the life. A predicting step, and a cost calculating step of calculating a total operating cost that is a total operating cost generated for operating the plant device of the model to be evaluated over the operating period based on a result of the event prediction. It is characterized by.
 また、本発明に係る稼働コスト評価プログラムは、プラント機器の機種ごとの稼働コストを評価する稼働コスト評価プログラムであって、評価対象機種の複数のプラント機器であってプラントにおいて稼働しているものに対して行われる検査の結果、および、当該検査の結果に基づいてなされた、前記複数のプラント機器のそれぞれについての、当該プラント機器の稼働状態が正常状態であるか異常状態であるかの診断の結果、の入力を受け付ける入力機能と、前記複数のプラント機器のそれぞれについて、当該プラント機器が前記プラントにおいて稼働を開始した時である稼動始期に関する稼働始期情報、当該プラント機器に対して前記検査が行われた時である検査時期に関する検査時期情報、および、前記診断において診断された前記稼働状態に関する稼働状態情報、を記憶装置に蓄積する蓄積機能と、前記蓄積機能において蓄積された前記稼働始期情報、前記検査時期情報、および、前記稼働状態情報に基づいて、前記評価対象機種の装置寿命を演算する装置寿命演算機能と、前記装置寿命に基づいて、あらかじめ設定された稼働期間の間に発生する前記評価対象機種のプラント機器の、設置、交換、点検、および修理の回数についての予測であるイベント予測を実行するイベント予測機能と、前記イベント予測の結果に基づいて、前記稼働期間にわたって前記評価対象機種のプラント機器を稼働するために生じる通算の稼働コストである通算稼働コストを演算するコスト演算機能と、をコンピュータに実行させることを特徴とする。 Further, the operating cost evaluation program according to the present invention is an operating cost evaluation program that evaluates the operating cost of each model of plant equipment, and includes a plurality of plant equipment of the evaluation target model that are operating in the plant. The result of the inspection performed on, and, based on the result of the inspection, for each of the plurality of plant equipment, the diagnosis of whether the operating state of the plant equipment is a normal state or an abnormal state As a result, for each of the plurality of plant equipment, the input function for receiving the input of the result, the operation start information relating to the operation start when the plant equipment starts operating in the plant, and the inspection is performed on the plant equipment. Test time information about the test time that is the time when the A storage function for storing operating state information related to an operating state in a storage device, and the operation start information, the inspection time information, and the operating state information stored in the storage function. A device life calculation function for calculating the life, and, based on the device life, prediction of the number of installations, replacements, inspections, and repairs of the plant equipment of the evaluation target model that occurs during a preset operation period. An event prediction function for executing an event prediction, and a total operation cost that is a total operation cost generated for operating the plant device of the model to be evaluated over the operation period based on the result of the event prediction. The cost calculation function is executed by a computer.
 これらの構成によれば、プラント機器について行われる検査を活用し、信頼性の高い稼働コストの評価方法を実現することができる。 According to these configurations, it is possible to implement a highly reliable operation cost evaluation method by utilizing inspections performed on plant equipment.
 以下、本発明の好適な態様について説明する。ただし、以下に記載する好適な態様例によって、本発明の範囲が限定されるわけではない。 Hereinafter, preferred embodiments of the present invention will be described. However, the scope of the present invention is not limited by the preferred embodiments described below.
 本発明に係る稼働コスト評価方法は、一態様として、前記コスト演算工程は、さらに、前記通算稼働コストを前記稼働期間で除して、前記評価対象機種のプラント機器を稼働するために生じる1年あたりの稼働コストである単年稼働コストを演算することが好ましい。 In one aspect of the operation cost evaluation method according to the present invention, the cost calculation step further includes dividing the total operation cost by the operation period to generate one year for operating the plant equipment of the model to be evaluated. It is preferable to calculate a single-year operating cost, which is an operating cost per unit.
 この構成によれば、数年に1回の頻度で生じる異常状態に起因して生じる突発的なコストの影響を、稼働期間の全期間にわたって平準化することができるため、プラントの安定的な維持管理を行うことができる。 According to this configuration, the effects of sudden costs caused by abnormal conditions that occur once every several years can be leveled over the entire operation period, so that the plant can be stably maintained. Can manage.
 本発明に係る稼働コスト評価方法は、一態様として、前記装置寿命演算工程において、前記評価対象機種の生存率曲線が演算され、前記生存率曲線の横軸は、前記稼動始期からの経過時間であり、前記生存率曲線の縦軸は、前記経過時間が経過した後に正常状態で稼働する前記評価対象機種のプラント機器の割合を表す生存率であり、前記評価対象機種の装置寿命は、前記生存率曲線において、前記生存率があらかじめ定められた閾値になる前記経過時間であることが好ましい。 In one aspect of the operation cost evaluation method according to the present invention, in the device life calculation step, a survival rate curve of the evaluation target model is calculated, and a horizontal axis of the survival rate curve is an elapsed time from the operation start period. The ordinate of the survival rate curve is a survival rate representing a ratio of plant equipment of the evaluation target model that operates in a normal state after the elapsed time has elapsed, and the device life of the evaluation target model is the survival time. In the rate curve, it is preferable that the elapsed time is the elapsed time at which the survival rate becomes a predetermined threshold value.
 この構成によれば、プラント機器に対する検査および診断の結果に基づいて精度の高い生存率曲線を演算することができる。また、評価目的に適した閾値を設定することで、目的に応じた装置寿命を演算することができ、ひいては目的に応じた稼働コストを演算することができる。 According to this configuration, a highly accurate survival rate curve can be calculated based on the results of the inspection and diagnosis of the plant equipment. In addition, by setting a threshold suitable for the purpose of evaluation, it is possible to calculate the life of the apparatus according to the purpose, and to calculate the operating cost according to the purpose.
 本発明に係る稼働コスト評価方法は、一態様として、前記生存率曲線は、カプランマイヤー法により演算されることが好ましい。 In one aspect of the operating cost evaluation method according to the present invention, it is preferable that the survival rate curve is calculated by the Kaplan-Meier method.
 この構成によれば、生存時間解析手法の分野における適用実績が豊富なカプランマイヤー法により、高精度の稼働コストを演算することができる。 According to this configuration, it is possible to calculate the operating cost with high accuracy by the Kaplan-Meier method, which has abundant application results in the field of the survival time analysis method.
 本発明に係る稼働コスト評価方法は、一態様として、前記イベント予測工程は、前記装置寿命および前記生存率曲線に基づいて前記イベント予測を実行することが好ましい。 In one aspect of the operating cost evaluation method according to the present invention, it is preferable that in the event prediction step, the event prediction is performed based on the device life and the survival rate curve.
 この構成によれば、生存率曲線の形状、すなわち経年による故障率の変化などを加味してイベント予測を実行できるため、装置寿命が満了する途中に発生するイベントを高い精度で予測しやすい。 According to this configuration, the event prediction can be performed in consideration of the shape of the survival rate curve, that is, the change in the failure rate due to aging, and the like, so that the event that occurs during the expiration of the life of the device can be easily predicted with high accuracy.
 本発明に係る稼働コスト評価方法は、一態様として、前記診断工程は複数回実行され、複数回実行される前記診断工程どうしの間隔は、あらかじめ定められた診断周期以内であることが好ましい。 In one aspect of the operating cost evaluation method according to the present invention, it is preferable that the diagnosis step is executed a plurality of times, and an interval between the diagnosis steps executed a plurality of times is within a predetermined diagnosis cycle.
 この構成によれば、定期的に検査および診断が行われるため、収集される情報の質および量が向上し、より精度の高い稼働コストを演算しやすい。 According to this configuration, since inspection and diagnosis are performed periodically, the quality and quantity of collected information are improved, and it is easy to calculate a more accurate operating cost.
 本発明に係る稼働コスト評価方法は、一態様として、前記診断周期は1年以下であることが好ましい。 稼 働 In one aspect of the operating cost evaluation method according to the present invention, it is preferable that the diagnosis cycle is one year or less.
