WO2020066153A1 - 情報処理装置、情報処理システム、情報処理方法および非一時的なコンピュータ可読媒体 - Google Patents

情報処理装置、情報処理システム、情報処理方法および非一時的なコンピュータ可読媒体 Download PDF

Info

Publication number
WO2020066153A1
WO2020066153A1 PCT/JP2019/023642 JP2019023642W WO2020066153A1 WO 2020066153 A1 WO2020066153 A1 WO 2020066153A1 JP 2019023642 W JP2019023642 W JP 2019023642W WO 2020066153 A1 WO2020066153 A1 WO 2020066153A1
Authority
WO
WIPO (PCT)
Prior art keywords
information processing
positioning
accuracy index
positioning signal
parameter
Prior art date
Application number
PCT/JP2019/023642
Other languages
English (en)
French (fr)
Inventor
龍 宮本
真保 柏木
優花 神田
Original Assignee
Necソリューションイノベータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necソリューションイノベータ株式会社 filed Critical Necソリューションイノベータ株式会社
Priority to US17/277,868 priority Critical patent/US11762100B2/en
Priority to CN201980059497.5A priority patent/CN112673282A/zh
Priority to JP2020547972A priority patent/JPWO2020066153A1/ja
Publication of WO2020066153A1 publication Critical patent/WO2020066153A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/08Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing integrity information, e.g. health of satellites or quality of ephemeris data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/396Determining accuracy or reliability of position or pseudorange measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/01Determining conditions which influence positioning, e.g. radio environment, state of motion or energy consumption

