WO2020063603A1 - 一种用于油田开发生产的动态数据处理方法 - Google Patents

一种用于油田开发生产的动态数据处理方法 Download PDF

Info

Publication number
WO2020063603A1
WO2020063603A1 PCT/CN2019/107627 CN2019107627W WO2020063603A1 WO 2020063603 A1 WO2020063603 A1 WO 2020063603A1 CN 2019107627 W CN2019107627 W CN 2019107627W WO 2020063603 A1 WO2020063603 A1 WO 2020063603A1
Authority
WO
WIPO (PCT)
Prior art keywords
production
well
oil
water
early warning
Prior art date
Application number
PCT/CN2019/107627
Other languages
English (en)
French (fr)
Inventor
王贺华
刘志斌
胡义升
闵超
李登金
蒋利平
米中荣
周宗明
康博
臧克一
杨滔
刘榧
马成
付辉
杜新龙
韩炜
王鹤
Original Assignee
成都北方石油勘探开发技术有限公司
西南石油大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都北方石油勘探开发技术有限公司, 西南石油大学 filed Critical 成都北方石油勘探开发技术有限公司
Publication of WO2020063603A1 publication Critical patent/WO2020063603A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells

Definitions

  • the invention relates to the field of oil and gas production, and in particular to a dynamic data processing method for oilfield development and production.
  • the production indicator early warning is to prevent the warning given by the indicator from exceeding the early warning scope, and to shorten the time lag when problems are found.
  • Most early-warning models only compare monitoring indicators with historical data, and do not combine early-warning theories to optimize dynamic recommended early-warning indicators.
  • the early-warning system provides more early warnings for a single indicator and fewer early warnings for comprehensive indicators. Therefore, in the prior art, the process of processing the dynamic data of the oilfield is cumbersome, and there is no lack of a more integrated systematized and comprehensive production diagnosis and index early warning in the production early warning process.
  • the purpose of the present invention is to provide a dynamic data processing method for oilfield development and production, in order to solve the tedious process of oilfield dynamic data processing in the prior art, and the lack of a more integrated and systematic production in the process of production early warning. Diagnose and indicator early-warning problems to achieve the purpose of providing systematic and comprehensive production diagnosis and indicator early-warning by using oilfield production dynamic data.
  • step (b) Judge whether the single-well wave early warning result is normal: if it is normal, go back to step (a); if it is not normal, then transmit the early-warning single-well information and surrounding oil-water well information to the server;
  • the server receives the warning information of the single well and the surrounding oil and water wells, extracts the basic data of the well group indicators, and performs the well-to-well connectivity analysis;
  • step (d) Judging whether the early warning is normal based on the analysis of connectivity between wells: if the early warning is normal, go back to step (a); if the early warning is abnormal, extract the information of the horizon, block and oil field where the abnormal data is located;
  • the present invention proposes a dynamic data for oilfield development and production Processing method.
  • This method first extracts the basic data of single-well indicators from production dynamic data, performs single-well wave early warning, and then determines whether the single-well wave early warning result is normal. If normal, return to step (a), and continue to use dynamic data to Oilfield production is monitored; if abnormal, the single well information and surrounding oil and water well information will be transmitted to the server. The server will receive the abnormal single well data and the information about oil and water wells around the well and extract each well from it.
  • the basic data of the index constitutes the basic data of the well group index, and performs a small-scale inter-well connectivity analysis.
  • Inter-well connectivity analysis can calculate the connectivity coefficient and determine whether the calculation result of the connectivity coefficient is normal: If the range of the connectivity coefficient is normal, it indicates that the warning is normal. The staff receives the warning, and returns to step (a), and continues to use dynamic data for oilfield production. Monitoring; if the range of connectivity coefficient is abnormal, indicating that the warning is abnormal, extract the information of the horizon, block and oil field where the abnormal data is located, and perform comprehensive oil and water well diagnosis on the horizon, block and oil field where the abnormal data is located, Therefore, the purpose of using the oil field production dynamic data in the present invention to provide systematic and comprehensive production diagnosis and index early warning is achieved.
  • the diagnosis result in step (e) is fed back to the single well index basic data in step (a) and the server in step (c) at the same time.
  • the results of the comprehensive diagnosis are preferably fed back to the basic data of the single well index and the server in step (c), and the basic data of the single well index and the analysis of the connectivity between the wells are simultaneously revised, which significantly improves the accuracy of subsequent warnings.
  • the single-well wave early warning includes the following steps:
  • step (1) calculate the early warning threshold or early warning interval of the basic data of each indicator
  • the basic data of the indicator includes daily liquid production, daily oil production, water content, gas-oil ratio, daily water injection, injection pressure, dispensing qualification rate, injection time, production rate, nozzle diameter, pump parameters, oil Pressure, casing pressure, downhole flow pressure, water salinity, daily gas production, oil-gas ratio, water-gas ratio of at least N, of which N ⁇ 5.
  • daily fluid production, daily oil production, water content, and gas-oil ratio are the monitoring indicators of oil wells; daily water injection, injection pressure, dispensing qualification rate, and injection time are the monitoring indicators of water injection wells; production rate, nozzle diameter, and pump parameters are Work system monitoring indicators; oil pressure, casing pressure, downhole flow pressure, and salinity of produced water are dynamic monitoring indicators; daily gas production, oil-gas ratio, and water-gas ratio are gas well monitoring indicators.
  • the optimal solution is that all the above indicators are included in the basic data of the indicators.
  • inter-well connectivity analysis includes the following steps:
  • (A) The number of injection wells in the extraction group, the injection volume of the water injection well, the production volume of each well, the well position coordinates of each well, and the angle of the source direction well between adjacent wells;