 この構成によれば、1年以下の単位で装置寿命を演算することができ、稼働コストの演算に用いるのに適した精度の装置寿命を演算することができる。 According to this configuration, the device life can be calculated in units of one year or less, and the device life can be calculated with an accuracy suitable for use in calculating the operating cost.
 本発明に係る稼働コスト評価方法は、一態様として、前記プラント機器が使用される使用条件ごとに前記稼働コストを演算可能に構成されていることが好ましい。 As an aspect, the operating cost evaluation method according to the present invention is preferably configured such that the operating cost can be calculated for each use condition in which the plant equipment is used.
 この構成によれば、使用条件が稼働コストに与える影響を客観的に評価しやすい。 According to this configuration, it is easy to objectively evaluate the influence of the use condition on the operation cost.
 本発明に係る稼働コスト評価方法は、一態様として、前記プラント機器は、その内部に前記プラントで取り扱われる流体が流通するものであって、前記使用条件は、前記プラントにおいて前記プラント機器が使用される部位、および、前記プラント機器を流通する流体に係る物理量である流体物理量、の少なくとも1つを含むことが好ましい。 In one aspect of the operation cost evaluation method according to the present invention, in the plant equipment, a fluid handled in the plant flows therein, and the use condition is such that the plant equipment is used in the plant. And at least one of a fluid physical quantity that is a physical quantity related to a fluid flowing through the plant equipment.
 この構成によれば、プラント機器が使用される部位、ならびに、プラント機器を流通する流体の温度、圧力、および流量、などが稼働コストに与える影響を客観的に評価しやすい。 According to this configuration, it is easy to objectively evaluate the effects of the site where the plant equipment is used and the temperature, pressure and flow rate of the fluid flowing through the plant equipment on the operating cost.
 本発明のさらなる特徴と利点は、図面を参照して記述する以下の例示的かつ非限定的な実施形態の説明によってより明確になるであろう。 Further features and advantages of the present invention will become more apparent from the following description of exemplary and non-limiting embodiments, which is set forth with reference to the drawings.
本発明の構成例を表す概略図Schematic diagram showing a configuration example of the present invention 本発明の構成例を表すブロック図Block diagram showing a configuration example of the present invention 本発明に係る生存率曲線の例Examples of survival curves according to the present invention 本発明に係る生存率曲線の他例Another example of the survival curve according to the present invention
 本発明に係る稼働コスト評価方法および稼働コスト評価プログラムの実施形態について、図面を参照して説明する。以下では、石油化学プラントや火力発電プラントなどの、蒸気(流体の一例)を利用する蒸気プラントP(プラントの一例)において稼働している蒸気トラップ1(プラント機器の一例)について、本実施形態に係る稼働コスト評価方法により、蒸気トラップ1の機種ごとの装置寿命を評価した例について説明する。 An embodiment of an operation cost evaluation method and an operation cost evaluation program according to the present invention will be described with reference to the drawings. In the following, a steam trap 1 (an example of plant equipment) operating in a steam plant P (an example of a plant) using steam (an example of a fluid) such as a petrochemical plant or a thermal power plant is described in this embodiment. An example in which the device life of each type of the steam trap 1 is evaluated by the operation cost evaluation method will be described.
 なお、蒸気プラントPのような蒸気システム全体を重要なアセットの1つとして捉えると、本実施形態に係る稼働コスト評価方法および稼働コスト評価プログラムは、アセットマネジメント手法の1つとして適用可能である。 If the entire steam system such as the steam plant P is regarded as one of important assets, the operating cost evaluation method and the operating cost evaluation program according to the present embodiment can be applied as one of the asset management methods.
〔装置構成およびシステム構成〕
 まず、稼働コストを評価する対象とする蒸気トラップ1について説明する。図1に示すように、本実施形態においては、複数の蒸気プラントPが存在し、各蒸気プラントPにおいて複数の蒸気トラップ1が稼働している。
[Device configuration and system configuration]
First, the steam trap 1 whose operation cost is to be evaluated will be described. As shown in FIG. 1, in the present embodiment, a plurality of steam plants P exist, and a plurality of steam traps 1 operate in each steam plant P.
 本実施形態に係る蒸気プラントPは、タービン、コンプレッサ、熱交換器など、すなわち、蒸気から取り出した運動エネルギーにより駆動する機器、蒸気が有する熱エネルギーを消費して対象物を加熱する機器などの、蒸気が有するエネルギーを消費して稼働する蒸気利用機器、蒸気利用機器に蒸気を輸送する輸送管、蒸気利用機器から生じたドレンを排出するドレン管などの配管系、および、配管系に設けられる蒸気トラップ1、制御バルブ、ポンプ、フィルタ、セパレータなどのプロセス機器、給水タンク、脱気器、ボイラなどの蒸気供給機器、などの構成要素を有する。 The steam plant P according to the present embodiment includes a turbine, a compressor, a heat exchanger, and the like, that is, a device driven by kinetic energy extracted from steam, a device that consumes heat energy of steam to heat an object, and the like. Piping systems such as steam utilization equipment that consumes the energy of steam to operate, transport pipes that transport steam to the steam utilization equipment, drain pipes that discharge drain generated from the steam utilization equipment, and steam provided in the piping system It has components such as a trap 1, process equipment such as a control valve, a pump, a filter, and a separator, and a steam supply equipment such as a water supply tank, a deaerator, and a boiler.
 これらの構成要素のそれぞれには蒸気が流通し、その蒸気の温度、圧力、流通量などの諸条件は多岐にわたる。したがって、蒸気トラップ1の使用条件は、蒸気プラントPにおいて当該蒸気トラップ1が使用される部位、当該蒸気トラップ1が使用される目的、ならびに、蒸気プラントを流通する蒸気の温度、圧力、および流通量、などにより、蒸気トラップ1ごとに特定される。ここで、蒸気トラップ1は市場に流通する複数の機種から、使用条件に適合した機種が選択され設置される。 蒸 気 Vapor circulates through each of these components, and various conditions such as the temperature, pressure, and flow rate of the vapor diverge. Therefore, the operating conditions of the steam trap 1 include the site where the steam trap 1 is used in the steam plant P, the purpose for which the steam trap 1 is used, and the temperature, pressure, and flow rate of the steam flowing through the steam plant. , Etc., are specified for each steam trap 1. Here, as the steam trap 1, a model suitable for use conditions is selected and installed from a plurality of models circulating on the market.
 本実施形態に係る稼働コスト評価方法は、可搬型検出器2と演算装置3とを用いて実行される(図2)。可搬型検出器2は、検査員が持ち運び可能に構成されており、蒸気トラップ1に関連する物理量であるトラップ物理量(機器物理量の一例)を検出可能な検出部2aと、検査員が各種の情報を入力可能な入力部2bと、検査員が検査を行う際に必要な情報を表示可能な表示部2cとを含む。 稼 働 The operation cost evaluation method according to the present embodiment is executed using the portable detector 2 and the arithmetic unit 3 (FIG. 2). The portable detector 2 is configured to be portable by an inspector, and a detector 2a capable of detecting a trap physical quantity (an example of an apparatus physical quantity) that is a physical quantity related to the steam trap 1; And a display unit 2c capable of displaying information necessary for an inspector to perform an inspection.
 演算装置3は、可搬型検出器2とネットワーク4を通じて通信可能に構成されており、可搬型検出器2から送信される各種の情報を受信する。演算装置3は、これらの情報を蓄積可能な記憶部3a(記憶装置の一例)と、当該情報に基づいて各種演算を行うことができる演算部3bとを含む。 The arithmetic unit 3 is configured to be communicable with the portable detector 2 via the network 4 and receives various information transmitted from the portable detector 2. The arithmetic device 3 includes a storage unit 3a (an example of a storage device) that can store such information and an arithmetic unit 3b that can perform various calculations based on the information.
