WO2020065872A1 - 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 - Google Patents
封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 Download PDFInfo
- Publication number
- WO2020065872A1 WO2020065872A1 PCT/JP2018/036099 JP2018036099W WO2020065872A1 WO 2020065872 A1 WO2020065872 A1 WO 2020065872A1 JP 2018036099 W JP2018036099 W JP 2018036099W WO 2020065872 A1 WO2020065872 A1 WO 2020065872A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin composition
- sealing resin
- electronic component
- epoxy resin
- mass
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
Definitions
- the present invention relates to a sealing resin composition, an electronic component device, and a method for manufacturing an electronic component device.
- the amount of transmission loss caused by heat conversion of radio waves transmitted for communication in a dielectric is expressed as the product of the frequency, the square root of the relative permittivity, and the dielectric loss tangent.
- a transmission signal is likely to change into heat in proportion to the frequency. Therefore, in order to suppress transmission loss, a material of a communication member is required to have a lower dielectric property in a higher frequency band.
- Patent Documents 1 and 2 disclose a thermosetting resin composition containing an active ester resin as a curing agent for an epoxy resin, and it is said that the dielectric loss tangent of a cured product can be suppressed.
- An object of the present disclosure is to provide a sealing resin composition having a low dielectric loss tangent of a cured product, an electronic component device sealed using the same, and a method for manufacturing an electronic component device sealed using the same.
- An electronic component device comprising: a support member; an element disposed on the support member; and a cured product of the sealing resin composition according to [1], which seals the element.
- a method for manufacturing an electronic component device comprising: a step of arranging an element on a support member; and a step of sealing the element with the sealing resin composition according to [1].
- a sealing resin composition having a low dielectric loss tangent of a cured product, an electronic component device sealed using the same, and a method for manufacturing an electronic component device sealed using the same are provided. .
- the term "step” includes, in addition to a step independent of other steps, even if the purpose of the step is achieved even if it cannot be clearly distinguished from the other steps, the step is also included.
- the numerical ranges indicated by using “to” include the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
- the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of the numerical range described in other stages.
- the upper limit or the lower limit of the numerical range may be replaced with the value shown in the embodiment.
- each component may include a plurality of corresponding substances.
- the content or content of each component is, unless otherwise specified, the total content or content of the plurality of substances present in the composition. Means quantity.
- a plurality of types of particles corresponding to each component may be included.
- the particle size of each component means a value of a mixture of the plurality of types of particles present in the composition unless otherwise specified.
- the sealing resin composition of the present disclosure includes an epoxy resin, a curing agent, and an inorganic filler, wherein the curing agent includes an active ester compound, and the inorganic filler has an average particle size of 5 ⁇ m to 100 ⁇ m.
- the active ester compound in the present disclosure refers to a compound having one or more ester groups in one molecule that reacts with an epoxy group, and has a curing action of an epoxy resin.
- phenol curing agents, amine curing agents and the like are generally used as curing agents for epoxy resins, but secondary hydroxyl groups are generated in the reaction between epoxy resins and phenol curing agents or amine curing agents.
- an ester group is generated instead of the secondary hydroxyl group. Since the ester group has a lower polarity than the secondary hydroxyl group, the sealing resin composition of the present disclosure is compared with a sealing resin composition containing only a curing agent that generates a secondary hydroxyl group as a curing agent. The dielectric loss tangent of the cured product can be kept low.
- the dielectric tangent of the cured product can be further reduced by setting the average particle diameter of the included inorganic filler to 5 ⁇ m or more.
- the average particle size of the inorganic filler is at least 5 ⁇ m to reduce the amount of surface hydroxyl groups, Therefore, the amount of hydroxyl groups contained in the cured product of the sealing resin composition can be reduced, and as a result, the dielectric loss tangent of the cured product can be suppressed lower.
- the average particle size of the inorganic filler contained in the sealing resin composition of the present disclosure is 100 ⁇ m or less.
- epoxy resin The type of the epoxy resin is not particularly limited as long as it has an epoxy group in the molecule.
- the epoxy resin include at least one selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcin, catechol, bisphenol A and bisphenol F and naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
- Novolak epoxy resin (phenol novolak type) obtained by epoxidizing a novolak resin obtained by condensing or co-condensing a phenolic compound of a type with an aliphatic aldehyde compound such as formaldehyde, acetaldehyde, propionaldehyde, etc. under an acidic catalyst.
- the epoxy equivalent (molecular weight / number of epoxy groups) of the epoxy resin is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance and electrical reliability, it is preferably from 100 g / eq to 1000 g / eq, more preferably from 150 g / eq to 500 g / eq.
- the epoxy equivalent of the epoxy resin is a value measured by a method according to JIS K7236: 2009.
- the epoxy resin is a solid, its softening point or melting point is not particularly limited.
- the temperature is preferably from 40 ° C. to 180 ° C. from the viewpoints of moldability and reflow resistance, and more preferably from 50 ° C. to 130 ° C. from the viewpoint of handleability in preparing the sealing resin composition.
- the melting point or softening point of the epoxy resin is a value measured by a differential scanning calorimetry (DSC) or a method (ring and ball method) according to JIS K 7234: 1986.
- the content of the epoxy resin in the encapsulating resin composition is preferably 0.5% by mass to 50% by mass, and more preferably 2% by mass to 30% by mass in view of strength, fluidity, heat resistance, moldability and the like. % Is more preferable.
- the sealing resin composition of the present disclosure contains at least an active ester compound as a curing agent.
- the sealing resin composition of the present disclosure may include a curing agent other than the active ester compound.
- the sealing resin composition of the present disclosure can reduce the dielectric loss tangent of a cured product by using an active ester compound as a curing agent.
- the polar group in the cured product enhances the water absorption of the cured product.
- the concentration of the polar group in the cured product can be suppressed, and the water absorption of the cured product can be suppressed. it can.
- the dielectric loss tangent of the cured product can be further reduced.
- the water absorption of the cured product is preferably 0% to 0.35%, more preferably 0% to 0.30%, and still more preferably 0% to 0.25%.
- the water absorption of the cured product is a mass increase rate determined by a pressure cooker test (121 ° C., 2.1 atm, 24 hours).
- the type of the active ester compound is not particularly limited as long as it has at least one ester group in the molecule that reacts with the epoxy group.
- Examples of the active ester compound include phenol ester compounds, thiophenol ester compounds, N-hydroxyamine ester compounds, and esterified products of heterocyclic hydroxy compounds.
- the active ester compound examples include an ester compound obtained from at least one kind of aliphatic carboxylic acid and aromatic carboxylic acid and at least one kind of aliphatic hydroxy compound and aromatic hydroxy compound.
- An ester compound containing an aliphatic compound as a component of polycondensation tends to have excellent compatibility with an epoxy resin due to having an aliphatic chain.
- An ester compound containing an aromatic compound as a component of polycondensation tends to have excellent heat resistance due to having an aromatic ring.
- the active ester compound examples include an aromatic ester obtained by a condensation reaction between an aromatic carboxylic acid and a phenolic hydroxyl group.
- an aromatic carboxylic acid component in which 2 to 4 hydrogen atoms of an aromatic ring such as benzene, naphthalene, biphenyl, diphenylpropane, diphenylmethane, diphenyl ether, and diphenylsulfonic acid are substituted with a carboxy group
- a mixture of an aromatic carboxylic acid and a phenolic hydroxyl group is obtained by using a mixture of a monohydric phenol in which one of the above is substituted with a hydroxyl group and a polyhydric phenol in which 2 to 4 of the hydrogen atoms of the aromatic ring are substituted with a hydroxyl group as a raw material.
- Aromatic esters obtained by a condensation reaction are preferred. That is, an aromatic ester having a structural unit derived from the aromatic carboxylic acid component, a structural unit derived from the monohydric phenol, and a structural unit derived from the polyhydric phenol is preferable.
- the active ester compound examples include a phenol resin having a molecular structure in which a phenol compound is knotted via an aliphatic cyclic hydrocarbon group, described in JP-A-2012-246467, and an aromatic dicarboxylic acid or An active ester resin having a structure obtained by reacting the halide with an aromatic monohydroxy compound is exemplified.
- the active ester resin a compound represented by the following structural formula (1) is preferable.
- R 1 is an alkyl group having 1 to 4 carbon atoms
- X is a benzene ring, a naphthalene ring, a benzene ring or a naphthalene ring substituted with an alkyl group having 1 to 4 carbon atoms, or a biphenyl group
- Y is a benzene ring, a naphthalene ring, or a benzene ring or a naphthalene ring substituted with an alkyl group having 1 to 4 carbon atoms
- k is 0 or 1
- n is an average of the number of repetitions. 25 to 1.5.
- Specific examples of the compound represented by the structural formula (1) include, for example, the following exemplified compounds (1-1) to (1-10).
- T-Bu in the structural formula is a tert-butyl group.
- active ester compound examples include a compound represented by the following structural formula (2) and a compound represented by the following structural formula (3) described in JP-A-2014-114352. No.
- R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
- Z is a benzoyl group, a naphthoyl group
- An ester-forming structural site (z1) selected from the group consisting of a benzoyl group or a naphthoyl group substituted with an alkyl group of Formulas 1 to 4, and an acyl group having 2 to 6 carbon atoms, or a hydrogen atom (z2); At least one is an ester forming structural site (z1).
