WO2018120770A1 - 一种超声探头及其外壳 - Google Patents

一种超声探头及其外壳 Download PDF

Info

Publication number
WO2018120770A1
WO2018120770A1 PCT/CN2017/093160 CN2017093160W WO2018120770A1 WO 2018120770 A1 WO2018120770 A1 WO 2018120770A1 CN 2017093160 W CN2017093160 W CN 2017093160W WO 2018120770 A1 WO2018120770 A1 WO 2018120770A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer casing
ultrasonic probe
transducer
heat
thermal conductivity
Prior art date
Application number
PCT/CN2017/093160
Other languages
English (en)
French (fr)
Inventor
陈雄
王乐
孙强
邵敏
Original Assignee
深圳开立生物医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳开立生物医疗科技股份有限公司 filed Critical 深圳开立生物医疗科技股份有限公司
Publication of WO2018120770A1 publication Critical patent/WO2018120770A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements

Definitions

  • the present invention relates to the field of ultrasonic diagnostic equipment, and in particular to an ultrasonic probe and an outer casing thereof.
  • Ultrasonic diagnosis is a diagnostic method that applies ultrasound detection technology to the human body by measuring data and morphology of physiological or tissue structures, discovering diseases, and making prompts.
  • Ultrasound diagnosis is a non-invasive, painless, convenient and intuitive effective examination method, especially B-ultrasound, which is widely used and has great influence. It is also called four medical imaging technologies with X-ray, CT and magnetic resonance imaging.
  • Ultrasound probes are the core components of ultrasonic diagnostic equipment. Ultrasound probes generate heat during operation. FDA/CE/SFDA has clear temperature limits in the safety regulations for ultrasonic equipment. Therefore, how to ensure the effectiveness of ultrasonic probes Heat dissipation is a problem in the development and manufacture of ultrasound probes.
  • the heat-generating component of the ultrasonic probe is a piezoelectric ceramic or other piezoelectric material, such as a composite piezoelectric material, a single crystal, etc., after the piezoelectric ceramic generates heat, the heat is mainly transmitted to the heat-dissipating component on the back surface of the piezoelectric ceramic (such as a metal block or a metal piece). , backing material, etc.), part of the heat is transferred to the human body through the heat transfer.
  • the heat generated by the piezoelectric ceramic is concentrated inside the transducer, the heat dissipation area is small, and the heat cannot be effectively dissipated, so that the surface temperature of the probe and the human body contact area is high, which is lowered. Human comfort.
  • an object of the present invention to provide an outer casing of an ultrasonic probe capable of effectively dissipating heat, and another object of the present invention is to provide an ultrasonic probe including the above casing.
  • the present invention provides the following technical solutions:
  • the outer casing is made of a metal, aluminum oxide, silicon oxide, zinc oxide, aluminum nitride, boron nitride, silicon carbide, graphite or silicon monomer.
  • the outer casing is made of a composite of metal, aluminum oxide, silicon oxide, zinc oxide, aluminum nitride, boron nitride, silicon carbide, graphite or silicon.
  • the outer casing is made of a composite material made of metal, alumina, silica, zinc oxide, aluminum nitride, boron nitride, silicon carbide, graphite or silicon.
  • An ultrasound probe includes a transducer and an outer casing as described above.
  • a heat conducting block is disposed between the transducer and the outer casing, and the thermal conductivity of the heat conducting block is greater than a thermal conductivity of the outer casing.
  • the thermal conductive block has a thermal conductivity greater than 150 W/m ⁇ K.
  • the material of the heat conducting block is metal.
  • the transducer is connected with a controller assembly located inside the casing, and the controller component and the casing are filled with a thermal paste.
  • the thermal conductivity of the thermal conductive adhesive is greater than the thermal conductivity of the outer casing.
  • the housing of the ultrasonic probe provided by the present invention may include a head housing portion surrounding the transducer of the ultrasound probe, and a grip portion as a human hand or other device.
