WO2020063841A1 - 光学材料条纹的定量测试方法 - Google Patents

光学材料条纹的定量测试方法 Download PDF

Info

Publication number
WO2020063841A1
WO2020063841A1 PCT/CN2019/108498 CN2019108498W WO2020063841A1 WO 2020063841 A1 WO2020063841 A1 WO 2020063841A1 CN 2019108498 W CN2019108498 W CN 2019108498W WO 2020063841 A1 WO2020063841 A1 WO 2020063841A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
gray
test sample
stripe
quantitative
Prior art date
Application number
PCT/CN2019/108498
Other languages
English (en)
French (fr)
Inventor
麦绿波
Original Assignee
中国兵器工业标准化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国兵器工业标准化研究所 filed Critical 中国兵器工业标准化研究所
Priority to JP2020542829A priority Critical patent/JP6964790B2/ja
Publication of WO2020063841A1 publication Critical patent/WO2020063841A1/zh
Priority to US16/937,542 priority patent/US10852250B1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0631Homogeneising elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/127Calibration; base line adjustment; drift compensation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection

Definitions

  • the invention relates to the technical field of optical material stripe testing, in particular to a quantitative test method for optical material stripe.
  • Stripes in optical materials are defects in materials caused by problems in the process of refining the optical material or problems in the control of the refining process, and are phenomena caused by sudden changes in the refractive index of the optical material.
  • the fringes of the visible light material can be observed using the projection optical system of FIG. 1 (also can be observed using the moire optical system).
  • the streaks in these optical materials are usually irregular filaments or bands with gray scale, as shown in Figure 2.
  • the formation of fringes is a sudden increase in the refractive index (relatively increasing or decreasing ⁇ n) relative to the refractive index of the substrate.
  • Figure 2 shows examples of mild, moderate, and severe streaks in optical materials.
  • the degree of streak defects in optical materials increases with the number of stripes, the area they occupy, and the gray scale.
  • Optical materials without streaks are Even and translucent.
  • the projection optical system of optical materials can only be qualitatively evaluated, and even the schlieren method can only be tested semi-quantitatively (only the uneven details in the stripes are reflected more), neither method can be used to quantitatively test the optical materials. Stripes.
  • the fringe test of optical materials is only the qualitative test of the projection method and the semi-quantitative test of the schlieren method. Neither method can be used to quantitatively test the fringe.
  • the so-called schlieren method which is a semi-quantitative test, is actually a test that has no quantitative expression relationship, but has more fringe image details than the projection method.
  • the qualitative evaluation of the fringe is based on the fringe degree.
  • the fringe degree is divided into A, B, C, and D grades according to the qualitative grade.
  • the fringe grade of the test sample is determined by human vision on the displayed fringe image through sensory observation. Accurately quantify the expression of the index and distinguish the boundaries, and the results are mainly determined by the observer. Therefore, the evaluation of fringeness lacks objectivity and accuracy, it is difficult to truly and accurately reflect the effect of fringe on the optical system, and it cannot provide accurate quantitative expression relationship of fringe defects for the design of optical systems.
  • the technical problem to be solved by the present invention is: how to design a quantitative test method for the stripes of optical materials to solve the problems of quantitative test and objective evaluation of the stripe defects of visible optical materials, infrared optical materials, etc., and to reasonably select materials for the optical system to ensure the design of the optical system Quality and Guaranteed Refining Quality of Optical Materials Provides accurate quantitative testing and evaluation methods.
  • the present invention provides a quantitative test method for optical material stripes, including the following steps:
  • S1 Establish an index value for the quantitative expression of optical material stripes— “strip value”, and establish an algorithm formula for the amount of stripes according to the expression form of optical material stripes and its influencing factors of optical performance.
  • S be the “strip value” and i be The serial number of the gray micro-elements in the test sample strip image, ⁇ g i is the gray value of the i-th micro-element in the test sample strip image, ⁇ g m is the average gray value of the micro-elements in the test sample strip image, and n is the test sample strip The total number of microelements in the image, j is the ordinal number of stripes in the test sample stripe image, a j is the area of the j-th stripe in the test sample stripe image, m is the total number of stripes in the test sample stripe image, and A is the test sample The total area of the fringe image and d is the thickness of the test sample.
  • the “fringe value” S is calculated according to the following formula:
  • Equation (1) indicates that the "strip value" is the product of the average gray level of the stripe per unit thickness of the test sample and the total area of the stripe as a percentage of the total area of the test sample;
  • Step S2. Construct the photoelectric projection test device as follows: the device sequentially includes a parallel light source system 1, a test sample 2, a positive lens 3, a positive lens 6, and a detector 7 in order, and uses the sample stage 9 to carry the test sample. 2;
  • Step S3 Set the gray scale of the light energy response of the detector 7 of the photoelectric test projection device to the detection unit in its dynamic range, and the number of gray scales of the gray scale is graded according to the expected accuracy of the test;
  • Step S4 A standard proof is prepared for calibrating the photoelectric projection test device, and the standard proofs are a zero-gray standard proof 401, a medium-gray standard proof 402, a medium-low gray-scale standard proof 403, and a high-gray standard Proof 404;
  • the zero-gray standard proof 401 is a standard proof without any streak defects inside;
  • the middle-gray standard proof 402 is a standard proof that takes the middle gray level of the maximum gray level of the stripe, and is calibrated at 50% gray value.
  • Photoelectric projection test device the thickness of all standard proofs is a uniform thickness, and its material is the same as the material grade of the tested sample;
  • Step S5 grinding the test sample 2 of the optical material to the same thickness as the standard proof
  • Step S6 Use the standard proof produced in step S4 to calibrate the corner of the photoelectric projection test device, test the test sample 2 with the calibrated optical projection test device, and perform the test image of the test sample 2 by the optical projection test device. Statistics are calculated according to the formula established in step S1 to obtain the quantitative expression value of the streak defect of the tested sample.
  • the device is replaced by sequentially including a parallel light source system 1, a test sample 2, a negative lens 4, an aperture 5, a positive lens 6, and a detector 7 in order.
