JP5766532B2 - Environmental impact calculation device and environmental impact calculation method - Google Patents

Environmental impact calculation device and environmental impact calculation method Download PDF

Info

Publication number
JP5766532B2
JP5766532B2 JP2011156004A JP2011156004A JP5766532B2 JP 5766532 B2 JP5766532 B2 JP 5766532B2 JP 2011156004 A JP2011156004 A JP 2011156004A JP 2011156004 A JP2011156004 A JP 2011156004A JP 5766532 B2 JP5766532 B2 JP 5766532B2
Authority
JP
Japan
Prior art keywords
battery
power generation
unit
storage battery
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011156004A
Other languages
Japanese (ja)
Other versions
JP2013025323A (en
Inventor
英樹 野田
英樹 野田
玲子 小原
玲子 小原
小林 武則
武則 小林
大介 渡邉
大介 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011156004A priority Critical patent/JP5766532B2/en
Publication of JP2013025323A publication Critical patent/JP2013025323A/en
Application granted granted Critical
Publication of JP5766532B2 publication Critical patent/JP5766532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明の実施形態は、環境影響算定装置および環境影響算定方法に関する。   Embodiments described herein relate generally to an environmental impact calculation apparatus and an environmental impact calculation method.

従来、発電出力を充放電する蓄電池の環境影響評価は、製造段階では使用材料や製造エネルギーによる影響を計上し、使用段階ではライフサイクルの平均的な充放電損失による影響を計上し、廃棄段階では平均的なリサイクルシナリオを考慮した廃棄段階の影響を計上している。   Conventionally, the environmental impact assessment of a storage battery that charges and discharges the power generation output includes the impact of the materials and energy used in the production stage, the impact of the average charge / discharge loss in the life cycle at the use stage, and the disposal stage. The impact of the disposal phase taking into account the average recycling scenario is included.

すなわち、この様な評価は使用段階の蓄電池の性能劣化の影響は平均値や代表値であり、他の段階も同様に平均値か代表値となるため、蓄電池の環境影響は一定値となる。   That is, in such an evaluation, the influence of the performance deterioration of the storage battery at the use stage is an average value or a representative value, and the other stages are similarly the average value or the representative value, so that the environmental influence of the storage battery is a constant value.

一方、蓄電池が設置された発電設備の環境影響は電池の充放電損失特性の劣化にともない増加する。例えば、蓄電池の損失が増えることは、蓄電池を設置した発電機のエネルギー損失が増えることであり、その分、他の電源が発電エネルギーを負担することになる。ここで、他の電源とは一般的には系統電源となり、系統電源は低炭素型電源では無いため、CO排出量などの環境影響は増加することになる。この蓄電池の特性劣化による影響は、CO排出権取引など経済的な取引の根拠に用いる環境影響計算には精度を高める点から含めることが望ましい。 On the other hand, the environmental impact of the power generation facility where the storage battery is installed increases as the charge / discharge loss characteristics of the battery deteriorate. For example, an increase in the loss of the storage battery means an increase in the energy loss of the generator in which the storage battery is installed, and the other power source bears the generated power accordingly. Here, the other power source is generally a system power source, and the system power source is not a low-carbon power source, so that environmental influences such as CO 2 emissions increase. It is desirable to include the influence due to the deterioration of the characteristics of the storage battery in the environmental impact calculation used for the basis of economic transactions such as CO 2 emission trading from the viewpoint of improving accuracy.

特開2006−74977号公報JP 2006-49777 A

梶山啓輔、岡島敬一、内山洋司「ライフサイクルからみた蓄電池の電力負荷平準化等によるエネルギー・環境改善効果」 Journal of LCA, vol2. No.4 October 2006Keisuke Hatakeyama, Keiichi Okajima, Yoji Uchiyama “Energy / Environmental Improvement Effect by Leveling Battery Loads from the Life Cycle” Journal of LCA, vol2. No.4 October 2006

本発明は、上記事情を鑑みて成されたものであって、蓄電池の劣化を考慮した方法により、より正確な発電原単位を提示する環境影響算定装置および環境影響算定方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an environmental impact calculation apparatus and an environmental impact calculation method that present a more accurate power generation unit by a method that takes into account deterioration of a storage battery. And

実施形態によれば、発電源と前記発電源により充電される蓄電池とを含む発電設備の発電原単位を算定する環境影響算定装置であって、評価範囲を設定する評価範囲設定部と、発電源原単位の平均値を格納した発電源情報データベースから前記発電源原単位の平均値を取得する発電源情報取得部と、少なくとも前記蓄電池の製造時における環境負荷情報と前記蓄電池の使用時における放電容量または充放電損失の変化に関する電池特性情報を格納した電池特性データベースから、前記評価範囲における前記電池特性情報を取得する電池特性取得部と、前記蓄電池の使用時における電池状態情報を格納した電池状態データベースから、前記評価範囲における前記電池状態情報を取得する電池状態取得部と、前記発電源情報取得部と、前記電池特性取得部と、前記電池状態取得部と、で取得された情報に基づいて、前記蓄電池の充放電損失を考慮した電池原単位を算定する電池原単位算定部と、前記蓄電池の電池原単位を用いて、前記発電原単位を算定する発電原単位算定部と、を備えた環境影響算定装置が提供される。 According to the embodiment, an environmental impact calculation device that calculates a power generation intensity of a power generation facility including a power generation source and a storage battery charged by the power generation source, an evaluation range setting unit that sets an evaluation range, and a power generation source A power generation information acquisition unit for acquiring an average value of the power generation basic unit from a power generation information database storing an average value of the basic unit, and at least environmental load information at the time of manufacturing the storage battery and a discharge capacity at the time of use of the storage battery Alternatively, a battery characteristic acquisition unit that acquires the battery characteristic information in the evaluation range from a battery characteristic database that stores battery characteristic information relating to a change in charge / discharge loss, and a battery state database that stores battery state information when the storage battery is used from a battery state acquisition unit for acquiring the battery state information in the evaluation range, and the power generation source information obtaining unit, the battery JP Based on the information acquired by the acquisition unit and the battery state acquisition unit, a battery basic unit calculation unit that calculates a battery basic unit considering charge / discharge loss of the storage battery, and a battery basic unit of the storage battery A power generation unit calculation unit for calculating the power generation unit is provided.

第1実施形態において発電原単位を算出する発電設備の一例を説明するための図である。It is a figure for demonstrating an example of the power generation equipment which calculates a power generation basic unit in 1st Embodiment. 第1実施形態の環境影響算定装置の一構成例を概略的に示す図である。It is a figure which shows roughly the example of 1 structure of the environmental influence calculation apparatus of 1st Embodiment. 蓄電池の年間充放電サイクル数に対する放電容量の劣化特性の一例を示す図である。It is a figure which shows an example of the deterioration characteristic of the discharge capacity with respect to the number of annual charging / discharging cycles of a storage battery. 蓄電池の使用温度の年平均に対する放電容量の劣化特性の一例を示す図である。It is a figure which shows an example of the deterioration characteristic of the discharge capacity with respect to the annual average of the operating temperature of a storage battery. 蓄電池の放電深度の年平均に対する放電容量の劣化特性の一例を示す図である。It is a figure which shows an example of the deterioration characteristic of the discharge capacity with respect to the annual average of the depth of discharge of a storage battery. 蓄電池の年間充放電サイクル数に対する充放電損失変化率の特性の一例を示す図である。It is a figure which shows an example of the characteristic of the charging / discharging loss change rate with respect to the number of annual charging / discharging cycles of a storage battery. 蓄電池の使用温度の年平均に対する充放電損失変化率の特性の一例を示す図である。It is a figure which shows an example of the characteristic of the charging / discharging loss change rate with respect to the annual average of the operating temperature of a storage battery. 蓄電池の放電深度の年平均に対する充放電損失変化率の特性の一例を示す図である。It is a figure which shows an example of the characteristic of the charging / discharging loss change rate with respect to the annual average of the depth of discharge of a storage battery. 図3に示す劣化特性の一例において、基準とした年間充放電サイクル数に対する放電容量の低下率の一例を示す図である。FIG. 4 is a diagram showing an example of a reduction rate of discharge capacity with respect to the number of charge / discharge cycles as a reference in the example of deterioration characteristics shown in FIG. 3. 図4に示す劣化特性の一例において、基準とした使用温度の年平均に対する放電容量の低下率の一例を示す図である。FIG. 5 is a diagram illustrating an example of a rate of decrease in discharge capacity with respect to an annual average of reference operating temperatures in the example of deterioration characteristics illustrated in FIG. 4. 図5に示す劣化特性の一例において、基準とした放電深度の年平均に対する放電容量の低下率の一例を示す図である。FIG. 6 is a diagram illustrating an example of a rate of decrease in discharge capacity with respect to an annual average of discharge depths as a reference in the example of deterioration characteristics illustrated in FIG. 5. 図6に示す劣化特性の一例において、基準値に対する充放電損失変化率の変化の一例を示す図である。FIG. 7 is a diagram showing an example of a change in charge / discharge loss change rate with respect to a reference value in the example of the deterioration characteristic shown in FIG. 6. 図7に示す劣化特性の一例において、基準値に対する充放電損失変化率の変化の一例を示す図である。FIG. 8 is a diagram showing an example of a change in charge / discharge loss change rate with respect to a reference value in the example of the deterioration characteristic shown in FIG. 7. 図8に示す劣化特性の一例において、基準値に対する充放電損失変化率の変化の一例を示す図である。FIG. 9 is a diagram showing an example of a change in charge / discharge loss change rate with respect to a reference value in the example of the deterioration characteristic shown in FIG. 8. 第2実施形態において発電原単位を算出する発電設備の一例を説明するための図である。It is a figure for demonstrating an example of the power generation equipment which calculates a power generation basic unit in 2nd Embodiment. 第2実施形態の環境影響算定装置の一構成例を概略的に示す図である。It is a figure which shows roughly the example of 1 structure of the environmental influence calculation apparatus of 2nd Embodiment. 第3実施形態の環境影響算定装置の一構成例を概略的に示す図である。It is a figure which shows roughly the example of 1 structure of the environmental influence calculation apparatus of 3rd Embodiment. 第4実施形態の環境影響算定装置の一構成例を概略的に示す図である。It is a figure which shows roughly the example of 1 structure of the environmental influence calculation apparatus of 4th Embodiment. 第5実施形態の環境影響算定装置の一構成例を概略的に示す図である。It is a figure which shows roughly the example of 1 structure of the environmental influence calculation apparatus of 5th Embodiment. 第5実施形態の環境影響算定装置においてセル・蓄電池状態を算定する動作の一例を説明するための図である。It is a figure for demonstrating an example of the operation | movement which calculates a cell and a storage battery state in the environmental influence calculation apparatus of 5th Embodiment.

