WO2020062874A1 - Matériau d'alliage de magnésium à haute conductivité thermique et haute résistance et procédé de préparation associé - Google Patents

Matériau d'alliage de magnésium à haute conductivité thermique et haute résistance et procédé de préparation associé Download PDF

Info

Publication number
WO2020062874A1
WO2020062874A1 PCT/CN2019/085772 CN2019085772W WO2020062874A1 WO 2020062874 A1 WO2020062874 A1 WO 2020062874A1 CN 2019085772 W CN2019085772 W CN 2019085772W WO 2020062874 A1 WO2020062874 A1 WO 2020062874A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
thermal conductivity
magnesium
alloy material
alloy
Prior art date
Application number
PCT/CN2019/085772
Other languages
English (en)
Chinese (zh)
Inventor
张娅
陈秋荣
周学华
Original Assignee
江苏中科亚美新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏中科亚美新材料股份有限公司 filed Critical 江苏中科亚美新材料股份有限公司
Publication of WO2020062874A1 publication Critical patent/WO2020062874A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the invention relates to the technical field of magnesium alloy materials, in particular to a high thermal conductivity, high strength and toughness magnesium alloy material and a preparation method thereof.
  • China is a large country with magnesium resources, and its magnesium reserves rank first in the world.
  • Proved magnesite reserves are 2.7 billion tons, and dolomite reserves are more than 7 billion tons.
  • China Since the popularization of China ’s independent technology Pijiang method for the extraction of magnesium, China has taken advantage of its mineral resources and coal energy advantages to become a major producer and exporter of magnesium.
  • Annual output of more than 80% of magnesium is exported to international markets.
  • China is in the forefront of the world in terms of magnesium production capacity, magnesium production, and export volume. It is already a large country in the world for magnesium production, but it is far from being a strong country in the magnesium industry.
  • the application fields of downstream deep-processing enterprises are not wide, especially the magnesium processing industry is still lagging behind.
  • the thermal conductivity of pure magnesium is 155W / m.K, which exceeds the thermal conductivity requirements of materials for aerospace instrument housings.
  • its mechanical properties are very low and it is difficult to reach above 150MPa.
  • the mechanical properties of the alloy can be greatly improved, but the thermal conductivity of the alloy is inevitably reduced to varying degrees. Therefore, through systematic research, it is necessary to design and develop a new high thermal conductivity, high strength and toughness magnesium alloy.
  • the object of the present invention is to provide a magnesium alloy material with high thermal conductivity, high strength and toughness, and a method for preparing the same.
  • the material is added with three elements of Zn, Mn and Y in a magnesium matrix, and has excellent thermal conductivity and mechanical properties.
  • the thermal conductivity of pure magnesium is 155W / m.K. Adding any element to the Mg matrix will definitely reduce the electrical conductivity and thermal conductivity of the alloy. Because alloying elements are solid-dissolved in the magnesium matrix, it will cause the lattice distortion of magnesium, which will cause wave scattering during the directional flow of free electrons, reducing the electrical conductivity and thermal conductivity of the alloy; if it is added to magnesium, the magnesium lattice distortion will be small. The element has a relatively small effect on the electrical and thermal conductivity of magnesium.
  • the aging precipitation strengthening method is an important alloying idea for the development and preparation of high thermal conductivity magnesium alloys.
  • Zn element is not only an age-strengthening alloy element, but also close to the atomic radius of the Mg matrix, which causes little magnesium lattice distortion. Therefore, the thermal conductivity of Mg-Zn alloy is high. Therefore, this application chooses Mg-Zn alloy as the high thermal conductivity magnesium alloy
  • the main alloying element is to improve the mechanical properties of the alloy as much as possible on the basis of ensuring thermal conductivity, and finally to meet the performance requirements of engineering materials.
  • the two elements Mn and Y are added to the alloy to form a high-strength and high-toughness manganese particle and a magnesium-zinc-yttrium ternary phase, which enhances the effect of heat treatment and solid solution aging, and improves the alloy's strong toughness and heat resistance and creep resistance.
  • the alloy reached more than 135 W / m.K at room temperature and a tensile strength of more than 250 MPa, which met the requirements of engineering materials for thermal conductivity and mechanical properties.
  • the thermal deformation heat treatment process provided by the present invention can disperse and precipitate the second phase of the alloy, reduce lattice distortion, and improve the thermal conductivity of the alloy.