- R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
- Z is a benzoyl group, a naphthoyl group
- An ester-forming structural site (z1) selected from the group consisting of a benzoyl group or a naphthoyl group substituted with an alkyl group of Formulas 1 to 4, and an acyl group having 2 to 6 carbon atoms, or a hydrogen atom (z2); At least one is an ester forming structural site (z1).
- Specific examples of the compound represented by the structural formula (2) include, for example, the following exemplified compounds (2-1) to (2-6).
- Specific examples of the compound represented by the structural formula (3) include, for example, the following exemplified compounds (3-1) to (3-6).
- active ester compound A commercial product may be used as the active ester compound.
- Commercially available active ester compounds include "EXB9451”, “EXB9460”, “EXB9460S”, “HPC-8000-65T” (manufactured by DIC Corporation) as active ester compounds having a dicyclopentadiene-type diphenol structure; "EXB9416-70BK”, “EXB-8", “EXB-9425” (manufactured by DIC Corporation) as an active ester compound having a structure; “DC808” (Mitsubishi Chemical Corporation) as an active ester compound containing an acetylated product of phenol novolak "YLH1026” (manufactured by Mitsubishi Chemical Corporation) as an active ester compound containing benzoylated phenol novolak.
- the active ester compound may be used alone or in combination of two or more.
- the ester group equivalent of the active ester compound is not particularly limited. From the viewpoint of the balance of various characteristics such as moldability, reflow resistance, and electrical reliability, 150 g / eq to 400 g / eq is preferable, 170 g / eq to 300 g / eq is more preferable, and 200 g / eq to 250 g / eq is preferable. More preferred.
- the ester group equivalent of the active ester compound is a value measured by a method according to JIS K 0070: 1992.
- the equivalent ratio of the epoxy resin to the active ester compound is preferably 0.9 or more, more preferably 0.95 or more, and 0.97 or more, from the viewpoint of keeping the dielectric loss tangent of the cured product low. Is more preferred.
- the equivalent ratio (ester group / epoxy group) between the epoxy resin and the active ester compound is preferably 1.1 or less, more preferably 1.05 or less, from the viewpoint of suppressing the unreacted component of the active ester compound. 03 or less is more preferable.
- the curing agent may contain other curing agents other than the active ester compound.
- the type of the other curing agent is not particularly limited, and can be selected according to the desired characteristics of the sealing resin composition.
- Other curing agents include phenol curing agents, amine curing agents, acid anhydride curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, and blocked isocyanate curing agents.
- phenol curing agent examples include polyphenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenol; phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, and phenylphenol.
- Phenolic compounds such as aminophenols, aminophenols and the like and at least one phenolic compound selected from the group consisting of naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene, and aldehyde compounds such as formaldehyde, acetaldehyde and propionaldehyde
- Novolak-type phenolic resin obtained by condensation or co-condensation under the following conditions: the above-mentioned phenolic compound, dimethoxyparaxylene, bis (methoxymethyl) biffe Phenol aralkyl resins such as phenol aralkyl resins, naphthol aralkyl resins, etc .; para-xylylene-modified phenol resins, meta-xylylene-modified phenol resins; melamine-modified phenol resins; terpene-modified phenol resins; A dicyclopentadiene-type phenol
- the functional group equivalent of other curing agents is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance, and electrical reliability, it is preferably from 70 g / eq to 1000 g / eq, more preferably from 80 g / eq to 500 g / eq.
- the temperature is preferably from 40 ° C. to 180 ° C., and from the viewpoint of handleability during the production of the sealing resin composition, it is more preferably from 50 ° C. to 130 ° C. .
- the melting point or softening point of the curing agent is a value measured in the same manner as the melting point or softening point of the epoxy resin.
- the number of functional groups is not particularly limited. From the viewpoint of minimizing the amount of each unreacted component, it is preferably set in the range of 0.5 to 2.0, and more preferably in the range of 0.6 to 1.3. From the viewpoint of moldability and reflow resistance, it is more preferable to set the ratio in the range of 0.8 to 1.2.
- the content of the active ester compound with respect to the total mass of the active ester compound and other curing agents is preferably 80% by mass or more, more preferably 85% by mass or more, from the viewpoint of keeping the dielectric loss tangent of the cured product low. More preferably, it is 90% by mass or more.
- the total content of the epoxy resin and the active ester compound with respect to the total mass of the epoxy resin, the active ester compound and the other curing agent is preferably 70% by mass or more, from the viewpoint of suppressing the dielectric loss tangent of the cured product to 80% by mass. %, More preferably at least 85% by mass.
- the sealing resin composition may include a curing accelerator.
- the type of the curing accelerator is not particularly limited, and can be selected according to the type of the epoxy resin or the curing agent, the desired characteristics of the sealing resin composition, and the like.
- curing accelerator examples include diazabicycloalkenes such as 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) and 1,8-diazabicyclo [5.4.0] undecene-7 (DBU); Cyclic amidine compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole; derivatives of the cyclic amidine compounds; phenol novolak salts of the cyclic amidine compounds or derivatives thereof; To maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1 , 4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1 Quinone compounds such as 4-benzo
- the amount is preferably from 0.1 to 30 parts by mass based on 100 parts by mass of the resin component (the total amount of the epoxy resin and the curing agent). And more preferably 1 to 15 parts by mass.
- the amount of the curing accelerator is 0.1 parts by mass or more based on 100 parts by mass of the resin component, the curing tends to be performed well in a short time. If the amount of the curing accelerator is 30 parts by mass or less based on 100 parts by mass of the resin component, the curing rate tends to be too high and a good molded product tends to be obtained.
- the inorganic filler contained therein has an average particle size of 5 ⁇ m to 100 ⁇ m.
- the average particle size of the inorganic filler is 5 ⁇ m or more, preferably 8 ⁇ m or more, and more preferably 10 ⁇ m or more, from the viewpoint of reducing the amount of surface hydroxyl groups per unit amount and, as a result, reducing the dielectric loss tangent of the cured product. More preferably, there is.
- the average particle size of the inorganic filler is 100 ⁇ m or less, preferably 50 ⁇ m or less, and more preferably 20 ⁇ m or less, from the viewpoint of improving the filling property of the sealing resin composition.
- the average particle diameter of the inorganic filler in the image taken by a scanning electron microscope of a thin sample of the sealing resin composition or a cured product thereof, by measuring the major axis of 100 randomly selected inorganic fillers, It is the value obtained by arithmetically averaging it.
- the type of the inorganic filler is not particularly limited. Specifically, inorganic materials such as fused silica, crystalline silica, glass, alumina, talc, clay, and mica are exemplified. An inorganic filler having a flame-retardant effect may be used. Examples of the inorganic filler having a flame-retardant effect include aluminum hydroxide, magnesium hydroxide, a composite metal hydroxide such as a composite hydroxide of magnesium and zinc, and zinc borate.
- silica such as fused silica is preferred from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferred from the viewpoint of high thermal conductivity.
- One inorganic filler may be used alone, or two or more inorganic fillers may be used in combination. Examples of the form of the inorganic filler include powder, beads obtained by making the powder spherical, fibers, and the like.
- the content of the inorganic filler contained in the sealing resin composition is not particularly limited. From the viewpoints of fluidity and strength, the content is preferably 30% by volume to 90% by volume, more preferably 35% by volume to 80% by volume, and more preferably 40% by volume to 70% by volume of the entire sealing resin composition. % Is more preferable.
- the content of the inorganic filler is 30% by volume or more of the entire sealing resin composition, properties such as a thermal expansion coefficient, a thermal conductivity, and an elastic modulus of the cured product tend to be further improved.
- the content of the inorganic filler is 90% by volume or less of the entire sealing resin composition, an increase in the viscosity of the sealing resin composition is suppressed, the flowability is further improved, and the moldability is more improved. Tend to be.
- the sealing resin composition may contain various additives such as a coupling agent, an ion exchanger, a release agent, a flame retardant, and a coloring agent exemplified below, in addition to the above components.
- the sealing resin composition may contain various additives known in the art as needed, in addition to the additives exemplified below.
- the sealing resin composition may include a coupling agent.
- the sealing resin composition preferably contains a coupling agent.
- the coupling agent include known silane compounds such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, vinyl silane, and disilazane, titanium compounds, aluminum chelate compounds, and aluminum / zirconium compounds. No.
- the amount of the coupling agent is preferably 0.05 to 5 parts by mass, and more preferably 0.1 part by mass, based on 100 parts by mass of the inorganic filler. More preferably, it is 2.5 parts by mass.
- the amount of the coupling agent is 0.05 parts by mass or more based on 100 parts by mass of the inorganic filler, the adhesiveness to the frame tends to be further improved.
- the amount of the coupling agent is 5 parts by mass or less based on 100 parts by mass of the inorganic filler, the moldability of the package tends to be further improved.
- the sealing resin composition may include an ion exchanger.
- the sealing resin composition preferably contains an ion exchanger from the viewpoint of improving the moisture resistance and high-temperature storage characteristics of the electronic component device including the element to be sealed.
- the ion exchanger is not particularly limited, and a conventionally known ion exchanger can be used. Specific examples include a hydrotalcite compound and a hydrated oxide of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium and bismuth.
- One type of ion exchanger may be used alone, or two or more types may be used in combination. Among them, hydrotalcite represented by the following general formula (A) is preferable.
- the sealing resin composition contains an ion exchanger
- its content is not particularly limited as long as it is an amount sufficient to capture ions such as halogen ions.
