WO2020063446A1 - 光学透镜模组和虚拟现实设备 - Google Patents

光学透镜模组和虚拟现实设备 Download PDF

Info

Publication number
WO2020063446A1
WO2020063446A1 PCT/CN2019/106682 CN2019106682W WO2020063446A1 WO 2020063446 A1 WO2020063446 A1 WO 2020063446A1 CN 2019106682 W CN2019106682 W CN 2019106682W WO 2020063446 A1 WO2020063446 A1 WO 2020063446A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
magnifying
refractive index
annular region
Prior art date
Application number
PCT/CN2019/106682
Other languages
English (en)
French (fr)
Inventor
王晨如
董瑞君
刘亚丽
栗可
张�浩
陈丽莉
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/756,609 priority Critical patent/US11543657B2/en
Publication of WO2020063446A1 publication Critical patent/WO2020063446A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/002Magnifying glasses
    • G02B25/008Magnifying glasses comprising two or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present disclosure relates to the technical field of optical instruments, and in particular, to an optical lens module and a virtual reality device.
  • the optical lens module is the core device of the VR device, and the optical performance of the optical lens module directly affects the experience of the VR device.
  • the focal length of the existing optical lens module for VR is relatively long, which causes the distance between the display screen and the optical lens (also known as the rear intercept) to be longer.
  • the entire VR device is relatively large and heavy. , Affecting the user experience.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art, and proposes an optical lens module and a virtual reality device.
  • the present disclosure provides an optical lens module including a lens component and a transflective layer that is attached to a surface on the light incident side and a surface on the light exit side of the lens component, wherein
  • the lens assembly includes a central region and at least one annular region surrounding the central region; wherein the refractive index of the central region is smaller than the refractive index of the at least one annular region; when the number of the annular regions is greater than one At this time, each annular region is nested layer by layer, and the outermost annular region has the maximum refractive index. For any other of the annular regions, the refractive index of the annular region is smaller than the refractive index of the annular region outside.
  • the central region is circular, and the annular region is circular.
  • the lens assembly includes: at least one magnifying lens disposed in order along the optical axis direction of the lens assembly.
  • the magnifying lens includes: a liquid crystal lens.
  • each of the magnifying lenses includes at least one of a plano-convex lens, a lenticular lens, and a meniscus lens.
  • the magnifying lens has a first magnifying lens and a second magnifying lens, and an optical axis of the first magnifying lens is collinear with an optical axis of the second magnifying lens.
  • the first magnifying lens and / or the second magnifying lens are both radial gradient index lenses, and the refractive index at the center of the radial gradient index lens is smaller than the refractive index at the edges.
  • the first magnifying lens and the second magnifying lens are both plano-convex lenses, and a planar optical surface of the first magnifying lens and a planar optical surface of the second magnifying lens are bonded, and two of the two The transflective layer is adhered to the convex optical surface of the first magnifying lens and the convex optical surface of the second magnifying lens, respectively.
  • the transflective layer is selected from one of the following: a transflective film pasted on the surface of the lens component by a film-laminating process; and a transflective film deposited on the surface of the lens component by a coating process Reverse film.
  • the present disclosure also provides a virtual reality device, including: the optical lens module as described above.
  • it further comprises: a display screen, the display screen being located on a light incident side of the lens assembly.
  • the virtual reality device is a glasses-type virtual reality device or a helmet-type virtual reality device.
  • FIG. 1 is a schematic diagram of an optical path of a VR imaging technology
  • FIG. 2 is a schematic structural diagram of an optical lens module according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an optical path when the optical lens module shown in FIG. 2 performs VR display;
  • FIG. 4 is a schematic structural diagram of a lens assembly in the present disclosure
  • FIG. 5 is a schematic structural diagram of an optical lens module according to an embodiment of the present disclosure.
  • Figure 6 is a side view of the lens assembly in Figure 5;
  • FIG. 7 is a schematic cross-sectional view taken along A-A in FIG. 6;
  • FIG. 8 is a schematic diagram of an optical path of the optical lens module shown in FIG. 5 when performing VR display;
  • FIG. 9 is a schematic diagram of a comparison of optical paths of effective light in a radial gradient index lens assembly and in a uniform index lens assembly;
  • FIG. 10 is another schematic structural diagram of a lens assembly in the present disclosure.
  • FIG. 1 is a schematic diagram of the optical path of VR imaging technology.
  • VR equipment generally includes a housing (not shown) and an optical lens module 1, where the housing is used to carry the optical lens module 1 and the display screen 2.
  • the optical lens module is used for enlarging the display screen provided by the display screen.
  • the display screen 2 is fixed on the housing 1 with the display surface of the display screen 2 facing the optical lens module 1. After the display screen presented by the display screen is enlarged by the optical lens module 1, the human eye will observe An upright magnified virtual image 3 to achieve VR display.
  • the distance a between the display screen 2 and the optical center 0 of the optical lens module 1 (a point located on the optical axis, and the propagation direction of light passing through the point does not change) is slightly smaller than that of the optical
  • the focal length b (the distance between the focal point F and the optical center 0) of the lens module 1, that is, the display screen 2 should be placed between the optical lens module 1 and the focal point F and close to the focal point F.
  • the entire VR device has a large size and a heavy weight, which is inconvenient for users to wear and affects the user's experience.
  • a method of reducing the focal length b of the optical lens module 1 is often adopted at present to reduce the distance a between the required display screen 2 and the optical center 0 of the optical lens module 1.