  • the classification is divided into 32 levels with low accuracy, 64 levels with medium accuracy, and 128 or 256 levels with high accuracy, and the threshold between each level is default value.
  • step S6 is specifically:
  • step 3 Use the reference value of the highest brightness state obtained in step 1) to perform a corresponding zero gray scale calibration on the gray scale of the detector 7, and use the two reference values of 50% gray obtained in step 2) to separately detect the gray scale. 7 gray scale for calibration corresponding to 50% gray;
  • test image of test sample 2 counts the area and gray level of the stripes, and calculates according to the calculation formula of “strip value” S established in step S1 to obtain a quantitative expression value of the stripe defect of test sample 2 and outputs a test image and a quantitative Test Results.
  • a high luminance value higher than zero grayscale is treated as saturation, or as zero grayscale.
  • the low-middle gray-scale standard proofing that is, 25% gray-scale and high-middle gray-scale standard proofing, that is, 75% grayscale, are also used to calibrate the detector 7.
  • the quantitative test result is an absolute quantitative test result of the optical material stripes or a relative quantitative test result of the optical material stripes.
  • the invention first creates a concept of fringe quantization expression and fringe quantization algorithm formula, and then applies the optical projection test device received by the photodetector, and establishes a gray scale of the received signal of the photodetector and calibrates the standard proof of the projection device.
  • the optical projection test device is used for calibration or calibration.
  • the calibrated or calibrated optical projection test device is used to test the measured sample, and the optical projection test device is used to calculate the test image of the sample.
  • the fringe quantization algorithm formula is used to calculate the test result. Quantitative expression of streak defects in the sample.
  • the invention changes the result of the stripe test of the optical material from manual evaluation to the automatic calculation of the quantitative result by the photoelectric projection test device according to the algorithm of the stripe value, which greatly improves the test accuracy and test objectivity, and also greatly improves the test work efficiency. , So that the quantitative test results are obtained at the same time that the test image is obtained.
  • FIG. 1 is a diagram of a visible light projection optical system in the prior art
  • Figure 2 is a fringe pattern in an optical material
  • FIG. 3 is a diagram of a photoelectric projection test device in the present invention.
  • FIG. 4 is a schematic diagram of a standard proof of a photoelectric projection test device in the present invention.
  • FIG. 5 is a schematic diagram of a grayscale linearization correction relationship between two-point calibration of a fringe quantitative test in the present invention
  • FIG. 6 is a schematic diagram of a relationship between correction of gray scale linearization of a four-point calibration of a fringe quantitative test.
  • the invention establishes the quantitative concept of the fringe quantitative expression and the fringe quantitative algorithm, designs the standard calibration characteristics of the test device, establishes the calibration method and the error correction analysis method for the fringe quantitative test of the photoelectric projection test device, and applies the prescribed
  • the photoelectric projection test device performs the test according to the prescribed test procedures.
  • the method for quantitatively measuring the fringe of an optical material according to the present invention specifically includes the following steps:
  • Step S1 Establish an index value for the quantitative expression of the stripe of the optical material-"stripe value", and establish an algorithm formula for the amount of stripe according to the expression form of the stripe of the optical material and its optical performance influencing factors.
  • Is the serial number of the gray micro-elements in the stripe image of the test sample ⁇ g i is the gray value of the i-th micro-element in the stripe image of the test sample
  • ⁇ g m is the average gray-scale value of the micro-elements in the stripe image of the test sample
  • n is the test sample
  • j is the ordinal number of the fringe in the fringe image of the test sample
  • a j is the area of the j-th fringe in the fringe image of the test sample
  • m is the total number of fringe images in the fringe image of the test sample
  • A is the test The total area of the sample stripe image and d is the thickness of the test sample.
  • Equation (1) shows that the "strip value" is the product of the average gray level of the stripe per unit thickness of the test sample and the total area of the stripe as a percentage of the total area of the test sample, where It is the sum of the gray levels of the detection elements in each stripe, and the detection elements in each stripe are different.
  • This algorithm takes the main factors affecting the imaging quality of the optical system as the key factors for quantitative calculation. The two key factors are the area of the fringe and the gray level of the fringe. In addition, the calculation results between the test samples are comparable. The calculation process is to compare the gray level of the stripes according to the average value, and compare the area and gray level of the stripes according to the unit thickness of the test sample. This algorithm makes the test quantized values of the test samples comparable in magnitude.
  • step S2 the quantitative test of the fringe in the optical material cannot be displayed on the screen shown in FIG. 1 (regardless of the projection method or the schlieren method).
  • a detector is required to receive the image projected by the test sample, and the detector is used to The fine data of the stripe in the test sample is processed (manipulation is not able to refine the image) to achieve quantitative testing. Therefore, the device for the stripe test of optical materials should use the projection test device received by the photodetector, that is, the optical projection test device. Quantitative testing of stripes without using a screen projection test device can make the test image calibrated, analyzed, calculated, and storable.
  • the photoelectric projection test device is constructed as follows: As shown in FIG. 3, the device sequentially includes a light source system 1, a test sample 2, a positive lens 3, a negative lens 4, an aperture 5, The positive lens 6, the detector 7, the data acquisition, processing, and display system 8 use the sample stage 9 to carry the test sample 2. Among them, the negative lens 4 and the matching diaphragm 5 and the positive lens 6 only retain one and are interchangeable.
  • Step S3 Set the gray scale of the light energy response of the detector 7 of the photoelectric test projection device to the detection unit in its dynamic range, and the number of gray scales of the gray scale is graded according to the expected accuracy of the test, for example, general
  • the accuracy can be divided into 32 levels, the medium accuracy can be divided into 64 levels, and the high accuracy can be divided into 128 or 256 levels.