- the amount is preferably from 0.1 to 30 parts by mass, more preferably from 1 to 10 parts by mass, per 100 parts by mass of the resin component (total amount of the epoxy resin and the curing agent).
- the sealing resin composition may include a release agent from the viewpoint of obtaining good releasability from a mold during molding.
- the release agent is not particularly limited, and a conventionally known release agent can be used. Specific examples include carnauba wax, higher fatty acids such as montanic acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, and polyolefin waxes such as polyethylene oxide and non-oxidized polyethylene.
- One type of release agent may be used alone, or two or more types may be used in combination.
- the amount is preferably from 0.01 to 10 parts by mass, more preferably from 0.1 to 10 parts by mass, per 100 parts by mass of the resin component (total amount of the epoxy resin and the curing agent). More preferred is from 5 parts by mass to 5 parts by mass.
- the amount of the release agent is 0.01 part by mass or more based on 100 parts by mass of the resin component, there is a tendency that sufficient releasability is obtained.
- the amount is 10 parts by mass or less, better adhesiveness tends to be obtained.
- the sealing resin composition may contain a flame retardant.
- the flame retardant is not particularly limited, and a conventionally known one can be used. Specifically, an organic or inorganic compound containing a halogen atom, an antimony atom, a nitrogen atom or a phosphorus atom, a metal hydroxide and the like can be mentioned.
- the flame retardants may be used alone or in combination of two or more.
- the sealing resin composition contains a flame retardant
- its amount is not particularly limited as long as it is an amount sufficient to obtain a desired flame retardant effect.
- it is preferably from 1 to 30 parts by mass, more preferably from 2 to 20 parts by mass, based on 100 parts by mass of the resin component (total amount of the epoxy resin and the curing agent).
- the sealing resin composition may include a coloring agent.
- the coloring agent include known coloring agents such as carbon black, organic dyes, organic pigments, titanium oxide, lead red, and red iron oxide.
- the content of the coloring agent can be appropriately selected according to the purpose and the like.
- the colorant may be used alone or in combination of two or more.
- the method for preparing the sealing resin composition is not particularly limited.
- a general method there can be mentioned a method in which components of a predetermined compounding amount are sufficiently mixed by a mixer or the like, then melt-kneaded by a mixing roll, an extruder, or the like, cooled, and pulverized. More specifically, for example, a method of uniformly stirring and mixing predetermined amounts of the above-described components, kneading with a kneader, roll, extruder or the like which has been heated to 70 ° C. to 140 ° C., cooling, and pulverizing. Can be mentioned.
- the sealing resin composition is preferably solid at normal temperature and normal pressure (for example, 25 ° C. and atmospheric pressure).
- the shape when the sealing resin composition is a solid is not particularly limited, and examples thereof include powder, granules, and tablets.
- the resin composition for sealing is in the form of a tablet, it is preferable from the viewpoint of handleability that the dimensions and the mass be such as to match the molding conditions of the package.
- An electronic component device includes a support member, an element disposed on the support member, and a cured product of the sealing resin composition of the present disclosure sealing the element. Is provided.
- Electronic component devices include supporting members such as lead frames, wired tape carriers, wiring boards, glass, silicon wafers, and organic substrates, as well as active elements such as semiconductor chips, transistors, diodes, and thyristors, capacitors, and resistors.
- a passive element such as a coil
- a sealing resin composition More specifically, after fixing an element on a lead frame, connecting a terminal part of the element such as a bonding pad and a lead part by wire bonding, a bump or the like, and then performing transfer molding or the like using a sealing resin composition.
- an element is mounted on the surface of a support member having wiring board connection terminals formed on the back surface, and the element and the support member are bumped or wire-bonded.
- BGA Bit Grid Array
- CSP Chip Size Package
- MCP Multi Chip Package
- the sealing resin composition can also be suitably used for a printed wiring board.
- the method for manufacturing an electronic component device includes a step of disposing an element on a support member, and a step of sealing the element with the sealing resin composition of the present disclosure.
- the method of performing each of the above steps is not particularly limited, and can be performed by a general method. Further, the types of the support members and the elements used for manufacturing the electronic component device are not particularly limited, and the support members and the elements generally used for manufacturing the electronic component device can be used.
- Examples of a method for sealing an element using the sealing resin composition of the present disclosure include a low-pressure transfer molding method, an injection molding method, and a compression molding method. Among these, the low pressure transfer molding method is common.
- sealing resin composition ⁇ Preparation of sealing resin composition> The components shown below were mixed in the mixing ratios shown in Table 1 to prepare sealing resin compositions of Examples and Comparative Examples. This sealing resin composition was solid at normal temperature and normal pressure.
- Epoxy resin 1 biphenyl aralkyl type epoxy resin, epoxy equivalent 274 g / eq (Nippon Kayaku Co., Ltd., product name “NC-3000”)
- Epoxy resin 2 dicyclopentadiene type epoxy resin, epoxy equivalent 258 g / eq (DIC Corporation, product name "HP-7200”)
- Epoxy resin 3 triphenylmethane type epoxy resin, epoxy equivalent 167 g / eq (Mitsubishi Chemical Corporation, product name "1032H60”)
- Epoxy resin 4 biphenyl type epoxy resin, epoxy equivalent 192 g / eq (Mitsubishi Chemical Corporation, product name "YX-4000”)
- Active ester compound 1 DIC Corporation, product name “EXB-8”
- Phenol curing agent 1 phenol aralkyl resin, hydroxyl equivalent 175 g / eq (Meiwa Kasei Co., Ltd., product name "MEH7800SS”)
- Curing accelerator 1 Triphenylphosphine / 1,4-benzoquinone adduct
- Filler 1 fused silica (DENKA, product name "FB-870FD")
- Filler 2 fused silica (Takimori Co., Ltd., product name "EUF-46V”)
- Filling material 3 Fused silica (Takimori Co., Ltd., product name “MUF-2BV”)
- Filler 4 Fused silica (Admatex, product name "SO-25R”)
- Coupling agent 1 N-phenyl-3-aminopropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., product name "KBM-573")
- Coupling agent 2 3-mercaptopropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., product name "KBM-803")
- Release agent montanic acid ester wax (Clariant Japan K.K., product name “HW-E”)
- Colorant carbon black (Mitsubishi Chemical Corporation, product name "MA600”)
- ⁇ Performance evaluation of sealing resin composition> (Average particle size of inorganic filler) In an image of a thin sample of the sealing resin composition taken with a scanning electron microscope, the major axes ( ⁇ m) of 100 randomly selected inorganic fillers were measured, and arithmetically averaged.
- the resin composition for sealing is charged into a vacuum hand press, and molded under the conditions of a mold temperature of 175 ° C., a molding pressure of 6.9 MPa, and a curing time of 600 seconds.
- a product (length 12.5 mm, width 25 mm, thickness 0.2 mm) was obtained.
