CN203838419U - 用于大规模高分辨率遥感相机的光学成像系统 - Google Patents

用于大规模高分辨率遥感相机的光学成像系统 Download PDF

Info

Publication number
CN203838419U
CN203838419U CN201320880938.8U CN201320880938U CN203838419U CN 203838419 U CN203838419 U CN 203838419U CN 201320880938 U CN201320880938 U CN 201320880938U CN 203838419 U CN203838419 U CN 203838419U
Authority
CN
China
Prior art keywords
lens
imaging system
optical imaging
sphere
remote sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201320880938.8U
Other languages
English (en)
Inventor
季轶群
王岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201320880938.8U priority Critical patent/CN203838419U/zh
Application granted granted Critical
Publication of CN203838419U publication Critical patent/CN203838419U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

本实用新型涉及一种用于大规模高分辨率遥感相机的光学成像系统。微小透镜阵列位于前置物镜和探测器焦平面之间,前置物镜采用同心对称的球形透镜结构,获取大视场场景,微小透镜阵列的每个通道由一组分离的双胶合透镜组构成,用于在其所承担通道的小视场范围内实现精细像差校正,形成多个独立的成像通道,将整个视场内信息无任何损失地全部成像至探测器焦平面上,在大视场内各处都获得衍射极限性能的高分辨率成像。本实用新型采用纯透射式的光学结构,具有简单紧凑、适用于整个可见光工作波段、视场大、全视场像质均匀、成像性能优、成本低等特点。本实用新型提供了空间分辨率不受视场限制的多尺度光学成像系统,适用于对地观测和普查的遥感相机。

