WO2020063565A1 - 叶片及使用其的轴流叶轮 - Google Patents
叶片及使用其的轴流叶轮 Download PDFInfo
- Publication number
- WO2020063565A1 WO2020063565A1 PCT/CN2019/107444 CN2019107444W WO2020063565A1 WO 2020063565 A1 WO2020063565 A1 WO 2020063565A1 CN 2019107444 W CN2019107444 W CN 2019107444W WO 2020063565 A1 WO2020063565 A1 WO 2020063565A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blade
- rotation axis
- curve
- trailing edge
- normal plane
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/38—Blades
- F04D29/384—Blades characterised by form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/002—Axial flow fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/666—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/68—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
- F04D29/681—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/303—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/304—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
Definitions
- the present application relates to the field of rotating machinery such as fans, pumps, and compressors, and more particularly to a blade and an axial flow impeller using the same.
- leading and trailing edges of traditional blades are monotonous and smooth curves. Due to the severe flow separation on the blade surface, vortices are formed, so the blade has low aerodynamic performance and noise.
- the exemplary embodiments of the present application can solve at least some of the above problems.
- the present application provides a blade including a blade tip, a blade root, a leading edge, and a trailing edge, wherein the leading edge and the trailing edge respectively extend from the blade tip to the blade root
- the blade can rotate about a rotation axis, the rotation axis perpendicularly intersects with a normal plane of the rotation axis on the vertical foot; the projection of the leading edge on the normal plane along the rotation axis is A first curve having an even number of inflection points.
- the number of the inflection points is two, four, or six.
- the number of the inflection points is selected to reduce the formation of eddy currents.
- connection line between any point on the first curve and the vertical foot is the first connection line; the intersection of the blade root and the leading edge is along the rotation axis in the method.
- the line connecting the projection point on the plane with the vertical foot is the second line; the angle between the first line and the second line is called the wrap angle ⁇ ;
- the wrap angle ⁇ of a point satisfies ⁇ [0 °, 40 °].
- the trailing edge has several grooves.
- the projection of the trailing edge along the rotation axis on the normal plane is a second curve, wherein the angle between the groove walls of each groove is ⁇ and the groove depth is H ,
- the intervals between the plurality of grooves are the same.
- the opening widths of the plurality of grooves are the same, and the groove depths are increased in equal steps.
- a bottom of each of the plurality of grooves is arc-shaped.
- the present application provides an axial flow impeller including a hub, the hub having a rotation axis, the hub being rotatable about the rotation axis; and at least two blades, the at least two blades Arranged on an outer circumferential surface of the hub, and each of the at least two blades includes a blade tip, a blade root, a leading edge, and a trailing edge, wherein the leading edge and the trailing edge are respectively separated from the leaf
- the tip extends to the root of the blade; the blade is rotatable about a rotation axis that intersects a vertical foot perpendicular to a normal plane of the rotation axis; the leading edge is in the rotation axis along the rotation axis
- the projection on the normal plane is a first curve having an even number of inflection points.
- the present application provides a blade including a blade tip, a blade root, a leading edge, and a trailing edge, wherein the leading edge and the trailing edge respectively extend from the blade tip to the blade root
- the trailing edge of the blade has several slots.
- the blade can rotate about a rotation axis, the rotation axis perpendicularly intersects with a normal plane of the rotation axis at a vertical foot; the trailing edge is along the rotation axis at the rotation axis.
- the projection point is located on the groove wall.
- the intervals between the plurality of grooves are the same.
- the opening widths of the plurality of grooves are the same, and the groove depths are increased in equal steps.
- the bottom of each of the plurality of grooves has a circular arc shape.
- the present application provides an axial flow impeller including a hub having a rotation axis, and the hub can rotate about the rotation axis; and at least two blades, so The at least two blades are arranged on an outer circumferential surface of the hub, and each of the at least two blades includes a blade tip, a blade root, a leading edge, and a trailing edge, wherein the leading edge and the trailing edge Extending from the tip of the leaf to the root of the leaf, respectively; the trailing edge of the leaf has several grooves.
- the blade of the present application can improve blade performance and reduce running noise.
- Figure 1 shows a perspective view of an impeller using a blade of an embodiment of the present application
- FIG. 2 shows a perspective view of a blade used by the impeller in FIG. 1;
- FIG. 3A shows a projection view of the blade in FIG. 1 on a normal plane along the rotation axis X direction;
- 3B shows a projection view of a blade on a normal plane along the rotation axis X direction in another embodiment of the present application
- 3C shows a projection view of a blade on a normal plane along the rotation axis X direction in still another embodiment of the present application
- 4A-4B respectively show a comparison diagram of the vorticity distribution of the ordinary blade and the blade of the present application, and a comparison diagram of the upper surface streamline;
- FIG. 5 shows a projection view of the blade on a normal plane along the X direction of the rotation axis
- FIG. 6A shows an enlarged projection view of the groove shown in FIG. 3A on a normal plane along the rotation axis X direction;
- 6B shows an enlarged projection view of another embodiment of the groove of the present application on a normal plane along the rotation axis X direction;
- FIG. 7 shows a partially enlarged view of FIG. 3A
- FIG. 8 shows a comparison chart of the static pressure and the total efficiency of the blade 112 and the ordinary blade of the present application
- FIG. 9 shows a noise comparison chart of the blade 112 of the present application and a normal blade.
- FIG. 1 is a perspective view of an impeller 100 using a blade according to an embodiment of the present application.
- the impeller 100 includes a hub 110 and three blades 112.
- the hub 110 has a rotation axis X.
- the cross section of the hub 110 perpendicular to the rotation axis X is circular.
