WO2020062822A1 - 一种矿山采选充处开采方法 - Google Patents

一种矿山采选充处开采方法 Download PDF

Info

Publication number
WO2020062822A1
WO2020062822A1 PCT/CN2019/080752 CN2019080752W WO2020062822A1 WO 2020062822 A1 WO2020062822 A1 WO 2020062822A1 CN 2019080752 W CN2019080752 W CN 2019080752W WO 2020062822 A1 WO2020062822 A1 WO 2020062822A1
Authority
WO
WIPO (PCT)
Prior art keywords
mining
coal
vermiculite
filling
face
Prior art date
Application number
PCT/CN2019/080752
Other languages
English (en)
French (fr)
Inventor
张吉雄
齐文跃
张强
孙凯
周楠
刘恒凤
Original Assignee
中国矿业大学
徐州中矿贝壳迈宁矿业科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学, 徐州中矿贝壳迈宁矿业科技有限公司 filed Critical 中国矿业大学
Priority to RU2020106842A priority Critical patent/RU2724161C1/ru
Priority to AU2019303423A priority patent/AU2019303423A1/en
Priority to CA3069068A priority patent/CA3069068A1/en
Priority to US16/632,543 priority patent/US20200378256A1/en
Publication of WO2020062822A1 publication Critical patent/WO2020062822A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/18Methods of underground mining; Layouts therefor for brown or hard coal
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F13/00Transport specially adapted to underground conditions
    • E21F13/06Transport of mined material at or adjacent to the working face
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F13/00Transport specially adapted to underground conditions
    • E21F13/06Transport of mined material at or adjacent to the working face
    • E21F13/061Chutes and braking conveyors for average and steep slopes, adapted for mining purposes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings
    • E21F15/06Filling-up mechanically