  • a thicker magnifying lens is selected as the optical lens module, or a magnifying lens with a larger surface curvature is selected as the optical lens module.
  • the optical lens module 1 a magnifying lens with a large curvature is selected. Since the larger the curvature of the magnifying lens, the higher the production process requirements and the more difficult the preparation, the more difficult it is to mass-produce.
  • the present disclosure provides an optical lens module. Compared with the existing optical lens modules, the optical lens module provided by the present disclosure has the advantages of short focal length, light weight, and easy processing.
  • FIG. 2 is a schematic structural diagram of an optical lens module according to an embodiment of the present disclosure.
  • the optical lens module 1 includes a lens assembly 4 and a transflective layer 5, which is attached to the lens The light-incident side surface and the light-exit side surface of the module 4; the transflective layer 5 can reflect part of the light directed to it and transmit the other part.
  • the “light incident side” of the lens assembly 4 specifically refers to the side of the lens assembly 4 facing the display screen 2 when the lens assembly 4 is assembled in a virtual reality device; the “light exit side” of the lens assembly 4 specifically refers to the When the lens assembly 4 is assembled in the virtual reality device, it is a side for viewing by the user.
  • the transflective layer 5 that is attached to the surface on the light incident side of the lens assembly 4 is referred to as a first transflective layer 501, and the surface that is attached to the surface on the light exit side of the lens assembly 4 is attached
  • the transflective layer 5 is referred to as a second transflective layer 502.
  • FIG. 3 is a schematic diagram of the optical path when the optical lens module 1 shown in FIG. 2 performs VR display.
  • a part of the light emitted by the display screen 2 reaches the surface of the first transflective layer 501, and half of the light is transmitted through the first
  • the transflective layer 501 is translucent and enters the lens assembly 4; the light transmitted through the lens assembly 4 propagates to the second transflective layer 502, of which half of the light is reflected and directed to the first half Transflective layer 501;
  • the light located in lens assembly 4 and directed to first transflective layer 501 is transmitted to first transflective layer 501, half of the light is reflected and again It is directed to the second transflective layer 502;
  • the light reflected through the first transflective layer 501 and directed to the second transflective layer 502 is transmitted to the second transflective layer 502 Half of them will be transmitted through the second transflective layer 502 and directed toward the human eye to form an image on the human eye.
  • the optical lens module 1 has a stronger ability to converge the effective light, so that the focal length of the optical lens module 1 becomes smaller only for effective light. At this time, the distance between the display screen 2 and the optical center of the optical lens module 1 can be reduced accordingly; accordingly, the overall size of the VR device can be reduced.
  • a transflective film can be pasted on the surface of the lens assembly 4 by using a filming process to obtain a transflective layer 5; or a transflective material can be deposited on the surface of the lens assembly 4 by using a coating process (to form a semitransparent) Semi-reflective film) to obtain a transflective layer 5.
  • a coating process to form a semitransparent
  • Semi-reflective film to obtain a transflective layer 5.
  • the transflective layer 5 has the characteristics of light weight and thin film thickness, and does not substantially affect the overall weight and overall size of the optical lens module 1.
  • the lens assembly 4 includes: at least one magnifying lens sequentially arranged along the optical axis direction of the lens assembly 4, and the magnifying lens can make the focal length smaller.
  • the magnifying lens may be selected from a plano-convex lens, a lenticular lens, and a meniscus lens.
  • the magnifying lens in the present disclosure may also be a liquid crystal lens; when the magnifying lens is a liquid crystal lens, the refractive index of each region of the liquid crystal lens may be flexibly adjusted through electric field control to meet the requirements of different scenarios.
  • FIG. 4 is a schematic structural diagram of a lens assembly in the present disclosure.
  • the lens assembly 4 includes two magnifying lenses, namely a first magnifying lens 401 and a second magnifying lens 402.
  • the axis is collinear with the optical axis of the second magnifying lens 402.
  • the first magnifying lens 401 and the second magnifying lens 402 can be disposed in contact (where the shapes of the opposing surfaces of the two can be completely matched, the two can be disposed in close contact) or spaced.
  • the two transflective layers 5 are respectively disposed on a surface of the first magnifying lens 401 facing away from the second magnifying lens 402 and a surface of the second magnifying lens 402 facing away from the first magnifying lens 401.
  • first magnifying lens 401 and the second magnifying lens 402 are both plano-convex lenses.
  • the planar optical surface of the first magnifying lens 401 and the planar optical surface of the second magnifying lens 402 are adhered to each other. 5 are attached to the convex optical surface of the first magnifying lens 401 and the convex optical surface of the second magnifying lens 402, respectively.
  • the combination of two plano-convex lenses can achieve the same magnification effect of one lenticular lens.
  • the processing difficulty of two plano-convex lenses is less than that of one lenticular lens.
  • the number of magnifying lenses in the present disclosure may be one, two, or more (the corresponding drawings are not given when the number of magnifying lenses is greater than two); when the number of magnifying lenses is greater than one, only It is only necessary to ensure that the optical axes of all the magnifying lenses are on the same straight line, and adjacent magnifying lenses can be set in contact or at intervals.
  • FIG. 5 is a schematic structural diagram of an optical lens module according to an embodiment of the present disclosure
  • FIG. 6 is a side view of the lens assembly in FIG. 5
  • FIG. 7 is a schematic cross-sectional view taken along the A-A direction in FIG. 6.
  • the technical solution of this embodiment is an improved solution based on the foregoing embodiment. The same features as those of the above embodiment will not be described again.