- the three blades 112 are evenly arranged on the outer circumferential surface of the hub 110 and are integrally connected with the blades 112.
- the hub 110 and the blade 112 can rotate together about the rotation axis X.
- the impeller 100 of the present application rotates around a rotation axis X in a clockwise direction (i.e., a rotation direction indicated by an arrow in FIG. 1).
- the hub 110 may also have other shapes, and the number of the blades 112 may be at least two.
- the shape of the hub 110 may be set in accordance with the number of the blades 112. For example, when the number of the blades 112 is three, the cross section of the hub 110 perpendicular to the rotation axis X is triangular; when the number of the blades 112 is four, the cross section of the hub 110 perpendicular to the rotation axis X is quadrangular.
- FIG. 2 is a perspective view of a blade 112 used in the impeller 100 in FIG. 1.
- the blade 112 includes an upper surface, a lower surface, a blade tip 216, a blade root 218, a leading edge 222, and a trailing edge 220.
- the "leading edge 222" indicates the leading edge along the blade rotation direction.
- “Tail edge 220” indicates the trailing edge in the direction of blade rotation.
- “Blade root 218” refers to the edge where the blade meets the hub.
- “Leaf tip 216” indicates the other edge opposite the root of the leaf.
- the upper and lower surfaces extend from the blade tip 216 to the root 218, respectively, and also extend from the leading edge 222 to the trailing edge 220, respectively.
- the trailing edge 220 of the blade 112 of the present application has a plurality of grooves 232, and each of the plurality of grooves 232 extends toward the leading edge 222.
- the impeller 100 has a normal plane (not shown), which is arranged perpendicular to the rotation axis X, and the perpendicular intersection point of the rotation axis X and the normal plane is the vertical foot O (see FIGS. 3A-3C).
- the normal plane is a virtual plane for better showing the specific structure of the leading edge 222 and the trailing edge 220 of the blade 112.
- the projection of the leading edge 222 of the blade 112 of the present application on the normal plane along the direction of the rotation axis X is a first curve, where the first curve has an even number of inflection points.
- the inflection point is a boundary point between a concave arc and a convex arc.
- FIG. 3A is a projection view of the blade 112 in FIG. 1 on a normal plane along the rotation axis X direction.
- the first curve has two inflection points, inflection point a and inflection point b, respectively.
- the projection point of the intersection of the blade root 218 and the leading edge 222 on the normal plane along the rotation axis X direction is point A
- the projection point of the intersection of the blade tip 216 and the leading edge 222 on the normal plane along the rotation axis X direction is a point B.
- the curve from point A to inflection point a and the curve from inflection point b to point B are concave arcs; the curve from inflection point a to inflection point b is convex arc.
- the point P is an arbitrary point on the first curve, and the connection between the point P and the vertical foot O is the first connection.
- the connection between point A and vertical foot O is the second connection.
- An included angle between the first connection and the second connection is a wrap angle ⁇ .
- the wrap angle ⁇ of any point P on the first curve satisfies ⁇ ⁇ [0 °, 40 °]
- the connection between any point P on the first curve and the vertical foot O is On the same side of the second line.
- the first curve has four inflection points, which are inflection point a, inflection point b, inflection point c, and inflection point d.
- the curve from point A to inflection point a, the curve from inflection point b to point inflection point c, and the curve from inflection point d to point B are concave arcs; the curve from inflection point a to inflection point b and the curve from inflection point c to inflection point d are convex arcs.
- 3C is a projection view of a blade on a normal plane along the rotation axis X direction according to another embodiment of the present application.
- the first curve has six inflection points, which are inflection point a, inflection point b, inflection point c, inflection point d, inflection point e, and inflection point f.
- the curve from point A to inflection point a, the curve from inflection point b to inflection point c, the curve from inflection point d to inflection point e, and the curve from inflection point f to point B are concave arcs; the curve from inflection point a to inflection point b, inflection point
- the curve from c to inflection point d and the curve from inflection point e to inflection point f are convex arcs.
- the wrap angle ⁇ of any point on the first curve in FIG. 3B and FIG. 3C also satisfies ⁇ ⁇ [0 °, 40 °], and the connection between any point P on the first curve and the vertical foot O is in the second connection. The same side of the line.
- the first curve in this application indicates the projection of the leading edge 222 on the normal plane along the rotation axis X direction, and does not indicate that the curve having a specific shape is the first curve.
- blades 4A and 4B are ordinary blades (blades with projections of the leading edge on the normal plane along the rotation axis X direction without the inflection point, that is, the curves of the projection of the leading edge on the normal plane along the rotation axis X direction are A monotonous smooth curve) and a vorticity distribution comparison chart of the blade 112 of the present application, and a comparison chart of the upper surface streamline of the blade.
- the blade on the left in FIG. 4A and FIG. 4B is an ordinary blade
- the blade on the right is the blade 112 of the present application.
- the leading edge 222 in the present application is provided with a concave arc and a convex arc to increase the work length of the leading edge 222, thereby reducing the load of the leading edge 222 of the blade 112.
- the concave and convex arcs on the leading edge 222 can forcibly split the larger peeling vortexes that were originally collected on the upper surface of the blade 112 near the leading edge 222 into at least two smaller vortices (such as ( Figure 4A), thereby reducing turbulence intensity and dissipation losses due to turbulence, improving aerodynamic performance and reducing noise.
- Splitting into smaller vortexes can also prevent the blades from being torn during high-speed rotation due to the presence of larger stripping vortices, thereby increasing the reliability of the blades during operation.
