WO2020061844A1 - 信号发送方法、信号接收方法及装置 - Google Patents

信号发送方法、信号接收方法及装置 Download PDF

Info

Publication number
WO2020061844A1
WO2020061844A1 PCT/CN2018/107718 CN2018107718W WO2020061844A1 WO 2020061844 A1 WO2020061844 A1 WO 2020061844A1 CN 2018107718 W CN2018107718 W CN 2018107718W WO 2020061844 A1 WO2020061844 A1 WO 2020061844A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
beam failure
failure recovery
uplink signal
signaling
Prior art date
Application number
PCT/CN2018/107718
Other languages
English (en)
French (fr)
Inventor
陈哲
宋磊
张磊
王昕�
Original Assignee
富士通株式会社
陈哲
宋磊
张磊
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 陈哲, 宋磊, 张磊, 王昕� filed Critical 富士通株式会社
Priority to CN201880096972.1A priority Critical patent/CN112640568B/zh
Priority to KR1020217005844A priority patent/KR20210036385A/ko
Priority to PCT/CN2018/107718 priority patent/WO2020061844A1/zh
Priority to EP18935975.5A priority patent/EP3860295B1/en
Priority to JP2021510183A priority patent/JP7408633B2/ja
Publication of WO2020061844A1 publication Critical patent/WO2020061844A1/zh
Priority to US17/183,723 priority patent/US11843437B2/en
Priority to US18/385,928 priority patent/US20240080081A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present invention relates to the field of communications, and in particular, to a signal sending method, a signal receiving method, and a device.
  • BFR Beam failure recovery
  • Beam failure recovery technology is very effective not only in single-carrier scenarios, but also in multi-carrier scenarios.
  • a terminal equipment TE, Terminal, Equipment
  • a network device such as a base station
  • multiple network devices such as a base station
  • different carriers of a terminal device are connected to network devices in different directions at the same time, because the spatial directions are relatively independent, at a certain moment, only a part of the connections on the different carriers may have beam failures.
  • it is necessary for the beam failure recovery technology to be optimized for such a scenario for example, using a carrier on which no beam failure has occurred to perform parameter measurement, data transmission, etc., thereby improving the robustness of the system.
  • the spatial transmission filter Spatial Domain Transmission Filter
  • the spatial transmission filter used for uplink transmission is still configured before the beam failure recovery. Due to the mutually different nature of uplink and downlink transmissions, when a beam failure occurs on the downlink channel, the corresponding uplink channel also has a high probability of failure. This means that it is unreliable for the terminal device to send uplink signals according to the original spatial configuration.
  • Embodiments of the present invention provide a signal sending method, a signal receiving method, and a device.
  • a terminal device receives a downlink signal related to beam failure recovery for a period of time and before receiving or applying activation signaling or reconfiguration signaling.
  • the same spatial transmission filter as the spatial transmission filter used to transmit uplink signals related to beam failure recovery or receive downlink reference signals is used to send uplink signals in the first cell, thereby providing a terminal device in the beam
  • the solution of sending an uplink signal using an airspace transmission filter after a successful recovery of the failure improves the reliability of the uplink signal sent by the terminal device.
  • the solution has a wide applicability, and it is not only applicable to a scenario where a beam failure occurs in a special cell (SpCell, Special Cell), but also a scenario where a beam failure occurs in a secondary cell (SCell, Secondary Cell).
  • SpCell special Cell
  • SCell secondary Cell
  • the solution can correctly indicate the airspace transmission filter used by the uplink signal of the first cell, and avoid incorrectly indicating other cells (not the first cell). Spatial transmission filter used for uplink signal of cell).
  • this solution also precisely specifies the starting point of the period of time, and avoids unnecessary sending and receiving errors caused by the inconsistent understanding of the terminal device and the network device over the period of time.
  • a signal transmitting apparatus includes: a transmitting unit configured to receive a downlink signal related to beam failure recovery after a period of time, and after receiving or applying Before activating signaling or reconfiguration signaling, use the same spatial transmission filter as the spatial transmission filter used to send uplink signals related to beam failure recovery or receive downlink reference signals to send uplink signals in the first cell.
  • a signal receiving device includes: a receiving unit configured to send a downlink signal related to beam failure recovery after a period of time, and send an activation signal Before enabling or reconfiguration signaling or the activation signaling or reconfiguration signaling to take effect, receive the uplink signal in the first cell according to the spatial information related to receiving the uplink signal related to beam failure recovery or sending the downlink reference signal.
  • a terminal device is provided, and the terminal device includes the apparatus according to the first aspect of the embodiments of the present invention.
  • a network device is provided, and the network device includes the apparatus according to the second aspect of the embodiments of the present invention.
  • a communication system including the terminal device according to the third aspect of the embodiments of the present invention and the network device according to the fourth aspect of the embodiments of the present invention. .
  • a signal transmission method includes: after receiving a downlink signal related to beam failure recovery for a period of time, and after receiving or applying activation signaling or Prior to reconfiguration signaling, an uplink signal in the first cell is sent using the same spatial transmission filter as the spatial transmission filter used to transmit uplink signals related to beam failure recovery or to receive downlink reference signals.
  • a signal receiving method includes: after a period of time after a network device sends a downlink signal related to beam failure recovery, and after sending activation signaling or reconfiguration Before the signaling or the activation signaling or the reconfiguration signaling takes effect, the uplink signal in the first cell is received according to the spatial information related to receiving the uplink signal related to the failure recovery of the beam or sending the downlink reference signal.
  • a computer-readable program wherein when the program is executed in a signal transmitting device or terminal device, the program causes the signal transmitting device or terminal device to perform the implementation of the present invention
  • the signal transmission method according to the sixth aspect of the example is provided.
  • a storage medium storing a computer-readable program, wherein the computer-readable program causes the signal transmitting apparatus or terminal device to execute the sixth aspect of the embodiment of the present invention. Signalling method.
  • a computer-readable program wherein when the program is executed in a signal receiving device or a network device, the program causes the signal receiving device or the network device to perform the implementation of the invention.
  • a storage medium storing a computer-readable program, wherein the computer-readable program causes the signal receiving apparatus or a network device to execute the seventh aspect of the embodiment of the present invention.
  • the beneficial effect of the present invention is that the terminal device uses and sends a beam failure after receiving a downlink signal related to beam failure recovery for a period of time and within a time interval before receiving or applying activation signaling or reconfiguration signaling. Recover the relevant uplink signal or receive the airspace transmission filter of the downlink reference signal. The same airspace transmission filter sends the uplink signal in the first cell, thereby providing a terminal device to use the airspace transmission filter to send after the beam fails to recover successfully.
  • the solution of the uplink signal improves the reliability of the uplink signal sent by the terminal equipment. In addition, this solution has a wide applicability, and it is not only applicable to the scenario where a beam failure occurs in the SpCell, but also applicable to the scenario where a beam failure occurs in a secondary cell (SCell, Secondary Cell).
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a signal sending method according to Embodiment 1 of the present invention.
  • FIG. 3 is another schematic diagram of a signal sending method according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic timing diagram of sending and receiving signals in Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of a signal receiving method according to Embodiment 2 of the present invention.
  • FIG. 6 is another schematic diagram of a signal receiving method according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram of a signal sending method according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic diagram of a signal transmitting apparatus according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic diagram of a signal receiving apparatus according to Embodiment 5 of the present invention.
  • FIG. 10 is a schematic block diagram of a system configuration of a terminal device according to Embodiment 6 of the present invention.
  • FIG. 11 is a schematic structural diagram of a network device according to Embodiment 7 of the present invention.
  • first and second are used to distinguish different elements from each other by title, but they do not indicate the spatial arrangement or chronological order of these elements, and these elements should not be used by these terms. Restricted.
  • the term “and / or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having” and the like refer to the presence of stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • multiple or “multiple” means at least two or at least two.
  • the term “communication network” or “wireless communication network” may refer to a network that conforms to any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Enhanced Long Term Evolution (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), and so on.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-A Long Term Evolution-A
  • LTE- Advanced Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • communication between devices in a communication system may be performed according to a communication protocol at any stage, for example, it may include but is not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G, and future 5G, New Radio (NR, New Radio), etc., and / or other communication protocols currently known or to be developed in the future.
  • 1G generation
  • 2G 2.5G, 2.75G
  • 5G New Radio
  • NR, New Radio New Radio
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services to the terminal device.
  • Network devices may include, but are not limited to, the following devices: Base Station (BS, Base Station), Access Point (AP, Access Point), Transmission and Reception Point (TRP, Transmission, Reception Point), Broadcast Transmitter, Mobile Management Entity (MME, Mobile Management entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), and so on.
  • BS Base Station
  • AP Access Point
  • TRP Transmission and Reception Point
  • Broadcast Transmitter Mobile Management Entity
  • MME Mobile Management Entity
  • gateway server
  • RNC Radio Network Controller
  • BSC Base Station Controller
  • the base station may include, but is not limited to, Node B (NodeB or NB), evolved Node B (eNodeB or eNB), 5G base station (gNB), and so on. In addition, it may also include a remote radio head (RRH, Remote Radio Head). , Remote wireless unit (RRU, Remote Radio Unit), antenna, relay (relay) or low-power node (such as femto, pico, etc.). And the term “base station” may include some or all of their functions, and each base station may provide communication coverage for a particular geographic area.
  • the term "cell” may refer to a base station and / or its coverage area, depending on the context in which the term is used.
  • the term “User Equipment” (UE) or “Terminal Equipment” (TE) refers to, for example, a device that accesses a communication network through a network device and receives network services.
  • the terminal device may be fixed or mobile, and may also be called a mobile station (MS, Mobile Station), a terminal, a subscriber station (SS, Subscriber Station), an access terminal (AT, Access Terminal), a station, and so on.
  • the terminal device may include, but is not limited to, the following devices: Cellular Phone, Personal Digital Assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication device, handheld device, machine-type communication device, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • PDA Personal Digital Assistant
  • wireless modem wireless communication device
  • handheld device machine-type communication device
  • laptop computer machine-type communication device
  • Cordless phones smartphones, smart watches, digital cameras, and more.
  • the terminal device may also be a machine or device that performs monitoring or measurement.
  • the terminal device may include, but is not limited to, a Machine Type Communication (MTC) terminal, Vehicle communication terminals, device-to-device (D2D) terminals, machine-to-machine (M2M) terminals, and so on.
  • MTC Machine Type Communication
  • D2D device-to-device
  • M2M machine-to-machine
  • the cell may be a serving cell or a carrier corresponding to the cell, or the cell may be understood as one-to-one correspondence with the carrier.
  • a special cell refers to a primary cell (Pcell, Primary Cell) and a secondary cell group (Master cell) in a master cell group (MCG).
  • PSCell Primary, Secondary, Cell
  • SCG Secondary Cell
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention, and schematically illustrates a case where a terminal device and a network device are taken as an example.
  • the communication system 100 may include a network device 101 and a terminal device 102.
  • FIG. 1 uses only one terminal device as an example for description, but the embodiment of the present invention is not limited to one terminal device.
  • an existing service or a service that can be implemented in the future can be performed between the network device 101 and the terminal device 102.
  • these services include, but are not limited to: enhanced mobile broadband (eMBB, enhanced Mobile Broadband), large-scale machine type communication (mMTC, Mass Machine Type Communication), and highly reliable low-latency communication (URLLC, Ultra-Reliable and Low- Latency Communication), and so on.
  • eMBB enhanced mobile broadband
  • mMTC large-scale machine type communication
  • URLLC Ultra-Reliable and Low- Latency Communication
  • An embodiment of the present invention provides a signal method, and the method is applied to a terminal device side.
  • FIG. 2 is a schematic diagram of a signal transmission method according to Embodiment 1 of the present invention. As shown in Figure 2, the method includes:
  • Step 201 After receiving the downlink signal related to beam failure recovery for a period of time, and before receiving or applying activation signaling or reconfiguration signaling, the terminal device uses and sends the uplink signal or reception related to beam failure recovery.
  • the airspace transmission filter of the downlink reference signal is the same airspace transmission filter, and sends an uplink signal in the first cell.
  • a solution for a terminal device to send an uplink signal using an airspace transmission filter after a successful beam failure recovery, which improves the reliability of the terminal device for sending an uplink signal.
  • this solution has a wide applicability, and it is not only applicable to the scenario where a beam failure occurs in the SpCell, but also applicable to the scenario where a beam failure occurs in a secondary cell (SCell, Secondary Cell).
  • SCell secondary Cell
  • the solution can correctly indicate the airspace transmission filter used by the uplink signal of the first cell, and avoid incorrectly indicating other cells (not the first cell). Spatial transmission filter used for uplink signal of cell).
  • this solution also precisely specifies the starting point of the period of time, and avoids unnecessary sending and receiving errors caused by the inconsistent understanding of the terminal device and the network device over the period of time.
  • step 201 after receiving a downlink signal related to beam failure recovery for a period of time, and within a time interval before receiving or applying activation signaling or reconfiguration signaling, the terminal device uses and sends information related to beam failure recovery.
  • the same uplink signal or the uplink transmission signal of the downlink reference signal is used to send the uplink signal in the first cell.
  • the terminal device uses and sends an uplink signal related to beam failure recovery or receives downlink when it needs to send an uplink signal in the first cell.
  • the airspace transmission filter of the reference signal uses the same airspace transmission filter to send the uplink signal until the terminal device receives or applies activation signaling or reconfiguration signaling.
  • the terminal device if receiving the downlink signal related to beam failure recovery, is offset from the time when the terminal device sends the uplink signal (offset) is greater than or equal to a period of time, the same spatial transmission filter as the spatial transmission filter used to transmit uplink signals or receive downlink reference signals related to beam failure recovery is used to send uplink signals in the first cell until the terminal device Received or applied activation signaling or reconfiguration signaling.
  • the terminal device after receiving or applying activation signaling or reconfiguration signaling, the terminal device is no longer restricted by the use of the airspace transmission filter in step 201.
  • the time of “receiving a downlink signal related to beam failure recovery” is referred to as a first time
  • the time of “receiving a period of downlink signal related to beam failure recovery” is referred to as the second time
  • the time of “receiving or applying activation signaling or reconfiguration signaling” is referred to as the third time
  • the time of “sending uplink signals in the first cell” is referred to as the fourth time.
  • the terminal device sends the uplink signal in the first cell within the time interval between the second time and the third time using the above-mentioned specified airspace transmission filter.
  • the offset between the first time and the fourth time is greater than or equal to a period of time
  • the terminal uses the airspace transmission filter specified above to send Uplink signal in the first cell.
  • the downlink signal related to beam failure recovery is a downlink signal related to beam failure recovery sent by the network device to the user equipment.
  • the downlink signal related to beam failure recovery is a beam failure recovery response and /
  • the downlink data information scheduled in response to a beam failure recovery response is a beam failure recovery response and /
  • the downlink data information scheduled in response to a beam failure recovery response is a beam failure recovery response and /
  • the beam failure recovery response may be a Cell Radio Network Temporary Identifier (C-RNTI) or a modulation and coding strategy received on a search space provided by a high-level parameter.