  • Step S4 A standard proof is prepared for calibrating the photoelectric projection test device to ensure the accuracy of the photoelectric projection test device and the comparability of the test sample test results.
  • the standard proofs are a zero-gray standard proof 401, a medium-gray standard proof 402, a medium-low gray-scale standard proof 403, and a medium-high-gray standard proof 404, respectively.
  • the zero-gray standard proof 401 is a standard proof without any streak defects inside;
  • the middle-gray standard proof 402 is a standard proof that takes the middle gray level of the maximum gray level of the stripe, and calibrates the photoelectric projection test by 50% gray value.
  • the thickness of all standard proofs is a uniform standard thickness, and its material is the same as the material grade of the tested sample.
  • Quantitative testing of optical material stripe with general accuracy requirements use zero gray standard proof 401 and medium gray standard proof 402 to calibrate the photoelectric projection test device.
  • For high-precision testing add low and medium gray standard proof 403 3.
  • the middle and high gray standard proof 404 calibrates the photoelectric projection test device.
  • Step S5 Grind the test sample 2 of the optical material to the same thickness as the standard proof so that the standard proof and the test sample 2 have the same matrix information.
  • Step S6 For the quantitative test of the optical material stripes, calibrate and test the results according to the following steps:
  • test sample 2 in FIG. 3 is replaced with the zero-gray standard proof 401 of FIG. 4, and the zero-gray standard proof 401 is electrically tested using the photoelectric projection test device to obtain a test image of the zero-gray standard proof 401.
  • the image in this state is marked as the highest brightness state of the detector 7, or as the zero gray state (in the test sample 2 test, high brightness values higher than zero gray are treated as saturation, or as zero gray) ;
  • step 1) Use the reference value of the highest brightness state obtained in step 1) to perform a corresponding zero gray scale calibration on the gray scale of the detector 7, and use the two reference values of 50% gray obtained in step 2) to separately detect the gray scale.
  • the gray scale of 7 is calibrated corresponding to 50% gray scale (both are referred to as two-point calibration). These calibrations make the nonlinear relationship between the gray scale tested by detector 7 and the refractive index of the stripe of test sample 2 obtain a good linearity. Improvement, as shown in Figure 5, the gray scale of the detector 7 before calibration is a slope straight line OF, and the gray scale relationship of the refractive index increment of the stripes is the curve OF, and the error between the two lines is very large.
  • the gray scale of the detector 7 is divided into two slope straight line segments OH and HF, and the corresponding gray scale increments of the stripe refractive index are OH and HF. Obviously, the difference between the straight line OH and HF and the curve OH and the curve HF is small. , Calibrate the gray scale of the detector 7 with a standard proof so that the gray value tested by the detector 7 is very close to the actual result. This calibration greatly reduces the non-linear error of the test;
  • the low-middle gray-scale standard proof (25% gray) and the high-middle gray-scale standard proof (75% gray) are also used for detection.
  • the calibration of the detector 7 will have a better linear relationship between the test results.
  • the gray scale of the detector 7 is divided into four slope linear segments OG, GH, HJ, and JF, and their corresponding stripe refractive indices.
  • the incremental gray curves are curve OG, curve GH, curve HJ, and curve JF.
  • test image of test sample 2 counts the area and gray level of the stripes, and calculates according to the calculation formula of “strip value” S established in step S1 to obtain a quantitative expression value of the stripe defect of test sample 2 and outputs a test image and a quantitative Test Results.
  • test results There are two possibilities for the above test results.
  • One is the absolute quantitative test result of the optical material stripe (stripe absolute quantitative value)
  • the other is the relative quantitative test result of the optical material stripe (stripe relative quantitative value).
  • the test result is an absolute quantitative result.
  • the gray scale of the standard proof does not give the corresponding refractive index increment ⁇ n
  • the test result is a relative quantitative result.
  • the results of relative quantitative test of the relative optical material stripes can meet the needs of optical system design image quality control and optical material refining quality control. It is the best to obtain the absolute quantitative test results of stripes, but the standard proofs required for absolute tests will be more expensive.
  • the method of the present invention improves the testing and evaluation of streak defects in optical materials from a qualitative technical capability state to a quantitative technical capability state, makes the testing and evaluation of streaks in optical materials accurate, and provides material quality classification.
  • the precise, accurate and objective quantification basis also enables the comparison of the stripe defect problem between materials. (Without the determination of the stripe quantification value, the complex stripe shape and gray scale between different samples cannot be compared convincingly, only (Comparative only when the differences between them are very large).
  • the invention changes the result of the stripe test of the optical material from manual evaluation to the automatic calculation of the quantitative result by the photoelectric projection test device according to the algorithm of the stripe value, which greatly improves the test accuracy and test objectivity, and also greatly improves the test work efficiency. This makes it possible to obtain quantitative test results at the same time that the test image is obtained, eliminating the need for time to manually grade the test image, and avoiding the difficult situation of hesitating to manually judge the boundary level (although this boundary is very rough).
  • the quantitative results of optical material stripes can not only be used to improve the quality of optical material refining (the quantitative results can be used to distinguish the response sensitivity and magnitude of the stripe defect changes caused by changes in the various stages of the refining process to provide a basis for process improvement), but also It can be used to provide a quantitative basis for the fine image quality design of the optical system.
  • the method for quantitatively measuring the fringes of optical materials of the present invention can be applied not only to the fringes quantitative testing of visible light optical materials, infrared optical materials, etc., but also to the quantitative testing of the uniformity state of gas and liquid moving fields, which can give gas and liquid moving fields.
  • the quantitative relationship (at least relative quantitative) of the instantaneous refractive index unevenness can also be used for fine quantitative comparison of the state of the uniformity of the gas and liquid motion fields at different times.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Quality & Reliability (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