- the small stripped vortex that has been split by the concave and convex arcs on the leading edge 222 is not easy to move in the radial direction of the blade 112 to cause secondary flow when propagating toward the trailing edge 220, and the air on the surface of the blade 112
- the relative velocity streamlines are crossed (as shown in Figure 4B), so as to improve the aerodynamic performance and reduce noise.
- FIG. 5 is a projection view of the blade 112 on a normal plane along the X-axis of the rotation axis to show several distribution points Q of the groove 232.
- the trailing edge 220 has a contour line 502.
- the trailing edge 220 has a plurality of slots 232, each slot has a distribution point Q, and the distribution point Q of each slot is located on the contour line 502.
- the pitches between the distribution points Q of the grooves 232 are the same.
- FIG. 6A is an enlarged projection view of the groove 232 shown in FIG. 3A on a normal plane along the rotation axis X direction to show a specific structure of the groove 232.
- the projection of the trailing edge 220 on the normal plane along the X direction of the rotation axis is a second curve, and the length of the second curve is L.
- a straight line perpendicular to the contour line 502 is made at the distribution point Q, and the position of the bottom point G is determined according to the groove depth H.
- the groove depth H satisfies:
- the groove wall line NG and the groove wall line MG form an included angle ⁇ , and the included angle ⁇ satisfies:
- the MN is the opening width of the groove 232.
- the groove bottom EF is arc-shaped and its radius is r.
- the groove bottom EF is tangent to the groove wall line NG and the groove wall line MG at points E and F, respectively.
- the radius r satisfies
- the first connection portion ST of the groove wall line NG and the contour line 502 and the second connection portion IJ of the groove wall line MG and the contour line 502 are also arc-shaped and have a radius R.
- the first connection portion ST is tangent to the groove wall line NG and the contour line 502 at points S and T, respectively;
- the second connection portion IJ is tangent to the groove wall line MG and the contour line 502 at points I and J, respectively.
- the radius R satisfies
- the first connection portion ST, the groove wall SE, the groove bottom EF, the groove wall FI, and the second connection portion IJ form a groove 232.
- the point C is a projection point of the intersection of the blade tip 216 and the trailing edge 220 on the normal plane along the rotation axis X direction, and the projection point C is located on the groove wall FI.
- the groove 232 may not have the first connection portion ST or the second connection portion IJ, and the radii R of the first connection portion ST or the second connection portion IJ may be different.
- the straight line QG may not be perpendicular to the contour line 502, but may be directed toward the blade tip 216, the blade root 218, or the leading edge 222.
- FIG. 6B is an enlarged projection view of another embodiment of the slot 232 of the present application on a normal plane along the rotation axis X direction.
- the embodiment shown in FIG. 6B is different from the embodiment shown in FIG. 6A in that the groove 232 does not have the first connection portion ST, the groove bottom EF, and the second connection portion IJ.
- the groove wall NG and the groove wall MG form a groove 232.
- the point C is a projection point of the intersection point of the blade tip 216 and the trailing edge 220 on the normal plane along the rotation axis X direction, and the projection point C is located on the groove wall MG.
- FIG. 7 is a partially enlarged view of FIG. 3A to show the structure where the blade tip 216 and the trailing edge 220 intersect.
- the groove wall 704 of the groove 232 closest to the blade tip 216 and the blade tip 216 form a tip 702.
- the angle between the blade tip 216 and the groove wall 704 is ⁇ , and ⁇ satisfies ⁇ ⁇ [5 °, 80 °].
- the opening widths MN of the several grooves 232 on the trailing edge 220 are the same.
- the groove depth H increases in equal steps along the direction of the blade root 218 to the blade tip 216.
- FIG. 4A and 4B are ordinary blades (blades with no groove at the trailing edge, that is, the curve of the projection of the trailing edge on the normal plane along the rotation axis X direction is a monotonous smooth curve) and the present application Comparison chart of the vorticity distribution of the blade 112 and the comparison chart of the streamline on the upper surface of the blade.
- the stripping vortex develops into a chaotic turbulent flow at the trailing edge 220, and the turbulence can interact with the groove 232 on the trailing edge 220, thereby reducing noise scattering.
- the slot 232 on the trailing edge 220 can effectively reduce the low-frequency noise.
- the groove 232 on the trailing edge 220 can also split a larger peeling vortex on the upper surface of the blade 112 near the trailing edge 220 into a smaller-sized peeling vortex to prevent a larger peeling vortex from affecting the immediately adjacent downstream.
- the inlet airflow of the leading edge 222 of the next blade 112 avoids a decrease in aerodynamic performance caused by poor inlet conditions.
- the groove 232 on the trailing edge 220 can also reduce secondary flow caused by mutual movement in the radial direction of the upper surface of the blade 112, thereby reducing dissipation loss.
- FIG. 8 is a comparison chart of the static pressure and the total efficiency of the blade 112 of the present application and the ordinary blade.
- the dashed line in FIG. 8 shows the relationship between air volume and total efficiency
- the solid line shows the relationship between air volume and static pressure.
- the static pressure of the blade of the present application is about 20 Pa higher than that of the ordinary blade. From this, it can be seen that the aerodynamic performance (ie, static pressure and overall efficiency) of the blades of the present application is superior to ordinary blades.
- FIG. 9 is a noise comparison chart between the blade 112 of the present application and a normal blade. It can be seen from FIG. 9 that at a frequency of 1000 Hz to 10000 Hz, the noise emitted by ordinary blades is about 5 dB higher than the noise emitted by the blades of this application. In addition, at 0 Hz to 1000 Hz, the noise emitted by the blades of the present application during operation is also lower than the noise emitted by ordinary blades during operation. It can be seen that the noise emitted by the blades of the present application in the entire frequency band is substantially lower than the noise emitted by ordinary blades.
