WO2020062271A1 - 一种散热探头外壳、超声探头及超声面阵探头 - Google Patents

一种散热探头外壳、超声探头及超声面阵探头 Download PDF

Info

Publication number
WO2020062271A1
WO2020062271A1 PCT/CN2018/109172 CN2018109172W WO2020062271A1 WO 2020062271 A1 WO2020062271 A1 WO 2020062271A1 CN 2018109172 W CN2018109172 W CN 2018109172W WO 2020062271 A1 WO2020062271 A1 WO 2020062271A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
layer
heat
inner layer
thermally conductive
Prior art date
Application number
PCT/CN2018/109172
Other languages
English (en)
French (fr)
Inventor
王金池
吴飞
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
深圳迈瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 深圳迈瑞科技有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2018/109172 priority Critical patent/WO2020062271A1/zh
Publication of WO2020062271A1 publication Critical patent/WO2020062271A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • the invention relates to the field of medical equipment, in particular to a heat radiation probe housing, an ultrasound probe and an ultrasound area array probe.
  • Ultrasound probe is an important component of ultrasound diagnostic imaging equipment. It needs to realize the conversion of electrical-acoustic signals during its operation. A large amount of heat will be generated during the conversion of electrical-acoustic signals. Will cause the probe temperature to rise. On the one hand, the probe's heat may affect the patient's personal safety. On the other hand, if the probe is operated at a higher temperature for a long time, it will accelerate the aging of the probe and shorten the life of the probe. Therefore, the effective heat dissipation of the probe is particularly important.
  • the current ultrasonic probe housing is made of plastic, which is not conducive to the outward diffusion of heat generated during the working process of the probe, which will cause the temperature of the probe to be too high.
  • the invention provides a heat dissipation probe housing, an ultrasonic probe and an ultrasonic area array probe to solve the problem of poor heat dissipation performance of the existing ultrasonic probe.
  • the present invention provides a heat dissipation probe housing.
  • the transducer is housed in the heat dissipation probe housing.
  • the heat dissipation probe housing includes an inner layer and an outer layer; the inner layer and the outer layer are connected as a whole and made of different materials; Higher thermal conductivity than the outer layer.
  • the invention also provides an ultrasonic probe, which comprises a transducer and a heat radiation probe housing, and the transducer is housed in the heat radiation probe housing.
  • the invention also provides an ultrasonic area array probe, which comprises a transducer and a heat radiation probe housing, and the transducer is housed in the heat radiation probe housing.
  • the heat radiation probe shell, ultrasonic probe and ultrasonic area array probe provided by the present invention have a material with a higher thermal conductivity than the material on the outer layer of the shell.
  • the outer layer of the shell spreads outward, which improves the heat dissipation performance of the probe.
  • FIG. 1 is a schematic diagram of an embodiment of an ultrasound probe
  • FIG. 2 is a partial schematic diagram of an embodiment of a heat dissipation probe housing
  • FIG. 3 is a partial schematic diagram of an embodiment of a heat dissipation probe housing.
  • this embodiment provides a heat radiation probe housing 1.
  • the transducer 5 is housed in the heat radiation probe housing 1.
  • the heat radiation probe housing 1 includes an inner layer 3 and an outer layer 2; the inner layer 3 and the outer layer 2 is connected as a whole and made of different materials.
  • the thermal conductivity of the inner layer is higher than that of the outer layer.
  • the heat dissipation probe housing 1 includes an inner layer 3 and an outer layer 2.
  • the inner layer 3 has a higher thermal conductivity than the outer layer 2, so that the conducted heat quickly diffuses inside the inner layer 3, and the inner layer 3 conducts heat to Outer layer 2 and diffuses outward through outer layer 2. Because the thermal conductivity of the inner layer 3 is higher than that of the outer layer 2, compared to the structure of the outer layer of the single-layer probe, the heat distribution area of the inner layer 3 is larger, and the area of the inner layer 3 conducting heat to the outer layer 2 is larger, making the outer layer 2 larger. The area for layer 2 to receive heat is larger, while the area for external heat dissipation is larger, and the heat dissipation efficiency is improved. At the same time, the thermal conductivity of the outer layer 2 is lower than that of the inner layer 3, so that the outer layer 2 does not heat up too fast, and when the user holds the probe, it will not be hot because the outer layer 2 temperature is too high.
  • An embodiment of a heat dissipation probe housing the outer layer 2 and the inner layer 3 are attached as a whole, and the attachment means that the outer layer 2 and the inner layer 3 are tightly combined into one body, and there is no gap in the middle. It can be integrally formed into one body or other implementations capable of achieving a close combination of the outer layer 2 and the inner layer 3.