  • the lens assembly 4 may further include a central region n1 and at least one annular region n2 / n3 / n4 / n5 surrounding the central region; wherein the central region n1 has a minimum refractive index, that is, the refractive index of the central region is smaller than that of the annular region.
  • each of the annular regions n2 / n3 / n4 / n5 is nested layer by layer in order, located at the outermost
  • the annular region n5 has a maximum refractive index.
  • the refractive index of the annular region is smaller than the refractive index of the annular region located on the outer side. Any two regions of the lens assembly 4 that are symmetric with respect to the optical axis, the two regions have the same refractive index.
  • the optical lens module of this embodiment has the advantages of short focal length, light weight, and easy processing, and can expand the viewing angle.
  • the lens assembly 4 is a radial gradient refractive index lens assembly, and in the radial direction from the center to the edge, the refractive indices of each of the annular regions n2 / n3 / n4 / n5 increase sequentially.
  • the central area n1 is circular
  • the annular area n2 / n3 / n4 / n5 is circular.
  • the case where the number of annular regions n2 / n3 / n4 / n5 is four, the central region n1 is circular, and the annular region n2 / n3 / n4 / n5 is circular, is only exemplary. Effect, which does not limit the technical solution of the present disclosure.
  • the shape of the center region and the number and shape of the ring regions may be set according to actual needs.
  • FIG. 8 is a schematic diagram of the optical path of the optical lens module shown in FIG. 5 during VR display.
  • the interface between the central region and the annular region The interface between the region and the annular region is refracted, and the overall movement of the light is to propagate to the position near the optical center; when the effective light enters the inner annular region (or the central region) from the outer annular region, due to the refractive index of the outer annular region
  • the refractive index is greater than the inner annular region (or the central region), so the effective light is refracted, and the angle between the refracted effective light and the horizontal direction is reduced.
  • FIG. 9 is a schematic diagram of a comparison of optical paths of effective light in a radial gradient index lens assembly and in a uniform index lens assembly.
  • the effective light propagates in the radial gradient index lens assembly, the effective light is refracted, and each time the refraction occurs, the angle between the effective light and the horizontal direction decreases, and the effective light passes through the lens assembly.
  • the middle point P is emitted and directed to the human eye; the effective light is not refracted (straight-line propagation) in the uniform refractive index lens assembly, and the effective light is emitted from the point Q in the lens assembly 4 and directed to the human eye.
  • the distance between the point P and the optical axis in the vertical direction is greater than the distance between the point Q and the optical axis in the vertical direction, and the angle ⁇ is greater than the angle ⁇ .
  • the effective light in FIG. 9 is the light emitted from the pixels at the upper edge of the display screen 2
  • the vertical field of view (FOV) of the human eye is 2 ⁇
  • the uniform refractive index lens assembly 4 is used, the vertical field angle of the human eye is 2 ⁇ ; because the angle ⁇ is greater than the angle ⁇ , compared with the uniform refractive index lens assembly 4, the radial gradient refractive index lens assembly 4 can Effectively raise the vertical field of view of the human eye.
  • the horizontal field of view of the human eye can also be improved.
  • the transflective layer 5 and the radial gradient index lens assembly 4 can make the optical lens module 1 have the advantages of a short focal length, a wide viewing angle, and thinness.
  • FIG. 10 is another schematic structural diagram of a lens assembly in the present disclosure.
  • the lens assembly is a specific embodiment of the lens assembly shown in FIG. 6.
  • the lens assembly 4 includes a first magnifying lens 401 and a first magnifying lens 401.
  • the two magnifying lenses 402, the first magnifying lens 401 and the second magnifying lens 402 are both plano-convex lenses.
  • the planar optical surface of the first magnifying lens 401 and the planar optical surface of the second magnifying lens 402 are bonded together.
  • Two semi-transparent layers 5 are attached to the convex optical surface of the first magnifying lens 401 and the convex optical surface of the second magnifying lens 402, respectively.
  • the first magnifying lens 401 and / or the second magnifying lens 402 are both radial gradient index lenses, and the refractive index at the center of the radial gradient index lens is smaller than the refractive index at the edges, so that the formed lens
  • the central region of the component 4 has the smallest refractive index, and the outermost annular region has the largest refractive index.
  • the refractive index of the annular region is smaller than the refractive index of the annular region located on the outer side.
  • the refractive indices of the two regions are the same (that is, the lens assembly shown in FIG. 6).
  • first magnification lens 401 and the second magnification lens 402 are both radial gradient index lenses.
  • the radial gradient index lens can be prepared by using a segmented injection molding process or a segmented stitching process; of course, the radial gradient index lens can also be a liquid crystal lens. The refractive index is adjusted.
  • Embodiment 3 of the present disclosure provides a virtual reality device.
  • the virtual reality device includes: an optical lens module, and the optical lens module may use the optical lens module provided by the foregoing embodiments.
  • the virtual reality device having the optical lens module provided in the foregoing embodiment may have the characteristics of small size, light weight, wide viewing angle, and convenient production.
  • the virtual reality device further includes a display screen
  • the display screen type may be either a liquid crystal display screen or an organic electroluminescence display screen.
  • the display can be a flexible display or a transparent display.
  • the virtual reality device may specifically be a glasses-type virtual reality device (the case may be a glasses-type case) or a helmet-type virtual reality device (the case may be a helmet-type case).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种光学透镜模组和虚拟现实设备,光学透镜模组(1)包括:透镜组件(4),以及,半透半反层(501,502),贴合在所述透镜组件的入光侧的表面以及出光侧的表面,透镜组件(4)包括中心区域(n1)和环绕中心区域(n1)的至少一个环形区域(n2,n3,n4,n5);中心区域(n1)的折射率小于至少一个环形区域(n2,n3,n4,n5)的折射率;当环形区域(n2,n3,n4,n5)的数量大于1个时,各环形区域(n2,n3,n4,n5)依次层层套置,位于最外侧的环形区域(n5)具有最大折射率,对于其它任意一个环形区域(n2,n3,n4),环形区域的折射率小于位于其外侧的所述环形区域的折射率。