- the relative dielectric constant and the dielectric loss tangent at about 60 GHz at a temperature of 25 ⁇ 3 ° C. were measured using a dielectric constant measuring apparatus (Agilent Technology, product name “Network Analyzer N5227A”). It was measured.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Epoxy Resins (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
Abstract
エポキシ樹脂と硬化剤と無機充填材とを含有し、前記硬化剤が活性エステル化合物を含み、前記無機充填材の平均粒径が5μm~100μmである、封止用樹脂組成物。
Description
本発明は、封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法に関する。
通信のために発信された電波が誘電体において熱変換されることで発生する伝送損失の量は、周波数と比誘電率の平方根と誘電正接との積として表される。つまり伝送信号は周波数に比例して熱に変わりやすいので、伝送損失を抑制するために高周波帯ほど通信部材の材料に低誘電特性が要求される。
例えば特許文献1~2には、エポキシ樹脂用硬化剤として活性エステル樹脂を含有する熱硬化性樹脂組成物が開示されており、硬化物の誘電正接を低く抑えることができるとされている。
情報通信分野においては、チャンネル数の増加と伝送される情報量の増加にともなって電波の高周波化が進行している。現在、第5世代移動通信システムの検討が世界的に進められており、使用する周波帯の候補に約30GHz~70GHzの範囲の幾つかが挙げられている。今後は無線通信の主流がこれほどの高周波帯での通信になるため、通信部材の材料にはさらなる誘電正接の低さが求められている。
本開示の実施形態は、上記状況のもとになされた。
本開示は、硬化物の誘電正接が低い封止用樹脂組成物、これを用いて封止された電子部品装置、及びこれを用いて封止する電子部品装置の製造方法を提供することを課題とする。
前記課題を解決するための具体的手段には、以下の態様が含まれる。
[1]エポキシ樹脂と硬化剤と無機充填材とを含有し、前記硬化剤が活性エステル化合物を含み、前記無機充填材の平均粒径が5μm~100μmである、封止用樹脂組成物。
[2]支持部材と、前記支持部材上に配置された素子と、前記素子を封止している[1]に記載の封止用樹脂組成物の硬化物と、を備える電子部品装置。
[3]素子を支持部材上に配置する工程と、前記素子を[1]に記載の封止用樹脂組成物で封止する工程と、を含む電子部品装置の製造方法。
[2]支持部材と、前記支持部材上に配置された素子と、前記素子を封止している[1]に記載の封止用樹脂組成物の硬化物と、を備える電子部品装置。
[3]素子を支持部材上に配置する工程と、前記素子を[1]に記載の封止用樹脂組成物で封止する工程と、を含む電子部品装置の製造方法。
本開示によれば、硬化物の誘電正接が低い封止用樹脂組成物、これを用いて封止された電子部品装置、及びこれを用いて封止する電子部品装置の製造方法が提供される。
本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
<封止用樹脂組成物>
本開示の封止用樹脂組成物は、エポキシ樹脂と硬化剤と無機充填材とを含有し、前記硬化剤が活性エステル化合物を含み、前記無機充填材の平均粒径が5μm~100μmである。
本開示の封止用樹脂組成物は、エポキシ樹脂と硬化剤と無機充填材とを含有し、前記硬化剤が活性エステル化合物を含み、前記無機充填材の平均粒径が5μm~100μmである。
本開示における活性エステル化合物とは、エポキシ基と反応するエステル基を1分子中に1個以上有し、エポキシ樹脂の硬化作用を有する化合物をいう。
従来、エポキシ樹脂の硬化剤としては一般的にフェノール硬化剤、アミン硬化剤等が使用されているところ、エポキシ樹脂とフェノール硬化剤又はアミン硬化剤との反応においては2級水酸基が発生する。これに対して、エポキシ樹脂と活性エステル化合物との反応においては2級水酸基のかわりにエステル基が生じる。エステル基は2級水酸基に比べて極性が低い故、本開示の封止用樹脂組成物は、硬化剤として2級水酸基を発生させる硬化剤のみを含有する封止用樹脂組成物に比べて、硬化物の誘電正接を低く抑えることができる。
そして、本開示の封止用樹脂組成物は、含まれる無機充填材の平均粒径が5μm以上であることによって、硬化物の誘電正接をより低く抑えることができる。無機充填材は粒子径が小さいほど比表面積が大きくなり単位量当たりの表面水酸基量が多くなる傾向があるところ、無機充填材の平均粒径が5μm以上であることにより表面水酸基量を低減し、したがって封止用樹脂組成物の硬化物に含まれる水酸基量を低減し、その結果、硬化物の誘電正接をより低く抑えることができる。
一方で、封止用樹脂組成物の充填性を確保する観点から、本開示の封止用樹脂組成物に含まれる無機充填材の平均粒径は100μm以下である。
一方で、封止用樹脂組成物の充填性を確保する観点から、本開示の封止用樹脂組成物に含まれる無機充填材の平均粒径は100μm以下である。
(エポキシ樹脂)
エポキシ樹脂は、分子中にエポキシ基を有するものであればその種類は特に制限されない。
エポキシ樹脂は、分子中にエポキシ基を有するものであればその種類は特に制限されない。
エポキシ樹脂として具体的には、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも1種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したものであるノボラック型エポキシ樹脂(フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等);上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂をエポキシ化したものであるトリフェニルメタン型エポキシ樹脂;上記フェノール化合物及びナフトール化合物と、アルデヒド化合物とを酸性触媒下で共縮合させて得られるノボラック樹脂をエポキシ化したものである共重合型エポキシ樹脂;ビスフェノールA、ビスフェノールF等のジグリシジルエーテルであるジフェニルメタン型エポキシ樹脂;アルキル置換又は非置換のビフェノールのジグリシジルエーテルであるビフェニル型エポキシ樹脂;スチルベン系フェノール化合物のジグリシジルエーテルであるスチルベン型エポキシ樹脂;ビスフェノールS等のジグリシジルエーテルである硫黄原子含有エポキシ樹脂;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテルであるエポキシ樹脂;フタル酸、イソフタル酸、テトラヒドロフタル酸等の多価カルボン酸化合物のグリシジルエステルであるグリシジルエステル型エポキシ樹脂;アニリン、ジアミノジフェニルメタン、イソシアヌル酸等の窒素原子に結合した活性水素をグリシジル基で置換したものであるグリシジルアミン型エポキシ樹脂;ジシクロペンタジエンとフェノール化合物の共縮合樹脂をエポキシ化したものであるジシクロペンタジエン型エポキシ樹脂;分子内のオレフィン結合をエポキシ化したものであるビニルシクロヘキセンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ樹脂;パラキシリレン変性フェノール樹脂のグリシジルエーテルであるパラキシリレン変性エポキシ樹脂;メタキシリレン変性フェノール樹脂のグリシジルエーテルであるメタキシリレン変性エポキシ樹脂;テルペン変性フェノール樹脂のグリシジルエーテルであるテルペン変性エポキシ樹脂;ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるジシクロペンタジエン変性エポキシ樹脂;シクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるシクロペンタジエン変性エポキシ樹脂;多環芳香環変性フェノール樹脂のグリシジルエーテルである多環芳香環変性エポキシ樹脂;ナフタレン環含有フェノール樹脂のグリシジルエーテルであるナフタレン型エポキシ樹脂;ハロゲン化フェノールノボラック型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;トリメチロールプロパン型エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂をエポキシ化したものであるアラルキル型エポキシ樹脂;などが挙げられる。さらにはアクリル樹脂のエポキシ化物等もエポキシ樹脂として挙げられる。これらのエポキシ樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
エポキシ樹脂のエポキシ当量(分子量/エポキシ基数)は、特に制限されない。成形性、耐リフロー性及び電気的信頼等の各種特性バランスの観点からは、100g/eq~1000g/eqであることが好ましく、150g/eq~500g/eqであることがより好ましい。
エポキシ樹脂のエポキシ当量は、JIS K 7236:2009に準じた方法で測定される値とする。
エポキシ樹脂が固体である場合、その軟化点又は融点は特に制限されない。成形性と耐リフロー性の観点からは40℃~180℃であることが好ましく、封止用樹脂組成物の調製の際の取扱い性の観点からは50℃~130℃であることがより好ましい。
エポキシ樹脂の融点又は軟化点は、示差走査熱量測定(DSC)又はJIS K 7234:1986に準じた方法(環球法)で測定される値とする。
封止用樹脂組成物中のエポキシ樹脂の含有率は、強度、流動性、耐熱性、成形性等の観点から0.5質量%~50質量%であることが好ましく、2質量%~30質量%であることがより好ましい。
(硬化剤)
本開示の封止用樹脂組成物は、硬化剤として少なくとも活性エステル化合物を含む。本開示の封止用樹脂組成物は、活性エステル化合物以外の硬化剤を含んでもよい。
本開示の封止用樹脂組成物は、硬化剤として少なくとも活性エステル化合物を含む。本開示の封止用樹脂組成物は、活性エステル化合物以外の硬化剤を含んでもよい。
本開示の封止用樹脂組成物は、先述のとおり、硬化剤として活性エステル化合物を用いることによって、硬化物の誘電正接を低く抑えることができる。
また、硬化物中の極性基は硬化物の吸水性を高めるところ、硬化剤として活性エステル化合物を用いることによって硬化物の極性基濃度を抑えることができ、硬化物の吸水性を抑制することができる。そして、硬化物の吸水性を抑制すること、つまりは極性分子であるH2Oの含有量を抑制することにより、硬化物の誘電正接をさらに低く抑えることができる。硬化物の吸水率は、0%~0.35%が好ましく、0%~0.30%がより好ましく、0%~0.25%がさらに好ましい。ここで硬化物の吸水率は、プレッシャークッカー試験(121℃、2.1気圧、24時間)によって求める質量増加率である。
また、硬化物中の極性基は硬化物の吸水性を高めるところ、硬化剤として活性エステル化合物を用いることによって硬化物の極性基濃度を抑えることができ、硬化物の吸水性を抑制することができる。そして、硬化物の吸水性を抑制すること、つまりは極性分子であるH2Oの含有量を抑制することにより、硬化物の誘電正接をさらに低く抑えることができる。硬化物の吸水率は、0%~0.35%が好ましく、0%~0.30%がより好ましく、0%~0.25%がさらに好ましい。ここで硬化物の吸水率は、プレッシャークッカー試験(121℃、2.1気圧、24時間)によって求める質量増加率である。
活性エステル化合物は、エポキシ基と反応するエステル基を分子中に1個以上有する化合物であればその種類は特に制限されない。
活性エステル化合物としては、フェノールエステル化合物、チオフェノールエステル化合物、N-ヒドロキシアミンエステル化合物、複素環ヒドロキシ化合物のエステル化物等が挙げられる。