  • the piezoelectric crystal of the transducer When the ultrasonic probe is working, the piezoelectric crystal of the transducer generates heat, and the heat is transferred to the outer casing through the backing material or other heat dissipating components, and finally the outer casing dissipates heat to the outside air.
  • the outer casing material in the present invention may be a single material or a composite material, and the thermal conductivity of the outer casing material is greater than 10 W/m ⁇ K.
  • the invention can achieve sufficient contact between the outer casing and the outside air through a large surface area of the outer casing, thereby The heat generated by the transducer is quickly dissipated into the outside air, thereby effectively solving the problem that the heat of the piezoelectric crystal is concentrated in the transducer, the heat dissipation area is small, and the heat is not smoothly distributed, thereby greatly reducing the probe and the human body.
  • the surface temperature of the contact area improves the comfort of the human body.
  • the present invention also provides an ultrasound probe that includes a transducer and an outer casing as described above.
  • the derivation process of the beneficial effects produced by the ultrasonic probe is substantially similar to the derivation process of the beneficial effects brought by the above-mentioned outer casing, and thus will not be described herein.
  • FIG. 1 is a schematic view showing the internal structure of an ultrasonic probe in a specific embodiment of the present invention.
  • the core of the present invention is to provide an outer casing of an ultrasonic probe capable of effectively dissipating heat.
  • FIG. 1 is a schematic diagram showing the internal structure of an ultrasonic probe according to an embodiment of the present invention.
  • the present invention provides an outer casing 1 of an ultrasonic probe having a thermal conductivity greater than 10 W/m ⁇ K (Watt/m ⁇ Kelvin scale).
  • the outer casing 1 of the ultrasonic probe provided by the present invention may include a head housing portion surrounding the ultrasonic probe transducer 5, and a grip portion as a human hand or other device.
  • the piezoelectric crystal 4 of the transducer 5 When the ultrasonic probe is operated, the piezoelectric crystal 4 of the transducer 5 generates heat, and heat is transferred to the outer casing 1 through the backing material 6 or other heat dissipating members, and finally the outer casing 1 dissipates heat to the outside air.
  • the outer casing material in the present invention may be a single material or a composite material, and the thermal conductivity of the outer casing material is greater than 10 W/m ⁇ K. The invention can achieve sufficient contact between the outer casing 1 and the outside air through the large surface area of the outer casing 1.
  • the heat generated by the transducer 5 can be quickly dissipated into the outside air, thereby effectively solving the problem that the heat of the piezoelectric crystal 4 is concentrated in the transducer 5, the heat dissipation area is small, and the heat is not smoothly circulated, and thus greatly The surface temperature of the probe in contact with the human body is lowered, and the comfort of the human body is improved.
  • the present invention adopts a material having a thermal conductivity greater than 10 W/m ⁇ K to fabricate the outer casing 1.
  • the outer casing 1 is made of metal, alumina, silica, zinc oxide, and nitrogen.
  • the outer casing 1 is made of a composite of metal, aluminum oxide, silicon oxide, zinc oxide, aluminum nitride, boron nitride, silicon carbide, graphite or silicon.
  • the outer casing 1 is made of a composite material made of metal, alumina, silica, zinc oxide, aluminum nitride, boron nitride, silicon carbide, graphite or silicon.
  • thermal conductivity of the outer casing 1 can be a value suitable for rapid heat dissipation according to different specifications and different powers of the transducer 5, and will not be described herein.
  • the wall thickness of the outer casing 1 in the present embodiment is designed to be less than 3 mm, and further preferably, The wall thickness of the outer casing 1 can be designed to be less than 0.6 mm.
  • the heat transfer path can be further reduced, thereby further enhancing the heat conduction efficiency and giving full play to the excellent heat dissipation effect of the outer casing 1.