Definitions

  • the present invention relates to an information processing device, an information processing system, an information processing method, and a program.
  • GNSS Global Navigation Satellite System
  • Factors that degrade position accuracy include, for example, satellite orbit errors, clock errors, ionospheric fluctuations, tropospheric fluctuations, cloud and mountain forests, signal interruptions caused by buildings blocking radio waves, radio waves Multi-path reception that occurs upon reflection from a building is included. If accurate position information cannot be obtained, the reliability of the positioning result will be reduced.
  • Patent Literature 1 calculates the degree of reliability of the result of satellite positioning based on HDOP (Horizontal Dilution of Precision) information and SN (Signal to Noise) ratio information. Therefore, the calculation is based on the environment for positioning, and it is not possible to make a determination based on the actual movement of the target. That is, the technique described in Patent Document 1 cannot determine the reliability of the result of satellite positioning.
  • HDOP Horizontal Dilution of Precision
  • SN Synignal to Noise
  • An object of the present disclosure is to provide an information processing apparatus, an information processing method, and a program that solve the problem that the reliability of satellite positioning results cannot be determined in view of the above-described problems.
  • the information processing apparatus includes a positioning signal obtaining unit that obtains a positioning signal transmitted from a positioning satellite, and a parameter obtaining unit that calculates a preset parameter based on the positioning signal. Further, the information processing apparatus includes an accuracy index calculation unit that calculates a positioning accuracy index from the parameter, and an output unit that outputs the positioning accuracy index.
  • An information processing method includes: a positioning signal obtaining step of obtaining a positioning signal transmitted from a positioning satellite; a parameter obtaining step of calculating a parameter set in advance based on the positioning signal; An accuracy index calculating step of calculating an accuracy index and an output step of outputting the positioning accuracy index are provided.
  • a program includes a positioning signal obtaining step of obtaining a positioning signal transmitted from a positioning satellite, a parameter obtaining step of calculating a preset parameter based on the positioning signal, and a positioning accuracy index from the parameter. And an output step of outputting the positioning accuracy index, which causes the computer to execute the information processing method.
  • an information processing device or the like that determines the reliability of a positioning result using a positioning signal received from a GNSS satellite.
  • FIG. 1 is a schematic configuration diagram of an information processing device according to a first embodiment
  • 13 is a flowchart illustrating an example of a process of generating an influence coefficient accumulated by the information processing device.
  • FIG. 7 is a schematic configuration diagram of an information processing system according to a second embodiment. 13 is a flowchart of a process performed by the information processing apparatus according to the second embodiment.
  • FIG. 9 is a schematic configuration diagram of an information processing system according to a third embodiment.
  • FIG. 13 is a diagram for explaining an operation of the information processing system according to the third exemplary embodiment;
  • FIG. 1 is a schematic configuration diagram of the information processing apparatus according to the first embodiment.
  • the information processing apparatus 100 is incorporated in, for example, a car navigation system.
  • the information processing device 100 acquires a positioning signal transmitted from the GNSS satellite, determines the reliability of the positioning result calculated from the obtained positioning signal, and provides the determination result to the car navigation system.
  • the determination result output by the information processing device 100 is called an accuracy index (or a positioning accuracy index).
  • the information processing apparatus 100 has a positioning signal acquisition unit 101, a parameter acquisition unit 102, an accuracy index calculation unit 103, and an output unit 104 as main components. The details of each configuration will be described below along the flow of signals.
  • the positioning signal acquisition unit 101 acquires a positioning signal supplied from the outside.
  • the positioning signal acquisition unit 101 is, for example, an interface for receiving a positioning signal in accordance with a preset communication protocol. Further, the positioning signal acquisition unit 101 may be a bus interface that appropriately receives a positioning signal in response to an external request.
  • the positioning signal is included in the radio wave transmitted by the GNSS satellite.
  • the car navigation system When receiving a radio wave transmitted from the GNSS satellite, the car navigation system amplifies and demodulates the received radio wave.
  • the positioning signal obtaining unit 101 receives the positioning signal demodulated from the car navigation system and supplies the received positioning signal to the parameter obtaining unit 102.
  • the parameter obtaining unit 102 receives the positioning signal from the positioning signal obtaining unit 101, and obtains a preset parameter from the received positioning signal.
  • the parameters acquired by the parameter acquisition unit 102 include information included in signals from each satellite included in the positioning signal or a value (estimated value) estimated (calculated) from information included in the positioning signal.
  • a GNSS receiver such as a car navigation system calculates a value called a pseudorange in order to measure its own position.
  • the pseudorange is calculated by multiplying the propagation time of the positioning signal between the satellite and the receiver measured by a positioning code called PRN (Pseudo-Random Noise) included in the positioning signal by the speed of light.
  • PRN Position-Random Noise
  • c is the velocity of light in vacuum
  • t r is the positioning signal reception time of the receiver
  • t S positioning signal transmission time of the satellite
  • epsilon Pi is the observation error
  • the I i ionospheric delay, T is meant the troposphere delay.
  • the approximate position can be determined by performing positioning using the pseudo distance calculated by the GNSS receiver. However, by estimating more detailed parameters as in equation (1), positioning can be performed with higher accuracy. it can.
  • the GNSS receiver calculates a value called a carrier phase in addition to the calculation of the pseudorange described above.
  • the carrier phase is a value obtained by continuously measuring the carrier phase angle of the positioning signal demodulated by the receiver.
  • the GNSS receiver can perform positioning with higher positional accuracy by using the calculated carrier phase.
  • the observation model can be represented by the following equations (2) and (3).
  • Li is a carrier phase as a distance
  • ⁇ i is a carrier wavelength
  • ⁇ i is a carrier phase as a dimensionless quantity
  • Ni is a carrier phase bias
  • ⁇ Li is an observation error
  • ⁇ 0r i is a receiver initial phase
  • I is the satellite initial phase
  • ni is the integer indefiniteness.
  • the parameter acquisition unit 102 estimates the parameters of each error factor represented by the equations (1) to (3) in addition to the above-described parameters acquired from the positioning signal, and supplies the parameters to the accuracy index calculation unit 103.
  • the accuracy index calculation unit 103 calculates an accuracy index by performing a preset accuracy index calculation on the parameter received from the parameter acquisition unit 102.
  • the accuracy index is associated with the positioning signal received by the GNSS receiver, and determines whether or not positioning can be performed according to the positioning accuracy expected by the user when positioning the own position using the received positioning signal. Is a value that indicates That is, the user can determine the reliability of the positioning signal by referring to the positioning signal and the accuracy index.
  • the accuracy index calculation unit 103 calculates an accuracy index from parameters by a preset method, and supplies the calculated accuracy index to the output unit 104.
  • the accuracy index calculator 103 has an accuracy index calculator for performing an accuracy index calculation. Further, the accuracy index calculating unit 103 stores in advance a value called an influence coefficient. The accuracy index calculator calculates an accuracy index by multiplying the received parameter by the influence coefficient.
  • the accuracy index calculator may be software, hardware, or a combination thereof.
  • the output unit 104 outputs the accuracy index received from the accuracy index calculation unit 103 to the outside of the information processing device 100.
  • the output unit 104 is, for example, an interface for outputting the accuracy index to the outside according to a preset communication protocol.
  • the output unit 104 may be a bus interface that appropriately outputs a buffered signal in response to a request from an output destination.
  • the output unit 104 When outputting the above-mentioned accuracy index, the output unit 104 also outputs information on the positioning signal corresponding to the output accuracy index.
  • the information on the positioning signal corresponding to the output accuracy index is, for example, identification information unique to the satellite and the reception time of the positioning signal.
  • FIG. 2 is a flowchart illustrating an example of a process of generating an influence coefficient accumulated by the information processing apparatus.
  • the influence coefficient is generated in advance by the manufacturer of the information processing apparatus 100 according to the present embodiment.
  • a process in which the computer used by the manufacturer or the like generates the influence coefficient will be described.
  • step S1 the computer is placed at a predetermined position (step S1).
  • the exact position is known in advance in order to verify the accuracy of the positioning signal.
  • the computer acquires reference position information at a predetermined position (step S2).