一种光学材料条纹的定量测试方法,涉及光学材料条纹测试技术领域。该测试方法首先是创建一个条纹量化表达的概念和条纹量化算法公式,然后构造应用光电探测器(7)接收信号的光电投影测试装置,通过建立光电探测器(7)接收信号的灰度标尺和制作校准光电投影测试装置的标准校样(401,402,403,404),对光电投影测试装置进行标定或校准,用标定或校准的光电投影测试装置对被测样品(2)进行测试,并由光电投影测试装置对样品(2)的测试图像进行统计,按条纹量化算法公式进行计算,获得被测样品(2)的条纹缺陷的定量表达值。该测试方法使光学材料条纹测试的结果由人工评定转变为按照条纹值的算法由光电投影测试装置自动算出定量结果,大大提高了测试的精准性和测试的客观性,同时还大大提高测试工作的效率,使获得测试图像的同时就获得了定量测试结果。

Description

光学材料条纹的定量测试方法 技术领域
本发明涉及光学材料条纹测试技术领域,具体涉及光学材料条纹的定量测试方法。
背景技术
光学材料中的条纹是光学材料炼制工艺问题或炼制过程控制问题导致的材料中的缺陷,是光学材料内部折射率突变引起的现象。可见光材料的条纹应用图1的投影光学系统可观察到(应用纹影光学系统也可观察到)。这些光学材料中的条纹显示出来通常是一些具有灰度的丝状或带状的不规则条,如图2所示。条纹的形成是该处的折射率相对基体折射率具有突变的增量(增加或减少了Δn)。图2给出了光学材料中条纹轻度、中度、重度的示例状况,光学材料中条纹缺陷的程度随着条纹的数量、所占面积、灰度的增加而严重,没有条纹的光学材料是均匀透亮的。光学材料中的条纹用投影光学系统只能定性评价,即使是用纹影法也只能半定量测试(只是条纹中的不均匀细节反映得多一些),两种方法都无法定量测试光学材料中的条纹。
无论是可见光光学材料中的条纹,还是红外光学材料中的条纹,对光学零件成像质量都是一种影响严重的材料缺陷,该领域一直希望能定量测试条纹。如能够定量测试光学材料的条纹缺陷,就能针对不同像质要求的光学系统合理选择光学零件的材料(尽管其拥有一定的条纹),以保证光学系统的成像质量要求;另外定量测试光学材料的 条纹缺陷,也能指导光学材料炼制工艺的改进,炼制高质量的光学材料。因此,定量测试光学材料的条纹一直是一个迫切需要解决的技术问题。
目前,光学材料的条纹测试只有投影法的定性测试和纹影法的半定量测试,两个方法都不能对条纹进行定量测试。所谓的半定量测试的纹影法,实际上是没有量值表达关系的测试,只是比投影法有更多的条纹图像细节。
条纹的定性评价是用条纹度,条纹度按定性等级划分为A、B、C、D级,测试样品的条纹等级是由人的视觉对显示的条纹图像进行感官观察确定的,由于各等级没有准确的量化指标表达量和区分界限,结果主要由观察者主观确定。因此,条纹度的评价缺乏客观性和准确性,难以真实、准确地反映条纹对光学系统的影响,不能为光学系统的设计提供条纹缺陷精准的量化表达关系。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是:如何设计光学材料条纹的定量测试方法,以解决可见光光学材料、红外光学材料等的条纹缺陷定量测试和客观评定的问题,为光学系统合理选择材料保证光学系统设计质量和保证光学材料的炼制质量提供准确的量化测试和评价方法。
(二)技术方案
为了解决上述技术问题,本发明提供了光学材料条纹的定量测试方法,包括以下步骤:
S1、建立光学材料条纹量化表达的指标值——“条纹值”,并根据光学材料条纹的表现形式及其光学性能影响因素,建立条纹量的算法公式,设S为“条纹值”、i为测试样品条纹图像中灰度微元的序号、Δg i为测试样品条纹图像中第i微元的灰度值、Δg m为测试样品条纹图像中微元的平均灰度值、n为测试样品条纹图像中微元的总数量、j为测试样品条纹图像中条纹的序数、a j为测试样品条纹图像中第j条条纹的面积、m为测试样品条纹图像中条纹的总数量,A为测试样品条纹图像的总面积、d为测试样品的厚度,则“条纹值”S按以下公式计算:
Figure PCTCN2019108498-appb-000001
式(1)表明,“条纹值”为测试样品单位厚度的条纹平均灰度与条纹总面积占测试样品总面积的百分比之积;
步骤S2、按照如下方式构造所述光电投影测试装置:该装置依次光路方向依次包括平行光源系统1、测试样品2、正透镜3、正透镜6和探测器7,并使用样品台9承载测试样品2;
步骤S3、对所述光电测试投影装置的探测器7在其动态范围对探测元设定光能量响应的灰度标尺,所述灰度标尺的灰度等级数量根据测试期望的精度分级;
步骤S4、制作标准校样用于对所述光电投影测试装置进行校准,所述标准校样分别为零灰度标准校样401、中灰度标准校样402、中低灰度标准校样403、中高灰度标准校样404;所述零灰度标准校样 401是内部无任何条纹缺陷的标准校样;所述中灰度标准校样402是取条纹最大灰度的中间灰度的标准校样,按50%灰度值标定光电投影测试装置;所有标准校样的厚度为统一的厚度,其材料与被测试样品的材料牌号相同;
步骤S5、将光学材料的测试样品2磨制成与所述标准校样相同的厚度;
步骤S6、利用步骤S4制作的标准校样对所述光电投影测试装置角线标定,用标定后的光学投影测试装置对测试样品2进行测试,并由光学投影测试装置对测试样品2的测试图像进行统计,按步骤S1建立的公式进行计算,获得被测试样品的条纹缺陷的定量表达值。
优选地,步骤S2中,所述装置替换为:依次光路方向依次包括平行光源系统1、测试样品2、负透镜4、光阑5、正透镜6和探测器7。