  • the outer layer 2 and the inner layer 3 are attached as a whole. Because there is no gap between the two layers, the heat transfer efficiency of the inner layer 3 is reduced due to the air layer barrier during the heat transfer to the outer layer 2.
  • a coupling hole is provided on the outer surface of the inner layer 3
  • a protrusion is provided on the inner surface of the outer layer 2
  • the outer layer 2 is attached to the outer surface of the inner layer 3
  • the inner surface of the outer layer 2 is provided with a raised portion
  • the inner surface of the outer layer 2 is provided with a coupling hole
  • the outer layer 2 is attached to the inner layer 3 on the outer surface
  • the convex portion on the outer surface of the inner layer 3 is embedded in the coupling hole on the inner surface of the outer layer 2.
  • the convex portion may be spherical or other shapes
  • the combining hole may be circular or other shapes matching the convex portion
  • the combining hole may be a through hole or a blind hole.
  • thermoly conductive material layer has good thermal conductivity, the thermally conductive material layer can enhance the heat conduction efficiency between the coupling hole and the protrusion, so that when the heat generated by the transducer 5 is diffused outward, when the heat passes through the coupling hole and the protrusion, The combination of parts does not affect the efficiency of heat transfer.
  • thermoly conductive material layer is a flexible graphite layer.
  • the thermally conductive material layer is not limited to the flexible graphite layer, and may also be a thermally conductive layer made of other materials having a higher thermal conductivity than the materials of the inner layer 3 and the outer layer 2.
  • the outer layer 2 is made of a plastic material.
  • the outer layer 2 may also be made of other materials having a lower thermal conductivity than the inner layer 3.
  • An embodiment of a heat dissipation probe shell first manufacture a molded inner layer 3, and then manufacture a molded outer layer 2 on the basis of the inner layer 3.
  • the molded inner layer 3 can be manufactured by die casting, CNC (Computer Numerical Control Technology), 3D printing, etc.
  • the outer layer 2 can be manufactured by molding, coating, 3D printing and other techniques on the outer surface of the inner layer 3 to make the outer layer 2 of the molded shell, so that it is difficult to form an assembly gap between the inner layer 3 and the outer layer 2 and affect heat dissipation.
  • the inner layer 3 is made of a metal or graphite material.
  • the inner layer 3 may also be made of other materials having a higher thermal conductivity than the outer layer 2.
  • the heat radiation probe housing 1 further includes a heat conductive layer 4, which is connected to the inner surface of the inner layer 3.
  • Thermal Conductivity The heat-conducting layer 4 can be connected to the inner surface of the inner layer 3 by means of glue, or it can be placed on the inner surface of the inner layer 3, or installed on the inner surface of the inner layer 3 and connected to the inner surface of the inner layer 3 by other means. Connection.
  • the connection here can be a physical connection or a thermal coupling.
  • the thermally conductive layer 4 further enables the heat generated by the transducer 5 to be quickly and evenly distributed on the thermally conductive layer 4.
  • the thermally conductive layer 4 conducts heat to the inner layer 3 and conducts the heat to the inner layer 3 to the outer layer 2.
  • the thermal conductivity is higher than the thermal conductivity of the inner layer 3, so that the heat generated by the transducer 5 can be distributed more quickly and evenly on the thermal conductive layer, increasing the area for conducting heat outward, and improving the efficiency of heat dissipation.
  • thermally conductive layer 4 is a flexible graphite film.
  • the thermally conductive layer 4 may also be made of other materials having a higher thermal conductivity than the inner layer 3.
  • An embodiment of a heat dissipation probe housing wherein the wall thickness of the outer layer 2 is less than or equal to 1 mm.
  • the wall thickness of the inner layer 3 can be any value.
  • the outer layer 2 serves as a chemical-resistant layer and an insulating layer of the heat-dissipating probe housing 1, and its thermal conductivity is worse than that of the inner layer 3.
  • the smaller wall thickness facilitates the conduction of heat to the outside of the probe.
  • the wall thickness of the inner layer 3 is greater than or equal to 0.5 mm and less than or equal to 3 mm.
  • the wall thickness of the outer layer 2 may be any value.
  • the inner layer 3 has a larger wall thickness to play a structural supporting role of the heat radiation probe housing 1, and at the same time, the large wall thickness makes the heat radiation probe housing 1 lower in temperature when receiving the same heat.
  • a transducer 5 is housed in a heat radiation probe housing 1, and the heat radiation probe housing 1 includes an inner layer 3 and an outer layer 2; the inner layer 3 and the outer layer 2 are connected as a whole, And using different materials, the thermal conductivity of the inner layer is higher than that of the outer layer.
  • the transducer 5 is used for transmitting and receiving ultrasonic waves, and converting ultrasonic signals and electrical signals into each other, and generally includes (but is not limited to) a matching layer, a piezoelectric crystal, and a backing block.