  • the reference position information is information for collating with a positioning signal at a position where the computer is installed. That is, the information corresponds to information such as parameters generated from the positioning signal, and is known information that is accurate information.
  • the computer acquires a positioning signal at the installed position (step S3). That is, the computer is connected to, for example, a GNSS receiver, and receives a positioning signal from the connected GNSS receiver.
  • the computer compares the reference position information with the positioning signal received from the GNSS receiver (step S4).
  • the computer compares a predetermined parameter included in the reference position information with a parameter included in the positioning signal.
  • the computer updates the influence coefficient from the comparison result (step S5).
  • the update of the influence coefficient is performed using, for example, a multiple regression equation shown in the following equation (4).
  • yac is an accuracy index, and is an index indicating a difference between the position according to the reference position information and the position measured from the positioning signal.
  • the accuracy index is, for example, a distance between a position related to the reference position information and a position included in the positioning signal or a numerical value obtained by multiplying a distance by a predetermined coefficient.
  • a 0 to a 4 are partial regression coefficients for each parameter, and P 1 to P 4 are parameters (clock error, tropospheric delay, ionospheric delay, carrier phase bias, etc.) obtained from the positioning signal.
  • the partial regression coefficient is calculated by comparing the reference position information and the positioning signal performed a plurality of times.
  • the partial regression coefficient calculated in this way is updated as the influence coefficient.
  • the parameters are set to P 1 to P 4.
  • the number of parameters may be set to any number.
  • Step S6 determines whether or not to terminate the processing for generating the influence coefficient. If it is not determined that the process of generating the influence coefficient is to be ended (Step S6: No), the computer is installed in a place different from the past position or in the same place (Step S1), and again compares the reference position information with the positioning signal. And update the influence coefficient. On the other hand, if it is determined that the processing for generating the influence coefficient is to be ended (step S6: Yes), the computer determines the influence coefficient based on the result updated by the processing performed so far (step S7). The manufacturer or the like causes the information processing device 100 to store the influence coefficient determined in this way.
  • the influence coefficient is generated.
  • the manufacturer or the like extracts the generated influence coefficient, and stores the extracted influence coefficient in the information processing apparatus 100 in advance.
  • the information processing apparatus 100 may calculate the accuracy index by acquiring one parameter from the positioning signal and performing a simple regression analysis on the parameter. Further, the calculation for calculating the accuracy index performed in the information processing apparatus 100 may use an artificial neural network such as a probabilistic neural network, a convolutional neural network, or a recursive neural network instead of the multiple regression analysis described above. .
  • the calculation for calculating the accuracy index performed in the information processing apparatus 100 is not limited to the above-described method, and may be another probability calculation. Further, in the method of determining the influence coefficient described with reference to FIG. 2, instead of the multiple regression analysis, a calculation using an artificial neural network or a calculation by machine learning may be performed.
  • the information processing apparatus 100 is mounted on a mobile object having a function of positioning its own position using a GNSS signal, such as an automobile, a ship, an aircraft, a drone, or a motorcycle.
  • a mobile object a personal computer, a smartphone, a wristwatch, a helmet, or the like having a function of measuring its own position using a GNSS signal may be used.
  • the information processing apparatus 100 outputs an accuracy index relating to the acquired positioning signal. Therefore, according to the present embodiment, it is possible to provide an information processing device or the like that determines the reliability of a positioning result using a positioning signal received from a GNSS satellite.
  • FIG. 3 is a schematic configuration diagram of the information processing system according to the second embodiment.
  • the information processing system 20 shown in the figure includes a receiving device 200, an information processing device 100, and a vehicle position positioning device 210 as main components.
  • the receiving device 200 receives a radio wave transmitted from the GNSS satellite and generates a positioning signal from the received radio wave. Further, the receiving device 200 supplies the positioning signal to the information processing device 100 and the vehicle position positioning device 210.
  • the receiving device has an antenna for receiving a radio wave from a GNSS satellite and a circuit for amplifying and demodulating the radio wave received by the antenna. As shown in the drawing, when there are satellites 1 to 3 transmitting radio waves that can be received by the receiving device 200, the receiving device 200 receives radio waves from the respective satellites and generates respective positioning signals. These are supplied to the information processing device 100 and the vehicle position positioning device 210.
  • the vehicle position positioning device 210 receives the positioning signal from the receiving device 200, and determines the position of the vehicle from the received positioning signal. More specifically, the position of the own vehicle can be calculated from the positioning signal applied to each GNSS satellite and the distance and time information between each GNSS satellite and the own vehicle.
  • the vehicle position positioning device 210 receives information on the accuracy index and the positioning signal corresponding to the accuracy index from the information processing device 100. Then, the vehicle position positioning device 210 refers to the received accuracy index and the like, and determines how to handle the positioning signal received from the receiving device 200.
  • the vehicle position positioning device 210 may include a gyro sensor or the like as means for estimating the vehicle position in addition to the positioning signal received from the receiving device 200.
  • the vehicle position positioning device 210 can estimate the vehicle position when a positioning signal cannot be obtained.
  • the own-vehicle position positioning device 210 can estimate the own-vehicle position even when a positioning signal can be obtained. In such a case, the vehicle position positioning device 210 can select which of the positioning based on the positioning signal from the GNSS satellite and the positioning estimated by the gyro sensor or the like to determine the vehicle position. it can.
  • FIG. 4 is a flowchart of a process performed by the information processing apparatus according to the second embodiment.
  • the receiving device 200 receives a radio wave from the GNSS satellite and acquires a positioning signal from the received radio wave (Step S21).
  • the receiving device 200 supplies the obtained positioning signal to the information processing device 100 and the vehicle position positioning device 210.
  • the information processing apparatus 100 acquires a parameter from the positioning signal received from the receiving apparatus 200 by the parameter acquisition unit 102 included in the information processing apparatus 100 (step S22).
  • the parameter acquisition unit 102 supplies the acquired parameters to the accuracy index calculation unit 103.
  • the information processing system 20 determines whether the positioning signal has deteriorated (Step S23). Specifically, in step S23, the accuracy index calculation unit 103 calculates an accuracy index using the parameters received by the parameter acquisition unit 102. Then, as described with reference to FIG. 1, the output unit 104 outputs the accuracy index. The accuracy index output from the output unit 104 is supplied to the vehicle position positioning device 210. The vehicle position positioning device 210 determines from the value of the accuracy index received from the information processing device 100 whether or not the positioning signal related to the received accuracy index has deteriorated. Here, the fact that the positioning signal is degraded is specifically determined based on the value of the accuracy index.
  • the vehicle position positioning device 210 sets a threshold value Y TH for the value of the accuracy index, and does not determine that the positioning signal has deteriorated when the accuracy index y ac is smaller than the threshold value Y TH , If precision index y ac is not smaller than the threshold value Y TH determines that the positioning signal has deteriorated.
  • step S23 When the accuracy index yac is smaller than the threshold Y TH (step S23: Yes), the information processing system 20 outputs the own vehicle position calculated from the positioning signal as own vehicle position information (step S24). Then, after outputting the vehicle position information, the information processing system 20 ends the processing.
  • step S23 when the accuracy index yac is not smaller than the threshold Y TH (step S23: No), the information processing system 20 does not output the own vehicle position calculated from the positioning signal as own vehicle position information, and proceeds to step S25.
  • the vehicle position positioning device 210 determines whether or not there is alternative information (step S25). In the case where there is a means for estimating the own vehicle position such as the gyro sensor described above, the own vehicle position positioning device 210 determines that there is alternative information (Step S25: Yes). In this case, the vehicle position positioning device 210 outputs the substitute information (Step S26), and thereafter ends the processing. On the other hand, when there is no means for estimating the own vehicle position, the own vehicle position positioning device 210 does not determine that there is alternative information (step S25: No), and proceeds to step S27.