Description

用于大规模高分辨率遥感相机的光学成像系统
技术领域
本实用新型涉及一种用于大规模高分辨率遥感相机的光学成像系统,特别涉及一种采用多尺度结构的、折射式的、工作于整个可见光波段的、大视场、高分辨率的光学成像系统。 
背景技术
随着空间探索和对地观测的不断发展,对成像系统的视场和分辨率要求越来越高。为实现在大视场范围内实时获取高分辨率光学图像,大规模高分辨率相机一直是研究的难点和重点。 
采用传统的成像方法和系统,大视场和高分辨率相互制约,工作波长一定时,要提高系统的分辨率,只能通过增大系统口径。而大视场、大口径光学系统,采用传统方法设计,要引入更多光学面来校正几何像差,系统会变得非常复杂,要以系统重量、体积、复杂性和巨额成本增加为巨大代价。另外,这种大口径和高复杂性的光学系统,还受光学材料、加工、检测、制造成本和遥感器运载能力等多方面条件的制约。采用当前的制造技术,10米级的地基系统和2.4米的天基系统已被认为达到了系统设计和经济承受的极限。因此,采用传统的设计方法,很难同时满足现代遥感器成像系统对大视场和高分辨率的要求。 
发明内容
本实用新型要解决的技术问题是克服现有技术存在的不足,提供一种结构简单紧凑、分辨率高、视场大、适用波段宽的用于大规模高分辨率遥感相机的光学成像系统。 
实现本实用新型目的的技术方案是提供一种用于大规模高分辨率遥感相机的光学成像系统,沿光线入射方向,依次为前置物镜光学系统、微小透镜阵列和探测器焦平面;所述的前置物镜光学系统为一组四片透镜胶合的同心球面结构,四片透镜为球心对称,安装于一个镜筒内,四片透镜依次为弯月形球面负透镜、平凸球面正透镜、平凸球面正透镜、弯月形球面负透镜;前置物镜光学系统的焦距f 1 为67mm≤f 1 ≤72mm;所述的微小透镜阵列包括若干个单通道光学成像系统,所述的单通道光学成像系统为安装于一个镜筒内的两组双胶合透镜结构,两组双胶合透镜的光学元件依次为球面负透镜和球面正透镜组成的第一双胶合组,球面正透镜和球面负透镜组成的第二双胶合组,单通道光学成像系统的焦距f 2 为17mm≤f 2 ≤22mm;各单通道光学成像系统安装于一个与前置物镜光学系统的球形像面同心的曲面上,形成微小透镜阵列。 
本实用新型的技术方案中,前置物镜光学系统中所述的弯月形球面负透镜、平凸球面正透镜、平凸球面正透镜和弯月形球面负透镜,它们相对于前置物镜光学系统的焦距f 1 的归一化值依次为f’ 11f’  12f’ 13f’ 14,满足条件-1.48≤f’ 11≤-1.45,0.53≤f’ 12≤0.56,0.54≤f’ 13≤0.57,-1.30≤f’ 14≤-1.25;单通道光学成像系统中所述的球面负透镜、球面正透镜、球面正透镜和球面负透镜的焦距,它们相对于单通道光学成像系统的焦距f 2 的归一化值依次为f’ 21f’ 22f’ 23f’ 24,满足条件-0.96≤f’ 21 ≤-0.94,0.45≤f’ 22 ≤0.50,0.22≤f’ 23≤0.27,-0.35≤f’ 24≤-0.30。 
本实用新型技术方案提供的一种用于大规模高分辨率遥感相机的光学成像系统,它的光学筒长L为135mm≤L≤150mm。 
本实用新型在传统的前置成像物镜与焦平面探测器之间引入微小透镜阵列,将前置成像物镜获得的大视场景物分成多个成像通道,经各通道的微小透镜精确校正剩余像差后,各通道探测器的焦平面上均得到性能相同且具有极高分辨率的光学像,通过对各通道图像进行拼接处理,可获得全视场高分辨率光学像。大视场内信息无任何损失地全部成像至探测器焦平面上。 
本实用新型提供的用于大规模高分辨率遥感相机的大视场高分辨率光学成像系统,由于采用了多尺度结构的折射式光学成像方法,可在很大的视场范围内实现极高的分辨率。在前置物镜和探测器焦面之间,引入微小透镜阵列,作为场处理器。本实用新型提供的多尺度结构光学系统,前置物镜采用四片胶合的同心对称球面透镜,这种结构的系统,具有像差与视场无关的优点,它的剩余像差只有球场和垂轴色差,因此,具备获取大视场成像的能力,再通过合理的光焦度分配、正负透镜组合,有效减小球差,另外通过合理选取光学玻璃材料来消色差,得到较小的剩余像差。本实用新型提供的多尺度结构光学系统,微小透镜阵列位于一个与前置物镜形成的球形像面同心的曲面上,同时起校正前置物镜剩余像差和中继转像的作用,它的每个通道分担前置物镜的一个分视场,只需采用简单的匹兹伐结构,通过两组双胶合物镜,选择合理的玻璃搭配,有效减小前置物镜的剩余球场和垂轴色差,而小透镜阵列各通道系统本身具有口径小和近轴的特点,像差校正难度小,可容易将其视场内前置物镜像差校正到接近衍射极限的成像性能,获得具有衍射极限的极高分辨率,各通道均可将前置物镜对应视场内的像校正到衍射极限性能。最后通过电子计算机技术,将各通道子图像进行拼接处理,即可得到前置物镜获取的大视场景物像,且具有衍射极限的高分辨率特性。 