Definitions

  • the present invention relates to a method for designing a mine, and particularly to a method for mining and filling at a mine, and belongs to the technical field of coal mining.
  • the present invention provides a mining method for mining and filling at mining sites, in order to reduce the pressure of mine auxiliary lifting and the pressure of the surface coal washing plant, and at the same time, it can effectively treat coal gangue, reduce the coal gangue surface accumulation area and protect Ecological environment in mining areas to improve coal mining efficiency.
  • the present invention provides a method for mining, mining, filling and mining at the mining site.
  • the steps are as follows.
  • the first step is to clearly design the main source of vermiculite in the mining face according to the geological conditions and occurrence characteristics of the coal seam;
  • the second step according to the main source of vermiculite in the design mining face, choose corresponding measures to reduce the radon content in coal mining, and arrange the mining face with a small amount of vermiculite;
  • the third step is to arrange the coal gangue sorting system under the mine, and perform the coal gangue sorting system equipment selection, to perform coal gangue sorting on the raw coal produced in the mining face with a small amount of gangue;
  • the fourth step the sorted vermiculite is transported by the vermiculite conveyor belt to the underground vermiculite silo, and then conveyed from the underground vermiculite silo via the vermiculite transport belt to the vermiculite filling and coal high-efficiency mining working face for filling treatment, that is, the arrangement of the filling synergistic collapsible comprehensive Mining face
  • Step 5 Based on the amount of vermiculite sorted by the coal gangue sorting system, design the length of the filling section of the filling and collapsing fully mechanized mining face, arrange the mining face of the filling section, and select and match the equipment; according to the mine production
  • the size of the capacity, the design of the length of the collapse section of the filling and collapsing fully mechanized mining face, the layout of the mining face of the collapsing section, and equipment selection and matching; the filling and collapsing type between the filling section and the collapsed section The transition section of the fully mechanized mining face, the transition section mining face is arranged, and the equipment selection and matching are performed.
  • the main sources of vermiculite described in the first step include: vermiculite in the fully mechanized top coal mining and coal mining process, intercalated gangue in the coal seam, vermiculite falling from the working face mining roof, and coal mining face due to changes in geological conditions.
  • the entrainment rate of entrained coal seams can be reduced by layered mining
  • the vermiculite cut on the floor of a fully mechanized mining face can be reduced by changing the height of the shearer drum and applying anti-dumping measures to the shearer;
  • the filling and collapsing fully mechanized mining face refers to the simultaneous placement of a comprehensive mechanized solid filling coal mining section and a traditional comprehensive mechanized coal mining section on the same working face.
  • the specific process is as follows:
  • Coal mining process There are three different types of supports at the working face of the vermiculite filling and coal high-efficiency mining system. Among them, the support arranged in the filling section is a hydraulic support for filling coal mining, and the support arranged in the transition section is a filling mining with side shields. Coal hydraulic support, the support arranged in the collapsed section is a traditional comprehensive mining hydraulic support; the above three supports are designed with the same moving frame step and share a coal mining machine and a scraper conveyor. The coal at the mining site passes through the belt conveyor. Transport office
  • the fifth step before the filling of the collapsing and fully mechanized mining face for filling, an environmental disaster assessment of the vermiculite is required. If the underground environment is polluted, the sorted vermiculite needs to be pretreated to To reduce secondary pollution of vermiculite, specific measures include:
  • Vermiculite immersion pretreatment the sorted vermiculite is immersed in water for several days to make the reaction of vermiculite surface heavy metal ions and so on tend to end;
  • Vermiculite microbial modification The method of cultivating microorganisms is used to suppress the reaction and migration of heavy metals on the vermiculite surface, thereby protecting the groundwater environment and soil from secondary pollution.
  • the goaf is monitored in real time. If heavy metal ions are precipitated, pre-control measures need to be taken, including:
  • the coal gangue sorting method in the third step is a jig separation method using a moving sieve in a well.
  • the specific method is as follows:
  • Underground coal gangue enters the screening machine, and the final coal smaller than the set particle diameter is directly transported to the coal bin through the final coal conveyor belt.
  • the raw coal larger than the set particle diameter falls into the coal gangue sorting conveyor belt conveyor through the raw coal chute, and the coal gangue sorting is performed.
  • the feed conveyor belt conveys the large-size raw coal through the feed chute to the crusher and then transports it to the moving sieve jig sorter to separate the vermiculite from the clean coal.
  • Underground moving sieve jig separation method has a large range of particle size, less equipment water consumption, and simple process system.
  • the length of the transition section of the filling and collapsing fully mechanized mining face is generally the length of 4 to 9 hydraulic supports.
  • the invention arranges a small amount of vermiculite mining system and optimizes the process parameters according to different vermiculite sources, thereby minimizing the extraction of vermiculite.
  • the raw coal from the small vermiculite mining system is sorted by the underground coal gangue sorting system, and The sorted vermiculite forms filling on the spot; in order to coordinate the filling and collapsing speed, a high-efficiency coal mining working face of the synergistic filling and collapsing coal is arranged, so that all the sorted vermiculite can be used for filling operations, and the raw coal that is fully mined at the same time Transported to the coal gangue sorting system for sorting, so that the working surfaces of the two can be advanced at the same time; in order to prevent interference between the collapsed section and the filling section, a transition section is also set between the two; in order to reduce the gangue to the filling area
  • Environmental impact, pre-treatment and pre-control measures to reduce environmental impact are taken before and after the
  • Figure 1 is a layout diagram of a downhole system of the present invention
  • Fig. 2 is a flow chart of a jig separation jig method for underground coal gangue separation
  • Figure 3 is a layout plan of the vermiculite filling and coal efficient mining face
  • FIG. 4 is a process flow chart of a mining method of “mining, dressing and charging”
  • a method for mining and filling at mines requires three systems to be arranged in the mine, including a mining waste minimization mining system 1, a coal gangue sorting system 2, and a gangue filling and coal efficiency system.
