WO2020062701A1 - 一种用于小型复杂曲面零件的浮动抛光装置及方法 - Google Patents

一种用于小型复杂曲面零件的浮动抛光装置及方法 Download PDF

Info

Publication number
WO2020062701A1
WO2020062701A1 PCT/CN2019/070010 CN2019070010W WO2020062701A1 WO 2020062701 A1 WO2020062701 A1 WO 2020062701A1 CN 2019070010 W CN2019070010 W CN 2019070010W WO 2020062701 A1 WO2020062701 A1 WO 2020062701A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
magnets
magnetic
polishing
floating
Prior art date
Application number
PCT/CN2019/070010
Other languages
English (en)
French (fr)
Inventor
郭江
康仁科
郭东明
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Publication of WO2020062701A1 publication Critical patent/WO2020062701A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • B24B1/005Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes using a magnetic polishing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B31/00Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor
    • B24B31/10Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor involving other means for tumbling of work
    • B24B31/102Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor involving other means for tumbling of work using an alternating magnetic field

Definitions

  • the invention belongs to the field of precision processing, and relates to a floating polishing device and method for small complex curved parts.
  • Magnetic field-assisted polishing is a polishing method that uses magnetic fields to apply magnetic abrasive particles to a target surface.
  • the magnetic field has controllability to the magnetic medium, so as to adapt to the complicated surface, and realize the polishing of the corners or small geometries and complex structures that are usually difficult to reach.
  • This method is currently widely used in the manufacture of optical components, molds, and electronic components.
  • Other polishing methods for complex surfaces are abrasive flow polishing, water jet polishing, magnetic jet polishing, and manual or automatic polishing using traditional tools.
  • these advanced machining methods suitable for small and complex surfaces to more complex surface structures they face a series of limitations.
  • the existing surface polishing method is used to polish the parts it processes, the geometry of the parts is more difficult to access or control. .
  • the present invention proposes a new magnetic field-assisted floating polishing device and method for polishing non-magnetic parts with small-sized complex curved surfaces, and is particularly suitable for complex structures manufactured by methods such as 3D printing and injection molding. component.
  • a floating polishing device for small and complex curved parts includes a rotating shaft 1, a magnet 2, a magnetic medium 3, a floating device 4, a receiving unit 5, and a disc spring coupling 6.
  • the rotating shaft 1 is connected to the motor through a disc-type elastic spring coupling 6.
  • the motor provides the rotating power of the rotating shaft 1.
  • the bottom of the rotating shaft 1 is mounted on the bottom surface of the floating device 4.
  • a bottom surface of the floating device 4 is also provided with a
  • the magnet 2 on the bottom surface of the floating device 4 is an upper magnet pair.
  • the floating device 4 is placed on the inner surface of the bottom of the accommodating unit 5, and an annular groove is provided on the bottom surface of the accommodating unit 5.
  • Another pair of magnets 2 is disposed below the accommodating unit 5, and the pair of magnets 2 cooperates with a centrifugal magnetic finishing machine to provide the rotational power of the pair of magnets.
  • the magnet 2 under the bottom of the accommodating unit 5 is a lower magnet pair.
  • the magnetic medium 3 is fixed in the annular groove between the floating device 4 and the accommodating unit 5 by the magnetic force of the magnet 2.