本实用新型提供的多尺度大视场高分辨率光学成像系统搭载于航天器上,接收来自地物的太阳光反射光,经过多尺度光学系统后,在各通道探测器的光敏面上形成光学像,经电子电路采集、图像处理后输出捕获的目标图像,得到地物大范围内目标场景的高分辨率图像。 
与现有技术相比,本实用新型的有益效果是: 
1、本实用新型采用多尺度结构的折射式光学系统,由前置物镜和小透镜阵列构成,前置物镜和小透镜阵列系统均具有结构简单、容易装调、稳定性好、实现成本低的优点;
2、本实用新型提供的光学系统的视场为0°≤ω≤120°,可探测范围广,探测识别效率高;全视场范围内均具有接近极限的成像性能,光学均匀性好。
附图说明
图1是本实用新型提供的用于大规模高分辨率遥感相机的多尺度光学系统的工作原理示意图; 
图2是本实用新型实施例提供的用于大规模高分辨率遥感相机的光学成像系统的结构示意图;
图3是本实用新型实施例提供的用于大规模高分辨率遥感相机的光学成像系统的光路图;
图4是本实用新型实施例提供的用于大规模高分辨率遥感相机的光学成像系统的点扩散函数分布图(0度视场处); 
图5是本实用新型实施例提供的用于大规模高分辨率遥感相机的光学成像系统的点扩散函数分布图(30度视场处); 
图6是本实用新型实施例提供的用于大规模高分辨率遥感相机的光学成像系统的点扩散函数分布图(60度视场处); 
图7是本实用新型实施例提供的用于大规模高分辨率遥感相机的光学成像系统的光程差曲线(0度视场处);
图8是本实用新型实施例提供的用于大规模高分辨率遥感相机的光学成像系统的光程差曲线(30度视场处);
图9是本实用新型实施例提供的用于大规模高分辨率遥感相机的光学成像系统的光程差曲线(60度视场处);
图10是本实用新型实施例提供的用于大规模高分辨率遥感相机的光学成像系统的能量集中度曲线;
图11是本实用新型实施例提供的用于大规模高分辨率遥感相机的光学成像系统的光学传递函数曲线。
图中:1、前置物镜光学系统;11、前置物镜的弯月形球面负透镜;12、前置物镜的平凸球面正透镜;13、前置物镜的平凸球面正透镜;14、前置物镜的弯月形球面负透镜;2、微小透镜阵列;21、球面负透镜;22、球面正透镜;23、球面正透镜;24、球面负透镜;3、像面(探测器焦平面)。 
具体实施方式
下面结合附图和实施例对本实用新型的实施方案作进一步的具体阐述。 
实施例1: 
本实施例的技术方案是提供一种用于大规模高分辨率遥感相机的多尺度、大视场、高分辨率光学成像系统,它的工作波段为0.48μm~0.65μm,系统F数为F/#=4.0,全视场角120度。
参见附图1,它是本实用新型提供的用于大规模高分辨率遥感相机的多尺度光学系统的工作原理示意图;前置物镜多尺度大视场高分辨率光学成像系统搭载于航天器上,接收来自地物的太阳光反射光,经过多尺度光学系统后,在各通道探测器的光敏面上形成光学像,经电子电路采集、图像处理后输出捕获的目标图像,得到地物大范围内目标场景的高分辨率图像。 
参见附图2,它是本实施例提供的用于大规模高分辨率遥感相机的光学成像系统的结构示意图;沿光线入射方向,依次为前置物镜1、微小透镜阵列2和像面(探测器焦平面)3。 
参见附图3,它是本实施例提供的用于大规模高分辨率遥感相机的光学成像系统的光路图;包括前置物镜光学系统1、微小透镜阵列中的一个单通道光学成像系统和像面3,由图3可以看出,该多尺度光学成像系统的前置物镜由四片胶合的球面透镜构成,依次为前置物镜的弯月形球面负透镜11、平凸球面正透镜12、平凸球面正透镜13、弯月形球面负透镜14;图3中给出了微小透镜阵列中的一个单通道光学成像系统的光路图,单通道光学成像系统包括球面负透镜21、球面正透镜22、球面正透镜23和球面负透镜24,它们为前后两组双胶合透镜结构,沿光线入射方向,依次为球面负透镜21和球面正透镜22组成的第一双胶合组,球面正透镜23和球面负透镜24组成的第二双胶合组,它们安装于一个镜筒内。若干个单通道光学成像系统安装于一个与前置物镜光学系统的球形像面同心的曲面上,形成微小透镜阵列。 