活性エステル化合物としては、例えば、脂肪族カルボン酸及び芳香族カルボン酸の少なくとも1種と脂肪族ヒドロキシ化合物及び芳香族ヒドロキシ化合物の少なくとも1種とから得られるエステル化合物が挙げられる。脂肪族化合物を重縮合の成分とするエステル化合物は、脂肪族鎖を有することによりエポキシ樹脂との相溶性に優れる傾向にある。芳香族化合物を重縮合の成分とするエステル化合物は、芳香環を有することにより耐熱性に優れる傾向にある。
活性エステル化合物の具体例としては、芳香族カルボン酸とフェノール性水酸基との縮合反応にて得られる芳香族エステルが挙げられる。中でも、ベンゼン、ナフタレン、ビフェニル、ジフェニルプロパン、ジフェニルメタン、ジフェニルエーテル、ジフェニルスルホン酸等の芳香環の水素原子の2~4個をカルボキシ基で置換した芳香族カルボン酸成分と、前記した芳香環の水素原子の1個を水酸基で置換した1価フェノールと、前記した芳香環の水素原子の2~4個を水酸基で置換した多価フェノールとの混合物を原材料として、芳香族カルボン酸とフェノール性水酸基との縮合反応にて得られる芳香族エステルが好ましい。すなわち、上記芳香族カルボン酸成分由来の構造単位と上記1価フェノール由来の構造単位と上記多価フェノール由来の構造単位とを有する芳香族エステルが好ましい。
活性エステル化合物の具体例としては、特開2012-246367号公報に記載されている、脂肪族環状炭化水素基を介してフェノール化合物が結節された分子構造を有するフェノール樹脂と、芳香族ジカルボン酸又はそのハライドと、芳香族モノヒドロキシ化合物とを反応させて得られる構造を有する活性エステル樹脂が挙げられる。当該活性エステル樹脂としては、下記の構造式(1)で表される化合物が好ましい。
構造式(1)中、R1は炭素数1~4のアルキル基であり、Xはベンゼン環、ナフタレン環、炭素数1~4のアルキル基で置換されたベンゼン環若しくはナフタレン環、又はビフェニル基であり、Yはベンゼン環、ナフタレン環、又は炭素数1~4のアルキル基で置換されたベンゼン環若しくはナフタレン環であり、kは0又は1であり、nは繰り返し数の平均を表し0.25~1.5である。
構造式(1)で表される化合物の具体例としては、例えば、下記の例示化合物(1-1)~(1-10)が挙げられる。構造式中のt-Buは、tert-ブチル基である。
活性エステル化合物の別の具体例としては、特開2014-114352号公報に記載されている、下記の構造式(2)で表される化合物及び下記の構造式(3)で表される化合物が挙げられる。
構造式(2)中、R1及びR2はそれぞれ独立に、水素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基であり、Zはベンゾイル基、ナフトイル基、炭素数1~4のアルキル基で置換されたベンゾイル基又はナフトイル基、及び炭素数2~6のアシル基からなる群から選ばれるエステル形成構造部位(z1)、又は水素原子(z2)であり、Zのうち少なくとも1個はエステル形成構造部位(z1)である。
構造式(3)中、R1及びR2はそれぞれ独立に、水素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基であり、Zはベンゾイル基、ナフトイル基、炭素数1~4のアルキル基で置換されたベンゾイル基又はナフトイル基、及び炭素数2~6のアシル基からなる群から選ばれるエステル形成構造部位(z1)、又は水素原子(z2)であり、Zのうち少なくとも1個はエステル形成構造部位(z1)である。
構造式(2)で表される化合物の具体例としては、例えば、下記の例示化合物(2-1)~(2-6)が挙げられる。
構造式(3)で表される化合物の具体例としては、例えば、下記の例示化合物(3-1)~(3-6)が挙げられる。
活性エステル化合物としては、市販品を用いてもよい。活性エステル化合物の市販品としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000-65T」(DIC株式会社製);芳香族構造を含む活性エステル化合物として「EXB9416-70BK」、「EXB-8」、「EXB-9425」(DIC株式会社製);フェノールノボラックのアセチル化物を含む活性エステル化合物として「DC808」(三菱ケミカル株式会社製);フェノールノボラックのベンゾイル化物を含む活性エステル化合物として「YLH1026」(三菱ケミカル株式会社製)等が挙げられる。
活性エステル化合物は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
活性エステル化合物のエステル基当量は、特に制限されない。成形性、耐リフロー性、電気的信頼性等の各種特性バランスの観点からは、150g/eq~400g/eqが好ましく、170g/eq~300g/eqがより好ましく、200g/eq~250g/eqがさらに好ましい。
活性エステル化合物のエステル基当量は、JIS K 0070:1992に準じた方法により測定される値とする。
エポキシ樹脂と活性エステル化合物との当量比(エステル基/エポキシ基)は、硬化物の誘電正接を低く抑える観点からは、0.9以上が好ましく、0.95以上がより好ましく、0.97以上がさらに好ましい。
エポキシ樹脂と活性エステル化合物との当量比(エステル基/エポキシ基)は、活性エステル化合物の未反応分を少なく抑える観点からは、1.1以下が好ましく、1.05以下がより好ましく、1.03以下がさらに好ましい。
エポキシ樹脂と活性エステル化合物との当量比(エステル基/エポキシ基)は、活性エステル化合物の未反応分を少なく抑える観点からは、1.1以下が好ましく、1.05以下がより好ましく、1.03以下がさらに好ましい。
硬化剤は、活性エステル化合物以外のその他の硬化剤を含んでもよい。この場合、その他の硬化剤の種類は特に制限されず、封止用樹脂組成物の所望の特性等に応じて選択できる。その他の硬化剤としては、フェノール硬化剤、アミン硬化剤、酸無水物硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。
フェノール硬化剤として具体的には、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、置換又は非置換のビフェノール等の多価フェノール化合物;フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも一種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等のアルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂;上記フェノール性化合物と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル等とから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂;パラキシリレン変性フェノール樹脂、メタキシリレン変性フェノール樹脂;メラミン変性フェノール樹脂;テルペン変性フェノール樹脂;上記フェノール性化合物と、ジシクロペンタジエンとから共重合により合成されるジシクロペンタジエン型フェノール樹脂及びジシクロペンタジエン型ナフトール樹脂;シクロペンタジエン変性フェノール樹脂;多環芳香環変性フェノール樹脂;ビフェニル型フェノール樹脂;上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂;これら2種以上を共重合して得たフェノール樹脂などが挙げられる。これらのフェノール硬化剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
その他の硬化剤の官能基当量(フェノール硬化剤の場合は水酸基当量)は、特に制限されない。成形性、耐リフロー性、電気的信頼性等の各種特性バランスの観点からは、70g/eq~1000g/eqであることが好ましく、80g/eq~500g/eqであることがより好ましい。
その他の硬化剤の官能基当量(フェノール硬化剤の場合は水酸基当量)は、JIS K 0070:1992に準じた方法により測定される値とする。
硬化剤が固体である場合、その軟化点又は融点は、特に制限されない。成形性と耐リフロー性の観点からは、40℃~180℃であることが好ましく、封止用樹脂組成物の製造時における取扱い性の観点からは、50℃~130℃であることがより好ましい。
硬化剤の融点又は軟化点は、エポキシ樹脂の融点又は軟化点と同様にして測定される値とする。
エポキシ樹脂とすべての硬化剤(活性エステル化合物及びその他の硬化剤)との当量比、すなわちエポキシ樹脂中の官能基数に対する硬化剤中の官能基数の比(硬化剤中の官能基数/エポキシ樹脂中の官能基数)は、特に制限されない。それぞれの未反応分を少なく抑える観点からは、0.5~2.0の範囲に設定されることが好ましく、0.6~1.3の範囲に設定されることがより好ましい。成形性と耐リフロー性の観点からは、0.8~1.2の範囲に設定されることがさらに好ましい。
活性エステル化合物及びその他の硬化剤の全質量に対する活性エステル化合物の含有率は、硬化物の誘電正接を低く抑える観点から、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
エポキシ樹脂、活性エステル化合物及びその他の硬化剤の全質量に対するエポキシ樹脂及び活性エステル化合物の合計含有率は、硬化物の誘電正接を低く抑える観点から、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、85質量%以上であることがさらに好ましい。
(硬化促進剤)
封止用樹脂組成物は、硬化促進剤を含んでもよい。硬化促進剤の種類は特に制限されず、エポキシ樹脂又は硬化剤の種類、封止用樹脂組成物の所望の特性等に応じて選択できる。
封止用樹脂組成物は、硬化促進剤を含んでもよい。硬化促進剤の種類は特に制限されず、エポキシ樹脂又は硬化剤の種類、封止用樹脂組成物の所望の特性等に応じて選択できる。
硬化促進剤としては、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)等のジアザビシクロアルケン、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-ヘプタデシルイミダゾール等の環状アミジン化合物;前記環状アミジン化合物の誘導体;前記環状アミジン化合物又はその誘導体のフェノールノボラック塩;これらの化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;DBUのテトラフェニルボレート塩、DBNのテトラフェニルボレート塩、2-エチル-4-メチルイミダゾールのテトラフェニルボレート塩、N-メチルモルホリンのテトラフェニルボレート塩等の環状アミジニウム化合物及びイソシアネートを付加してなる化合物;DBUのイソシアネート付加物、DBNのイソシアネート付加物、2-エチル-4-メチルイミダゾールのイソシアネート付加物、N-メチルモルホリンのイソシアネート付加物;ピリジン、トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン化合物;前記三級アミン化合物の誘導体;酢酸テトラ-n-ブチルアンモニウム、リン酸テトラ-n-ブチルアンモニウム、酢酸テトラエチルアンモニウム、安息香酸テトラ-n-ヘキシルアンモニウム、水酸化テトラプロピルアンモニウム等のアンモニウム塩化合物;トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキル・アルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等の三級ホスフィン;前記三級ホスフィンと有機ボロン類との錯体等のホスフィン化合物;前記三級ホスフィン又は前記ホスフィン化合物と無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;前記三級ホスフィン又は前記ホスフィン化合物と4-ブロモフェノール、3-ブロモフェノール、2-ブロモフェノール、4-クロロフェノール、3-クロロフェノール、2-クロロフェノール、4-ヨウ化フェノール、3-ヨウ化フェノール、2-ヨウ化フェノール、4-ブロモ-2-メチルフェノール、4-ブロモ-3-メチルフェノール、4-ブロモ-2,6-ジメチルフェノール、4-ブロモ-3,5-ジメチルフェノール、4-ブロモ-2,6-ジ-tert-ブチルフェノール、4-クロロ-1-ナフトール、1-ブロモ-2-ナフトール、6-ブロモ-2-ナフトール、4-ブロモ-4’-ヒドロキシビフェニル等のハロゲン化フェノール化合物を反応させた後に、脱ハロゲン化水素の工程を経て得られる、分子内分極を有する化合物;テトラフェニルホスホニウム等のテトラ置換ホスホニウム、テトラ-p-トリルボレート等のホウ素原子に結合したフェニル基がないテトラ置換ホスホニウム及びテトラ置換ボレート;テトラフェニルホスホニウムとフェノール化合物との塩;テトラアルキルホスホニウムと芳香族カルボン酸無水物の部分加水分解物との塩などが挙げられる。