  • C-RNTI Cell Radio Network Temporary Identifier
  • DCI Downlink control information
  • DCI downlink control information
  • MCS-C-RNTI Temporary Identifier
  • Modulation and Coding Scheme-Cell Radio Network Temporary Identifier Modulation and Coding Scheme-Cell Radio Network Temporary Identifier
  • the high-level parameters may be configured by radio resource control (RRC, Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • this high-level parameter may be used to configure a search space set of a Random Access Response (RAR, Random Access Response, RAR).
  • RAR Random Access Response
  • the high-level parameter is a recovery search space set identifier (recoverySearchSpaceId).
  • the “time period” can be set according to actual needs.
  • the period of time may be a preset number of symbols, slots, or milliseconds (msec).
  • the period is K symbols, or K slots, or K milliseconds, where K is an integer greater than or equal to zero.
  • the length of the period of time may be related to subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • the length of this period of time may change under different subcarrier intervals.
  • the number of symbols corresponding to the length of the period may be proportional to the SCS, that is, when the SCS is 15KHz, the length of the period is 14 symbols; when the SCS is 30KHz, the length of the period is 28 symbols ; When the SCS is 60KHz, the time length is 56 symbols, and so on.
  • a first time length (for example, 14 symbols) is used when the SCS is 15 kHz and 30 kHz, and a second time length (for example, 28 symbols) is used when the SCS is higher than 30 kHz.
  • the length of the time period may also be related to the capability of the terminal device.
  • the capability of the terminal device refers to the capability of the terminal device reported to the network device.
  • the length of the period of time may change under different levels of terminal equipment capabilities.
  • the length of the period of time is the first time length (for example, 14 symbols); at the second UE capability level (or reported The second UE capability level information), the length of the time period is the second time length (for example, 28 symbols), and so on.
  • the length of the period of time may be configured by high-level signaling.
  • the period of time may also be understood as a threshold.
  • the terminal The device sends the uplink signal in the first cell using the airspace transmission filter specified above.
  • the first moment that is, the moment when a downlink signal related to beam failure recovery is received, may be further understood as:
  • the downlink signal is the beam failure recovery response, then the time when the downlink signal is received is the time slot in which the downlink signal is received; or the downlink signal is the beam failure recovery response, the time when the downlink signal is received is Is the first or last symbol of the time slot in which the downlink signal is received; or, the downlink signal is the beam failure recovery response, then the time when the downlink signal is received is the search space for the beam failure recovery response ( ) A symbol of the corresponding control resource set (the first symbol / the last symbol);
  • the downlink signal is downlink data information scheduled in the beam failure recovery response (for example, a single-slot PDSCH, or a PDSCH in one of the time slots of a multi-slot PDSCH), then the time when the downlink signal is received is the reception The time slot where the downlink signal is located; or, the downlink signal is downlink data information (for example, PDSCH) scheduled by the beam failure recovery response.
  • the beam failure recovery response for example, a single-slot PDSCH, or a PDSCH in one of the time slots of a multi-slot PDSCH
  • the downlink signal is downlink data information scheduled in the beam failure recovery response (for example, a single-slot PDSCH, or a PDSCH in one of the time slots of the multi-slot PDSCH), then the moment when the downlink signal is received is Symbols related to the downlink data information (for example, the symbols related to the downlink data information are the first symbol corresponding to the downlink signal or the last symbol corresponding to the downlink signal); or the downlink signal is the beam failure Restore the downlink data information (for example, PDSCH) scheduled by the response.
  • the downlink data information scheduled in the beam failure recovery response for example, a single-slot PDSCH, or a PDSCH in one of the time slots of the multi-slot PDSCH
  • Multi-slot PDSCH (multiple slot PDSCH), that is, the configured PDSCH repetition times is greater than 1 (aggregationFactorDL> 1), then, the received The time of the downlink signal is the symbol related to the downlink data information (for example, the symbol related to the downlink data information is the first symbol of the PDSCH in the first slot of the downlink signal (including PDSCH of multiple time slots), Or the last symbol of the PDSCH of the last slot of the downlink signal (including the PDSCH of multiple slots).
  • the fourth time that is, the time when the uplink signal in the first cell is transmitted, may be further understood as:
  • the uplink signal refers to the uplink control information (PUCCH).
  • the time when the uplink signal sent in the first cell is the time slot in which the uplink control information is sent in the first cell; or, the uplink signal refers to the uplink control.
  • Information PUCCH
  • the time when the uplink signal in the first cell is sent is the symbol related to the uplink control information in the first cell (for example, the first symbol or the last symbol of the uplink control information; then For example, sending the first symbol or the last symbol of the time slot in which the uplink control information in the first cell is located);
  • the uplink signal refers to uplink data information (for example, a PUSCH in a single time slot or a PUSCH in one of the time slots of a multi-slot PUSCH). Then, the time when the uplink signal is sent in the first cell is sent at the first time.
  • uplink data information for example, a PUSCH in a single time slot or a PUSCH in one of the time slots of a multi-slot PUSCH.
  • the time slot where the uplink signal of the cell is located; or, the uplink signal refers to the uplink data information (PUSCH), then if the terminal device is configured with a single slot PUSCH (single slot PUSCH), the configured PUSCH repetition number is equal to 1 (repK 1 ),
  • the time when the uplink signal in the first cell is sent that is, the time slot in which the uplink data information is sent in the first cell; or, the uplink signal refers to the uplink data information (PUSCH), so if the terminal device is configured for a long time Slot PUSCH (multiple slot PUSCH), that is, the configured number of PUSCH repetitions is greater than 1 (repK> 1), and the time when the uplink signal in the first cell is sent is the time slot related to the uplink data information sent in the first cell (for example, , Sending the first time slot or the last time slot of the uplink data information (including the PUSCH of multiple time slots) in the first cell);
  • the uplink signal refers to uplink data information (for example, a PUSCH in a single-slot PUSCH or a PUSCH in one slot of a multi-slot PUSCH).
  • the third moment that is, the moment when activation signaling or reconfiguration signaling is received or applied, may be further understood as:
  • the moment when the activation signaling or reconfiguration signaling is received or applied is the moment when the activation signaling or reconfiguration signaling is applied, more specifically, the time slot in which the activation signaling or reconfiguration signaling is valid ;
  • the signaling time is the time slot where the PDSCH corresponding to the activation signaling or reconfiguration signaling is received; or, if the terminal device is configured with multiple PDSCH (multiple slot PDSCH), the configured PDSCH repetition number is
  • step 201 the “receiving or applying activation signaling or reconfiguration signaling” in step 201 is exemplarily described.
  • the activation signaling may also be an indication signaling.
  • the activation signaling may be at least one of the following:
  • the target cell is the activation signaling of the first cell.
  • the activation signaling at the MAC layer is used to indicate the airspace transmission filter corresponding to the transmission of at least one configured PUCCH resource, for example, the activation signaling indicates PUCCH-SpatialRelationInfo.
  • the reconfiguration signaling may be at least one of the following:
  • the target cell is the reconfiguration signaling of the first cell.
  • the RRC signaling reconfigures spatial relationship parameters associated with at least one configured physical uplink control channel (PUCCH, Physical Uplink Control Channel) resource.
  • PUCCH Physical Uplink Control Channel
  • the spatial relationship parameter is PUCCH-SpatialRelationInfo.
  • step 201 The uplink signal related to the failure recovery of the beam or the spatial transmission filter that receives the downlink reference signal is the same as the spatial transmission filter that sends the uplink signal in the first cell.
  • the uplink signal related to beam failure recovery may be at least one of the following signals:
  • PRACH Physical Random Access Channel
  • the physical random access channel (PRACH) transmission and the downlink signal related to the failure recovery of the beam may be related in time.
  • the physical random access channel is performed at time slot n ( PRACH) transmission, receiving the corresponding downlink signal related to beam failure recovery (random access response for recovery of beam failure) at time slot n + 4.
  • the uplink signal related to beam failure recovery may be configured by a high-level parameter.
  • the high-level parameter may be carried by RRC signaling. More specifically, the high-level parameter may be used to configure a resource dedicated to beam failure recovery (BFR) for sending the uplink signal related to beam failure recovery.
  • BFR beam failure recovery
  • the high-level parameter is PRACH-ResourceDedicatedBFR.
  • the downlink reference signal may be a downlink reference signal of the first cell.
  • the index of the downlink reference signal may be provided by signaling of the MAC layer.
  • the index of the downlink reference signal is selected by the MAC layer from higher layer parameters.
  • the downlink reference signal is the index q new
  • MAC layer entity is selected from the RRC layer q new parameters.
  • the RRC layer parameter is a parameter candidateBeamRSList representing a candidate beam reference signal list.
  • step 201 when the second cell where the uplink signal related to beam failure recovery is transmitted is the same cell as the first cell, the same airspace is used as the air domain transmission filter for transmitting the uplink signal related to beam failure recovery.
  • FIG. 3 is another schematic diagram of a signal transmission method according to Embodiment 1 of the present invention. As shown in Figure 3, the method includes:
  • Step 301 The terminal device determines whether the second cell in which the uplink signal related to beam failure recovery is transmitted is the same cell as the first cell. When the determination result is "Yes”, the process proceeds to Step 302, and when the determination result is "No” "", Go to step 303;
  • Step 302 After receiving the downlink signal related to beam failure recovery for a period of time, and before receiving or applying activation signaling or reconfiguration signaling, the terminal device uses and sends the uplink signal related to beam failure recovery.
  • the same airspace transmission filter as the airspace transmission filter sends an uplink signal in the first cell;
  • Step 303 After receiving the downlink signal related to beam failure recovery for a period of time, and before receiving or applying activation signaling or reconfiguration signaling, the terminal device uses the same airspace transmission filter as the downlink reference signal.
  • the airspace transmission filter sends an uplink signal in the first cell.
  • the first cell may be at least one of the following cells:
  • the cell where the downlink signal related to the recovery of beam failure is located is located;
  • At least one or all of the activated cells where the activated cell refers to a cell activated by the network device for the terminal device through indication signaling.
  • the first cell is a cell in which the uplink signal related to beam failure recovery is transmitted
  • the first cell and the second cell are the same cell.
  • the uplink signal on the first cell is, for example, an uplink signal sent on a physical uplink control channel (PUCCH) and / or an uplink signal sent on a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the uplink signal sent on the physical uplink control channel is acknowledgment information (eg, HARQ ACK / NACK information) used to carry the downlink signal scheduled by the first control information.
  • the search space associated with the first control information is the same as the search space associated with the downlink signal related to beam failure recovery.
  • the search space is provided by recoverySearchSpaceId.
  • FIG. 4 is a timing diagram of the transmitted and received signals in Embodiment 1 of the present invention.
  • the terminal device sends an uplink signal related to the beam failure recovery, such as a beam recovery request, to the network device; the terminal device receives the beam failure recovery-related A downlink signal, such as a beam failure recovery response; starts at a second time after a period of time T1 from the first time when the downlink signal related to beam failure recovery is successfully received, until the terminal device receives or applies activation from a network device
  • the terminal device uses the same airspace transmission filter as the airspace transmission filter used to transmit uplink signals related to beam failure recovery or receive downlink reference signals, and sends
  • the uplink signal (fourth time) in the first cell, the uplink signal is, for example, an uplink signal occurring on a PUCCH or a PUSCH.
  • the terminal device uses and sends the beam failure recovery after receiving a downlink signal related to the beam failure recovery for a period of time and within a time interval before receiving or applying activation signaling or reconfiguration signaling.
  • the relevant uplink signal or the same spatial domain transmission filter that receives the downlink reference signal sends the uplink signal in the first cell. Therefore, a solution is provided for a terminal device to send an uplink signal using an airspace transmission filter after the beam failure is successfully restored, thereby improving the reliability of the terminal device for sending an uplink signal.
  • this solution has a wide applicability, and it is not only applicable to the scenario where a beam failure occurs in the SpCell, but also applicable to the scenario where a beam failure occurs in a secondary cell (SCell, Secondary Cell).
  • SCell Secondary Cell
  • the solution also accurately specifies the starting point of the period of time, thereby avoiding unnecessary sending and receiving errors caused by the terminal device and the network device not understanding the starting point of the period of time.
  • An embodiment of the present invention provides a signal receiving method.
  • the method is applied to a network device side, and the method corresponds to the signal sending method described in Embodiment 1.
  • FIG. 5 is a schematic diagram of a signal receiving method according to Embodiment 2 of the present invention. As shown in Figure 5, the method includes:
  • Step 501 After sending the downlink signal related to beam failure recovery for a period of time, and before sending activation signaling or reconfiguration signaling or before the activation signaling or reconfiguration signaling takes effect, the network device The beam failure recovers the related uplink signal or sends spatial information related to the downlink reference signal, and receives the uplink signal in the first cell.
  • a solution is provided for a network device to receive an uplink signal according to spatial information after the beam failure is successfully recovered, and the reliability of the network device to receive the uplink signal is improved.
  • this solution has a wide applicability, and it is not only applicable to the scenario where a beam failure occurs in the SpCell, but also applicable to the scenario where a beam failure occurs in a secondary cell (SCell, Secondary Cell).
  • SCell secondary Cell
  • the solution can correctly indicate the spatial information on which the uplink signal of the first cell is transmitted, and avoid incorrectly indicating other cells (not the first cell). The spatial information on which the uplink signal is based.
  • this solution also precisely specifies the starting point of the period of time, and avoids unnecessary sending and receiving errors caused by the inconsistent understanding of the terminal device and the network device over the period of time.
  • the uplink signal in the first cell is received according to spatial information related to receiving uplink signals related to beam failure recovery or sending downlink reference signals. For example, using and receiving uplink signals related to beam failure recovery Or, the same spatial domain transmission filter that sends the downlink reference signal receives the uplink signal in the first cell.
  • step 501 after the network device sends a downlink signal related to beam failure recovery for a period of time and within a time interval before sending activation signaling or reconfiguration signaling or before the activation signaling or reconfiguration signaling takes effect, Receiving the uplink signal in the first cell according to the spatial information related to receiving an uplink signal related to beam failure recovery or sending a downlink reference signal.
  • the network device after sending a downlink signal related to beam failure recovery for a period of time, the network device needs to receive an uplink signal in the first cell according to the uplink signal related to beam failure recovery or send a downlink reference. Receiving the uplink signal by using signal-related spatial information until the network device sends activation signaling or reconfiguration signaling or the activation signaling or reconfiguration signaling takes effect.
  • the network device sends the downlink signal related to the recovery of the beam failure
  • the time at which the downlink signal related to the recovery of the beam failure is transmitted is offset from the time at which the network device receives the uplink signal ( offset) is greater than or equal to a period of time
  • receive the uplink signal in the first cell according to the spatial information related to the reception of the uplink signal related to the failure recovery of the beam or the spatial domain transmission filter that sends the downlink reference signal until the network device sends an activation
  • the command or reconfiguration signaling or the activation signaling or reconfiguration signaling takes effect.
  • the time of “sending a downlink signal related to recovery of beam failure recovery” is referred to as a first time
  • the time of “sending a period of downlink signal related to recovery of beam failure recovery” is referred to as a first time
  • the time at which the activation signaling or reconfiguration signaling is sent or the activation signaling or reconfiguration signaling takes effect is referred to as the third time
  • the time at which the uplink signal received in the first cell is received is referred to as the third time.