优选地,步骤S3中,分级的方式为,将低精度的分为32个级,中等精度的可分为64级,高精度的可分为128级或256级,各等级之间的阈值为预设值。
优选地,步骤S6具体为:
1)将所述测试样品2替换为所述零灰度标准校样401,用所述光电投影测试装置对零灰度标准校样401进行通电测试,得到零灰度标准校样401的测试图像,将这个状态的图像标定为探测器7的最高亮度状态,或标定为零灰度状态;
2)用中灰度标准校样402替换所述零灰度标准校样401,用所 述光电投影测试装置对中灰度标准校样402进行通电测试,得到中灰度标准校样402的测试图像,将这个状态的图像标定为探测器7的50%的灰度;
3)以步骤1)得到的最高亮度状态这个基准值对探测器7的灰度标尺进行对应的零灰度标定,以步骤2)得到的50%的灰度这两个基准值分别对探测器7的灰度标尺进行对应50%灰度的标定;
4)用所述标准校样标定完所述光电投影测试装置后,再用测试样品2替换标准校样,用光学投影测试装置对测试样品2进行通电测试,并由数据采集、处理及显示系统8对测试样品2的测试图像统计条纹的面积及灰度,并按步骤S1中建立的“条纹值”S的计算公式进行计算,获得测试样品2的条纹缺陷的定量表达值,并输出测试图像和定量测试结果。
优选地,步骤1)中在进行通电测试时,高于零灰度的高亮度值作为饱和处理,或作为零灰度。
优选地,步骤2)中,还分别应用低中灰度标准校样,即25%灰度和高中灰度标准校样,即75%灰度对探测器7进行标定。
优选地,所述定量测试结果是光学材料条纹的绝对定量测试结果或光学材料条纹的相对定量测试结果。
(三)有益效果
本发明首先是创建一个条纹量化表达的概念和条纹量化算法公式,然后应用光电探测器接收的光学投影测试装置,通过建立光电探测器的接收信号的灰度标尺和校准投影装置的标准校样,对光学投影 测试装置进行标定或校准,用标定或校准的光学投影测试装置对被测样品进行测试,并由光学投影测试装置对样品的测试图像进行统计,按条纹量化算法公式进行计算,获得被测试样品的条纹缺陷的定量表达值。本发明使光学材料条纹测试的结果由人工评定转变为按照条纹值的算法由光电投影测试装置自动算出定量结果,大大提高了测试的精准性和测试的客观性,同时还大大提高测试工作的效率,使获得测试图像的同时就获得了定量测试结果。
附图说明
图1是现有技术中可见光投影光学系统图;
图2是光学材料中的条纹图;
图3是本发明中光电投影测试装置图;
图4是本发明中光电投影测试装置标准校样示意图;
图5是本发明中条纹定量测试两点标定的灰度线性化校正关系示意图;
图6是条纹定量测试四点标定的灰度线性化校正关系示意图。
具体实施方式
为使本发明的目的、内容、和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
本发明建立了条纹量化表达的量值概念和条纹量化的量值算法,设计了测试装置的标准校样特性,建立了光电投影测试装置的条纹定量测试的标定方法和误差改正分析方法,应用规定的光电投影测试装置按规定的测试步骤进行测试。本发明的光学材料条纹的定量测试方 法具体包括以下步骤:
步骤S1、建立光学材料条纹量化表达的指标值——“条纹值”,并根据光学材料条纹的表现形式及其光学性能影响因素,建立条纹量的算法公式,设S为“条纹值”、i为测试样品条纹图像中灰度微元的序号、Δg i为测试样品条纹图像中第i微元的灰度值、Δg m为测试样品条纹图像中微元的平均灰度值、n为测试样品条纹图像中微元的总数量、j为测试样品条纹图像中条纹的序数、a j为测试样品条纹图像中第j条条纹的面积、m为测试样品条纹图像中条纹的总数量,A为测试样品条纹图像的总面积、d为测试样品的厚度,则“条纹值”S按以下公式计算:
Figure PCTCN2019108498-appb-000002
式(1)表明,“条纹值”为测试样品单位厚度的条纹平均灰度与条纹总面积占测试样品总面积的百分比之积,其中
Figure PCTCN2019108498-appb-000003
是对各条纹中探测元的灰度求和,各条纹中的探测元不同。这一算法将条纹影响光学系统成像质量的主要因素作为量化计算的关键因素,这两个关键因素是条纹的面积和条纹的灰度量,另外再对测试样品间的计算结果进行了可比对的计算处理,即将条纹的灰度按平均值进行比较,条纹的面积和灰度量按测试样品的单位厚度进行比较,这一算法使测试样品的测试量化值具有了量值的可比较性。
步骤S2、光学材料中的条纹定量测试不能采用如图1所示的银幕进行显示(无论用投影法或纹影法),需要采用探测器来接收测试 样品投影过来的像,以用探测器对测试样品中条纹的细微数据进行处理(人工是无法进行图像的精细化处理),实现定量测试,因此,光学材料条纹测试的装置应该使用光电探测器接收的投影测试装置,即光学投影测试装置进行条纹的定量测试,而不采用银幕投影测试装置,才能使测试图像可标定、可分析、可计算、可存储。
因此,本步骤中按照如下方式构造所述光电投影测试装置:如图3所示,该装置依次光路方向依次包括平行光源系统1、测试样品2、正透镜3、负透镜4、光阑5、正透镜6、探测器7、数据采集、处理及显示系统8,使用样品台9承载测试样品2,其中,负透镜4及匹配的光阑5与正透镜6是只保留一个且可互换的关系,它们都能分别与正透镜3一起构成投影光学系统,采用负透镜4的光电投影测试装置所占空间尺寸会更小一些;但若采用负透镜4无法加入限制杂散光的光阑5,会使光电投影测试装置受到一定量的杂散光干扰,影响定量测试的精度。因此,如果没有测试装置空间限制的情况,优选采用正透镜3与正透镜6组合的投影光学系统匹配方案。