以下、実施形態の環境影響算定装置および環境影響算定方法について、図面を参照して説明する。なお、以下の説明では環境影響評価の指標としてCO排出量を取り上げるが、SOx排出量、NOx排出量、などその他の指標であっても構わない。 Hereinafter, an environmental impact calculation apparatus and an environmental impact calculation method of an embodiment will be described with reference to the drawings. In the following description, CO 2 emission is taken up as an index for environmental impact assessment, but other indicators such as SOx emission and NOx emission may be used.

図1に、本実施形態において発電原単位[g−CO/kWh]を算出する発電設備を概略的に示す。本実施形態では、複数の二次電池セルを含む蓄電池と、太陽光発電装置等の発電源と、を備えた発電設備の発電原単位を算出する。発電源は蓄電池を充電するとともに発電電力を出力している。発電設備の総発電量は発電源から出力される発電量と、蓄電池の放電量との和である。ある評価範囲において、例えば発電源の発電源原単位は40[g−CO/kWh]であって、蓄電池の電池原単位は120[g−CO/kWh]であって、発電設備の発電原単位は50[g−CO/kWh]である。 FIG. 1 schematically shows a power generation facility that calculates a power generation basic unit [g-CO 2 / kWh] in the present embodiment. In the present embodiment, the power generation intensity of a power generation facility including a storage battery including a plurality of secondary battery cells and a power generation source such as a solar power generation device is calculated. The power generation source charges the storage battery and outputs generated power. The total power generation amount of the power generation facility is the sum of the power generation amount output from the power generation source and the discharge amount of the storage battery. In a certain evaluation range, for example, the power generation unit of the power generation source is 40 [g-CO 2 / kWh] and the battery unit of the storage battery is 120 [g-CO 2 / kWh]. basic unit is 50 [g-CO 2 / kWh ].

図2に、第1実施形態の環境影響算定装置の一構成例を示す。本実施形態の環境影響算定装置は、蓄電池を備えた太陽光発電システムなどの発電設備について、蓄電池を含む発電設備の環境影響(発電原単位)を算定するものであって、発電源情報データベース21と、電池製造時の環境負荷情報と電池使用時の充放電損失の性能劣化情報を格納した電池特性データベース31と、電池の使用状況に関する情報を格納した電池状態データベース41と、演算部1と、を備えている。   FIG. 2 shows a configuration example of the environmental impact calculation apparatus of the first embodiment. The environmental impact calculation apparatus according to the present embodiment calculates the environmental impact (power generation intensity) of a power generation facility including a storage battery for a power generation facility such as a solar power generation system provided with a storage battery. A battery characteristic database 31 storing environmental load information at the time of battery manufacture and performance deterioration information of charge / discharge loss when using the battery, a battery state database 41 storing information regarding the battery usage status, the calculation unit 1, It has.

環境影響算定装置には、表示部3と、入力部5と、I/Oインタフェース7とが接続されている。表示部3は、例えば液晶ディスプレイや有機ELディスプレイ等の表示装置である。入力部5は、キーボードやマウス等の入力手段であってもよく、タッチパネルのように表示部3と一体の入力手段であってもよい。I/Oインタフェース7は、通信インタフェース、USBインタフェース、i.Link(登録商標)インタフェース、HDMI(High Definition Multimedia Interface)規格に合致したHDMIインタフェース等である。   A display unit 3, an input unit 5, and an I / O interface 7 are connected to the environmental impact calculation apparatus. The display unit 3 is a display device such as a liquid crystal display or an organic EL display. The input unit 5 may be input means such as a keyboard or a mouse, or may be input means integrated with the display unit 3 such as a touch panel. The I / O interface 7 includes a communication interface, a USB interface, i. Link (registered trademark) interface, HDMI interface conforming to HDMI (High Definition Multimedia Interface) standard, and the like.

発電源情報データベース21には、発電源のライフサイクルにおける発電源原単位[g−CO/kWh]の平均値が格納されている。この値は予め演算されて発電源情報データベース21に格納される。 The power generation information database 21 stores the average value of the power generation unit [g-CO 2 / kWh] in the life cycle of the power generation. This value is calculated in advance and stored in the power generation information database 21.

電池特性データベース31には、蓄電池のライフサイクルにおける電池一生の電池総放電量[kWh]、蓄電池製造時のCO排出量(製造CO:材料消費負荷と製造エネルギー負荷)、蓄電池使用時の一生の充放電損失によるCO排出量(充放電CO)、蓄電池廃棄時のCO排出量(廃棄CO)、および、サイクル影響、温度影響、放電深度影響などに対する蓄電池の劣化特性が格納されている。 The battery characteristic database 31 includes the total battery discharge [kWh] during the life of the storage battery, the CO 2 emission during manufacture of the storage battery (manufacturing CO 2 : material consumption load and manufacturing energy load), and the lifetime of the storage battery when it is used. CO 2 emissions due to charge / discharge loss (charge / discharge CO 2 ), CO 2 emissions at the time of storage battery disposal (waste CO 2 ), and deterioration characteristics of the storage battery against cycle effects, temperature effects, discharge depth effects, etc. are stored ing.

電池状態データベース41には、蓄電池の状態情報が格納されている。蓄電池の状態情報とは、評価期間内での放電量である指定期間放電量、電池の使用期間である経年、充放電した回数であるサイクル数、電池が置かれている状況を示す平均使用温度、充放電の深度を表す平均放電深度、などである。   The battery status database 41 stores storage battery status information. The storage battery status information refers to the discharge amount within the evaluation period, the specified period discharge amount, the battery usage period over time, the number of cycles the battery has been charged and discharged, and the average usage temperature that indicates the status of the battery. , Average discharge depth representing the depth of charge / discharge, and the like.

なお、電池状態データベース41に格納している蓄電池の状態情報は、発電設備に含まれる蓄電池を管理する運転計画システムから自動的に更新されてもよい。蓄電池の状態情報を自動的に取得することにより、最新データを用いた発電原単位の算定が可能となる。   Note that the storage battery state information stored in the battery state database 41 may be automatically updated from an operation planning system that manages storage batteries included in the power generation facility. By automatically acquiring storage battery status information, it is possible to calculate power generation intensity using the latest data.

また、発電源情報データベース21、電池特性データベース31、電池状態データベース41に格納された各種情報は、LAN等のネットワーク経由で自動的に更新されてもよい。この場合、環境影響算定装置と発電設備と遠隔に配置されている場合でも、発電源情報データベース21、電池特性データベース31、電池状態データベース41に格納された各種情報を自動的に更新されることとなり、最新データを用いた発電原単位の算定が可能となるとともに、評価者が遠隔にいる場合にも算定結果を容易に利用できる。   Various information stored in the power generation information database 21, battery characteristic database 31, and battery state database 41 may be automatically updated via a network such as a LAN. In this case, various information stored in the power generation information database 21, the battery characteristic database 31, and the battery state database 41 are automatically updated even when the environmental impact calculation device and the power generation facility are remotely located. In addition to being able to calculate the power generation intensity using the latest data, the calculation results can be easily used even when the evaluator is remote.

図2に示す場合では、環境影響算定装置が発電源情報データベース21と、電池特性データベース31と、電池状態データベース41と、を備えていたが、これらのデータベースは環境影響算定装置の外部に設けられたデータベースであってもよい。   In the case illustrated in FIG. 2, the environmental impact calculation apparatus includes the power generation information database 21, the battery characteristic database 31, and the battery state database 41. These databases are provided outside the environmental impact calculation apparatus. It may be a database.

次に、演算部1の構成例と演算部1での発電原単位の算定方法について説明する。
演算部1は、発電源情報データベース21と、電池特性データベース31と、電池状態データベース41とに格納された情報に基づいて算出された使用状況に応じた蓄電池の環境負荷算定結果を用いて、発電設備のライフサイクル期間の特定した時点における発電原単位を算出する。
Next, the structural example of the calculating part 1 and the calculation method of the power generation basic unit in the calculating part 1 are demonstrated.
The computing unit 1 generates power by using the environmental load calculation result of the storage battery according to the usage situation calculated based on the information stored in the power generation information database 21, the battery characteristic database 31, and the battery state database 41. Calculate the power generation intensity at the specified point in the life cycle period of the facility.

演算部1は、評価範囲設定部10と、発電源情報取得部20と、電池特性取得部30と、電池状態取得部40と、電池原単位算定部50と、発電原単位算定部60と、結果出力部70と、を備えている。   The calculation unit 1 includes an evaluation range setting unit 10, a power generation information acquisition unit 20, a battery characteristic acquisition unit 30, a battery state acquisition unit 40, a battery basic unit calculation unit 50, a power generation basic unit calculation unit 60, A result output unit 70.

評価範囲設定部10は、対象とする設備、対象とする環境影響要因(CO排出量、温暖化影響、水域影響、生態系影響など)、対象とするライフサイクル範囲、など評価に必要な条件に加え、電池の劣化状況を把握する評価対象時間を設定する。評価対象時間は、通常、評価時点における直近の時間帯であって、「何年何月何日の何時から何時」という設定となる。評価範囲設定部10には、例えばユーザが入力部5を操作することにより所定の評価対象時間が入力される。 The evaluation range setting unit 10 is a condition necessary for evaluation, such as target equipment, target environmental impact factors (CO 2 emissions, global warming impact, water area impact, ecosystem impact, etc.), target life cycle range, etc. In addition to the above, the evaluation target time for grasping the battery deterioration state is set. The evaluation target time is usually the latest time zone at the time of evaluation, and is set to “from what time to what time on what year, what day”. For example, when the user operates the input unit 5, a predetermined evaluation target time is input to the evaluation range setting unit 10.

発電源情報取得部20は、発電源情報データベース21から、評価範囲設定部10で設定された時点における発電源原単位[g−CO/kWh]の平均値を取得して、電池特性取得部30へ出力する。 The power generation information acquisition unit 20 acquires an average value of the power generation basic unit [g-CO 2 / kWh] at the time set by the evaluation range setting unit 10 from the power generation information database 21, and the battery characteristic acquisition unit Output to 30.