- airfoil sections from the leading edge to the trailing edge of the blade 112, which may be sections of equal thickness or any two-dimensional airfoil.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
一种叶片(112),包括叶尖(216)、叶根(218)、前缘(222)和尾缘(220),其中前缘(222)和尾缘(220)分别从叶尖(216)延伸至叶根(218);叶片(112)能够绕一旋转轴线(X)旋转,旋转轴线(X)与旋转轴线(X)的一法向平面垂直相交于垂足(O);前缘(222)沿旋转轴线(X)在法向平面上的投影为第一曲线,第一曲线具有偶数个拐点。叶片(112)能够在叶片(112)转动时降低噪声,并且提升气动性能。
Description
本申请涉及风机、泵和压缩机等旋转机械领域,更确切的说涉及一种叶片及使用其的轴流叶轮。
传统的叶片的前缘和尾缘为单调光滑的曲线,由于叶片表面流动分离严重,形成涡流,因此叶片气动性能较低,噪声较大。
发明内容
本申请的示例性实施例可以解决至少一些上述问题。
根据本申请的第一方面,本申请提供一种叶片,包括叶尖、叶根、前缘和尾缘,其中所述前缘和所述尾缘分别从所述叶尖延伸至所述叶根;所述叶片能够绕一旋转轴线旋转,所述旋转轴线与所述旋转轴线的一法向平面垂直相交于垂足;所述前缘沿所述旋转轴线在所述法向平面上的投影为第一曲线,所述第一曲线具有偶数个拐点。
根据上述第一方面的叶片,所述拐点的个数为2个、4个或6个。
根据上述第一方面的叶片,所述拐点的个数的选择能够减小涡流的形成。
根据上述第一方面的叶片,所述第一曲线上任意一点与所述垂足的连线为第一连线;所述叶根与所述前缘的交点沿所述旋转轴线在所述法向平面上的投影点与所述垂足的连线为第二连线;所述第一连线与所述第二连线的夹角称为包角θ;所述第一曲线上的任意一点的包角θ满足θ∈[0°,40°]。
根据上述第一方面的叶片,所述尾缘具有数个槽。
根据上述第一方面的叶片,所述尾缘沿所述旋转轴线在所述法向平面上的投影为第二曲线,其中每一个槽的槽壁之间的夹角为α、槽深为H,第二曲线的长度为L;所述夹角与所述槽深满足:α∈[10°,100°];H=K×L,K∈[1.5%,20%];并且所述叶尖与所述尾缘的交点沿所述旋转轴线在所述法向平面上的投影点位于所述槽壁上。
根据上述第一方面的叶片,所述数个槽之间的间距相同。
根据上述第一方面的叶片,所述数个槽的开口宽度相同,并且所述槽深成等差递增。
根据上述第一方面的叶片,所述数个槽中的每一个槽的底部为圆弧形。
根据本申请的第二方面,本申请提供一种轴流叶轮,包括轮毂,所述轮毂具有旋转轴线,所述轮毂能够绕所述旋转轴线转动;和至少两片叶片,所述至少两片叶片布置在所述轮毂的外圆周面上,并且所述至少两片叶片中的每一片包括叶尖、叶根、前缘和尾缘,其中所述前缘和所述尾缘分别从所述叶尖延伸至所述叶根;所述叶片能够绕一旋转轴线旋转,所述旋转轴线与所述旋转轴线的一法向平面垂直相交于垂足;所述前缘沿所述旋转轴线在所述法向平面上的投影为第一曲线,所述第一曲线具有偶数个拐点。
根据本申请的第三方面,本申请提供一种叶片,包括叶尖、叶根、前缘和尾缘,其中所述前缘和所述尾缘分别从所述叶尖延伸至所述叶根;所述叶片的所述尾缘具有数个槽。
根据上述第三方面的叶片,所述叶片能够绕一旋转轴线旋转,所述旋转轴线与所述旋转轴线的一法向平面垂直相交于垂足;所述尾缘沿所述旋转轴线在所述法向平面上的投影为第二曲线,其中每一个槽的槽壁之间的夹角为α、槽深为H,第二曲线的长度为L;所述夹角与所述槽深满足:α∈[10°,100°];H=K×L,K∈[1.5%,20%];并且所述叶尖与所述尾缘的交点沿所述旋转轴线在所述法向平面上的投影点位于所述槽壁上。
根据上述第三方面的叶片,所述数个槽之间的间距相同。
根据上述第三方面的叶片,所述数个槽的开口宽度相同,并且所述槽深成等差递增。
根据上述第三方面的叶片,所述数个槽中的每一个槽的底部为圆弧形。
根据本申请的第四方面,本申请提供一种轴流叶轮,所述轴流叶轮包括轮毂,所述轮毂具有旋转轴线,所述轮毂能够绕所述旋转轴线转动;和至少两片叶片,所述至少两片叶片布置在所述轮毂的外圆周面上,并且所述至少两片叶片中的每一片包括叶尖、叶根、前缘和尾缘,其中所述前缘和所述尾缘分别从所述叶尖延伸至所述叶根;所述叶片的所述尾缘具有数个槽。
本申请的叶片能够提高叶片性能,降低运行噪声。
本申请特征和优点可通过参照附图阅读以下详细说明得到更好地理解,在整个附图中,相同的附图标记表示相同的部件,其中:
图1示出了使用本申请的一个实施例的叶片的叶轮的立体图;
图2示出了图1中的叶轮所使用的叶片的立体图;
图3A示出了图1中的叶片沿旋转轴线X方向在法向平面上的投影图;
图3B示出了本申请的另一个实施例的叶片沿旋转轴线X方向在法向平面上的投影图;
图3C示出了本申请的再一个实施例的叶片沿旋转轴线X方向在法向平面上的投影图;
图4A‐4B分别示出了普通叶片与本申请的叶片的涡量分布对比图、以及叶片上表面流线对比图;
图5示出了叶片的沿旋转轴线X方向在法向平面上的投影图;
图6A示出了图3A所示的槽的沿旋转轴线X方向在法向平面上的放大的投影图;
图6B示出了本申请的槽的另一个实施例的沿旋转轴线X方向在法向平面上的放大的投影图;
图7示出了图3A的局部放大图;
图8示出了本申请的叶片112与普通叶片的静压及总效率对比图;
图9示出了本申请的叶片112与普通叶片的噪声对比图。
下面将参考构成本说明书一部分的附图对本申请的各种具体实施方式进行描述。在以下的附图中,同样的零部件使用同样的附图号,相似的零部件使用相似的附图号。