  • the vehicle position positioning device 210 determines whether or not to output the position information calculated from the positioning signal (Step S27). If it is not determined that the position information calculated from the deteriorated positioning signal is to be output (Step S27: No), the information processing system 20 does not output the position information (Step S28) and ends the processing. On the other hand, when determining to output the position information calculated from the deteriorated positioning signal (Step S27: Yes), the information processing system 20 outputs the position information (Step S29). Then, after outputting the position information, the information processing system 20 ends the processing.
  • the information processing system 20 according to the second embodiment has been described above. According to the second embodiment, the reliability of the positioning result using the positioning signal received from the GNSS satellite is determined, and in accordance with the determined result, whether to output the position information calculated from the obtained positioning signal is determined. Can be determined. Also, when there is alternative information, the alternative information can be output when the accuracy of the positioning signal is not high. With such a configuration, the information processing system 20 according to the second embodiment can output more reliable vehicle position information.
  • FIG. 5 is a schematic configuration diagram of the information processing system according to the third embodiment.
  • the information processing system 30 shown in the figure has an information processing device 110 instead of the information processing device 100 according to the second embodiment.
  • the information processing apparatus 110 has an influence coefficient acquisition unit 105 in addition to the configuration of the information processing apparatus 100 described above. Further, the information processing device 110 is connected to the server 300.
  • the influence coefficient acquisition unit 105 acquires the influence coefficient transmitted from the server 300.
  • the influence coefficient acquisition unit 105 supplies the acquired influence coefficient to the accuracy index calculation unit 103.
  • the accuracy index calculation unit 103 calculates an accuracy index from the parameters received from the parameter acquisition unit 102 and the influence coefficients received from the influence coefficient acquisition unit 105.
  • the influence coefficient acquisition unit 105 has a function of requesting the server 300 for an influence coefficient.
  • the server 300 is communicably connected to the information processing system 30.
  • the server 300 is, for example, a computer connected to the information processing system 30 so as to be able to perform wireless communication.
  • the server 300 has an influence coefficient storage area 301.
  • the influence coefficient storage area 301 is a nonvolatile storage device, and includes, for example, a flash memory, a hard disk drive (HDD), and a solid state drive (SSD).
  • the influence coefficient determined by the method described with reference to FIG. 2 is stored in the influence coefficient storage area 301.
  • the server 300 appropriately transmits the influence coefficient in response to a request from the information processing system 30. With such a configuration, the information processing system 30 can calculate the accuracy index using the influence coefficient transmitted from the server 300.
  • the server 300 can store a plurality of types of influence coefficients in the influence coefficient storage area 301. That is, the server 300 can store a plurality of types of influence coefficients and transmit an influence coefficient selected from the plurality of types of influence coefficients to the information processing system 30. With such a configuration, for example, the information processing system 30 can accumulate a plurality of influence coefficients as in the example described below, and use these in accordance with the request of the information processing apparatus 110.
  • the influence coefficient degree is determined by accumulating a plurality of parameters and accuracy indexes included in the positioning signal, and the accuracy index measured when generating the influence coefficient is: It tends to fluctuate under the influence of changes in the ionosphere and troposphere. Changes in the ionosphere and troposphere tend to fluctuate depending on time, season, weather, and the like. For example, the ionosphere and the troposphere tend to have different electron densities between daytime when the sun hits and after sunset without the sun. Therefore, the plurality of types of influence coefficients are distinguished by, for example, the position, time, season, weather, and the like when the influence coefficient is determined.
  • the positioning signal for determining the influence coefficient is affected by the position from which the positioning signal is obtained. For example, in an urban area where high-rise buildings are lined up, blocking of a positioning signal, multipath and the like are likely to occur. Therefore, a plurality of types of influence coefficients are also distinguished by the position.
  • the server 300 can store the influence coefficient determined in consideration of a plurality of conditions, and transmit the one selected from the plurality of influence coefficients to the information processing system 30.
  • FIG. 6 is a diagram for explaining an operation of the information processing system according to the third embodiment.
  • the vehicle 90 shown in the figure has an information processing system 30.
  • the information processing system 30 is communicably connected to a server 300 installed at an arbitrary location by wireless.
  • the car 90 is located in the area A1 and is moving in the direction of the arrow (right side in the figure) while measuring the position of the own car. After the state shown in the figure, the car 90 is expected to move from the area A1 to the area A2, and further move to the area A3.
  • An example of the operation of the information processing system 30 in such a situation will be described below.
  • the information processing system 30 included in the automobile 90 located in the area A1 performs the positioning of the own vehicle position while receiving the positioning signals transmitted from the plurality of GNSS satellites 80.
  • the information processing system 30 receives the influence coefficient from the server 300, and calculates the accuracy index using the received influence coefficient.
  • the information processing system 30 notifies the server 300 that the own vehicle position is located in the area A1, and requests the server 300 for an influence coefficient.
  • the server 300 transmits the influence coefficient Ca1 corresponding to the area A1 to the information processing system 30 located in the area A1.
  • the information processing system 30 acquires the influence coefficient Ca1 from the server 300, and calculates a precision index using the acquired influence coefficient Ca1.
  • the information processing system 30 detects that the own vehicle position is located within the area A2 based on the positioning signal. In this case, the information processing system 30 notifies the server 300 that the own vehicle position is located in the area A2, and requests the server 300 for an influence coefficient. The server 300 transmits the influence coefficient Ca2 corresponding to the area A2 to the information processing system 30 located in the area A2.
  • the server 300 transmits the influence coefficient Ca3 corresponding to the area A3 to the information processing system 30 located in the area A3.
  • the information processing system 30 acquires the influence coefficient corresponding to each area from the server 300, and calculates the accuracy index corresponding to each area using the acquired influence coefficient.
  • the information processing system 30 receives the influence coefficients corresponding to the respective regions as described above, and calculates a precision index using the received influence coefficients.
  • the information processing system 30 is not limited to the above-described configuration.
  • the influence coefficient acquisition unit 105 may not have a function of requesting the server 300 for the influence coefficient, and may be configured to receive a signal including the influence coefficient broadcast by the server 300.
  • the server 300 transmits a signal in which the area information and the influence coefficient corresponding to the area information are linked.
  • the information processing system 30 measures its own position, and extracts from the received signal a signal including an influence coefficient corresponding to the measured own position.
  • the server 300 is not limited to the example of FIG. 6, and may change the influence coefficient to be transmitted according to, for example, time, season, weather, or the like.
  • the information processing system 30 according to the third embodiment can provide an information processing device or the like that determines the reliability of the positioning result according to the situation where the vehicle to be positioned is located.
  • the information processing system 30 according to the third embodiment can output highly reliable own-vehicle position information.
  • the present invention has been described as a hardware configuration, but the present invention is not limited to this.
  • the present invention can also realize any processing (for example, the processing of the flowchart in FIG. 2 or FIG. 4) by causing a CPU (Central Processing Unit) to execute a computer program.
  • a CPU Central Processing Unit
  • the above-described program can be stored using various types of non-transitory computer-readable media (non-transitory computer readable medium) and supplied to a computer.
  • Non-transitory computer readable media include various types of tangible storage media.
  • non-transitory computer readable media are magnetic recording media (eg, flexible disk, magnetic tape, hard disk drive), magneto-optical recording media (eg, magneto-optical disk), CD-ROM (Read Only Memory) CD-R, CD R / W, semiconductor memory (eg, mask ROM, PROM (Programmable @ ROM), EPROM (Erasable @ PROM), flash ROM, RAM (Random @ Access @ Memory)).
  • the program may be supplied to the computer by various types of transitory computer readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves. Transitory computer readable media can provide the program to a computer via a wired communication line such as an electric wire and an optical fiber, or a wireless communication line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