  • This solution provides a clear and simple method for analyzing the connectivity between wells. Not only can the connectivity coefficient be calculated, but also the time lag coefficient can be quickly calculated, which further improves the accuracy and efficiency of the connectivity analysis between wells.
  • the comprehensive diagnosis of oil and water wells includes evaluation of water flooding effect and re-optimization of geological characteristics;
  • the evaluation of water flooding effect includes judgment of injection-production volume ratio, drawing of potential logging curve, separate diagnosis of production well, and separate diagnosis of injection well;
  • the geological feature re-optimization includes inspection or correction of reservoir macro-heterogeneity, structural model, flow unit, sedimentary microfacies, and reservoir evaluation.
  • the comprehensive diagnosis of the oil-water well further includes an interval capacity analysis.
  • the method of the interval capacity analysis is as follows: taking the cumulative oil production and water production of each single well, calculating the average oil production and water production of the block; establishing a coordinate system
  • the abscissa is the difference between the single well oil production and the block average oil production
  • the ordinate is the difference between the single well water production and the block average water production.
  • the four quadrants defined by the abscissa and ordinate are high production, respectively.
  • the rectangular coordinate system is formed by the difference between the single well oil production and the block average oil production, and the difference between the single well water production and the block average water production, to determine which quadrant a single well is in, and then according to the oil and water represented by the quadrant
  • the output situation so as to determine whether a single well belongs to the high oil production, high water production, low oil production and high water production, low oil production and low water production, high oil production and low water production, and then mark each single well in the block well coordinate system. So that the staff can quickly deepen the understanding and mastery of single wells in the field.
  • the comprehensive diagnosis of oil and water wells further includes a DOFP scattered point distribution analysis method.
  • the method for analyzing the DOFP scattered point distribution is as follows: Calculate the daily maximum production value and cumulative production value of each single well, determine the date when the single well is first put into operation; establish coordinates System, the abscissa is the maximum daily production of a single well, and the ordinate is the cumulative production value of a single well.
  • the four quadrants defined by the abscissa and ordinate are the high production rate, low cumulative production, low production rate, low cumulative production, and low oil production.
  • Low cumulative production rate and high cumulative production rate Draw a two-dimensional coordinate diagram of a single well to determine which quadrant a single well is; In the block position coordinate system, label the quadrant to which each single well belongs.
  • DOFP refers to the intersection of oil production rate and cumulative oil production.
  • This scheme uses the maximum daily production of a single well and the cumulative production value of a single well to form a rectangular coordinate system to determine which quadrant a single well is in, and then judges according to the production situation represented by the quadrant.
  • a single well belongs to one of a high oil production rate and a low cumulative production rate, a low oil production rate and a low oil accumulation production, a low oil production rate and a low oil accumulation production rate, and a high oil production rate and a high oil accumulation production rate. Differentiate and mark, so that the staff can quickly deepen the understanding and mastery of single wells in the field.
  • the single well contribution rate reflects the importance of a single oil well to the entire oil field. Its role is to prioritize all oil wells in the block and prioritize the problems that occur with high contribution oil wells.
  • a block diagram can be drawn based on the contribution rate of all oil wells, reflecting the location of high and low production wells.
  • the present invention has the following advantages and beneficial effects:
  • the invention relates to a dynamic data processing method for oilfield development and production.
  • the connectivity coefficient is calculated through the connectivity analysis between wells to determine whether the calculation result of the connectivity coefficient is normal. If the range of the connectivity coefficient is normal, it indicates that the warning is normal and the staff member receives the warning. , Go back to step (a), continue to use dynamic data to monitor oilfield production; if the range of connectivity coefficients is not normal, indicating that the early warning is abnormal, extract the information about the horizon, block and oilfield where the abnormal data is located, and check the abnormal data.
  • the integrated diagnosis of oil and water wells in the horizon, block and oil field is located, so as to achieve the purpose of using the oil field production dynamic data in the present invention to provide systematic and comprehensive production diagnosis and index early warning.
  • FIG. 1 is a schematic diagram of an overall process of a specific embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a single-well wave early warning in a specific embodiment of the present invention
  • FIG. 3 is a schematic flowchart of an analysis of connectivity between wells in a specific embodiment of the present invention.
  • a dynamic data processing method for oilfield development and production includes the following steps: (a) extracting basic data for single-well indicators, and performing single-well wave early warning; (b) judging single-well wave early warning Whether the result is normal: if it is normal, go back to step (a); if it is not normal, transmit the early warning single well information and surrounding oil and water well information to the server; (c) the server receives the early warning single well information and surrounding oil and water well information, Extract the basic data of well group indicators and perform inter-well connectivity analysis; (d) Determine whether the early warning is normal based on the inter-well connectivity analysis results: if the early warning is normal, go back to step (a); if the early warning is abnormal, extract Information on horizons, blocks and oil fields where normal data are located; (e) Comprehensive oil and water well diagnosis for horizons, blocks and oil fields where abnormal data are located.