图1是使用本申请的一个实施例的叶片的叶轮100的立体图。如图1所示,叶轮100包括轮毂110和三个叶片112。轮毂110具有旋转轴线X。轮毂110垂直于旋转轴线X的截面为圆形。三个叶片112均匀地布置在轮毂110的外圆周面上,与叶片112连接成一体。轮毂110和叶片112能够一同绕旋转轴线X进行旋转。作为一个示例,本申请的叶轮100按顺时针方 向(即图1中箭头所示旋转方向)绕旋转轴线X进行旋转。本领域的技术人员可以理解,轮毂110也可以是其他形状,叶片112的个数为至少两个即可。轮毂110的形状可以与叶片112的个数配合设置。例如,当叶片112的个数为三个时,轮毂110垂直于旋转轴线X的截面为三角形;当叶片112的个数为四个时,轮毂110垂直于旋转轴线X的截面为四边形。
图2是图1中的叶轮100所使用的叶片112的立体图。如图2所示,叶片112包括上表面、下表面、叶尖216、叶根218、前缘222和尾缘220。其中,“前缘222”表示沿叶片旋转方向的前端边缘。“尾缘220”表示沿叶片旋转方向的后端边缘。“叶根218”表示叶片与轮毂相交的边缘。“叶尖216”表示与叶根相对的另一个边缘。上表面和下表面分别从叶尖216延伸至叶根218,并且也分别从前缘222延伸至尾缘220。本申请的叶片112的尾缘220具有数个槽232,数个槽232中的每一个槽都朝向前缘222延伸。
叶轮100具有一个法向平面(未示出),该法向平面垂直于旋转轴线X设置,并且该旋转轴线X与该法向平面的垂直的交点为垂足O(参见图3A‐3C)。本领域的技术人员可以理解,所述法向平面为一虚拟平面,用于更好地示出叶片112的前缘222和尾缘220的具体结构。本申请的叶片112的前缘222沿旋转轴线X方向在法向平面上的投影为第一曲线,其中第一曲线具有偶数个拐点。所述拐点为凹弧与凸弧的分界点。
图3A是图1中叶片112沿旋转轴线X方向在法向平面上的投影图。如图3A所示,第一曲线具有两个拐点,分别为拐点a和拐点b。叶根218与前缘222的交点沿旋转轴线X方向在法向平面上的投影点为点A,叶尖216与前缘222的交点沿旋转轴线X方向在法向平面上的投影点为点B。从点A至拐点a的曲线以及从拐点b至点B的曲线为凹弧;拐点a至拐点b的曲线为凸弧。点P为第一曲线上任意一点,点P与垂足O的连线为第一连线。点A与垂足O的连线为第二连线。第一连线与第二连线的夹角为包角θ。在本申请的实施例中,第一曲线上的任意一点P的包角θ满足θ∈[0°,40°],并且所述第一曲线上的任意一点P与垂足O的连线都在第二连线的同一侧。
图3B是本申请的另一个实施例的叶片沿旋转轴线X方向在法向平面上的投影图。如图3B所示,第一曲线具有四个拐点,分别为拐点a、拐点b、拐点c和拐点d。从点A至拐点a的曲线、从拐点b至点拐点c的曲线以及从拐点d至点B的曲线为凹弧;拐点a至拐点b的曲线以及拐点c至拐点d的曲线为凸弧。
图3C是本申请的再一个实施例的叶片沿旋转轴线X方向在法向平面上的投影图。如图3C所示,第一曲线具有六个拐点,分别为拐点a、拐点b、拐点c、拐点d、拐点e和拐点f。 从点A至拐点a的曲线、从拐点b至点拐点c的曲线、从拐点d至点拐点e的曲线以及从拐点f至点B的曲线为凹弧;拐点a至拐点b的曲线、拐点c至拐点d的曲线以及拐点e至拐点f的曲线为凸弧。
图3B和图3C中第一曲线上任一点的包角θ也满足θ∈[0°,40°],并且所述第一曲线上的任意一点P与垂足O的连线都在第二连线的同一侧。
需要说明的是,本申请中的第一曲线表示的是前缘222沿旋转轴线X方向在法向平面上的投影,并不表示具有特定形状的曲线为第一曲线。
图4A和图4B分别是普通叶片(前缘沿旋转轴线X方向在法向平面上的投影的曲线不具有拐点的叶片,即前缘沿旋转轴线X方向在法向平面上的投影的曲线为单调光滑的曲线)与本申请的叶片112的涡量分布对比图以及叶片上表面流线对比图。其中,图4A和图4B中左侧的叶片为普通叶片,右侧的叶片为本申请的叶片112。本申请中的前缘222通过设有凹弧和凸弧来增加前缘222的做功长度,从而减轻叶片112的前缘222的载荷。当叶片112旋转时,前缘222上的凹弧和凸弧能够将原本聚集在叶片112的上表面的靠近前缘222部分的较大的剥离涡强制分裂成至少两个较小的涡(如图4A所示),从而降低湍流强度和因湍流而引起的耗散损失,提高气动性能的同时降低噪声。分裂成较小的涡还能够避免叶片由于较大的剥离涡的存在而在高速转动时被撕裂,从而增加了叶片运行时的可靠性。并且,已经被前缘222上的凹弧和凸弧分裂成较小的剥离涡在朝着尾缘220传播时,不容易在叶片112的径向上相互窜动引起二次流,叶片112表面空气的相对速度流线尽量少地出现交叉(如图4B所示),从而实现提高气动性能的同时降低噪声。
图5是叶片112的沿旋转轴线X方向在法向平面上的投影图,以示出槽232的数个分布点Q。如图5所示,尾缘220具有轮廓线502。尾缘220具有数个槽232,每一个槽具有一个分布点Q,每一个槽的分布点Q都位于轮廓线502上。作为一个示例,槽232的分布点Q之间的间距相同。
图6A是图3A所示的槽232的沿旋转轴线X方向在法向平面上的放大的投影图,以示出槽232的具体结构。如图6A所示,尾缘220沿旋转轴线X方向在法向平面上的投影为第二曲线,第二曲线的长度为L。作为一个示例,在分布点Q处作垂直于轮廓线502的直线,根据槽深H来确定底点G的位置。其中,槽深H满足:
H=K×L,K∈[1.5%,20%]。
槽壁线NG和槽壁线MG形成夹角α,夹角α满足:
α∈[10°,100°]。
MN为槽232的开口宽度。槽底EF为圆弧形,其半径为r。槽底EF与槽壁线NG和槽壁线MG分别相切于点E和点F。半径r满足
此外,槽壁线NG和轮廓线502的第一连接部ST以及槽壁线MG和轮廓线502的第二连接部IJ也为圆弧形,其半径为R。第一连接部ST与槽壁线NG和轮廓线502分别相切于点S和T;第二连接部IJ与槽壁线MG和轮廓线502分别相切于点I和J。半径R满足
第一连接部ST、槽壁SE、槽底EF、槽壁FI和第二连接部IJ形成槽232。点C为叶尖216与尾缘220的交点沿旋转轴线X方向在法向平面上的投影点,投影点C位于槽壁FI上。