Description

光学透镜模组和虚拟现实设备
相关申请的交叉引用
本申请要求于2018年9月30日提交至中国知识产权局,公开名称为“光学透镜模组和虚拟现实设备”的中国专利申请NO.201811155871.5的优先权,其所公开的内容以引用的方式合并于此。
技术领域
本公开涉及光学仪器技术领域,特别涉及一种光学透镜模组和虚拟现实设备。
背景技术
随着科学技术的发展以及人们生活水平的提高,人们对各类显示装置的显示效果提出了更高的要求。为了满足人们的需求以及市场的需要,近年来,虚拟现实(Virtual Reality,简称VR)技术在显示领域的运用发展迅速,是目前应用研究的一个热点。
其中,光学透镜模组是VR设备的核心器件,光学透镜模组的光学性能直接影响了VR设备的体验感。目前,现有的VR用光学透镜模组的焦距较长,导致显示屏与光学透镜之间的距离(又称为后截距)较长,此时整个VR设备的体积较大、重量较重,影响用户的体验。
公开内容
本公开旨在至少解决现有技术中存在的技术问题之一,提出了一种光学透镜模组和虚拟现实设备。
为实现上述目的,本公开提供了一种光学透镜模组,包括:透镜组件,以及,半透半反层,其贴合在所述透镜组件的入光侧的表面以及出光侧的表面,其中,所述透镜组件包括中心区域和环绕所述中心区域的至少一个环形区域;其中,所述中心区域的折射率小于所述 至少一个环形区域的折射率;当所述环形区域的数量大于1个时,各环形区域依次层层套置,位于最外侧的环形区域具有最大折射率,对于其它任意一个所述环形区域,该环形区域的折射率小于位于其外侧的所述环形区域的折射率。
可选地,所述中心区域呈圆形,所述环形区域呈圆环形。
可选地,所述透镜组件包括:沿所述透镜组件的光轴方向依次设置的至少一个放大透镜。
可选地,所述放大透镜包括:液晶透镜。
可选地,各所述放大透镜包括平凸形透镜、双凸形透镜、弯月形透镜中的至少一种。
可选地,所述放大透镜具有第一放大透镜和第二放大透镜,所述第一放大透镜的光轴与所述第二放大透镜的光轴共线。
可选地,所述第一放大透镜和/或所述第二放大透镜均为径向梯度折射率透镜,且所述径向梯度折射率透镜的中心处的折射率小于边缘处的折射率。
可选地,所述第一放大透镜和所述第二放大透镜均为平凸透镜,所述第一放大透镜的平面光学面与所述第二放大透镜的平面光学面相贴合,两个所述半透半反层分别贴合于所述第一放大透镜的凸面光学面和所述第二放大透镜的凸面光学面。
可选地,所述半透半反层选自以下之一:采用贴膜工艺粘贴于所述透镜组件表面的半透半反薄膜;以及,采用镀膜工艺沉积于所述透镜组件表面的半透半反薄膜。
为实现上述目的,本公开还提供了一种虚拟现实设备,包括:如上述的光学透镜模组。
可选地,还包括:显示屏,所述显示屏位于所述透镜组件的入光侧。
可选地,所述虚拟现实设备为眼镜式虚拟现实设备或头盔式虚拟现实设备。
附图说明
图1为VR成像技术的光路示意图;
图2为本公开实施例提供的一种光学透镜模组的结构示意图;
图3为图2所示光学透镜模组进行VR显示时的光路示意图;
图4为本公开中透镜组件的一种结构示意图;
图5为本公开实施例提供的一种光学透镜模组的结构示意图;
图6为图5中透镜组件侧视图;
图7为图6中A-A向的截面示意图;
图8为图5所示光学透镜模组的进行VR显示时的光路示意图;
图9为有效光在径向梯度折射率透镜组件内和在均匀折射率透镜组件内的光路对比示意图;
图10为本公开中透镜组件的又一种结构示意图。
具体实施方式
为使本领域的技术人员更好地理解本公开的技术方案,下面结合附图对本公开提供的一种光学透镜模组和虚拟现实设备进行详细描述。
图1为VR成像技术的光路示意图,如图1所示,VR设备一般包括壳体(未示出)和光学透镜模组1,其中壳体用于承载光学透镜模组1和显示屏2,光学透镜模组用于将显示屏提供的显示画面进行放大。在使用时,将显示屏2固定于壳体1上,并使得显示屏2的显示面朝向光学透镜模组1,显示屏呈现的显示画面经过光学透镜模组1放大后,人眼会观察到一个正立放大的虚像3,从而实现VR显示。
为保障成像效果,需使得显示屏2与光学透镜模组1的光心0(位于光轴上的点,且凡是通过该点的光,其传播方向不变)之间的距离a略微小于光学透镜模组1的焦距b(焦点F与光心0之间的距离),即显示屏2应放置于光学透镜模组1与焦点F之间且靠近焦点F的位置。
因此,当光学透镜模组1的焦距b较长时,所需显示屏2与光学透镜模组1的光心0之间的距离a也较长,此时所需壳体的体积也较大,最终导致整个VR设备的尺寸较大、重量较重,不便于用户佩 戴,影响用户的体验感。
为解决上述技术问题,当前往往采用减小光学透镜模组1的焦距b的方式,以使得所需显示屏2与光学透镜模组1的光心0之间的距离a减小。具体地,选取厚度较厚的放大透镜来作为光学透镜模组,或选用表面曲率较大的放大透镜作为光学透镜模组。然而在实际应用中发现,上述两种方式虽然可在一定程度上减小光学透镜模组1的焦距b,但是选用厚度较厚的放大透镜来作为光学透镜模组,必然会使得光学透镜模组的重量增大,VR设备的整体重量较重。而选用曲率较大的放大透镜来作为光学透镜模组1,由于放大透镜曲率越大,生产工艺要求越高、制备难度越大,因此难以批量生产。
针对上述问题,本公开提供了一种光学透镜模组,相较于现有的光学透镜模组,本公开提供的光学透镜模组具有焦距短、轻薄、便于加工等优点。
图2为本公开实施例提供的一种光学透镜模组的结构示意图,如图2所示,该光学透镜模组1包括:透镜组件4,以及半透半反层5,其贴合在透镜组件4的入光侧表面以及出光侧的表面;其中,半透半反层5可对射向其的光中的部分进行反射,另一部分进行透射。
其中,透镜组件4的“入光侧”具体是指,将透镜组件4组装于虚拟现实设备内时透镜组件4朝向显示屏2的一侧;透镜组件4的“出光侧”具体是指,将透镜组件4组装于虚拟现实设备内时供用户进行观看的一侧。
为方便描述,将与透镜组件4的入光侧的表面相贴合的半透半反层5称为第一半透半反层501,将与透镜组件4的出光侧的表面相贴合的半透半反层5称为第二半透半反层502。
在下面描述中,以第一半透半反层501和第二半透半反层502的透光率为50%、折射率为50%的情况为例。
图3为图2所示光学透镜模组1进行VR显示时的光路示意图,如图3所示,显示屏2发出的一部分光达到第一半透半反层501的表面,其中一半光透射第一半透半反层501并射入至透镜组件4内;然后透射至透镜组件4中的光传播至第二半透半反层502处,其中一半 光会发生反射,并射向第一半透半反层501;接着,位于透镜组件4内且射向第一半透半反层501的光,当其传播至第一半透半反层501时,其中一半光会发生反射,并再次射向第二半透半反层502;最后,经由第一半透半反层501反射并射向第二半透半反层502的光,当其传播至第二半透半反层502时,其中一半会透射第二半透半反层502并射向人眼,以在人眼形成图像。为方便描述,将最终射向人眼的光称作有效光。
对于有效光而言,其依次透射第一半透半反层501、经过第二半透半反层502反射、经过第一半透半反层501反射、透射第二半透半反层502的过程,三次经过透镜组件4,可等效看作是有效光通过3个沿光轴方向并排的透镜组件4。由此可见,光学透镜模组1对有效光的汇聚能力增强,因此仅针对有效光而言,光学透镜模组1的焦距变小。此时,显示屏2与光学透镜模组1的光心之间的距离可相应减小;相应地,VR设备的整体尺寸可减小。