  • Mining system 3 the working capacity of each system should meet the following principles: gangue filling and coal high-efficiency mining system design and filling capacity> coal gangue sorting system sorting gangue capacity> gangue small amount mining work system output capacity.
  • the first step is to clearly design the main source of vermiculite in the mining face according to the geological conditions and occurrence characteristics of the coal seam;
  • vermiculite in the fully mechanized top coal caving mining process, intercalated gangues in the coal seam, vermiculite falling from the working face mining roof, and vermiculite mined from the coal mining face due to changes in geological conditions;
  • the second step according to the main source of vermiculite in the design mining face, choose corresponding measures to reduce the radon content in coal mining, and arrange the mining face with a small amount of vermiculite;
  • the entrainment rate of entrained coal seams can be reduced by layered mining
  • the vermiculite cut on the floor of a fully mechanized mining face can be reduced by changing the height of the shearer drum and applying anti-dumping measures to the shearer;
  • the third step is to arrange the coal gangue sorting system 2 underground, and perform the coal gangue sorting system equipment selection, and perform coal gangue sorting on the raw coal produced by the mining face with a small amount of gangue;
  • the coal gangue sorting method used in this embodiment is a jig separation method for underground sieving.
  • a moving sieve jig separator and a sieving machine are arranged near the underground yard of the coal mine or in the direction of centralized coal transportation.
  • And crusher sorting equipment, specific methods are as follows:
  • Underground coal gangue enters the screening machine, and the final coal with a particle size of less than 50mm is directly transported to the coal bin through the final coal conveyor belt.
  • the raw coal with a particle size of more than 50mm falls into the coal gangue through the raw coal chute and is sorted into the conveyor belt.
  • Conveying belt conveyor for sorting feeds the large-sized raw coal through the feeding chute to the crusher and then sends it to the moving sieve jig sorting machine to separate the vermiculite from the clean coal;
  • the sorted vermiculite is crushed by the vermiculite crusher and then run by the vermiculite conveyor to the vermiculite warehouse; the sorted clean coal is operated by the cleaned coal conveyor to the coal silo; the lower end of the moving sieve jig sorting machine is equipped with overflow holes and Drainage holes, sewage enters the high-frequency vibrating screen through the drainage holes, and the screened sewage and overflowed sewage enter the sedimentation tank, and the clean water after further processing is circulated to the moving sieve jig sorting machine.
  • Underground moving sieve jig separation method has a large range of particle size, less equipment water consumption, and simple process system.
  • the fourth step the sorted vermiculite is transported by the vermiculite conveyor belt to the underground vermiculite silo, and then conveyed from the underground vermiculite silo via the vermiculite transport belt to the vermiculite filling and coal high-efficiency mining working face for filling treatment, that is, the arrangement of the filling synergistic collapsible comprehensive Mining face
  • Coal mining technology There are three different types of supports at the working face of the vermiculite filling and coal efficient mining system. Among them, the support arranged in the filling section 4 is a hydraulic support for filling coal mining 7, and the support arranged in the transition section 5 is provided with side shields.
  • the hydraulic support 8 for filling coal mining and the support 6 for the collapse section 6 are traditional comprehensive mining hydraulic supports 9.
  • the above three types of supports are designed with the same moving frame step and share a coal mining machine 10 and a scraper conveyor 11. The coal at the place is transported to the coal gangue sorting system for sorting via a belt conveyor; the belt conveyor 18 is arranged on the side of the transportation lane 17.
  • the length of the filling section is mainly determined by the amount of vermiculite washed under the well. Generally, the economic and technical benefits are reasonable when the length of the filling section ranges from 80 to 120m. Through research and analysis, the impact range of the transition area under different filling conditions and mining conditions is about 6m. Therefore, the length of the transition section is generally determined to be 6m. It is sufficient to arrange 4 filling coal mining hydraulic supports with side shields; the length of the collapse section is determined by the total length of the filling and collapsing fully mechanized mining face, and the total length is determined by The calculation of the design production capacity of the working face can be obtained.
  • b.Filling process Washing and selecting vermiculite from the mine through the feeder, conveying belt conveyor 15, and self-transferring loader 14 to the porous bottom unloading conveyor 12 in the filling section of the mixed mining surface in sequence. Sequentially open the discharge hole 13 on the perforated bottom unloading scraper conveyor 12 suspended at the back of the vermiculite filling section to fall out to the goaf; the self-propelled transferer 14 and the vermiculite belt conveyor 15 are arranged on the side of the track lane 17 .
  • the filling and collapsing mixed mining fully utilizes the dual technical advantages of solid filling and comprehensive mining to consume vermiculite, protect the mining area environment and traditional comprehensive mining with high output and high efficiency.
  • the working surface has a high yield and single effect, which can meet the requirements of modern mines for production capacity.
  • the coal mining and filling efficiency of the working face was effectively adjusted, and the filling and mining capabilities were more balanced, and the efficient coal mining and filling vermiculite at the working face were achieved simultaneously.
  • the backfilling and collapsing mixed mining has realized the in-situ filling of downhole vermiculite, which has dramatically increased the production demand for backfilling and mining.
  • the filling and collapsing fully mechanized mining face is advanced.
  • vermiculite Before filling, it is necessary to conduct an environmental disaster assessment of vermiculite. If it will cause pollution to the underground environment, it is necessary to pre-treat the sorted vermiculite to reduce the secondary pollution of vermiculite. Specific measures include:
  • Vermiculite immersion pretreatment the sorted vermiculite is immersed in water for several days to make the reaction of vermiculite surface heavy metal ions and so on tend to end;
  • Vermiculite microbial modification The method of cultivating microorganisms is used to suppress the reaction and migration of heavy metals on the vermiculite surface, thereby protecting the groundwater environment and soil from secondary pollution.
  • the goaf is monitored in real time. If heavy metal ions are precipitated, pre-control measures need to be taken, including:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种矿山采选充处开采方法,包括矸石少量化开采工作面矸石的主要来源及降矸措施;煤矸分选的系统布置、装备及分选工艺;充填协同垮落式煤炭高效回采的系统布置、装备及生产工艺;矸石充填前后环境影响的预处理及预控措施;矿山"采选充处"开采方法的设计原则及设计步骤。该方法不仅解决了矸石的长距离输送问题,降低了井下矸石提升费用,减轻了矿井辅助提升和地面洗煤厂压力,而且还可以有效处理煤矿矸石,减少煤矸石地表堆积面积,降低矿区生态环境的破坏,保护生态环境,同时矸石充填与煤炭高效回采工作面单产单效高,能满足现代化矿井对生产能力的要求,具有广阔的应用前景。