  • This embodiment first extracts the basic data of single-well indicators from the production dynamic data, performs single-well wave early warning, and then determines whether the single-well wave early warning result is normal: If normal, then return to step (a), and continue to use dynamic data for oilfield production. Perform monitoring; if it is abnormal, it will transmit the early warning single well information and surrounding oil and water well information to the server.
  • the server receives the early warning abnormal single well data information, as well as the surrounding oil and water well information, and extracts the indicators of each well.
  • Basic data which constitutes the basic data of well group indicators, and conducts small-scale inter-well connectivity analysis.
  • Inter-well connectivity analysis can calculate the connectivity coefficient and determine whether the calculation result of the connectivity coefficient is normal: If the range of the connectivity coefficient is normal, it indicates that the warning is normal. The staff receives the warning, and returns to step (a), and continues to use dynamic data for oilfield production. Monitoring; if the range of connectivity coefficient is abnormal, indicating that the warning is abnormal, extract the information of the horizon, block and oil field where the abnormal data is located, and perform comprehensive oil and water well diagnosis on the horizon, block and oil field where the abnormal data is located, Therefore, the purpose of using the oil field production dynamic data in the present invention to provide systematic and comprehensive production diagnosis and index early warning is achieved.
  • the diagnostic result in step (e) is fed back to the single-well index in step (a) at the same time.
  • Basic data the server in step (c).
  • the single-well fluctuation early warning includes the following steps: (1) extracting the basic data of the index for the last month of the single well, and calculating the monthly average, change rate, fluctuation range, expectation, and variance of the basic data of each indicator; (2) according to step ( The calculation results in 1) are used to calculate the early warning threshold or early warning interval of the basic data of each indicator; (3) The basic data of the indicator for the last day of a single well is extracted, the daily average of the basic data of each indicator is calculated, and the date of the basic data of each indicator is calculated.
  • the average value is compared with the early warning threshold or early warning interval to determine whether it meets the early warning conditions: if the basic data of all indicators do not meet the early warning conditions, the single-well fluctuation early warning result is normal; if at least one of the indicator basic data meets the early warning conditions, the single well fluctuation The warning result is abnormal.
  • the basic data of the indicators include daily liquid production, daily oil production, water content, gas-oil ratio, daily water injection, injection pressure, dispensing qualification rate, injection time, production rate, nozzle diameter, pump parameters, oil pressure, sleeve Pressure, bottomhole flow pressure, water salinity, daily gas production, oil-gas ratio, and water-gas ratio.
  • the inter-well connectivity analysis includes the following steps: (A) Extracting the number of injection wells in the well group, the injection volume of the water injection well, the production volume of the production well, the position coordinates of each well, and the distance between the two adjacent wells (B) Calculate the limit influence distance and influence coefficient matrix between injection and production wells based on the data extracted in step (A); and analyze the noise and cross-border points in the data extracted in step (A) (C) Assign connectivity coefficients and time lag constants, establish connectivity identification and connectivity coefficient models based on data that has been eliminated from noise and out-of-bounds points; (D) use the limit influence distance and influence coefficient matrix between injection wells as constraints Conditions are brought into connectivity identification and connectivity coefficient models, and connectivity coefficients and time lag constants are calculated.
  • the comprehensive diagnosis of oil and water wells includes evaluation of water flooding effects and re-optimization of geological features; the evaluation of water flooding effects includes judgment of injection-production volume ratio, drawing of potential logging curves, separate diagnosis of production wells, and separate diagnosis of injection wells; the geological characteristics Re-optimization includes inspection or correction of reservoir macro heterogeneity, structural model, flow unit, sedimentary microfacies, and reservoir evaluation.
  • the comprehensive diagnosis of oil and water wells further includes an interval capacity analysis.
  • the method is as follows: take the cumulative oil production and water production of each single well, calculate the average oil production and water production in the block; establish a coordinate system, and the abscissa is the difference between the single oil production and the block average oil production, ordinate
  • the four quadrants defined by the abscissa and ordinate are defined as high oil and high water production, low oil and high water production, low oil and low water production, and high oil and low water production; draw a single Two-dimensional coordinate map of wells to determine which quadrant a single well is in; In the block position coordinate system, the quadrant to which each single well belongs is distinguished.
  • the comprehensive diagnosis of oil and water wells also includes a DOFP scattered point distribution analysis method.
  • the DOFP scattered point distribution analysis method is as follows: Calculate the daily maximum production value and cumulative production value of each single well, determine the date when the single well is first put into production; establish a coordinate system, and The coordinates are the maximum daily production of a single well, and the ordinate is the cumulative production value of a single well.
  • the four quadrants defined by the abscissa and ordinate are the high production rate and low cumulative production, the low production rate and low cumulative production, and the low production rate and low accumulation.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种用于油田开发生产的动态数据处理方法:(a)提取单井指标基础数据,进行单井波动预警;(b)判断单井波动预警结果是否正常:若正常,则回到步骤(a);若不正常,则向服务器传递预警的单井信息和周边油水井信息;(c)服务器提取井组指标基础数据,进行井间连通性分析;(d)根据井间连通性分析结果,判断预警是否正常:若预警不正常,则提取不正常数据所在的层位、区块和油田信息;(e)对不正常数据的所在进行油水井综合诊断。本发明用以解决现有技术中对于油田动态数据处理过程繁琐,且在生产预警过程中缺乏集成的生产诊断及指标预警的问题,实现利用油田生产动态数据提供系统化综合化的生产诊断及指标预警的目的。