在本公开中,可采用贴膜工艺在透镜组件4表面粘贴半透半反薄膜,以得到半透半反层5;或者,采用镀膜工艺在透镜组件4表面沉积半透半反材料(形成半透半反薄膜),以得到半透半反层5。贴膜工艺和镀膜工艺均属于本领域的成熟工艺,工艺难度相对较低,适合批量生产。
与此同时,半透半反层5具备重量轻、膜厚薄的特点,不会对光学透镜模组1的整体重量和整体尺寸产生实质影响。
本实施例中,可选地,透镜组件4包括:沿透镜组件4的光轴方向依次设置的至少一个放大透镜,该放大透镜可以更有效地使焦距变小。进一步可选地,放大透镜可选自平凸形透镜、双凸形透镜、弯月形透镜。当然,本公开中放大透镜还可以为液晶透镜;当放大透镜采用液晶透镜时,可通过电场控制来对液晶透镜各区域的折射率进行灵活调整,以满足不同场景的需求。
需要说明的是,本公开的技术方案对放大透镜的类型、形状均不作限定。
图4为本公开中透镜组件的一种结构示意图,如图4所示,透 镜组件4包括两个放大透镜,分别为第一放大透镜401和第二放大透镜402,第一放大透镜401的光轴与第二放大透镜402的光轴共线。第一放大透镜401和第二放大透镜402可接触设置(在两者相对的表面的形状能够完全匹配的情况下,两者可以完全贴合设置)或间隔设置。
此时,两个半透半反层5分别设置于第一放大透镜401背向第二放大透镜402的一侧表面和第二放大透镜402背向第一放大透镜401的一侧表面。
进一步可选地,第一放大透镜401和第二放大透镜402均为平凸透镜,第一放大透镜401的平面光学面与第二放大透镜402的平面光学面相贴合,两个半透半反层5分别贴合于第一放大透镜401的凸面光学面和第二放大透镜402的凸面光学面。
在本公开中,两个平凸透镜的组合能够实现一个双凸透镜相同的放大效果。而就加工工艺而言,两个平凸透镜的加工工艺难度要小于一个双凸透镜的加工工艺难度。
需要说明的是,本公开中放大透镜的数量可以为1个、2个或多个(放大透镜数量大于2个的情况未给出相应附图);当放大透镜的数量大于1个时,仅需保证全部放大透镜的光轴位于同一直线上即可,相邻放大透镜之间可接触设置或间隔设置。
图5为本公开一实施例提供的一种光学透镜模组的结构示意图,图6为图5中透镜组件侧视图,图7为图6中A-A向的截面示意图。如图5至图7所示,本实施例的技术方案为基于上述实施例的一种改进方案。与上述实施例相同的特征将不再赘述。具体地,透镜组件4可以进一步包括:中心区域n1和环绕所述中心区域的至少一个环形区域n2/n3/n4/n5;其中,中心区域n1具有最小折射率,即中心区域的折射率小于环形区域n2/n3/n4/n5的折射率;且当环形区域n2/n3/n4/n5的数量大于1个时,各环形区域n2/n3/n4/n5依次层层套置,位于最外侧的环形区域n5具有最大折射率,对于其它任意一个环形区域n2/n3/n4,该环形区域的折射率小于位于其外侧的环形区域的折射率。透镜组件4上关于光轴对称的任意两个区域,该两个 区域的折射率相同。本实施例的光学透镜模组在具有焦距短、轻薄、便于加工等优点的同时,可以扩大视角。
此时,该透镜组件4为径向梯度折射率透镜组件,且在由中心指向边缘的径向方向上,各环形区域n2/n3/n4/n5的折射率依次增大。
可选地,中心区域n1呈圆形,环形区域n2/n3/n4/n5呈圆环形。
需要说明的是,附图中环形区域n2/n3/n4/n5的数量为4个、中心区域n1呈圆形、环形区域n2/n3/n4/n5呈圆环形的情况,仅起示例性作用,其不会对本公开的技术方案产生限制。在本公开中,可根据实际需要来设定中心区域的形状以及环形区域的数量、形状。
图8为图5所示光学透镜模组的进行VR显示时的光路示意图,如图8所示,光线在径向梯度折射率透镜组件4中进行传播时,中心区域-环形区域的界面、环形区域-环形区域的界面发生折射,且光线整体运动趋势为向靠近光心的位置进行传播;有效光在由外侧环形区域进入内侧的环形区域(或中心区域)时,由于外侧环形区域的折射率大于内侧的环形区域(或中心区域)的折射率,因此有效光会发生折射,且折射后的有效光与水平方向之间的夹角减小。
图9为有效光在径向梯度折射率透镜组件内和在均匀折射率透镜组件内的光路对比示意图。如图9所示,有效光在径向梯度折射率透镜组件内传播时,有效光会发生折射,且每发生一次折射,有效光与水平方向的夹角均会减小,有效光从透镜组件中的点P射出并射向人眼;有效光在均匀折射率透镜组件内不会发生折射(直线传播),有效光从透镜组件4中的点Q射出并射向人眼。其中,通过附图可见,点P与光轴在竖直方向上的距离大于点Q与光轴在竖直方向上的距离,且角α大于角β。
假定图9中有效光为来自显示屏2上侧边缘处像素所发出的光,则采用径向梯度折射率透镜组件4时,人眼的竖直视场角(Field Of View,简称FOV)为2α;采用均匀折射率透镜组件4时,人眼的竖直视场角为2β;由于角α大于角β,因此相较于均匀折射率透镜组件4,采用径向梯度折射率透镜组件4可有效提升人眼的竖直视场角。 同理,人眼的水平视场角也能得到提升。
由此可见,采用径向梯度折射率透镜组件4,且在中心指向边缘的径向方向上各环形区域的折射率依次增大,可有效提升人眼的视场角,有利于提升用户的体验感。
在本实施例中,半透半反层5配合径向梯度折射率透镜组件4,可使得光学透镜模组1具备短焦距、广视角、轻薄化等优点。
图10为本公开中透镜组件的又一种结构示意图,如图10所示,该透镜组件为图6所示透镜组件的一种具体化方案,该透镜组件4包括第一放大透镜401和第二放大透镜402,第一放大透镜401和第二放大透镜402均为平凸透镜,第一放大透镜401的平面光学面与第二放大透镜402的平面光学面相贴合,两个半透半反层5分别贴合于第一放大透镜401的凸面光学面和第二放大透镜402的凸面光学面。
其中,第一放大透镜401和/或第二放大透镜402均为径向梯度折射率透镜,且径向梯度折射率透镜的中心处的折射率小于边缘处的折射率,以使得所构成的透镜组件4的中心区域具有最小折射率,位于最外侧的环形区域具有最大折射率,对于其它任意一个环形区域,该环形区域的折射率小于位于其外侧的环形区域的折射率;透镜组件4上关于光轴对称的任意两个区域,该两个区域的折射率相同(即图6所示透镜组件)。
需要说明的是,附图中仅示例性给出了第一放大透镜401和第二放大透镜402均为径向梯度折射率透镜的情况。
在本实施例中,径向梯度折射率透镜可采用分段注塑加工工艺或者分段拼接工艺来制备;当然径向梯度折射率透镜也可以采用液晶透镜,通过电场控制来对液晶透镜各区域的折射率进行调整。
本公开实施例三提供了一种虚拟现实设备,该虚拟现实设备包括:光学透镜模组,该光学透镜模组可采用上述各实施例所提供的光学透镜模组。
通过前述内容可见,拥有上述实施例所提供的光学透镜模组的虚拟现实设备,可具备体积小、重量轻、视角广、便于生产等特点。
可选地,虚拟现实设备还包括:显示屏,该显示屏类型既可以 为液晶显示屏也可以为有机电致发光显示屏。其中,显示屏可采用柔性显示屏或透明显示屏。
在本公开中,该虚拟现实设备具体可以为眼镜式虚拟现实设备(壳体可以为眼镜式壳体)或头盔式虚拟现实设备(壳体可以为头盔式壳体)。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (12)