  • the high thermal conductivity, high strength and toughness magnesium alloy material provided by the present invention is composed of the following components by weight percentage: Zn: 1.6 to 1.8 wt%; Mn: 0.4 to 0.9 wt%; Y: 0.2 to 0.7 wt%; impurities: ⁇ 0.2 wt%; the balance is Mg.
  • the magnesium alloy material is composed of the following components by weight percentage: Zn: 1.6 to 1.8 wt%; Mn: 0.6 to 0.7 wt%; Y: 0.3 to 0.6 wt%; impurities: ⁇ 0.2 wt%; The balance is Mg.
  • the magnesium alloy material is composed of the following components by weight percentage: Zn: 1.8 wt%; Mn: 0.6 wt%; Y: 0.6 wt%; impurities: ⁇ 0.2 wt%; the balance is Mg.
  • the magnesium alloy material is composed of the following components by weight percentage: Zn: 1.6 wt%; Mn: 0.7 wt%; Y: 0.3 wt%; impurities: ⁇ 0.2 wt%; the balance is Mg.
  • the preparation method of the high thermal conductivity and high strength and toughness magnesium alloy material provided by the present invention includes the following steps:
  • the magnesium alloy ingot is homogenized and annealed at 400-450 ° C for 12-24 hours, and then the wagon is carried out;
  • the magnesium alloy ingot after the wagon is extruded at 410 to 460 ° C, and the extrusion ratio is 20 to 30 to obtain a high thermal conductivity, high strength and toughness magnesium alloy material.
  • the magnesium alloy after the extrusion molding in step S3 further includes the following solid solution and artificial aging steps to obtain a high thermal conductivity and high strength and toughness magnesium alloy material: solid solution at a temperature of 450 ° C for 3-5 hours, The temperature is 150-180 °C for 8-12 hours.
  • step S1 is performed by a horizontal continuous casting method.
  • the magnesium alloy material alloy of the present invention has less alloy components other than magnesium, and the cost is relatively low.
  • the thermal conductivity of the magnesium alloy material alloy of the present invention after extrusion and heat treatment reaches 130W / m.K or more at normal temperature, which meets the requirements for thermal conductivity of engineering materials (130W / m.K or more at normal temperature).
  • the tensile strength of the magnesium alloy material alloy of the present invention after extrusion and heat treatment is above 250 MPa, and the elongation is above 10%, which meets the requirements for the mechanical properties of magnesium alloy applications.
  • the magnesium alloy material Mg-1.8% Zn-0.6% Mn-0.6% Y provided by the present invention has outstanding thermal conductivity and mechanical properties.
  • FIG. 1 is a process device for preparing a magnesium alloy.
  • Figure 2 is the metallographic structure of two magnesium alloys after extrusion and after solution solidification aging, in which the length of the ruler in the lower right corner of each figure is 100 ⁇ m;
  • Figures a and b represent the extrusion and extrusion solidification, respectively.
  • Figures c and d represent the magnesium alloy Mg-1.8 after extrusion and extrusion solution aging, respectively % Zn-0.6% Mn-0.6% Y (2 #).
  • Fig. 3 shows the results of X-ray diffraction (XRD) of two magnesium alloys after extrusion solid solution aging, where a represents 1 # magnesium alloy Mg-1.6% Zn-0.7% Mn-0.3% Y, and b represents 2 # magnesium alloy Mg-1.8% Zn-0.6% Mn-0.6% Y.
  • XRD X-ray diffraction
  • the as-cast magnesium alloys prepared in the following examples of the present invention all adopt a horizontal continuous casting process.
  • various metals of different numbered magnesium alloy compositions shown in Table 1 are first placed in a melting furnace 1 for melting. Then, it is sent to the holding furnace 3 by the pouring pump 2 and passes through the mold 4 which communicates with the holding furnace 3, and then is cooled by water shower 5 and squeezed and drawn by the double rolls 6. Finally, it is sawed by the sawing machine 7 as required.
  • thermo diffusivity and specific heat capacity C p test alloys at room temperature, 100 °C, 150 °C, 200 °C, 300 °C a thermal diffusivity and specific heat capacity C p.
  • the composition of the magnesium alloy material prepared in the following examples of the present invention is shown in Table 1.
  • magnesium alloy ingot (magnesium alloy as-cast) according to the composition of 1 # magnesium alloy in Table 1; homogenize the magnesium alloy ingot at 400 ° C for 24 hours and perform the wagon; The ingot was extruded at 410 ° C, and the extrusion ratio was 30 to obtain an extruded magnesium alloy.
  • the magnesium alloy was subjected to a solution treatment at a temperature of 450 ° C for 3 hours, and artificially aged at 150 ° C. After 12 hours, the solid solution aging state of the magnesium alloy after extrusion is obtained, that is, the high thermal conductivity and high strength and toughness magnesium alloy material.
  • Example 2 Preparation of high thermal conductivity, high strength and toughness magnesium alloy material
  • magnesium alloy ingot (magnesium alloy as-cast) according to the 2 # magnesium alloy composition in Table 1.