  • the network device receives the uplink signal in the first cell in the time interval between the second time and the third time using the above-mentioned spatial information.
  • the offset between the network device at the first time and the fourth time is greater than or equal to a period of time, and before the third time, it is received in the first cell according to the above-mentioned spatial information.
  • Uplink signal In this embodiment, after the network device sends activation signaling or reconfiguration signaling or the activation signaling or reconfiguration signaling takes effect, it is no longer restricted by the use of space information in step 501.
  • the downlink signal related to beam failure recovery is a downlink signal related to beam failure recovery sent by the network device to the user equipment.
  • the downlink signal related to beam failure recovery is a beam failure recovery response and /
  • the downlink data information scheduled in response to a beam failure recovery response is a beam failure recovery response and /
  • the downlink data information scheduled in response to a beam failure recovery response is a beam failure recovery response and /
  • the beam failure recovery response may be a Cell Radio Network Temporary Identifier (C-RNTI) or a modulation and coding strategy for a cell radio network, which is sent on a search space provided by a high-level parameter.
  • C-RNTI Cell Radio Network Temporary Identifier
  • DCI Downlink control information
  • MCS-C-RNTI Modulation and Coding Scheme-Cell Radio Network Temporary Identifier
  • the high-level parameters may be configured by radio resource control (RRC, Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • this high-level parameter may be used to configure a search space set of a Random Access Response (RAR, Random Access Response, RAR).
  • RAR Random Access Response
  • the high-level parameter is a recovery search space set identifier (recoverySearchSpaceId).
  • the “time period” can be set according to actual needs.
  • the period of time may be a preset number of symbols, slots, or milliseconds (msec).
  • the period is K symbols, or K slots, or K milliseconds, where K is an integer greater than or equal to 0.
  • the length of the period of time may be related to subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • the length of this period of time may change under different subcarrier intervals.
  • the number of symbols corresponding to the length of the period may be proportional to the SCS, that is, when the SCS is 15KHz, the length of the period is 14 symbols; when the SCS is 30KHz, the length of the period is 28 symbols ; When the SCS is 60KHz, the time length is 56 symbols, and so on.
  • a first time length (for example, 14 symbols) is used when the SCS is 15 kHz and 30 kHz, and a second time length (for example, 28 symbols) is used when the SCS is higher than 30 kHz.
  • the length of the time period may also be related to the capability of the terminal device.
  • the capability of the terminal device refers to the capability of the terminal device reported to the network device.
  • the length of the period of time may change under different levels of terminal equipment capabilities.
  • the length of the period of time is the first time length (for example, 14 symbols); at the second UE capability level (or reported Information of the second UE capability level), the length of the period of time is the second length of time (for example, 28 symbols), and so on.
  • the length of the period of time may be configured by high-level signaling.
  • the period of time can also be understood as a threshold.
  • the network The device receives an uplink signal in the first cell according to the foregoing spatial information.
  • the specific explanations about “the first time”, “the second time”, “the third time”, and the “the fourth time” may be similar to those in the first embodiment, and will not be repeated here.
  • the activation signaling may also be an indication signaling.
  • the activation signaling may be at least one of the following:
  • the target cell is the activation signaling of the first cell.
  • the activation signaling at the MAC layer is used to indicate the airspace transmission filter corresponding to the reception of at least one configured PUCCH resource, for example, the activation signaling indicates PUCCH-SpatialRelationInfo.
  • the reconfiguration signaling may be at least one of the following:
  • the target cell is the reconfiguration signaling of the first cell.
  • the RRC signaling reconfigures spatial relationship parameters associated with at least one configured physical uplink control channel (PUCCH, Physical Uplink Control Channel) resource.
  • PUCCH Physical Uplink Control Channel
  • the uplink signal related to beam failure recovery may be at least one of the following signals:
  • PRACH Physical Random Access Channel
  • Physical random access channel (PRACH) reception associated with the downlink signal related to beam failure recovery may be related in time.
  • the physical random access channel is performed at time slot n ( PRACH) receive, and send the corresponding downlink signal related to beam failure recovery (random access response for beam failure recovery) in slot n + 4.
  • the uplink signal related to the recovery of the beam failure may be carried by a higher layer parameter.
  • the high-level parameter may be carried by RRC signaling.
  • the high-level parameter may be used to configure a resource exclusively used by the beam failure recovery (BFR) to receive the uplink signal related to the beam failure recovery.
  • the high-level parameter is PRACH-ResourceDedicatedBFR.
  • the downlink reference signal may be a downlink reference signal of the first cell.
  • the index of the downlink reference signal may be provided by signaling of the MAC layer.
  • the index of the downlink reference signal is selected by the MAC layer from higher layer parameters.
  • the downlink reference signal is the index q new
  • MAC layer entity is selected from the RRC layer q new parameters.
  • the RRC layer parameter is a parameter candidateBeamRSList representing a candidate beam reference signal list.
  • step 501 when the second cell in which the uplink signal related to beam failure recovery is received is the same cell as the first cell, according to the spatial information related to receiving the uplink signal related to beam failure recovery, the first cell is received in the first cell.
  • Uplink signal of a cell when the second cell in which the uplink signal related to beam failure recovery is received is not the same cell as the first cell, the uplink signal in the first cell is received according to the spatial information related to the sending of the downlink reference signal signal.
  • FIG. 6 is another schematic diagram of a signal receiving method according to Embodiment 2 of the present invention. As shown in Figure 6, the method includes:
  • Step 601 The network device determines whether the second cell in which the uplink signal related to beam failure recovery is received is the same cell as the first cell. When the determination result is "Yes”, it proceeds to step 302, and when the determination result is "No” "", Go to step 303;
  • Step 602 The network device sends and receives downlink signals related to beam failure recovery for a period of time, and sends and receives activation signaling or reconfiguration signaling or before the activation signaling or reconfiguration signaling takes effect. Fail to recover the spatial information related to the uplink signal and receive the uplink signal in the first cell;
  • Step 603 The network device sends and sends a downlink reference according to a period of time after sending a downlink signal related to beam failure recovery and before sending activation signaling or reconfiguration signaling or before the activation signaling or reconfiguration signaling takes effect. Receive signal-related spatial information and receive uplink signals in the first cell.
  • the first cell may be at least one of the following cells:
  • the cell where the uplink signal related to the recovery of the beam failure is located is located;
  • At least one or all of the activated cells where the activated cell refers to a cell activated by the network device for the terminal device through indication signaling.
  • the first cell is a cell in which the uplink signal related to beam failure recovery is transmitted
  • the first cell and the second cell are the same cell.
  • the uplink signal on the first cell is, for example, an uplink signal received on a physical uplink control channel (PUCCH) and / or an uplink signal received on a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the uplink signal received on the physical uplink control channel is acknowledgment information (for example, HARQ ACK / NACK information) used to carry the downlink signal scheduled by the first control information.
  • the search space associated with the first control information is the same as the search space associated with the downlink signal related to beam failure recovery.
  • the search space is provided by recoverySearchSpaceId.
  • this solution has a wide applicability, and it is not only applicable to the scenario where a beam failure occurs in the SpCell, but also applicable to the scenario where a beam failure occurs in a secondary cell (SCell, Secondary Cell).
  • SCell Secondary Cell
  • the solution also accurately specifies the starting point of the period of time, thereby avoiding unnecessary sending and receiving errors caused by the terminal device and the network device not understanding the starting point of the period of time.
  • An embodiment of the present invention further provides a signal sending method.
  • the method is applied to a terminal device side and a network device side, and corresponds to the signal sending method of the first embodiment and the signal receiving method of the second embodiment. Therefore, its specific implementation can refer to Embodiments 1 and 2 are not repeated here.
  • FIG. 7 is a schematic diagram of a signal transmission method according to Embodiment 3 of the present invention. As shown in Figure 7, the method includes:
  • Step 701 The terminal device sends an uplink signal related to the beam failure recovery to the network device.
  • Step 702 The network device sends a downlink signal related to the beam failure recovery to the user equipment.
  • Step 703 After receiving the downlink signal related to the failure recovery of the beam for a period of time, and before receiving or applying activation signaling or reconfiguration signaling, the terminal device uses and sends the uplink signal or reception related to the failure recovery of the beam.
  • the airspace transmission filter of the downlink reference signal is the same airspace transmission filter, and sends the uplink signal in the first cell to the network device;
  • Step 704 The network device sends activation signaling or reconfiguration signaling to the terminal device.
  • the terminal device uses and sends the beam failure recovery after receiving a downlink signal related to the beam failure recovery for a period of time and within a time interval before receiving or applying activation signaling or reconfiguration signaling.
  • the relevant uplink signal or the same spatial domain transmission filter that receives the downlink reference signal sends the uplink signal in the first cell. Therefore, a solution is provided for a terminal device to send an uplink signal using an airspace transmission filter after the beam failure is successfully restored, thereby improving the reliability of the terminal device for sending an uplink signal.
  • this solution has a wide applicability, and it is not only applicable to the scenario where a beam failure occurs in the SpCell, but also applicable to the scenario where a beam failure occurs in a secondary cell (SCell, Secondary Cell).
  • SCell Secondary Cell
  • the solution also accurately specifies the starting point of the period of time, thereby avoiding unnecessary sending and receiving errors caused by the terminal device and the network device not understanding the starting point of the period of time.
  • An embodiment of the present invention further provides a signal transmitting apparatus, which is applied to a terminal device side.
  • This device corresponds to the signal transmission method described in Embodiment 1. Therefore, for specific implementation, reference may be made to Embodiment 1, and repeated descriptions are not repeated.
  • FIG. 8 is a schematic diagram of a signal transmitting apparatus according to Embodiment 4 of the present invention. As shown in FIG. 8, the signal sending device 800 includes:
  • a sending unit 801 configured to use and send an uplink signal related to beam failure recovery after a period of time after receiving a downlink signal related to beam failure recovery and before receiving or applying activation signaling or reconfiguration signaling; Or the same spatial domain transmission filter that receives the downlink reference signal, and sends an uplink signal in the first cell.
  • the sending unit 801 uses and transmits the airspace transmission of the uplink signal related to beam failure recovery.
  • the same spatial filter is used to transmit the uplink signal in the first cell; when the second cell in which the uplink signal related to beam failure recovery is sent is not the same cell as the first cell, the downlink reference signal is used and received
  • the same airspace transmission filter is used to send uplink signals in the first cell.
  • the terminal device uses and sends the beam failure recovery after receiving a downlink signal related to the beam failure recovery for a period of time and within a time interval before receiving or applying activation signaling or reconfiguration signaling.
  • the relevant uplink signal or the same spatial domain transmission filter that receives the downlink reference signal sends the uplink signal in the first cell. Therefore, a solution is provided for a terminal device to send an uplink signal using an airspace transmission filter after the beam failure is successfully restored, thereby improving the reliability of the terminal device for sending an uplink signal.
  • this solution has a wide applicability, and it is not only applicable to the scenario where a beam failure occurs in the SpCell, but also applicable to the scenario where a beam failure occurs in a secondary cell (SCell, Secondary Cell).
  • SCell Secondary Cell
  • the solution also accurately specifies the starting point of the period of time, thereby avoiding unnecessary sending and receiving errors caused by the terminal device and the network device not understanding the starting point of the period of time.
  • An embodiment of the present invention further provides a signal receiving apparatus, which is applied to a network device side.
  • This device corresponds to the signal receiving method described in Embodiment 2. Therefore, for specific implementation, reference may be made to Embodiment 2, and duplicated details are not described again.
  • FIG. 9 is a schematic diagram of a signal receiving apparatus according to Embodiment 5 of the present invention. As shown in FIG. 9, the signal transmitting device 900 includes:
  • a receiving unit 901 configured to, after sending a period of downlink signals related to beam failure recovery, and before sending activation signaling or reconfiguration signaling or the activation signaling or reconfiguration signaling takes effect, according to and Receive uplink signals related to beam failure recovery or send spatial information related to downlink reference signals, and receive uplink signals in the first cell.
  • the receiving unit 901 when receiving the second cell in which the uplink signal related to beam failure recovery is located, is the same cell as the first cell, according to the space related to receiving the uplink signal related to beam failure recovery. Information, receive the uplink signal in the first cell; when the second cell in which the uplink signal related to beam failure recovery is received is not the same cell as the first cell, receive the An uplink signal of the first cell.
  • this solution has a wide applicability, and it is not only applicable to the scenario where a beam failure occurs in the SpCell, but also applicable to the scenario where a beam failure occurs in a secondary cell (SCell, Secondary Cell).
  • SCell Secondary Cell
  • the solution also accurately specifies the starting point of the period of time, thereby avoiding unnecessary sending and receiving errors caused by the terminal device and the network device not understanding the starting point of the period of time.
  • An embodiment of the present invention further provides a terminal device, and the terminal device includes the signal sending apparatus according to the fourth embodiment.
  • FIG. 10 is a schematic block diagram of a system configuration of a terminal device according to Embodiment 6 of the present invention.
  • the terminal device 1000 may include a processor 1010 and a memory 1020; the memory 1020 is coupled to the processor 1010. It is worth noting that this figure is exemplary; other types of structures can also be used to supplement or replace the structure to implement telecommunication functions or other functions.
  • the function of the signal transmitting device may be integrated into the processor 1410.
  • the processor 1010 may be configured to: after receiving a downlink signal related to beam failure recovery for a period of time, and before receiving or applying activation signaling or reconfiguration signaling, use and send related to beam failure recovery The same uplink signal or the uplink transmission signal of the downlink reference signal is used to send the uplink signal in the first cell.
  • the same airspace transmission is used as the air domain transmission filter for transmitting the uplink signal related to beam failure recovery.
  • a filter that sends an uplink signal in the first cell is used as the same airspace transmission filter for transmitting the uplink signal related to beam failure recovery.
  • the second cell in which the uplink signal related to beam failure recovery is sent is not the same cell as the first cell
  • the same air-domain transmission filter as the air-domain transmission filter that receives the downlink reference signal is used, and is sent in An uplink signal of the first cell.
  • the signal transmitting device may be configured separately from the processor 1010.
  • the signal transmitting device may be configured as a chip connected to the processor 1010, and the function of the signal transmitting device may be implemented through control of the processor 1010.
  • the terminal device 1000 may further include: a communication module 1030, an input unit 1040, a display 1050, and a power source 1060. It is worth noting that the terminal device 1000 does not necessarily include all the components shown in FIG. 10; in addition, the terminal device 1000 may also include components not shown in FIG. 10, and reference may be made to related technologies.
  • the processor 1010 is sometimes also called a controller or an operation control, and may include a microprocessor or other processor device and / or a logic device.
  • the processor 1010 receives input and controls various components of the terminal device 1000. operating.
  • the memory 1020 may be, for example, one or more of a buffer, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory, or other suitable devices.
  • Various data can be stored, in addition to the programs that execute the relevant information.
  • the processor 1010 can execute the program stored in the memory 1020 to implement information storage or processing and the like.
  • the functions of other components are similar to the existing ones, and will not be repeated here.