  1. 一种光学透镜模组,包括:透镜组件,以及,半透半反层,其贴合在所述透镜组件的入光侧的表面以及出光侧的表面,
    其中,所述透镜组件包括中心区域和环绕所述中心区域的至少一个环形区域;
    其中,所述中心区域的折射率小于所述至少一个环形区域的折射率;
    当所述环形区域的数量大于1个时,各环形区域依次层层套置,位于最外侧的环形区域具有最大折射率,对于其它任意一个所述环形区域,该环形区域的折射率小于位于其外侧的所述环形区域的折射率。
  2. 根据权利要求1所述的光学透镜模组,其中,所述中心区域呈圆形,所述环形区域呈圆环形。
  3. 根据权利要求1或2所述的光学透镜模组,其中,所述透镜组件包括:沿所述透镜组件的光轴方向依次设置的至少一个放大透镜。
  4. 根据权利要求3所述的光学透镜模组,其中,所述放大透镜包括:液晶透镜。
  5. 根据权利要求3所述的光学透镜模组,其中,所述放大透镜包括平凸形透镜、双凸形透镜、弯月形透镜中的至少一种。
  6. 根据权利要求3所述的光学透镜模组,其中,所述放大透镜具有第一放大透镜和第二放大透镜,所述第一放大透镜的光轴与所述第二放大透镜的光轴共线。
  7. 根据权利要求6所述的光学透镜模组,其中,所述第一放大透镜和/或所述第二放大透镜均为径向梯度折射率透镜,且所述径向梯度折射率透镜的中心处的折射率小于边缘处的折射率。
  8. 根据权利要求6所述的光学透镜模组,其中,所述第一放大透镜和所述第二放大透镜均为平凸透镜,所述第一放大透镜的平面光学面与所述第二放大透镜的平面光学面相贴合,两个所述半透半反层分别贴合于所述第一放大透镜的凸面光学面和所述第二放大透镜的凸面光学面。
  9. 根据权利要求1所述的光学透镜模组,其中,所述半透半反层选自以下之一:
    采用贴膜工艺粘贴于所述透镜组件表面的半透半反薄膜;以及
    采用镀膜工艺沉积于所述透镜组件表面的半透半反薄膜。
  10. 一种虚拟现实设备,其中,包括:如上述权利要求1-9中任一所述的光学透镜模组。
  11. 根据权利要求10所述的虚拟现实设备,其中,还包括:显示屏,所述显示屏位于所述透镜组件的入光侧。
  12. 根据权利要求10或11所述的虚拟现实设备,其中,所述虚拟现实设备为眼镜式虚拟现实设备或头盔式虚拟现实设备。
PCT/CN2019/106682 2018-09-30 2019-09-19 光学透镜模组和虚拟现实设备 WO2020063446A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/756,609 US11543657B2 (en) 2018-09-30 2019-09-19 Optical lens module and virtual reality device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811155871.5A CN110346933A (zh) 2018-09-30 2018-09-30 光学透镜模组和虚拟现实设备
CN201811155871.5 2018-09-30