情報処理装置(100)は、測位衛星から送信された測位信号を取得する測位信号取得部(101)と、測位信号に基づいて予め設定されたパラメータを算出するパラメータ取得部(102)とを有する。また、情報処理装置(100)は、パラメータから測位精度指標を算出する精度指標算出部(103)と、上記測位精度指標を出力する出力部(104)とを有する。

Description

情報処理装置、情報処理システム、情報処理方法および非一時的なコンピュータ可読媒体
 本発明は情報処理装置、情報処理システム、情報処理方法およびプログラムに関する。
 自動車等の移動体において、GNSS(Global Navigation Satellite System)を利用したナビゲーションシステムが広く利用されている。ナビゲーションシステムではあらゆる環境において精度よく測位を行うことが重要である。一方、GNSS衛星により移動体の位置を測位する手法を用いた場合、様々な要因により位置精度が劣化する場合がある。
 位置精度を劣化させる要因として、例えば、衛星の軌道誤差や、時計誤差、電離層の変動、対流圏の変動、雲や山林、建物等が電波を遮って起こる信号遮断、電波が山林や高層ビル等の建物で反射して起こるマルチパス受信等が挙げられる。正確な位置情報を取得できない場合、その測位結果の信頼性が低下してしまう。
 そこで、GNSS機能を用いた測位結果の信頼性の度合いと、自律航法測位を用いた測位結果の信頼性の度合いとに基づいて、信頼性の度合いが高い方の測位結果を選択する技術が考えられている(例えば、特許文献1参照)。
特開2009-229295号公報
 特許文献1に記載の技術は、衛星測位の結果の信頼性の度合いを、HDOP(Horizontal Dilution of Precision)情報やSN(Signal to Noise ratio)情報に基づいて算出するものである。そのため、その算出は、測位する環境に基づいたものとなり、実際の対象物の動きに基づいた判定ができない。つまり、特許文献1に記載された技術は、衛星測位の結果の信頼性を判定することができない。
 本開示の目的は、上述した課題に鑑み、衛星測位の結果の信頼性を判定することができないという問題を解決する情報処理装置、情報処理方法およびプログラムを提供することにある。
 一実施形態にかかる情報処理装置は、測位衛星から送信された測位信号を取得する測位信号取得部と、測位信号に基づいて予め設定されたパラメータを算出するパラメータ取得部とを有する。また、情報処理装置は、パラメータから測位精度指標を算出する精度指標算出部と、上記測位精度指標を出力する出力部とを有する。
 一実施形態にかかる情報処理方法は、測位衛星から送信された測位信号を取得する測位信号取得ステップと、上記測位信号に基づいて予め設定されたパラメータを算出するパラメータ取得ステップと、上記パラメータから測位精度指標を算出する精度指標算出ステップと、上記測位精度指標を出力する出力ステップと
を備える。
 一実施形態にかかるプログラムは、測位衛星から送信された測位信号を取得する測位信号取得ステップと、上記測位信号に基づいて予め設定されたパラメータを算出するパラメータ取得ステップと、上記パラメータから測位精度指標を算出する精度指標算出ステップと、上記測位精度指標を出力する出力ステップとを備える情報処理方法をコンピュータに実行させる。
 本開示によれば、GNSS衛星から受信した測位信号を利用した測位結果の信頼性を判定する情報処理装置等を提供することができる。
実施の形態1にかかる情報処理装置の概略構成図である。 情報処理装置が蓄積する影響係数を生成する工程の一例を示すフローチャートである。 実施の形態2にかかる情報処理システムの概略構成図である。 実施の形態2にかかる情報処理装置が行う処理のフローチャートである。 実施の形態3にかかる情報処理システムの概略構成図である。 実施の形態3にかかる情報処理システムの動作を説明するための図である。
 説明の明確化のため、以下の記載および図面は、適宜、省略、および簡略化がなされている。なお、各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。
 <実施の形態1>
 以下、図面を参照して本発明の実施の形態について説明する。図1は、実施の形態1にかかる情報処理装置の概略構成図である。本実施の形態において、情報処理装置100は、例えばカーナビゲーションシステムに組み込まれる。情報処理装置100は、GNSS衛星から送信される測位信号を取得して、取得した測位信号から算出される測位結果の信頼性を判定し、判定結果をカーナビゲーションシステムに提供する。情報処理装置100が出力する判定結果は、精度指標(または測位精度指標)と称される。情報処理装置100は、主な構成として測位信号取得部101、パラメータ取得部102、精度指標算出部103および出力部104を有している。以下に、各構成の詳細を信号の流れに沿って説明する。
 測位信号取得部101は、外部から供給される測位信号を取得する。測位信号取得部101は、例えば、予め設定された通信プロトコルに則って測位信号を受け取るためのインタフェースである。また、測位信号取得部101は、外部からの要求に応じて測位信号を適宜受け付けるバスインタフェースであってもよい。
 測位信号は、GNSS衛星が送信する電波に含まれる。カーナビゲーションシステムはGNSS衛星から送信される電波を受信すると、受信した電波を増幅、復調する。測位信号取得部101は、カーナビゲーションシステムから復調された測位信号を受け取り、受け取った測位信号をパラメータ取得部102に供給する。
 パラメータ取得部102は、測位信号取得部101から測位信号を受け取り、受け取った測位信号から予め設定されたパラメータを取得する。パラメータ取得部102が取得するパラメータには、測位信号に含まれる各衛星からの信号に含まれる情報、または、測位信号に含まれる情報から推定(算出)した値(推定値)が含まれる。
 以下に、測位信号に含まれる情報から推定値を算出する例について説明する。カーナビゲーションシステム等のGNSS受信機は、自己の位置を測位するために擬似距離と呼ばれる値を算出する。疑似距離は、測位信号に含まれるPRN(Pseudo-Random Noise)と呼ばれる測位コードにより測定された衛星と受信機の間の測位信号伝搬時間に光速を掛けて算出される。疑似距離をPiとするとその観測モデルは以下の式(1)のように表すことができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、cは真空中の光速、tは受信機の測位信号受信時刻、tは衛星の測位信号送信時刻、εPiは観測誤差、ρは衛星と観測点間の幾何学距離、dtは受信機の時計誤差、dTは衛星の時計誤差、Iは電離層遅延、Tは対流圏遅延を意味する。GNSS受信機が算出した疑似距離を用いて測位をすることでおおまかな位置を測位することができるが、式(1)のようにより詳細なパラメータを推定することでより高精度に測位することができる。
 GNSS受信機は、上述した擬似距離の算出に加えて搬送波位相と呼ばれる値を算出する。搬送波位相とは、受信機で復調した測位信号の搬送波位相角を連続的に測定したものである。GNSS受信機は、算出した搬送波位相を利用することにより、より位置精度の高い測位を行うことができる。搬送波位相をLiとするとその観測モデルは以下の式(2)および式(3)のように表すことができる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 ここで、Liは距離としての搬送波位相、λiは搬送波波長、Φiは無次元量としての搬送波位相、Niは搬送波位相バイアス、εLiは観測誤差、Φ0r,iは受信機初期位相、Φ 0,iは衛星初期位相、nは整数不定性である。
 上述した擬似距離および搬送波位相の観測モデルと衛星の測位信号を元にして様々なパラメータを推定することで、より高精度な位置を求める。測位信号に含まれるパラメータは、例えば、衛星の測位信号送信時計、信号強度、航法メッセージ等である。パラメータ取得部102は、測位信号から取得した前述のパラメータに加えて、式(1)~(3)で表した各誤差要因のパラメータを推定し、精度指標算出部103に供給する。
 精度指標算出部103は、パラメータ取得部102から受け取ったパラメータに対して、予め設定された精度指標演算を行うことにより精度指標を算出する。精度指標は、GNSS受信機が受信した測位信号に関連付けられるものであって、受信した測位信号を利用して自己の位置を測位した場合にユーザが期待している測位精度により測位できるか否かを示す値である。すなわち、ユーザは、測位信号と精度指標とを参照することにより、測位信号の信頼性を判断することができる。精度指標算出部103は、予め設定された方法によりパラメータから精度指標を算出し、算出した精度指標を出力部104に供給する。
 ここで、上述の、精度指標演算の一例を説明する。精度指標算出部103は精度指標演算を行うための精度指標演算器を有している。また、精度指標算出部103は、影響係数と称する値を予め蓄積している。精度指標演算器は、受け取ったパラメータに対して影響係数を掛け合せることにより、精度指標を算出する。なお、精度指標演算器はソフトウェアであってもよいし、ハードウェアであってもよいし、これらの組み合わせで合ってもよい。
 出力部104は、精度指標算出部103から受け取った精度指標を情報処理装置100の外部へ出力する。出力部104は、例えば、予め設定された通信プロトコルに則って精度指標を外部へ出力するためのインタフェースである。出力部104は出力先からの要求に応じてバッファリングしている信号を適宜出力するバスインタフェースであってもよい。