電池特性取得部30は、発電源情報取得部20から発電源原単位[g−CO/kWh]の平均値を取得するとともに、電池特性データベース31から蓄電池の一生の電池総放電量[kWh]、製造CO、充放電CO、廃棄COに加え、サイクル影響、温度影響、放電深度影響などの劣化特性(電池使用時の放電容量や充放電損失の変化)を取得する。電池特性取得部30は、発電源情報取得部20から取得した情報とともに、電池特性データベース31から取得した情報を電池状態取得部40へ出力する。 The battery characteristic acquisition unit 30 acquires the average value of the power generation unit intensity [g-CO 2 / kWh] from the power generation information acquisition unit 20, and the lifetime total battery discharge [kWh] from the battery characteristic database 31. In addition to manufacturing CO 2 , charge / discharge CO 2 , and waste CO 2 , deterioration characteristics (change in discharge capacity and charge / discharge loss when using the battery) such as cycle effect, temperature effect, and discharge depth effect are acquired. The battery characteristic acquisition unit 30 outputs the information acquired from the battery characteristic database 31 together with the information acquired from the power generation information acquisition unit 20 to the battery state acquisition unit 40.

図3乃至図5に、蓄電池の劣化特性の一例として放電容量の低下例を示す。
図3は、蓄電池の放電容量[Ah/Ah]に対する充放電サイクルの影響の一例を示す図である。図3に示す場合では、年間の充放電サイクル毎に蓄電池の劣化特性が格納されている。年間の充放電サイクル数が多いほど、経年に応じて放電容量が小さくなる。
FIG. 3 to FIG. 5 show examples of the reduction in discharge capacity as an example of the deterioration characteristics of the storage battery.
FIG. 3 is a diagram illustrating an example of the influence of the charge / discharge cycle on the discharge capacity [Ah / Ah] of the storage battery. In the case shown in FIG. 3, the deterioration characteristics of the storage battery are stored for each yearly charge / discharge cycle. The larger the number of charge / discharge cycles per year, the smaller the discharge capacity with age.

図4は、蓄電池の放電容量[Ah/Ah]に対する温度の影響の一例を示す図である。図4では、蓄電池を使用する環境の平均温度毎に、劣化特性が格納されている。蓄電池を使用する環境の平均温度が高いほど、経年に応じて放電容量が小さくなる。   FIG. 4 is a diagram illustrating an example of the influence of temperature on the discharge capacity [Ah / Ah] of the storage battery. In FIG. 4, deterioration characteristics are stored for each average temperature of the environment in which the storage battery is used. The higher the average temperature of the environment in which the storage battery is used, the smaller the discharge capacity with age.

図5は、蓄電池の放電容量[Ah/Ah]に対する放電深度の影響の一例を示す図である。図5では、蓄電池の放電深度の年平均毎に、劣化特性が格納されている。蓄電池の放電深度の年平均の値が大きいほど、経年に応じて放電容量が小さくなる。   FIG. 5 is a diagram illustrating an example of the influence of the depth of discharge on the discharge capacity [Ah / Ah] of the storage battery. In FIG. 5, the deterioration characteristics are stored for each year average of the discharge depth of the storage battery. The larger the annual average value of the discharge depth of the storage battery, the smaller the discharge capacity according to aging.

図6乃至図8に、蓄電池の劣化特性の他の例として充放電損失増加例を示す。
図6は、蓄電池の充放電損失変化率[%]に対する充放電サイクルの影響の一例を示す図である。図6に示す場合では、年間の充放電サイクル数毎に蓄電池の劣化特性が格納されている。年間の充放電サイクル数が多いほど、経年に応じて充放電損失が大きくなる。
6 to 8 show examples of increasing charge / discharge loss as another example of the deterioration characteristics of the storage battery.
FIG. 6 is a diagram showing an example of the influence of the charge / discharge cycle on the charge / discharge loss change rate [%] of the storage battery. In the case shown in FIG. 6, the deterioration characteristics of the storage battery are stored for each number of charge / discharge cycles per year. As the number of charge / discharge cycles per year increases, the charge / discharge loss increases with age.

図7は、蓄電池の充放電損失変化率[%]に対する温度の影響の一例を示す図である。図7では、蓄電池を使用する環境の平均温度毎に、劣化特性が格納されている。蓄電池を使用する環境の平均温度が高いほど、経年に応じて充放電損失が大きくなる。   FIG. 7 is a diagram illustrating an example of the influence of temperature on the charge / discharge loss change rate [%] of the storage battery. In FIG. 7, deterioration characteristics are stored for each average temperature of the environment in which the storage battery is used. As the average temperature of the environment in which the storage battery is used is higher, the charge / discharge loss increases with age.

図8は、蓄電池の充放電損失変化率[%]に対する放電深度の影響の一例を示す図である。図8では、蓄電池の放電深度の年平均毎に、劣化特性が格納されている。蓄電池の放電深度の年平均の値が大きいほど、経年に応じて充放電損失は大きくなる。   FIG. 8 is a diagram illustrating an example of the influence of the depth of discharge on the charge / discharge loss change rate [%] of the storage battery. In FIG. 8, the deterioration characteristic is stored for each year average of the discharge depth of the storage battery. As the annual average value of the discharge depth of the storage battery increases, the charge / discharge loss increases with age.

電池状態取得部40は、電池状態データベース41に格納された蓄電池の状態情報を取得する。状態情報とは、評価範囲設定部10で設定した評価期間内での放電量である指定期間放電量、電池の使用期間である経年、これまでの充放電サイクル数、蓄電池が置かれている環境の平均温度、充放電の深度を表す平均放電深度、などである。電池状態取得部40は、電池特性取得部30から受信した情報とともに、上記蓄電池の状態情報を電池原単位算定部50へ出力する。   The battery state acquisition unit 40 acquires storage battery state information stored in the battery state database 41. The state information is a specified period discharge amount that is the discharge amount within the evaluation period set by the evaluation range setting unit 10, the aging period of the battery, the number of charge / discharge cycles so far, and the environment where the storage battery is placed. Average discharge depth, average discharge depth representing the depth of charge / discharge, and the like. The battery state acquisition unit 40 outputs the storage battery state information to the battery basic unit calculation unit 50 together with the information received from the battery characteristic acquisition unit 30.

電池原単位算定部50では、電池特性取得部30と電池状態取得部40で取得した情報を用いて下記のように電池原単位[g−CO/kWh]を算定する。なお、下記の算定式において電池状態に応じて決まる一生の総放電量[kWh]と充放電損失[kWh]は、以下の通り決めることができる。 The battery basic unit calculation unit 50 calculates the battery basic unit [g-CO 2 / kWh] using the information acquired by the battery characteristic acquisition unit 30 and the battery state acquisition unit 40 as follows. The lifetime total discharge amount [kWh] and the charge / discharge loss [kWh] determined according to the battery state in the following calculation formula can be determined as follows.

一生の総放電量(可変)[kWh]=一生の総放電量(基準値)[kWh]×放電容量変化率(可変)[%]
ここで、一生の総放電量(基準値)は、設計時や製品試験時に想定、または、計測した値である。一方、放電容量変化率(可変)[%]は図3乃至図5の特性に計算対象となる蓄電池の条件を当てはめて求める。算定事例を図9乃至図11を用いて説明する。図9乃至図11では一生の総放電量(基準値)を決めた時に用いた基準値の特性が点線で示されている。
Lifetime total discharge amount (variable) [kWh] = Lifetime total discharge amount (reference value) [kWh] × Discharge capacity change rate (variable) [%]
Here, the lifetime total discharge amount (reference value) is a value assumed or measured at the time of design or product test. On the other hand, the discharge capacity change rate (variable) [%] is obtained by applying the conditions of the storage battery to be calculated to the characteristics shown in FIGS. Calculation examples will be described with reference to FIGS. In FIG. 9 to FIG. 11, the characteristic of the reference value used when the lifetime total discharge amount (reference value) is determined is indicated by a dotted line.

例えば、図9では基準としたサイクル数は4000サイクル/年である。一方、対象となる蓄電池は青い点で示した状態にあり(5000サイクル/年で、点線で示した経年年数に到達)、放電容量は基準値より10%低下している。同様に、図10では温度影響により算定対象蓄電池の放電容量は基準値に対し7%低下、図11では放電深度影響により算定対象蓄電池の放電容量は基準値に対し15%低下となっている。この場合の放電容量変化率(可変)は以下の式で算定する。ここで、X0はサイクル影響係数、Y0は温度影響係数、Z0は放電深度影響係数、で、蓄電各影響が蓄電池の放電容量変化に与える影響を示す係数で、蓄電池毎に設定する。   For example, in FIG. 9, the reference cycle number is 4000 cycles / year. On the other hand, the target storage battery is in a state indicated by a blue dot (5000 cycles / year, reaching the aging age indicated by the dotted line), and the discharge capacity is 10% lower than the reference value. Similarly, in FIG. 10, the discharge capacity of the calculation target storage battery is 7% lower than the reference value due to the temperature effect, and in FIG. 11, the discharge capacity of the calculation target storage battery is 15% lower than the reference value due to the influence of the depth of discharge. The discharge capacity change rate (variable) in this case is calculated by the following equation. Here, X0 is a cycle influence coefficient, Y0 is a temperature influence coefficient, Z0 is a discharge depth influence coefficient, and is a coefficient indicating the influence of each storage effect on the discharge capacity change of the storage battery, and is set for each storage battery.

放電容量変化率(可変)[%]=10%×X0+7%×Y0+15%×Z0
ここでは、特性グラフから対象となる蓄電池の放電容量変化率を求めているが、あらかじめ用意されたテーブル(表)などを用いて求めても良い。
Discharge capacity change rate (variable) [%] = 10% × X0 + 7% × Y0 + 15% × Z0
Here, although the discharge capacity change rate of the target storage battery is obtained from the characteristic graph, it may be obtained using a table prepared in advance.

充放電損失(可変)[kWh]=充放電損失基準値(初期値)[kWh]×充放電損失変化率(可変)[%]
ここで、充放電損失基準値は、設計時や製品試験時に想定、または、計測した値である。一方、充放電損失変化率(可変)[%]は図6乃至図8の特性に計算対象となる蓄電池の条件を当てはめて求める。算定事例を図12乃至図14を用いて説明する。図12乃至図14では充放電損失基準値(初期値)の特性が点線で示されている。
Charge / discharge loss (variable) [kWh] = Charge / discharge loss reference value (initial value) [kWh] × Charge / discharge loss change rate (variable) [%]
Here, the charge / discharge loss reference value is a value assumed or measured at the time of design or product test. On the other hand, the charge / discharge loss change rate (variable) [%] is obtained by applying the conditions of the storage battery to be calculated to the characteristics shown in FIGS. Calculation examples will be described with reference to FIGS. In FIG. 12 to FIG. 14, the characteristic of the charge / discharge loss reference value (initial value) is indicated by a dotted line.