  • the magnesium alloy ingot is homogenized and annealed at 450 ° C for 12 hours, and then the wagon is carried out.
  • the ingot was extruded at 460 ° C, and the extrusion ratio was 20 to obtain an extruded magnesium alloy.
  • the magnesium alloy was subjected to a solution treatment at a temperature of 450 ° C for 5 hours, and artificially aged at 180 ° C. In 8 hours, the solid solution aging state of the magnesium alloy after extrusion is obtained, that is, the high thermal conductivity and high strength and toughness magnesium alloy material.
  • magnesium alloy materials were prepared according to the method of Example 2.
  • a control Ck1 magnesium alloy material was prepared according to the method of Example 1.
  • a control Ck2 magnesium alloy material was prepared according to the method of Example 2.
  • Figure 2 shows the results of 2 # magnesium alloy Mg-1.8% Zn-0.6% Mn-0.6% Y and 1 # magnesium alloy Mg-1.6% Zn-0.7% Mn-0.3% Y after extrusion and solid solution aging after extrusion. Microstructure.
  • Figure 3 shows the XRD results of magnesium alloy Mg-1.8% Zn-0.6% Mn-0.6% Y (2 #) and magnesium alloy Mg-1.6% Zn-0.7% Mn-0.3% Y (1 #), 1 #,
  • the second phase of 2 # magnesium alloy is mainly Mg 3 Y 2 Zn 3 and MgZn 2 phases. Due to the low content of Y element in the 1 # magnesium alloy, the second-phase diffraction peak is not obvious.
  • Table 2 shows the thermal properties of as-cast 1 # magnesium alloy (Mg-1.6% Zn-0.7% Mn-0.3% Y) and as-cast 2 # magnesium alloy (Mg-1.8% Zn-0.6% Mn-0.6% Y). It can be seen that the thermal conductivity of the two alloys in the as-cast condition at room temperature reaches more than 110 W / mK, and as the temperature increases, the thermal conductivity continues to increase, up to more than 130 W / mK.
  • Table 3 shows the thermal performance data of the magnesium alloy in the extruded state. It can be seen that the thermal conductivity of the two alloys in the extruded state at room temperature has slightly increased compared to the as-cast state. The thermal conductivity of the 2 # alloy has reached 120 W / mK. Above, and as the temperature increases, the thermal conductivity continues to increase, up to 147W / mK or more.
  • Table 4 shows the thermal performance data of the solid solution aging state of the magnesium alloy after extrusion. It can be seen from this that the thermal conductivity of the two magnesium alloys in the heat-treated state at room temperature has a greater increase than that of the as-cast state. The thermal conductivity of the alloy reaches above 135W / mK, and with the increase of temperature, the thermal conductivity continues to increase, up to 147W / mK or higher.
  • Table 5 shows the thermal conductivity of the commercial magnesium alloys AZ31, AZ61, AZ91, Ck1 and Ck2 after casting, extrusion, and extrusion + solution aging. It can be seen that the three alloys are as-cast, extruded and Compared with 1 # and 2 # magnesium alloys, the thermal conductivity during extrusion heat treatment is significantly lower, both below 100W / mK, and the increase in thermal conductivity is not obvious as the temperature increases. Compared with the 1 # and 2 # alloys, the thermal conductivity of Ck1 alloy increased slightly due to the decrease in Zn content. When the Zn element was increased to 1.9%, the thermal conductivity of Ck2 alloy decreased significantly. Extrusion + solidification at room temperature The thermal conductivity after solution aging is about 120W / mK, which can not meet the requirements of high thermal conductivity.
  • Table 6 shows the mechanical properties of as-cast, extruded, and 1 #, 2 #, Ck1, Ck2 magnesium alloys, and commercial alloy AZ31 after extrusion + solution aging. It can be seen that the three alloys are as-cast and extruded at room temperature. The comparison of mechanical properties in the as-expressed and heat-treated states shows that the tensile strength of 2 # alloy is the largest, and the tensile strength after extrusion + solution aging is close to 300MPa. In the design of alloys, the thermal conductivity is reduced due to the effects of alloy lattice distortion, second phase precipitation, and alloy defects. In order to improve the thermal conductivity of alloys, the alloy components other than magnesium are preferably as low as possible.
  • the sum of alloy components other than magnesium of 1 # and 2 # is less than 3.5%, which directly results in mechanical properties that cannot be compared with high-content magnesium alloys.
  • the mechanical properties of alloys 1 # and 2 # It is also close to the commercial alloy AZ31, and even the tensile strength of 2 # alloy exceeds that of AZ31 alloy, which meets the market requirements for the mechanical properties of magnesium alloys (250MPa).
  • the resistance after extrusion and heat treatment The tensile strength is lower than 250MPa, which does not meet the requirements for high strength of the alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Continuous Casting (AREA)
  • Conductive Materials (AREA)