 また、出力部104は、上記の精度指標を出力する場合に、出力する精度指標に対応する測位信号に関する情報も併せて出力する。出力する精度指標に対応する測位信号に関する情報とは、例えば、衛星固有の識別情報および測位信号の受信時刻である。
 次に、図2を参照しながら、精度指標算出部103が蓄積する影響係数について説明する。図2は、情報処理装置が蓄積する影響係数を生成する工程の一例を示すフローチャートである。影響係数は本実施の形態にかかる情報処理装置100の製造者等により予め生成される。ここでは、上記の製造者等が利用するコンピュータが影響係数を生成する処理について説明する。
 まずコンピュータは、所定の位置に配置される(ステップS1)。ここで、所定の位置は、後述するように、測位信号の正確さを照合するために、予め正確な位置が把握されているものとする。
 次に、コンピュータは、所定の位置において参照位置情報を取得する(ステップS2)。参照位置情報とは、コンピュータが設置された位置における測位信号と照合するための情報である。すなわち、測位信号から生成されるパラメータ等の情報に対応した情報であって、正確な情報である既知の情報である。
 次に、コンピュータは、設置された位置における測位信号を取得する(ステップS3)。すなわちコンピュータは、例えばGNSS受信機に接続されており、接続されているGNSS受信機から測位信号を受け取る。
 次に、コンピュータは、参照位置情報とGNSS受信機から受け取った測位信号とを比較する(ステップS4)。ここでは、例えばコンピュータは、参照位置情報に含まれる所定のパラメータと測位信号に含まれるパラメータとを比較する。
 次に、コンピュータは、比較結果から、影響係数を更新する(ステップS5)。影響係数の更新は、例えば以下の式(4)に示す重回帰式を用いて行われる。
Figure JPOXMLDOC01-appb-M000004
 ここで、yacは精度指標であって、参照位置情報にかかる位置と、測位信号から測位される位置との差を示す指標である。精度指標は、例えば参照位置情報にかかる位置と、測位信号に含まれる位置との距離ないし距離に所定の係数を掛けた数値である。また、a~aは各パラメータに対する偏回帰係数、P~Pは測位信号から取得するパラメータ(時計誤差、対流圏遅延、電離層遅延または搬送波位相バイアス等)である。偏回帰係数は、複数回行った参照位置情報と測位信号との比較によって算出される。ここで示す例では、このようにして算出した偏回帰係数を影響係数として更新する。なお、式(4)ではパラメータをP~Pとしたが、当然ながらパラメータの数はいくつに設定されていてもよい。
 次に、コンピュータは、影響係数を生成する処理を終了するか否かを判定する(ステップS6)。影響係数を生成する処理を終了すると判定しない場合(ステップS6:No)、コンピュータは、過去の位置と異なる場所あるいは同じ場所に設置され(ステップS1)、再び参照位置情報と測位信号との比較を行い、影響係数の更新を行う。一方、影響係数を生成する処理を終了すると判定する場合(ステップS6:Yes)、コンピュータは、それまでに行った処理により更新された結果をもって影響係数を決定する(ステップS7)。製造者等は、このようにして決定した影響係数を情報処理装置100に蓄積させる。
 以上のような処理によって、影響係数が生成される。製造者等は、生成した影響係数を抽出し、抽出した影響係数を、情報処理装置100に予め記憶させる。
 以上、実施の形態1について説明したが、本実施の形態の構成はこれに限られない。例えば、情報処理装置100は、測位信号から1つのパラメータを取得してこれを単回帰分析することにより精度指標を算出してもよい。また、情報処理装置100において行われる精度指標を算出する演算は、上述の重回帰分析に代えて、確率的ニューラルネットワーク、畳み込みニューラルネットワークまたは再帰的ニューラルネットワーク等の人工ニューラルネットワークを用いたものでもよい。また、情報処理装置100において行われる精度指標を算出する演算は上述の方法に限られず、他の確率計算であってもよい。また、図2を参照して説明した影響係数の決定方法において、重回帰分析に代えて、人工ニューラルネットワークを用いた演算または機械学習による演算を行ってもよい。
 なお、本実施の形態にかかる情報処理装置100が搭載されるのは、GNSS信号を用いて自己の位置を測位する機能を有する移動体であれば、自動車、船舶、航空機、ドローンまたはバイク等であってもよい。また移動体ではなく、GNSS信号を用いて自己の位置を測位する機能を有するパーソナルコンピュータ、スマートフォン、腕時計またはヘルメットなどであってもよい。
 以上の構成のより、本実施の形態にかかる情報処理装置100は、取得した測位信号に関する精度指標を出力する。したがって、本実施の形態によれば、GNSS衛星から受信した測位信号を利用した測位結果の信頼性を判定する情報処理装置等を提供することができる。
 <実施の形態2>
 次に、実施の形態2について説明する。実施の形態2は、上述の情報処理装置100に加えて、他の構成を含むシステムである点が、実施の形態1と異なる。図3は、実施の形態2にかかる情報処理システムの概略構成図である。図に示す情報処理システム20は、主な構成として、受信装置200、情報処理装置100および自車位置測位装置210を有している。
 受信装置200は、GNSS衛星から送信される電波を受信し、受信した電波から測位信号を生成する。さらに受信装置200は、測位信号を情報処理装置100および自車位置測位装置210に供給する。受信装置は、GNSS衛星からの電波を受信するためのアンテナおよびアンテナが受信した電波を増幅、復調等するための回路を有している。図に示すように、受信装置200が受信可能な電波を送信する衛星1~3が存在している場合、受信装置200は、それぞれの衛星からの電波を受信し、それぞれの測位信号を生成し、これらを情報処理装置100および自車位置測位装置210に供給する。
 自車位置測位装置210は、受信装置200から測位信号を受け取り、受け取った測位信号から自車位置を測位する。より具体的には、それぞれのGNSS衛星にかかる測位信号から各GNSS衛星と自車との距離および時刻情報等により、自車の位置を算出することができる。
 また、自車位置測位装置210は、情報処理装置100から精度指標および精度指標に対応する測位信号に関する情報を受け取る。そして、自車位置測位装置210は、受け取った精度指標等を参照し、受信装置200から受け取った測位信号をどのように扱うかを判断する。
 また自車位置測位装置210は、受信装置200から受け取る測位信号の他に、自車位置を推定するための手段として、ジャイロセンサ等を有していてもよい。ジャイロセンサ等を有することにより、自車位置測位装置210は、測位信号が取得できない場合に自車位置の推定をすることができる。また、自車位置測位装置210は、測位信号が取得できる場合であっても、自車位置の推定をすることができる。このような場合、自車位置測位装置210は、GNSS衛星からの測位信号による測位と、ジャイロセンサ等により推定される測位とのどちらを選択して自車位置を決定するかを選択することができる。
 次に、図4を参照しながら、情報処理システム20の処理の一例について説明する。図4は、実施の形態2にかかる情報処理装置が行う処理のフローチャートである。
 受信装置200は、GNSS衛星から電波を受信し、受信した電波から測位信号を取得する(ステップS21)。受信装置200は、取得した測位信号を情報処理装置100および自車位置測位装置210に供給する。
 次に、情報処理装置100は、情報処理装置100が有するパラメータ取得部102が受信装置200から受け取った測位信号からパラメータを取得する(ステップS22)。パラメータ取得部102は、取得したパラメータを精度指標算出部103に供給する。
 次に、情報処理システム20は、測位信号が劣化しているか否かを判定する(ステップS23)。具体的には、ステップS23において、パラメータ取得部102受け取ったパラメータを用いて精度指標算出部103が精度指標を算出する。そして、図1を参照しながら説明したとおり、出力部104が精度指標を出力する。出力部104から出力された精度指標は、自車位置測位装置210に供給される。自車位置測位装置210は、情報処理装置100から受け取った精度指標の値から、受け取った精度指標にかかる測位信号が劣化しているか否かを判定する。ここで、測位信号が劣化しているというのは、具体的には精度指標の値の大小に基づき決定する。例えば、自車位置測位装置210は、精度指標の値に対して閾値YTHが設定されており、精度指標yacが閾値YTHより小さい場合は測位信号が劣化していると判定せず、精度指標yacが閾値YTHより小さくない場合は測位信号が劣化していると判定する。
 精度指標yacが閾値YTHより小さい場合(ステップS23:Yes)、情報処理システム20は、測位信号から算出した自車位置を自車位置情報として出力する(ステップS24)。そして、自車位置情報を出力した後に、情報処理システム20は処理を終了させる。
 一方、精度指標yacが閾値YTHより小さくない場合(ステップS23:No)、情報処理システム20は、測位信号から算出した自車位置を自車位置情報として出力せず、ステップS25へ進む。