  • the workpiece is placed in the annular groove, and the workpiece is wrapped by the magnetic medium 3.
  • the magnetic medium 3 is used to execute the workpiece. Polishing task.
  • the magnetic medium 3 is first placed in an annular groove, and is used to be concentrated in different positions according to the magnetic force received.
  • the arrangement of the two pairs of magnets 2 on the bottom surface of the floating device 4 and below the bottom surface of the accommodating unit 5 is:
  • the included angle between the connection between the upper magnet pair and the connection between the lower magnet pair is 0 ° or 90 °, that is, When the angle between the two wires is 0 °, the two pairs of magnets 2 are arranged in parallel to each other; that is, when the angle between the two wires is 90 °, the two pairs of magnets 2 are arranged in a mutually perpendicular manner.
  • the floating device 4 and the accommodating unit 5 have the same shape, and both are cylindrical structures with open upper ends.
  • the diameter of the accommodating unit 5 is larger than the floating device 4.
  • a floating polishing method for small and complex curved surface parts includes the following steps:
  • the motor provides a rotary motion to the rotary shaft 1, and the disc spring coupling 6 uses the rotary motion to generate a vibrational motion on the rotary shaft 1.
  • the magnet 2 disposed below the accommodating unit 5 is opposed to the motor by using a centrifugal magnetic finishing machine. Rotate in the direction of rotation.
  • the reverse rotation motion generated by the upper and lower magnet pairs generates a two-way rotation motion in the magnetic medium 3.
  • the combination of the two-way rotation motion and the vibration motion realizes the control and manipulation of the magnet 2 adsorbed on the bottom of the rotation shaft 1 and causes storage.
  • the magnetic medium 3 in the zone generates a tumbling motion, which causes its concentration state to alternate rapidly between the two states. This rapid alternation produces a media reorganization effect that assists the tumbling mechanism.
  • the downward movement of the rotating shaft 1 pushes the floating device 4 downward and causes pressure in the magnetic medium 3, and the combined rolling action and pressure generated help the magnetic medium 3 to perform the polishing task required by the workpiece.
  • the beneficial effects of the present invention are:
  • the present invention has a simple structure and is convenient to use.
  • a new magnetic field-assisted floating polishing method is proposed for polishing non-magnetic components with small and complex curved surfaces, which can solve the polishing problem of complex curved surfaces. It is especially suitable for complex structural parts manufactured by 3D printing and injection molding. After processing by this method, the surface quality of the processed parts is significantly improved.
  • FIG. 1 is a schematic structural diagram of a surface polishing device for a small-sized complex curved surface part
  • FIG. 2 is a structural diagram of a surface polishing device
  • Figure 3 is a schematic diagram of magnetic field assistance for a small-sized complex curved surface
  • Figure 4 is a simulation of the magnetic field and magnetic flux distribution in the polished area Figure
  • FIG. 5 (a) is a magnetic medium concentration area in a parallel magnet configuration
  • Fig. 5 (b) shows the magnet medium concentration area in the vertical magnet arrangement.
  • FIG. 6 is a diagram of a polishing result of a workpiece using the device.
  • a floating polishing device for small complex curved parts as shown in FIG. 1, includes a rotating shaft 1, a magnet 2, a magnetic medium 3, a floating device 4, a receiving unit 5, and a disc spring coupling 6.