Description

一种矿山采选充处开采方法 技术领域
本发明涉及一种矿山开采设计方法,尤其涉及一种矿山采选充处开采方法,属于煤矿开采技术领域。
背景技术
随着矿井的大型化和煤矿开采技术的现代化,尤其是顶煤开采技术及大量薄煤层的开采技术的广泛应用,导致工作面煤层顶、底板夹杂大量矸石,从而造成混入原煤中矸石量增加。而传统煤矿开采作业中,开采出的原煤在井下不进行煤矸的分选处理,而是直接进入井底煤仓,由提升系统提升上井后再进行排矸作业,而排出的矸石还需设专门的堆放场地。由于原煤从井下运输至地面后才进行洗选加工,这样不仅造成矸石运输能耗浪费,而且选后矸石在堆放时易产生自燃,不仅占用大量的土地,而且严重污染生态环境,造成了矿区环境日益突出。且井下煤流系统中矸石运输及提升系统属于矿井的无效运输,这部分无效运输量会大大降低矿井的实际产能,提高设备成本。
发明内容
为了克服现有技术存在的各种不足,本发明提供一种矿山采选充处开采方法,以减轻矿井辅助提升和地面洗煤厂压力,同时可以有效处理煤矿矸石,减少煤矸石地表堆积面积,保护矿区生态环境,提高煤炭开采效率。
为了解决上述问题,本发明一种矿山采选充处开采方法,步骤如下,
第一步、根据煤层地质条件以及赋存特征,明确设计回采工作面矸石的主要来源;
第二步、根据设计回采工作面矸石的主要来源,选择相应的降低煤炭开采含矸率的措施,并布置矸石少量化开采工作面;
第三步、布置井下煤矸分选系统,并进行煤矸分选系统设备选型,对矸石少量化开采工作面生产的原煤进行煤矸分选;
第四步、分选出的矸石由矸石输送皮带运送至井下矸石仓,再由井下矸石仓经矸石运输皮带运送至矸石充填与煤炭高效回采工作面进行充填处理,即布置充填协同垮落式综采工作面;
第五步、依据煤矸分选系统分选出来的矸石量,设计充填协同垮落式综采工作面的充填段长度,布置充填段回采工作面,并进行设备选型与配套;依据矿井生产能力的大小,设计充填协同垮落式综采工作面的垮落段长度,布置垮落段回采工作面,并进行设备选型与配套;充填段与垮落段之间设置充填协同垮落式综采工作面的过渡段,布置过渡段回采工作面,并进行设备选型与配套。
具体的,第一步中所述的矸石的主要来源包括:综放开采放煤工艺中的矸石、煤层中的夹矸、工作面回采顶板冒落的矸石、采煤工作面因地质条件变化而采出的矸石;
针对不同矸石来源所采取的降低煤炭开采含矸率的措施如下:
a.对于综放开采放煤工艺中的矸石,首先通过探测顶煤厚度分布,掌握顶煤厚度变化,然后根据不同的顶煤厚度,通过改变放煤步距、放煤方式的途径来降低综放开采中的含矸率;
b.对于煤层中的夹矸,可通过分层开采的方式来降低含夹矸煤层的含矸率;
c.对于工作面回采顶板冒落的矸石,可通过及时支护、加大支护强度来降低回采顶板冒落的矸石;
d.对于综采工作面底板切割的矸石,可通过改变采煤机滚筒高度、对采煤机施以防倾倒措施,来减少工作面底板切割的矸石;
e.对于采煤工作面因地质条件变化而采出的矸石,首先探测分析地质条件变化的程度,然后通过采用绕行、工作面搬家、调整采煤装备参数的措施来降低含矸率。
进一步的,所述充填协同垮落式综采工作面是指在同一个工作面同时布置综合机械化固体充填采煤段与传统综合机械化采煤段,具体工艺如下:
a.采煤工艺:矸石充填与煤炭高效回采系统工作面设置三种不同类型的支架,其中充填段布置的支架为充填采煤液压支架,过渡段布置的支架为带侧挡护板的充填采煤液压支架,垮落段布置的支架为传统综采液压支架;上述三种支架设计移架步距相同,且共用一部采煤机和刮板输送机,开采处的煤炭经过带式输送机运输处;
b.充填工艺:井下洗选矸石从矸石仓依次通过给料机、运矸胶带输送机、自移式转载机运至混采面充填段的多孔底卸式输送机上,按一定顺序打开矸石充 填段后部悬挂多孔底卸式刮板输送机上的卸料孔自然落料至采空区。
进一步的,第五步中,充填协同垮落式综采工作面进行充填前,需要对矸石进行环境灾害评估,若会对地下环境造成污染,则需要对分选出的矸石进行预处理,以减少矸石的二次污染,具体措施包括:
a.矸石浸泡预处理:将分选出的矸石进行浸水预处理数天,使矸石表面重金属离子等反应趋于结束;
b.矸石微生物改性:采用培养微生物的方式,来抑制矸石表面的重金属反应与迁移,从而保护地下水环境及土壤不被二次污染。
进一步的,第五步中,充填协同垮落式综采工作面进行充填后,对采空区进行实时监控,若有重金属离子析出时,需要采取预控措施,具体包括:
a.底板铺设防渗层:采用致密物质铺设地板,来抑制重金属离子的渗漏;
b.底板注浆处理:对底板裂隙进行注浆处理,来抑制重金属离子的下渗。
优选的,第三步中煤矸分选方法为井下动筛跳汰分离法,具体方法如下:
井下煤矸进入筛分机,小于设置粒径的末煤直接通过末煤输送皮带运至煤仓,大于设置粒径的原煤经过原煤溜槽落入煤矸分选入料输送皮带机,煤矸分选入料输送皮带机将大粒径原煤经过入料溜槽输送至破碎机破碎后再运送至动筛跳汰分选机,将矸石与精煤分离。
井下动筛跳汰分离法分选粒度范围大,设备用水量少,工艺系统简单。
进一步的,充填协同垮落式综采工作面的过渡段长度一般为4~9个液压支架的长度。
本发明通过布置矸石少量化开采系统并根据不同的矸石来源来优化工艺参数,从而最大程度的少开采矸石,矸石少量化开采系统开出的原煤通过井下煤矸分选系统进行分选,并将分选出的矸石就地形成充填;为了协同充填与垮落的速度,布置了充填协同垮落式煤炭高效回采工作面,使分选出来的矸石可以全部进行充填作业,同时综采出的原煤运输至煤矸分选系统进行分选,使二者的工作面可以同时推进;为了防止垮落段与充填段之间的干涉,二者之间还设置的过渡段;为了降低矸石对充填区域环境的影响,在矸石充填步骤的前后均采取了降低环境影响的预处理及预控措施;该方法不仅解决了矸石的长距离输送问题,降低了井下矸石提升费用,减轻了矿井辅助提升和地面洗煤厂压力,而且还可以有效处理 煤矿矸石,减少煤矸石地表堆积面积,降低矿区生态环境的破坏,保护生态环境,同时矸石充填与煤炭高效回采工作面单产单效高,能满足现代化矿井对生产能力的要求,具有广阔的应用前景。
附图说明
图1是本发明井下系统布置图;
图2是井下煤矸分选动筛跳汰法工艺流程图;