 次に、自車位置測位装置210は、代替情報があるか否かを判定する(ステップS25)。上述したジャイロセンサ等の自車位置を推定するための手段を有している場合、自車位置測位装置210は、代替情報があると判定する(ステップS25:Yes)。この場合、自車位置測位装置210は、代替情報を出力し(ステップS26)、その後に処理を終了させる。一方、自車位置を推定するための手段を有していない場合、自車位置測位装置210は、代替情報があると判定せず(ステップS25:No)、ステップS27へ進む。
 次に、自車位置測位装置210は、測位信号から算出した位置情報を出力するか否かを判定する(ステップS27)。劣化している測位信号から算出した位置情報を出力すると判定しない場合(ステップS27:No)、情報処理システム20は、位置情報を出力せず(ステップS28)、処理を終了させる。一方、劣化している測位信号から算出した位置情報を出力すると判定する場合(ステップS27:Yes)、情報処理システム20は、位置情報を出力する(ステップS29)。そして、情報処理システム20は、位置情報を出力した後に、処理を終了させる。
 以上、実施の形態2にかかる情報処理システム20について説明した。実施の形態2によれば、GNSS衛星から受信した測位信号を利用した測位結果の信頼性を判定し、判定した結果に応じて、取得した測位信号から算出した位置情報を出力するか否かを判定することができる。また、代替情報がある場合には、測位信号の精度が高くない場合に、代替情報を出力することができる。このような構成により、実施の形態2にかかる情報処理システム20は、より信頼性の高い自車位置情報を出力することができる。
 <実施の形態3>
 次に、実施の形態3について説明する。実施の形態3にかかる情報処理システムは、外部から影響係数を取得する構成である点において、実施の形態2と異なる。図5は、実施の形態3にかかる情報処理システムの概略構成図である。
 図に示す情報処理システム30は、実施の形態2にかかる情報処理装置100に代えて、情報処理装置110を有している。情報処理装置110は、上述の情報処理装置100の構成に加えて影響係数取得部105を有している。また、情報処理装置110は、サーバ300に接続している。
 影響係数取得部105は、サーバ300から送信される影響係数を取得する。影響係数取得部105は取得した影響係数を精度指標算出部103に供給する。これにより精度指標算出部103は、パラメータ取得部102から受け取ったパラメータと、影響係数取得部105から受け取った影響係数から精度指標を算出する。なお、影響係数取得部105は、サーバ300に対して影響係数を要求する機能を有している。
 サーバ300は、情報処理システム30と通信可能に接続されている。サーバ300は、例えば情報処理システム30と無線通信可能に接続されたコンピュータである。サーバ300は、影響係数記憶領域301を有している。影響係数記憶領域301は、不揮発性の記憶装置であり、例えば、フラッシュメモリ、HDD(Hard Disc Drive)、SSD(Solid State Drive)等により構成される。影響係数記憶領域301には、図2を参照しながら説明した方法により、決定した影響係数が記憶されている。サーバ300は、情報処理システム30からの要求に応じて適宜影響係数を送信する。このような構成により、情報処理システム30は、サーバ300から送信される影響係数を用いて、精度指標を算出することができる。
 サーバ300は、影響係数記憶領域301に複数種類の影響係数を格納することができる。すなわち、サーバ300は、複数種類の影響係数を格納し、情報処理システム30に対して複数種類の影響係数の内から選択した影響係数を送信することができる。このような構成により、情報処理システム30は例えば、以下に説明する例のように影響係数を複数蓄積して、これらを情報処理装置110の要求に応じて使い分けることができる。
 サーバ300が複数種類の影響係数を格納する理由は、例えば以下のような事情による。図2を参照して説明したように、影響係数度は測位信号に含まれるパラメータおよび精度指標を複数蓄積することにより決定されるところ、かかる影響係数を生成する際に測定される精度指標は、電離層や対流圏の変動等から影響を受けて変動する傾向がある。電離層や対流圏の変動は、時刻、季節、天候等により変動の傾向を有している。例えば、電離層や対流圏は、太陽が当たる昼間と、太陽が当たらない日没後とでは電子密度等が異なる傾向がある。そこで、複数種類の影響係数は、例えば、影響係数を決定する際の位置、時刻、季節、天候等により区別される。
 また、当然ながら、影響係数を決定する測位信号は、測位信号を取得する位置からも影響を受ける。例えば、高層ビルが立ち並ぶ市街地においては、測位信号の遮断やマルチパスなどが発生しやすい。そこで、複数種類の影響係数は、位置によっても区別される。
 以上のような事情により、サーバ300は、複数の条件を加味して決定された影響係数を格納し、複数の影響係数から選択されたものを情報処理システム30に送信することができる。
 次に、図6を参照しながら複数の影響係数を格納するサーバ300と情報処理システム30との動作の一例を説明する。図6は、実施の形態3にかかる情報処理システムの動作を説明するための図である。図に示す自動車90は、情報処理システム30を有している。そして、情報処理システム30は、任意の場所に設置されているサーバ300と無線により通信可能に接続されている。図において、自動車90は、領域A1に位置しており、自車位置を測位しながら矢印の方向(図の右側)へ移動中という状況である。また、自動車90は、図に示した状態の後、領域A1から領域A2へ移動し、さらに、領域A3へと移動する見込みである。このような状況における情報処理システム30の動作の例について以下に説明する。
 領域A1に位置する自動車90が有する情報処理システム30は、複数のGNSS衛星80から送信される測位信号を受信しながら自車位置の測位を行っている。情報処理システム30は、影響係数をサーバ300から受け取り、受け取った影響係数を用いて精度指標を算出している。このとき情報処理システム30は、自車位置が領域A1内に位置していることをサーバ300に通知するとともに、サーバ300に影響係数を要求している。サーバ300は、領域A1内に位置している情報処理システム30に対して領域A1に対応した影響係数Ca1を送信する。情報処理システム30は、サーバ300から影響係数Ca1を取得し、取得した影響係数Ca1を用いて精度指標を算出する。
 自動車90がこの後、領域A1から領域A2に移動した場合、情報処理システム30は、測位信号により自車位置が領域A2内に位置していることを検出する。この場合、情報処理システム30は、自車位置が領域A2内に位置していることをサーバ300に通知するとともに、サーバ300に影響係数を要求する。サーバ300は、領域A2内に位置している情報処理システム30に対して領域A2に対応した影響係数Ca2を送信する。
 自動車90が領域A2から領域A3に移動した場合も同様の処理が行われる。つまりサーバ300は、領域A3内に位置している情報処理システム30に対して領域A3に対応した影響係数Ca3を送信する。
 このようにして、情報処理システム30は、サーバ300から各領域に対応した影響係数を取得し、取得した影響係数を用いて、各領域に対応した精度指標を算出する。情報処理システム30は、このように各領域に対応した影響係数を受け取り、受け取った影響係数を用いて精度指標を算出する。
 以上、実施の形態3について説明したが、実施の形態3にかかる情報処理システム30は、上述の構成に限られない。例えば、影響係数取得部105は、サーバ300に対して影響係数を要求する機能を有しておらず、サーバ300が放送する影響係数を含む信号を受信する構成であってもよい。この場合、サーバ300は領域情報および領域情報に対応した影響係数を紐付した信号を送信する。そして、情報処理システム30は、自己の位置を測位し、測位した自己の位置に応じた影響係数を含む信号を受信した信号から抽出する。
 また、サーバ300は、図6の例に限らず、例えば時刻、季節あるいは天候等に応じて送信する影響係数を変更してもよい。
 以上の構成により、実施の形態3にかかる情報処理システム30は、測位する自動車が置かれている状況に応じて測位結果の信頼性を判定する情報処理装置等を提供することができる。またこれにより、実施の形態3にかかる情報処理システム30は、信頼性の高い自車位置情報を出力することができる。
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
 上述の実施の形態では、本発明をハードウェアの構成として説明したが、本発明は、これに限定されるものではない。本発明は、任意の処理(例えば、図2または図4のフローチャートの処理)を、CPU(Central Processing Unit)にコンピュータプログラムを実行させることにより実現することも可能である。また、上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 この出願は、2018年9月26日に出願された日本出願特願2018-180823を基礎とする優先権を主張し、その開示の全てをここに取り込む。
20 情報処理システム
30 情報処理システム
80 GNSS衛星
90 自動車
100 情報処理装置
101 測位信号取得部
102 パラメータ取得部
103 精度指標算出部
104 出力部
105 影響係数取得部
110 情報処理装置
200 受信装置
210 自車位置測位装置
300 サーバ
301 影響係数記憶領域