封止用樹脂組成物が硬化促進剤を含む場合、その量は、樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して0.1質量部~30質量部であることが好ましく、1質量部~15質量部であることがより好ましい。硬化促進剤の量が樹脂成分100質量部に対して0.1質量部以上であると、短時間で良好に硬化する傾向にある。硬化促進剤の量が樹脂成分100質量部に対して30質量部以下であると、硬化速度が速すぎず良好な成形品が得られる傾向にある。
(無機充填材)
本開示の封止用樹脂組成物は、含まれる無機充填材の平均粒径が5μm~100μmである。無機充填材の平均粒径は、単位量当たりの表面水酸基量を低減し、その結果、硬化物の誘電正接を低く抑える観点から、5μm以上であり、8μm以上であることが好ましく、10μm以上であることがより好ましい。無機充填材の平均粒径は、封止用樹脂組成物の充填性を向上させる観点から、100μm以下であり、50μm以下であることが好ましく、20μm以下であることがより好ましい。
本開示の封止用樹脂組成物は、含まれる無機充填材の平均粒径が5μm~100μmである。無機充填材の平均粒径は、単位量当たりの表面水酸基量を低減し、その結果、硬化物の誘電正接を低く抑える観点から、5μm以上であり、8μm以上であることが好ましく、10μm以上であることがより好ましい。無機充填材の平均粒径は、封止用樹脂組成物の充填性を向上させる観点から、100μm以下であり、50μm以下であることが好ましく、20μm以下であることがより好ましい。
無機充填材の平均粒径は、封止用樹脂組成物又はその硬化物の薄片試料を走査型電子顕微鏡にて撮像した画像において、無作為に選んだ無機充填材100個の長径を測定し、それを算術平均した値である。
無機充填材の種類は、特に制限されない。具体的には、溶融シリカ、結晶シリカ、ガラス、アルミナ、タルク、クレー、マイカ等の無機材料が挙げられる。難燃効果を有する無機充填材を用いてもよい。難燃効果を有する無機充填材としては、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛の複合水酸化物等の複合金属水酸化物、硼酸亜鉛などが挙げられる。
無機充填材の中でも、線膨張係数低減の観点からは溶融シリカ等のシリカが好ましく、高熱伝導性の観点からはアルミナが好ましい。無機充填材は1種を単独で用いても2種以上を組み合わせて用いてもよい。無機充填材の形態としては粉末、粉末を球形化したビーズ、繊維等が挙げられる。
封止用樹脂組成物に含まれる無機充填材の含有率は特に制限されない。流動性及び強度の観点からは、封止用樹脂組成物全体の30体積%~90体積%であることが好ましく、35体積%~80体積%であることがより好ましく、40体積%~70体積%であることがさらに好ましい。無機充填材の含有率が封止用樹脂組成物全体の30体積%以上であると、硬化物の熱膨張係数、熱伝導率、弾性率等の特性がより向上する傾向にある。無機充填材の含有率が封止用樹脂組成物全体の90体積%以下であると、封止用樹脂組成物の粘度の上昇が抑制され、流動性がより向上して成形性がより良好になる傾向にある。
[各種添加剤]
封止用樹脂組成物は、上述の成分に加えて、以下に例示するカップリング剤、イオン交換体、離型剤、難燃剤、着色剤等の各種添加剤を含んでもよい。封止用樹脂組成物は、以下に例示する添加剤以外にも必要に応じて当技術分野で周知の各種添加剤を含んでもよい。
封止用樹脂組成物は、上述の成分に加えて、以下に例示するカップリング剤、イオン交換体、離型剤、難燃剤、着色剤等の各種添加剤を含んでもよい。封止用樹脂組成物は、以下に例示する添加剤以外にも必要に応じて当技術分野で周知の各種添加剤を含んでもよい。
(カップリング剤)
封止用樹脂組成物は、カップリング剤を含んでもよい。樹脂成分と無機充填材との接着性を高める観点からは、封止用樹脂組成物はカップリング剤を含むことが好ましい。カップリング剤としては、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン、ジシラザン等のシラン系化合物、チタン系化合物、アルミニウムキレート化合物、アルミニウム/ジルコニウム系化合物などの公知のカップリング剤が挙げられる。
封止用樹脂組成物は、カップリング剤を含んでもよい。樹脂成分と無機充填材との接着性を高める観点からは、封止用樹脂組成物はカップリング剤を含むことが好ましい。カップリング剤としては、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン、ジシラザン等のシラン系化合物、チタン系化合物、アルミニウムキレート化合物、アルミニウム/ジルコニウム系化合物などの公知のカップリング剤が挙げられる。
封止用樹脂組成物がカップリング剤を含む場合、カップリング剤の量は、無機充填材100質量部に対して0.05質量部~5質量部であることが好ましく、0.1質量部~2.5質量部であることがより好ましい。カップリング剤の量が無機充填材100質量部に対して0.05質量部以上であると、フレームとの接着性がより向上する傾向にある。カップリング剤の量が無機充填材100質量部に対して5質量部以下であると、パッケージの成形性がより向上する傾向にある。
(イオン交換体)
封止用樹脂組成物は、イオン交換体を含んでもよい。封止用樹脂組成物は、封止される素子を備える電子部品装置の耐湿性及び高温放置特性を向上させる観点から、イオン交換体を含むことが好ましい。イオン交換体は特に制限されず、従来公知のものを用いることができる。具体的には、ハイドロタルサイト化合物、並びにマグネシウム、アルミニウム、チタン、ジルコニウム及びビスマスからなる群より選ばれる少なくとも1種の元素の含水酸化物等が挙げられる。イオン交換体は、1種を単独で用いても2種以上を組み合わせて用いてもよい。中でも、下記一般式(A)で表されるハイドロタルサイトが好ましい。
封止用樹脂組成物は、イオン交換体を含んでもよい。封止用樹脂組成物は、封止される素子を備える電子部品装置の耐湿性及び高温放置特性を向上させる観点から、イオン交換体を含むことが好ましい。イオン交換体は特に制限されず、従来公知のものを用いることができる。具体的には、ハイドロタルサイト化合物、並びにマグネシウム、アルミニウム、チタン、ジルコニウム及びビスマスからなる群より選ばれる少なくとも1種の元素の含水酸化物等が挙げられる。イオン交換体は、1種を単独で用いても2種以上を組み合わせて用いてもよい。中でも、下記一般式(A)で表されるハイドロタルサイトが好ましい。
Mg(1-X)AlX(OH)2(CO3)X/2・mH2O ……(A)
(0<X≦0.5、mは正の数)
(0<X≦0.5、mは正の数)
封止用樹脂組成物がイオン交換体を含む場合、その含有量は、ハロゲンイオン等のイオンを捕捉するのに充分な量であれば特に制限はない。例えば、樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して0.1質量部~30質量部であることが好ましく、1質量部~10質量部であることがより好ましい。
(離型剤)
封止用樹脂組成物は、成形時における金型との良好な離型性を得る観点から、離型剤を含んでもよい。離型剤は特に制限されず、従来公知のものを用いることができる。具体的には、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックスなどが挙げられる。離型剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
封止用樹脂組成物は、成形時における金型との良好な離型性を得る観点から、離型剤を含んでもよい。離型剤は特に制限されず、従来公知のものを用いることができる。具体的には、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックスなどが挙げられる。離型剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
封止用樹脂組成物が離型剤を含む場合、その量は樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して0.01質量部~10質量部が好ましく、0.1質量部~5質量部がより好ましい。離型剤の量が樹脂成分100質量部に対して0.01質量部以上であると、離型性が充分に得られる傾向にある。10質量部以下であると、より良好な接着性が得られる傾向にある。
(難燃剤)
封止用樹脂組成物は、難燃剤を含んでもよい。難燃剤は特に制限されず、従来公知のものを用いることができる。具体的には、ハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む有機又は無機の化合物、金属水酸化物等が挙げられる。難燃剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
封止用樹脂組成物は、難燃剤を含んでもよい。難燃剤は特に制限されず、従来公知のものを用いることができる。具体的には、ハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む有機又は無機の化合物、金属水酸化物等が挙げられる。難燃剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
封止用樹脂組成物が難燃剤を含む場合、その量は、所望の難燃効果を得るのに充分な量であれば特に制限されない。例えば、樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して1質量部~30質量部であることが好ましく、2質量部~20質量部であることがより好ましい。
(着色剤)
封止用樹脂組成物は、着色剤を含んでもよい。着色剤としてはカーボンブラック、有機染料、有機顔料、酸化チタン、鉛丹、ベンガラ等の公知の着色剤を挙げることができる。着色剤の含有量は目的等に応じて適宜選択できる。着色剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
封止用樹脂組成物は、着色剤を含んでもよい。着色剤としてはカーボンブラック、有機染料、有機顔料、酸化チタン、鉛丹、ベンガラ等の公知の着色剤を挙げることができる。着色剤の含有量は目的等に応じて適宜選択できる。着色剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(封止用樹脂組成物の調製方法)
封止用樹脂組成物の調製方法は、特に制限されない。一般的な手法としては、所定の配合量の成分をミキサー等によって十分混合した後、ミキシングロール、押出機等によって溶融混練し、冷却し、粉砕する方法を挙げることができる。より具体的には、例えば、上述した成分の所定量を均一に攪拌及び混合し、予め70℃~140℃に加熱してあるニーダー、ロール、エクストルーダー等で混練し、冷却し、粉砕する方法を挙げることができる。