例えば、図12では基準値(初期値)に対して、対象となる蓄電池は青い点で示した状態にあり(5000サイクル/年で、点線で示した経年年数に到達)、充放電損失の変化は基準値より3%増加している。同様に、図13では温度影響により算定対象蓄電池の充放電損失は基準値に対し2%増加、図14では放電深度影響により算定対象蓄電池の充放電損失は基準値に対し1%増加となっている。この場合の充放電損失変化率(可変)は以下の式で算定する。ここで、X1はサイクル影響係数、Y1は温度影響係数、Z1は放電深度影響係数、で、蓄電各影響が蓄電池の充放電損失に与える影響を示す係数で、蓄電池毎に設定する。   For example, in FIG. 12, the target storage battery is in a state indicated by a blue dot with respect to the reference value (initial value) (5000 cycles / year, reaching the age indicated by the dotted line), and the change in charge / discharge loss Is 3% higher than the reference value. Similarly, in FIG. 13, the charge / discharge loss of the calculation target storage battery is increased by 2% with respect to the reference value due to the temperature effect, and in FIG. 14, the charge / discharge loss of the calculation target storage battery is increased by 1% with respect to the reference value due to the influence of the depth of discharge. Yes. In this case, the charge / discharge loss change rate (variable) is calculated by the following formula. Here, X1 is a cycle influence coefficient, Y1 is a temperature influence coefficient, Z1 is a discharge depth influence coefficient, and is a coefficient indicating the influence of each storage effect on the charge / discharge loss of the storage battery, and is set for each storage battery.

充放電損失変化率(可変)[%]=3%×X1+2%×Y1+1%×Z1
ここでは、特性グラフから対象となる蓄電池の充放電損失変化率を求めているが、あらかじめ用意されたテーブル(表)などを用いて求めても良い。
Charge / discharge loss change rate (variable) [%] = 3% × X1 + 2% × Y1 + 1% × Z1
Here, the charge / discharge loss change rate of the target storage battery is obtained from the characteristic graph, but may be obtained using a table prepared in advance.

電池原単位(可変)=(製造CO+廃棄CO)/一生の総放電量(可変)[kWh]+指定期間中の充放電損失CO(可変)/指定期間中の総放電量[kWh]
指定期間中の充放電損失CO(可変)=発電源原単位(一定)[g−CO/kWh]×指定期間中の充放電損失(可変)[kWh]
発電源原単位(一定)=(製造CO+発電CO+廃棄CO)[g−CO]/一生の総発電源発電量[kWh]
発電原単位算定部60は、電池原単位算定部50で算定された電池原単位を用いて発電原単位[g−CO/kWh]を下記のように算定する。
発電原単位=(発電源原単位(一定)[g−CO/kWh]×発電源の発電量+電池原単位[g−CO/kWh]×蓄電池の放電量)/指定期間中の総発電量
発電原単位算定部60は、算定した発電原単位[g−CO/kWh]を結果出力部70で出力する。結果出力部70は、環境影響算定装置に含まれるディスプレイや外部に接続された表示部3等に算定結果を出力しユーザへ提示してもよく、I/Oインタフェース7を介して算定結果を利用する他のシステムへ出力してもよい。
Battery basic unit (variable) = (Manufacturing CO 2 + Waste CO 2 ) / Lifetime total discharge amount (variable) [kWh] + Charge / discharge loss CO 2 (variable) during specified period / Total discharge amount during specified period [ kWh]
Charging / discharging loss during specified period CO 2 (variable) = Power generation unit (constant) [g−CO 2 / kWh] × Charging / discharging loss during specified period (variable) [kWh]
Power generation basic unit (constant) = (Manufacturing CO 2 + Power generation CO 2 + Waste CO 2 ) [g-CO 2 ] / Lifetime total power generation amount [kWh]
The power generation unit calculation unit 60 calculates the power generation unit [g-CO 2 / kWh] using the battery unit calculated by the battery unit calculation unit 50 as follows.
Power intensity = total in (power MinamotoGen unit (constant) [g-CO 2 / kWh ] power amount + cell intensity of × power source [g-CO 2 / kWh] × battery discharge amount) / specified periods Electric-generating capacity
The power generation unit calculation unit 60 outputs the calculated power generation unit [g-CO 2 / kWh] at the result output unit 70. The result output unit 70 may output the calculation result to the display included in the environmental impact calculation device, the display unit 3 connected to the outside, and the like, and present it to the user. The result output unit 70 uses the calculation result via the I / O interface 7. May be output to another system.

次に、比較例として蓄電池の劣化を考慮しない場合について説明する。蓄電池の劣化を考慮しない場合、発電原単位算定部は、以下の式により発電原単位を算定する。   Next, the case where the deterioration of a storage battery is not considered as a comparative example will be described. When the deterioration of the storage battery is not taken into consideration, the power generation intensity calculation unit calculates the power generation intensity by the following formula.

発電原単位=発電源原単位(一定)+電池原単位
電池原単位(一定)=(製造CO+一生の総充放電損失CO+廃棄CO)/一生の総放電量(一定)[kWh]
一生の充放電損失CO=発電源原単位(一定)[g−CO/kWh]×一生の総充放電損失[kWh]
上記蓄電池の劣化を考慮しない場合と比較して、本実施形態の環境影響算定装置および環境影響算定方法では、蓄電池を備えた発電設備において、上記のように電池製造時の環境負荷情報と電池使用時の充放電損失の性能劣化情報(電池特性情報:サイクル影響、温度影響、放電深度影響)とを用いて、発電設備のライフサイクル期間の特定した期間の電池の使用状況(電池状態情報)に応じた電池の環境負荷を算定し、その結果を用いた発電原単位を算出することが可能となる。
Power generation intensity = Power generation intensity (constant) + Battery intensity
Battery basic unit (constant) = (Production CO 2 + Lifetime total charge / discharge loss CO 2 + Waste CO 2 ) / Lifetime total discharge amount (constant) [kWh]
Lifetime charge / discharge loss CO 2 = Power generation unit (constant) [g−CO 2 / kWh] × Lifetime total charge / discharge loss [kWh]
Compared to the case where the deterioration of the storage battery is not taken into account, in the environmental impact calculation device and the environmental impact calculation method of the present embodiment, in the power generation facility equipped with the storage battery, as described above, the environmental load information and the battery use during battery manufacture Using battery deterioration information (battery characteristics information: cycle effect, temperature effect, discharge depth effect), and the battery usage status (battery status information) during the specified life cycle period of the power generation equipment It is possible to calculate the environmental load of the corresponding battery and calculate the power generation intensity using the result.

すなわち、本実施形態の環境影響算定装置および環境影響算定方法によれば、蓄電池の劣化を考慮した方法により、より正確な発電原単位を提示することが可能となる。   That is, according to the environmental impact calculation apparatus and the environmental impact calculation method of the present embodiment, it is possible to present a more accurate power generation unit by a method that takes into account deterioration of the storage battery.

次に、第2実施形態の環境影響算定装置および環境影響算定方法について図面を参照して説明する。なお、以下の説明において上述の第1実施形態と同様の構成については同一の符号を付して説明を省略する。   Next, the environmental impact calculation apparatus and the environmental impact calculation method of the second embodiment will be described with reference to the drawings. In the following description, the same components as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.

図15に、本実施形態において発電原単位[g−CO/kWh]を算出する発電設備を概略的に示す。本実施形態では、2台の蓄電池Aおよび蓄電池Bと、太陽光発電装置等の発電源と、を備えた発電設備の発電原単位を算出する。発電源は蓄電池Aおよび蓄電池Bを充電するとともに発電電力を出力している。発電設備の総発電量は発電源から出力される発電量と、蓄電池Aの放電量Aと、蓄電池Bの放電量Bとの和である。ある時点において、例えば発電源の発電源原単位は40[g−CO/kWh]であって、蓄電池Aの電池原単位は120[g−CO/kWh]であって、蓄電池Bの電池原単位は100[g−CO/kWh]であって、発電設備の発電原単位は50[g−CO/kWh]である。 FIG. 15 schematically shows a power generation facility that calculates a power generation basic unit [g-CO 2 / kWh] in the present embodiment. In the present embodiment, the power generation intensity of a power generation facility including two storage batteries A and B and a power generation source such as a solar power generation device is calculated. The power generation source charges storage battery A and storage battery B and outputs generated power. The total power generation amount of the power generation facility is the sum of the power generation amount output from the power generation source, the discharge amount A of the storage battery A, and the discharge amount B of the storage battery B. At a certain point in time, for example, the power source unit of the power source is 40 [g-CO 2 / kWh], the battery base unit of the storage battery A is 120 [g-CO 2 / kWh], and the battery of the storage battery B The basic unit is 100 [g-CO 2 / kWh], and the power generation basic unit of the power generation facility is 50 [g-CO 2 / kWh].

図16に本実施形態の環境影響算定装置の一構成例を概略的に示す。本実施形態の環境影響算定装置は、複数の蓄電池Aおよび蓄電池Bを有する発電設備について発電原単位[g−CO/kWh]を算出する点が上記第1実施形態と異なる。 FIG. 16 schematically shows a configuration example of the environmental impact calculation apparatus of the present embodiment. The environmental impact calculation apparatus according to the present embodiment is different from the first embodiment in that the power generation intensity [g-CO 2 / kWh] is calculated for a power generation facility having a plurality of storage batteries A and storage batteries B.

本実施形態の環境影響算定装置は、演算部1と、発電源情報データベース21と、電池特性データベース31Aと、電池状態データベース41Aと、を備えている。   The environmental impact calculation apparatus of the present embodiment includes a calculation unit 1, a power generation information database 21, a battery characteristic database 31A, and a battery state database 41A.

電池特性データベース31Aには、複数の蓄電池Aおよび蓄電池Bのそれぞれについて、ライフサイクルにおける電池一生の電池総放電量[kWh]、製造CO、充放電COおよび廃棄CO等、の電池特性が格納されている。 In the battery characteristic database 31A, for each of the plurality of storage batteries A and storage batteries B, battery characteristics such as total battery discharge [kWh] in the life cycle, manufactured CO 2 , charge / discharge CO 2 and waste CO 2 are stored. Stored.

電池状態データベース41Aには、複数の蓄電池Aおよび蓄電池Bのそれぞれについての状態情報が格納されている。蓄電池Aおよび蓄電池Bの状態情報とは、評価期間内での放電量である指定期間放電量、蓄電池の使用期間である経年、充放電した回数であるサイクル数、電池が置かれている状況を示す平均使用温度、充放電の深度を表す平均放電深度、などである。   In the battery state database 41A, state information about each of the plurality of storage batteries A and storage batteries B is stored. The state information of the storage battery A and the storage battery B is the specified period discharge amount that is the discharge amount within the evaluation period, the aging period of the storage battery, the cycle number that is the number of times of charge and discharge, and the situation where the battery is placed. The average use temperature shown, the average discharge depth representing the depth of charge / discharge, and the like.