前置物镜首先获取大视场的景物像,微小透镜阵列将该景物像分成多个成像通道,对其剩余像差进行精细校正,并同时将高质量的像转成到探测器的焦平面上。 
本实施例提供的多尺度折射式光学成像系统中,对应各光学元件的相关参数如下:前置物镜光学系统和单通道光学成像系统的焦距分别为70mm和20mm,沿光线方向,弯月形球面负透镜11、平凸球面正透镜12、平凸球面正透镜13、弯月形球面负透镜14、中间像面15、球面负透镜21、球面正透镜22、球面正透镜23、球面负透镜24的曲率半径依次分别为30.17mm、17.73mm、Infinity、-18.02mm、-34.65mm、-69.99mm、12.48mm、5.42mm、-52.13mm、387.02mm、-2.63mm、和-15.87mm;各透镜厚度依次为12.44mm、17.89mm、17.87mm、16.62mm、3.47mm、3.11mm、3,11mm和1.90mm;各透镜的折射率依次为1.72、1.46、1.45、1.71、1.61、1.52、1.53、1.51。本实施例提供的的用于大规模高分辨率遥感相机的多尺度光学系统,其光学筒长约为150mm。 
为克服传统光学成像系统实现大视场和高分辨率要付出重量、体积、系统复杂性和巨额成本为代价的困难,本实用新型采用多尺度结构的设计思想,选用视场不受几何像差约束、即可获得大视场的同心球面系统作为前置物镜,并在前置物镜与焦平面之间引入微小透镜阵列光学系统,将大视场分成多个成像通道,每个单通道光学成像系统在近轴范围对剩余像差进行精确校正,可在各通道获得接近衍射极限的成像性能,即可在大视场内实现衍射极限成像特性。为保证整个像面上各处的光强分布均匀,整个系统的光栏设计在单通道光学成像系统第一组双胶合组的第一个光学表面,另外也可起到很好地抑制视场外杂光的作用。 
参见附图4至图6,它们是本实施例提供的光学成像系统的像面点扩散函数分布图,分别给出了像面上0度、30度、60度三个视场处的光斑强度分布,因为系统为对称结构,在-60度~0度视场范围内的光斑强度分布对应于60度~0度视场。可见,光斑中心点强度都在90%以上,而且强度超过50%以上的能量均集中在2.16μm的半圆范围内,像面上能量分布均匀。可见,本实施例提供的多尺度光学成像系统在大视场范围内,像面能量具有均匀性好的特性。 
参见附图7至图9,它们是本实施例提供的光学成像系统的光程差分布曲线,表示实际像面与理想像面(即衍射极限面)之间的相位误差,横坐标表示光瞳坐标,纵坐标表示光程差大小,可见各视场光程差值均小于o.2λ,根据瑞利判据,光程差小于λ/4系统达到衍射极限成像性能。因此,本实施例提供的多尺度光学成像系统在120度的大视场范围达到了衍射极限的成像特性。 
参见附图10, 它是本实施例提供的光学成像系统的能量集中度曲线,横坐标表示包围圆半径大小,纵坐标表示能量集中数值,图10表明,系统在单个探测器像元范围内能量集中度大于80%。 
参见附图11,它是本实施例提供的光学成像系统的光学传递函数曲线,横坐标为空间频率,纵坐标是传递函数值,由图11可见,在120度视场范围内,系统在探测器乃奎斯特频率处,传递函数值在0.4,满足使用要求。 
 实施例2 
本实施例中,工作波段为0.72μm~1.0μm,系统F数为F/#=4.0,全视场角120度,光学系统结构及成像光路参见附图2和附图3。其光学筒长约为140mm。
光学成像系统的其余参数如下:前置物镜和微小透镜单通道光学成像系统焦距分别为70mm和20mm,沿光线方向,弯月形球面负透镜11、平凸球面正透镜12、平凸球面正透镜13、弯月形球面负透镜14、中间像面15、球面负透镜21、球面正透镜22、球面正透镜23、球面负透镜24的曲率半径依次分别为31.12mm、18.43mm、Infinity、-19.13mm、-35.55mm、-72.01mm、12.99mm、5.87mm、-53.36mm、391.52mm、-3.08mm、和-16.11mm;各透镜厚度依次为1.52mm、17.96mm、17.94mm、16.98mm、3.31mm、2.97mm、2.97mm和1.89mm;各透镜的折射率依次为1.71、1.45、1.47、1.73、1.62、1.53、1.54、1.52。 
该多尺度折射式光学成像系统,在120度视场角的整个像面范围,可获得均匀的光强分布,得到衍射极限性能的光学图像,适用于大规模高分辨率空间相机。 