Description

一种用于油田开发生产的动态数据处理方法 技术领域
本发明涉及油气开采领域,具体涉及一种用于油田开发生产的动态数据处理方法。
背景技术
对于油田的油气开采过程而言,油田静动态数据资料庞杂,生产原始数据类型和格式存在差异,且成果数据容易任意修改,管理与处理方式均较为混乱。随着近年来各大油田自然能源的逐渐枯竭,油田开发的深度与广度不断增大,二次甚至三次开发逐渐增多,传统的针对初次开发的油藏工程分析方法已经不能满足生产诊断需求。并且传统油田生产动态分析和跟踪需求要基于大量的人工数据分析对比来发现问题,然后提出解决方案和实施方案,耗时耗力,效果不佳。生产指标预警是为了防止指标超预警范围给出的警示,缩短发现问题的时滞性。现有技术中没有相对成熟的预警方法,大部分预警模式仅对监控指标和历史数据对比,没有结合预警理论优化动态推荐的预警指标,预警系统对单一指标的预警多,综合指标预警少。因此,现有技术中对于油田动态数据处理过程繁琐,且没在生产预警过程中缺乏更加集成的系统化、综合化的生产诊断及指标预警。
发明内容
本发明的目的在于提供一种用于油田开发生产的动态数据处理方法,以解决现有技术中对于油田动态数据处理过程繁琐,且在生产预警过程中缺乏更加集成的系统化、综合化的生产诊断及指标预警的问题,实现利用油田生产动态数据提供系统化、综合化的生产诊断及指标预警的目的。
本发明通过下述技术方案实现:
一种用于油田开发生产的动态数据处理方法,包括以下步骤:
(a)提取单井指标基础数据,进行单井波动预警;
(b)判断单井波动预警结果是否正常:若正常,则回到步骤(a);若不正常,则向服务器传递预警的单井信息和周边油水井信息;
(c)服务器接收预警的单井信息和周边油水井信息,提取井组指标基础数据,进行井间连通性分析;
(d)根据井间连通性分析结果,判断预警是否正常:若预警正常,则回到步骤(a);若预警不正常,则提取不正常数据所在的层位、区块和油田信息;
(e)对不正常数据所在的层位、区块和油田进行油水井综合诊断。
针对现有技术中对于油田动态数据处理过程繁琐,且在生产预警过程中缺乏更加集成的 系统化、综合化的生产诊断及指标预警的问题,本发明提出一种用于油田开发生产的动态数据处理方法,本方法首先从生产动态数据中提取单井指标基础数据,进行单井波动预警,再判断单井波动预警结果是否正常:若正常,则回到步骤(a),继续利用动态数据对油田生产进行监测;若不正常,则向服务器传递预警的单井信息和周边油水井信息,服务器接收到预警不正常的单井数据信息,以及该井周边的油井、水井信息,从中提取各井的指标基础数据,组成井组指标基础数据,进行小范围的井间连通性分析。井间连通性分析能够计算出连通系数,判断连通系数的计算结果是否正常:若连通系数范围正常,表示预警正常,工作人员接受到预警,回到步骤(a),继续利用动态数据对油田生产进行监测;若连通系数范围不正常,表示预警不正常,则提取不正常数据所在的层位、区块和油田信息,对不正常数据所在的层位、区块和油田进行油水井综合诊断,从而实现本发明中利用油田生产动态数据,提供系统化、综合化的生产诊断及指标预警的目的。
优选的,步骤(e)中的诊断结果同时反馈至步骤(a)中的单井指标基础数据、步骤(c)中的服务器中。综合诊断的结果优选的反馈至单井指标基础数据、步骤(c)中的服务器中,对单井指标基础数据、井间连通性分析同时进行修正,显著提高后续预警的准确性。
优选的,所述单井波动预警包括以下步骤:
(1)提取单井最近一个月的指标基础数据,计算各指标基础数据的月平均值、变化率、波动区间、期望、方差;
(2)根据步骤(1)中的计算结果,计算出各指标基础数据的预警阈值或预警区间;
(3)提取单井最近一天的指标基础数据,计算各指标基础数据的日平均值,将各指标基础数据的日平均值与预警阈值或预警区间进行对比,判断是否符合预警条件:若所有指标基础数据均不符合预警条件,则单井波动预警结果正常;若至少一个指标基础数据符合预警条件,则单井波动预警结果不正常。
优选的,所述指标基础数据包括日产液量、日产油量、含水率、气油比、日注水量、注入压力、配注合格率、注入时间、生产时率、油嘴直径、泵参数、油压、套压、井底流压、水矿化度、日产气、油气比、水气比中的至少N种,其中N≥5。其中日产液量、日产油量、含水率、气油比为油井监控指标;日注水量、注入压力、配注合格率、注入时间为注水井监控指标;生产时率、油嘴直径、泵参数为工作制度监控指标;油压、套压、井底流压、产出水矿化度为动态监控指标;日产气、油气比、水气比为气井监控指标。最优方案为上述所有指标均包括在指标基础数据中。