图3是矸石充填与煤炭高效回采工作面布置图;
图4是矿山“采选充处”开采方法工艺流程图;
图中:1、矸石少量化开采系统;2、煤矸分选系统;3、矸石充填与煤炭高效回采系统;4、充填段;5、过渡段;6、垮落段;7、充填采煤液压支架;8、带侧挡护板的充填采煤液压支架;9、传统综采液压支架;10、采煤机;11、刮板输送机;12、多孔底卸式刮板输送机;13、卸料孔;14、自移式转载机;15、矸石带式输送机;16、轨道巷;17、运输巷;18、带式输送机。
具体实施方式
下面结合附图和具体实施例对本发明做详细的阐述。
如图1和图4所示,一种矿山采选充处开采方法,本方法需在井下布置三种系统,包括矸石少量化开采工作系统1、煤矸分选系统2以及矸石充填与煤炭高效回采系统3,各系统工作能力应满足一下原则:矸石充填与煤炭高效回采系统设计充填能力>煤矸分选系统分选矸石能力>矸石少量化开采工作系统出矸能力。
具体步骤如下,
第一步、根据煤层地质条件以及赋存特征,明确设计回采工作面矸石的主要来源;
矸石的主要来源包括:综放开采放煤工艺中的矸石、煤层中的夹矸、工作面回采顶板冒落的矸石、采煤工作面因地质条件变化而采出的矸石;
第二步、根据设计回采工作面矸石的主要来源,选择相应的降低煤炭开采含矸率的措施,并布置矸石少量化开采工作面;
针对不同矸石来源所采取的降低煤炭开采含矸率的措施如下:
a.对于综放开采放煤工艺中的矸石,首先通过探测顶煤厚度分布,掌握顶 煤厚度变化,然后根据不同的顶煤厚度,通过改变放煤步距、放煤方式的途径来降低综放开采中的含矸率;
b.对于煤层中的夹矸,可通过分层开采的方式来降低含夹矸煤层的含矸率;
c.对于工作面回采顶板冒落的矸石,可通过及时支护、加大支护强度来降低回采顶板冒落的矸石;
d.对于综采工作面底板切割的矸石,可通过改变采煤机滚筒高度、对采煤机施以防倾倒措施,来减少工作面底板切割的矸石;
e.对于采煤工作面因地质条件变化而采出的矸石,首先探测分析地质条件变化的程度,然后通过采用绕行、工作面搬家、调整采煤装备参数的措施来降低含矸率。
第三步、布置井下煤矸分选系统2,并进行煤矸分选系统设备选型,对矸石少量化开采工作面生产的原煤进行煤矸分选;
如图2所示,本实施例中所采用的煤矸分选方法为井下动筛跳汰分离法,在煤矿井底车场附近或者原煤集中运输方向上布置动筛跳汰分选机、筛分机、破碎机等煤矸分选装备,具体方法如下:
井下煤矸进入筛分机,小于粒径为50mm的末煤直接通过末煤输送皮带运至煤仓,大于粒径为50mm的原煤经过原煤溜槽落入煤矸分选入料输送皮带机,煤矸分选入料输送皮带机将大粒径原煤经过入料溜槽输送至破碎机破碎后再运送至动筛跳汰分选机,将矸石与精煤分离;
分选出的矸石经过矸石破碎机破碎后由矸石输送机运转至矸石仓;分选出的精煤经过精煤输送机运转至煤仓;动筛跳汰分选机下端设有溢流孔和排水孔,污水经过排水孔进入高频振动筛,筛分后的污水以及溢流的污水均进入沉淀池中,经过进一步处理后的洁净水循环提供给动筛跳汰分选机。井下动筛跳汰分离法分选粒度范围大,设备用水量少,工艺系统简单。
第四步、分选出的矸石由矸石输送皮带运送至井下矸石仓,再由井下矸石仓经矸石运输皮带运送至矸石充填与煤炭高效回采工作面进行充填处理,即布置充填协同垮落式综采工作面;
如图3所示,第五步、依据煤矸分选系统分选出来的矸石量,设计充填协同垮落式综采工作面的充填段4长度,布置充填段回采工作面,并进行设备选型与 配套;依据矿井生产能力的大小,设计充填协同垮落式综采工作面的垮落段6长度,布置垮落段回采工作面,并进行设备选型与配套;充填段4与垮落段6之间设置充填协同垮落式综采工作面的过渡段5,布置过渡段回采工作面,并进行设备选型与配套。
矸石充填回采工作面与煤炭高效回采工作面设备选型及配套应遵循满足工作面产能、设备技术参数与结构性能相匹配及实现工作面充填采煤并举原则;
具体工艺如下:
a.采煤工艺:矸石充填与煤炭高效回采系统工作面设置三种不同类型的支架,其中充填段4布置的支架为充填采煤液压支架7,过渡段5布置的支架为带侧挡护板的充填采煤液压支架8,垮落段6布置的支架为传统综采液压支架9;上述三种支架设计移架步距相同,且共用一部采煤机10和刮板输送机11,开采处的煤炭经过带式输送机运输至煤矸分选系统进行分选;带式输送机18布置在运输巷17侧。
充填段长度主要由井下洗选矸石量来决定,一般充填段长度范围为80~120m时经济与技术效益较为合理;通过研究分析,不同充填状态不同开采条件下过渡区域影响范围均约6m左右,因此,过渡段长度一般确定为6m,布置4架带侧挡护板的充填采煤液压支架即可;垮落段长度则由充填协同垮落式综采工作面的总长度确定,总长度由工作面设计生产能力计算即可得到。
b.充填工艺:井下洗选矸石从矸石仓依次通过给料机、运矸胶带输送机15、自移式转载机14运至混采面充填段的多孔底卸式输送机12上,按一定顺序打开矸石充填段后部悬挂多孔底卸式刮板输送机12上的卸料孔13自然落料至采空区;自移式转载机14和矸石带式输送机15布置在轨道巷17侧。
充填协同垮落式混合开采充分发挥固体充填综采消耗矸石、保护矿区环境及传统综采高产高效双重技术优势,工作面单产单效高,能满足现代化矿井对生产能力的要求。同时,有效调节了工作面采煤与充填效率,充填与采煤能力更加均衡,实现了工作面高效采煤与充填矸石并举。充填协同垮落式混合开采实现了井下矸石就地充填,突破性地提高了充填开采的产能需求。
进一步的,第五步中,充填协同垮落式综采工作面进
行充填前,需要对矸石进行环境灾害评估,若会对地下环境造成污染,则需要对分选出的矸石进行预处理,以减少矸石的二次污染,具体措施包括:
a.矸石浸泡预处理:将分选出的矸石进行浸水预处理数天,使矸石表面重金属离子等反应趋于结束;
b.矸石微生物改性:采用培养微生物的方式,来抑制矸石表面的重金属反应与迁移,从而保护地下水环境及土壤不被二次污染。
进一步的,第五步中,充填协同垮落式综采工作面进行充填后,对采空区进行实时监控,若有重金属离子析出时,需要采取预控措施,具体包括:
a.底板铺设防渗层:采用致密物质铺设地板,来抑制重金属离子的渗漏;
b.底板注浆处理:对底板裂隙进行注浆处理,来抑制重金属离子的下渗。