  • the heat radiation probe housing 1 may also be any combination of the other heat radiation probe housing embodiments described above.
  • An embodiment of an ultrasonic probe further includes a thermally conductive sheet or a thermally conductive block, which is thermally coupled with the transducer and thermally coupled with the inner surface of the heat dissipation probe housing.
  • Thermal coupling can be either a physical connection or a case where it is not physically connected but heat can be transferred between the two components.
  • the thermally conductive sheet or thermally conductive block has good thermal conductivity, and can quickly conduct the heat generated by the transducer 5 to the heat dissipation probe housing and diffuse outward through the heat dissipation probe housing.
  • a thermally conductive sheet or a phase change material is filled between a thermally conductive sheet or block and an inner surface of a housing.
  • Thermally conductive glue or phase change material fills the gap between the thermally conductive sheet or block and the inner surface of the housing to prevent air in the gap from hindering the diffusion of heat outward.
  • the thermally conductive glue has a large thermal conductivity, and can quickly conduct the heat absorbed from the thermally conductive sheet or thermally conductive block to the inner layer of the housing, improving the heat dissipation efficiency of the probe.
  • Phase change materials are materials that are solid at normal temperature and become liquid when the temperature rises to a certain value, and have a large heat capacity.
  • the phase change material absorbs the heat conducted by the thermal block or the heat transfer sheet, and it absorbs a large amount of heat during the entire process of temperature rise and phase change, and the temperature changes slowly, and the heat is slowly transferred to the shell, which serves as a transducer.
  • an ultrasound probe includes a thermally conductive sheet (not shown in the figure), which defines a side on which a transducer emits and receives ultrasonic waves as a front surface, and a side surface adjacent to the transducer is a side surface of the transducer.
  • the sheet protrudes from the inside of the transducer and is attached to the side surface of the transducer 5.
  • the heat conducting sheet and the heat conducting layer 4 are filled with a heat conducting adhesive 6 and the heat conducting layer 4 is attached to the inner surface of the inner layer 3 and the inner layer 3 It is attached to the inner surface of the outer layer 2.
  • the heat generated by the transducer 5 is conducted through the thermally conductive sheet, and is conducted to the thermally conductive layer 4 through the thermally conductive adhesive 6, and is conducted to the inner layer 3 and the outer layer 2 through the thermally conductive layer 4, and finally diffuses outward through the outer layer 2. To the role of heat dissipation.
  • the transducer 5 is housed in a heat radiation probe housing 1, the heat radiation probe housing 1 includes an inner layer 3 and an outer layer 2; the inner layer 3 and the outer layer 2 are connected as a whole, and different Made of material, the thermal conductivity of the inner layer is higher than that of the outer layer.
  • the heat radiation probe housing 1 may also be any combination of the features of the other heat radiation probe housing embodiments described above.
  • An embodiment of the ultrasonic area array probe further includes a thermal conductive sheet or a thermal block, which is thermally coupled with the transducer and thermally coupled with the inner surface of the heat dissipation probe housing.
  • Thermal coupling can be either a physical connection or a case where it is not physically connected but heat can be transferred between the two components.
  • the thermally conductive sheet or thermally conductive block has good thermal conductivity, and can quickly conduct the heat generated by the transducer 5 to the heat dissipation probe housing and diffuse outward through the heat dissipation probe housing.
  • a thermally conductive adhesive or a phase change material is filled between a thermally conductive sheet or block and an inner surface of a housing.
  • Thermally conductive glue or phase change material fills the gap between the thermally conductive sheet or block and the inner surface of the housing to prevent air in the gap from hindering the diffusion of heat outward.
  • the thermally conductive glue has a large thermal conductivity, and can quickly conduct the heat absorbed from the thermally conductive sheet or thermally conductive block to the inner layer of the housing, improving the heat dissipation efficiency of the probe.
  • Phase change materials are materials that are solid at normal temperature and become liquid when the temperature rises to a certain value, and have a large heat capacity.
  • the phase change material absorbs the heat conducted by the thermal block or the heat transfer sheet, and it absorbs a large amount of heat during the entire process of temperature rise and phase change, and the temperature changes slowly, and the heat is slowly transferred to the shell, which serves as a transducer.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