  • the present invention also provides an ultrasonic probe comprising a housing 1 and a transducer 5, the housing 1 being internally provided with a cavity, and the transducer 5 being located within the cavity of the housing 1.
  • the outer casing 1 is the outer casing 1 as described above.
  • the derivation process of the beneficial effects produced by the ultrasonic probe is substantially similar to the derivation process of the beneficial effects brought by the above-mentioned outer casing, and thus will not be described herein.
  • FIG. 1 is a schematic diagram showing the internal structure of an ultrasonic probe according to an embodiment of the present invention.
  • the ultrasonic probe provided by the present solution specifically includes a housing 1, a transducer 5, a backing material 6, a controller assembly 7, and the like.
  • the piezoelectric crystal 4 is disposed on the transducer 5, and the piezoelectric crystal 4 generates vibration or sound waves when the current is turned on, and at the same time, the piezoelectric crystal 4 generates a current when subjected to the feedback vibration or sound wave.
  • the piezoelectric crystal 4 It can be used to send and receive sound waves.
  • the nose of the end of the housing 1 is provided with a sound-permeable window 3 opposite to the piezoelectric crystal 4 for concentrated emission of ultrasonic waves.
  • the transducer 5 is specifically located in a mounting cavity formed by the nose of the front end of the housing 1.
  • a heat conducting block 2 is disposed between the transducer 5 and the outer casing 1, and the thermal conductivity of the heat conducting block 2 is greater than the thermal conductivity of the outer casing 1.
  • the transducer 5 is in direct contact with the heat conducting block 2, and the nose of the outer casing 1 is in direct contact with the outer surface of the heat conducting block 2.
  • the heat conducting block 2 is in direct contact with the transducer 5 and the outer casing 1 so that the transducer 5 The heat generated can spread more evenly and continuously.
  • the thermal conductivity of the thermal block 2 is greater than 150 W/m ⁇ K, which further improves the heat dissipation efficiency.
  • the material of the heat conducting block 2 is metal, such as copper, aluminum, silver, nickel, iron, gold, tungsten, copper alloy, nickel alloy, aluminum alloy or other metal or alloy with higher thermal conductivity, which will not be described herein.
  • the heat conducting block 2 covers the outer circumference of the transducer 5, and the outer casing 1 will surround the outer periphery of the heat conducting block 2. Covering, such that the heat conducting block 2 fills the gap between the transducer 5 and the outer casing 1, and the outer casing 1 is provided with an inner wall structure that completely cooperates with the outer portion of the heat conducting block 2, so that the transducer can be made
  • the heat emitted by the 5 is conducted to the outer casing 1 from various directions and angles, further improving the heat dissipation efficiency.
  • the main body of the outer casing 1 includes a tubular structure extending rearward from the nose of the front end.
  • the cavity in the outer casing 1 not only houses the transducer 5 but also a controller assembly 7 connected to the transducer 5.
  • the controller component 7 can be disposed on the PCB circuit board, and the controller component 7 can realize the communication connection with the external display or the analysis system through cable or wireless communication; The heat that supports the transducer 5 and the conductive transducer 5.
  • the controller assembly 7 also generates heat during operation.
  • the present solution is further filled with a thermal conductive adhesive 8 between the controller assembly 7 and the outer casing 1, as shown in FIG.
  • the internal temperature of the ultrasonic probe can be further reduced, thereby ensuring that the ultrasonic probe has more ultrasonic energy to be guided into the human tissue to obtain enhanced imaging performance.
  • the thermal conductivity of the thermal conductive adhesive 8 is also designed to be greater than the thermal conductivity of the outer casing 1.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