Claims (10)

  1.  測位衛星から送信された測位信号を取得する測位信号取得手段と、
     前記測位信号に基づいて予め設定されたパラメータを算出するパラメータ取得手段と、
     前記パラメータから測位精度指標を算出する精度指標算出手段と、
     前記測位精度指標を出力する出力手段と
    を備える情報処理装置。
  2.  前記パラメータ取得手段は、
     幾何学距離、時計誤差、電離層遅延、対流圏遅延、搬送波位相バイアスの内少なくとも1の値を前記パラメータとして取得する
    請求項1に記載の情報処理装置。
  3.  前記精度指標算出手段は、前記パラメータと、前記パラメータに応じた影響係数とに基づいて前記測位精度指標を算出する
    請求項1または2に記載の情報処理装置。
  4.  前記精度指標算出手段は、測位対象物の位置、時刻、天候の内少なくとも1の条件に応じて利用する影響係数を決定する
    請求項3に記載の情報処理装置。
  5.  前記影響係数を取得する影響係数取得手段をさらに備え、
     前記精度指標算出手段は、前記影響係数取得手段から取得した前記影響係数に基づいて前記測位精度指標を算出する
    請求項3または4に記載の情報処理装置。
  6.  前記精度指標算出手段は、前記影響係数と前記パラメータとに基づいて回帰分析により前記測位精度指標を算出する
    請求項3~5のいずれか一項に記載の情報処理装置。
  7.  請求項1~6のいずれか一項に記載の情報処理装置と、
     前記測位信号を受信する受信装置と
    を備える情報処理システム。
  8.  請求項3~6のいずれか一項に記載の情報処理装置と、
     前記情報処理装置に前記影響係数を提供する情報提供装置と
    を備える情報処理システム。
  9.  測位衛星から送信された測位信号を取得する測位信号取得ステップと、
     前記測位信号に基づいて予め設定されたパラメータを算出するパラメータ取得ステップと、
     前記パラメータから測位精度指標を算出する精度指標算出ステップと、
     前記測位精度指標を出力する出力ステップと
    を備える情報処理方法。
  10.  測位衛星から送信された測位信号を取得する測位信号取得ステップと、
     前記測位信号に基づいて予め設定されたパラメータを算出するパラメータ取得ステップと、
     前記パラメータから測位精度指標を算出する精度指標算出ステップと、
     前記測位精度指標を出力する出力ステップと
    を備える情報処理方法をコンピュータに実行させるプログラムが格納された非一時的なコンピュータ可読媒体。
PCT/JP2019/023642 2018-09-26 2019-06-14 情報処理装置、情報処理システム、情報処理方法および非一時的なコンピュータ可読媒体 WO2020066153A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/277,868 US11762100B2 (en) 2018-09-26 2019-06-14 Information processing apparatus, information processing system, information processing method, and non-transitory computer readable medium
CN201980059497.5A CN112673282A (zh) 2018-09-26 2019-06-14 信息处理装置、信息处理系统、信息处理方法和非暂时性计算机可读介质
JP2020547972A JPWO2020066153A1 (ja) 2018-09-26 2019-06-14 情報処理装置、情報処理システム、情報処理方法およびプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-180823 2018-09-26
JP2018180823 2018-09-26

Publications (1)

Publication Number Publication Date
WO2020066153A1 true WO2020066153A1 (ja) 2020-04-02

Family

ID=69952584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023642 WO2020066153A1 (ja) 2018-09-26 2019-06-14 情報処理装置、情報処理システム、情報処理方法および非一時的なコンピュータ可読媒体

Country Status (4)

Country Link
US (1) US11762100B2 (ja)
JP (1) JPWO2020066153A1 (ja)
CN (1) CN112673282A (ja)
WO (1) WO2020066153A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022157936A1 (ja) * 2021-01-22 2022-07-28 日本電信電話株式会社 無線通信による位置推定の精度を可視化する方法及び装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079975A (ja) * 2007-09-26 2009-04-16 Sueo Sugimoto 測位システム
JP2016197059A (ja) * 2015-04-03 2016-11-24 本田技研工業株式会社 測位システム、車載装置、および、測位方法
JP2018004434A (ja) * 2016-07-01 2018-01-11 一般財団法人 衛星測位利用推進センター 測位処理システム、方法、コンピュータプログラム、サーバ装置及びユーザ端末

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3922585B2 (ja) * 2004-05-13 2007-05-30 セイコーエプソン株式会社 測位装置、測位方法、測位プログラム、測位プログラムを記録したコンピュータ読み取り可能な記録媒体
JP5309643B2 (ja) 2008-03-24 2013-10-09 富士通株式会社 位置情報処理装置、位置情報処理プログラムおよび移動体端末
JP5740961B2 (ja) * 2010-12-17 2015-07-01 セイコーエプソン株式会社 衛星信号捕捉適否判定方法及び衛星信号捕捉適否判定装置
EP2689268B1 (en) * 2011-03-25 2016-05-11 European Space Agency (ESA) Method, apparatus and system for determining a position of an object having a global navigation satellite system receiver by processing undifferenced data like carrier phase measurements and external products like ionosphere data
CN105372685A (zh) * 2015-11-18 2016-03-02 中国科学院光电研究院 一种区域高精度位置增强系统及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079975A (ja) * 2007-09-26 2009-04-16 Sueo Sugimoto 測位システム
JP2016197059A (ja) * 2015-04-03 2016-11-24 本田技研工業株式会社 測位システム、車載装置、および、測位方法
JP2018004434A (ja) * 2016-07-01 2018-01-11 一般財団法人 衛星測位利用推進センター 測位処理システム、方法、コンピュータプログラム、サーバ装置及びユーザ端末

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022157936A1 (ja) * 2021-01-22 2022-07-28 日本電信電話株式会社 無線通信による位置推定の精度を可視化する方法及び装置
JP7420289B2 (ja) 2021-01-22 2024-01-23 日本電信電話株式会社 無線通信による位置推定の精度を可視化する方法及び装置

Also Published As

Publication number Publication date
US20210349219A1 (en) 2021-11-11
JPWO2020066153A1 (ja) 2021-08-30
CN112673282A (zh) 2021-04-16
US11762100B2 (en) 2023-09-19

Similar Documents

Publication Publication Date Title
CN108700670B (zh) 定位装置及定位方法
US10976444B2 (en) System and method for GNSS ambiguity resolution
EP1980868B1 (en) Positioning system, positioning IC chip, positioning method and positioning program
JP4550872B2 (ja) ハイブリッド位置判断システムにおける誤差推定値を判断するための方法および装置
US8843340B2 (en) Track information generating device, track information generating method, and computer-readable storage medium
US7411545B2 (en) Carrier phase interger ambiguity resolution with multiple reference receivers
JP2010163118A (ja) 列車位置検知システム
US11525926B2 (en) System and method for position fix estimation using two or more antennas
KR20150051747A (ko) 차량의 위치 결정 방법
JP5636410B2 (ja) 移動情報判定装置、受信機、及びそれについての方法
WO2020066155A1 (ja) 情報処理装置、情報処理システム、情報処理方法および非一時的なコンピュータ可読媒体
JP5413118B2 (ja) 測位システム
WO2020066153A1 (ja) 情報処理装置、情報処理システム、情報処理方法および非一時的なコンピュータ可読媒体
JP2006090912A (ja) 測位装置,情報配信装置,測位方法及び情報配信方法
JP4322829B2 (ja) サイクルスリップ検出装置及びサイクルスリップ検出方法
JP2019168257A (ja) 移動体情報推定装置及びプログラム
CN115047497A (zh) 星基终端定位置信度确定方法、星基终端、设备及介质
JP5924280B2 (ja) 車間距離演算装置
KR102584796B1 (ko) Gis 정보를 이용한 위치 추정 방법 및 그 장치
US20240125946A1 (en) Method for the GNSS-Based Localization of a Vehicle with 5G Signals
JP4364131B2 (ja) サイクルスリップ検出装置及びサイクルスリップ検出方法
JP2011107108A (ja) 移動体用測位装置
CN118011446A (zh) Gnss车辆定位中考虑gnss相关的提供路线信息的方法、存储介质和系统
JP2014126539A (ja) Gnss受信機及び測位位置算出方法
CN114008487A (zh) 通过运动预测进行误差和完整性评估

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865450

Country of ref document: EP

Kind code of ref document: A1