一种散热探头外壳(1),换能器(5)收容于散热探头外壳(1)内,散热探头外壳(1)包括内层(3)和外层(2);内层(3)和外层(2)连接为一体,并且采用不同材料制成;内层(3)的导热系数高于外层(2)的导热系数。一种超声探头,包括换能器(5)和散热探头外壳(1),换能器(5)收容于散热探头外壳(1)内。一种超声面阵探头,包括换能器(5)和散热探头外壳(1),换能器(5)收容于散热探头外壳(1)内。散热探头外壳(1)、超声探头和超声面阵探头,换能器(5)产生的热量传导至外壳内层(3),能够迅速扩散并传导至外壳外层(2),通过外壳外层(2)向外散开,提高了探头的散热性能。

Description

一种散热探头外壳、超声探头及超声面阵探头 技术领域
本发明涉及医疗设备领域,具体涉及一种散热探头外壳、超声探头及超声面阵探头。
背景技术
超声探头是超声诊断成像设备的重要部件,在其工作过程中需要实现电-声信号的转换,在电-声信号的转换过程中会产生大量的热量,若产生的热量不能及时向外散出,将导致探头温度的上升。一方面探头发热可能会影响到患者的人身安全,另一方面若探头长期工作在较高的温度中,会加速探头的老化,缩短探头使用寿命。因此,探头的有效散热尤为重要。
目前的超声探头外壳采用塑料制成,不利于探头在工作过程中产生的热量向外扩散,将导致探头的温度过高。
发明内容
本发明提供一种散热探头外壳、超声探头及超声面阵探头,以解决现有超声探头散热性能差的问题。
本发明提供一种散热探头外壳,换能器收容于散热探头外壳内,散热探头外壳包括内层和外层;内层和外层连接为一体,并且采用不同材料制成;内层的导热系数高于外层的导热系数。
本发明还提供一种超声探头,包括换能器和散热探头外壳,换能器收容于所述散热探头外壳内。
本发明还提供一种超声面阵探头,包括换能器和散热探头外壳,换能器收容于所述散热探头外壳内。
本发明提供的散热探头外壳、超声探头和超声面阵探头,外壳内层材料导热系数高于外壳外层材料,换能器产生的热量传导至外壳内层,能够迅速扩散并传导至外壳外层,通过外壳外层向外散开,提高了探头的散热性能。
附图说明
图1为超声探头的一种实施例示意图;
图2为散热探头外壳的一种实施例的局部示意图;
图3为散热探头外壳的一种实施例的局部示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。此外,由于已知的功能和构造会以不必要的细节模糊描述,因此将不详细地描述他们。
请参考图1和图2,本实施例提供一种散热探头外壳1,换能器5收容于散热探头外壳1内,散热探头外壳1包括内层3和外层2;内层3和外层2连接为一体,并且采用不同材料制成,内层的导热系数高于外层的导热系数。在换能器5工作的过程中,会产生大量的热量,该热量传导至探头外壳内表面,并通过探头外壳向外散去。本实施例中散热探头外壳1包括内层3和外层2,内层3导热系数高于外层2,使得传导而来的热量快速地在内层3内部扩散,内层3将热量传导至外层2,并通过外层2向外扩散。由于内层3的导热系数较外层2高,相较于单层探头外层的结构,内层3的热量分布面积较大,内层3向外层2传导热量的面积较大,使得外层2接收热量的面积较大,同时向外散热的面积较大,散热效率提高。同时,外层2的导热系数较内层3低,使得外层2不会升温过快,在使用者握持探头的时不会因外层2温度过高而烫手。