一种超声探头的外壳(1)以及包括上述外壳(1)的超声探头,其中外壳材料的导热系数大于10W/m·K,通过外壳较大的表面积可实现外壳与外界空气的充分接触,可以将换能器(5)产生的热量快速地散发到外界空气中,从而有效解决以往压电晶体(4)的热量聚集在换能器内部,散热面积小以及热量流通不畅等问题,进而降低了探头与人体接触区域的表面温度,提高了人体的舒适度。

Description

一种超声探头及其外壳
本申请要求于2016年12月28日提交中国专利局、申请号为201611236242.6、发明名称为“一种超声探头及其外壳”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及超声波诊断设备技术领域,尤其涉及一种超声探头及其外壳。
背景技术
超声诊断(ultrasonic diagnosis)是将超声检测技术应用于人体,通过测量了解生理或组织结构的数据和形态,发现疾病,作出提示的一种诊断方法。超声诊断是一种无创、无痛、方便、直观的有效检查手段,尤其是B超,应用广泛,影响很大,与X射线、CT、磁共振成像并称为四大医学影像技术。超声探头是超声诊断设备的核心部件,超声探头在工作过程中会产生热量,FDA/CE/SFDA在对超声设备的安全性法规中都有明确的温度限制规定,因此,如何保证超声探头的有效散热是研发和制造超声探头的一个难题。
超声探头的发热部件是压电陶瓷或其他压电材料,如复合压电材料、单晶等,压电陶瓷产生热量后,热量主要传递到压电陶瓷背面的散热部件(如金属块、金属片、背材等),部分热量通过和人体接触部分进行热传递。
现有的超声探头由于结构设计的缺陷,导致压电陶瓷产生的热量聚集在换能器内部,散热面积小,热量不能得到有效散失,以至于探头与人体接触区域的表面温度较高,降低了人体的舒适度。
因此,如何有效提高超声探头的散热效率,是本领域技术人员目前亟待解决的技术问题。
发明内容
有鉴于此,本发明的目的在于提供一种能够有效散热的超声探头的外壳,本发明的另一个目的是提供一种包括上述外壳的超声探头。
为了实现上述目的,本发明提供了如下技术方案:
一种超声探头的外壳,所述外壳的导热系数大于10W/m·K。
优选地,所述外壳的材质为金属、氧化铝、氧化硅、氧化锌、氮化铝、氮化硼、碳化硅、石墨或硅的单体。
优选地,所述外壳的材质为金属、氧化铝、氧化硅、氧化锌、氮化铝、氮化硼、碳化硅、石墨或硅的复合物。
优选地,所述外壳的材质为以金属、氧化铝、氧化硅、氧化锌、氮化铝、氮化硼、碳化硅、石墨或硅做填料的复合材料。
一种超声探头,包括换能器以及如上所述的外壳。
优选地,在上述超声探头中,所述换能器与所述外壳之间设置有导热块,所述导热块的导热系数大于所述外壳的导热系数。
优选地,在上述超声探头中,所述导热块的导热系数大于150W/m·K。
优选地,在上述超声探头中,所述导热块的材质为金属。
优选地,在上述超声探头中,所述换能器连接有位于所述外壳内部的控制器组件,所述控制器组件与所述外壳之间填充有导热胶。
优选地,在上述超声探头中,所述导热胶的导热系数大于所述外壳的导热系数。
本发明提供的超声探头的外壳,可以包括围在超声探头换能器周围的声头壳体部分,和作为人手或其他设备的握持部分。当超声探头工作时,换能器的压电晶体产生热量,热量通过背材或其他散热部件传递到外壳,最终由外壳向外界空气散热。本发明中的外壳材料可以是单一材料,也可以是复合材料,并且外壳材料的导热系数大于10W/m·K,本发明通过外壳较大的表面积可实现外壳与外界空气的充分接触,从而可以将换能器产生的热量快速地散发到外界空气中,从而有效解决以往压电晶体的热量聚集在换能器内部,散热面积小以及热量流通不畅等问题,进而极大地降低了探头与人体接触区域的表面温度,提高了人体的舒适度。