〔稼働コスト評価方法〕
 次に、本実施形態に係る稼働コスト評価方法の具体的な手順について説明する。本実施形態に係る稼働コスト評価方法は、診断工程、蓄積工程、装置寿命演算工程、イベント予測工程、およびコスト演算工程から構成される。
[Operating cost evaluation method]
Next, a specific procedure of the operating cost evaluation method according to the present embodiment will be described. The operation cost evaluation method according to the present embodiment includes a diagnosis step, an accumulation step, a device life calculation step, an event prediction step, and a cost calculation step.
(1)診断工程
 診断工程は、検査員による蒸気トラップ1の検査と、当該検査員による当該蒸気トラップ1の稼働状態の診断と、を含む。具体的には、検査員は、蒸気プラントPにおいて稼働する複数の蒸気トラップ1のそれぞれについて、可搬型検出器2の検出部2aを用いたトラップ物理量の検出を行う。検出されたトラップ物理量は表示部2cに表示され、検査員は検査作業中に逐次これを確認することができる。
(1) Diagnosis Step The diagnosis step includes inspection of the steam trap 1 by an inspector, and diagnosis of the operating state of the steam trap 1 by the inspector. Specifically, the inspector detects the trap physical quantity using the detection unit 2a of the portable detector 2 for each of the plurality of steam traps 1 operating in the steam plant P. The detected physical quantity of the trap is displayed on the display unit 2c, and the inspector can sequentially confirm this during the inspection work.
 ここで検出されるトラップ物理量としては、振動および温度が挙げられる。検出された振動があらかじめ定められた閾値を超えている場合は、当該蒸気トラップ1において蒸気漏れが生じていることが疑われる。また、検出された温度があらかじめ定められた閾値を下回っている場合は、当該蒸気トラップ1において詰まりが生じていることが疑われる。
検査員は、これらのトラップ物理量の検出に加えて目視による検査も行う。
Here, the detected physical quantities of the trap include vibration and temperature. If the detected vibration exceeds a predetermined threshold value, it is suspected that a steam leak has occurred in the steam trap 1. If the detected temperature is lower than a predetermined threshold, it is suspected that the steam trap 1 is clogged.
The inspector performs a visual inspection in addition to the detection of these trap physical quantities.
 以上の検査におけるトラップ物理量の検出結果および目視検査の結果を総合して、検査員は、それぞれの蒸気トラップ1の稼働状態が正常状態であるか異常状態であるかの診断を行う。 総 合 Based on the results of the detection of the trap physical quantity and the results of the visual inspection in the above inspection, the inspector diagnoses whether the operation state of each steam trap 1 is normal or abnormal.
 このような一連の診断工程は、あらかじめ定められた診断周期ごとに、定期的に実行される。本実施形態では診断周期を1年とし、前回の診断工程の実行から1年を超えない期間以内に次の診断工程が実行される。 (4) Such a series of diagnostic steps are periodically executed at predetermined diagnostic intervals. In this embodiment, the diagnosis cycle is one year, and the next diagnosis step is executed within a period not exceeding one year from the execution of the previous diagnosis step.
(2)蓄積工程
 蓄積工程では、装置寿命を評価するために必要な情報の蓄積を行う。検査員は、まず、蒸気プラントPにおいて稼働する複数の蒸気トラップ1のそれぞれについて、当該蒸気トラップ1の基本情報として、当該蒸気トラップ1を特定する識別情報(ID)、当該蒸気トラップ1の機種名、当該蒸気トラップが稼働を開始した時である稼動始期、蒸気プラントPにおいて当該蒸気トラップ1が使用される部位、当該蒸気トラップ1が使用される目的、および、蒸気プラントを流通する蒸気に係る物理量である蒸気物理量(流体物理量の一例)を含む情報を入力部2bに入力する。なお、蒸気物理量とは、たとえば温度、圧力、および流通量などである。ここで、これらの基本情報の入力は、当該蒸気トラップ1についての2回目以降の蓄積工程であって前回の蓄積工程から基本情報に変更がない場合は、省略される。入力部2bに入力された基本情報は、ネットワーク4を介して演算装置3に送信され、記憶部3aに蓄積される。
(2) Storage Step In the storage step, information necessary for evaluating the life of the device is stored. First, for each of the plurality of steam traps 1 operating in the steam plant P, the inspector determines, as basic information of the steam trap 1, identification information (ID) for specifying the steam trap 1, a model name of the steam trap 1 At the beginning of operation when the steam trap starts operating, the site where the steam trap 1 is used in the steam plant P, the purpose of using the steam trap 1, and the physical quantity related to the steam flowing through the steam plant. Is input to the input unit 2b. Note that the steam physical quantity is, for example, a temperature, a pressure, and a flow rate. Here, the input of the basic information is omitted if the basic information is not changed from the previous accumulation step in the second and subsequent accumulation steps for the steam trap 1. The basic information input to the input unit 2b is transmitted to the arithmetic unit 3 via the network 4, and is stored in the storage unit 3a.
 検査員は、次に、診断工程において診断した当該蒸気トラップ1の稼働状態に関する稼働状態情報、すなわち当該蒸気トラップ1の稼働状態が正常状態であるか異常状態であるかを入力部2bに入力する。入力部2bに入力された稼働状態情報は、当該稼働状態情報の根拠となった検査が行われた時である検査時期に関する検査時期情報とともに、ネットワーク4を介して演算装置3に送信され、記憶部3aに蓄積される。 Next, the inspector inputs operating state information on the operating state of the steam trap 1 diagnosed in the diagnostic process, that is, whether the operating state of the steam trap 1 is normal or abnormal, to the input unit 2b. . The operating state information input to the input unit 2b is transmitted to the arithmetic unit 3 via the network 4 together with the inspection time information on the inspection time when the inspection based on the operating state information is performed, and is stored. It is stored in the unit 3a.
 以上の蓄積工程において記憶部3aに蓄積された情報の一部について、表1に例示した。表1に示すように、蒸気トラップA~Hは機種aであり、蒸気トラップI~Lは機種bであることが記憶部3aに蓄積されている。また、全ての蒸気トラップについて、稼動始期(年)と、2011年から2017年にわたって1年ごとに実施された診断工程における稼働状態情報とが、記憶部3aに蓄積されている。なお、稼働状態情報の欄においてハイフン(-)で示されている箇所は、当該蒸気トラップが存在しなかった、当該蒸気トラップの診断工程が行われなかった、などの理由により、当該蒸気トラップについてその年の情報が蓄積されていないことを意味する。また、表1のうち、IDがDの箇所に係る記載は、蒸気トラップD1について2015年の診断工程において異常が発見されたため、その後同機種(機種a)の蒸気トラップD2に交換されたことを示す。 Table 1 shows a part of the information stored in the storage unit 3a in the above-described storage process. As shown in Table 1, it is stored in the storage unit 3a that the steam traps A to H are the model a and the steam traps I to L are the model b. In addition, with respect to all the steam traps, the operation start period (year) and the operation state information in the diagnostic process performed every year from 2011 to 2017 are stored in the storage unit 3a. In the column of the operating state information, a portion indicated by a hyphen (-) indicates that the steam trap was not present, the diagnosis process of the steam trap was not performed, and the like. It means that the information of the year has not been accumulated. In Table 1, the description relating to the portion having the ID D indicates that the steam trap D1 was replaced with the steam trap D2 of the same model (model a) after the abnormality was discovered in the diagnosis process of 2015. Show.
 表1:蓄積工程において蓄積された情報の例
Figure JPOXMLDOC01-appb-T000001
Table 1: Example of information stored in storage process
Figure JPOXMLDOC01-appb-T000001
(3)装置寿命演算工程
 装置寿命演算工程において演算部3bは、評価対象機種の生存率曲線を演算し、当該生存率曲線に基づいて当該評価対象機種の装置寿命を決定する。本実施形態では、カプランマイヤー法により生存率曲線が演算される。以下にその具体的な方法を説明する。なお、以降の説明では、表1の「機種a」を評価対象機種として説明する。
(3) Device Life Calculation Step In the device life calculation step, the calculation unit 3b calculates the survival rate curve of the evaluation target model, and determines the device life of the evaluation target model based on the survival rate curve. In the present embodiment, the survival rate curve is calculated by the Kaplan-Meier method. The specific method will be described below. In the following description, “model a” in Table 1 will be described as a model to be evaluated.