封止用樹脂組成物の調製方法は、特に制限されない。一般的な手法としては、所定の配合量の成分をミキサー等によって十分混合した後、ミキシングロール、押出機等によって溶融混練し、冷却し、粉砕する方法を挙げることができる。より具体的には、例えば、上述した成分の所定量を均一に攪拌及び混合し、予め70℃~140℃に加熱してあるニーダー、ロール、エクストルーダー等で混練し、冷却し、粉砕する方法を挙げることができる。
封止用樹脂組成物は、常温常圧下(例えば、25℃、大気圧下)において固体であることが好ましい。封止用樹脂組成物が固体である場合の形状は特に制限されず、粉状、粒状、タブレット状等が挙げられる。封止用樹脂組成物がタブレット状である場合の寸法及び質量は、パッケージの成形条件に合うような寸法及び質量となるようにすることが取り扱い性の観点から好ましい。
<電子部品装置>
本開示の一実施形態である電子部品装置は、支持部材と、前記支持部材上に配置された素子と、前記素子を封止している本開示の封止用樹脂組成物の硬化物と、を備える。
本開示の一実施形態である電子部品装置は、支持部材と、前記支持部材上に配置された素子と、前記素子を封止している本開示の封止用樹脂組成物の硬化物と、を備える。
電子部品装置としては、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハ、有機基板等の支持部材に、素子(半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子など)を搭載して得られた素子部を封止用樹脂組成物で封止したものが挙げられる。
より具体的には、リードフレーム上に素子を固定し、ボンディングパッド等の素子の端子部とリード部とをワイヤボンディング、バンプ等で接続した後、封止用樹脂組成物を用いてトランスファ成形等によって封止した構造を有するDIP(Dual Inline Package)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)、SOP(Small Outline Package)、SOJ(Small Outline J-lead package)、TSOP(Thin Small Outline Package)、TQFP(Thin Quad Flat Package)等の一般的な樹脂封止型IC;テープキャリアにバンプで接続した素子を封止用樹脂組成物で封止した構造を有するTCP(Tape Carrier Package);支持部材上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等で接続した素子を、封止用樹脂組成物で封止した構造を有するCOB(Chip On Board)モジュール、ハイブリッドIC、マルチチップモジュール等;裏面に配線板接続用の端子を形成した支持部材の表面に素子を搭載し、バンプ又はワイヤボンディングにより素子と支持部材に形成された配線とを接続した後、封止用樹脂組成物で素子を封止した構造を有するBGA(Ball Grid Array)、CSP(Chip Size Package)、MCP(Multi Chip Package)などが挙げられる。また、プリント配線板においても封止用樹脂組成物を好適に使用することができる。
より具体的には、リードフレーム上に素子を固定し、ボンディングパッド等の素子の端子部とリード部とをワイヤボンディング、バンプ等で接続した後、封止用樹脂組成物を用いてトランスファ成形等によって封止した構造を有するDIP(Dual Inline Package)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)、SOP(Small Outline Package)、SOJ(Small Outline J-lead package)、TSOP(Thin Small Outline Package)、TQFP(Thin Quad Flat Package)等の一般的な樹脂封止型IC;テープキャリアにバンプで接続した素子を封止用樹脂組成物で封止した構造を有するTCP(Tape Carrier Package);支持部材上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等で接続した素子を、封止用樹脂組成物で封止した構造を有するCOB(Chip On Board)モジュール、ハイブリッドIC、マルチチップモジュール等;裏面に配線板接続用の端子を形成した支持部材の表面に素子を搭載し、バンプ又はワイヤボンディングにより素子と支持部材に形成された配線とを接続した後、封止用樹脂組成物で素子を封止した構造を有するBGA(Ball Grid Array)、CSP(Chip Size Package)、MCP(Multi Chip Package)などが挙げられる。また、プリント配線板においても封止用樹脂組成物を好適に使用することができる。
<電子部品装置の製造方法>
本開示の電子部品装置の製造方法は、素子を支持部材上に配置する工程と、前記素子を本開示の封止用樹脂組成物で封止する工程と、を含む。
本開示の電子部品装置の製造方法は、素子を支持部材上に配置する工程と、前記素子を本開示の封止用樹脂組成物で封止する工程と、を含む。
上記各工程を実施する方法は特に制限されず、一般的な手法により行うことができる。また、電子部品装置の製造に使用する支持部材及び素子の種類は特に制限されず、電子部品装置の製造に一般的に用いられる支持部材及び素子を使用できる。
本開示の封止用樹脂組成物を用いて素子を封止する方法としては、低圧トランスファ成形法、インジェクション成形法、圧縮成形法等が挙げられる。これらの中では、低圧トランスファ成形法が一般的である。
以下、上記実施形態を実施例により具体的に説明するが、上記実施形態の範囲はこれらの実施例に限定されるものではない。
<封止用樹脂組成物の調製>
下記に示す成分を表1に示す配合割合で混合し、実施例と比較例の封止用樹脂組成物を調製した。この封止用樹脂組成物は、常温常圧下において固体であった。
下記に示す成分を表1に示す配合割合で混合し、実施例と比較例の封止用樹脂組成物を調製した。この封止用樹脂組成物は、常温常圧下において固体であった。
・エポキシ樹脂1:ビフェニルアラルキル型エポキシ樹脂、エポキシ当量274g/eq(日本化薬株式会社、品名「NC-3000」)
・エポキシ樹脂2:ジシクロペンタジエン型エポキシ樹脂、エポキシ当量258g/eq(DIC株式会社、品名「HP-7200」)
・エポキシ樹脂3:トリフェニルメタン型エポキシ樹脂、エポキシ当量167g/eq(三菱ケミカル株式会社、品名「1032H60」)
・エポキシ樹脂4:ビフェニル型エポキシ樹脂、エポキシ当量192g/eq(三菱ケミカル株式会社、品名「YX-4000」)
・エポキシ樹脂2:ジシクロペンタジエン型エポキシ樹脂、エポキシ当量258g/eq(DIC株式会社、品名「HP-7200」)
・エポキシ樹脂3:トリフェニルメタン型エポキシ樹脂、エポキシ当量167g/eq(三菱ケミカル株式会社、品名「1032H60」)
・エポキシ樹脂4:ビフェニル型エポキシ樹脂、エポキシ当量192g/eq(三菱ケミカル株式会社、品名「YX-4000」)
・活性エステル化合物1:DIC株式会社、品名「EXB-8」
・フェノール硬化剤1:フェノールアラルキル樹脂、水酸基当量175g/eq(明和化成株式会社、品名「MEH7800SS」)
・フェノール硬化剤1:フェノールアラルキル樹脂、水酸基当量175g/eq(明和化成株式会社、品名「MEH7800SS」)
・硬化促進剤1:トリフェニルホスフィン/1,4-ベンゾキノン付加物
・充填材1:溶融シリカ(DENKA社、品名「FB-870FD」)
・充填材2:溶融シリカ(株式会社瀧森、品名「EUF-46V」)
・充填材3:溶融シリカ(株式会社瀧森、品名「MUF-2BV」)
・充填材4:溶融シリカ(アドマテックス社、品名「SO-25R」)
・充填材2:溶融シリカ(株式会社瀧森、品名「EUF-46V」)
・充填材3:溶融シリカ(株式会社瀧森、品名「MUF-2BV」)
・充填材4:溶融シリカ(アドマテックス社、品名「SO-25R」)
・カップリング剤1:N-フェニル-3-アミノプロピルトリメトキシシラン(信越化学工業社、品名「KBM-573」)
・カップリング剤2:3-メルカプトプロピルトリメトキシシラン(信越化学工業社、品名「KBM-803」)
・離型剤:モンタン酸エステルワックス(クラリアントジャパン株式会社、品名「HW-E」)
・着色剤:カーボンブラック(三菱ケミカル株式会社、品名「MA600」)
・カップリング剤2:3-メルカプトプロピルトリメトキシシラン(信越化学工業社、品名「KBM-803」)
・離型剤:モンタン酸エステルワックス(クラリアントジャパン株式会社、品名「HW-E」)
・着色剤:カーボンブラック(三菱ケミカル株式会社、品名「MA600」)
<封止用樹脂組成物の性能評価>
(無機充填材の平均粒径)
封止用樹脂組成物の薄片試料を走査型電子顕微鏡にて撮像した画像において、無作為に選んだ無機充填材100個の長径(μm)を測定し、それを算術平均した。
(無機充填材の平均粒径)
封止用樹脂組成物の薄片試料を走査型電子顕微鏡にて撮像した画像において、無作為に選んだ無機充填材100個の長径(μm)を測定し、それを算術平均した。
(スパイラルフロー)
EMMI-1-66に準じたスパイラルフロー測定用金型を用いて、封止用樹脂組成物を金型温度180℃、成形圧力6.9MPa、硬化時間90秒の条件で成形し、流動距離(cm)を求めた。
EMMI-1-66に準じたスパイラルフロー測定用金型を用いて、封止用樹脂組成物を金型温度180℃、成形圧力6.9MPa、硬化時間90秒の条件で成形し、流動距離(cm)を求めた。
(比誘電率及び誘電正接)
封止用樹脂組成物を真空ハンドプレス機に仕込み、金型温度175℃、成形圧力6.9MPa、硬化時間600秒の条件で成形し、後硬化を180℃で6時間行い、板状の硬化物(縦12.5mm、横25mm、厚さ0.2mm)を得た。この板状の硬化物を試験片として、誘電率測定装置(アジレント・テクノロジー社、品名「ネットワークアナライザN5227A」)を用いて、温度25±3℃下、約60GHzでの比誘電率と誘電正接を測定した。
封止用樹脂組成物を真空ハンドプレス機に仕込み、金型温度175℃、成形圧力6.9MPa、硬化時間600秒の条件で成形し、後硬化を180℃で6時間行い、板状の硬化物(縦12.5mm、横25mm、厚さ0.2mm)を得た。この板状の硬化物を試験片として、誘電率測定装置(アジレント・テクノロジー社、品名「ネットワークアナライザN5227A」)を用いて、温度25±3℃下、約60GHzでの比誘電率と誘電正接を測定した。
(吸水率)
製造直後の上記板状の硬化物を、121℃/2.1気圧のプレッシャークッカー試験装置に投入し、24時間後に取り出し、投入直前の質量からの増加率(%)を求めた。
製造直後の上記板状の硬化物を、121℃/2.1気圧のプレッシャークッカー試験装置に投入し、24時間後に取り出し、投入直前の質量からの増加率(%)を求めた。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
Claims (3)
- エポキシ樹脂と硬化剤と無機充填材とを含有し、
前記硬化剤が活性エステル化合物を含み、
前記無機充填材の平均粒径が5μm~100μmである、封止用樹脂組成物。 - 支持部材と、
前記支持部材上に配置された素子と、
前記素子を封止している請求項1に記載の封止用樹脂組成物の硬化物と、
を備える電子部品装置。 - 素子を支持部材上に配置する工程と、
前記素子を請求項1に記載の封止用樹脂組成物で封止する工程と、
を含む電子部品装置の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/036099 WO2020065872A1 (ja) | 2018-09-27 | 2018-09-27 | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 |
CN201880098052.3A CN112771114B (zh) | 2018-09-27 | 2018-09-27 | 密封用树脂组合物、电子部件装置及电子部件装置的制造方法 |