本发明还提供了一种超声探头,该超声探头包括换能器以及如上所述的外壳。该超声探头产生的有益效果的推导过程与上述外壳带来的有益效果的推导过程大体类似,故本文不再赘述。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明具体实施例中的超声探头的内部结构示意图。
图1中:
1-外壳、2-导热块、3-透声窗、4-压电晶体、5-换能器、6-背材、7-控制器组件、8-导热胶。
具体实施方式
本发明的核心在于提供一种能够有效散热的超声探头的外壳。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参照图1,图1为本发明具体实施例中的超声探头的内部结构示意图。
在一种具体实施例方案中,本发明提供了一种超声探头的外壳1,外壳1的导热系数大于10W/m·K(瓦/米·开氏温标)。
本发明提供的超声探头的外壳1,可以包括围在超声探头换能器5周围的声头壳体部分,和作为人手或其他设备的握持部分。当超声探头工作时,换能器5的压电晶体4产生热量,热量通过背材6或其他散热部件传递到外壳1,最终由外壳1向外界空气散热。本发明中的外壳材料可以是单一材料,也可以是复合材料,并且外壳材料的导热系数大于10W/m·K,本发明通过外壳1较大的表面积可实现外壳1与外界空气的充分接触,从而可以将换能器5产生的热量快速地散发到外界空气中,从而有效解决以往压电晶体4的热量聚集在换能器5内部,散热面积小以及热量流通不畅等问题,进而极大地降低了探头与人体接触区域的表面温度,提高了人体的舒适度。
需要说明的是,本方案采用了导热系数大于10W/m·K的材料来制作外壳1,在一种优选实施例方案中,外壳1的材质为金属、氧化铝、氧化硅、氧化锌、氮化铝、氮化硼、碳化硅、石墨或硅的单体。
在另一种优选实施例方案中,外壳1的材质为为金属、氧化铝、氧化硅、氧化锌、氮化铝、氮化硼、碳化硅、石墨或硅的复合物。
在另一种优选实施例方案中,外壳1的材质为以金属、氧化铝、氧化硅、氧化锌、氮化铝、氮化硼、碳化硅、石墨或硅做填料的复合材料。
当然,本领域技术人员还可以采用除上述材料外的其他导热系数大于10W/m·K的金属、非金属或复合材料等。本领域技术人员根据换能器5的不同规格和不同功率,可以将外壳1的导热系数设计为适于快速散热的值,本文不再赘述。
需要说明的是,本领域技术人员可以根据外壳1所采用的不同材质,来具体设定外壳1的壁厚,优选地,本方案中的外壳1的壁厚设计为小于3mm,进一步优选地,外壳1的壁厚可设计为小于0.6mm。如此设置,可以进一步减小传热路径,从而进一步增强导热效率,充分发挥外壳1的优异的散热作用。
本发明还提供了一种超声探头,该超声探头包括外壳1和换能器5,外壳1内部设有腔体,换能器5位于外壳1的腔体内。该外壳1即为如上所述的外壳1。该超声探头产生的有益效果的推导过程与上述外壳带来的有益效果的推导过程大体类似,故本文不再赘述。
请参照图1,图1为本发明具体实施例中的超声探头的内部结构示意图。本方案提供的超声探头具体包括外壳1、换能器5、背材6、控制器组件7等部件。压电晶体4设置于换能器5,压电晶体4在接通电流时可产生振动或声波,同时,压电晶体4受到反馈的振动或声波时也会产生电流,如此,压电晶体4便可以用来发送和接收声波。壳体1末端的鼻部设置有与压电晶体4相对的透声窗3,用于集中发射超声波。换能器5具体位于壳体1前端的鼻部组成的安装腔体中。
优选地,换能器5与外壳1之间设置有导热块2,导热块2的导热系数大于外壳1的导热系数。具体的,换能器5与导热块2直接接触,外壳1的鼻部与导热块2的外表面直接接触。如此设置,通过在换能器5与外壳1之间设置导热系数更大的导热块2,可以进一步提高散热效率,且导热块2与换能器5和外壳1均直接接触,使得换能器5产生的热量可以更加均匀、连续地扩散。