 まず、表2のように、表1に示した情報を、稼動始期からの経過年数ごとに整理する。
ここで、機種aを評価対象機種とするため、機種bに関する情報は演算対象から除外されている。
First, as shown in Table 2, the information shown in Table 1 is arranged for each number of years elapsed from the start of operation.
Here, in order to make the model a a model to be evaluated, the information on the model b is excluded from the calculation target.
 たとえば蒸気トラップAは、稼動始期である2010年から1年後の2011年に正常状態であったことが確認されているので、経過年数「1年」の欄に「正常」であった旨が記憶されている。また、2011年が稼働始期である蒸気トラップCは、2012年(稼動始期から1年後)から2016年(稼働始期から5年後)まで正常状態であり、2017年(稼働始期から6年後)に異常状態であったことが確認されているので、経過年数「1年」から「5年」の欄に「正常」であった旨と、経過年数「6年」の欄に「異常」であった旨とが記憶されている。 For example, it has been confirmed that the steam trap A was in a normal state in 2011, which is one year after the operation start period of 2010, so that the column of the elapsed year "1 year" indicates that "normal". It is remembered. Further, the steam trap C, whose operation is started in 2011, is in a normal state from 2012 (one year after the start of operation) to 2016 (five years after the start of operation), and in 2017 (six years after the start of operation). ), It was confirmed that the state was abnormal, so the column of elapsed years “1 year” to “5 years” was “normal” and the column of elapsed years “6 years” was “abnormal”. Is stored.
 一方、蒸気トラップAについて2012年以降の情報が蓄積されていないため、蒸気トラップAについての経過年数2年以降の情報は不明である。また、蒸気トラップD2は稼動始期である2015年から2年しか経過していないため、経過年数3年以降の情報は不明である。これらの例のように稼働状態が不明である場合は演算対象から除外され、表2ではハイフン(-)で示している。また、稼動始期が不明であるトラップGおよびHは、経過年数を特定できないため、演算対象から除外されている。 On the other hand, since information on steam trap A after 2012 is not accumulated, information on steam trap A after two years has passed is unknown. In addition, since only two years have passed since the start of operation of the steam trap D2 in 2015, information after three years have passed is unknown. If the operating state is unknown as in these examples, it is excluded from the calculation target, and is indicated by a hyphen (-) in Table 2. Further, traps G and H whose operation start period is unknown are excluded from the calculation targets because the elapsed years cannot be specified.
 表2:稼動始期からの経過年数ごとに整理された情報の例
Figure JPOXMLDOC01-appb-T000002
Table 2: Examples of information organized by years elapsed since the beginning of operation
Figure JPOXMLDOC01-appb-T000002
 次に、表3のように、表2に整理した情報に基づいて、1年ごとの経過年数区間ごとに稼働している蒸気トラップの数量(稼働数)と稼働している蒸気トラップのうち正常状態にあるものの数量(正常数)とを集計し、正常状態にあるものの割合(正常率)を算出する。たとえば、表2において経過年数「2年」の欄には、6台の蒸気トラップについて「正常」であった旨が記憶されているので、設置後年数「1~2年」について、稼働数は「6」であり、正常数は「6」であり、正常率は「100%」である。同様に、設置年数「4~5年」について、稼働数は「4」であり、正常数は「3」であり、正常率は「75%」である。 Next, as shown in Table 3, based on the information arranged in Table 2, the number (operating number) of the operating steam traps in each elapsed year section of each year and the normal number of operating steam traps The quantity (normal number) of items in the normal state is totaled, and the ratio of items in the normal state (normal rate) is calculated. For example, in the column of elapsed years “2 years” in Table 2, the fact that six steam traps were “normal” is stored, so that the number of operating years is “1 to 2 years” after installation. "6", the normal number is "6", and the normal rate is "100%". Similarly, for the installation years “4 to 5 years”, the number of operations is “4”, the normal number is “3”, and the normal rate is “75%”.
 表3:設置後年数ごとの稼働数、正常数、および正常率を集計した例
Figure JPOXMLDOC01-appb-T000003
Table 3: Example of total number of operation, normal number, and normal rate for each year after installation
Figure JPOXMLDOC01-appb-T000003
 さらに、表3に示したような設置後年数ごとの正常率を積算して、経過年数ごとの生存率を算出する。たとえば、経過年数3年の時点における生存率は、100%(0~1年の正常率)×100%(1~2年の正常率)×80%(2~3年の正常率)=80%と算出される。同様の算出を各経過年数について行い、横軸を経過年数(稼動始期からの経過時間の一例)とし、縦軸を各経過年数における生存率としてプロットすることで、生存率曲線が得られる(図3)。 Furthermore, the normal rate for each year after installation as shown in Table 3 is integrated to calculate the survival rate for each elapsed year. For example, the survival rate at the age of three years is 100% (normal rate of 0 to 1 year) × 100% (normal rate of 1 to 2 years) × 80% (normal rate of 2 to 3 years) = 80. %. The same calculation is performed for each elapsed year, the horizontal axis is the elapsed years (an example of the elapsed time from the start of operation), and the vertical axis is plotted as the survival rate for each elapsed year, thereby obtaining a survival rate curve (FIG. 3).
 最後に、生存率曲線において、生存率があらかじめ定められた閾値になる経過年数を、評価対象機種である機種aの装置寿命と決定する。たとえば閾値を70%とすると、図3において、経過年数4年時点で生存率80%、経過年数5年時点で生存率60%であるので、経過年数4.5年超の時に生存率が70%になると推定される。したがって、機種aの装置寿命は4.5年と決定される。 Finally, in the survival rate curve, the elapsed years at which the survival rate becomes a predetermined threshold value is determined as the device life of the model a which is the evaluation target model. For example, assuming that the threshold is 70%, in FIG. 3, the survival rate is 80% at the age of 4 years and the survival rate is 60% at the age of 5 years. %. Therefore, the device life of the model a is determined to be 4.5 years.
 なお上記では、説明を簡単にするため7点の情報に基づく集計例を示したが、集計対象とする蒸気トラップの数量は限定されない。実際の実施形態においては、統計学的に有意な統計結果を得るべく、十分に多い数量の蒸気トラップについて集計することが好ましいことは、当業者が当然に理解することであろう。 In the above description, an example of counting based on seven pieces of information is shown for simplicity of explanation, but the number of steam traps to be counted is not limited. It will be appreciated by those skilled in the art that in practical embodiments it is preferable to aggregate over a sufficiently large number of steam traps to obtain statistically significant statistical results.
 なお、蓄積工程で記憶部3aに蓄積され、装置寿命演算工程で演算対象とされる情報は、特定の蒸気プラントPにおいて稼働する蒸気トラップ1に係る情報だけではなく、複数の蒸気プラントPにおいて稼働する蒸気トラップ1に係る情報を含む。これは、本実施形態に係る稼働コスト評価方法においては、特定の蒸気プラントPにおける蒸気トラップ1の寿命を評価することだけではなく、製造元から市場に流出する蒸気トラップ1の製品としての一般的な寿命を評価することをも目的とするためである。なお、統計学的に有意なサンプル数量を得やすくする目的からも、複数の蒸気プラントPにおいて稼働する蒸気トラップ1を対象とすることは有利である。 The information accumulated in the storage unit 3a in the accumulation process and calculated in the device life calculation process is not limited to the information relating to the steam trap 1 operating in a specific steam plant P, but also operates in a plurality of steam plants P. Information about the steam trap 1 to be performed. In the operating cost evaluation method according to the present embodiment, not only is the life of the steam trap 1 in a specific steam plant P evaluated, but also a general product of the steam trap 1 flowing out from the manufacturer to the market. This is for the purpose of evaluating the life. Note that it is advantageous to target the steam traps 1 that operate in a plurality of steam plants P from the viewpoint of easily obtaining a statistically significant sample quantity.