一种散热探头外壳实施例,外层2和内层3贴附为一体,贴附指外层2和内层3紧密结合为一体,中间不存在空隙,贴附可以为粘接为一体,也可以为一体成型为一体或者其他能够达到外层2和内层3紧密结合的实现方式。外层2和内层3贴附为一体,由于两层间不存在空隙,减少了内层3热量向外层2传递的过程中由于空气层阻隔影响热传递的效率。
一种散热探头外壳实施例,内层3的外表面上设有结合孔,外层2的内表面上设有凸起部,外层2附于内层3外表面,并且外层2内表面上的凸起部嵌入内层3外表面上的结合孔;或者,内层3的外表面上设有凸起部,外层2的内表面上设有结合孔,外层2附于内层3外表面,并且内层3外表面的凸起部嵌入外层2内表面的结合孔。该凸起部可以为圆球状也可以为其他形状,该结合孔可以为圆形也可以为其他与凸起部相配合的形状,该结合孔可以为通孔也可以为盲孔。内层3和外层2通过结合孔和凸起部结合得更加 紧密且不易脱落,避免内层3和外层2间形成空隙,使得热量传导效率更高。
一种散热探头外壳实施例,结合孔的内壁和凸起部的外壁设有导热材料层,或结合孔的内壁和凸起部的外壁任一设有导热材料层。由于导热材料层具有良好的导热性能,导热材料层可以加强结合孔和凸起部间的热量传导效率,使得换能器5产生的热量向外扩散的过程中,当热量通过结合孔和凸起部的结合部分时不会影响热量传递的效率。
一种散热探头外壳实施例,导热材料层采用柔性石墨层。该导热材料层不局限于柔性石墨层,也可以为其他导热系数较内层3材料和外层2材料高的材料制成的导热层。
一种散热探头外壳实施例,外层2由塑料材料制成。外层2也可以为其他导热系数低于内层3的材料制成。
一种散热探头外壳实施例,先制造成型内层3,再在内层3的基础上制造成型外层2,制造成型内层3可以采用压铸、CNC(计算机数控技术)、3D打印等技术,外层2可以在内层3的外表面采用注塑、涂覆、3D打印工艺等技术制作成型外壳外层2,使得内层3和外层2之间不易形成装配空隙而影响散热。
一种散热探头外壳实施例,内层3由金属或石墨材料制成。内层3也可以为其他导热系数高于外层2的材料制成。
请参考图1和图3,一种散热探头外壳实施例,散热探头外壳1还包括导热层4,导热层4连接在内层3的内表面,导热层4的导热系数高于内层3的导热系数。导热层4可以通过胶粘贴的方式与内层3内表面连接,也可以放置于内层3的内表面上,或者通过其他方式安装于内层3的内表面并与内层3的内表面连接,这里的连接可以为物理连接也可以为热耦接。导热层4进一步地使得换能器5产生的热量快速地均匀分布在导热层4,通过导热层4将热量向内层3传导,并通过内层3向外层2传导,由于导热层4的导热系数高于内层3的导热系数,使得换能器5产生的热量可以更快更均匀地分布在导热层上,加大了向外传导热量的面积,提高了散热的效率。
一种散热探头外壳实施例,导热层4为柔性石墨膜。导热层4也可以为其他导热系数高于内层3的材料制成。
一种散热探头外壳实施例,外层2的壁厚小于或等于1毫米,该种实施例中,内层3的壁厚可以为任意值。外层2作为散热探头外壳1的耐化层和绝缘层,其导热性能较内层3差,较小的壁厚有利于热量向探头外的传导。
一种散热探头外壳实施例,内层3的壁厚大于或等于0.5毫米且小于或 等于3毫米,该种实施例中,外层2的壁厚可以为任意值。内层3具有较大的壁厚以起到散热探头外壳1的结构支撑作用,同时,较大的壁厚使得散热探头外壳1在接收相同热量的情况下温度升高较低。