  • Each component of the terminal device 1000 may be implemented by dedicated hardware, firmware, software, or a combination thereof without departing from the scope of the present invention.
  • the terminal device uses and sends the beam failure recovery after receiving a downlink signal related to the beam failure recovery for a period of time and within a time interval before receiving or applying activation signaling or reconfiguration signaling.
  • the relevant uplink signal or the same spatial domain transmission filter that receives the downlink reference signal sends the uplink signal in the first cell. Therefore, a solution is provided for a terminal device to send an uplink signal using an airspace transmission filter after the beam failure is successfully restored, thereby improving the reliability of the terminal device for sending an uplink signal.
  • this solution has a wide applicability, and it is not only applicable to the scenario where a beam failure occurs in the SpCell, but also applicable to the scenario where a beam failure occurs in a secondary cell (SCell, Secondary Cell).
  • SCell Secondary Cell
  • the solution also accurately specifies the starting point of the period of time, thereby avoiding unnecessary sending and receiving errors caused by the terminal device and the network device not understanding the starting point of the period of time.
  • An embodiment of the present invention further provides a network device, and the network device includes the signal receiving apparatus according to Embodiment 5.
  • FIG. 11 is a schematic structural diagram of a network device according to Embodiment 7 of the present invention.
  • the network device 1100 may include a processor 1110 and a memory 1120; the memory 1120 is coupled to the processor 1110.
  • the memory 1120 can store various data; in addition, it also stores a program 1130 for information processing, and executes the program 1130 under the control of the processor 1110 to receive various information sent by the terminal device and send various information to the terminal device. .
  • the function of the signal receiving device may be integrated into the processor 1110.
  • the processor 1110 may be configured to: after transmitting a downlink signal related to beam failure recovery for a period of time, and before sending activation signaling or reconfiguration signaling or the activation signaling or reconfiguration signaling takes effect And receiving the uplink signal in the first cell according to the spatial information related to receiving the uplink signal related to the recovery of the beam failure or sending the downlink reference signal.
  • the second cell in which the uplink signal related to beam failure recovery is located is the same cell as the first cell
  • the first cell is received in the first cell according to the spatial information related to receiving the uplink signal related to beam failure recovery.
  • the uplink signal of the cell is the same cell as the first cell
  • the uplink signal in the first cell is received according to the spatial information related to sending the downlink reference signal.
  • the signal receiving device may be configured separately from the processor 1110.
  • the signal receiving device may be configured as a chip connected to the processor 1110, and the function of the signal receiving device may be implemented through control of the processor 1110.
  • the network device 1100 may further include a transceiver 1140, an antenna 1150, and the like; wherein the functions of the above components are similar to those in the prior art, and are not repeated here. It is worth noting that the network device 1100 does not necessarily include all the components shown in FIG. 11; in addition, the network device 1100 may also include components not shown in FIG. 11, and reference may be made to the prior art.
  • this solution has a wide applicability, and it is not only applicable to the scenario where a beam failure occurs in the SpCell, but also applicable to the scenario where a beam failure occurs in a secondary cell (SCell, Secondary Cell).
  • SCell Secondary Cell
  • the solution also accurately specifies the starting point of the period of time, thereby avoiding unnecessary sending and receiving errors caused by the terminal device and the network device not understanding the starting point of the period of time.
  • An embodiment of the present invention further provides a communication system, including the terminal device according to Embodiment 6 and / or the network device according to Embodiment 7.
  • the structure of the communication system can be referred to FIG. 1.
  • the communication system 100 includes a network device 101 and a terminal device 102.
  • the terminal device 102 is the same as the terminal device described in Embodiment 6.
  • the network device 101 is the same as the embodiment.
  • the network equipment recorded in 7 is the same, and the repeated content will not be repeated.
  • the terminal device uses and sends the beam failure recovery after receiving a downlink signal related to the beam failure recovery for a period of time and within a time interval before receiving or applying activation signaling or reconfiguration signaling.
  • the relevant uplink signal or the same spatial domain transmission filter that receives the downlink reference signal sends the uplink signal in the first cell. Therefore, a solution is provided for a terminal device to send an uplink signal using an airspace transmission filter after the beam failure is successfully restored, thereby improving the reliability of the terminal device for sending an uplink signal.
  • this solution has a wide applicability, and it is not only applicable to the scenario where a beam failure occurs in the SpCell, but also applicable to the scenario where a beam failure occurs in a secondary cell (SCell, Secondary Cell).
  • SCell Secondary Cell
  • the solution also accurately specifies the starting point of the period of time, thereby avoiding unnecessary sending and receiving errors caused by the terminal device and the network device not understanding the starting point of the period of time.
  • the devices and methods in the above embodiments of the present invention may be implemented by hardware, or may be implemented by hardware in combination with software.
  • Embodiments of the present invention relate to such a computer-readable program.
  • the logic component can implement the device or component described above, or the logic component can implement each of the components described above. Methods or steps.
  • the embodiment of the present invention also relates to a storage medium for storing the above programs, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, and the like.
  • the methods / devices described in connection with the embodiments of the present invention may be directly embodied as hardware, software modules executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams and / or one or more combinations of the functional block diagrams shown in FIG. 8 may correspond to each software module of a computer program flow or to each hardware module.
  • These software modules can respectively correspond to the steps shown in FIG. 2.
  • These hardware modules can be implemented by using a field programmable gate array (FPGA) to cure these software modules.
  • FPGA field programmable gate array
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor so that the processor can read information from and write information to the storage medium; or the storage medium may be a component of the processor.
  • the processor and the storage medium may reside in an ASIC.
  • This software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module may be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • the functional blocks described in FIG. 8 and / or one or more combinations of functional blocks it may be implemented as a general-purpose processor, a digital signal processor (DSP) for performing the functions described in the present invention. ), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • One or more of the functional blocks and / or one or more combinations of the functional blocks described in FIG. 8 may also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors Processor, one or more microprocessors in conjunction with DSP communications, or any other such configuration.
  • a signal transmitting device the device includes:
  • a sending unit configured to use and send an uplink signal related to beam failure recovery or a period of time after receiving a downlink signal related to beam failure recovery and before receiving or applying activation signaling or reconfiguration signaling or
  • the airspace transmission filter that receives the downlink reference signal is the same airspace transmission filter and sends the uplink signal in the first cell.
  • the sending unit uses and sends an airspace transmission filter related to the uplink signal of the failure recovery of the beam.
  • the same air-domain transmission filter sends uplink signals in the first cell.
  • Supplementary note 3 The device according to supplementary note 1 or 2, wherein:
  • the sending unit uses the same air domain transmission filter as the air domain transmission filter that receives the downlink reference signal And sends an uplink signal in the first cell.
  • the downlink signal related to the beam failure recovery is downlink data information scheduled by the beam failure recovery response and / or the beam failure recovery response.
  • the beam failure recovery response is received on a search space provided by a high-level parameter and scrambled by a cell radio network temporary identity (C-RNTI) or a modulation and coding strategy cell radio network temporary identity (MCS-C-RNTI) Downlink Control Information (DCI).
  • C-RNTI cell radio network temporary identity
  • MCS-C-RNTI modulation and coding strategy cell radio network temporary identity
  • DCI Downlink Control Information
  • Attachment 6 The device according to Attachment 5, wherein:
  • the high-level parameters are configured by radio resource control (RRC) signaling, and / or,
  • the high-level parameters are used to configure a search space set of a random access response (BFR RAR) in which a received beam fails to recover.
  • BFR RAR random access response
  • Appendix 7 The device according to Appendix 1, wherein:
  • the period of time satisfies at least one of the following:
  • the period of time is a preset number of symbols, time slots or milliseconds
  • the length of the period of time is configured by higher layer signaling
  • the length of the period of time is related to subcarrier spacing (SCS); and
  • the length of the period is related to the capability of the terminal device.
  • Supplementary note 8 The device according to supplementary note 1, wherein:
  • the uplink signal related to beam failure recovery is at least one of the following:
  • PRACH Physical Random Access Channel
  • PRACH physical random access channel
  • Supplementary note 9 The device according to supplementary note 1 or 8, wherein:
  • the uplink signal related to the beam failure recovery is configured by a high-level parameter.
  • the higher layer parameters are carried by radio resource control (RRC) signaling, and / or,
  • the high-level parameters are used to configure a resource dedicated to beam failure recovery (BFR) for sending the uplink signal related to the beam failure recovery.
  • BFR beam failure recovery
  • the downlink reference signal is a downlink reference signal of the first cell, and / or,
  • An index of the downlink reference signal is provided by signaling of a medium access control (MAC) layer.
  • MAC medium access control
  • Appendix 12 The device according to Appendix 11, wherein:
  • the index of the downlink reference signal is selected by the MAC layer from high-level parameters.
  • Appendix 13 The device according to Appendix 1, wherein:
  • the first cell is at least one of the following cells:
  • At least one or all activated cells wherein the activated cell refers to a cell activated by a network device for a terminal device through indication signaling.
  • Supplementary note 14 The device according to supplementary note 13, wherein:
  • the uplink signal in the first cell is an uplink signal sent on a physical uplink control channel (PUCCH) and / or an uplink signal sent on a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • Appendix 15 The device according to Appendix 14, wherein:
  • the uplink signal sent on the physical uplink control channel is acknowledgement information for carrying a downlink signal scheduled by the first control information.
  • Supplementary note 16 The device according to supplementary note 15, wherein:
  • the search space associated with the first control information is the same as the search space associated with the downlink signal related to beam failure recovery.
  • Supplementary note 17 The device according to supplementary note 1, wherein:
  • the activation signaling is at least one of the following:
  • the target cell is the activation signaling of the first cell.
  • Supplementary note 18 The device according to supplementary note 17, wherein:
  • the MAC layer activation signaling is used to indicate a spatial domain transmission filter corresponding to the PUCCH resource sent.
  • the reconfiguration signaling is at least one of the following:
  • the target cell is the reconfiguration signaling of the first cell.
  • Supplementary note 20 The device according to supplementary note 19, wherein
  • the RRC signaling reconfigures spatial relationship parameters associated with at least one configured PUCCH resource.
  • Appendix 21 A signal receiving device, the device includes:
  • a receiving unit configured to, after sending a period of downlink signals related to beam failure recovery, and before sending activation signaling or reconfiguration signaling or the activation signaling or reconfiguration signaling takes effect, according to and Receive uplink signals related to beam failure recovery or send spatial information related to downlink reference signals, and receive uplink signals in the first cell.
  • Supplementary note 22 The device according to supplementary note 21, wherein
  • the receiving unit When the receiving unit receives the second cell in which the uplink signal related to beam failure recovery is located and the first cell is the same cell, according to and receives spatial information related to the uplink signal related to beam failure recovery, Receive an uplink signal in the first cell.
  • Supplementary note 23 The device according to supplementary note 21 or 22, wherein:
  • the receiving unit When the receiving unit receives the second cell in which the uplink signal related to beam failure recovery is located and the first cell is not the same cell, the receiving unit receives the first cell according to the spatial information related to the downlink reference signal Uplink signal.
  • the downlink signal related to the beam failure recovery is downlink data information scheduled by the beam failure recovery response and / or the beam failure recovery response.
  • Appendix 25 The device according to Appendix 24, wherein:
  • the beam failure recovery response is sent in a search space provided by a high-level parameter and scrambled by a cell radio network temporary identity (C-RNTI) or a modulation and coding strategy cell radio network temporary identity (MCS-C-RNTI).
  • C-RNTI cell radio network temporary identity
  • MCS-C-RNTI modulation and coding strategy cell radio network temporary identity
  • DCI Downlink Control Information
  • Supplementary note 26 The device according to supplementary note 25, wherein
  • the high-level parameters are configured by radio resource control (RRC) signaling, and / or,
  • the high-level parameters are used to configure a search space set for recovering a random access response (BFR RAR) when a beam failure occurs.
  • BFR RAR random access response
  • Appendix 27 The device according to Appendix 21, wherein:
  • the period of time satisfies at least one of the following:
  • the period of time is a preset number of symbols, time slots or milliseconds
  • the length of the period of time is configured by higher layer signaling
  • the length of the period of time is related to subcarrier spacing (SCS); and
  • the length of the period is related to the capability of the terminal device.
  • Supplementary note 28 The device according to supplementary note 21, wherein
  • the uplink signal related to beam failure recovery is at least one of the following:
  • PRACH Physical Random Access Channel
  • PRACH Physical random access channel
  • Supplementary note 29 The device according to supplementary note 21 or 28, wherein:
  • the uplink signal related to the beam failure recovery is configured by a high-level parameter.
  • Appendix 30 The device according to Appendix 29, wherein:
  • the higher layer parameters are carried by radio resource control (RRC) signaling, and / or,
  • the high-level parameters are used to configure resources for receiving beam failure recovery (BFR) -specific uplink signals.
  • BFR beam failure recovery
  • the downlink reference signal is a downlink reference signal of the first cell, and / or,
  • An index of the downlink reference signal is provided by signaling of a medium access control (MAC) layer.
  • MAC medium access control
  • Supplementary note 32 The device according to supplementary note 31, wherein
  • the index of the downlink reference signal is selected by the MAC layer from high-level parameters.
  • Appendix 33 The device according to Appendix 21, wherein:
  • the first cell is at least one of the following cells:
  • At least one or all activated cells wherein the activated cell refers to a cell activated by a network device for a terminal device through indication signaling.
  • Supplementary note 34 The device according to supplementary note 33, wherein
  • the uplink signal in the first cell is an uplink signal received on a physical uplink control channel (PUCCH) and / or an uplink signal received on a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • Supplementary note 35 The device according to supplementary note 34, wherein
  • the uplink signal received on the physical uplink control channel is acknowledgement information for carrying a downlink signal scheduled by the first control information.
  • Attachment 36 The device according to attachment 35, wherein:
  • the search space associated with the first control information is the same as the search space associated with the downlink signal related to beam failure recovery.
  • Supplementary note 37 The device according to supplementary note 21, wherein
  • the activation signaling is at least one of the following:
  • the target cell is the activation signaling of the first cell.
  • Supplementary note 38 The device according to supplementary note 37, wherein
  • the MAC layer activation signaling is used to indicate receiving spatial information corresponding to the PUCCH resource.
  • the reconfiguration signaling is at least one of the following:
  • the target cell is the reconfiguration signaling of the first cell.
  • Supplementary note 40 The device according to supplementary note 39, wherein
  • the RRC signaling reconfigures spatial relationship parameters associated with at least one configured PUCCH resource.
  • Supplementary note 41 A terminal device including the device according to any one of supplementary notes 1-20.
  • Supplementary note 42 A network device comprising the device according to any one of supplementary notes 21-40.
  • Supplementary note 43 A communication system including the terminal device according to supplementary note 41 and / or the network device according to supplementary note 42.
  • a method for transmitting a signal comprising:
  • the terminal device After receiving the downlink signal related to beam failure recovery for a period of time, and before receiving or applying activation signaling or reconfiguration signaling, the terminal device uses and sends uplink signals related to beam failure recovery or receives downlink reference signals
  • the same airspace transmission filter is used to send uplink signals in the first cell.