优选地,上述导热块2的导热系数大于150W/m·K,如此可进一步提高散热效率。优选地,导热块2的材质为金属,例如铜、铝、银、镍、铁、金、钨、铜合金、镍合金、铝合金或其他导热系数较高的金属或合金,本文不再赘述。
优选地,导热块2将换能器5的外周进行包覆,外壳1将导热块2的外周 进行包覆,如此设置,导热块2就将换能器5与外壳1之间的空隙填充满,外壳1则设有与导热块2外部完全配合的内壁结构,如此设置,可以使换能器5发出的热量从各个方向及角度向外壳1传导,进一步提高了散热效率。
需要说明的是,外壳1的主体包括从前端鼻部向后延伸的管状结构,外壳1内的腔体不仅容纳有换能器5,而且还有与换能器5相连接的控制器组件7、背材6等结构,具体的,控制器组件7可设置在PCB电路板上,控制器组件7可通过线缆或无线的通讯方式实现与外部显示器或分析系统的通讯连接;背材6用于支撑换能器5以及传导换能器5的热量。
控制器组件7在工作过程中也会发热,优选地,本方案在控制器组件7与外壳1之间还填充有导热胶8,如图1所示。如此设置,可以进一步降低该超声探头的内部温度,从而可以保证超声探头具有更多的超声能量引导到人体组织中,以获得增强的成像性能。
优选地,上述导热胶8的导热系数也设计为大于外壳1的导热系数。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种超声探头的外壳,其特征在于,所述外壳(1)的导热系数大于10W/m·K。
  2. 根据权利要求1所述的外壳,其特征在于,所述外壳(1)的材质为金属、氧化铝、氧化硅、氧化锌、氮化铝、氮化硼、碳化硅、石墨或硅的单体。
  3. 根据权利要求1所述的外壳,其特征在于,所述外壳(1)的材质为金属、氧化铝、氧化硅、氧化锌、氮化铝、氮化硼、碳化硅、石墨或硅的复合物。
  4. 根据权利要求1所述的外壳,其特征在于,所述外壳(1)的材质为以金属、氧化铝、氧化硅、氧化锌、氮化铝、氮化硼、碳化硅、石墨或硅做填料的复合材料。
  5. 一种超声探头,包括换能器(5),其特征在于,还包括如权利要求1至4中任一项所述的外壳。
  6. 根据权利要求5所述的超声探头,其特征在于,所述换能器(5)与所述外壳(1)之间设置有导热块(2),所述导热块(2)的导热系数大于所述外壳(1)的导热系数。
  7. 根据权利要求6所述的超声探头,其特征在于,所述导热块(2)的导热系数大于150W/m·K。
  8. 根据权利要求6所述的超声探头,其特征在于,所述导热块(2)的材质为金属。
  9. 根据权利要求5所述的超声探头,其特征在于,所述换能器(5)连接有位于所述外壳(1)内部的控制器组件(7),所述控制器组件(7)与所述外壳(1)之间填充有导热胶(8)。
  10. 根据权利要求9所述的超声探头,其特征在于,所述导热胶(8)的导热系数大于所述外壳(1)的导热系数。
PCT/CN2017/093160 2016-12-28 2017-07-17 一种超声探头及其外壳 WO2018120770A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611236242.6A CN107080555A (zh) 2016-12-28 2016-12-28 一种超声探头及其外壳
CN201611236242.6 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018120770A1 true WO2018120770A1 (zh) 2018-07-05