Abstract

La présente invention concerne un matériau d'alliage de magnésium à haute conductivité thermique et haute résistance et un procédé de préparation associé. Le matériau d'alliage de magnésium est constitué des composants suivants en pourcentage en poids : 1,6 à 1,8 % en poids de Zn, 0,4 à 0,9 % en poids de Mn, 0,2 à 0,7 % en poids de Y, et moins de 0,2 % en poids d'impuretés, le reste étant consisté de Mg. Ledit procédé comprend la coulée d'un lingot, un traitement de recuit d'homogénéisation, un moulage par pressage et un traitement et un vieillissement en solution. L'alliage de matériau d'alliage de magnésium de la présente invention ne comprend que peu de composants d'alliage autres que le magnésium qui lui sont ajoutés, avec pour résultat de faibles coûts ; l'alliage de matériau d'alliage de magnésium de la présente invention, après pressage et traitement thermique, présente une conductivité thermique supérieure ou égale à 130 W/mK à température ambiante, répondant aux exigences des matériaux d'ingénierie pour la conductivité thermique, et présente une résistance à la traction supérieure ou égale à 250 MPa, répondant aux exigences de propriétés mécaniques d'utilisation d'alliage de magnésium.
PCT/CN2019/085772 2018-09-29 2019-05-07 Matériau d'alliage de magnésium à haute conductivité thermique et haute résistance et procédé de préparation associé WO2020062874A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811151683.5A CN109207825A (zh) 2018-09-29 2018-09-29 一种高导热高强韧镁合金材料及其制备方法
CN201811151683.5 2018-09-29

Publications (1)

Publication Number Publication Date
WO2020062874A1 true WO2020062874A1 (fr) 2020-04-02

Family

ID=64982429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085772 WO2020062874A1 (fr) 2018-09-29 2019-05-07 Matériau d'alliage de magnésium à haute conductivité thermique et haute résistance et procédé de préparation associé

Country Status (2)