  • Attachment 45 The method according to attachment 44, wherein the same airspace transmission filter that uses and transmits an uplink transmission signal related to beam failure recovery or receives a downlink reference signal is transmitted in the first cell Uplink signals, including:
  • the same airspace transmission is used as the air domain transmission filter for transmitting the uplink signal related to beam failure recovery.
  • a filter that sends an uplink signal in the first cell is used as the air domain transmission filter for transmitting the uplink signal related to beam failure recovery.
  • Supplementary note 46 The method according to supplementary note 44 or 45, wherein the airspace transmission filter using the same airspace transmission filter that is used to transmit an uplink signal or receive a downlink reference signal related to beam failure recovery is transmitted in the first
  • the uplink signal of a cell includes:
  • the second cell in which the uplink signal related to beam failure recovery is transmitted is not the same cell as the first cell, the same airspace transmission filter as the airspace transmission filter that receives the downlink reference signal is sent, An uplink signal of the first cell.
  • Attachment 47 The method according to attachment 44, wherein:
  • the downlink signal related to the beam failure recovery is downlink data information scheduled by the beam failure recovery response and / or the beam failure recovery response.
  • Appendix 48 The method according to Appendix 47, wherein:
  • the beam failure recovery response is received on a search space provided by a high-level parameter and scrambled by a cell radio network temporary identity (C-RNTI) or a modulation and coding strategy cell radio network temporary identity (MCS-C-RNTI) Downlink Control Information (DCI).
  • C-RNTI cell radio network temporary identity
  • MCS-C-RNTI modulation and coding strategy cell radio network temporary identity
  • DCI Downlink Control Information
  • Appendix 49 The method according to Appendix 48, wherein:
  • the high-level parameters are configured by radio resource control (RRC) signaling, and / or,
  • the high-level parameters are used to configure a search space set of a random access response (BFR RAR) in which a received beam fails to recover.
  • BFR RAR random access response
  • Attachment 50 The method according to Attachment 44, wherein:
  • the period of time satisfies at least one of the following:
  • the period of time is a preset number of symbols, time slots or milliseconds
  • the length of the period of time is configured by higher layer signaling
  • the length of the period of time is related to subcarrier spacing (SCS); and
  • the length of the period is related to the capability of the terminal device.
  • Attachment 51 The method according to Attachment 44, wherein:
  • the uplink signal related to beam failure recovery is at least one of the following:
  • PRACH Physical Random Access Channel
  • PRACH physical random access channel
  • Attachment 52 The method according to attachment 44 or 51, wherein:
  • the uplink signal related to the beam failure recovery is configured by a high-level parameter.
  • Appendix 53 The method according to Appendix 52, wherein:
  • the higher layer parameters are carried by radio resource control (RRC) signaling, and / or,
  • the high-level parameters are used to configure a resource dedicated to beam failure recovery (BFR) for sending the uplink signal related to the beam failure recovery.
  • BFR beam failure recovery
  • Attachment 54 The method according to Attachment 44, wherein:
  • the downlink reference signal is a downlink reference signal of the first cell, and / or,
  • An index of the downlink reference signal is provided by signaling of a medium access control (MAC) layer.
  • MAC medium access control
  • Attachment 55 The method according to Attachment 54, wherein:
  • the index of the downlink reference signal is selected by the MAC layer from high-level parameters.
  • Attachment 56 The method according to Attachment 44, wherein:
  • the first cell is at least one of the following cells:
  • At least one or all activated cells wherein the activated cell refers to a cell activated by a network device for a terminal device through indication signaling.
  • Attachment 57 The method according to Attachment 56, wherein:
  • the uplink signal in the first cell is an uplink signal sent on a physical uplink control channel (PUCCH) and / or an uplink signal sent on a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • Attachment 58 The method according to Attachment 57, wherein:
  • the uplink signal sent on the physical uplink control channel is confirmation information for carrying the downlink signal scheduled with the first control information.
  • Attachment 59 The method according to Attachment 58, wherein:
  • the search space associated with the first control information is the same as the search space associated with the downlink signal related to beam failure recovery.
  • Appendix 60 The method according to Appendix 44, wherein:
  • the activation signaling is at least one of the following:
  • the target cell is the activation signaling of the first cell.
  • Supplement 61 The method according to Supplement 60, wherein:
  • the MAC layer activation signaling is used to indicate a spatial domain transmission filter corresponding to the PUCCH resource sent.
  • Attachment 62 The method according to Attachment 44, wherein:
  • the reconfiguration signaling is at least one of the following:
  • the target cell is the reconfiguration signaling of the first cell.
  • Appendix 63 The method according to Appendix 62, wherein:
  • the RRC signaling reconfigures spatial relationship parameters associated with at least one configured PUCCH resource.
  • a signal receiving method comprising:
  • the network device After a period of time after the network device sends a downlink signal related to beam failure recovery and before sending activation signaling or reconfiguration signaling or before the activation signaling or reconfiguration signaling takes effect, the network device fails to Recover related uplink signals or send spatial information related to downlink reference signals, and receive uplink signals in the first cell.
  • Appendix 65 The method according to Appendix 64, wherein receiving the uplink signal in the first cell according to spatial information related to receiving an uplink signal related to beam failure recovery or sending a downlink reference signal includes:
  • the second cell in which the uplink signal related to beam failure recovery is located is the same cell as the first cell, according to the spatial information related to receiving and receiving the uplink signal related to beam failure recovery, the first cell The uplink signal of the cell.
  • Supplementary note 66 The method according to supplementary note 64 or 65, wherein receiving the uplink signal in the first cell according to spatial information related to receiving an uplink signal related to beam failure recovery or sending a downlink reference signal includes :
  • the uplink signal in the first cell is received according to the spatial information related to sending the downlink reference signal.
  • Appendix 67 The method according to Appendix 64, wherein:
  • the downlink signal related to the beam failure recovery is downlink data information scheduled by the beam failure recovery response and / or the beam failure recovery response.
  • Supplementary note 68 The method according to supplementary note 67, wherein
  • the beam failure recovery response is sent in a search space provided by a high-level parameter and scrambled by a cell radio network temporary identity (C-RNTI) or a modulation and coding strategy cell radio network temporary identity (MCS-C-RNTI).
  • C-RNTI cell radio network temporary identity
  • MCS-C-RNTI modulation and coding strategy cell radio network temporary identity
  • DCI Downlink Control Information
  • Appendix 69 The method according to Appendix 68, wherein:
  • the high-level parameters are configured by radio resource control (RRC) signaling, and / or,
  • the high-level parameters are used to configure a search space set for recovering a random access response (BFR RAR) when a beam failure occurs.
  • BFR RAR random access response
  • Supplement 70 The method according to Supplement 64, wherein:
  • the period of time satisfies at least one of the following:
  • the period of time is a preset number of symbols, time slots or milliseconds
  • the length of the period of time is configured by higher layer signaling
  • the length of the period of time is related to subcarrier spacing (SCS); and
  • the length of the period is related to the capability of the terminal device.
  • Appendix 71 The method according to Appendix 64, wherein:
  • the uplink signal related to beam failure recovery is at least one of the following:
  • PRACH Physical Random Access Channel
  • PRACH Physical random access channel