本领域的技术人员可以理解,槽232也可以不具有第一连接部ST或第二连接部IJ,并且第一连接部ST或第二连接部IJ的半径R也可以不相同。
作为另一个示例,直线QG也可以不垂直于轮廓线502,而是朝向叶尖216、叶根218或前缘222。
图6B是本申请的槽232的另一个实施例的沿旋转轴线X方向在法向平面上的放大的投影图。图6B所示的实施例与图6A所示的实施例不同之处在于,槽232不具有第一连接部ST、槽底EF和第二连接部IJ。槽壁NG和槽壁MG形成槽232。点C为叶尖216与尾缘220的交点沿旋转轴线X方向在法向平面上的投影点,投影点C位于槽壁MG上。
图7是图3A的局部放大图,以示出叶尖216与尾缘220相交处的结构。如图7所示,最接近叶尖216的槽232的槽壁704与叶尖216形成尖部702。叶尖216与槽壁704之间的夹角为β,β满足β∈[5°,80°]。
本领域的技术人员可以理解,尾缘220上的数个槽232的开口宽度MN相同。槽深H沿叶根218至叶尖216的方向等差递增。
参考图4A和4B,图4A和图4B分别是普通叶片(尾缘不具有槽的叶片,即尾缘沿旋转轴线X方向在法向平面上的投影的曲线为单调光滑的曲线)与本申请的叶片112的涡量分布对比图以及叶片上表面流线对比图。如图4A所示,当叶片112旋转时,剥离涡在尾缘220会发展成杂乱无章的湍流,湍流能够与尾缘220上的槽232相互作用,从而降低噪声散射。由于低频噪声在大气中的传导距离更长,因此尾缘220上的槽232能够有效降低低频噪声。 此外,尾缘220上的槽232还能够将叶片112的上表面上靠近尾缘220部分的较大的剥离涡分裂成较小尺寸的剥离涡,避免较大的剥离涡影响下游紧挨着的下一个叶片112的前缘222的进口气流,从而避免不良的进口条件引起的气动性能的下降。如图4B所示,尾缘220上的槽232还能够减少叶片112的上表面的径向上相互窜动引起的二次流,从而降低耗散损失。
图8是本申请的叶片112与普通叶片的静压及总效率对比图。其中,图8中虚线表示的是风量-总效率关系图,实线表示的是风量-静压关系图。从图8中可以看出,在相同风量下,本申请中的叶片的总效率高于普通叶片的总效率。具体的,在风量为19000m
3/h-25000m
3/h时,本申请的叶片的总效率比普通叶片的总效率高出大约8%。此外,在相同风量下,本申请中的叶片的静压高于普通叶片的静压。具体的,在风量为15000m
3/h-20000m
3/h时,本申请的叶片的静压比普通叶片的静压高出大约20Pa。由此可以看出,本申请的叶片的气动性能(即静压及总效率)优于普通叶片。
图9是本申请的叶片112与普通叶片的噪声对比图。从图9中可以看出,在频率为1000Hz-10000Hz时,普通叶片运行时发出的噪声比本申请的叶片运行时发出的噪声高出大约5dB。并且,在0Hz-1000Hz时,本申请的叶片运行时发出的噪声也比普通叶片运行时发出的噪声低。由此可以看出,本申请的叶片在全频段内发出的噪声大致上都低于普通叶片所发出的噪声。
需要说明的是,叶片112的从前缘到尾缘的叶型截面可以有多种,其可以为等厚度截面或者任何二维翼型。
尽管本文中仅对本申请的一些特征进行了图示和描述,但是对本领域技术人员来说可以进行多种改进和变化。因此应该理解,所附的权利要求旨在覆盖所有落入本申请实质精神范围内的上述改进和变化。
Claims (16)
- 一种叶片(112),包括:叶尖(216)、叶根(218)、前缘(222)和尾缘(220),其中所述前缘(222)和所述尾缘(220)分别从所述叶尖(216)延伸至所述叶根(218);所述叶片(112)能够绕一旋转轴线(X)旋转,所述旋转轴线(X)与所述旋转轴线(X)的一法向平面垂直相交于垂足(O);其特征在于:所述前缘(222)沿所述旋转轴线(X)方向在所述法向平面上的投影为第一曲线,所述第一曲线具有偶数个拐点。
- 如权利要求1所述的叶片(112),其特征在于:所述拐点的个数为2个、4个或6个。
- 如权利要求1所述的叶片(112),其特征在于:所述拐点的个数的选择能够减小涡流的形成。
- 如权利要求3所述的叶片(112),其特征在于:所述第一曲线上任意一点与所述垂足(O)的连线为第一连线;所述叶根(218)与所述前缘(222)的交点沿所述旋转轴线(X)方向在所述法向平面上的投影点(A)与所述垂足(O)的连线为第二连线;所述第一连线与所述第二连线的夹角称为包角θ;所述第一曲线上的任意一点的包角θ满足θ∈[0°,40°]。
- 如权利要求1所述的叶片(112),其特征在于:所述尾缘(220)具有数个槽(232)。
- 如权利要求5所述的叶片(112),其特征在于:所述尾缘(220)沿所述旋转轴线(X)方向在所述法向平面上的投影为第二曲线,其中每一个槽的槽壁之间的夹角为α、槽深为H,第二曲线的长度为L;所述夹角与所述槽深满足:α∈[10°,100°];H=K×L,K∈[1.5%,20%];并且所述叶尖(216)与所述尾缘(220)的交点沿所述旋转轴线(X)方向在所述法向平面上的投影点(C)位于所述槽壁上。
- 如权利要求5所述的叶片(112),其特征在于:所述数个槽(232)之间的间距相同。
- 如权利要求6所述的叶片(112),其特征在于:所述数个槽(232)的开口宽度相同,并且所述槽深成等差递增。
- 如权利要求5所述的叶片(112),其特征在于:所述数个槽(232)中的每一个槽的底部为圆弧形。
- 一种轴流叶轮(100),其特征在于包括:轮毂(110),所述轮毂(110)具有旋转轴线(X),所述轮毂(110)能够绕所述旋转轴线(X)转动;和至少两片根据权利要求1‐9中任意一项所述的叶片(112),所述至少两片叶片(112)布置在所述轮毂(110)的外圆周面上。