请参考图1,一种超声探头的实施例中,换能器5收容于散热探头外壳1内,散热探头外壳1包括内层3和外层2;内层3和外层2连接为一体,并且采用不同材料制成,内层的导热系数高于外层的导热系数。换能器5用于发射和接收超声波,并将超声信号和电信号相互转化,一般包括(但不限于)匹配层、压电晶体及背衬块。其他实施例中,散热探头外壳1也可以为上述其他散热探头外壳实施例的任意组合。
一种超声探头的实施例中,还包括导热片或导热块,导热片或导热块与换能器热耦接,并与散热探头外壳内表面热耦接。热耦接可以为物理连接的情况也可以为物理上不连接但是热量可以在两个部件间传递的情况。导热片或导热块导热性能良好,可以快速地将换能器5产生的热量传导至散热探头外壳,并通过散热探头外壳向外扩散。
一种超声探头的实施例中,导热片或导热块与外壳内表面间填充有导热胶或相变材料。导热胶或相变材料填充于导热片或导热块与外壳内表面间的空隙,避免空隙中的空气阻碍热量向外扩散。导热胶具有较大的导热系数,可以快速地将从导热片或导热块吸收的热量传导至外壳内层,提高探头的散热效率。相变材料指常温下是固态,当温度上升到一定值时变成液态的材料,且具有较大热容。在相变材料吸收导热块或导热片传导而来的热量,升温并相变的整个过程中,吸收大量的热量,且温度变化缓慢,并缓慢地将热量向外壳传导,起到了给换能器散热的作用。
如图1所示,一种实施例中,超声探头包括导热片(图未示出),定义换能器发射和接收超声波一面为前表面,与其相邻的为换能器的侧表面,导热片从换能器内向外伸出,并贴附于换能器5侧表面,导热片与导热层4之间通过导热胶6填充,导热层4贴附于内层3内表面,内层3贴附于外层2的内表面。换能器5产生的热量通过导热片导出,并通过导热胶6传导至导热层4,并通过导热层4向内层3、外层2层层传导,最终通过外层2向外扩散,起到散热的作用。
一种超声面阵探头的实施例中,换能器5收容于散热探头外壳1内,散热探头外壳1包括内层3和外层2;内层3和外层2连接为一体,并且采用不同材料制成,内层的导热系数高于外层的导热系数。其他实施例中,散热探头外壳1也可以为上述其他散热探头外壳实施例特征的任意组合。
一种超声面阵探头的实施例中,还包括导热片或导热块,导热片或导热块与换能器热耦接,并与散热探头外壳内表面热耦接。热耦接可以为物理连接的情况也可以为物理上不连接但是热量可以在两个部件间传递的情况。导热片或导热块导热性能良好,可以快速地将换能器5产生的热量传导至散热探头外壳,并通过散热探头外壳向外扩散。
一种超声面阵探头的实施例中,导热片或导热块与外壳内表面间填充有导热胶或相变材料。导热胶或相变材料填充于导热片或导热块与外壳内表面间的空隙,避免空隙中的空气阻碍热量向外扩散。导热胶具有较大的导热系数,可以快速地将从导热片或导热块吸收的热量传导至外壳内层,提高探头的散热效率。相变材料指常温下是固态,当温度上升到一定值时变成液态的材料,且具有较大热容。在相变材料吸收导热块或导热片传导而来的热量,升温并相变的整个过程中,吸收大量的热量,且温度变化缓慢,并缓慢地将热量向外壳传导,起到了给换能器散热的作用。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (16)