进一步的,所述井间连通性分析包括以下步骤:
(A)提取井组中的注采井数、注水井的注入量、生产井的产液量、各井的井位坐标、 相邻两井之间的物源方向井对夹角;
(B)通过步骤(A)中提取的数据计算注采井间极限影响距离和影响系数矩阵;并对步骤(A)中提取的数据中的噪声、越界点进行消除;
(C)赋值连通系数、时间滞后常数,在消除了噪声和越界点的数据上建立连通性识别和连通系数模型;
(D)将注采井间极限影响距离和影响系数矩阵作为约束条件带入至连通性识别和连通系数模型中,计算出连通系数、时间滞后常数。
本方案给出了明确且简单的井间连通性分析方法,不仅能够计算出连通系数,还能够快速计算出时间滞后系数,进一步提高了井间连通性分析的准度和效率。
优选的,所述油水井综合诊断包括水驱效果评价、地质特征再优化;所述水驱效果评价包括注采体积比判断、电位测井曲线绘制、生产井单独诊断、注入井单独诊断;所述地质特征再优化包括对储层宏观非均质性、构造模型、流动单元、沉积微相、储层评价的检查或修正。
优选的,所述油水井综合诊断还包括区间产能分析,所述区间产能分析的方法如下:取各单井累计产油量、产水量,计算区块平均产油量、产水量;建立坐标系,横坐标为单井产油量与区块平均产油量之差,纵坐标为单井产水量与区块平均产水量之差,定义横坐标和纵坐标所构成的四个象限分别为高产油高产水、低产油高产水,低产油低产水,高产油低产水;绘制单井二维坐标图,判断单井在哪个象限内;在区块井位坐标体系内,将各单井所属象限进行区分标注。即是通过单井产油量与区块平均产油量之差、单井产水量与区块平均产水量之差构成直角坐标系,判断单井在哪个象限内,再根据该象限代表的油水产出情况,从而判断单井属于高产油高产水、低产油高产水,低产油低产水,高产油低产水中的哪一种,再在区块井位坐标体系内对各单井进行区分标注,从而使得工作人员能够快速加深对油田范围内单井的了解和掌握程度。
优选的,所述油水井综合诊断还包括DOFP散点分布分析,所述DOFP散点分布分析的方法如下:计算各单井日产量最大值、累计产量值,确定单井初次投产日期;建立坐标系,横坐标为单井日产量最大,纵坐标为单井累计产量值,定义横坐标和纵坐标所构成的四个象限分别为高采油速率低累积产量,低采油速率低累积产量,低采油速率低累积产量和高采油速率高累积产量;绘制单井二维坐标图,判断单井在哪个象限内;在区块井位坐标体系内,将各单井所属象限进行区分标注。DOFP指采油速率与累产油量交汇图,本方案通过单井日产量最大、单井累计产量值构成直角坐标系,判断单井在哪个象限内,再根据该象限代表的产量情况,从而判断单井属于高采油速率低累积产量,低采油速率低累积产量,低采油速率 低累积产量、高采油速率高累积产量中的哪一种,再在区块井位坐标体系内对各单井进行区分标注,从而使得工作人员能够快速加深对油田范围内单井的了解和掌握程度。
优选的,所述油水井综合诊断还包括计算单井贡献率,单井贡献率=单井总产量÷区块总产量。单井贡献率反应了单口油井对整个油田的重要性,其作用在于对区块所有油井进行优先度排序,优先处理高贡献油井出现的问题。同时能够基于全部油井的贡献率绘制区块示意图,体现高产井和低产井位置。
本发明与现有技术相比,具有如下的优点和有益效果:
本发明一种用于油田开发生产的动态数据处理方法,通过井间连通性分析计算出连通系数,判断连通系数的计算结果是否正常:若连通系数范围正常,表示预警正常,工作人员接受到预警,回到步骤(a),继续利用动态数据对油田生产进行监测;若连通系数范围不正常,表示预警不正常,则提取不正常数据所在的层位、区块和油田信息,对不正常数据所在的层位、区块和油田进行油水井综合诊断,从而实现本发明中利用油田生产动态数据,提供系统化、综合化的生产诊断及指标预警的目的。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为本发明具体实施例的整体流程示意图;
图2为本发明具体实施例中单井波动预警的流程示意图;
图3为本发明具体实施例中井间连通性分析的流程示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1:
如图1至图3所示的一种用于油田开发生产的动态数据处理方法,包括以下步骤:(a)提取单井指标基础数据,进行单井波动预警;(b)判断单井波动预警结果是否正常:若正常,则回到步骤(a);若不正常,则向服务器传递预警的单井信息和周边油水井信息;(c)服务器接收预警的单井信息和周边油水井信息,提取井组指标基础数据,进行井间连通性分析;(d)根据井间连通性分析结果,判断预警是否正常:若预警正常,则回到步骤(a);若预警不正常,则提取不正常数据所在的层位、区块和油田信息;(e)对不正常数据所在的层位、区块和油田进行油水井综合诊断。本实施例首先从生产动态数据中提取单井指标基础数据, 进行单井波动预警,再判断单井波动预警结果是否正常:若正常,则回到步骤(a),继续利用动态数据对油田生产进行监测;若不正常,则向服务器传递预警的单井信息和周边油水井信息,服务器接收到预警不正常的单井数据信息,以及该井周边的油井、水井信息,从中提取各井的指标基础数据,组成井组指标基础数据,进行小范围的井间连通性分析。井间连通性分析能够计算出连通系数,判断连通系数的计算结果是否正常:若连通系数范围正常,表示预警正常,工作人员接受到预警,回到步骤(a),继续利用动态数据对油田生产进行监测;若连通系数范围不正常,表示预警不正常,则提取不正常数据所在的层位、区块和油田信息,对不正常数据所在的层位、区块和油田进行油水井综合诊断,从而实现本发明中利用油田生产动态数据,提供系统化、综合化的生产诊断及指标预警的目的。
实施例2:
如图1至图3所示的一种用于油田开发生产的动态数据处理方法,在实施例1的基础上,步骤(e)中的诊断结果同时反馈至步骤(a)中的单井指标基础数据、步骤(c)中的服务器中。所述单井波动预警包括以下步骤:(1)提取单井最近一个月的指标基础数据,计算各指标基础数据的月平均值、变化率、波动区间、期望、方差;(2)根据步骤(1)中的计算结果,计算出各指标基础数据的预警阈值或预警区间;(3)提取单井最近一天的指标基础数据,计算各指标基础数据的日平均值,将各指标基础数据的日平均值与预警阈值或预警区间进行对比,判断是否符合预警条件:若所有指标基础数据均不符合预警条件,则单井波动预警结果正常;若至少一个指标基础数据符合预警条件,则单井波动预警结果不正常。所述指标基础数据包括日产液量、日产油量、含水率、气油比、日注水量、注入压力、配注合格率、注入时间、生产时率、油嘴直径、泵参数、油压、套压、井底流压、水矿化度、日产气、油气比、水气比中全部。所述井间连通性分析包括以下步骤:(A)提取井组中的注采井数、注水井的注入量、生产井的产液量、各井的井位坐标、相邻两井之间的物源方向井对夹角;(B)通过步骤(A)中提取的数据计算注采井间极限影响距离和影响系数矩阵;并对步骤(A)中提取的数据中的噪声、越界点进行消除;(C)赋值连通系数、时间滞后常数,在消除了噪声和越界点的数据上建立连通性识别和连通系数模型;(D)将注采井间极限影响距离和影响系数矩阵作为约束条件带入至连通性识别和连通系数模型中,计算出连通系数、时间滞后常数。所述油水井综合诊断包括水驱效果评价、地质特征再优化;所述水驱效果评价包括注采体积比判断、电位测井曲线绘制、生产井单独诊断、注入井单独诊断;所述地质特征再优化包括对储层宏观非均质性、构造模型、流动单元、沉积微相、储层评价的检查或修正。
实施例3:
如图1至图3所示的一种用于油田开发生产的动态数据处理方法,在上述任一实施例的 基础上,所述油水井综合诊断还包括区间产能分析,所述区间产能分析的方法如下:取各单井累计产油量、产水量,计算区块平均产油量、产水量;建立坐标系,横坐标为单井产油量与区块平均产油量之差,纵坐标为单井产水量与区块平均产水量之差,定义横坐标和纵坐标所构成的四个象限分别为高产油高产水、低产油高产水,低产油低产水,高产油低产水;绘制单井二维坐标图,判断单井在哪个象限内;在区块井位坐标体系内,将各单井所属象限进行区分标注。所述油水井综合诊断还包括DOFP散点分布分析,所述DOFP散点分布分析的方法如下:计算各单井日产量最大值、累计产量值,确定单井初次投产日期;建立坐标系,横坐标为单井日产量最大,纵坐标为单井累计产量值,定义横坐标和纵坐标所构成的四个象限分别为高采油速率低累积产量,低采油速率低累积产量,低采油速率低累积产量和高采油速率高累积产量;绘制单井二维坐标图,判断单井在哪个象限内;在区块井位坐标体系内,将各单井所属象限进行区分标注。所述油水井综合诊断还包括计算单井贡献率,单井贡献率=单井总产量÷区块总产量。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种用于油田开发生产的动态数据处理方法,其特征在于,包括以下步骤:
    (a)提取单井指标基础数据,进行单井波动预警;
    (b)判断单井波动预警结果是否正常:若正常,则回到步骤(a);若不正常,则向服务器传递预警的单井信息和周边油水井信息;