- 一种叶片(112),包括:叶尖(216)、叶根(218)、前缘(222)和尾缘(220),其中所述前缘(222)和所述尾缘(220)分别从所述叶尖(216)延伸至所述叶根(218);其特征在于:所述叶片(112)的所述尾缘(220)具有数个槽(232)。
- 如权利要求11所述的叶片(112),其特征在于:所述叶片(112)能够绕一旋转轴线(X)旋转,所述旋转轴线(X)与所述旋转轴线(X)的一法向平面垂直相交于垂足(O);所述尾缘(220)沿所述旋转轴线(X)方向在所述法向平面上的投影为第二曲线,其中每一个槽的槽壁之间的夹角为α、槽深为H,第二曲线的长度为L;所述夹角与所述槽深满足:α∈[10°,100°];H=K×L,K∈[1.5%,20%];并且所述叶尖(216)与所述尾缘(220)的交点沿所述旋转轴线(X)方向在所述法向平面上的投影点(C)位于所述槽壁上。
- 如权利要求11所述的叶片(112),其特征在于:所述数个槽(232)之间的间距相同。
- 如权利要求12所述的叶片(112),其特征在于:所述数个槽(232)的开口宽度相同,并且所述槽深成等差递增。
- 如权利要求11所述的叶片(112),其特征在于:所述数个槽(232)中的每一个槽的底部为圆弧形。
- 一种轴流叶轮(100),其特征在于:所述轴流叶轮(100)包括:轮毂(110),所述轮毂(110)具有旋转轴线(X),所述轮毂(110)能够绕所述旋转轴线(X)转动;和至少两片根据权利要求11‐15中任意一项所述的叶片(112),所述至少两片叶片(112)布置在所述轮毂(110)的外圆周面上。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19865164.8A EP3859164A4 (en) | 2018-09-25 | 2019-09-24 | BLADE AND AXIAL FLOW IMPELLER WITH USE THEREOF |
US17/280,111 US11572890B2 (en) | 2018-09-25 | 2019-09-24 | Blade and axial flow impeller using same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201821560173.9U CN209012127U (zh) | 2018-09-25 | 2018-09-25 | 叶片及使用其的轴流叶轮 |
CN201821560173.9 | 2018-09-25 | ||
CN201811119928.6A CN110939603A (zh) | 2018-09-25 | 2018-09-25 | 叶片及使用其的轴流叶轮 |
CN201811119928.6 | 2018-09-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020063565A1 true WO2020063565A1 (zh) | 2020-04-02 |
Family
ID=69949279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/107444 WO2020063565A1 (zh) | 2018-09-25 | 2019-09-24 | 叶片及使用其的轴流叶轮 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11572890B2 (zh) |
EP (1) | EP3859164A4 (zh) |
TW (1) | TWI821411B (zh) |
WO (1) | WO2020063565A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD980409S1 (en) * | 2019-03-07 | 2023-03-07 | Ziehl-Abegg Se | Fan wheel |
WO2021180559A1 (de) | 2020-03-10 | 2021-09-16 | Ebm-Papst Mulfingen Gmbh & Co. Kg | Ventilator und ventilatorflügel |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4089618A (en) * | 1974-07-02 | 1978-05-16 | Rotron Incorporated | Fan with noise reduction |
US20030012656A1 (en) * | 2001-06-12 | 2003-01-16 | Kyung Seok Cho | Axial flow fan |
CN204572556U (zh) * | 2015-02-12 | 2015-08-19 | 美的集团武汉制冷设备有限公司 | 空调器室外机和空调器 |
CN206626017U (zh) * | 2017-02-27 | 2017-11-10 | 广东美的环境电器制造有限公司 | 轴流风叶及具有其的电风扇 |
CN207333287U (zh) * | 2017-08-02 | 2018-05-08 | 奥克斯空调股份有限公司 | 锯齿型降噪轴流风叶 |
CN108087308A (zh) * | 2017-12-31 | 2018-05-29 | 青岛众力风机有限公司 | 一种轴流风扇 |
CN108350904A (zh) * | 2015-08-31 | 2018-07-31 | 施乐百有限公司 | 风机叶轮、风机和具有至少一个风机的系统 |
CN209012127U (zh) * | 2018-09-25 | 2019-06-21 | 约克广州空调冷冻设备有限公司 | 叶片及使用其的轴流叶轮 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202391808U (zh) * | 2011-12-13 | 2012-08-22 | 广东美的电器股份有限公司 | 低噪音轴流风轮 |