Claims (7)

  1. 一种矿山采选充处开采方法,其特征在于,步骤如下:
    第一步、根据煤层地质条件以及赋存特征,明确设计回采工作面矸石的主要来源;
    第二步、根据设计回采工作面矸石的主要来源,选择相应的降低煤炭开采含矸率的措施,并布置矸石少量化开采工作面;
    第三步、布置井下煤矸分选系统(2),并进行煤矸分选系统设备选型,对矸石少量化开采工作面生产的原煤进行煤矸分选;
    第四步、分选出的矸石由矸石输送皮带运送至井下矸石仓,再由井下矸石仓经矸石运输皮带运送至矸石充填与煤炭高效回采工作面,进行充填处理,即布置充填协同垮落式综采工作面;
    第五步、依据煤矸分选系统分选出来的矸石量,设计充填协同垮落式综采工作面的充填段(4)长度,布置充填段回采工作面,并进行设备选型与配套;依据矿井生产能力的大小,设计充填协同垮落式综采工作面的垮落段(6)长度,布置垮落段回采工作面,并进行设备选型与配套;充填段(4)与垮落段(6)之间设置充填协同垮落式综采工作面的过渡段(5),布置过渡段回采工作面,并进行设备选型与配套。
  2. 根据权利要求1所述的矿山“采选充处”的开采设计方法,其特征在于,第一步中所述的矸石的主要来源包括:综放开采放煤工艺中的矸石、煤层中的夹矸、工作面回采顶板冒落的矸石、采煤工作面因地质条件变化而采出的矸石;
    针对不同矸石来源所采取的降低煤炭开采含矸率的措施如下:
    a.对于综放开采放煤工艺中的矸石,首先通过探测顶煤厚度分布,掌握顶煤厚度变化,然后根据不同的顶煤厚度,通过改变放煤步距、放煤方式的途径来降低综放开采中的含矸率;
    b.对于煤层中的夹矸,可通过分层开采的方式来降低含夹矸煤层的含矸率;
    c.对于工作面回采顶板冒落的矸石,可通过及时支护、加大支护强度来降低回采顶板冒落的矸石;
    d.对于综采工作面底板切割的矸石,可通过改变采煤机滚筒高度、对采煤机施以防倾倒措施,来减少工作面底板切割的矸石;
    e.对于采煤工作面因地质条件变化而采出的矸石,首先探测分析地质条件变化 的程度,然后通过采用绕行、工作面搬家、调整采煤装备参数的措施来降低含矸率。
  3. 根据权利要求1所述的矿山“采选充处”的开采设计方法,其特征在于:所述充填协同垮落式综采工作面是指在同一个工作面同时布置综合机械化固体充填采煤段与传统综合机械化采煤段,具体工艺如下:
    a.采煤工艺:矸石充填与煤炭高效回采系统工作面设置三种不同类型的支架,其中充填段(4)布置的支架为充填采煤液压支架(7),过渡段(5)布置的支架为带侧挡护板的充填采煤液压支架(8),垮落段(6)布置的支架为传统综采液压支架(9);上述三种支架设计移架步距相同,且共用一部采煤机(10)和刮板输送机(11),开采处的煤炭经过带式输送机运输至煤矸分选系统进行分选;
    b.充填工艺:井下洗选矸石从矸石仓依次通过给料机、运矸胶带输送机(15)、自移式转载机(14)运至充填段(4)的多孔底卸式输送机(12)上,按一定顺序打开矸石充填段后部悬挂多孔底卸式刮板输送机(12)上的卸料孔(13)自然落料至采空区。
  4. 根据权利要求1所述的矿山“采选充处”的开采设计方法,其特征在于:第五步中,充填协同垮落式综采工作面进行充填前,需要对矸石进行环境灾害评估,若会对地下环境造成污染,则需要对分选出的矸石进行预处理,以减少矸石的二次污染,具体措施包括:
    a.矸石浸泡预处理:将分选出的矸石进行浸水预处理数天,使矸石表面重金属离子等反应趋于结束;
    b.矸石微生物改性:采用培养微生物的方式,来抑制矸石表面的重金属反应与迁移,从而保护地下水环境及土壤不被二次污染。
  5. 根据权利要求1所述的矿山“采选充处”的开采设计方法,其特征在于:第五步中,充填协同垮落式综采工作面进行充填后,对采空区进行实时监控,若有重金属离子析出时,需要采取预控措施,具体包括:
    a.底板铺设防渗层:采用致密物质铺设地板,来抑制重金属离子的渗漏;
    b.底板注浆处理:对底板裂隙进行注浆处理,来抑制重金属离子的下渗。
  6. 根据权利要求1所述的矿山“采选充处”的开采设计方法,其特征在于,第三步中煤矸分选方法为井下动筛跳汰分离法,具体方法如下:
    井下煤矸进入筛分机,小于设置粒径的末煤直接通过末煤输送皮带运至煤仓,大于设置粒径的原煤经过原煤溜槽落入煤矸分选入料输送皮带机,煤矸分选入料输送皮带机将大粒径原煤经过入料溜槽输送至破碎机破碎后再运送至动筛跳汰分选机,将矸石与精煤分离。
  7. 根据权利要求1至6任一权利要求所述的矿山“采选充处”的开采设计方法,其特征在于,充填协同垮落式综采工作面的过渡段长度一般为4~9个液压支架的长度。
PCT/CN2019/080752 2018-09-30 2019-04-01 一种矿山采选充处开采方法 WO2020062822A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2020106842A RU2724161C1 (ru) 2018-09-30 2019-04-01 Способ шахтной разработки месторождений, разделения пород, закладки выработанного пространства и обогащения руды
AU2019303423A AU2019303423A1 (en) 2018-09-30 2019-04-01 Mine extraction, separation, filling and treatment exploitation method
CA3069068A CA3069068A1 (en) 2018-09-30 2019-04-01 Mine exploitation, separation, filling and treatment exploitation method
US16/632,543 US20200378256A1 (en) 2018-09-30 2019-04-01 Mine exploitation, separation, filling and treatment exploitation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811159127.2A CN109488301A (zh) 2018-09-30 2018-09-30 一种矿山采选充处开采方法
CN201811159127.2 2018-09-30