  • the magnet 2 is magnet.
  • the rotating shaft 1 is connected to a motor through a disc elastic spring coupling 6.
  • the motor provides the rotating power of the rotating shaft 1.
  • a floating device 4 and a pair of magnets 2 are installed at the bottom of the rotating shaft 1.
  • the floating device 4 is placed on the inner surface of the bottom of the accommodating unit 5, and another pair of magnets 2 is installed below the accommodating unit 5.
  • the magnet 2 cooperates with a centrifugal magnetic finishing machine to provide the rotating power of the pair of magnets 2.
  • the two pairs of magnets 2 are arranged parallel or perpendicular to each other to form upper and lower magnet pairs.
  • the magnet 2 at the bottom of the rotating shaft 1 is an upper magnet pair, and the magnet below the accommodating unit 5 is a lower magnet pair.
  • a groove is provided on the inner surface of the bottom of the accommodating unit 5.
  • the magnetic medium 3 is fixed in the groove between the floating device 4 and the accommodating unit 5 by magnetic force.
  • a workpiece is placed in the groove, and the workpiece is wrapped by the magnetic medium 3.
  • the magnetic medium 3 is composed of carbonyl iron powder CIP, abrasive particles, and a dispersion medium of oil and water. Among them, CIP forms chain clusters along magnetic flux lines, which can increase the viscosity of the magnetic medium during processing and also serve as a carrier.
  • the role of the abrasive particles on the surface of the workpiece is polished.
  • the magnetic medium 3 is first placed in an annular groove, and is used to be concentrated in different positions according to the magnetic force received.
  • a floating polishing method for small and complex curved surface parts includes the following steps:
  • the motor provides a clockwise rotation motion to the rotating shaft 1, and the disc spring coupling 6 uses the rotating motion to generate a vibrational motion on the rotating shaft 1.
  • the magnet 2 disposed below the accommodation unit 5 communicates with the motor by using a centrifugal magnetic trimmer Rotate counterclockwise in the opposite direction of rotation.
  • the clockwise and counterclockwise rotation motions provided by the two pairs of magnets respectively generate a two-way rotation motion in the magnetic medium 3.
  • the combination of two-way rotary motion and vibrational motion realizes the control and manipulation of the magnet 2 adsorbed on the bottom of the rotating shaft 1 and causes the magnetic medium 3 in the groove to roll over, thereby causing the concentration state of the magnetic medium 3 in the storage area to be in two different states.
  • the first type of medium concentration state is generated.
  • the arrangement mode and the magnetic medium concentration area 7 are shown in FIG. 5 (a). In this case, the magnetic medium 3 is concentrated between two upper and lower magnet pairs.
  • Figure 4 shows the magnetic field distribution of the polished area analyzed and simulated by the magnetic field analysis software.
  • the Nd-Fe-B N52 permanent magnet is used to simulate the magnetic field distribution of the four magnets.
  • the magnetic field lines form a connection between the two magnets, creating a closed magnetic circuit that minimizes magnetic flux leakage. Therefore, a high-density magnetic flux is generated in the polished area.
  • This device is used to polish ceramic dental workpieces with complex curved surfaces. The polishing results are shown in Figure 6. After polishing, the workpiece surface becomes smoother and the burrs in the groove area are significantly removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