  • Attachment 72 The method according to Attachment 64 or 71, wherein:
  • the uplink signal related to the beam failure recovery is configured by a high-level parameter.
  • Appendix 73 The method according to Appendix 72, wherein:
  • the higher layer parameters are carried by radio resource control (RRC) signaling, and / or,
  • the high-level parameters are used to configure resources for receiving beam failure recovery (BFR) -specific uplink signals.
  • BFR beam failure recovery
  • Appendix 74 The method according to Appendix 64, wherein:
  • the downlink reference signal is a downlink reference signal of the first cell, and / or,
  • An index of the downlink reference signal is provided by signaling of a medium access control (MAC) layer.
  • MAC medium access control
  • Appendix 75 The method according to Appendix 74, wherein:
  • the index of the downlink reference signal is selected by the MAC layer from high-level parameters.
  • Appendix 76 The method according to Appendix 64, wherein:
  • the first cell is one of the following cells:
  • At least one or all activated cells wherein the activated cell refers to a cell activated by a network device for a terminal device through indication signaling.
  • Attachment 77 The method according to Attachment 76, wherein:
  • the uplink signal in the first cell is an uplink signal received on a physical uplink control channel (PUCCH) and / or an uplink signal received on a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • Attachment 78 The method according to Attachment 77, wherein:
  • the uplink signal received on the physical uplink control channel is acknowledgement information for carrying a downlink signal scheduled by the first control information.
  • Appendix 79 The method according to Appendix 78, wherein:
  • the search space associated with the first control information is the same as the search space associated with the downlink signal related to beam failure recovery.
  • Appendix 80 The method according to Appendix 64, wherein:
  • the activation signaling is at least one of the following:
  • the target cell is the activation signaling of the first cell.
  • Appendix 81 The method according to Appendix 80, wherein:
  • the MAC layer activation signaling is used to indicate receiving spatial information corresponding to the PUCCH resource.
  • Attachment 82 The method according to Attachment 64, wherein:
  • the reconfiguration signaling is at least one of the following:
  • the target cell is the reconfiguration signaling of the first cell.
  • Appendix 83 The method according to Appendix 82, wherein:
  • the RRC signaling reconfigures spatial relationship parameters associated with at least one configured PUCCH resource.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信号发送方法、信号接收方法及装置。提供了一种终端设备在波束失败恢复成功之后使用空域传输滤波器发送上行信号的解决方案,提高了终端设备发送上行信号的可靠性。另外,该解决方案的适用性较广,其不仅适用于SpCell发生波束失败的场景,也适用于SCell发生波束失败的场景。在多载波场景下,该解决方案可以正确的指示所述第一小区的上行信号所使用的空域传输滤波器,避免错误的指示其他的小区的上行信号所使用的空域传输滤波器。另外,本解决方案还对所述一段时间的起始点进行了精确的规定,避免了终端设备和网络设备对所述一段时间理解不一致而产生的不必要的收发错误。

Description

信号发送方法、信号接收方法及装置 技术领域
本发明涉及通信领域,尤其涉及一种信号发送方法、信号接收方法及装置。
背景技术
在高频通信场景下,通信链路容易受到物理条件,例如天气、障碍物、方向角度的变化等因素的影响,从而造成在原有的波束方向上传输失败的情况。波束失败恢复(BFR,Beam Failure Recovery)技术主要针对这种场景,利用对不同方向波束功率的测量结果,迅速定位新的可靠的波束方向,从而完成对链路的快速恢复。
波束失败恢复技术不仅在单载波场景非常有效,而且在多载波场景也能发挥重要的作用。在多载波场景下,终端设备(TE,Terminal Equipment)可以与一个网络设备(例如基站)或者多个网络设备相连接。当一个终端设备的不同载波同时与不同方向的网络设备连接时,由于空间方向相对独立,在某一时刻,该不同的载波上的连接可能仅有一部分发生波束失败。在该情况下,波束失败恢复技术有必要针对这种场景进行优化,例如,利用未发生波束失败的载波进行参数测量、数据传递等,从而提高系统的鲁棒性。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
目前,5G-NR(5G-New Radio)通信系统中,当波束失败恢复过程成功之后,上行传输所使用的空间传输滤波器(Spatial Domain Transmission Filter)依然是波束失败恢复之前配置的。由于上下行传输的互异性,当下行信道发生了波束失败后,对应的上行信道大概率也会发生失败。这意味着,终端设备按照原有的空间配置发送上行信号是不可靠的。
本发明实施例提供一种信号发送方法、信号接收方法及装置,终端设备在接收到 与波束失败恢复相关的下行信号的一段时间之后且在接收到或应用激活信令或重配置信令之前的时间区间内,使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号,从而提供了一种终端设备在波束失败恢复成功之后使用空域传输滤波器发送上行信号的解决方案,提高了终端设备发送上行信号的可靠性。另外,该解决方案的适用性较广,其不仅适用于特殊小区(SpCell,Special Cell)发生波束失败的场景,也适用于辅小区(SCell,Secondary Cell)发生波束失败的场景。在多载波(多服务小区被配置的)场景下,该解决方案可以正确的指示所述第一小区的上行信号所使用的空域传输滤波器,避免错误的指示其他的小区(非所述第一小区)的上行信号所使用的空域传输滤波器。
另外,本解决方案还对所述一段时间的起始点进行了精确的规定,避免了终端设备和网络设备对所述一段时间理解不一致而产生的不必要的收发错误。
根据本发明实施例的第一方面,提供一种信号发送装置,所述装置包括:发送单元,其用于在接收到与波束失败恢复相关的下行信号的一段时间之后,并且在接收到或应用激活信令或重配置信令之前,使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。
根据本发明实施例的第二方面,提供一种信号接收装置,所述装置包括:接收单元,其用于在发送了与波束失败恢复相关的下行信号的一段时间之后,并且在发送了激活信令或重配置信令或所述激活信令或重配置信令生效之前,根据和接收与波束失败恢复相关的上行信号或发送下行参考信号相关的空间信息,接收在第一小区的上行信号。
根据本发明实施例的第三方面,提供一种终端设备,所述终端设备包括根据本发明实施例的第一方面所述的装置。
根据本发明实施例的第四方面,提供一种网络设备,所述网络设备包括根据本发明实施例的第二方面所述的装置。
根据本发明实施例的第五方面,提供一种通信系统,所述通信系统包括根据本发明实施例的第三方面所述的终端设备和根据本发明实施例的第四方面所述的网络设备。
根据本发明实施例的第六方面,提供一种信号发送方法,所述方法包括:终端设备在接收到与波束失败恢复相关的下行信号的一段时间之后,并且在接收到或应用激活信令或重配置信令之前,使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。
根据本发明实施例的第七方面,提供一种信号接收方法,所述方法包括:网络设备在发送了与波束失败恢复相关的下行信号的一段时间之后,并且在发送了激活信令或重配置信令或所述激活信令或重配置信令生效之前,根据和接收与波束失败恢复相关的上行信号或发送下行参考信号相关的空间信息,接收在第一小区的上行信号。
根据本发明实施例的第八方面,提供一种计算机可读程序,其中当在信号发送装置或终端设备中执行所述程序时,所述程序使得所述信号发送装置或终端设备执行本发明实施例的第六方面所述的信号发送方法。
根据本发明实施例的第九方面,提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得所述信号发送装置或终端设备执行本发明实施例的第六方面所述的信号发送方法。
根据本发明实施例的第十方面,提供一种计算机可读程序,其中当在信号接收装置或网络设备中执行所述程序时,所述程序使得所述信号接收装置或网络设备执行本发明实施例的第七方面所述的信号接收方法。
根据本发明实施例的第十一方面,提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得所述信号接收装置或网络设备执行本发明实施例的第七方面所述的信号接收方法。
本发明的有益效果在于:终端设备在接收到与波束失败恢复相关的下行信号的一段时间之后且在接收到或应用激活信令或重配置信令之前的时间区间内,使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号,从而提供了一种终端设备在波束失败恢复成功之后使用空域传输滤波器发送上行信号的解决方案,提高了终端设备发送上行信号的可靠性。另外,该解决方案的适用性较广,其不仅适用于SpCell发生波束失败的场景,也适用于辅小区(SCell,Secondary Cell)发生波束失败的场景。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在 所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施方式,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本发明实施例的通信系统的一示意图;
图2是本发明实施例1的信号发送方法的一示意图;
图3是本发明实施例1的信号发送方法的另一示意图;
图4是本发明实施例1的发送和接收信号的一时序示意图;
图5是本发明实施例2的信号接收方法的一示意图;
图6是本发明实施例2的信号接收方法的另一示意图;
图7是本发明实施例3的信号发送方法的一示意图;
图8是本发明实施例4的信号发送装置的一示意图;
图9是本发明实施例5的信号接收装置的一示意图;
图10是本发明实施例6的终端设备的系统构成的一示意框图;
图11是本发明实施例7的网络设备的一构成示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本发明实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本发明实施例中,单数形式“一”、“该”等可以包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本实施例中,“多个”或“多种”指的是至少两个或至少两种。
在本发明实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本发明实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、天线、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能, 每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本发明实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
在本发明实施例中,小区可以是服务小区,也可以是小区所对应的载波,或者,小区可以理解为和载波一一对应。
在本发明实施例中,对于双连接操作(DC,dual connectivity operation)而言,特殊小区是指主小区组(MCG,master cell group)中的主小区(Pcell,Primary Cell)以及辅小区组(SCG,secondary cell group)中的PSCell(Primary Secondary Cell);否则,特殊小区是指主小区。
以下通过示例对本发明实施例的场景进行说明,但本发明实施例不限于此。
图1是本发明实施例的通信系统的一示意图,示意性说明了以终端设备和网络设备为例的情况,如图1所示,通信系统100可以包括网络设备101和终端设备102,为了简单起见,图1仅以一个终端设备为例进行说明,但是本发明实施例不限于一个终端设备。
在本发明实施例中,网络设备101和终端设备102之间可以进行现有的业务或者未来可实施的业务。例如,这些业务包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type  Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
实施例1
本发明实施例提供一种信号方法,该方法应用于终端设备侧。
图2是本发明实施例1的信号发送方法的一示意图。如图2所示,该方法包括:
步骤201:终端设备在接收到与波束失败恢复相关的下行信号的一段时间之后,并且在接收到或应用激活信令或重配置信令之前,使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。
这样,提供了一种终端设备在波束失败恢复成功之后使用空域传输滤波器发送上行信号的解决方案,提高了终端设备发送上行信号的可靠性。另外,该解决方案的适用性较广,其不仅适用于SpCell发生波束失败的场景,也适用于辅小区(SCell,Secondary Cell)发生波束失败的场景。在多载波(多服务小区被配置的)场景下,该解决方案可以正确的指示所述第一小区的上行信号所使用的空域传输滤波器,避免错误的指示其他的小区(非所述第一小区)的上行信号所使用的空域传输滤波器。
另外,本解决方案还对所述一段时间的起始点进行了精确的规定,避免了终端设备和网络设备对所述一段时间理解不一致而产生的不必要的收发错误。
在步骤201中,终端设备在接收到与波束失败恢复相关的下行信号的一段时间之后且在接收到或应用激活信令或重配置信令之前的时间区间内,使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。
也就是说,终端设备在接收到与波束失败恢复相关的下行信号的一段时间之后,在需要发送在第一小区的上行信号的情况下,使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器来发送该上行信号,直到该终端设备接收到或应用激活信令或重配置信令。
或者,也就是说,终端设备在接收到与波束失败恢复相关的下行信号之后,如果接收所述与波束失败恢复相关的下行信号的时刻与所述终端设备发送所述上行信号的时刻的偏移(offset)大于或等于一段时间,则使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一 小区的上行信号,直到终端设备接收到或应用激活信令或重配置信令。
在本实施例中,终端设备在接收到或应用激活信令或重配置信令之后,不再受到步骤201中的关于空域传输滤波器的使用限制。
在本实施例中,为了便于说明,将“接收到与波束失败恢复相关的下行信号”的时刻称为第一时刻,将“接收到与波束失败恢复相关的下行信号的一段时间”的时刻称为第二时刻,将“接收到或应用激活信令或重配置信令”的时刻称为第三时刻,将“发送在第一小区的上行信号”的时刻称为第四时刻。那么,在步骤201中,终端设备在所述第二时刻和所述第三时刻之间的时间区间内,使用上述规定的空域传输滤波器,发送在第一小区的上行信号。或者,也可以理解为,终端设备在所述第一时刻与所述第四时刻的偏移(offset)大于或等于一段时间,且在第三时刻之前,使用上述规定的空域传输滤波器,发送在第一小区的上行信号。
下面,首先对步骤201中的“接收到与波束失败恢复相关的下行信号的一段时间”进行示例性的说明。
在本实施例中,该与波束失败恢复相关的下行信号是网络设备向用户设备发送的与波束失败恢复相关的下行信号,例如,该与波束失败恢复相关的下行信号是波束失败恢复响应和/或波束失败恢复响应所调度的下行数据信息。
在本实施例中,该波束失败恢复响应可以是在由高层参数提供的搜索空间上接收的、由小区无线网络临时标识(C-RNTI,Cell Radio Network Temporary Identifier)或调制与编码策略小区无线网络临时标识(MCS-C-RNTI,Modulation and Coding Scheme-Cell Radio Network Temporary Identifier)加扰的下行控制信息(DCI,Downlink Control Information)。
在本实施例中,该高层参数可以由无线资源控制(RRC,Radio Resource Control)信令配置。
在本实施例中,该高层参数可以用于配置接收波束失败恢复(BFR)随机接入响应(RAR,Random Access Response)的搜索空间集合(set)。
例如,该高层参数是恢复搜索空间集合标识(recoverySearchSpaceId)。
在本实施例中,该“一段时间”可以根据实际需要而设定。
例如,该一段时间可以是预设数量的符号(symbol)、时隙(slot)或毫秒(msec)。
例如,该一段时间是K个符号,或者,K个时隙,或者,K毫秒,其中,K是大 于或等于0的整数。
在本实施例中,该一段时间的长度可以与子载波间隔(SCS,subcarrier spacing)相关。
例如,该一段时间的长度在不同的子载波间隔下,会发生变化。