JP2020547758A JP7272368B2 (ja) | 2018-09-27 | 2018-09-27 | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 |
TW108134503A TWI816887B (zh) | 2018-09-27 | 2019-09-25 | 密封用樹脂組成物、電子零件裝置及電子零件裝置的製造方法 |
JP2023072567A JP2023100761A (ja) | 2018-09-27 | 2023-04-26 | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 |
JP2024064754A JP2024091744A (ja) | 2018-09-27 | 2024-04-12 | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/036099 WO2020065872A1 (ja) | 2018-09-27 | 2018-09-27 | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020065872A1 true WO2020065872A1 (ja) | 2020-04-02 |
Family
ID=69953008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/036099 WO2020065872A1 (ja) | 2018-09-27 | 2018-09-27 | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (3) | JP7272368B2 (ja) |
CN (1) | CN112771114B (ja) |
TW (1) | TWI816887B (ja) |
WO (1) | WO2020065872A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023112281A1 (ja) * | 2021-12-16 | 2023-06-22 | 株式会社アドマテックス | 電子材料用フィラー及びその製造方法、電子材料用スラリー、並びに電子材料用樹脂組成物 |
KR20240034802A (ko) | 2021-07-16 | 2024-03-14 | 스미또모 베이크라이트 가부시키가이샤 | 반도체 봉지용 수지 조성물 및 반도체 장치 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012211269A (ja) * | 2011-03-31 | 2012-11-01 | Sekisui Chem Co Ltd | 予備硬化物、粗化予備硬化物及び積層体 |
JP2015038197A (ja) * | 2013-07-19 | 2015-02-26 | 味の素株式会社 | 樹脂組成物 |
WO2017038941A1 (ja) * | 2015-09-02 | 2017-03-09 | 日立化成株式会社 | 樹脂組成物、硬化物、封止用フィルム及び封止構造体 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4760010B2 (ja) | 2004-12-22 | 2011-08-31 | 三菱化学株式会社 | ポリエーテルポリオール樹脂、硬化性樹脂組成物及びその硬化物 |
JP5569215B2 (ja) | 2010-07-26 | 2014-08-13 | 三菱化学株式会社 | 高可撓性樹脂の製造方法 |
JP5630652B2 (ja) * | 2011-01-06 | 2014-11-26 | 日立化成株式会社 | 封止用エポキシ樹脂成形材料および電子部品装置 |
CN109971122A (zh) * | 2011-05-13 | 2019-07-05 | 日立化成株式会社 | 密封用环氧树脂成形材料及电子部件装置 |
JP6171274B2 (ja) * | 2012-06-27 | 2017-08-02 | 日立化成株式会社 | 封止用エポキシ樹脂成形材料及び電子部品装置 |
TWI694109B (zh) | 2013-06-12 | 2020-05-21 | 日商味之素股份有限公司 | 樹脂組成物 |
JP6277611B2 (ja) * | 2013-06-24 | 2018-02-14 | 日立化成株式会社 | 素子封止用エポキシ樹脂成形材料及び電子部品装置 |
JP6497125B2 (ja) | 2015-02-25 | 2019-04-10 | Dic株式会社 | ポリアリーレンエーテル樹脂、ポリアリーレンエーテル樹脂の製造方法、硬化性樹脂材料、その硬化物、半導体封止材料、半導体装置、プリプレグ、プリント回路基板、ビルドアップフィルム、ビルドアップ基板 |
CN109983052B (zh) * | 2016-11-18 | 2021-07-23 | 昭和电工材料株式会社 | 密封用膜及其固化物、以及电子装置 |
-
2018
- 2018-09-27 WO PCT/JP2018/036099 patent/WO2020065872A1/ja active Application Filing
- 2018-09-27 CN CN201880098052.3A patent/CN112771114B/zh active Active
- 2018-09-27 JP JP2020547758A patent/JP7272368B2/ja active Active
-
2019
- 2019-09-25 TW TW108134503A patent/TWI816887B/zh active
-
2023
- 2023-04-26 JP JP2023072567A patent/JP2023100761A/ja active Pending
-
2024
- 2024-04-12 JP JP2024064754A patent/JP2024091744A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012211269A (ja) * | 2011-03-31 | 2012-11-01 | Sekisui Chem Co Ltd | 予備硬化物、粗化予備硬化物及び積層体 |
JP2015038197A (ja) * | 2013-07-19 | 2015-02-26 | 味の素株式会社 | 樹脂組成物 |
WO2017038941A1 (ja) * | 2015-09-02 | 2017-03-09 | 日立化成株式会社 | 樹脂組成物、硬化物、封止用フィルム及び封止構造体 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240034802A (ko) | 2021-07-16 | 2024-03-14 | 스미또모 베이크라이트 가부시키가이샤 | 반도체 봉지용 수지 조성물 및 반도체 장치 |
WO2023112281A1 (ja) * | 2021-12-16 | 2023-06-22 | 株式会社アドマテックス | 電子材料用フィラー及びその製造方法、電子材料用スラリー、並びに電子材料用樹脂組成物 |
Also Published As
Publication number | Publication date |
---|---|
TWI816887B (zh) | 2023-10-01 |
TW202024167A (zh) | 2020-07-01 |
CN112771114A (zh) | 2021-05-07 |
JPWO2020065872A1 (ja) | 2021-08-30 |
CN112771114B (zh) | 2024-03-15 |
JP7272368B2 (ja) | 2023-05-12 |
JP2023100761A (ja) | 2023-07-19 |
JP2024091744A (ja) | 2024-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020066856A1 (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 | |
JP7452028B2 (ja) | 封止用樹脂組成物、電子部品装置、及び電子部品装置の製造方法 | |
JP2024091744A (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 | |
JP7537540B2 (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 | |
WO2020262654A1 (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 | |
JP2020152825A (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 | |
JP7491223B2 (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 | |
JP7443778B2 (ja) | 封止用樹脂組成物、電子部品装置、及び電子部品装置の製造方法 | |
JP7396290B2 (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 | |
JP2021084980A (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 | |
JP2020122071A (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 | |
JP7487596B2 (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 | |
JP2024149696A (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 | |
JP2022021901A (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 | |
WO2023038035A1 (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 | |
JP2024081462A (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 | |
JP2024081463A (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 | |
JP2024081461A (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 | |
WO2020189309A1 (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 | |
JP2024015914A (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 | |
JP2023127420A (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 | |
JP2022011184A (ja) | 封止用樹脂組成物及び電子部品装置 | |
JP2020050793A (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18934622 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020547758 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18934622 Country of ref document: EP Kind code of ref document: A1 |