Claims (4)

1.一种用于大规模高分辨率遥感相机的光学成像系统,其特征在于:沿光线入射方向,依次为前置物镜光学系统(1)、微小透镜阵列(2)和探测器焦平面(3);所述的前置物镜光学系统为一组四片透镜胶合的同心球面结构,四片透镜为球心对称,安装于一个镜筒内,四片透镜依次为弯月形球面负透镜(11)、平凸球面正透镜(12)、平凸球面正透镜(13)、弯月形球面负透镜(14);前置物镜光学系统(1)的焦距f 1 为67mm≤f 1 ≤72mm;所述的微小透镜阵列(2)包括若干个单通道光学成像系统,所述的单通道光学成像系统为安装于一个镜筒内的两组双胶合透镜结构,两组双胶合透镜的光学元件依次为球面负透镜(21)和球面正透镜(22)组成的第一双胶合组,球面正透镜(23)和球面负透镜(24)组成的第二双胶合组,单通道光学成像系统的焦距f 2 为17mm≤f 2 ≤22mm;各单通道光学成像系统安装于一个与前置物镜光学系统(1)的球形像面同心的曲面上,形成微小透镜阵列(2)。
2.根据权利要求1所述的一种用于大规模高分辨率遥感相机的光学成像系统,其特征在于:所述的弯月形球面负透镜(11)、平凸球面正透镜(12)、平凸球面正透镜(13)和弯月形球面负透镜(14),它们相对于前置物镜光学系统的焦距f 1 的归一化值依次为f’ 11f’  12f’ 13f’ 14,满足条件-1.48≤f’ 11≤-1.45,0.53≤f’ 12≤0.56,0.54≤f’ 13≤0.57,-1.30≤f’ 14≤-1.25。
3.根据权利要求1所述的一种用于大规模高分辨率遥感相机的光学成像系统,其特征在于:所述的球面负透镜(21)、球面正透镜(22)、球面正透镜(23)和球面负透镜(24)的焦距,它们相对于单通道光学成像系统的焦距f 2 的归一化值依次为f’ 21f’ 22f’ 23f’ 24,满足条件-0.96≤f’ 21 ≤-0.94,0.45≤f’ 22 ≤0.50,0.22≤f’ 23≤0.27,-0.35≤f’ 24≤-0.30。
4.根据权利要求1所述的一种用于大规模高分辨率遥感相机的光学成像系统,其特征在于:它的光学筒长L为135mm≤L≤150mm。
CN201320880938.8U 2013-12-30 2013-12-30 用于大规模高分辨率遥感相机的光学成像系统 Expired - Fee Related CN203838419U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201320880938.8U CN203838419U (zh) 2013-12-30 2013-12-30 用于大规模高分辨率遥感相机的光学成像系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201320880938.8U CN203838419U (zh) 2013-12-30 2013-12-30 用于大规模高分辨率遥感相机的光学成像系统

Publications (1)

Publication Number Publication Date
CN203838419U true CN203838419U (zh) 2014-09-17

Family

ID=51516241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201320880938.8U Expired - Fee Related CN203838419U (zh) 2013-12-30 2013-12-30 用于大规模高分辨率遥感相机的光学成像系统

Country Status (1)