例如,该一段时间的长度所对应的符号数可以正比于SCS,即,该SCS为15KHz时,该一段时间的长度为14个符号;该SCS为30KHz时,该一段时间的长度为28个符号;该SCS为60KHz时,该时间长度为56个符号,以此类推。
再例如,在该SCS为15kHz和30kHz时使用第一时间长度(例如14个符号),在该SCS高于30kHz的情况下,使用第二时间长度(例如28个符号)。
在本实施例中,该一段时间的长度也可以与该终端设备的能力(UE capability)相关。具体的说,该终端设备的能力指的是上报给网络设备的终端设备的能力。
例如,该一段时间的长度在不同终端设备能力的等级下,会发生变化。
例如,在第一UE能力等级(或上报了第一UE能力等级的信息)的情况下,该一段时间的长度为第一时间长度(例如14个符号);在第二UE能力等级(或上报了第二UE能力等级的信息)的情况下,该一段时间的长度为第二时间长度(例如28个符号),以此类推。
在本实施例中,该一段时间的长度可以是被高层信令配置的。
在本实施例中,所述一段时间也可以理解为一个阈值,当所述第一时刻与所述第四时刻的偏移大于或等于所述阈值时,且在第三时刻之前,所述终端设备使用上述规定的空域传输滤波器,发送在第一小区的上行信号。
其中,所述第一时刻,即接收到与波束失败恢复相关的下行信号的时刻,可以进一步的理解为:
例如,下行信号是所述波束失败恢复响应,那么,接收到下行信号的时刻即是接收该下行信号所在的时隙;或者,下行信号是所述波束失败恢复响应,接收到下行信号的时刻即是接收该下行信号所在的时隙的第一个或最后一个符号;或者,下行信号是所述波束失败恢复响应,那么,接收到下行信号的时刻即是接收该波束失败恢复响应(的搜索空间)所对应的控制资源集合(control resource set)的一个符号(第一个符号/最后一个符号);
再例如,下行信号是所述波束失败恢复响应所调度的下行数据信息(例如,单时 隙PDSCH,或多时隙PDSCH的其中一个时隙的PDSCH),那么,接收到下行信号的时刻即是接收该下行信号所在的时隙;或者,下行信号是所述波束失败恢复响应所调度的下行数据信息(例如,PDSCH),如果终端设备配置了单时隙PDSCH(single slot PDSCH),即配置的PDSCH重复次数为1(aggregationFactorDL=1),那么,接收到下行信号的时刻即是该下行数据信息所在的时隙;再或者,下行信号是所述波束失败恢复响应所调度的下行数据信息(例如,PDSCH),如果终端设备配置了多时隙PDSCH(multiple slot PDSCH),即配置的PDSCH重复次数大于1(aggregationFactorDL>1),那么,接收到下行信号的时刻即是该下行数据信息相关的时隙(例如,下行数据信息相关的时隙是该下行数据信息(包括多个时隙的PDSCH)的第一个时隙,或是该下行数据信息(包括多个时隙的PDSCH)的最后一个时隙)。
再例如,下行信号是所述波束失败恢复响应所调度的下行数据信息(例如,单时隙PDSCH,或多时隙PDSCH的其中一个时隙的PDSCH),那么,接收到下行信号的时刻即是该下行数据信息相关的符号(例如,该下行数据信息相关的符号是该下行信号所对应的第一个符号,或是该下行信号所对应的最后一个符号);或者,下行信号是所述波束失败恢复响应所调度的下行数据信息(例如,PDSCH),如果终端设备配置了单时隙PDSCH(single slot PDSCH),即配置的PDSCH重复次数为1(aggregationFactorDL=1),那么,接收到下行信号的时刻即是承载该下行数据信息的资源(PDSCH)的第一个或最后一个符号;再或者,下行信号是所述波束失败恢复响应所调度的下行数据信息(例如,PDSCH),如果终端设备配置了多时隙PDSCH(multiple slot PDSCH),即配置的PDSCH重复次数大于1(aggregationFactorDL>1),那么,接收到下行信号的时刻即是该下行数据信息相关的符号(例如,该下行数据信息相关的符号是该下行信号(包括多个时隙的PDSCH)的第一个时隙的PDSCH的第一个符号,或是该下行信号(包括多个时隙的PDSCH)的最后一个时隙的PDSCH的最后一个符号)。
其中,所述第四时刻,即发送在第一小区的上行信号的时刻,可以进一步的理解为:
例如,上行信号是指上行控制信息(PUCCH),那么,发送在第一小区的上行信号的时刻,即是发送在第一小区的上行控制信息所在的时隙;或者,上行信号是指上行控制信息(PUCCH),那么,发送在第一小区的上行信号的时刻,即是发送在第一 小区的上行控制信息相关的符号(例如,该上行控制信息的第一个符号或最后一个符号;再例如,发送在第一小区的上行控制信息所在的时隙的第一个符号或最后一个符号);
再例如,上行信号是指上行数据信息(例如,单时隙PUSCH,或多时隙PUSCH的其中一个时隙的PUSCH),那么,发送在第一小区的上行信号的时刻,即是发送在第一小区的上行信号所在时隙;或者,上行信号是指上行数据信息(PUSCH),那么,如果终端设备配置了单时隙PUSCH(single slot PUSCH),即配置的PUSCH重复次数等于1(repK=1),发送在第一小区的上行信号的时刻,即是发送在第一小区的上行数据信息所在的时隙;或者,上行信号是指上行数据信息(PUSCH),那么,如果终端设备配置了多时隙PUSCH(multiple slot PUSCH),即配置的PUSCH重复次数大于1(repK>1),发送在第一小区的上行信号的时刻,即是发送在第一小区的上行数据信息相关的时隙(例如,发送在第一小区的上行数据信息(包括多个时隙的PUSCH)的第一个时隙或最后一个时隙);
再例如,上行信号是指上行数据信息(例如,单时隙PUSCH,或多时隙PUSCH的其中一个slot的PUSCH),那么,发送在第一小区的上行信号的时刻,即是发送在第一小区的上行数据信息相关的符号(例如,该上行数据信息相关的符号即是该上行数据信息的第一个符号或最后一个符号);或者,上行信号是指上行数据信息(PUSCH),那么,如果终端设备配置了单时隙PUSCH(single slot PUSCH),即配置的PUSCH重复次数等于1(repK=1),发送在第一小区的上行信号的时刻,即是承载该上行数据信息的资源的第一个符号或最后一个符号;或者,上行信号是指上行数据信息(PUSCH),那么,如果终端设备配置了多时隙PUSCH(multiple slot PUSCH),即配置的PUSCH重复次数大于1(repK>1),发送在第一小区的上行信号的时刻,即是发送在第一小区的上行数据信息相关的符号(例如,发送在第一小区的上行数据信息(包括多个时隙的PUSCH)的第一个时隙PUSCH的第一个符号或最后一个时隙PUSCH的最后一个符号)。
其中,所述第三时刻,即接收到或应用激活信令或重配置信令的时刻,可以进一步的理解为:
例如,接收到或应用激活信令或重配置信令的时刻是应用所述激活信令或重配置信令的时刻,更具体的说是所述激活信令或重配置信令生效的时隙;或者,接收到或 应用激活信令或重配置信令的时刻是接收到激活信令或重配信令所对应的下行信号(例如,单时隙PDSCH,或多时隙PDSCH的其中一个时隙的PDSCH)所在的时隙;再或者,如果终端设备配置了单时隙PDSCH(single slot PDSCH),即配置的PDSCH重复次数为1(aggregationFactorDL=1),则接收到或应用激活信令或重配置信令的时刻是接收到激活信令或重配信令所对应的PDSCH所在的时隙;再或者,如果终端设备配置了多时隙PDSCH(multiple slot PDSCH),即配置的PDSCH重复次数大于1(aggregationFactorDL>1),则接收到或应用激活信令或重配置信令的时刻是接收到激活信令或重配信令所对应的下行信号(包括多时隙的PDSCH)的第一个或最后一个时隙。
下面,对步骤201中的“接收到或应用激活信令或重配置信令”进行示例性的说明。
在本实施例中,该激活信令也可以是一种指示信令。
例如,该激活信令可以是以下的至少一个:
介质访问控制(MAC,Media Access Control)层的激活信令;
指示该终端设备天线面板切换的信令;以及
目标小区是该第一小区的激活信令。
例如,该MAC层的激活信令用于指示至少一个已配置的PUCCH资源的发送所对应的空域传输滤波器,例如该激活信令指示的是PUCCH-SpatialRelationInfo。
在本实施例中,该重配置信令可以是以下的至少一个:
RRC信令;
与该终端设备天线面板相关的重配置信令;以及
目标小区是该第一小区的重配置信令。
例如,该RRC信令重配置了至少一个已配置的物理上行链路控制信道(PUCCH,Physical Uplink Control Channel)资源所关联的空间关系参数。
例如,该空间关系参数是PUCCH-SpatialRelationInfo。
以上对“接收到与波束失败恢复相关的下行信号的一段时间”和“接收到或应用激活信令或重配置信令”进行了示例性的说明,下面,对步骤201中的“使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号”进行示例性的说明。
在本实施例中,该与波束失败恢复相关的上行信号可以是以下的至少一种信号:
波束失败恢复请求;
为了链路失败恢复的物理随机接入信道(PRACH)发送(transmission);以及
与所述与波束失败恢复相关的下行信号相关联的物理随机接入信道(PRACH)发送(transmission)。具体的说,所述物理随机接入信道(PRACH)发送(transmission)和所述与波束失败恢复相关的下行信号可以是时间的关联,例如,在时隙n进行所述物理随机接入信道(PRACH)发送(transmission),在时隙n+4接收相应的所述与波束失败恢复相关的下行信号(为了波束失败恢复的随机接入响应)。
在本实施例中,该与波束失败恢复相关的上行信号可以是由高层参数配置的。
在本实施例中,该高层参数可以由RRC信令承载。更具体地说,该高层参数可以用于配置波束失败恢复(BFR)专用的发送该与波束失败恢复相关的上行信号的资源。例如,该高层参数为PRACH-ResourceDedicatedBFR。
在本实施例中,该下行参考信号可以是该第一小区的下行参考信号。
在本实施例中,该下行参考信号的索引可以由MAC层的信令提供。例如,该下行参考信号的索引是由MAC层从高层参数中选出的。
例如,该下行参考信号的索引为q new,MAC层实体从RRC层参数中选出q new。例如,该RRC层参数为表示候选波束参考信号列表的参数candidateBeamRSList。
在步骤201中,当发送该与波束失败恢复相关的上行信号所在的第二小区与该第一小区是同一小区时,使用和发送与波束失败恢复相关的上行信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号;当发送该与波束失败恢复相关的上行信号所在的第二小区与该第一小区不是同一小区时,使用和接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。
图3是本发明实施例1的信号发送方法的另一示意图。如图3所示,该方法包括:
步骤301:终端设备判断发送该与波束失败恢复相关的上行信号所在的第二小区与该第一小区是否为同一小区,当判定结果为“是”时,进入步骤302,当判定结果为“否”时,进入步骤303;
步骤302:该终端设备在接收到与波束失败恢复相关的下行信号的一段时间之后,并且在接收到或应用激活信令或重配置信令之前,使用和发送与波束失败恢复相关的上行信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号;
步骤303:该终端设备在接收到与波束失败恢复相关的下行信号的一段时间之后,并且在接收到或应用激活信令或重配置信令之前,使用和接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。
在本实施例中,该第一小区可以是以下小区中的至少一个:
发送该与波束失败恢复相关的上行信号所在的小区;
发起该与波束失败恢复相关的上行信号的发送所对应的随机过程所在的小区;
该与波束失败恢复相关的上行信号的发送所对应的随机过程的配置信息所在的小区;以及
接收该与波束失败恢复相关的下行信号所在的小区;
至少一个或所有的激活的小区;其中,激活的小区是指网络设备通过指示信令为终端设备激活的小区。
在该第一小区是发送该与波束失败恢复相关的上行信号所在的小区的情况下,该第一小区与第二小区是同一小区。
在本实施例中,该在第一小区上的上行信号例如是在物理上行链路控制信道(PUCCH)上发送的上行信号和/或在物理上行共享信道(PUSCH)上发送的上行信号。
例如,该在物理上行链路控制信道上发送的上行信号是用于承载第一控制信息所调度的下行信号的确认信息(例如,HARQ ACK/NACK信息)。其中,该第一控制信息所关联的搜索空间与该与波束失败恢复相关的下行信号所关联的搜索空间相同。例如,该搜索空间是由recoverySearchSpaceId提供的。
图4是本发明实施例1的发送和接收信号的一时序示意图。如图4所示,在发生波束失败之后,终端设备向网络设备发送与波束失败恢复相关的上行信号,例如波束恢复请求;终端设备在第一时刻接收到来自网络设备的与波束失败恢复相关的下行信号,例如波束失败恢复响应;在成功接收到该与波束失败恢复相关的下行信号的第一时刻的一段时间T1之后的第二时刻开始,直到该终端设备接收到或应用来自网络设备的激活信令或重配置信令的第三时刻结束的时间区间T2内,该终端设备使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号(第四时刻),该上行信号例如是在PUCCH或PUSCH上发生的上行信号。
由上述实施例可知,终端设备在接收到与波束失败恢复相关的下行信号的一段时间之后且在接收到或应用激活信令或重配置信令之前的时间区间内,使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。从而提供了一种终端设备在波束失败恢复成功之后使用空域传输滤波器发送上行信号的解决方案,提高了终端设备发送上行信号的可靠性。另外,该解决方案的适用性较广,其不仅适用于SpCell发生波束失败的场景,也适用于辅小区(SCell,Secondary Cell)发生波束失败的场景。另外,本解决方案还对所述一段时间的起始点做了精确的规定,避免了终端设备和网络设备对所述一段时间的起始点理解不一致而产生的不必要的收发错误。
实施例2
本发明实施例提供一种信号接收方法,该方法应用于网络设备侧,该方法对应于实施例1记载的信号发送方法。
图5是本发明实施例2的信号接收方法的一示意图。如图5所示,该方法包括:
步骤501:网络设备在发送了与波束失败恢复相关的下行信号的一段时间之后,并且在发送了激活信令或重配置信令或该激活信令或重配置信令生效之前,根据和接收与波束失败恢复相关的上行信号或发送下行参考信号相关的空间信息,接收在第一小区的上行信号。
这样,提供了一种网络设备在波束失败恢复成功之后根据空间信息接收上行信号的解决方案,提高了网络设备接收上行信号的可靠性。另外,该解决方案的适用性较广,其不仅适用于SpCell发生波束失败的场景,也适用于辅小区(SCell,Secondary Cell)发生波束失败的场景。在多载波(多服务小区被配置的)场景下,该解决方案可以正确的指示发送所述第一小区的上行信号所依据的空间信息,避免错误的指示其他的小区(非所述第一小区)的上行信号所根据的空间信息。
另外,本解决方案还对所述一段时间的起始点进行了精确的规定,避免了终端设备和网络设备对所述一段时间理解不一致而产生的不必要的收发错误。
在本实施例中,根据和接收与波束失败恢复相关的上行信号或发送下行参考信号相关的空间信息,接收在第一小区的上行信号,例如是,使用和接收与波束失败恢复相关的上行信号或发送下行参考信号的空域传输滤波器相同的空域传输滤波器,接收在第一小区的上行信号。
在步骤501中,网络设备在发送与波束失败恢复相关的下行信号的一段时间之后且在发送激活信令或重配置信令或所述激活信令或重配置信令生效之前的时间区间内,根据和接收与波束失败恢复相关的上行信号或发送下行参考信号相关的空间信息,接收在第一小区的上行信号。
也就是说,网络设备在发送与波束失败恢复相关的下行信号的一段时间之后,在需要接收在第一小区的上行信号的情况下,根据和接收与波束失败恢复相关的上行信号或发送下行参考信号相关的空间信息来接收该上行信号,直到该网络设备发送激活信令或重配置信令或该激活信令或重配置信令生效。
或者,也就是说,网络设备在发送与波束失败恢复相关的下行信号之后,如果发送所述与波束失败恢复相关的下行信号的时刻与所述网络设备接收所述上行信号的时刻的偏移(offset)大于或等于一段时间,则根据和接收与波束失败恢复相关的上行信号或发送下行参考信号的空域传输滤波器相关的空间信息,接收在第一小区的上行信号,直到网络设备发送激活信令或重配置信令或该激活信令或重配置信令生效。
在本实施例中,为了便于说明,将“发送与波束失败恢复相关的下行信号”的时刻称为第一时刻,将“发送与波束失败恢复相关的下行信号的一段时间”的时刻称为第二时刻,将“发送激活信令或重配置信令或该激活信令或重配置信令生效”的时刻称为第三时刻,将“接收在第一小区的上行信号”的时刻称为第四时刻。那么,在步骤501中,网络设备在所述第二时刻和所述第三时刻之间的时间区间内,使用上述空间信息,接收在第一小区的上行信号。或者,也可以理解为,网络设备在所述第一时刻与所述第四时刻的偏移(offset)大于或等于一段时间,且在第三时刻之前,根据上述空间信息,接收在第一小区的上行信号。在本实施例中,网络设备在发送激活信令或重配置信令或该激活信令或重配置信令生效之后,不再受到步骤501中的关于空间信息的使用限制。
在本实施例中,该与波束失败恢复相关的下行信号是网络设备向用户设备发送的与波束失败恢复相关的下行信号,例如,该与波束失败恢复相关的下行信号是波束失败恢复响应和/或波束失败恢复响应所调度的下行数据信息。
在本实施例中,该波束失败恢复响应可以是在由高层参数提供的搜索空间上发送的、由小区无线网络临时标识(C-RNTI,Cell Radio Network Temporary Identifier)或调制与编码策略小区无线网络临时标识(MCS-C-RNTI,Modulation and Coding  Scheme-Cell Radio Network Temporary Identifier)加扰的下行控制信息(DCI,Downlink Control Information)。
在本实施例中,该高层参数可以由无线资源控制(RRC,Radio Resource Control)信令配置。
在本实施例中,该高层参数可以用于配置发生波束失败恢复(BFR)随机接入响应(RAR,Random Access Response)的搜索空间集合(set)。
例如,该高层参数是恢复搜索空间集合标识(recoverySearchSpaceId)。
在本实施例中,该“一段时间”可以根据实际需要而设定。
例如,该一段时间可以是预设数量的符号(symbol)、时隙(slot)或毫秒(msec)。
例如,该一段时间是K个符号,或者,K个时隙,或者,K毫秒,其中,K是大于或等于0的整数。
在本实施例中,该一段时间的长度可以与子载波间隔(SCS,subcarrier spacing)相关。
例如,该一段时间的长度在不同的子载波间隔下,会发生变化。
例如,该一段时间的长度所对应的符号数可以正比于SCS,即,该SCS为15KHz时,该一段时间的长度为14个符号;该SCS为30KHz时,该一段时间的长度为28个符号;该SCS为60KHz时,该时间长度为56个符号,以此类推。
再例如,在该SCS为15kHz和30kHz时使用第一时间长度(例如14个符号),在该SCS高于30kHz的情况下,使用第二时间长度(例如28个符号)。
在本实施例中,该一段时间的长度也可以与该终端设备的能力(UE capability)相关。具体的说,该终端设备的能力指的是上报给网络设备的终端设备的能力。
例如,该一段时间的长度在不同终端设备能力的等级下,会发生变化。
例如,在第一UE能力等级(或上报的第一UE能力等级的信息)的情况下,该一段时间的长度为第一时间长度(例如14个符号);在第二UE能力等级(或上报的第二UE能力等级的信息)的情况下,该一段时间的长度为第二时间长度(例如28个符号),以此类推。
在本实施例中,该一段时间的长度可以是被高层信令配置的。
在本实施例中,所述一段时间也可以理解为一个阈值,当所述第一时刻与所述第四时刻的偏移大于或等于所述阈值时,且在第三时刻之前,所述网络设备根据上述空 间信息,接收在第一小区的上行信号。
在本实施例中,关于“第一时刻”、“第二时刻”、“第三时刻”以及“第四时刻”的具体解释可以与实施例1中的记载类似,此处不再重复说明。
在本实施例中,该激活信令也可以是一种指示信令。
例如,该激活信令可以是以下的至少一个:
介质访问控制(MAC,Media Access Control)层的激活信令;
指示该网络设备所指示的终端设备天线面板切换的信令;以及
目标小区是该第一小区的激活信令。