演算部1は、評価範囲設定部10と、発電源情報取得部20と、電池特性取得部30と、電池状態取得部40と、電池原単位算定部50と、発電原単位算定部60と、結果出力部70と、を備えている。   The calculation unit 1 includes an evaluation range setting unit 10, a power generation information acquisition unit 20, a battery characteristic acquisition unit 30, a battery state acquisition unit 40, a battery basic unit calculation unit 50, a power generation basic unit calculation unit 60, A result output unit 70.

本実施形態では、電池特性取得部30が複数の蓄電池Aおよび蓄電池Bの電池特性を取得し、電池状態取得部40が複数の蓄電池Aおよび蓄電池Bの電池状態を取得し、複数の蓄電池Aおよび蓄電池Bの電池特性と電池状態とを電池原単位算定部50へ出力する。   In this embodiment, the battery characteristic acquisition unit 30 acquires the battery characteristics of the plurality of storage batteries A and storage batteries B, the battery state acquisition unit 40 acquires the battery states of the plurality of storage batteries A and storage batteries B, and the plurality of storage batteries A and The battery characteristics and battery state of the storage battery B are output to the battery basic unit calculation unit 50.

電池原単位算定部50は、蓄電池Aの電池A原単位と蓄電池Bの電池B原単位とを下記のようにそれぞれ算定する。   The battery basic unit calculation unit 50 calculates the battery A basic unit of the storage battery A and the battery B basic unit of the storage battery B as follows.

電池A原単位(可変)=(蓄電池A製造CO+蓄電池A廃棄CO)[g−CO]/一生の蓄電池A総放電量(可変)[kWh]+指定期間中の蓄電池A充放電損失CO(可変)/指定期間中の蓄電池A総放電量[kWh]
指定期間中の蓄電池A充放電損失CO(可変)=発電源原単位(一定)[g−CO/kWh]×指定期間中の蓄電池A充放電損失(可変)[kWh]
電池B原単位(可変)=(蓄電池B製造CO+蓄電池B廃棄CO)[g−CO]/一生の蓄電池B総放電量(可変)[kWh]+指定期間中の蓄電池B充放電損失CO(可変)[g−CO]/指定期間中の蓄電池B総放電量[kWh]
指定期間中の蓄電池B充放電損失CO(可変)=発電源原単位(一定)×指定期間中の蓄電池B充放電損失(可変)[kWh]
電池原単位算定部50は、算定した蓄電池Aの電池A原単位と蓄電池Bの電池B原単位とを発電原単位算定部60へ出力する。
Battery A basic unit (variable) = (storage battery A manufactured CO 2 + storage battery A waste CO 2 ) [g−CO 2 ] / lifetime storage battery A total discharge amount (variable) [kWh] + charge / discharge of storage battery A during a specified period Loss CO 2 (variable) / Total discharge amount of storage battery A during specified period [kWh]
Storage battery A charge / discharge loss during specified period CO 2 (variable) = power generation unit (constant) [g−CO 2 / kWh] × storage battery A charge / discharge loss during specified period (variable) [kWh]
Battery B basic unit (variable) = (storage battery B production CO 2 + storage battery B disposal CO 2 ) [g−CO 2 ] / lifetime storage battery B total discharge amount (variable) [kWh] + charge / discharge of storage battery B during a specified period Loss CO 2 (variable) [g−CO 2 ] / Total discharge amount of storage battery B during specified period [kWh]
Storage battery B charge / discharge loss CO 2 (variable) during specified period = Unit power generation (constant) x Storage battery B charge / discharge loss (variable) during specified period [kWh]
The battery basic unit calculation unit 50 outputs the calculated battery A basic unit of the storage battery A and battery B basic unit of the storage battery B to the power generation basic unit calculation unit 60.

発電原単位算定部60は、電池原単位算定部50から供給された電池A原単位と電池B原単位とを用いて、下記のように発電設備の発電原単位を算定する。   The power generation unit calculation unit 60 uses the battery A unit and battery B unit supplied from the battery unit calculation unit 50 to calculate the power generation unit of the power generation facility as follows.

発電原単位=(発電源原単位(一定)×発電量+電池A原単位×放電量A+電池B原単位×放電量B)/指定期間中の総発電量
発電源原単位(一定)=(製造CO+発電CO+廃棄CO)[g−CO]/一生の総発電源発電量[kWh]
上記の構成および動作以外は本実施形態の環境影響算定装置および環境影響算定方法は第1実施形態と同様である。複数の蓄電池Aおよび蓄電池Bを備えた発電設備において、蓄電池Aおよび蓄電池Bそれぞれの電池特性(性能劣化を含む)と使用時の電池状態とを用いて算出した電池原単位Aおよび電池原単位Bを用いて、発電原単位を算定することができる。
Power generation basic unit = (Power generation basic unit (constant) x Power generation amount + Battery A basic unit x Discharge amount A + Battery B basic unit x Discharge amount B) / Total power generation amount during the specified period Power generation basic unit (constant) = ( Production CO 2 + Power generation CO 2 + Waste CO 2 ) [g-CO 2 ] / Lifetime total power generation amount [kWh]
Except for the configuration and operation described above, the environmental impact calculation apparatus and environmental impact calculation method of the present embodiment are the same as those of the first embodiment. In a power generation facility equipped with a plurality of storage batteries A and storage batteries B, the battery basic unit A and the battery basic unit B calculated using the battery characteristics (including performance degradation) of the storage battery A and the storage battery B and the battery state at the time of use. Can be used to calculate the power generation intensity.

すなわち、本実施形態の環境影響算定装置および環境影響算定方法によれば、蓄電池の劣化を考慮したより正確な発電原単位を算出することが可能となる。   That is, according to the environmental impact calculation apparatus and the environmental impact calculation method of the present embodiment, it is possible to calculate a more accurate power generation unit considering the deterioration of the storage battery.

次に、第3実施形態の環境影響算定装置および環境影響算定方法について図面を参照して説明する。   Next, an environmental impact calculation apparatus and an environmental impact calculation method according to a third embodiment will be described with reference to the drawings.

図17に本実施形態の環境影響算定装置の一構成例を概略的に示す。本実施形態の環境影響算定装置は、演算部1が電池選択部80を備える点以外は上記第2実施形態の環境影響算定装置と同様である。   FIG. 17 schematically shows a configuration example of the environmental impact calculation apparatus of the present embodiment. The environmental impact calculation apparatus according to the present embodiment is the same as the environmental impact calculation apparatus according to the second embodiment except that the calculation unit 1 includes a battery selection unit 80.

電池選択部80は、電池原単位算定部50から複数の電池A原単位および電池B原単位を受信し、受信した複数の電池原単位を比較して電池原単位の少ない蓄電池を選択して、選択結果を発電原単位算定部60へ出力し、発電原単位算定部60が選択結果を結果出力部70へ出力する。   The battery selection unit 80 receives a plurality of battery A basic units and a battery B basic unit from the battery basic unit calculation unit 50, compares the received plurality of battery basic units, and selects a storage battery with a small battery basic unit, The selection result is output to the power generation unit calculation unit 60, and the power generation unit calculation unit 60 outputs the selection result to the result output unit 70.

結果出力部70は、発電原単位算定部60から受信した発電原単位および電池選択部80での蓄電池の選択結果を出力する。結果出力部70が例えば発電設備を運用する運用計画システムに蓄電池の選択結果を提供すると、発電設備において電池原単位が小さい蓄電池を優先して使用することが可能となり、発電設備の発電原単位を最小化して環境負荷を低減することが可能となる。   The result output unit 70 outputs the power generation unit received from the power generation unit calculation unit 60 and the storage battery selection result in the battery selection unit 80. When the result output unit 70 provides the storage battery selection result to, for example, an operation planning system that operates the power generation facility, it becomes possible to preferentially use a storage battery having a small battery basic unit in the power generation facility. It becomes possible to minimize and reduce the environmental load.

すなわち、本実施形態の環境影響算定装置および環境影響算定方法によれば、蓄電池の劣化を考慮したより正確な発電原単位を算出することが可能となるとともに、算定した電池原単位を用いて発電設備の利用方法を提案することが可能となる。   That is, according to the environmental impact calculation apparatus and the environmental impact calculation method of the present embodiment, it is possible to calculate a more accurate power generation unit considering the deterioration of the storage battery, and to generate power using the calculated battery unit. It is possible to propose how to use the equipment.

次に、第4実施形態の環境影響算定装置および環境影響算定方法について図面を参照して説明する。   Next, an environmental impact calculation apparatus and an environmental impact calculation method according to a fourth embodiment will be described with reference to the drawings.

図18に本実施形態の環境影響算定装置の一構成例を概略的に示す。本実施形態の環境影響算定装置は、セル・蓄電池交換履歴データベース91Aをさらに備えている。また演算部1は、セル・蓄電池交換履歴データベース作成部90、セル・蓄電池履歴取得部91、および、発電原単位選択部92をさらに備えている。   FIG. 18 schematically shows a configuration example of the environmental impact calculation apparatus of the present embodiment. The environmental impact calculation apparatus of this embodiment further includes a cell / storage battery replacement history database 91A. The calculation unit 1 further includes a cell / storage battery replacement history database creation unit 90, a cell / storage battery history acquisition unit 91, and a power generation unit selection unit 92.

セル・蓄電池交換履歴データベース91Aには、使用後の二次電池セル又は蓄電池の電池特性情報と電池状態情報とが格納されている。例えば、現在発電設備で使用されている二次電池セルが3台目である場合、セル・蓄電池交換履歴データベース91Aには過去に使用された1台目の二次電池セルと2台目の二次電池セルとの電池特性情報および電池状態情報が格納されている。   The cell / storage battery exchange history database 91A stores battery characteristic information and battery state information of the secondary battery cell or storage battery after use. For example, if the secondary battery cell currently used in the power generation facility is the third unit, the first secondary battery cell and the second secondary battery cell used in the past are stored in the cell / storage battery replacement history database 91A. Battery characteristic information and battery state information with the next battery cell are stored.

発電設備において二次電池セル又は蓄電池が交換されると、例えば発電源情報データベース21に二次電池セル又は蓄電池が交換されたことを示す交換情報が格納される。   When the secondary battery cell or the storage battery is replaced in the power generation facility, for example, exchange information indicating that the secondary battery cell or the storage battery has been replaced is stored in the power generation information database 21.