  1. 一种散热探头外壳,换能器收容于所述散热探头外壳内,其特征在于:
    所述散热探头外壳包括内层和外层;
    所述内层和外层连接为一体,并且采用不同材料制成;
    所述内层的导热系数高于所述外层的导热系数。
  2. 如权利要求1所述的散热探头外壳,其特征在于:外层和内层贴附为一体。
  3. 如权利要求1所述的散热探头外壳,其特征在于:
    所述内层的外表面上设有结合孔;
    所述外层的内表面上设有凸起部;
    所述外层附于所述内层外表面并且所述凸起部嵌入所述结合孔;
    或者
    所述内层的外表面上设有凸起部;
    所述外层的内表面上设有结合孔;
    所述外层附于所述内层外表面并且所述凸起部嵌入所述结合孔。
  4. 如权利要求3所述的散热探头外壳,其特征在于:所述结合孔的内壁和/或所述凸起部的外壁设有导热材料层。
  5. 如权利要求4所述的散热探头外壳,其特征在于:所述导热材料层为柔性石墨层。
  6. 如权利要求1至5中任意一项所述的散热探头外壳,其特征在于:所述外层由塑料材料制成。
  7. 如权利要求1至6中任意一项所述的散热探头外壳,其特征在于:所述外层通过注塑、涂覆或3D打印成型结合到所述内层上。
  8. 如权利要求1至7中任意一项所述的散热探头外壳,其特征在于:所述内层由金属或石墨材料制成。
  9. 如权利要求1至8中任意一项所述的散热探头外壳,其特征在于:还包括导热层,所述导热层连接在所述内层的内表面;
    所述导热层的导热系数高于所述内层的导热系数。
  10. 如权利要求9所述的散热探头外壳,其特征在于:所述导热层为柔性石墨膜。
  11. 如权利要求1至10中任意一项所述的散热探头外壳,其特征在于:所述外层的壁厚小于或等于1毫米。
  12. 如权利要求1至11中任意一项所述的散热探头外壳,其特征在于:所述内层的壁厚大于或等于0.5毫米且小于或等于3毫米。
  13. 一种超声探头,其特征在于:包括换能器和权利要求1至12任一所述的散热探头外壳;
    所述换能器收容于所述散热探头外壳内。
  14. 如权利要求13所述的超声探头,其特征在于:还包括导热片或导热块;
    所述导热片或导热块与换能器热耦接,并与所述散热探头外壳内表面热耦接。
  15. 如权利要求14所述的超声探头,其特征在于:所述导热片或导热块与外壳内表面间填充有导热胶或相变材料。
  16. 一种超声面阵探头,其特征在于:包括换能器和权利要求1至12中任一所述的散热探头外壳;
    所述换能器收容于所述散热探头外壳内。
PCT/CN2018/109172 2018-09-30 2018-09-30 一种散热探头外壳、超声探头及超声面阵探头 WO2020062271A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/109172 WO2020062271A1 (zh) 2018-09-30 2018-09-30 一种散热探头外壳、超声探头及超声面阵探头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/109172 WO2020062271A1 (zh) 2018-09-30 2018-09-30 一种散热探头外壳、超声探头及超声面阵探头