Country Link
CN (1) CN109207825A (fr)
WO (1) WO2020062874A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109207825A (zh) * 2018-09-29 2019-01-15 江苏中科亚美新材料有限公司 一种高导热高强韧镁合金材料及其制备方法
CN114517268A (zh) * 2020-11-20 2022-05-20 中国科学院上海微系统与信息技术研究所嘉兴轻合金技术工程中心 一种高导热高强韧镁合金材料以及热变形热处理工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085689A1 (fr) * 2003-03-25 2004-10-07 Yoshihito Kawamura Alliage de magnesium de haute resistance et tenacite, et son procede de production
CN104862566A (zh) * 2014-02-21 2015-08-26 中国科学院金属研究所 一种高强高塑性医用镁合金及其制备工艺和应用
CN107043880A (zh) * 2017-06-27 2017-08-15 佛山科学技术学院 一种稀土导热镁合金及其制备方法
CN107904461A (zh) * 2017-11-23 2018-04-13 重庆科技学院 一种低成本高性能镁合金型材及制备方法
CN108300918A (zh) * 2017-01-11 2018-07-20 北京科技大学 一种具有高室温成形性能含钙稀土镁合金板材及制备方法
CN109207825A (zh) * 2018-09-29 2019-01-15 江苏中科亚美新材料有限公司 一种高导热高强韧镁合金材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085689A1 (fr) * 2003-03-25 2004-10-07 Yoshihito Kawamura Alliage de magnesium de haute resistance et tenacite, et son procede de production
CN104862566A (zh) * 2014-02-21 2015-08-26 中国科学院金属研究所 一种高强高塑性医用镁合金及其制备工艺和应用
CN108300918A (zh) * 2017-01-11 2018-07-20 北京科技大学 一种具有高室温成形性能含钙稀土镁合金板材及制备方法
CN107043880A (zh) * 2017-06-27 2017-08-15 佛山科学技术学院 一种稀土导热镁合金及其制备方法
CN107904461A (zh) * 2017-11-23 2018-04-13 重庆科技学院 一种低成本高性能镁合金型材及制备方法
CN109207825A (zh) * 2018-09-29 2019-01-15 江苏中科亚美新材料有限公司 一种高导热高强韧镁合金材料及其制备方法

Also Published As

Publication number Publication date
CN109207825A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
CN105755340B (zh) 低成本高强高韧高导热变形镁合金及其制备方法
CN110129644B (zh) 一种耐热可溶解镁合金及其制备方法和应用
CN104032195B (zh) 一种可高效挤压低成本高性能导热镁合金及其制备方法
CN112063883B (zh) 一种铝青铜及其制备方法
WO2017101709A1 (fr) Alliage de magnésium moulé sous pression à coût réduit et haute conductivité thermique et son procédé de fabrication
CA2793148A1 (fr) Alliage d'aluminium pour la coulee sous pression
WO2018072052A1 (fr) Alliage de zinc déformable apte à être frappé à froid et son application
CN110747365B (zh) 一种高塑性高强度高导电CuCrZr系铜合金及其制备方法
CN109338187B (zh) 一种低成本可高速挤压的高强韧变形镁合金及其制备方法
Meng et al. Effect of Zr on microstructures and mechanical properties of an AlMgSiCuCr alloy prepared by low frequency electromagnetic casting
CN113737068B (zh) 一种高强韧耐蚀7xxx系铝合金及其加工方法
JP6126235B2 (ja) 耐熱性アルミニウムベース合金を変形させてなる半製品およびその製造方法
CN109468496B (zh) 一种耐热压铸铝合金及其制备方法
WO2020062874A1 (fr) Matériau d'alliage de magnésium à haute conductivité thermique et haute résistance et procédé de préparation associé
Wu et al. Refined microstructure and improved mechanical properties of high-ratio extruded AZ91− xSn magnesium alloy
CN113444903A (zh) 一种高钆稀土镁合金棒材及其制备方法
JP7184257B2 (ja) アルミニウム合金材、その製造方法及びインペラ
WO2019023818A1 (fr) Matériau d'alliage de zinc déformable facilement façonnable à froid, procédé de préparation s'y rapportant et application correspondante
JP6452042B2 (ja) マグネシウム合金の製造方法
WO2020052129A1 (fr) Alliage de magnésium et de terres rares présentant une grande ductilité et une résistance élevée et son procédé de préparation
CN115786788A (zh) 一种耐热耐蚀Al-Cu-Mg合金及其制备方法和应用
CN103361526B (zh) 一种高强度铝合金及其生产方法
CN113755769B (zh) 一种高强高韧铝基复合材料及热处理方法
KR20160089794A (ko) 소성 가공 전 시효 처리에 의한 고강도 마그네슘 합금 가공재 제조방법 및 이에 의해 제조된 고강도 마그네슘 합금 가공재
JP2016169431A5 (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865735

Country of ref document: EP

Kind code of ref document: A1