発電源情報取得部20は発電源情報データベース21から評価範囲設定部10で設定された評価期間における発電源原単位[g−CO/kWh]の平均値と交換情報とを取得し、セル・蓄電池交換履歴データベース作成部90へ出力する。 The power generation information acquisition unit 20 acquires the average value of the power generation basic unit [g-CO 2 / kWh] and the exchange information in the evaluation period set by the evaluation range setting unit 10 from the power generation information database 21, and Output to the storage battery replacement history database creation unit 90.

セル・蓄電池交換履歴データベース作成部90は、交換情報が交換なしを示す情報である場合、発電源原単位[g−CO/kWh]の平均値の平均値を電池特性取得部30へ出力する。交換情報が交換ありを示す情報である場合、現在の二次電池セル又は蓄電池の電池特性情報を電池特性データベース31に格納し、過去の二次電池セル又は蓄電池の電池特性情報と電池状態情報とを、セル・蓄電池交換履歴データベース91Aに移動して、電池特性データベース31、電池状態データベース41A、およびセル・蓄電池交換履歴データベースを自動的に更新する。セル・蓄電池交換履歴データベース作成部90は、データベースを更新した後、発電源原単位[g−CO/kWh]の平均値を電池特性取得部30へ出力する。 When the replacement information is information indicating no replacement, the cell / storage battery replacement history database creation unit 90 outputs an average value of the average value of the power generation source unit [g-CO 2 / kWh] to the battery characteristic acquisition unit 30. . When the exchange information is information indicating that there is exchange, the battery characteristic information of the current secondary battery cell or storage battery is stored in the battery characteristic database 31, and the battery characteristic information and battery state information of the past secondary battery cell or storage battery are stored. Is moved to the cell / storage battery replacement history database 91A, and the battery characteristic database 31, the battery state database 41A, and the cell / storage battery replacement history database are automatically updated. The cell / storage battery exchange history database creation unit 90 updates the database, and then outputs the average value of the power generation source unit [g-CO 2 / kWh] to the battery characteristic acquisition unit 30.

電池特性取得部30は電池特性データベース31から現在の二次電池セル又は蓄電池の電池特性を取得し、電池状態取得部40は電池状態データベース41Aから現在の二次電池セル又は蓄電池の電池状態を取得して、セル・蓄電池履歴取得部91へ出力する。   The battery characteristic acquisition unit 30 acquires the current secondary battery cell or storage battery characteristic from the battery characteristic database 31, and the battery state acquisition unit 40 acquires the current secondary battery cell or storage battery state from the battery state database 41A. Then, the data is output to the cell / storage battery history acquisition unit 91.

セル・蓄電池履歴取得部91は、過去の二次電池セル又は蓄電池の電池特性情報と電池状態情報とがある場合に、そのデータを取得して、受信した現在の二次電池セル又は蓄電池の電池特性情報および電池情報とともに、電池原単位算定部50へ出力する。   The cell / storage battery history acquisition unit 91 acquires the data when there is past battery characteristic information and battery state information of the secondary battery cell or storage battery, and receives the received secondary battery cell or battery of the current storage battery. Along with the characteristic information and the battery information, the data is output to the battery unit calculation unit 50.

電池原単位算定部50は、二次電池セルまたは蓄電池の交換履歴を考慮した電池原単位と、考慮しない電池原単位を下記のように算定する。   The battery basic unit calculation unit 50 calculates the battery basic unit considering the replacement history of the secondary battery cell or the storage battery and the battery basic unit not considering as follows.

交換済電池原単位=Σ(製造CO+電池一生の総充放電損失CO+廃棄CO)[g−CO]/Σ電池一生の総放電量[kWh]
電池一生の総充放電損失CO=発電源原単位(一定)[g−CO/kWh]×電池一生の総充放電損失[kWh]
電池原単位(可変)=(製造CO+廃棄CO)[g−CO]/一生の総放電量(可変)[kWh]+指定期間中の充放電損失CO(可変)[g−CO]/指定期間中の総放電量[kWh]
指定期間中の充放電損失CO(可変)=発電源原単位(一定)[g−CO/kWh]×指定期間中の充放電損失(可変)[kWh]
上記のように電池原単位算定部50で交換済電池原単位と電池原単位との2つの原単位を算定し、発電原単位算定部60へ出力する。
Replaced battery basic unit = Σ (production CO 2 + total lifetime charge / discharge loss CO 2 + waste CO 2 ) [g−CO 2 ] / Σtotal lifetime of battery discharge [kWh]
Total charge / discharge loss for the lifetime of the battery CO 2 = Power generation unit (constant) [g−CO 2 / kWh] × Total charge / discharge loss for the lifetime of the battery [kWh]
Battery basic unit (variable) = (Manufacturing CO 2 + Waste CO 2 ) [g-CO 2 ] / Lifetime total discharge amount (variable) [kWh] + Charge / discharge loss CO 2 (variable) during specified period [g− CO 2 ] / Total discharge amount during the specified period [kWh]
Charging / discharging loss during specified period CO 2 (variable) = Power generation unit (constant) [g−CO 2 / kWh] × Charging / discharging loss during specified period (variable) [kWh]
As described above, the battery basic unit calculation unit 50 calculates two basic units of the replaced battery basic unit and the battery basic unit, and outputs them to the power generation basic unit calculation unit 60.

発電原単位算定部60は、下記のように2つの発電原単位(第1発電原単位および第2発電原単位)を算定する。   The power generation unit calculation unit 60 calculates two power generation units (a first power generation unit and a second power generation unit) as described below.

第1発電原単位=(発電源原単位(一定)[g−CO/kWh]×発電源の発電量[kWh]+電池原単位(可変)[g−CO/kWh]×蓄電池の放電量[kWh]+Σ(製造CO+電池一生の総充放電損失CO+廃棄CO)[g−CO])/総発電量[kWh]
第2発電原単位=(発電源原単位(一定)[g−CO/kWh]×発電源の発電量[kWh]+電池原単位[g−CO/kWh]×蓄電池の放電量[kWh])/総発電量[kWh]
発電原単位算定部60は算定した第1発電原単位および第2発電原単位を発電原単位選択部92へ出力する。
First power generation unit = (power generation unit (constant) [g-CO 2 / kWh] × power generation amount [kWh] + power generation unit (variable) [g-CO 2 / kWh] × discharge of storage battery Amount [kWh] + Σ (manufactured CO 2 + total lifetime charge / discharge loss CO 2 + waste CO 2 ) [g−CO 2 ]) / total power generation amount [kWh]
Second power generation unit = (power generation unit (constant) [g−CO 2 / kWh] × power generation amount [kWh] + power generation unit [g−CO 2 / kWh] × storage battery discharge amount [kWh] ]) / Total power generation [kWh]
The power generation unit calculation unit 60 outputs the calculated first power generation unit and second power generation unit to the power generation unit selection unit 92.

発電原単位選択部92は、第1発電原単位と第2発電原単位とからユーザ(評価者)が選択した任意の発電原単位を選択して、選択された発電原単位を結果出力部70へ出力する。   The power generation unit selection unit 92 selects an arbitrary power generation unit selected by the user (evaluator) from the first power generation unit and the second power generation unit, and outputs the selected power generation unit as a result output unit 70. Output to.

上記のように、本実施形態の環境影響算定装置および環境影響算定方法では、評価者のニーズに応じて、二次電池セルまたは蓄電池の交換を考慮した第1発電原単位と、二次電池セルまたは蓄電池の交換を考慮しない第2発電原単位とを作成することができ、ユーザの要求する発電原単位をより正確に算定して提示することが可能となる。   As described above, in the environmental impact calculation device and the environmental impact calculation method according to the present embodiment, the first power generation unit considering the replacement of the secondary battery cell or the storage battery and the secondary battery cell according to the needs of the evaluator. Alternatively, it is possible to create the second power generation unit that does not consider the replacement of the storage battery, and it is possible to more accurately calculate and present the power generation unit required by the user.

すなわち、本実施形態の環境影響算定装置および環境影響算定方法によれば、蓄電池の劣化を考慮したより正確な発電原単位を算出することが可能となるとともに、ユーザの要求に応じた発電原単位を提示することが可能となる。   That is, according to the environmental impact calculation apparatus and the environmental impact calculation method of the present embodiment, it is possible to calculate a more accurate power generation unit considering the deterioration of the storage battery, and the power generation unit according to the user's request. Can be presented.

次に、第5実施形態の環境影響算定装置および環境影響算定方法について図面を参照して説明する。   Next, an environmental impact calculation apparatus and an environmental impact calculation method according to a fifth embodiment will be described with reference to the drawings.

図19に本実施形態の環境影響算定装置の一構成例を概略的に示す。本実施形態の環境影響算定装置は電池状態データベースが省略されている。演算部1は、電池使用条件取得部100と、セル・蓄電池交換回数予測部102と、セル・蓄電池状態算定部103と、をさらに備えている。また、電池特性データベース31に格納されている蓄電池の劣化特性が寿命判断基準を有している。   FIG. 19 schematically shows a configuration example of the environmental impact calculation apparatus of the present embodiment. In the environmental impact calculation apparatus of this embodiment, the battery state database is omitted. The calculation unit 1 further includes a battery use condition acquisition unit 100, a cell / storage battery replacement number prediction unit 102, and a cell / storage battery state calculation unit 103. Further, the deterioration characteristics of the storage battery stored in the battery characteristic database 31 have a life criterion.

図20に、本実施形態の環境影響算定装置においてセル・蓄電池状態を算定する動作の一例を説明する図を示す。図20に示すように、本実施形態では、サイクル数、温度、放電深度による放電容量の劣化特性のそれぞれにおいて寿命判断基準を設け、所定の放電容量となったときに蓄電池の寿命であると判断するものとしている。   In FIG. 20, the figure explaining an example of the operation | movement which calculates a cell and a storage battery state in the environmental influence calculation apparatus of this embodiment is shown. As shown in FIG. 20, in the present embodiment, a life judgment criterion is provided for each of the deterioration characteristics of the discharge capacity depending on the number of cycles, temperature, and depth of discharge, and it is determined that the life of the storage battery is reached when a predetermined discharge capacity is reached. I am going to do it.

電池使用条件取得部100では、外部の運転計画システム101等から、発電設備のライフサイクル期間中に予想される年平均サイクル数、年平均温度、年平均放電深度などを取得して、セル・蓄電池交換回数予測部102へ出力する。   The battery usage condition acquisition unit 100 acquires the average annual cycle number, annual average temperature, annual average discharge depth, etc. expected during the life cycle of the power generation facility from an external operation planning system 101, etc. It outputs to the exchange number prediction unit 102.