Publications (1)

Publication Number Publication Date
WO2020063446A1 true WO2020063446A1 (zh) 2020-04-02

Family

ID=68173861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106682 WO2020063446A1 (zh) 2018-09-30 2019-09-19 光学透镜模组和虚拟现实设备

Country Status (3)

Country Link
US (1) US11543657B2 (zh)
CN (1) CN110346933A (zh)
WO (1) WO2020063446A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517366A (en) * 1993-10-22 1996-05-14 Olympus Optical Co., Ltd. Concentric optical system
US6010647A (en) * 1997-06-30 2000-01-04 Fuji Photo Optical Co., Ltd. Multifocal lens and method of making the same
CN1252133A (zh) * 1997-12-11 2000-05-03 皇家菲利浦电子有限公司 图象显示装置和包括这种装置的头戴显示器
US6094242A (en) * 1994-12-19 2000-07-25 Sharp Kabushiki Kaisha Optical device and head-mounted display using said optical device
JP2003035809A (ja) * 2001-07-25 2003-02-07 Japan Science & Technology Corp バイナリーレンズおよびその製造方法
CN102736352A (zh) * 2012-07-04 2012-10-17 信利半导体有限公司 电子产品及其液晶变焦透镜
CN103733606A (zh) * 2011-08-16 2014-04-16 富士胶片株式会社 成像设备