(4)イベント予測工程
 イベント予測工程において演算部3bは、装置寿命演算工程で演算された装置寿命および生存率曲線に基づいて、あらかじめ定められた稼働期間の間に発生するイベントについての予測を行う。ここでイベントとは、蒸気トラップ1の設置、蒸気トラップ1の故障に伴う修理および交換、ならびに、蒸気トラップ1の検査および診断(すなわち診断工程)、を含む。また、かかるイベントについての予測は、各イベントが発生することが予測される時期についての予測を含む。
(4) Event Prediction Step In the event prediction step, the calculation unit 3b predicts an event occurring during a predetermined operation period based on the device life and the survival rate curve calculated in the device life calculation step. . Here, the event includes installation of the steam trap 1, repair and replacement due to failure of the steam trap 1, and inspection and diagnosis of the steam trap 1 (that is, a diagnosis process). In addition, the prediction for such an event includes a prediction about when each event is predicted to occur.
 ここで、稼働期間を20年として、機種aについてのイベント予測工程の例を説明する。まず、対象箇所に機種aの蒸気トラップ1を設置する際に、「設置」のイベントが1回発生する。設置された機種aの蒸気トラップ1の装置寿命は4.5年であるので、装置寿命ごとに機種aの蒸気トラップ1の新品に交換する場合、20年の稼働期間の間に「交換」のイベントが4回発生することが予測される。また、修理により故障が解消する場合があるため、「修理」のイベントの発生も予測される。「修理」のイベントの発生回数は、機種aに係る修理の統計情報、蒸気プラントPに係る修理の統計情報、診断工程において検出した物理量など、適宜の情報に基づいて予測される。この例では、20年の稼働期間の間に「修理」のイベントが5回発生することが予測されたとする。さらに、20年間の稼働期間中、1年に1回の診断工程を実行するので「検査」および「診断」のイベントが各20回発生する。 Here, an example of the event prediction process for the model a with the operating period set to 20 years will be described. First, an "installation" event occurs once when the steam trap 1 of the model a is installed at the target location. Since the equipment life of the installed steam trap 1 of the model a is 4.5 years, when replacing the steam trap 1 of the model a with a new one for each equipment life, the "replacement" during the operation period of 20 years is required. It is expected that the event will occur four times. In addition, since the failure may be resolved by the repair, occurrence of a “repair” event is also predicted. The number of occurrences of the event of “repair” is predicted based on appropriate information such as statistical information on repair of the model a, statistical information of repair on the steam plant P, and physical quantities detected in the diagnostic process. In this example, it is assumed that the event of “repair” is predicted to occur five times during the operation period of 20 years. Furthermore, during the 20-year operation period, the diagnostic process is executed once a year, so that each of the “test” and “diagnosis” events occurs 20 times.
 すなわちこの例では、20年の稼働期間の間に、「設置」のイベントが1回、「交換」のイベントが4回、「修理」のイベントが5回、「検査」および「診断」のイベントが各20回、それぞれ発生することが予測される。 That is, in this example, during the 20-year operation period, one event of “installation”, four events of “replacement”, five events of “repair”, and events of “inspection” and “diagnosis” are performed. Is expected to occur 20 times each.
(5)コスト演算工程
 コスト演算工程において演算部3bは、イベント予測工程において予測された各イベントの発生によって生じるコストを積算することで、評価対象機種のプラント機器を稼働するために生じる通算の稼働コストである通算稼働コストを演算する。ここでは、コストを費用の形式で演算した例について説明する。
(5) Cost Calculation Step In the cost calculation step, the calculation unit 3b accumulates the costs caused by the occurrence of each event predicted in the event prediction step, so that the total operation generated for operating the plant device of the model to be evaluated is performed. Calculate the total operating cost, which is the cost. Here, an example in which the cost is calculated in the form of the cost will be described.
 たとえば「設置」および「交換」のイベントにおいては、機種aの蒸気トラップ1の機器購入費用およびこれを設置する工事費用が発生する。前述の通り「設置」のイベントが1回、「交換」のイベントが4回、それぞれ発生することが予測されるので、5回分の機器購入費用および工事費用を通算稼働コストとして計上する。 For example, in the event of “installation” and “replacement”, the purchase cost of equipment for the steam trap 1 of the model a and the construction cost for installing it are incurred. As described above, it is expected that one event of “installation” and one event of “replacement” will occur, respectively, and therefore, the equipment purchase cost and the construction cost for five times are recorded as the operating cost.
 その他のイベントの発生により生じる費用についても、同様に計上される。すなわち、「修理」のイベントにおいては、修理部品の部品購入費用および工事費用が発生するので、「修理」のイベントの発生予測回数に対応する5回分の部品購入費用および工事費用を通算稼働コストとして計上する。さらに、「検査」および「診断」のイベントにおいては、検査員の派遣費用が発生するので、これらのイベントの発生回数に対応する20回分の派遣費用を通算稼働コストとして計上する。 費用 Expenses arising from the occurrence of other events are also recorded. In other words, in the event of the “repair” event, the purchase cost of the repaired parts and the construction cost are incurred. Account. Further, in the event of “test” and “diagnosis”, dispatch costs of inspectors are generated, so the dispatch costs for 20 times corresponding to the number of occurrences of these events are counted as operating costs.
 また、上記のように演算された通算稼働コストを、稼働期間(20年)で除することで、1年あたりの稼働コストである単年稼働コストを演算する。 {Circle around (1)} By dividing the total operating cost calculated as described above by the operating period (20 years), the single-year operating cost, which is the operating cost per year, is calculated.
 以上の各工程により評価対象機種の稼働コストを演算することで、蒸気トラップ1に対して行われる検査の結果に基づいた、信頼性の高い稼働コスト評価が実現される。また、数年に1回の頻度で生じる異常状態に起因して生じる突発的なコストの影響を、稼働期間の全期間にわたって平準化して評価することができるため、異常状態からの復帰に要する費用の調達を複数年にわたって計画的に行うことができる、導入する蒸気トラップの機種を選定する際にライフサイクル全体でのコストを考慮した選定を行うことができる、などの利点がある。そして、これらの利点により、プラントの安定的な維持管理を行うことができる。 By calculating the operating cost of the model to be evaluated in each of the above steps, highly reliable operating cost evaluation based on the result of the inspection performed on the steam trap 1 is realized. In addition, the cost of recovering from an abnormal condition can be evaluated by leveling out the effects of sudden costs caused by abnormal conditions that occur once every several years over the entire operation period. There are advantages such as that the procurement of the steam trap can be carried out systematically over a plurality of years and that the cost can be selected in consideration of the entire life cycle when selecting the type of steam trap to be introduced. And, with these advantages, stable maintenance of the plant can be performed.
〔上記の実施形態の変形例〕
 上記の実施形態では、それぞれの蒸気トラップ1が使用される使用条件の違いを加味せず、一様に集計対象とした例について説明した。この実施形態は、主として蒸気トラップ1の製品設計や製品供給体制に起因する、いわば製品自体の性能としての装置寿命に基づいて、蒸気トラップ1の稼働コストを演算するものである。一方、同様の評価手法において、蒸気トラップ1が使用される条件の違いを加味すると、より精度の高い稼働コストの演算が可能になる。
[Modification of the above embodiment]
In the above-described embodiment, an example has been described in which the steam traps 1 are uniformly counted without considering differences in use conditions in which the steam traps 1 are used. In this embodiment, the operating cost of the steam trap 1 is calculated based on the life of the device itself, which is the performance of the product itself, mainly due to the product design and the product supply system of the steam trap 1. On the other hand, in the same evaluation method, if the difference in the conditions under which the steam trap 1 is used is taken into account, it is possible to calculate the operating cost with higher accuracy.