一种用于小型复杂曲面零件的浮动抛光装置及方法,浮动抛光装置中的旋转轴(1)通过盘式弹性弹簧联轴器(6)与电机连接,旋转轴(1)底部安装浮动装置(4)和一对磁铁(2);浮动装置(4)放置在容纳单元(5)底表面上,其下方设置另一对磁铁(2);两对磁体以相互呈平行或垂直方式排列;容纳单元(5)底表面上设有凹槽,磁性介质(3)通过磁力固定在凹槽内,凹槽内放置工件,且工件被磁性介质(3)包裹。由两对磁体提供相反方向的旋转运动在磁性介质(3)内产生双向旋转运动,产生的组合翻滚动作和压力助于磁性介质(3)执行工件所需的抛光任务。本装置结构简单,使用方便,能够用于对小尺寸复杂曲面的非磁性部件进行抛光,特别适用于3D打印以及注塑等方法制造的复杂结构部件。

Description

一种用于小型复杂曲面零件的浮动抛光装置及方法 技术领域
本发明属于精密加工领域,涉及一种用于小型复杂曲面零件的浮动抛光装置及方法。
背景技术
磁场辅助抛光是一种利用磁场将磁性磨料颗粒作用在目标表面上的抛光方法。磁场对磁性介质具有可控性,以适应复杂的表面,实现对常规难以接触到的角落或小的几何形状及复杂结构进行抛光。目前这种方法广泛应用于光学元件、模具、以及电子元器件的制造中。其他用于复杂表面的抛光方法有磨料流抛光,水射流抛光,磁射流抛光,以及使用传统工具进行的手动或自动抛光。但将这些适用于小型复杂表面的先进加工方法用于加工更复杂的表面结构时,会面临一系列限制。尤其是对于3D打印的增减材制造技术加工出的部件,由于其结构非常复杂,因此当采用现有表面抛光方法对其加工出的部件进行抛光时,其部件的几何形状更加难以接近或控制。
技术问题
为了解决复杂曲面的抛光问题,本发明提出一种新的磁场辅助浮动抛光装置及方法,用于对小尺寸复杂曲面的非磁性部件进行抛光,特别适用于3D 打印以及注塑等方法制造的复杂结构部件。
技术解决方案
为了达到上述目的,本发明采用的技术方案为:
一种用于小型复杂曲面零件的浮动抛光装置,包括旋转轴1、磁体2、磁性介质3、浮动装置4、容纳单元5、盘式弹簧联轴器6。
所述的旋转轴1通过盘式弹性弹簧联轴器6与电机连接,电机提供旋转轴1的旋转动力,旋转轴1底部安装在浮动装置4底表面上,浮动装置4底表面上还设有一对磁体2,浮动装置4底面上的磁体2为上磁体对。所述的浮动装置4放置在容纳单元5底部内表面上,容纳单元5底面上设有环形凹槽。另外一对磁体2设于容纳单元5下方,且该对磁体2与离心式磁性整修机配合,提供该对磁铁2的旋转动力,容纳单元5底面下的磁体2为下磁体对。所述的磁性介质3通过磁体2的磁力固定在浮动装置4和容纳单元5之间的环形凹槽内,环形凹槽内放置工件,且工件被磁性介质3包裹,磁性介质3用于执行工件的抛光任务。磁性介质3首先放置在环形凹槽内,使用是,根据所受磁力集中在不同位置。
所述的浮动装置4底面上和容纳单元5底面下的两对磁体2的排列形式为: 上磁体对之间连线与下磁体对之间连线的夹角为0°或90°,即当两条线夹角为0°时,两对磁体2以相互平行方式排列;即当两条线夹角为90°时,两对磁体2以相互垂直方式排列。
所述的浮动装置4、容纳单元5形状相同,均为上端开口的圆筒结构,容纳单元5的筒径大于浮动装置4。
一种用于小型复杂曲面零件的浮动抛光方法,包括以下步骤:
电机向旋转轴1提供旋转运动,盘式弹簧联轴器6利用该旋转运动在旋转轴1上产生振动运动,配置在容纳单元5下方的磁体2通过使用离心式磁性整修机以与电机相反的旋转方向进行旋转。由上、下磁体对所产生的反向旋转运动在磁性介质3内产生双向旋转运动,该双向旋转运动和振动运动组合实现对吸附在旋转轴1底部的磁体2的控制、操纵,并导致存储区内的磁性介质3产生翻滚运动,进而使其浓度状态在两种状态间快速交替,该快速交替产生了助于翻滚机制的介质重整作用。此外,由旋转轴1的向下运动将浮动装置4向下推并在磁性介质3内引起压力,产生的组合翻滚动作和压力有助于磁性介质3执行工件所需的抛光任务。