步骤S3、对所述光电测试投影装置的探测器7在其动态范围对探测元设定光能量响应的灰度标尺,所述灰度标尺的灰度等级数量根据测试期望的精度分级,例如一般精度的可分为32个级,中等精度的可分为64级,高精度的可分为128级或256级等。
步骤S4、制作标准校样用于对所述光电投影测试装置进行校准,以保证光电投影测试装置测试的准确性和测试样品测试结果的可比对性。如图4所示,所述标准校样分别为零灰度标准校样401、中灰 度标准校样402、中低灰度标准校样403、中高灰度标准校样404。所述零灰度标准校样401是内部无任何条纹缺陷的标准校样;所述中灰度标准校样402是取条纹最大灰度的中间灰度的标准校样,按50%灰度值标定光电投影测试装置;所有标准校样的厚度为统一的标准厚度,其材料与被测试样品的材料牌号相同。一般精度要求的光学材料条纹定量测试,使用零灰度标准校样401、中灰度标准校样402进行光电投影测试装置标定即可,如要进行高精度的测试,则增加中低灰度标准校样403、中高灰度标准校样404对光电投影测试装置进行标定。
步骤S5、将光学材料的测试样品2磨制成与所述标准校样相同的厚度,使标准校样与测试样品2具有同等的基体信息。
步骤S6、对于光学材料条纹的定量测试,按以下步骤标定和测试结果:
1)将图3中的测试样品2替换为图4的零灰度标准校样401,用所述光电投影测试装置对零灰度标准校样401进行通电测试,得到零灰度标准校样401的测试图像,将这个状态的图像标定为探测器7的最高亮度状态,或标定为零灰度状态(在测试样品2测试时,高于零灰度的高亮度值作为饱和处理,或作为零灰度);
2)用中灰度标准校样402替换所述零灰度标准校样401,用所述光电投影测试装置对中灰度标准校样402进行通电测试,得到中灰度标准校样402的测试图像,将这个状态的图像标定为探测器7的50%的灰度;
3)以步骤1)得到的最高亮度状态这个基准值对探测器7的灰度标尺进行对应的零灰度标定,以步骤2)得到的50%的灰度这两个基准值分别对探测器7的灰度标尺进行对应50%灰度的标定(二者简称为两点标定),这些标定使探测器7测试的灰度与测试样品2条纹折射率的非线性关系得到一个很好的线性改进,如图5所示,标定前的探测器7的灰度标尺是一个斜率直线OF,而条纹的折射率增量的灰度关系是曲线OF,两条线的误差很大,标定后的探测器7的灰度标尺分为两个斜率直线段OH和HF,它们对应的条纹折射率增量灰度曲线分别为OH和HF,显然直线OH和HF与曲线OH及曲线HF的差别很小,用标准校样标定探测器7的灰度标尺,使探测器7测试的灰度值与实际结果很接近,这个标定大大减小了测试的非线性误差;
如果除应用零灰度标准校样401和中灰度标准校样402进行标定外,还分别应用低中灰度标准校样(25%灰度)和高中灰度标准校样(75%灰度)也对探测器7进行标定,则测试结果的线性关系会更好,如图6所示,探测器7的灰度标尺分为四个斜率直线段OG、GH、HJ、和JF,它们对应的条纹折射率增量灰度曲线分别为曲线OG、曲线GH、曲线HJ、和曲线JF,显然直线OG、GH、HJ、和JF与曲线OG、GH、HJ、和JF的差别比两点标定的小得更多,此时,直线与曲线几乎重合,使探测器测试的灰度值与实际结果更接近。
4)用所述标准校样标定完所述光电投影测试装置后,再用测试样品2替换标准校样,用光学投影测试装置对测试样品2进行通电测试,并由数据采集、处理及显示系统8对测试样品2的测试图像统计 条纹的面积及灰度,并按步骤S1中建立的“条纹值”S的计算公式进行计算,获得测试样品2的条纹缺陷的定量表达值,并输出测试图像和定量测试结果。
以上测试结果有两种可能,一种是光学材料条纹的绝对定量测试结果(条纹绝对定量值),另一种是光学材料条纹的相对定量测试结果(条纹相对定量值),当标准校样的灰度给出了对应的折射率增量Δn时,测试结果为绝对定量结果,当标准校样的灰度没有给出对应的折射率增量Δn时,测试结果为相对定量结果。大多数情况,应用相对光学材料条纹的相对定量测试结果就能满足光学系统设计像质控制和光学材料炼制质量控制需要。获得条纹绝对定量测试结果是最好的,但绝对测试所需的标准校样的制作成本会比较高。
可以看出,本发明的方法将光学材料中条纹缺陷的测试和评价由定性的技术能力状态提升到了定量的技术能力状态,使光学材料中条纹的测试和评价精确化,为材料质量分级提供了精细、准确、客观的量化依据,还使材料间条纹的缺陷问题实现了可比较(没有条纹量化值的测定,不同样品间复杂的条纹形状和灰度是无法进行令人信服的比较的,只有它们间的差别非常大时才有可比性)。
本发明使光学材料条纹测试的结果由人工评定转变为按照条纹值的算法由光电投影测试装置自动算出定量结果,大大提高了测试的精准性和测试的客观性,同时还大大提高测试工作的效率,使获得测试图像的同时就获得了定量测试结果,不再需要人工对测试图像进行等级判别的时间,也避免了面临边界等级人工判定犹豫的为难状况 (尽管这个边界很粗放)。
光学材料条纹的定量结果不仅可用于光学材料炼制的质量改进(用定量结果可分辨炼制工艺各环节变化带来的条纹缺陷变化的响应灵敏度和量值程度,以为工艺完善提供依据),还可用于为光学系统精细像质设计提供量化依据。
本发明的光学材料条纹定量测试方法不仅可以应用于可见光光学材料、红外光学材料等的条纹定量测试,还可以应用于对气体、液体运动场的均匀性状态进行定量测试,能给出气体、液体运动场的瞬时折射率不均匀的定量关系(至少是相对定量的),也能用于对不同时刻气体、液体运动场的均匀性的状态进行精细的定量比较。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (7)