Family

ID=59615193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093160 WO2018120770A1 (zh) 2016-12-28 2017-07-17 一种超声探头及其外壳

Country Status (2)

Country Link
CN (1) CN107080555A (zh)
WO (1) WO2018120770A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11737736B2 (en) 2021-06-11 2023-08-29 GE Precision Healthcare LLC Ultrasound imaging probe with improved heat dissipation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020062271A1 (zh) * 2018-09-30 2020-04-02 深圳迈瑞生物医疗电子股份有限公司 一种散热探头外壳、超声探头及超声面阵探头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101166472A (zh) * 2005-04-25 2008-04-23 皇家飞利浦电子股份有限公司 具有改进的热管理的超声波换能器组件
CN101325241A (zh) * 2007-06-12 2008-12-17 富士胶片株式会社 复合压电材料、超声波探头、超声波内窥镜和超声波诊断设备
CN101396289A (zh) * 2007-09-28 2009-04-01 富士胶片株式会社 超声波内窥镜
CN102525557A (zh) * 2010-12-08 2012-07-04 富士胶片株式会社 超声波探头
CN103417244A (zh) * 2012-05-11 2013-12-04 通用电气公司 超声探头排热装置
US20150253290A1 (en) * 2012-11-19 2015-09-10 Konica Minolta, Inc. Ultrasound probe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101166472A (zh) * 2005-04-25 2008-04-23 皇家飞利浦电子股份有限公司 具有改进的热管理的超声波换能器组件
CN101325241A (zh) * 2007-06-12 2008-12-17 富士胶片株式会社 复合压电材料、超声波探头、超声波内窥镜和超声波诊断设备
CN101396289A (zh) * 2007-09-28 2009-04-01 富士胶片株式会社 超声波内窥镜
CN102525557A (zh) * 2010-12-08 2012-07-04 富士胶片株式会社 超声波探头
CN103417244A (zh) * 2012-05-11 2013-12-04 通用电气公司 超声探头排热装置
US20150253290A1 (en) * 2012-11-19 2015-09-10 Konica Minolta, Inc. Ultrasound probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11737736B2 (en) 2021-06-11 2023-08-29 GE Precision Healthcare LLC Ultrasound imaging probe with improved heat dissipation

Also Published As

Publication number Publication date
CN107080555A (zh) 2017-08-22

Similar Documents

Publication Publication Date Title
JP2011507641A (ja) 超音波治療アプリケータ
US20230107276A1 (en) Systems and methods for cooling ultrasound transducers
US20080188755A1 (en) Ultrasound Transducer Assembly Having Improved Thermal Management
KR101018626B1 (ko) 히트 싱크를 가지는 초음파 프로브
US20210137502A1 (en) Systems and methods of dissipating heat from a handheld medical imaging device
WO2018120770A1 (zh) 一种超声探头及其外壳
KR20150025066A (ko) 초음파 프로브 및 그 제조 방법
EP3773227B1 (en) Thermally-conductive material layer and internal structure for ultrasound imaging probe
JP2021100587A (ja) 超音波トランスデューサの熱管理のためのシステム、方法、及び装置
JP2019015628A (ja) 放射線撮影装置
JP2008142221A (ja) 超音波診断装置およびその超音波プローブ
CN105688338A (zh) 一种反馈式医用装置
JP2006158483A (ja) 超音波探触子
CN209332093U (zh) 一种超声探头
KR101804458B1 (ko) 초음파 프로브 및 이의 제조방법
CN110960252A (zh) 一种超声探头
CN109124548A (zh) 具备良好热处理的电子内窥镜
CN213551906U (zh) 一种便携式掌上超声诊断设备
CN211798320U (zh) 一种超声诊疗系统
JPH04250145A (ja) 超音波プローブ
WO2020077637A1 (zh) 一种超声探头、超声探头电缆线和面阵超声探头
CN111110280A (zh) 一种超声诊疗系统
CN219306918U (zh) 脱毛仪散热机构及激光脱毛仪
JP2005013461A (ja) 超音波探触子
CN219306920U (zh) 散热机构及激光脱毛仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17885455

Country of ref document: EP

Kind code of ref document: A1