Publications (1)

Publication Number Publication Date
WO2020062271A1 true WO2020062271A1 (zh) 2020-04-02

Family

ID=69949246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109172 WO2020062271A1 (zh) 2018-09-30 2018-09-30 一种散热探头外壳、超声探头及超声面阵探头

Country Status (1)

Country Link
WO (1) WO2020062271A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9186123B1 (en) * 2010-08-24 2015-11-17 Fujifilm Sonosite, Inc. Ultrasound scanners with anisotropic heat distributors for ultrasound probe
JP2016019556A (ja) * 2014-07-11 2016-02-04 日立アロカメディカル株式会社 超音波プローブ
US20160174939A1 (en) * 2014-12-19 2016-06-23 Samsung Electronics Co., Ltd. Ultrasonic probe
CN107080555A (zh) * 2016-12-28 2017-08-22 深圳开立生物医疗科技股份有限公司 一种超声探头及其外壳
CN103417244B (zh) * 2012-05-11 2018-02-16 通用电气公司 超声探头排热装置
CN207894877U (zh) * 2017-12-25 2018-09-21 海门伽玛星探伤设备有限公司 一种超声波探头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9186123B1 (en) * 2010-08-24 2015-11-17 Fujifilm Sonosite, Inc. Ultrasound scanners with anisotropic heat distributors for ultrasound probe
CN103417244B (zh) * 2012-05-11 2018-02-16 通用电气公司 超声探头排热装置
JP2016019556A (ja) * 2014-07-11 2016-02-04 日立アロカメディカル株式会社 超音波プローブ
US20160174939A1 (en) * 2014-12-19 2016-06-23 Samsung Electronics Co., Ltd. Ultrasonic probe
CN107080555A (zh) * 2016-12-28 2017-08-22 深圳开立生物医疗科技股份有限公司 一种超声探头及其外壳
CN207894877U (zh) * 2017-12-25 2018-09-21 海门伽玛星探伤设备有限公司 一种超声波探头

Similar Documents

Publication Publication Date Title
TWI309461B (en) Thermally conductive member and cooling system using the same
US5086509A (en) Thermally adaptive housing for hand held radio telephone device
KR101204369B1 (ko) 초음파 치료 도포기
US20060268517A1 (en) Housing of projection apparatus
JP6548234B2 (ja) 超音波プローブ及び超音波画像表示装置
WO2015125198A1 (ja) 温度検出装置
US20230059641A1 (en) An ultrasound probe
KR20170080096A (ko) 방열판
WO2020062271A1 (zh) 一种散热探头外壳、超声探头及超声面阵探头
JP2000232284A (ja) 電子機器筐体及びそれに用いる熱伝導パス部材
WO2018120770A1 (zh) 一种超声探头及其外壳
CN209629696U (zh) 一种散热探头外壳、超声探头及超声面阵探头
CN206402612U (zh) 一种应用于移动终端的散热结构以及移动终端
CN108093611B (zh) 智能手表的散热结构
CN216357907U (zh) 一种电子设备
CN207835616U (zh) 一种摄像头散热装置及移动终端
CN110960254A (zh) 一种散热探头外壳、超声探头及超声面阵探头
JP3912382B2 (ja) 電子機器筐体及びそれに用いる熱伝導パス部材
TWM542324U (zh) 可攜帶電子裝置之散熱塗層結構
CN220085053U (zh) 声学成像仪
WO2020062258A1 (zh) 一种超声探头
KR20200033702A (ko) 열 전도 부재
JP3152577U (ja) 通信機器ケースの放熱構造
CN219660251U (zh) 一种散热模组、触控面板及超声设备
WO2021248395A1 (zh) 具有散热结构的电子装置、散热模块及散热外壳

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18934639

Country of ref document: EP

Kind code of ref document: A1