セル・蓄電池交換回数予測部102では電池使用条件取得部100から受信した情報を電池特性に照らし合わせ、電池の交換時期(交換年)を求め、発電設備のライフサイクルにおける交換回数を算定する。   The cell / storage battery replacement number prediction unit 102 compares the information received from the battery use condition acquisition unit 100 with the battery characteristics, obtains the replacement time (replacement year) of the battery, and calculates the number of replacements in the life cycle of the power generation facility.

すなわち、セル・蓄電池交換回数予測部102は、電池特性データベース31から電池特性を取得し、運転計画システム101から年平均サイクル数、年平均温度、年平均放電深度を取得し、年平均サイクル数、年平均温度、および年平均放電深度の劣化特性を用いて交換年を算定する。なお、蓄電池の交換年は蓄電池を使用開始してから放電容量が所定値に達するまでの経年である。   That is, the cell / storage battery replacement number prediction unit 102 acquires the battery characteristics from the battery characteristics database 31, acquires the annual average cycle number, the annual average temperature, the annual average discharge depth from the operation planning system 101, the annual average cycle number, The replacement year is calculated using the annual average temperature and the deterioration characteristics of the annual average discharge depth. In addition, the replacement year of the storage battery is the lapse of time until the discharge capacity reaches a predetermined value after the start of use of the storage battery.

続いて、セル・蓄電池交換回数予測部102は、算定された複数の交換年のうちで最も早い(短い)年を交換年として、交換年と発電設備の試用期間とから蓄電池の交換回数を算定して、過去に使用した蓄電池の台数を算定する。   Subsequently, the cell / storage battery replacement number prediction unit 102 calculates the number of replacements of the storage battery from the replacement year and the trial period of the power generation equipment, with the earliest (shortest) year among the calculated replacement years as the replacement year. Calculate the number of storage batteries used in the past.

セル・蓄電池状態算定部103では、1台目、2台目など交換する各二次電池セルまたは各蓄電池の交換時の状態情報を以下のように算定する。ここで、状態情報とは総放電量と総充放電損失である。セル・蓄電池状態算定部103は、算定したセル・蓄電池状態情報を電池原単位算定部50へ出力する。   The cell / storage battery state calculation unit 103 calculates state information at the time of replacement of each secondary battery cell or each storage battery to be replaced, such as the first and second units as follows. Here, the state information is a total discharge amount and a total charge / discharge loss. The cell / storage battery state calculation unit 103 outputs the calculated cell / storage battery state information to the battery basic unit calculation unit 50.

二次電池セル総放電量=総放電量×二次電池セル使用年(交換年)/発電設備使用年
総充放電損失=寿命を決めた電池特性の平均放電容量低下率[%]×二次電池セル総放電量[kWh]
寿命を決めた電池特性の平均放電容量低下率=∫電池特性dx/二次電池セル使用年(交換年) (x=経年)
電池原単位算定部50は、セル・蓄電池状態算定部103から受信したセル・蓄電池状態情報を用いて以下のように電池原単位を算定して、算定結果を発電原単位算定部60へ出力する。
Secondary battery cell total discharge = total discharge x secondary battery cell use year (replacement year) / power generation equipment use year
Total charge / discharge loss = Average discharge capacity reduction rate [%] of battery characteristics that determine the life x Total discharge amount of secondary battery cell [kWh]
Average discharge capacity reduction rate of battery characteristics that determined the lifetime = battery characteristics dx / secondary battery cell usage year (replacement year) (x = aging)
The battery basic unit calculation unit 50 calculates the battery basic unit using the cell / storage battery state information received from the cell / storage battery state calculation unit 103 as follows, and outputs the calculation result to the power generation basic unit calculation unit 60. .

電池原単位=Σ(製造CO+電池一生の総充放電損失CO+廃棄CO)[g−CO]/Σ電池一生の総放電量[kWh]
電池一生の総充放電損失CO=発電源原単位(一定)[g−CO/kWh]×電池一生の総充放電損失[kWh]
発電源原単位(一定)=(製造CO+発電CO+廃棄CO)/発電源一生の総発電源発電量[kWh]
発電原単位算定部60は、電池原単位算定部50から受信した電池原単位を用いて、以下のように発電原単位を算定して結果出力部70へ出力する。
Battery basic unit = Σ (Manufactured CO 2 + Battery life total charge / discharge loss CO 2 + Waste CO 2 ) [g-CO 2 ] / ΣBattery life total discharge [kWh]
Total charge / discharge loss for the lifetime of the battery CO 2 = Power generation unit (constant) [g−CO 2 / kWh] × Total charge / discharge loss for the lifetime of the battery [kWh]
Power generation basic unit (constant) = (Manufacturing CO 2 + Power generation CO 2 + Waste CO 2 ) / Total power generation amount of power generation [kWh] over the lifetime of the power generation
The power generation unit calculation unit 60 calculates the power generation unit as follows using the battery unit received from the battery unit calculation unit 50 and outputs it to the result output unit 70.

発電原単位(予測)=(発電源原単位(一定)[g−CO/kWh]×発電量[kWh]+電池原単位(一定)[g−CO/kWh]×Σ電池一生の総放電量[kWh])/総発電量[kWh]
上記のように本実施形態の環境影響算定装置および環境影響算定方法では、二次電池セルまたは蓄電池の交換を予測して、発電設備のライフサイクルでの発電原単位を算定することができる。したがって、ユーザは、将来、発電設備が環境に及ぼす影響を発電原単位から予測することが可能となる。
Power intensity (predicted) = (power MinamotoGen units (constant) [g-CO 2 / kWh ] × generation amount [kWh] + cell intensity (constant) [g-CO 2 / kWh ] × Σ battery lifetime total Discharge amount [kWh]) / Total power generation amount [kWh]
As described above, in the environmental impact calculation device and the environmental impact calculation method of the present embodiment, it is possible to calculate the power generation intensity in the life cycle of the power generation facility by predicting the replacement of the secondary battery cell or the storage battery. Therefore, the user can predict the future influence of the power generation facility on the environment from the power generation intensity.

すなわち、本実施形態の環境影響算定装置および環境影響算定方法によれば、蓄電池の劣化を考慮したより正確な発電原単位を算出することが可能となるとともに、ユーザの要求に応じた発電原単位を提示することが可能となる。   That is, according to the environmental impact calculation apparatus and the environmental impact calculation method of the present embodiment, it is possible to calculate a more accurate power generation unit considering the deterioration of the storage battery, and the power generation unit according to the user's request. Can be presented.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

例えば、上記複数の実施形態では蓄電池の劣化特性として、サイクル影響と、温度影響と、放電深度影響とについて電池特性データベースに格納されていたが、その他の劣化特性の特性を用いて発電原単位を算定してもよく、これらの劣化特性はいずれかが選択的に用いられてもよく、組み合わせて用いられてもよい。   For example, in the above embodiments, the deterioration characteristics of the storage battery are stored in the battery characteristics database with respect to the cycle effect, the temperature effect, and the discharge depth effect. Any of these deterioration characteristics may be selectively used or may be used in combination.

1…演算部、3…表示部、5…入力部、7…I/Oインタフェース、10…評価範囲設定部、20…発電源情報取得部、21…発電源情報データベース、30…電池特性取得部、31…電池特性データベース、31A…電池特性データベース、40…電池状態取得部、41…電池状態データベース、41A…電池状態データベース、50…電池原単位算定部、60…発電原単位算定部、70…結果出力部、80…電池選択部、90…セル・蓄電池交換履歴データベース作成部、91…セル・蓄電池履歴取得部、91A…セル・蓄電池交換履歴データベース、92…発電原単位選択部、100…電池使用条件取得部、101…運転計画システム、102…セル・蓄電池交換回数予測部、103…セル・蓄電池状態算定部。   DESCRIPTION OF SYMBOLS 1 ... Operation part, 3 ... Display part, 5 ... Input part, 7 ... I / O interface, 10 ... Evaluation range setting part, 20 ... Power generation information acquisition part, 21 ... Power generation information database, 30 ... Battery characteristic acquisition part 31 ... Battery characteristic database, 31A ... Battery characteristic database, 40 ... Battery state acquisition unit, 41 ... Battery state database, 41A ... Battery state database, 50 ... Battery unit calculation unit, 60 ... Power generation unit calculation unit, 70 ... Result output unit 80 ... Battery selection unit 90 ... Cell / battery replacement history database creation unit 91 ... Cell / battery history acquisition unit 91A ... Cell / battery replacement history database 92 ... Power generation unit selection unit 100 ... Battery Use condition acquisition unit, 101 ... operation planning system, 102 ... cell / battery battery replacement number prediction unit, 103 ... cell / battery state calculation unit.

Claims (7)