 図4は、特定の評価対象機種の蒸気トラップを、流通する蒸気の圧力(以下、使用圧力という。)がそれぞれ、0.5MPa以下のもの、0.5~1.0MPa以下のもの、および、1.0~1.5MPa以下のもの、に分類し、それぞれの分類ごとに生存率曲線を演算した例である。図3の生存率曲線に基づいて使用圧力ごとの装置寿命を算出すると、使用圧力が0.5MPaのとき9.0年、使用圧力が0.5~1.0MPaのとき7.3年、使用圧力が1.0~1.5MPaのとき4.8年となる。 FIG. 4 shows a steam trap of a specific evaluation target model in which the pressure of the flowing steam (hereinafter, referred to as operating pressure) is 0.5 MPa or less, 0.5 to 1.0 MPa or less, and This is an example in which the survival rate is calculated for each of the classifications of 1.0 to 1.5 MPa or less. Calculating the device life for each operating pressure based on the survival rate curve in FIG. 3, the operating pressure is 9.0 years when the operating pressure is 0.5 MPa, and 7.3 years when the operating pressure is 0.5 to 1.0 MPa. 4.8 years when the pressure is 1.0-1.5MPa.
 このように、使用圧力ごとの生存率曲線および装置寿命を演算し、これを適用して稼働コストを演算することで、蒸気トラップ1の全数について一律の装置寿命を適用して稼働コストを演算する場合に比べて、演算される稼働コストの精度が高くなる。 As described above, the survival rate curve and the device life for each operating pressure are calculated, and the operation cost is calculated by applying the curve. Thus, the operation cost is calculated by applying the uniform device life to all the steam traps 1. Compared with the case, the accuracy of the calculated operation cost is higher.
 なお、圧力のほか、流通する蒸気の温度や流量などによって、すなわち任意の蒸気物理量によって、蒸気トラップを分類してもよい。また、このような使用条件ごとの集計は、上記に例示した蒸気物理量ごとの集計のほかに、たとえば、蒸気プラントPにおいて蒸気トラップ1が使用される部位(トラップの用途)ごとに行ってもよい。たとえば、蒸気トラップが主管に設置されている場合、鉄製のトレースに設置されている場合、銅製のトレースに設置されている場合、などのそれぞれについて生存率曲線および装置寿命を演算すれば、蒸気トラップ1が設置される部位によって装置寿命が異なることを客観的に評価できる。また、本発明に係る稼働コスト評価方法において、可搬型検出器2の検出部2aを用いたトラップ物理量の検出に替えて、あらかじめ蒸気トラップ1に設けられた常設検出器を用いてトラップ物理量を検出するように構成してもよい。 The steam traps may be classified according to the temperature and flow rate of the flowing steam in addition to the pressure, that is, according to an arbitrary steam physical quantity. Further, such totalization for each use condition may be performed, for example, for each site (application of the trap) where the steam trap 1 is used in the steam plant P, in addition to the totalization for each steam physical quantity exemplified above. . For example, if the steam trap is installed on the main pipe, installed on an iron trace, installed on a copper trace, etc. It can be objectively evaluated that the life of the device differs depending on the location where the device 1 is installed. Further, in the operating cost evaluation method according to the present invention, the trap physical quantity is detected by using a permanent detector provided in advance in the steam trap 1 instead of detecting the trap physical quantity by using the detection unit 2a of the portable detector 2. May be configured.
〔その他の実施形態〕
 最後に、本発明に係る稼働コスト評価方法のその他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することも可能である。また、以下のそれぞれの実施形態は、本発明に係る稼働コスト評価方法のその他の実施形態として説明するが、同様の実施形態を本発明に係る稼働コスト評価プログラムにも実装しうる。
[Other embodiments]
Finally, another embodiment of the operating cost evaluation method according to the present invention will be described. Note that the configurations disclosed in the following embodiments can be applied in combination with configurations disclosed in other embodiments as long as no contradiction occurs. Although the following embodiments will be described as other embodiments of the operating cost evaluation method according to the present invention, similar embodiments may be implemented in the operating cost evaluation program according to the present invention.
 上記の実施形態では、評価対象とするプラント機器が蒸気トラップ1である構成を例として説明した。しかし、そのような構成に限定されることなく、評価対象とするプラント機器は、タービン、コンプレッサ、発電機、熱交換器、輸送管、ドレン管、制御バルブ、ポンプ、フィルタ、セパレータ、給水タンク、脱気器、ボイラ、リボイラなどであってもよい。 In the above embodiment, the configuration in which the plant equipment to be evaluated is the steam trap 1 has been described as an example. However, without being limited to such a configuration, plant equipment to be evaluated includes a turbine, a compressor, a generator, a heat exchanger, a transport pipe, a drain pipe, a control valve, a pump, a filter, a separator, a water supply tank, It may be a deaerator, a boiler, a reboiler, or the like.
 上記の実施形態では、生存率曲線がカプランマイヤー法により演算される例について説明した。しかし、そのような構成に限定されることなく、生存率曲線は、ワイブル分布、指数分布、対数正規分布、ガンマ分布や対数ロジスティック分布などの公知の分布を仮定した、生存時間解析手法によって演算されてもよい。 In the above embodiment, an example in which the survival rate curve is calculated by the Kaplan-Meier method has been described. However, without being limited to such a configuration, the survival curve is calculated by a survival time analysis method assuming a known distribution such as a Weibull distribution, an exponential distribution, a lognormal distribution, a gamma distribution or a logistic distribution. You may.
 上記の実施形態では、稼働コストを費用の形式で演算した構成を例として説明した。しかし、そのような構成に限定されることなく、稼働コストは、プラント機器が異常状態に陥ることにより発生する流体の損失量やプラントの生産品の生産量の減少量などの形式で演算されてもよいし、プラント機器の稼働に要するエネルギー消費量や蒸気使用量などの形式で演算されてもよい。 In the above embodiment, the configuration in which the operating cost is calculated in the form of the cost has been described as an example. However, without being limited to such a configuration, the operating cost is calculated in a form such as a loss amount of a fluid generated due to an abnormal state of the plant equipment or a decrease amount of the production amount of the plant product. Alternatively, it may be calculated in the form of energy consumption or steam consumption required for operation of the plant equipment.
 上記の実施形態では、診断周期が1年である例について説明した。しかし、診断周期は任意の期間でよい。診断周期が短い場合は演算される装置寿命および稼働コストの精度が向上する傾向にあり、診断周期が長い場合は検査および診断に要する工数および費用を低減できる傾向にある。したがって、診断周期は、要求される装置寿命および稼働コストの精度と費やすことのできる工数および費用とに鑑みて適宜決定されるべきである。ここで、診断周期が1年以内であれば、多くのプラント機器に対して十分高い精度の装置寿命および稼働コストを演算できるため、好ましい。 In the above embodiment, an example in which the diagnosis cycle is one year has been described. However, the diagnosis cycle may be any period. When the diagnosis cycle is short, the accuracy of the calculated device life and operating cost tends to be improved, and when the diagnosis cycle is long, the man-hour and cost required for inspection and diagnosis tend to be reduced. Therefore, the diagnostic cycle should be appropriately determined in consideration of the required accuracy of the device life and operating cost and man-hours and costs that can be spent. Here, it is preferable that the diagnosis cycle be within one year, because the device life and operating cost can be calculated with sufficiently high accuracy for many plant devices.
 上記の実施形態では、生存率が70%になる経過年数の最小値を、評価対象機種の装置寿命とする構成を例として説明した。しかし、そのような構成に限定されることなく、装置寿命を決定するためにあらかじめ定められた閾値は、評価対象とするプラント機器の構造、材料、および使用条件、ならびに当該プラント機器の使用者または供給者が要求する条件、などに応じて任意の値を用いることができる。 In the above-described embodiment, an example has been described in which the minimum value of the number of elapsed years at which the survival rate is 70% is used as the device life of the model to be evaluated. However, without being limited to such a configuration, a predetermined threshold for determining the device life is the structure, material, and use conditions of the plant equipment to be evaluated, and the user of the plant equipment or Any value can be used according to the conditions required by the supplier.