Publications (1)

Publication Number Publication Date
WO2020062822A1 true WO2020062822A1 (zh) 2020-04-02

Family

ID=65689991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080752 WO2020062822A1 (zh) 2018-09-30 2019-04-01 一种矿山采选充处开采方法

Country Status (5)

Country Link
US (1) US20200378256A1 (zh)
CN (1) CN109488301A (zh)
AU (1) AU2019303423A1 (zh)
RU (1) RU2724161C1 (zh)
WO (1) WO2020062822A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113279811A (zh) * 2021-05-28 2021-08-20 中煤科工集团西安研究院有限公司 一种特厚煤层上分层老空区顶板再造方法及施工方法
CN113756866A (zh) * 2021-09-24 2021-12-07 中北大学 单独采用粉煤灰作为煤矸石山覆盖层的施工参数确定方法
CN115259758A (zh) * 2022-07-25 2022-11-01 中国矿业大学 一种毫米级矸石料浆配比优化及制备方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109488301A (zh) * 2018-09-30 2019-03-19 中国矿业大学 一种矿山采选充处开采方法
CN111894666A (zh) * 2020-07-06 2020-11-06 中煤能源研究院有限责任公司 一种煤矿井下选磨泵充一体化矸石浆体充填系统及方法
CN113931686B (zh) * 2020-07-14 2024-05-03 天地科技股份有限公司 一种用于地下矿产开采的填充开采方法及联合支架
CN112065393B (zh) * 2020-09-08 2022-06-28 安徽理工大学 井下煤矸石源头减量选充协同开采系统
CN112800597B (zh) * 2021-01-13 2022-09-13 安徽马钢张庄矿业有限责任公司 一种矿山资源高中段智能精细高效生态开采分析方法
CN112943372A (zh) * 2021-03-04 2021-06-11 轻工业环境保护研究所 一种煤矸石山自燃发生过程的监测预警方法
CN113250733B (zh) * 2021-06-07 2022-07-05 山东科技大学 一种采空区气体循环利用防灭火系统及控制方法
CN113565510B (zh) * 2021-07-05 2023-08-04 太原理工大学 一种基于井下矸石堆的特厚煤层综放充填开采方法
CN113565509B (zh) * 2021-07-05 2023-08-04 太原理工大学 一种基于井下矸石条带的特厚煤层综放充填开采方法
CN113605970B (zh) * 2021-08-30 2022-06-07 中国矿业大学 煤矸石井下减排的覆岩隔离注浆充填方法
CN113735544B (zh) * 2021-08-31 2023-08-01 鑫选(厦门)矿冶科技有限公司 一种凝胶材料及矿山充填系统
CN114109491A (zh) * 2021-11-30 2022-03-01 山西工程技术学院 一种选择保留巷道的采空区混合式充填方法和充填装置
CN113931687B (zh) * 2021-12-17 2022-03-08 北京科技大学 一种利用网-面组合结构加固充填胶结面的方法
CN114198143B (zh) * 2021-12-27 2024-03-12 徐州格润矿山技术开发有限公司 一种煤矸石注浆充填减少应力集中的方法
CN114776370B (zh) * 2022-05-18 2024-04-16 中煤地生态环境科技有限公司 一种处理煤矸石的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2310755C1 (ru) * 2006-11-21 2007-11-20 Общество с ограниченной ответственностью "Экостройресурс" Способ восстановления выработанных карьеров
CN103527195A (zh) * 2013-10-23 2014-01-22 中国矿业大学 一种厚夹矸煤层分采分运矸石回填采空区方法
RU2535859C1 (ru) * 2013-08-09 2014-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный" Способ разработки мощных крутопадающих залежей неустойчивых руд
CN105464700A (zh) * 2015-12-14 2016-04-06 中国矿业大学 综采-充填混合开采工作面充填段长度确定方法
CN107246279A (zh) * 2017-07-11 2017-10-13 太原理工大学 井下采选筛拌充一体化矸石胶结构造充填系统及方法
CN109488301A (zh) * 2018-09-30 2019-03-19 中国矿业大学 一种矿山采选充处开采方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL158836B1 (en) * 1989-01-22 1992-10-30 Gorniczo Hutniczy Miedzi Method of mining steep, thin and venous ore bed
RU2454281C1 (ru) * 2010-12-29 2012-06-27 Общество с ограниченной ответственностью "ИНТЕГРА РУ" Подземный рудосепарационный горно-обогатительный комплекс
CN103696772A (zh) * 2013-12-31 2014-04-02 大同煤矿集团有限责任公司 提高综放工作面回采率的方法
CN103899352B (zh) * 2014-04-08 2016-08-17 中国矿业大学 煤炭开采中固体充填充实率设计及控制方法
CN105912810B (zh) * 2016-04-29 2019-02-19 中国矿业大学 一种充填与综采混采面过渡支架支护参数设计方法
CN106401586B (zh) * 2016-06-24 2019-02-22 中国矿业大学 一种煤岩同采工作面的煤岩分选与利用方法
RU2659107C1 (ru) * 2017-06-28 2018-06-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Забайкальский государственный университет" (ФГБОУ ВО "ЗабГУ") Способ комбинированной разработки руд