JP6704232B2 (ja) * | 2015-10-05 | 2020-06-03 | マクセルホールディングス株式会社 | 送風装置 |
KR102479815B1 (ko) * | 2015-11-30 | 2022-12-23 | 삼성전자주식회사 | 송풍팬 및 이를 구비하는 공기 조화기 |
-
2019
- 2019-09-24 TW TW108134462A patent/TWI821411B/zh active
- 2019-09-24 US US17/280,111 patent/US11572890B2/en active Active
- 2019-09-24 WO PCT/CN2019/107444 patent/WO2020063565A1/zh unknown
- 2019-09-24 EP EP19865164.8A patent/EP3859164A4/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4089618A (en) * | 1974-07-02 | 1978-05-16 | Rotron Incorporated | Fan with noise reduction |
US20030012656A1 (en) * | 2001-06-12 | 2003-01-16 | Kyung Seok Cho | Axial flow fan |
CN204572556U (zh) * | 2015-02-12 | 2015-08-19 | 美的集团武汉制冷设备有限公司 | 空调器室外机和空调器 |
CN108350904A (zh) * | 2015-08-31 | 2018-07-31 | 施乐百有限公司 | 风机叶轮、风机和具有至少一个风机的系统 |
CN206626017U (zh) * | 2017-02-27 | 2017-11-10 | 广东美的环境电器制造有限公司 | 轴流风叶及具有其的电风扇 |
CN207333287U (zh) * | 2017-08-02 | 2018-05-08 | 奥克斯空调股份有限公司 | 锯齿型降噪轴流风叶 |
CN108087308A (zh) * | 2017-12-31 | 2018-05-29 | 青岛众力风机有限公司 | 一种轴流风扇 |
CN209012127U (zh) * | 2018-09-25 | 2019-06-21 | 约克广州空调冷冻设备有限公司 | 叶片及使用其的轴流叶轮 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3859164A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3859164A1 (en) | 2021-08-04 |
US11572890B2 (en) | 2023-02-07 |
TW202020313A (zh) | 2020-06-01 |
TWI821411B (zh) | 2023-11-11 |
US20210340992A1 (en) | 2021-11-04 |
EP3859164A4 (en) | 2022-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11098734B2 (en) | Propeller fan, air-conditioning apparatus and ventilator | |
US9394911B2 (en) | Axial flow fan | |
CN111577655B (zh) | 叶片及使用其的轴流叶轮 | |
CN108506247B (zh) | 叶片及使用其的轴流叶轮 | |
CN106121734B (zh) | 一种叶片,包括该叶片的燃气涡轮机,以及制造该叶片的方法 | |
JP6604981B2 (ja) | 軸流送風機の羽根車、及び軸流送風機 | |
JP5593976B2 (ja) | プロペラファン | |
JP5425192B2 (ja) | プロペラファン | |
WO2020063565A1 (zh) | 叶片及使用其的轴流叶轮 | |
CN110939603A (zh) | 叶片及使用其的轴流叶轮 | |
CN110573746B (zh) | 螺旋桨式风扇 | |
JP4873865B2 (ja) | 送風機 | |
JP4818310B2 (ja) | 軸流送風機 | |
JP2008157113A (ja) | 送風機 | |
JP7005393B2 (ja) | ディフューザベーン及び遠心圧縮機 | |
WO2017145686A1 (ja) | 遠心圧縮機インペラ | |
KR101852572B1 (ko) | 축류팬 | |
CN209012127U (zh) | 叶片及使用其的轴流叶轮 | |
JP5147784B2 (ja) | ファンおよび軸流送風機 | |
CN111577656B (zh) | 叶片及使用其的轴流叶轮 | |
EP3760875B1 (en) | Rotor and centrifugal compression machine provided with said rotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19865164 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019865164 Country of ref document: EP Effective date: 20210426 |