 上記の実施形態では、蒸気トラップ1の稼働期間を20年とする構成を例として説明した。しかし、そのような構成に限定されることなく、稼働コストを演算するためにあらかじめ定められた稼働期間は、評価対象とするプラント機器の構造、材料、および使用条件、ならびに当該プラント機器の使用者または供給者が要求する条件、などに応じて任意の値を用いることができる。 In the above embodiment, the configuration in which the operation period of the steam trap 1 is set to 20 years has been described as an example. However, without being limited to such a configuration, the predetermined operation period for calculating the operation cost depends on the structure, material, and use conditions of the plant equipment to be evaluated, and the user of the plant equipment. Alternatively, an arbitrary value can be used according to conditions required by the supplier.
 その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の範囲はそれらによって限定されることはないと理解されるべきである。当業者であれば、本発明の趣旨を逸脱しない範囲で、適宜改変が可能であることを容易に理解できるであろう。したがって、本発明の趣旨を逸脱しない範囲で改変された別の実施形態も、当然、本発明の範囲に含まれる。 に 関 し て Regarding other configurations, it should be understood that the embodiments disclosed in the present specification are exemplifications in all respects, and the scope of the present invention is not limited thereby. Those skilled in the art will readily understand that modifications can be made as appropriate without departing from the spirit of the present invention. Therefore, other embodiments modified without departing from the spirit of the present invention are naturally included in the scope of the present invention.
 本発明は、たとえば蒸気プラントにおいて稼働する蒸気トラップの装置寿命の評価に利用することができる。 The present invention can be used, for example, for evaluating the equipment life of a steam trap operating in a steam plant.
 P    :蒸気プラント
 1    :蒸気トラップ
 2    :可搬型検出器
 2a   :検出部
 2b   :入力部
 2c   :表示部
 3    :演算装置
 3a   :記憶部
 3b   :演算部
 4    :ネットワーク
P: Steam plant 1: Steam trap 2: Portable detector 2a: Detection unit 2b: Input unit 2c: Display unit 3: Operation unit 3a: Storage unit 3b: Operation unit 4: Network

Claims (10)

  1.  プラント機器の機種ごとの稼働コストを評価する稼働コスト評価方法であって、
     評価対象機種の複数のプラント機器であってプラントにおいて稼働しているものの検査を行い、当該検査の結果に基づいて、前記複数のプラント機器のそれぞれについて、当該プラント機器の稼働状態が正常状態であるか異常状態であるかの診断を行う診断工程と、
     前記複数のプラント機器のそれぞれについて、当該プラント機器が前記プラントにおいて稼働を開始した時である稼動始期に関する稼働始期情報、前記診断工程において当該プラント機器に対して前記検査が行われた時である検査時期に関する検査時期情報、および、前記診断工程において診断された前記稼働状態に関する稼働状態情報、を記憶装置に蓄積する蓄積工程と、
     前記蓄積工程において蓄積された前記稼働始期情報、前記検査時期情報、および、前記稼働状態情報に基づいて、前記評価対象機種の装置寿命を演算する装置寿命演算工程と、
     前記装置寿命に基づいて、あらかじめ設定された稼働期間の間に発生する前記評価対象機種のプラント機器の、設置、修理および交換、ならびに、検査および診断、の回数についての予測であるイベント予測を実行するイベント予測工程と、
     前記イベント予測の結果に基づいて、前記稼働期間にわたって前記評価対象機種のプラント機器を稼働するために生じる通算の稼働コストである通算稼働コストを演算するコスト演算工程と、を有する稼働コスト評価方法。
    An operating cost evaluation method for evaluating operating costs for each type of plant equipment,
    Inspection is performed on a plurality of plant devices of the evaluation target model that are operating in the plant, and based on the result of the inspection, for each of the plurality of plant devices, the operation state of the plant device is in a normal state. A diagnostic process of diagnosing whether the condition is abnormal or abnormal;
    For each of the plurality of plant equipment, operation start information relating to the operation start when the plant equipment starts operating in the plant, an inspection when the inspection is performed on the plant equipment in the diagnostic process Inspection time information on time, and operation state information on the operation state diagnosed in the diagnosis step, an accumulation step of accumulating in a storage device,
    A device life calculation step of calculating a device life of the evaluation target model based on the operation start information, the inspection time information, and the operation state information accumulated in the accumulation step,
    Based on the device life, execute an event prediction, which is a prediction on the number of installations, repairs and replacements, and inspections and diagnoses of the plant equipment of the model to be evaluated occurring during a preset operation period. Event prediction process,
    A cost calculation step of calculating a total operation cost, which is a total operation cost generated for operating the plant device of the model to be evaluated over the operation period, based on a result of the event prediction.
  2.  前記コスト演算工程は、さらに、前記通算稼働コストを前記稼働期間で除して、前記評価対象機種のプラント機器を稼働するために生じる1年あたりの稼働コストである単年稼働コストを演算する請求項1に記載の稼働コスト評価方法。 The cost calculating step further calculates a single-year operating cost, which is an operating cost per year generated to operate the plant equipment of the evaluation target model, by dividing the total operating cost by the operating period. Item 2. The operating cost evaluation method according to item 1.
  3.  前記装置寿命演算工程において、前記評価対象機種の生存率曲線が演算され、
     前記生存率曲線の横軸は、前記稼動始期からの経過時間であり、
     前記生存率曲線の縦軸は、前記経過時間が経過した後に正常状態で稼働する前記評価対象機種のプラント機器の割合を表す生存率であり、
     前記評価対象機種の装置寿命は、前記生存率曲線において、前記生存率があらかじめ定められた閾値になる前記経過時間である請求項1または2に記載の稼働コスト評価方法。
    In the device life calculating step, a survival rate curve of the model to be evaluated is calculated,
    The horizontal axis of the survival rate curve is the elapsed time from the start of operation,
    The vertical axis of the survival rate curve is the survival rate representing the ratio of the plant equipment of the evaluation target model that operates in a normal state after the elapsed time has elapsed,
    The operating cost evaluation method according to claim 1, wherein the device life of the evaluation target model is the elapsed time at which the survival rate becomes a predetermined threshold value in the survival rate curve.
  4.  前記生存率曲線は、カプランマイヤー法により演算される請求項3に記載の稼働コスト評価方法。 The operation cost evaluation method according to claim 3, wherein the survival rate curve is calculated by the Kaplan-Meier method.
  5.  前記イベント予測工程は、前記装置寿命および前記生存率曲線に基づいて前記イベント予測を実行する請求項3または4に記載の稼働コスト評価方法。 The operation cost evaluation method according to claim 3 or 4, wherein the event prediction step executes the event prediction based on the device life and the survival rate curve.
  6.  前記診断工程は複数回実行され、複数回実行される前記診断工程どうしの間隔は、あらかじめ定められた診断周期以内である請求項1~5のいずれか1項に記載の稼働コスト評価方法。 The operating cost evaluation method according to any one of claims 1 to 5, wherein the diagnosis step is executed a plurality of times, and an interval between the diagnosis steps executed a plurality of times is within a predetermined diagnosis cycle.
  7.  前記診断周期は1年以下である請求項6に記載の稼働コスト評価方法。 7. The operating cost evaluation method according to claim 6, wherein the diagnosis cycle is one year or less.
  8.  前記プラント機器が使用される使用条件ごとに前記稼働コストを演算可能に構成されている請求項1~7のいずれか1項に記載の稼働コスト評価方法。 8. The operating cost evaluation method according to claim 1, wherein the operating cost can be calculated for each use condition in which the plant equipment is used.