発電源と前記発電源により充電される蓄電池とを含む発電設備の発電原単位を算定する環境影響算定装置であって、
評価範囲を設定する評価範囲設定部と、
発電源原単位の平均値を格納した発電源情報データベースから前記発電源原単位の平均値を取得する発電源情報取得部と、
少なくとも前記蓄電池の製造時における環境負荷情報と前記蓄電池の使用時における放電容量または充放電損失の変化に関する電池特性情報を格納した電池特性データベースから、前記評価範囲における前記電池特性情報を取得する電池特性取得部と、
前記蓄電池の使用時における電池状態情報を格納した電池状態データベースから、前記評価範囲における前記電池状態情報を取得する電池状態取得部と、
前記発電源情報取得部と、前記電池特性取得部と、前記電池状態取得部と、で取得された情報に基づいて、前記蓄電池の充放電損失を考慮した電池原単位を算定する電池原単位算定部と、
前記蓄電池の電池原単位を用いて、前記発電原単位を算定する発電原単位算定部と、を備えた環境影響算定装置。
An environmental impact calculation device for calculating a power generation intensity of a power generation facility including a power generation source and a storage battery charged by the power generation source,
An evaluation range setting unit for setting the evaluation range;
A power generation information acquisition unit that acquires an average value of the power generation basic unit from a power generation information database storing an average value of the power generation basic unit;
Battery characteristics for acquiring the battery characteristic information in the evaluation range from a battery characteristic database storing at least environmental load information at the time of manufacturing the storage battery and battery characteristic information regarding a change in discharge capacity or charge / discharge loss during use of the storage battery An acquisition unit;
A battery state acquisition unit that acquires the battery state information in the evaluation range from a battery state database that stores battery state information during use of the storage battery;
Based on information acquired by the power generation information acquisition unit, the battery characteristic acquisition unit, and the battery state acquisition unit, a battery unit calculation that calculates a battery unit considering charge / discharge loss of the storage battery And
An environmental impact calculation device comprising: a power generation unit calculation unit that calculates the power generation unit using the battery unit of the storage battery.
前記発電設備は複数の蓄電池を含み、
前記電池特性取得部は、前記電池特性データベースから、前記複数の蓄電池について前記評価範囲における前記電池特性情報を取得し、
前記電池状態取得部は、前記電池状態データベースから、前記複数の蓄電池について前記評価範囲における前記電池状態情報を取得し、
前記電池原単位算定部は、前記発電源情報取得部と、前記電池特性取得部と、前記電池状態取得部と、で取得された情報に基づいて、前記複数の蓄電池の充放電損失を考慮した電池原単位を算定し、
前記発電原単位算定部は、前記複数の電池電単位を用いて前記発電原単位を算定する請求項1記載の環境影響算定装置。
The power generation facility includes a plurality of storage batteries,
The battery characteristic acquisition unit acquires the battery characteristic information in the evaluation range for the plurality of storage batteries from the battery characteristic database,
The battery state acquisition unit acquires the battery state information in the evaluation range for the plurality of storage batteries from the battery state database,
The battery basic unit calculation unit takes into account charge / discharge losses of the plurality of storage batteries based on information acquired by the power generation information acquisition unit, the battery characteristic acquisition unit, and the battery state acquisition unit. Calculate the battery unit,
The environmental impact calculation apparatus according to claim 1, wherein the power generation intensity calculation unit calculates the power generation intensity using the plurality of battery power consumption units.
前記電池原単位算定部で算定された前記複数の蓄電池の電池原単位を比較して、複数の電池原単位の小さい順に蓄電池の使用順位を決める電池選択部をさらに有する、請求項2記載の環境影響算定装置。   The environment according to claim 2, further comprising: a battery selection unit that compares the battery basic units of the plurality of storage batteries calculated by the battery basic unit calculation unit, and determines the usage order of the storage batteries in ascending order of the plurality of battery basic units. Impact calculation device. 前記電池原単位算定部は、交換済みの二次電池セルまたは蓄電池の前記電池特性情報と前記電池状態情報とを用いて電池原単位を算定する、請求項1乃至請求項3のいずれか1項記載の環境影響算定装置。   The battery basic unit calculation unit calculates the battery basic unit using the battery characteristic information and the battery state information of the replaced secondary battery cell or storage battery. The environmental impact calculation device described. 二次電池セルまたは蓄電池の交換を考慮した場合の発電原単位と、考慮しない場合の発電原単位とのいずれを算定するか選択する選択部をさらに備える請求項4記載の環境影響算定装置。   The environmental impact calculation apparatus according to claim 4, further comprising a selection unit that selects whether to calculate a power generation basic unit when considering replacement of a secondary battery cell or a storage battery or a power generation basic unit when not considering. 発電源と、複数の二次電池セルを含み前記発電源により充電される蓄電池とを含む発電設備の発電原単位を算定する環境影響算定装置であって、
評価範囲を設定する評価範囲設定部と、
発電源原単位の平均値を格納した発電源情報データベースから前記発電源原単位の平均値を取得する発電源情報取得部と、
少なくとも電池製造時の環境負荷情報と、前記二次電池セルまたは前記蓄電池の寿命判断基準含む電池使用時の充放電損失の変化に関する電池特性情報を格納した電池情報データベースから、前記評価範囲における前記電池特性情報を取得する電池特性取得部と、
前記電池特性情報と、発電設備のライフサイクルにおける蓄電池の使用計画と、を用いて前記二次電池セルまたは前記蓄電池の交換回数を算出するセル・蓄電池交換回数予測部と、
現在および過去の蓄電池について廃棄時の電池状態情報を算出するセル・蓄電池状態算定部と、
前記発電源情報取得部と、前記電池特性取得部と、で取得された情報、および前記セル・蓄電池状態算定部で算定されたセル・蓄電池状態情報に基づいて、前記蓄電池の充放電損失を考慮した電池原単位を算定する電池原単位算定部と、
前記蓄電池の電池原単位を用いて、前記発電原単位を算定する発電原単位算定部と、を備えた環境影響算定装置。
An environmental impact calculation device that calculates a power generation intensity of a power generation facility including a power generation source and a storage battery that includes a plurality of secondary battery cells and is charged by the power generation source,
An evaluation range setting unit for setting the evaluation range;
A power generation information acquisition unit that acquires an average value of the power generation basic unit from a power generation information database storing an average value of the power generation basic unit;
The battery in the evaluation range from a battery information database storing at least environmental load information at the time of battery manufacture and battery characteristic information regarding a change in charge / discharge loss when the battery is used, including a life criterion for the secondary battery cell or the storage battery A battery characteristic acquisition unit for acquiring characteristic information;
A cell / storage battery replacement number prediction unit that calculates the number of replacements of the secondary battery cell or the storage battery using the battery characteristic information and a storage battery use plan in the life cycle of the power generation facility,
A cell / storage battery state calculation unit for calculating battery state information at the time of disposal for current and past storage batteries;
Based on the information acquired by the power generation information acquisition unit, the battery characteristic acquisition unit, and the cell / storage battery state information calculated by the cell / storage battery state calculation unit, the charge / discharge loss of the storage battery is considered. A battery unit calculation unit for calculating the battery unit
An environmental impact calculation device comprising: a power generation unit calculation unit that calculates the power generation unit using the battery unit of the storage battery.
発電源と前記発電源により充電される蓄電池とを含む発電設備の発電原単位を算定する環境影響算定方法であって、演算部が、
評価範囲を設定し、
発電源原単位の平均値を格納した発電源情報データベースから前記発電源原単位の平均値を取得し、
少なくとも前記蓄電池の製造時における環境負荷情報と前記蓄電池の使用時における充放電損失の変化に関する電池特性情報を格納した電池特性データベースから、前記評価範囲における前記電池特性情報を取得し、
前記蓄電池の使用時における電池状態情報を格納した電池状態データベースから、前記評価範囲における前記電池状態情報を取得し、
前記発電源原単位の平均値、前記電池特性情報、および、前記電池状態情報を用いて、前記蓄電池の充放電損失を考慮した電池原単位を算定し、
前記蓄電池の電池原単位を用いて、前記発電原単位を算定する環境影響算定方法。
An environmental impact calculation method for calculating a power generation unit of a power generation facility including a power generation source and a storage battery charged by the power generation source, wherein the calculation unit includes:
Set the evaluation range,
Obtain the average value of the power generation intensity from the power generation information database storing the average value of the power generation intensity,
From the battery characteristic database storing at least the environmental load information at the time of production of the storage battery and the battery characteristic information regarding the change in charge / discharge loss at the time of use of the storage battery, the battery characteristic information in the evaluation range is acquired,
From the battery state database storing the battery state information at the time of use of the storage battery, obtain the battery state information in the evaluation range,
Using the average value of the power source basic unit, the battery characteristic information, and the battery state information, the battery basic unit considering the charge / discharge loss of the storage battery is calculated,
An environmental impact calculation method for calculating the power generation basic unit using the battery basic unit of the storage battery.
JP2011156004A 2011-07-14 2011-07-14 Environmental impact calculation device and environmental impact calculation method Active JP5766532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011156004A JP5766532B2 (en) 2011-07-14 2011-07-14 Environmental impact calculation device and environmental impact calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011156004A JP5766532B2 (en) 2011-07-14 2011-07-14 Environmental impact calculation device and environmental impact calculation method

Publications (2)

Publication Number Publication Date
JP2013025323A JP2013025323A (en) 2013-02-04
JP5766532B2 true JP5766532B2 (en) 2015-08-19

Family

ID=47783661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011156004A Active JP5766532B2 (en) 2011-07-14 2011-07-14 Environmental impact calculation device and environmental impact calculation method

Country Status (1)

Country Link
JP (1) JP5766532B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018011366A (en) * 2014-11-19 2018-01-18 株式会社東芝 Storage battery management system and storage battery management method
JP6669148B2 (en) * 2017-10-23 2020-03-18 株式会社豊田中央研究所 Energy system optimization equipment
WO2020066197A1 (en) * 2018-09-27 2020-04-02 株式会社テイエルブイ Operating cost assessment method and operating cost assessment program
KR20220046959A (en) * 2020-10-08 2022-04-15 주식회사 엘지에너지솔루션 Apparatus and method for managing battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040087337A (en) * 2002-03-06 2004-10-13 마츠시타 덴끼 산교 가부시키가이샤 Setting device of distributed energy supply system
JP4316523B2 (en) * 2005-03-15 2009-08-19 株式会社東芝 Power supply selection system and power supply selection method
JP5271329B2 (en) * 2010-09-28 2013-08-21 株式会社東芝 Battery management system
JP5957235B2 (en) * 2012-01-30 2016-07-27 株式会社東芝 Operation planning system

Also Published As

Publication number Publication date
JP2013025323A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
JP6059328B2 (en) Supply / demand control device, power storage device, charge / discharge control device, supply / demand control system, and supply / demand control method
JP5537304B2 (en) Information processing apparatus and program thereof
JP6038275B2 (en) Secondary battery deterioration diagnosis method and apparatus using the same
US9606561B2 (en) Operation planning system
US20140350743A1 (en) Tiered power management system for microgrids
JP6590029B1 (en) Action generation device, storage element evaluation device, computer program, learning method, and evaluation method
US20180262003A1 (en) Power control device, operation plan planning method, and recording medium
KR20110033278A (en) System for control of wind power electricity generation accumulator and method of control thereof
JP5766532B2 (en) Environmental impact calculation device and environmental impact calculation method
JP6385984B2 (en) Energy management apparatus, energy management method, and energy management program
US11193984B2 (en) Method and device for the service life-optimized usage of an electrochemical energy store
US11676083B2 (en) Arrangement planning device
JP6262954B2 (en) Storage battery introduction effect evaluation device, storage battery introduction effect evaluation method, and program
WO2021186512A1 (en) Information processing device, information processing method, computer program and information processing system
CN106327028A (en) Terminal energy consumption prediction method and device
JP2015135571A (en) Operation planning apparatus, control device, operation planning method, and program
JPWO2017051615A1 (en) Power control system, method and control apparatus
US8612362B2 (en) Appliance cooperation operation device
JP2015156195A (en) Storage battery control device and method thereof
Guinot et al. Economic impact of performances degradation on the competitiveness of energy storage technologies–Part 2: Application on an example of PV production guarantee
JP2016126891A (en) Power storage battery estimation device, power storage battery estimation method and program
JP2016051458A (en) Selection method of power transformer
AU2021326569B2 (en) Demand and supply planning method and demand and supply planning apparatus
JP2024006418A (en) Information processing device, information processing method, computer program, and information processing system
Li et al. A data-driven approach for design and optimization of energy storage systems

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150617

R151 Written notification of patent or utility model registration

Ref document number: 5766532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151