当上、下磁体对以平行方式排列时,产生第一类介质集中状态,此时,磁性介质3集中在两个上下磁体对之间。
当上、下磁体对以垂直方式排列时,产生第二类介质集中状态,此时,磁性介质3集中在每个磁体上。
有益效果
本发明的有益效果为: 本发明结构简单,使用方便,提出一种新的磁场辅助浮动抛光方法,用于对小尺寸复杂曲面的非磁性部件进行抛光,可解决复杂曲面的抛光问题。特别适用于3D 打印以及注塑等方法制造的复杂结构部件。采用该方法加工后对于加工部件的表面质量有明显改善。
附图说明
图1为用于小尺寸复杂曲面零件的表面抛光装置结构示意图;
图2为表面抛光装置结构图;
图3为用于小尺寸复杂曲面磁场辅助原理图;
图4为抛光区域磁场磁通分布模拟
Figure dest_path_image001
图;
图5(a)为平行磁铁配置下的磁性介质集中区域;
图5(b)为垂直磁铁配置下的磁铁介质集中区域。
图6为使用该装置对工件的抛光结果图。
图中:1旋转轴;2磁体;3磁性介质;4浮动装置;5容纳单元;6盘式弹性弹簧联轴器;7磁性介质集中区域。
本发明的实施方式
以下结合具体实施例对本发明做进一步说明。
一种用于小型复杂曲面零件的浮动抛光装置,如图1所示,包括旋转轴1、磁体2、磁性介质3、浮动装置4、容纳单元5、盘式弹簧联轴器6,磁体2为磁铁。
所述的旋转轴1通过盘式弹性弹簧联轴器6与电机连接,电机提供旋转轴1的旋转动力,旋转轴1底部安装浮动装置4和一对磁铁2。所述的浮动装置4放置在容纳单元5底部内表面上,另外一对磁铁2安装在容纳单元5下方,且该磁体2与离心式磁性整修机配合,提供该对磁铁2的旋转动力。所述的两对磁体2以相互呈平行或垂直方式排列,形成上下磁体对,旋转轴1底部磁体2为上磁体对,容纳单元5下方磁体为下磁体对。所述的容纳单元5底部内表面上设有凹槽,磁性介质3通过磁力固定在浮动装置4和容纳单元5之间的凹槽内,凹槽内放置工件,且工件被磁性介质3包裹。所述的磁性介质3由羰基铁粉CIP、磨料颗粒以及油和水的分散介质组成,其中,CIP沿磁通线形成链状簇,能够增加磁性介质在加工过程中的粘度,还起到载体的作用,带动磨料颗粒在工件表面上进行抛光。磁性介质3首先放置在环形凹槽内,使用是,根据所受磁力集中在不同位置。
一种用于小型复杂曲面零件的浮动抛光方法,包括以下步骤:
电机向旋转轴1提供顺时针旋转运动,盘式弹簧联轴器6利用该旋转运动在旋转轴1上产生振动运动,配置在容纳单元5下方的磁体2通过使用离心式磁性整修机以与电机相反的旋转方向进行逆时针旋转。由两对磁体分别提供的顺时针和逆时针旋转运动并在磁性介质3内产生了双向旋转运动。双向旋转运动和振动运动组合实现对吸附在旋转轴1底部的磁体2的控制、操纵,并且使凹槽中的磁性介质3产生翻滚运动,进而导致存储区内的磁性介质3浓度状态在两种状态间快速交替,该快速交替产生了助于翻滚机制的介质重整作用。此外,由旋转轴1的向下运动将浮动装置4向下推并在磁性介质3内引起压力,产生的组合翻滚动作和压力有助于磁性介质3执行工件所需的抛光任务。
当上、下磁体对以平行方式排列时,产生第一类介质集中状态,排列方式及磁性介质集中区域7如图5(a)所示。在这种情况下,磁性介质3集中在两个上下磁体对之间。
当上下磁体对以垂直方式排列时,产生第二类介质集中状态,排列方式及磁性介质集中区域7如图5(b)所示。在这种情况下,磁性介质3集中在每个磁体上。
图4显示了利用磁场分析软件对永磁体进行分析模拟出的抛光区域的磁场分布,采用Nd-Fe-B N52永磁体进行四个磁铁的磁场分布模拟。在抛光区域,磁场线在两个磁体之间形成连接,产生闭合磁路,使磁通量泄漏最小化。因此,在抛光区域产生高密度磁通量。使用该装置对牙科用的具有复杂曲面的陶瓷工件进行抛光,抛光结果图如图6所示,抛光后工件表面变得更光滑,并且凹槽区的毛刺被明显去除。
以上所述实施例仅表达本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。