    (c)服务器接收预警的单井信息和周边油水井信息,提取井组指标基础数据,进行井间连通性分析;
    (d)根据井间连通性分析结果,判断预警是否正常:若预警正常,则回到步骤(a);若预警不正常,则提取不正常数据所在的层位、区块和油田信息;
    (e)对不正常数据所在的层位、区块和油田进行油水井综合诊断。
  2. 根据权利要求1所述的一种用于油田开发生产的动态数据处理方法,其特征在于,步骤(e)中的诊断结果同时反馈至步骤(a)中的单井指标基础数据、步骤(c)中的服务器中。
  3. 根据权利要求1所述的一种用于油田开发生产的动态数据处理方法,其特征在于,所述单井波动预警包括以下步骤:
    (1)提取单井最近一个月的指标基础数据,计算各指标基础数据的月平均值、变化率、波动区间、期望、方差;
    (2)根据步骤(1)中的计算结果,计算出各指标基础数据的预警阈值或预警区间;
    (3)提取单井最近一天的指标基础数据,计算各指标基础数据的日平均值,将各指标基础数据的日平均值与预警阈值或预警区间进行对比,判断是否符合预警条件:若所有指标基础数据均不符合预警条件,则单井波动预警结果正常;若至少一个指标基础数据符合预警条件,则单井波动预警结果不正常。
  4. 根据权利要求1所述的一种用于油田开发生产的动态数据处理方法,其特征在于,所述指标基础数据包括日产液量、日产油量、含水率、气油比、日注水量、注入压力、配注合格率、注入时间、生产时率、油嘴直径、泵参数、油压、套压、井底流压、水矿化度、日产气、油气比、水气比中的至少N种,其中N≥5。
  5. 根据权利要求1所述的一种用于油田开发生产的动态数据处理方法,其特征在于,所述井间连通性分析包括以下步骤:
    (A)提取井组中的注采井数、注水井的注入量、生产井的产液量、各井的井位坐标、相邻两井之间的物源方向井对夹角;
    (B)通过步骤(A)中提取的数据计算注采井间极限影响距离和影响系数矩阵;并对步骤(A)中提取的数据中的噪声、越界点进行消除;
    (C)赋值连通系数、时间滞后常数,在消除了噪声和越界点的数据上建立连通性识别 和连通系数模型;
    (D)将注采井间极限影响距离和影响系数矩阵作为约束条件带入至连通性识别和连通系数模型中,计算出连通系数、时间滞后常数。
  6. 根据权利要求1所述的一种用于油田开发生产的动态数据处理方法,其特征在于,所述油水井综合诊断包括水驱效果评价、地质特征再优化;所述水驱效果评价包括注采体积比判断、电位测井曲线绘制、生产井单独诊断、注入井单独诊断;所述地质特征再优化包括对储层宏观非均质性、构造模型、流动单元、沉积微相、储层评价的检查或修正。
  7. 根据权利要求6所述的一种用于油田开发生产的动态数据处理方法,其特征在于,所述油水井综合诊断还包括区间产能分析,所述区间产能分析的方法如下:取各单井累计产油量、产水量,计算区块平均产油量、产水量;建立坐标系,横坐标为单井产油量与区块平均产油量之差,纵坐标为单井产水量与区块平均产水量之差,定义横坐标和纵坐标所构成的四个象限分别为高产油高产水、低产油高产水,低产油低产水,高产油低产水;绘制单井二维坐标图,判断单井在哪个象限内;在区块井位坐标体系内,将各单井所属象限进行区分标注。
  8. 根据权利要求6所述的一种用于油田开发生产的动态数据处理方法,其特征在于,所述油水井综合诊断还包括DOFP散点分布分析,所述DOFP散点分布分析的方法如下:计算各单井日产量最大值、累计产量值,确定单井初次投产日期;建立坐标系,横坐标为单井日产量最大,纵坐标为单井累计产量值,定义横坐标和纵坐标所构成的四个象限分别为高采油速率低累积产量,低采油速率低累积产量,低采油速率低累积产量和高采油速率高累积产量;绘制单井二维坐标图,判断单井在哪个象限内;在区块井位坐标体系内,将各单井所属象限进行区分标注。
  9. 根据权利要求1所述的一种用于油田开发生产的动态数据处理方法,其特征在于,所述油水井综合诊断还包括计算单井贡献率,单井贡献率=单井总产量÷区块总产量。
PCT/CN2019/107627 2018-09-26 2019-09-25 一种用于油田开发生产的动态数据处理方法 WO2020063603A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811122740.7 2018-09-26
CN201811122740.7A CN109236273B (zh) 2018-09-26 2018-09-26 油田开发生产动态数据处理方法