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2310755C1 (ru) * 2006-11-21 2007-11-20 Общество с ограниченной ответственностью "Экостройресурс" Способ восстановления выработанных карьеров
RU2535859C1 (ru) * 2013-08-09 2014-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный" Способ разработки мощных крутопадающих залежей неустойчивых руд
CN103527195A (zh) * 2013-10-23 2014-01-22 中国矿业大学 一种厚夹矸煤层分采分运矸石回填采空区方法
CN105464700A (zh) * 2015-12-14 2016-04-06 中国矿业大学 综采-充填混合开采工作面充填段长度确定方法
CN107246279A (zh) * 2017-07-11 2017-10-13 太原理工大学 井下采选筛拌充一体化矸石胶结构造充填系统及方法
CN109488301A (zh) * 2018-09-30 2019-03-19 中国矿业大学 一种矿山采选充处开采方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113279811A (zh) * 2021-05-28 2021-08-20 中煤科工集团西安研究院有限公司 一种特厚煤层上分层老空区顶板再造方法及施工方法
CN113279811B (zh) * 2021-05-28 2024-05-03 中煤科工集团西安研究院有限公司 一种特厚煤层上分层老空区顶板再造方法及施工方法
CN113756866A (zh) * 2021-09-24 2021-12-07 中北大学 单独采用粉煤灰作为煤矸石山覆盖层的施工参数确定方法
CN115259758A (zh) * 2022-07-25 2022-11-01 中国矿业大学 一种毫米级矸石料浆配比优化及制备方法
CN115259758B (zh) * 2022-07-25 2023-06-23 中国矿业大学 一种毫米级矸石料浆配比优化及制备方法

Also Published As

Publication number Publication date
RU2724161C1 (ru) 2020-06-22
CN109488301A (zh) 2019-03-19
US20200378256A1 (en) 2020-12-03
AU2019303423A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
WO2020062822A1 (zh) 一种矿山采选充处开采方法
CN101482005B (zh) 井下毛煤排矸及矿井水处理联合工艺
WO2017219970A1 (zh) 一种煤岩同采工作面的煤岩分选与利用方法
CN106111297B (zh) 一种贫磁铁矿的选矿工艺及其生产系统
CN112377247B (zh) 一种煤矿井下矸石就地分选原位注浆充填方法
CN104858048A (zh) 土压平衡盾构渣土环保再生处理方法和设备
WO2015161771A1 (zh) 一种煤矿固体充填采煤工作面设备配套方法
CN103480482B (zh) 槽选工艺煤矿井下排矸系统
CN109931095B (zh) 一种煤矸井下分选与就地充填工程设计方法
CN203925502U (zh) 一种水力采煤和充填同步进行的系统
CN101670310A (zh) 重介浅槽分选井下排矸系统
CN204769087U (zh) 土压平衡盾构渣土环保再生处理设备
CN101869868B (zh) 井下块煤排矸分选综合处理方法
CN103071663B (zh) 闭坑铁矿山排土场废石整体综合利用方法
WO2021248842A1 (zh) 一种含铁围岩多工艺柔性组产分流装置及其分流方法
CN201500577U (zh) 重介浅槽分选井下排矸系统
CA3069068A1 (en) Mine exploitation, separation, filling and treatment exploitation method
CN110645044A (zh) 一种注浆充填系统
CN103334784A (zh) 一种固体充填倾斜送料方法
CN114017109A (zh) 一种台阶式自流型离层注浆充填处理矸石制浆输浆工艺
Bondarenko et al. Testing of the complex for gravitational washing of sand
CN203494634U (zh) 槽选工艺煤矿井下排矸系统
CN113931630B (zh) 一种深部金属矿床的机械化无废开采方法
CN115318417A (zh) 一种tbm开挖料洞内制备砂石骨料的方法及系统
CN113250743A (zh) 一种煤矿井下工作面采选充一体化系统及使用方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019303423

Country of ref document: AU

Date of ref document: 20190401

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866096

Country of ref document: EP

Kind code of ref document: A1