Claims (3)

  1. 一种用于小型复杂曲面零件的浮动抛光装置,其特征在于,所述的浮动抛光装置用于对小尺寸复杂曲面的非磁性部件进行抛光,包括旋转轴(1)、磁体(2)、磁性介质(3)、浮动装置(4)、容纳单元(5)、盘式弹簧联轴器(6);
    所述的旋转轴(1)通过盘式弹性弹簧联轴器6与电机连接,电机提供旋转轴(1)的旋转动力,旋转轴(1)底部安装在浮动装置(4)底表面上,浮动装置(4)底表面上还设有一对磁体(2),浮动装置(4)底面上的磁体(2)为上磁体对;所述的浮动装置(4)放置在容纳单元(5)底部内表面上,容纳单元(5)底面上设有环形凹槽;另外一对磁体(2)设于容纳单元(5)下方,且该对磁体(2)与离心式磁性整修机配合,提供该对磁铁2的旋转动力,容纳单元(5)底面下的磁体(2)为下磁体对;所述的磁性介质(3)通过磁体(2)的磁力固定在浮动装置(4)和容纳单元(5)之间的环形凹槽内,环形凹槽内放置工件,且工件被磁性介质(3)包裹,磁性介质(3)用于执行工件的抛光任务;
    所述的浮动装置(4)底面上和容纳单元(5)底面下的两对磁体(2)的排列形式为: 上磁体对之间连线与下磁体对之间连线的夹角为0°或90°,即当两条线夹角为0°时,两对磁体(2)以相互平行方式排列;当两条线夹角为90°时,两对磁体(2)以相互垂直方式排列。
  2. 根据权利要求1所述的一种用于小型复杂曲面零件的浮动抛光装置,其特征在于,所述的浮动装置(4)、容纳单元(5)均为上端开口的圆筒结构,容纳单元(5)的筒径大于浮动装置(4)。
  3. 一种用于小型复杂曲面零件的浮动抛光方法,其特征在于以下步骤:
    电机向旋转轴(1)提供旋转运动,盘式弹簧联轴器(6)利用该旋转运动在旋转轴(1)上产生振动运动,配置在容纳单元(5)下方的磁体(2)通过使用离心式磁性整修机以与电机相反的旋转方向进行旋转;由上、下磁体对所产生的反向旋转运动在磁性介质(3)内产生双向旋转运动,该双向旋转运动和振动运动组合实现对吸附在旋转轴(1)底部的磁体(2)的控制、操纵,并导致存储区内的磁性介质(3)产生翻滚运动,进而使其浓度状态在两种状态间快速交替,该快速交替产生了助于翻滚机制的介质重整作用;此外,由旋转轴(1)的向下运动将浮动装置(4)向下推并在磁性介质(3)内引起压力,产生的组合翻滚动作和压力有助于磁性介质(3)执行工件所需的抛光任务;
    当上、下磁体对以平行方式排列时,产生第一类介质集中状态,此时,磁性介质(3)集中在两个上下磁体对之间;
    当上、下磁体对以垂直方式排列时,产生第二类介质集中状态,此时,磁性介质(3)集中在每个磁体(2)上。
PCT/CN2019/070010 2018-09-29 2019-01-02 一种用于小型复杂曲面零件的浮动抛光装置及方法 WO2020062701A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811156379.XA CN109249283B (zh) 2018-09-29 2018-09-29 一种用于小型复杂曲面零件的浮动抛光装置及方法
CN201811156379.X 2018-09-29

Publications (1)

Publication Number Publication Date
WO2020062701A1 true WO2020062701A1 (zh) 2020-04-02

Family

ID=65045385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070010 WO2020062701A1 (zh) 2018-09-29 2019-01-02 一种用于小型复杂曲面零件的浮动抛光装置及方法

Country Status (2)