  1. 光学材料条纹的定量测试方法,其特征在于,包括以下步骤:
    S1、建立光学材料条纹量化表达的指标值——“条纹值”,并根据光学材料条纹的表现形式及其光学性能影响因素,建立条纹量的算法公式,设S为“条纹值”、i为测试样品条纹图像中灰度微元的序号、Δg i为测试样品条纹图像中第i微元的灰度值、Δg m为测试样品条纹图像中微元的平均灰度值、n为测试样品条纹图像中微元的总数量、j为测试样品条纹图像中条纹的序数、a j为测试样品条纹图像中第j条条纹的面积、m为测试样品条纹图像中条纹的总数量,A为测试样品条纹图像的总面积、d为测试样品的厚度,则“条纹值”S按以下公式计算:
    Figure PCTCN2019108498-appb-100001
    式(1)表明,“条纹值”为测试样品单位厚度的条纹平均灰度与条纹总面积占测试样品总面积的百分比之积;
    步骤S2、按照如下方式构造所述光电投影测试装置:该装置依次光路方向依次包括平行光源系统(1)、测试样品(2)、正透镜(3)、正透镜(6)和探测器(7),并使用样品台(9)承载测试样品(2);
    步骤S3、对所述光电测试投影装置的探测器(7)在其动态范围对探测元设定光能量响应的灰度标尺,所述灰度标尺的灰度等级数量根据测试期望的精度分级;
    步骤S4、制作标准校样用于对所述光电投影测试装置进行校准, 所述标准校样分别为零灰度标准校样(401)、中灰度标准校样(402)、中低灰度标准校样(403)、中高灰度标准校样(404);所述零灰度标准校样(401)是内部无任何条纹缺陷的标准校样;所述中灰度标准校样(402)是取条纹最大灰度的中间灰度的标准校样,按50%灰度值标定光电投影测试装置;所有标准校样的厚度为统一的厚度,其材料与被测试样品的材料牌号相同;
    步骤S5、将光学材料的测试样品(2)磨制成与所述标准校样相同的厚度;
    步骤S6、利用步骤S4制作的标准校样对所述光电投影测试装置角线标定,用标定后的光学投影测试装置对测试样品(2)进行测试,并由光学投影测试装置对测试样品(2)的测试图像进行统计,按步骤S1建立的公式进行计算,获得被测试样品的条纹缺陷的定量表达值。
  2. 如权利要求1所述的方法,其特征在于,步骤S2中,所述装置替换为:依次光路方向依次包括平行光源系统(1)、测试样品(2)、负透镜(4)、光阑(5)、正透镜(6)和探测器(7)。
  3. 如权利要求1所述的方法,其特征在于,步骤S3中,分级的方式为,将低精度的分为32个级,中等精度的可分为64级,高精度的可分为128级或256级,各等级之间的阈值为预设值。
  4. 如权利要求1所述的方法,其特征在于,步骤S6具体为:
    1)将所述测试样品(2)替换为所述零灰度标准校样(401),用所述光电投影测试装置对零灰度标准校样(401)进行通电测试,得 到零灰度标准校样(401)的测试图像,将这个状态的图像标定为探测器(7)的最高亮度状态,或标定为零灰度状态;
    2)用中灰度标准校样(402)替换所述零灰度标准校样(401),用所述光电投影测试装置对中灰度标准校样(402)进行通电测试,得到中灰度标准校样(402)的测试图像,将这个状态的图像标定为探测器(7)的50%的灰度;
    3)以步骤1)得到的最高亮度状态这个基准值对探测器(7)的灰度标尺进行对应的零灰度标定,以步骤2)得到的50%的灰度这两个基准值分别对探测器(7)的灰度标尺进行对应50%灰度的标定;
    4)用所述标准校样标定完所述光电投影测试装置后,再用测试样品2替换标准校样,用光学投影测试装置对测试样品(2)进行通电测试,并由数据采集、处理及显示系统(8)对测试样品(2)的测试图像统计条纹的面积及灰度,并按步骤S1中建立的“条纹值”S的计算公式进行计算,获得测试样品(2)的条纹缺陷的定量表达值,并输出测试图像和定量测试结果。
  5. 如权利要求4所述的方法,其特征在于,步骤1)中在进行通电测试时,高于零灰度的高亮度值作为饱和处理,或作为零灰度。
  6. 如权利要求4所述的方法,其特征在于,步骤2)中,还分别应用低中灰度标准校样,即25%灰度和高中灰度标准校样,即75%灰度对探测器(7)进行标定。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述定量测试结果是光学材料条纹的绝对定量测试结果或光学材料条纹 的相对定量测试结果。
PCT/CN2019/108498 2018-09-28 2019-09-27 光学材料条纹的定量测试方法 WO2020063841A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020542829A JP6964790B2 (ja) 2018-09-28 2019-09-27 光学材料の縞の定量試験法
US16/937,542 US10852250B1 (en) 2018-09-28 2020-07-23 Quantitative test method for striae in optical materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811138838.1 2018-09-28
CN201811138838.1A CN109342437B (zh) 2018-09-28 2018-09-28 光学材料条纹的定量测试方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/937,542 Continuation US10852250B1 (en) 2018-09-28 2020-07-23 Quantitative test method for striae in optical materials