  9.  前記プラント機器は、その内部に前記プラントで取り扱われる流体が流通するものであって、
     前記使用条件は、前記プラントにおいて前記プラント機器が使用される部位、および、前記プラント機器を流通する流体に係る物理量である流体物理量、の少なくとも1つを含む請求項8に記載の稼働コスト評価方法。
    The plant equipment is one in which the fluid handled in the plant flows,
    The operating cost evaluation method according to claim 8, wherein the use condition includes at least one of a part where the plant equipment is used in the plant and a fluid physical quantity which is a physical quantity related to a fluid flowing through the plant equipment. .
  10.  プラント機器の機種ごとの稼働コストを評価する稼働コスト評価プログラムであって、
     評価対象機種の複数のプラント機器であってプラントにおいて稼働しているものに対して行われる検査の結果、および、当該検査の結果に基づいてなされた、前記複数のプラント機器のそれぞれについての、当該プラント機器の稼働状態が正常状態であるか異常状態であるかの診断の結果、の入力を受け付ける入力機能と、
     前記複数のプラント機器のそれぞれについて、当該プラント機器が前記プラントにおいて稼働を開始した時である稼動始期に関する稼働始期情報、当該プラント機器に対して前記検査が行われた時である検査時期に関する検査時期情報、および、前記診断において診断された前記稼働状態に関する稼働状態情報、を記憶装置に蓄積する蓄積機能と、
     前記蓄積機能において蓄積された前記稼働始期情報、前記検査時期情報、および、前記稼働状態情報に基づいて、前記評価対象機種の装置寿命を演算する装置寿命演算機能と、
     前記装置寿命に基づいて、あらかじめ設定された稼働期間の間に発生する前記評価対象機種のプラント機器の、設置、交換、点検、および修理の回数についての予測であるイベント予測を実行するイベント予測機能と、
     前記イベント予測の結果に基づいて、前記稼働期間にわたって前記評価対象機種のプラント機器を稼働するために生じる通算の稼働コストである通算稼働コストを演算するコスト演算機能と、をコンピュータに実行させる稼働コスト評価プログラム。
    An operating cost evaluation program that evaluates operating costs for each model of plant equipment,
    The results of inspections performed on a plurality of plant devices of the model to be evaluated and those operating in the plant, and, based on the results of the inspections, for each of the plurality of plant devices, An input function for receiving an input of a result of a diagnosis as to whether the operation state of the plant equipment is normal or abnormal;
    For each of the plurality of plant equipment, operation start information on the operation start when the plant equipment starts operating in the plant, inspection time on the inspection time when the inspection is performed on the plant equipment Information, and an operation state information on the operation state diagnosed in the diagnosis, an accumulation function of accumulating in a storage device,
    A device life calculation function for calculating a device life of the evaluation target model based on the operation start information, the inspection time information, and the operation state information accumulated in the accumulation function,
    An event prediction function for performing an event prediction, which is a prediction of the number of installations, replacements, inspections, and repairs of the plant device of the model to be evaluated, which occurs during a preset operation period based on the device life. When,
    Based on the result of the event prediction, a cost calculation function for calculating a total operation cost that is a total operation cost generated for operating the plant device of the model to be evaluated over the operation period, and an operation cost for executing the computer. Evaluation program.
PCT/JP2019/026270 2018-09-27 2019-07-02 Operating cost assessment method and operating cost assessment program WO2020066197A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020504429A JP6944586B2 (en) 2018-09-27 2019-07-02 Operating cost evaluation method and operating cost evaluation program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018182451 2018-09-27
JP2018-182451 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020066197A1 true WO2020066197A1 (en) 2020-04-02

Family

ID=69952542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026270 WO2020066197A1 (en) 2018-09-27 2019-07-02 Operating cost assessment method and operating cost assessment program

Country Status (2)

Country Link
JP (1) JP6944586B2 (en)
WO (1) WO2020066197A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022063527A (en) * 2020-10-12 2022-04-22 株式会社ミヤワキ Installation method, installation program, and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303243A (en) * 2002-04-09 2003-10-24 Toshiba Corp Method and device for life diagnosis and maintenance management of plant equipment
JP2007109070A (en) * 2005-10-14 2007-04-26 Toshiba Corp Life diagnosis/maintenance management system for plant
JP2007226415A (en) * 2006-02-22 2007-09-06 Central Res Inst Of Electric Power Ind Secular risk evaluation method for structure facility and secular risk warning issuing method for structure facility using the same method and its device and program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6799154B1 (en) * 2000-05-25 2004-09-28 General Electric Comapny System and method for predicting the timing of future service events of a product
JP5766532B2 (en) * 2011-07-14 2015-08-19 株式会社東芝 Environmental impact calculation device and environmental impact calculation method
US10641412B2 (en) * 2012-09-28 2020-05-05 Rosemount Inc. Steam trap monitor with diagnostics
WO2016056292A1 (en) * 2014-10-10 2016-04-14 株式会社テイエルブイ Steam trap monitoring system, pipe collection device, and steam trap unit
JP6536170B2 (en) * 2015-05-22 2019-07-03 日本精工株式会社 Rolling bearing provided with vibration detection device and state detection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303243A (en) * 2002-04-09 2003-10-24 Toshiba Corp Method and device for life diagnosis and maintenance management of plant equipment
JP2007109070A (en) * 2005-10-14 2007-04-26 Toshiba Corp Life diagnosis/maintenance management system for plant
JP2007226415A (en) * 2006-02-22 2007-09-06 Central Res Inst Of Electric Power Ind Secular risk evaluation method for structure facility and secular risk warning issuing method for structure facility using the same method and its device and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022063527A (en) * 2020-10-12 2022-04-22 株式会社ミヤワキ Installation method, installation program, and storage medium

Also Published As

Publication number Publication date
JPWO2020066197A1 (en) 2021-01-07
JP6944586B2 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
JP5802619B2 (en) Equipment maintenance management support system
JP6856443B2 (en) Equipment abnormality diagnosis system
JP2004211587A (en) Operational support system for power generation plant
EP3346205A1 (en) Inspection management system and inspection management method
JP6486566B2 (en) Risk assessment device, risk assessment method, and risk assessment program
US20190003701A1 (en) Fluid Utilization Facility Management Method and Fluid Utilization Facility Management System
EP3584656A1 (en) Risk assessment device, risk assessment method, and risk assessment program
JP6482743B1 (en) Risk assessment device, risk assessment system, risk assessment method, and risk assessment program
Choi et al. A Bayesian approach for a damage growth model using sporadically measured and heterogeneous on-site data from a steam turbine
Yang et al. HVAC equipment, unitary: Fault detection and diagnosis
CN113330383A (en) Maintenance work support device, maintenance work support method, and maintenance work support program
JP2014049010A (en) Inspection maintenance data verification device, inspection maintenance data verification system, and inspection maintenance data verification method
CN115539933A (en) Monitoring method and system for steam generator of nuclear power station
KR20140053391A (en) Maintenance inspection information management method and management system
WO2020066197A1 (en) Operating cost assessment method and operating cost assessment program
JP6574533B2 (en) Risk assessment device, risk assessment system, risk assessment method, and risk assessment program
JP6980034B2 (en) Device life evaluation method
EP3945383A1 (en) Management of a filter in continuous flow engine
KR20130065844A (en) System and method for managing energy equipments efficiency in intelligent building
KR102017703B1 (en) Energy efficiency analyzing system using BEMS data
JP6482742B1 (en) Risk assessment device, risk assessment system, risk assessment method, and risk assessment program
Yadav et al. Dynamic PRA with component aging and degradation modeled utilizing plant risk monitoring data
JP7538690B2 (en) Equipment diagnosis system, equipment diagnosis method, and program
Ignat Power plants maintenance optimization based on CBM techniques
JP4427519B2 (en) Plant monitoring system and method.

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020504429

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866466

Country of ref document: EP

Kind code of ref document: A1