Country Link
CN (1) CN109249283B (zh)
WO (1) WO2020062701A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111823064B (zh) * 2020-07-30 2022-04-29 吉林大学 一种针对复杂曲面内腔的磁场遥操纵涡旋抛光装置与方法
CN112658817B (zh) * 2021-01-26 2022-05-13 山东理工大学 一种基于交变磁场的复杂曲面磁场辅助光整装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584656A (ja) * 1991-09-27 1993-04-06 Matsushita Electric Ind Co Ltd 磁性流体研磨方法
WO2010095664A1 (ja) * 2009-02-17 2010-08-26 クリノ株式会社 筒状構造物の製造方法及びステント
CN203266379U (zh) * 2013-05-22 2013-11-06 浙江工业大学 一种基于永磁环的悬浮抛光装置
CN106425699A (zh) * 2016-09-22 2017-02-22 浙江师范大学 小型零件磁流变抛光机
CN107877269A (zh) * 2017-10-26 2018-04-06 广东工业大学 一种集群磁流变高效抛光加工高精度球的装置及抛光方法
CN108544305A (zh) * 2018-04-24 2018-09-18 广东工业大学 一种集群磁流变辅助v型槽高效高精度抛光陶瓷球的装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167761A (ja) * 1984-02-09 1985-08-31 Daido Steel Co Ltd 表面研磨装置
CN101537598A (zh) * 2008-03-20 2009-09-23 湖州星星研磨有限公司 一种磁力研磨机的制作方法及其磁力研磨机
CN201189626Y (zh) * 2008-05-07 2009-02-04 苏州大学 自由曲面零件柔性抛光装置
CN103273385B (zh) * 2013-06-09 2015-05-27 湖南大学 一种匀强磁场的面接触磁流变平面抛光装置及方法
CN107234494B (zh) * 2017-06-30 2024-01-16 浙江师范大学 一种磁流变浮动抛光装置与方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584656A (ja) * 1991-09-27 1993-04-06 Matsushita Electric Ind Co Ltd 磁性流体研磨方法
WO2010095664A1 (ja) * 2009-02-17 2010-08-26 クリノ株式会社 筒状構造物の製造方法及びステント
CN203266379U (zh) * 2013-05-22 2013-11-06 浙江工业大学 一种基于永磁环的悬浮抛光装置
CN106425699A (zh) * 2016-09-22 2017-02-22 浙江师范大学 小型零件磁流变抛光机
CN107877269A (zh) * 2017-10-26 2018-04-06 广东工业大学 一种集群磁流变高效抛光加工高精度球的装置及抛光方法
CN108544305A (zh) * 2018-04-24 2018-09-18 广东工业大学 一种集群磁流变辅助v型槽高效高精度抛光陶瓷球的装置

Also Published As

Publication number Publication date
CN109249283B (zh) 2019-09-27
CN109249283A (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
CN201120584Y (zh) 磁石回转式抛光机
CN103273385B (zh) 一种匀强磁场的面接触磁流变平面抛光装置及方法
WO2020062701A1 (zh) 一种用于小型复杂曲面零件的浮动抛光装置及方法
WO2017028824A1 (zh) 磁流变抛光设备的磁场发生装置
Guo et al. A novel high efficiency magnetorheological polishing process excited by Halbach array magnetic field
Jiao et al. Study of magnetic abrasive finishing in seal ring groove surface operations
Pan et al. Abrasive particles trajectory analysis and simulation of cluster magnetorheological effect plane polishing
CN107225441A (zh) 一种基于磁流变效应的集群式大平面抛光装置
KR101391810B1 (ko) Mr유체를 이용한 연마시스템
WO2006030854A1 (ja) 複雑形状体の研磨方法および研磨装置
Bai et al. Parametric investigation into accommodate-sinking effect of cluster magnetorheological effect pad
CN203680019U (zh) 一种陶瓷球的高效研磨机构
TW201014678A (en) Electromagnetic spiral polishing device and method
JP2007296598A (ja) 磁気研磨方法およびウェハ研磨装置
JP2007021661A (ja) 複雑形状体の鏡面研磨方法および鏡面研磨装置
CN204935273U (zh) 磁流变抛光设备的磁场发生装置
CN208670606U (zh) 晶体颗粒处理装置
CN112139970A (zh) 用于抛光锥孔内壁的方法
JP2010214505A (ja) 変動磁場を利用した粒子分散型混合機能性流体の形状復元力の増大方法とこれを利用した研磨装置および研磨法
CN100488727C (zh) 用于陶瓷球表面研磨的磁流体研磨装置
JPH05329766A (ja) 容器内面を磁気研磨する方法及び装置
Wu et al. Effects of particles blend ratio on surface quality in surface polishing using magnetic polishing liquid (MPL)
CN203266380U (zh) 防碰撞悬浮抛光装置
Wang et al. Experimental study on micro-deliquescence ultra-precision polishing with fine water mist for KDP crystal
CN103317430B (zh) 防碰撞悬浮抛光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867603

Country of ref document: EP

Kind code of ref document: A1