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2176553Y (zh) * 1993-11-20 1994-09-07 王达道 广角充液透镜
JP2002365585A (ja) * 2001-05-31 2002-12-18 Daeyang E & C Co Ltd 頭部装着用ディスプレー用光学システム
EP1687664B1 (en) * 2003-11-14 2016-06-29 Eric Baer Multilayer polymer gradient index (grin) lenses
CN101681028A (zh) * 2006-10-25 2010-03-24 唐纳德·A·沃尔克 多层梯度折射率渐变透镜
US8240849B2 (en) * 2009-03-31 2012-08-14 Johnson & Johnson Vision Care, Inc. Free form lens with refractive index variations
CN103064171B (zh) * 2012-09-29 2014-11-19 北京空间机电研究所 一种高分辨率大视场光学成像系统
CN203250039U (zh) * 2013-02-07 2013-10-23 杭州麦乐克电子科技有限公司 滤光透镜
CN203838419U (zh) * 2013-12-30 2014-09-17 苏州大学 用于大规模高分辨率遥感相机的光学成像系统
CN203827349U (zh) * 2014-05-08 2014-09-10 长春理工大学 一对多激光通信端机的光学天线
EP3026469B1 (en) * 2014-11-27 2023-01-11 Canon Kabushiki Kaisha Optical element and method for producing optical element
CN206002773U (zh) * 2016-08-01 2017-03-08 深圳市世尊科技有限公司 一种显示装置以及使用该显示装置的头戴式设备
CN106054390A (zh) * 2016-08-01 2016-10-26 深圳市世尊科技有限公司 一种显示装置以及使用该显示装置的头戴式设备
CN206224048U (zh) * 2016-08-31 2017-06-06 深圳超多维科技有限公司 一种vr显示装置及头戴式vr显示设备
US10371952B2 (en) * 2016-09-13 2019-08-06 Facebook Technologies, Llc Fresnel lens with dynamic pitch
CN107065182A (zh) * 2017-03-08 2017-08-18 上海乐蜗信息科技有限公司 一种虚拟现实光学透镜及虚拟现实设备
CN207764398U (zh) * 2018-02-09 2018-08-24 广景视睿科技(深圳)有限公司 一种光学透镜及环形投影系统
CN207833879U (zh) * 2018-02-28 2018-09-07 北京眸合科技有限公司 一种空中悬浮显示系统
US10827165B2 (en) * 2018-05-30 2020-11-03 Intel Corporation Enhanced imaging for thin form factor head mounted displays and near light field displays
US11112601B2 (en) * 2018-06-07 2021-09-07 Facebook Technologies, Llc Head mounted display including a reverse-order crossed pancake lens
WO2020047486A1 (en) * 2018-08-31 2020-03-05 Magic Leap, Inc. Spatially-resolved dynamic dimming for augmented reality device
US10890693B2 (en) * 2018-12-20 2021-01-12 Mitutoyo Corporation Tunable acoustic gradient lens with axial compliance portion

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517366A (en) * 1993-10-22 1996-05-14 Olympus Optical Co., Ltd. Concentric optical system
US6094242A (en) * 1994-12-19 2000-07-25 Sharp Kabushiki Kaisha Optical device and head-mounted display using said optical device
US6010647A (en) * 1997-06-30 2000-01-04 Fuji Photo Optical Co., Ltd. Multifocal lens and method of making the same
CN1252133A (zh) * 1997-12-11 2000-05-03 皇家菲利浦电子有限公司 图象显示装置和包括这种装置的头戴显示器
JP2003035809A (ja) * 2001-07-25 2003-02-07 Japan Science & Technology Corp バイナリーレンズおよびその製造方法
CN103733606A (zh) * 2011-08-16 2014-04-16 富士胶片株式会社 成像设备
CN102736352A (zh) * 2012-07-04 2012-10-17 信利半导体有限公司 电子产品及其液晶变焦透镜

Also Published As

Publication number Publication date
US11543657B2 (en) 2023-01-03
CN110346933A (zh) 2019-10-18
US20210003846A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
TWI627463B (zh) 目鏡光學系統
TWI624685B (zh) 目鏡光學系統
CN107111132A (zh) 通过超精细结构保护的紧凑型头戴式显示系统
WO2021179786A1 (zh) Ar光学系统和ar显示设备
CN208367337U (zh) 一种ar显示设备
JP2010538313A (ja) 広視野角を有する現実的画像表示装置
TWI692650B (zh) 目鏡光學系統
JP7353282B2 (ja) Vrレンズ構造および表示装置
CN109901259A (zh) 光波导结构、ar设备光学成像系统及ar设备
WO2019149176A1 (zh) 目镜、眼镜、头盔式显示器和vr系统
US11640059B2 (en) Head-mounted display optical module
JP2021512356A (ja) 接眼レンズおよび表示装置
CN109874302A (zh) 光学系统、放大影像装置、虚拟现实眼镜及增强现实眼镜
WO2022227541A1 (zh) 光学镜组和头戴显示设备
WO2020063446A1 (zh) 光学透镜模组和虚拟现实设备
US11054646B1 (en) Head-mounted display device with Fresnel lenses
CN206115032U (zh) 一种图像显示装置及头戴式显示设备
CN106226906A (zh) 一种图像显示装置及头戴式显示设备
US10310276B2 (en) Virtual reality display apparatus
CN105700144A (zh) 一种头戴式图像显示装置
TWI692654B (zh) 目鏡光學系統
WO2023246436A1 (zh) 光学系统以及显示装置
US20230418080A1 (en) Optical system and display device
TWI804435B (zh) 目鏡光學系統
TWI782873B (zh) 目鏡光學系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19864621

Country of ref document: EP

Kind code of ref document: A1