Publications (1)

Publication Number Publication Date
WO2020063603A1 true WO2020063603A1 (zh) 2020-04-02

Family

ID=65057445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107627 WO2020063603A1 (zh) 2018-09-26 2019-09-25 一种用于油田开发生产的动态数据处理方法

Country Status (2)

Country Link
CN (1) CN109236273B (zh)
WO (1) WO2020063603A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117684924A (zh) * 2024-02-02 2024-03-12 天津盛通科技发展有限公司 一种油井物联智能控制方法、装置、设备及介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109236273B (zh) * 2018-09-26 2020-07-24 西南石油大学 油田开发生产动态数据处理方法
CN112049624B (zh) * 2019-06-06 2024-04-30 中国石油天然气股份有限公司 油井动态储量的预测方法、装置、设备及存储介质
CN114151049B (zh) * 2020-08-18 2023-11-28 中国石油化工股份有限公司 基于多参数分析的水井工况诊断方法
CN112270473B (zh) * 2020-10-27 2022-11-08 山东鼎滏软件科技有限公司 用于油气田时序数据的预警方法及装置
CN112699110B (zh) * 2020-12-30 2023-01-24 成都北方石油勘探开发技术有限公司 一种基于大数据的油田生产动态分析方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160047215A1 (en) * 2014-08-17 2016-02-18 Petro Research And Analysis Corp Real Time and Playback Interpretation of Fracturing Pressure Data
CN205225221U (zh) * 2015-11-18 2016-05-11 中国石油天然气股份有限公司 一种油田注水井实时诊断预警系统
CN106014369A (zh) * 2016-06-24 2016-10-12 中国石油天然气集团公司 一种油气藏的采集方法及装置
CN107977749A (zh) * 2017-12-06 2018-05-01 恒泰艾普(北京)云技术有限公司 一种油田开发指标的预测分析方法
CN109236273A (zh) * 2018-09-26 2019-01-18 西南石油大学 油田开发生产动态数据处理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1181450A (zh) * 1997-11-13 1998-05-13 深圳市南和汇安电子科技有限公司 油田采油智能化管理系统
CN101676518A (zh) * 2008-09-17 2010-03-24 上海市电力公司 水平导向钻随钻探测预警系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160047215A1 (en) * 2014-08-17 2016-02-18 Petro Research And Analysis Corp Real Time and Playback Interpretation of Fracturing Pressure Data
CN205225221U (zh) * 2015-11-18 2016-05-11 中国石油天然气股份有限公司 一种油田注水井实时诊断预警系统
CN106014369A (zh) * 2016-06-24 2016-10-12 中国石油天然气集团公司 一种油气藏的采集方法及装置
CN107977749A (zh) * 2017-12-06 2018-05-01 恒泰艾普(北京)云技术有限公司 一种油田开发指标的预测分析方法
CN109236273A (zh) * 2018-09-26 2019-01-18 西南石油大学 油田开发生产动态数据处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, RUIJUN: "Design and Realization of Production Index Early Warning System of Oilfield Single Well", SCIENCE -ENGINEERING (A), CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 November 2017 (2017-11-15), pages 14 - 46 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117684924A (zh) * 2024-02-02 2024-03-12 天津盛通科技发展有限公司 一种油井物联智能控制方法、装置、设备及介质
CN117684924B (zh) * 2024-02-02 2024-04-09 天津盛通科技发展有限公司 一种油井物联智能控制方法、装置、设备及介质

Also Published As

Publication number Publication date
CN109236273A (zh) 2019-01-18
CN109236273B (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2020063603A1 (zh) 一种用于油田开发生产的动态数据处理方法
Sun Advanced production decline analysis and application
RU2723769C1 (ru) Способ расчета объема обратного потока жидкости для гидроразрыва пласта при гидроразрыве в горизонтальных скважинах в залежах газа трещиноватых песчаников
CN104975852B (zh) 多段压裂水平井产油气位置的诊断方法及其系统
RU2013148583A (ru) Способ динамической оценки соответствия техническим требованиям нефтяного коллектора и увеличения добычи и нефтеотдачи с помощью асимметричного анализа показателей работы
CN104504604B (zh) 一种定性气井井筒积液的方法
CN103510940B (zh) 机械采油井工况综合诊断分析方法及装置
CN103902827A (zh) 一种碳酸盐岩水平井流动单元划分方法
CN110593863B (zh) 高含水期油藏的耗水层带的识别方法与识别系统
CN103912248A (zh) 水驱油田预测含水率方法
CN105298479A (zh) 压裂直井产油(气)位置的诊断方法及其系统
CN103470202A (zh) 油气井钻井过程中溢流在线综合监测与预警方法
CN103075142A (zh) 一种注水开发油田堵水油井选井方法
EP2739813A1 (en) System and method for quantifying stimulated rock quality in a wellbore
CN110469299A (zh) 一种采油井注水开发见效效果评价方法
CN110017129B (zh) 一种考虑酸性气体脱气的岩溶地热水结垢趋势预测方法
Ibrahim et al. Integration of pressure-transient and fracture area for detecting unconventional wells interference
RU2478783C2 (ru) Способ добычи углеводородов из скважины, проходящей через многослойный резервуар с гидроразрывом
CN109670729A (zh) 一种顶板含水层富水性评价方法
CN110644975B (zh) 一种缝洞型油藏示踪剂曲线定量解释方法
CN103334740B (zh) 考虑启动压力梯度的确定泄油前缘的方法
CN106404600A (zh) 判别粘弹性颗粒驱油剂在多孔介质中渗流行为的方法
CN104533397A (zh) 一种砂岩气层定量识别方法
CN110413951B (zh) 一种煤层气井排采速度的确定方法
Olsen et al. Waterflood performance evaluation in a chalk reservoir with an ensemble of tools

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867855

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19867855

Country of ref document: EP

Kind code of ref document: A1