Publications (1)

Publication Number Publication Date
WO2020063841A1 true WO2020063841A1 (zh) 2020-04-02

Family

ID=65307216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108498 WO2020063841A1 (zh) 2018-09-28 2019-09-27 光学材料条纹的定量测试方法

Country Status (4)

Country Link
US (1) US10852250B1 (zh)
JP (1) JP6964790B2 (zh)
CN (1) CN109342437B (zh)
WO (1) WO2020063841A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109342437B (zh) 2018-09-28 2020-03-31 中国兵器工业标准化研究所 光学材料条纹的定量测试方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1127037A (zh) * 1993-05-28 1996-07-17 公理图像处理系统有限公司 自动检查设备
JP2000132684A (ja) * 1998-10-23 2000-05-12 Matsushita Electric Works Ltd 外観検査方法
CN201477055U (zh) * 2009-08-14 2010-05-19 成都光明光电股份有限公司 条纹检测装置
CN202631434U (zh) * 2012-05-07 2012-12-26 成都光明光电股份有限公司 光学玻璃条纹检测装置
CN103245670A (zh) * 2013-05-06 2013-08-14 科瑞自动化技术(深圳)有限公司 一种光学元件的缺陷检测装置及其缺陷检测方法
JP2017053673A (ja) * 2015-09-08 2017-03-16 株式会社リコー 検査装置、検査方法及びプログラム
CN108226188A (zh) * 2018-01-02 2018-06-29 中国科学院上海光学精密机械研究所 大尺寸激光钕玻璃条纹检测装置
CN109342437A (zh) * 2018-09-28 2019-02-15 中国兵器工业标准化研究所 光学材料条纹的定量测试方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3404134B2 (ja) * 1994-06-21 2003-05-06 株式会社ニュークリエイション 検査装置
US6766042B2 (en) * 2001-04-26 2004-07-20 Memphis Eye & Contact Associates System to automatically detect eye corneal striae
DE10217726A1 (de) * 2002-04-17 2003-11-27 Heidenhain Gmbh Dr Johannes Optische Positionsmesseinrichtung
EP2063260A1 (en) * 2007-11-19 2009-05-27 Lambda-X Fourier transform deflectometry system and method
CN102288613B (zh) * 2011-05-11 2014-03-26 北京科技大学 一种灰度和深度信息融合的表面缺陷检测方法
CN102680447A (zh) * 2012-05-31 2012-09-19 中国科学院上海光学精密机械研究所 光学材料的缺陷和光致损伤的检测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1127037A (zh) * 1993-05-28 1996-07-17 公理图像处理系统有限公司 自动检查设备
JP2000132684A (ja) * 1998-10-23 2000-05-12 Matsushita Electric Works Ltd 外観検査方法
CN201477055U (zh) * 2009-08-14 2010-05-19 成都光明光电股份有限公司 条纹检测装置
CN202631434U (zh) * 2012-05-07 2012-12-26 成都光明光电股份有限公司 光学玻璃条纹检测装置
CN103245670A (zh) * 2013-05-06 2013-08-14 科瑞自动化技术(深圳)有限公司 一种光学元件的缺陷检测装置及其缺陷检测方法
JP2017053673A (ja) * 2015-09-08 2017-03-16 株式会社リコー 検査装置、検査方法及びプログラム
CN108226188A (zh) * 2018-01-02 2018-06-29 中国科学院上海光学精密机械研究所 大尺寸激光钕玻璃条纹检测装置
CN109342437A (zh) * 2018-09-28 2019-02-15 中国兵器工业标准化研究所 光学材料条纹的定量测试方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FENG, VAN ET AL.: "A Glass Uniformity Inspection System Based on Image Processing", JOURNAL OF COMPUTER APPLICATIONS, vol. 24, no. 4, 30 April 2004 (2004-04-30), pages 64 - 66, ISSN: 1001-9081 *

Also Published As

Publication number Publication date
JP6964790B2 (ja) 2021-11-10
US20200355623A1 (en) 2020-11-12
CN109342437B (zh) 2020-03-31
US10852250B1 (en) 2020-12-01
JP2021514054A (ja) 2021-06-03
CN109342437A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
CN108387587B (zh) 缺陷检测方法及缺陷检测设备
TWI442048B (zh) 在透明基板中計量缺陷之方法
US20030185429A1 (en) Method and apparatus for quantitatively evaluating scintillation, antiglare film and method of producing the same
CN107403177A (zh) 基于工业相机的亮度测量方法
US10962488B2 (en) Integrated projection-schlieren optical system
CN103727888B (zh) 彩色滤色片膜厚测量方法及装置
WO2020063841A1 (zh) 光学材料条纹的定量测试方法
CN113376170B (zh) 一种产品外观检测设备的校准方法及标定块
US6493073B2 (en) System and method for measuring properties of an optical component
CN105280125B (zh) 显示器的显示粗糙度检测方法及其检测系统
CN117372334A (zh) 基于图像数据的纺织品色差检测方法
KR101440975B1 (ko) 색차 분석을 이용한 편광판 얼룩 자동 검사 장치
CN111487795B (zh) 漏光亮度检测系统及检测方法
Lee et al. P‐33: A Measurement and Analysis Method of Image Sticking in LCD
CN113703203B (zh) 一种针对lcd屏的显示均匀性自动测试法
CN110132419A (zh) 文物色彩的色坐标测量方法及系统
WO2019141201A1 (en) Colour grading process and system for jade
CN1790590A (zh) 荫罩网板孔径的智能测量仪
WO2022037062A1 (zh) 在线色差检测系统及检测方法
KR20220065110A (ko) 얼룩 자동 검사 장치 및 이를 이용한 얼룩 검사 방법
Антонов Possibilities of automatic wheat vitreousness determination by digital image analysis
CN108008554A (zh) 一种基于弥散斑锐度的点缺陷面积检测方法
CN117687235A (zh) 一种高ppi显示检测人眼辅助方法
CN116915972A (zh) 一种基于刃边像分析的高分辨率相机mtf测试装置及方法
US20190227002A1 (en) Apparatus and methods for inspecting damage intensity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020542829

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864259

Country of ref document: EP

Kind code of ref document: A1