Country Link
CN (1) CN203838419U (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698900A (zh) * 2013-12-30 2014-04-02 苏州大学 用于大规模高分辨率遥感相机的光学成像方法及其系统
CN105137604A (zh) * 2015-08-24 2015-12-09 西安电子科技大学 基于同心透镜阵列的宽视角3d集成成像显示装置
CN107850775A (zh) * 2015-06-15 2018-03-27 中国航空工业集团公司洛阳电光设备研究所 成像装置
CN108663778A (zh) * 2018-05-04 2018-10-16 中国人民解放军国防科技大学 一种混合仿生鱼眼-复眼结构的广角高清成像系统
CN108873280A (zh) * 2018-06-04 2018-11-23 中国科学院西安光学精密机械研究所 一种基于球面反射镜的离轴折反式中长波红外系统
CN110346933A (zh) * 2018-09-30 2019-10-18 京东方科技集团股份有限公司 光学透镜模组和虚拟现实设备
US11084636B2 (en) 2018-10-30 2021-08-10 Chongqing Advance Display Technology Research Packing box for display panel, and accommodating apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698900A (zh) * 2013-12-30 2014-04-02 苏州大学 用于大规模高分辨率遥感相机的光学成像方法及其系统
CN103698900B (zh) * 2013-12-30 2016-01-27 苏州大学 用于大规模高分辨率遥感相机的光学成像方法及其系统
CN107850775A (zh) * 2015-06-15 2018-03-27 中国航空工业集团公司洛阳电光设备研究所 成像装置
CN105137604A (zh) * 2015-08-24 2015-12-09 西安电子科技大学 基于同心透镜阵列的宽视角3d集成成像显示装置
CN108663778A (zh) * 2018-05-04 2018-10-16 中国人民解放军国防科技大学 一种混合仿生鱼眼-复眼结构的广角高清成像系统
CN108873280A (zh) * 2018-06-04 2018-11-23 中国科学院西安光学精密机械研究所 一种基于球面反射镜的离轴折反式中长波红外系统
CN108873280B (zh) * 2018-06-04 2023-09-29 中国科学院西安光学精密机械研究所 一种基于球面反射镜的离轴折反式中长波红外系统
CN110346933A (zh) * 2018-09-30 2019-10-18 京东方科技集团股份有限公司 光学透镜模组和虚拟现实设备
US11084636B2 (en) 2018-10-30 2021-08-10 Chongqing Advance Display Technology Research Packing box for display panel, and accommodating apparatus

Similar Documents

Publication Publication Date Title
CN103698900B (zh) 用于大规模高分辨率遥感相机的光学成像方法及其系统
CN203838419U (zh) 用于大规模高分辨率遥感相机的光学成像系统
CN103471715B (zh) 一种共光路组合式光场光谱成像方法及装置
CN110488394B (zh) 一种长波红外复合光学系统
CN104317039B (zh) 一种折反式摄远物镜
CN203101791U (zh) 红外变焦光场相机
US10782513B2 (en) Total internal reflection aperture stop imaging
CN104965299B (zh) 一种大口径长焦距折返式红外非制冷成像系统
CN101634744B (zh) 折反式双谱段凝视成像系统
CN102538965A (zh) 大口径光栅型成像光谱仪的光学系统及设计方法
CN102707413A (zh) 一种用于星跟踪器的长焦距光学系统
CN108152973A (zh) 一种可见光与中波红外共口径复合光学系统
CN108873321A (zh) 基于干涉的超薄高分辨率平板成像探测系统
CN103091258A (zh) 一种基于液态变焦技术的多光谱成像仪
CN204666945U (zh) 一种采用直角反射棱镜的双通道成像光学系统
CN103995344A (zh) 透射式非制冷被动消热差长波红外光学系统
CN105093523B (zh) 多尺度多孔径光学成像系统
CN104267484B (zh) 一种小尺寸非制冷双视场红外光学系统
CN102590994A (zh) 大视场共轴球面四反射光学系统
CN102289056B (zh) 一种用于成像光谱仪的大视场大相对孔径前置物镜
CN109239898A (zh) 一种紧凑型同轴折反射式望远物镜
CN103308161A (zh) 航天遥感大相对孔径宽视场高分辨率成像光谱仪光学系统
CN105004421A (zh) 以光栅为分界的成像光谱仪
CN209117964U (zh) 一种紧凑型同轴折反射式全球面望远物镜
CN203759342U (zh) 含衍射元件的大视场准像方远心航测相机光学系统

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140917

Termination date: 20201230

CF01 Termination of patent right due to non-payment of annual fee