例如,该MAC层的激活信令用于指示至少一个已配置的PUCCH资源的接收所对应的空域传输滤波器,例如该激活信令指示的是PUCCH-SpatialRelationInfo。
在本实施例中,该重配置信令可以是以下的至少一个:
RRC信令;
与该网络设备所指示的终端设备天线面板相关的重配置信令;以及
目标小区是该第一小区的重配置信令。
例如,该RRC信令重配置了至少一个已配置的物理上行链路控制信道(PUCCH,Physical Uplink Control Channel)资源所关联的空间关系参数。
在本实施例中,该与波束失败恢复相关的上行信号可以是以下的至少一种信号:
波束失败恢复请求;
为了链路失败恢复的物理随机接入信道(PRACH)接收(reception);以及
与所述与波束失败恢复相关的下行信号相关联的物理随机接入信道(PRACH)接收(reception)。具体的说,所述物理随机接入信道(PRACH)接收(reception)和所述与波束失败恢复相关的下行信号可以是时间的关联,例如,在时隙n进行所述物理随机接入信道(PRACH)接收(reception),在时隙n+4发送相应的所述与波束失败恢复相关的下行信号(为了波束失败恢复的随机接入响应)。
在本实施例中,该与波束失败恢复相关的上行信号可以是由高层参数承载的。
在本实施例中,该高层参数可以由RRC信令承载。
更具体地说,
该高层参数可以用于配置波束失败恢复(BFR)专用的接收该与波束失败恢复相关的上行信号的资源。例如,该高层参数为PRACH-ResourceDedicatedBFR。
在本实施例中,该下行参考信号可以是该第一小区的下行参考信号。
在本实施例中,该下行参考信号的索引可以由MAC层的信令提供。例如,该下行参考信号的索引是由MAC层从高层参数中选出的。
例如,该下行参考信号的索引为q new,MAC层实体从RRC层参数中选出q new。例如,该RRC层参数为表示候选波束参考信号列表的参数candidateBeamRSList。
在步骤501中,当接收该与波束失败恢复相关的上行信号所在的第二小区与该第一小区是同一小区时,根据和接收与波束失败恢复相关的上行信号相关的空间信息,接收在第一小区的上行信号;当接收该与波束失败恢复相关的上行信号所在的第二小区与该第一小区不是同一小区时,根据和发送下行参考信号相关的空间信息,接收在第一小区的上行信号。
图6是本发明实施例2的信号接收方法的另一示意图。如图6所示,该方法包括:
步骤601:网络设备判断接收该与波束失败恢复相关的上行信号所在的第二小区与该第一小区是否为同一小区,当判定结果为“是”时,进入步骤302,当判定结果为“否”时,进入步骤303;
步骤602:该网络设备在发送与波束失败恢复相关的下行信号的一段时间之后,并且在发送激活信令或重配置信令或该激活信令或重配置信令生效之前,根据和接收与波束失败恢复相关的上行信号相关的空间信息,接收在第一小区的上行信号;
步骤603:该网络设备在发送与波束失败恢复相关的下行信号的一段时间之后,并且在发送激活信令或重配置信令或该激活信令或重配置信令生效之前,根据和发送下行参考信号相关的空间信息,接收在第一小区的上行信号。
在本实施例中,该第一小区可以是以下小区中的至少一个:
接收该与波束失败恢复相关的上行信号所在的小区;
发起该与波束失败恢复相关的上行信号的发送所对应的随机过程所在的小区;
该与波束失败恢复相关的上行信号的发送所对应的随机过程的配置信息所在的小区;以及
发送该与波束失败恢复相关的下行信号所在的小区;以及
至少一个或所有的激活的小区;其中,激活的小区是指网络设备通过指示信令为终端设备激活的小区。
在该第一小区是发送该与波束失败恢复相关的上行信号所在的小区的情况下,该 第一小区与第二小区是同一小区。
在本实施例中,该在第一小区上的上行信号例如是在物理上行链路控制信道(PUCCH)上接收的上行信号和/或在物理上行共享信道(PUSCH)上接收的上行信号。
例如,该在物理上行链路控制信道上接收的上行信号是用于承载第一控制信息所调度的下行信号的确认信息(例如,HARQ ACK/NACK信息)。其中,该第一控制信息所关联的搜索空间与该与波束失败恢复相关的下行信号所关联的搜索空间相同。例如,该搜索空间是由recoverySearchSpaceId提供的。
由上述实施例可知,网络设备在发送与波束失败恢复相关的下行信号的一段时间之后且在发送激活信令或重配置信令或该激活信令或重配置信令生效之前的时间区间内,根据和接收与波束失败恢复相关的上行信号或发送下行参考信号相关的空间信息,接收在第一小区的上行信号。从而提供了一种网络设备在波束失败恢复成功之后根据空间信息接收上行信号的解决方案,提高了网络设备接收上行信号的可靠性。另外,该解决方案的适用性较广,其不仅适用于SpCell发生波束失败的场景,也适用于辅小区(SCell,Secondary Cell)发生波束失败的场景。另外,本解决方案还对所述一段时间的起始点做了精确的规定,避免了终端设备和网络设备对所述一段时间的起始点理解不一致而产生的不必要的收发错误。
实施例3
本发明实施例还提供一种信号发送方法,该方法应用于终端设备侧和网络设备侧,其对应于实施例1的信号发送方法和实施例2的信号接收方法,因此其具体的实施可以参照实施例1和2,重复之处不再赘述。
图7是本发明实施例3的信号发送方法的一示意图。如图7所示,该方法包括:
步骤701:终端设备向网络设备发送与波束失败恢复相关的上行信号;
步骤702:网络设备向用户设备发送与波束失败恢复相关的下行信号;
步骤703:终端设备在接收到与波束失败恢复相关的下行信号的一段时间之后,并且在接收到或应用激活信令或重配置信令之前,使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,向网络设备发送在第一小区的上行信号;
步骤704:网络设备向终端设备发送激活信令或重配置信令。
在本实施例中,上述各个步骤的实施方法可以参见实施例1和2中的记载,此处不再赘述。
由上述实施例可知,终端设备在接收到与波束失败恢复相关的下行信号的一段时间之后且在接收到或应用激活信令或重配置信令之前的时间区间内,使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。从而提供了一种终端设备在波束失败恢复成功之后使用空域传输滤波器发送上行信号的解决方案,提高了终端设备发送上行信号的可靠性。另外,该解决方案的适用性较广,其不仅适用于SpCell发生波束失败的场景,也适用于辅小区(SCell,Secondary Cell)发生波束失败的场景。另外,本解决方案还对所述一段时间的起始点做了精确的规定,避免了终端设备和网络设备对所述一段时间的起始点理解不一致而产生的不必要的收发错误。
实施例4
本发明实施例还提供一种信号发送装置,其应用于终端设备侧。该装置对应于实施例1所述的信号发送方法,因此其具体的实施可以参照实施例1,重复之处不再赘述。
图8是本发明实施例4的信号发送装置的一示意图。如图8所示,信号发送装置800包括:
发送单元801,其用于在接收到与波束失败恢复相关的下行信号的一段时间之后,并且在接收到或应用激活信令或重配置信令之前,使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。
在本实施例中,该发送单元801当发送该与波束失败恢复相关的上行信号所在的第二小区与该第一小区是同一小区时,使用和发送与波束失败恢复相关的上行信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号;当发送该与波束失败恢复相关的上行信号所在的第二小区与该第一小区不是同一小区时,使用和接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。
在本实施例中,发送单元801的功能的具体实现可以参照实施例1中的相应步骤的记载,此处不再赘述。
由上述实施例可知,终端设备在接收到与波束失败恢复相关的下行信号的一段时间之后且在接收到或应用激活信令或重配置信令之前的时间区间内,使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。从而提供了一种终端设备在波束失败恢复成功之后使用空域传输滤波器发送上行信号的解决方案,提高了终端设备发送上行信号的可靠性。另外,该解决方案的适用性较广,其不仅适用于SpCell发生波束失败的场景,也适用于辅小区(SCell,Secondary Cell)发生波束失败的场景。另外,本解决方案还对所述一段时间的起始点做了精确的规定,避免了终端设备和网络设备对所述一段时间的起始点理解不一致而产生的不必要的收发错误。
实施例5
本发明实施例还提供一种信号接收装置,其应用于网络设备侧。该装置对应于实施例2所述的信号接收方法,因此其具体的实施可以参照实施例2,重复之处不再赘述。
图9是本发明实施例5的信号接收装置的一示意图。如图9所示,信号发送装置900包括;
接收单元901,其用于在发送了与波束失败恢复相关的下行信号的一段时间之后,并且在发送了激活信令或重配置信令或该激活信令或重配置信令生效之前,根据和接收与波束失败恢复相关的上行信号或发送下行参考信号相关的空间信息,接收在第一小区的上行信号。
在本实施例中,该接收单元901当接收该与波束失败恢复相关的上行信号所在的第二小区与该第一小区是同一小区时,根据和接收与波束失败恢复相关的上行信号相关的空间信息,接收在第一小区的上行信号;当接收该与波束失败恢复相关的上行信号所在的第二小区与该第一小区不是同一小区时,根据和发送下行参考信号相关的空间信息,接收在第一小区的上行信号。
在本实施例中,接收单元901的功能的具体实现可以参照实施例2中的相应步骤的记载,此处不再赘述。
由上述实施例可知,网络设备在发送与波束失败恢复相关的下行信号的一段时间之后且在发送激活信令或重配置信令或该激活信令或重配置信令生效之前的时间区间内,根据和接收与波束失败恢复相关的上行信号或发送下行参考信号相关的空间信 息,接收在第一小区的上行信号。从而提供了一种网络设备在波束失败恢复成功之后根据空间信息接收上行信号的解决方案,提高了网络设备接收上行信号的可靠性。另外,该解决方案的适用性较广,其不仅适用于SpCell发生波束失败的场景,也适用于辅小区(SCell,Secondary Cell)发生波束失败的场景。另外,本解决方案还对所述一段时间的起始点做了精确的规定,避免了终端设备和网络设备对所述一段时间的起始点理解不一致而产生的不必要的收发错误。
实施例6
本发明实施例还提供一种终端设备,该终端设备包括如实施例4所述的信号发送装置。
图10是本发明实施例6的终端设备的系统构成的一示意框图。如图10所示,终端设备1000可以包括处理器1010和存储器1020;存储器1020耦合到处理器1010。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
在一个实施方式中,信号发送装置的功能可以被集成到处理器1410中。其中,处理器1010可以被配置为:在接收到与波束失败恢复相关的下行信号的一段时间之后,并且在接收到或应用激活信令或重配置信令之前,使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。
例如,当发送该与波束失败恢复相关的上行信号所在的第二小区与该第一小区是同一小区时,使用和发送所述与波束失败恢复相关的上行信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。
例如,当发送该与波束失败恢复相关的上行信号所在的第二小区与该第一小区不是同一小区时,使用和接收所述下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。
在另一个实施方式中,信号发送装置可以与处理器1010分开配置,例如可以将信号发送装置配置为与处理器1010连接的芯片,通过处理器1010的控制来实现信号发送装置的功能。
如图10所示,该终端设备1000还可以包括:通信模块1030、输入单元1040、显示器1050、电源1060。值得注意的是,终端设备1000也并不是必须要包括图10 中所示的所有部件;此外,终端设备1000还可以包括图10中没有示出的部件,可以参考相关技术。
如图10所示,处理器1010有时也称为控制器或操作控件,可以包括微处理器或其他处理器装置和/或逻辑装置,该处理器1010接收输入并控制终端设备1000的各个部件的操作。
其中,存储器1020,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存各种数据,此外还可存储执行有关信息的程序。并且处理器1010可执行该存储器1020存储的该程序,以实现信息存储或处理等。其他部件的功能与现有类似,此处不再赘述。终端设备1000的各部件可以通过专用硬件、固件、软件或其结合来实现,而不偏离本发明的范围。
由上述实施例可知,终端设备在接收到与波束失败恢复相关的下行信号的一段时间之后且在接收到或应用激活信令或重配置信令之前的时间区间内,使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。从而提供了一种终端设备在波束失败恢复成功之后使用空域传输滤波器发送上行信号的解决方案,提高了终端设备发送上行信号的可靠性。另外,该解决方案的适用性较广,其不仅适用于SpCell发生波束失败的场景,也适用于辅小区(SCell,Secondary Cell)发生波束失败的场景。另外,本解决方案还对所述一段时间的起始点做了精确的规定,避免了终端设备和网络设备对所述一段时间的起始点理解不一致而产生的不必要的收发错误。
实施例7
本发明实施例还提供一种网络设备,该网络设备包括如实施例5所述的信号接收装置。
图11是本发明实施例7的网络设备的一构成示意图。如图11所示,网络设备1100可以包括:处理器(processor)1110和存储器1120;存储器1120耦合到处理器1110。其中该存储器1120可存储各种数据;此外还存储信息处理的程序1130,并且在处理器1110的控制下执行该程序1130,以接收终端设备发送的各种信息、并且向终端设备发送各种信息。
在一个实施方式中,信号接收装置的功能可以被集成到处理器1110中。其中, 处理器1110可以被配置为:在发送了与波束失败恢复相关的下行信号的一段时间之后,并且在发送了激活信令或重配置信令或该激活信令或重配置信令生效之前,根据和接收与波束失败恢复相关的上行信号或发送下行参考信号相关的空间信息,接收在第一小区的上行信号。
例如,当接收该与波束失败恢复相关的上行信号所在的第二小区与该第一小区是同一小区时,根据和接收所述与波束失败恢复相关的上行信号相关的空间信息,接收在第一小区的上行信号。
例如,当接收该与波束失败恢复相关的上行信号所在的第二小区与该第一小区不是同一小区时,根据和发送所述下行参考信号相关的空间信息,接收在第一小区的上行信号。
在另一个实施方式中,信号接收装置可以与处理器1110分开配置,例如可以将信号接收装置配置为与处理器1110连接的芯片,通过处理器1110的控制来实现信号接收装置的功能。
此外,如图11所示,网络设备1100还可以包括:收发机1140和天线1150等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1100也并不是必须要包括图11中所示的所有部件;此外,网络设备1100还可以包括图11中没有示出的部件,可以参考现有技术。
由上述实施例可知,网络设备在发送与波束失败恢复相关的下行信号的一段时间之后且在发送激活信令或重配置信令或该激活信令或重配置信令生效之前的时间区间内,根据和接收与波束失败恢复相关的上行信号或发送下行参考信号相关的空间信息,接收在第一小区的上行信号。从而提供了一种网络设备在波束失败恢复成功之后根据空间信息接收上行信号的解决方案,提高了网络设备接收上行信号的可靠性。另外,该解决方案的适用性较广,其不仅适用于SpCell发生波束失败的场景,也适用于辅小区(SCell,Secondary Cell)发生波束失败的场景。另外,本解决方案还对所述一段时间的起始点做了精确的规定,避免了终端设备和网络设备对所述一段时间的起始点理解不一致而产生的不必要的收发错误。
实施例8
本发明实施例还提供一种通信系统,包括如实施例6所述的终端设备和/或如实施例7所述的网络设备。
例如,该通信系统的结构可以参照图1,如图1所示,通信系统100包括网络设备101和终端设备102,终端设备102与实施例6中记载的终端设备相同,网络设备101与实施例7中记载的网络设备相同,重复的内容不再赘述。
由上述实施例可知,终端设备在接收到与波束失败恢复相关的下行信号的一段时间之后且在接收到或应用激活信令或重配置信令之前的时间区间内,使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。从而提供了一种终端设备在波束失败恢复成功之后使用空域传输滤波器发送上行信号的解决方案,提高了终端设备发送上行信号的可靠性。另外,该解决方案的适用性较广,其不仅适用于SpCell发生波束失败的场景,也适用于辅小区(SCell,Secondary Cell)发生波束失败的场景。另外,本解决方案还对所述一段时间的起始点做了精确的规定,避免了终端设备和网络设备对所述一段时间的起始点理解不一致而产生的不必要的收发错误。
本发明实施例以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明实施例涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明实施例还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图8中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图2所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或 者大容量的闪存装置中。
针对图8中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本发明所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对图8描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
附记1、一种信号发送装置,所述装置包括:
发送单元,其用于在接收到与波束失败恢复相关的下行信号的一段时间之后,并且在接收到或应用激活信令或重配置信令之前,使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。
附记2、根据附记1所述的装置,其中,
所述发送单元当发送所述与波束失败恢复相关的上行信号所在的第二小区与所述第一小区是同一小区时,使用和发送与所述波束失败恢复相关的上行信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。
附记3、根据附记1或2所述的装置,其中,
所述发送单元当发送所述与波束失败恢复相关的上行信号所在的第二小区与所述第一小区不是同一小区时,使用和接收所述下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。
附记4、根据附记1所述的装置,其中,
所述与波束失败恢复相关的下行信号是波束失败恢复响应和/或波束失败恢复响应所调度的下行数据信息。
附记5、根据附记4所述的装置,其中,
所述波束失败恢复响应是在由高层参数提供的搜索空间上接收的、由小区无线网络临时标识(C-RNTI)或调制与编码策略小区无线网络临时标识(MCS-C-RNTI)加扰的下行控制信息(DCI)。
附记6、根据附记5所述的装置,其中,
所述高层参数由无线资源控制(RRC)信令配置,和/或,
所述高层参数用于配置接收波束失败恢复随机接入响应(BFR RAR)的搜索空间集合(set)。
附记7、根据附记1所述的装置,其中,
所述一段时间满足以下中的至少一个:
所述一段时间是预设数量的符号、时隙或毫秒;
所述一段时间的长度是被高层信令配置的;
所述一段时间的长度与子载波间隔(subcarrier spacing,SCS)相关;以及
所述一段时间的长度与终端设备的能力(UE capability)相关。
附记8、根据附记1所述的装置,其中,
所述与波束失败恢复相关的上行信号是以下的至少一种:
波束失败恢复请求;
为了链路失败恢复的物理随机接入信道(PRACH)发送(transmission);以及
与所述与波束失败恢复相关的下行信号相关联的物理随机接入信道(PRACH)发送(transmission)。
附记9、根据附记1或8所述的装置,其中,
所述与波束失败恢复相关的上行信号是由高层参数配置的。
附记10、根据附记9所述的装置,其中,
所述高层参数由无线资源控制(RRC)信令承载,和/或,
所述高层参数用于配置波束失败恢复(BFR)专用的发送所述与波束失败恢复相关的上行信号的资源。
附记11、根据附记1所述的装置,其中,
所述下行参考信号是所述第一小区的下行参考信号,和/或,
所述下行参考信号的索引由介质访问控制(MAC)层的信令提供。
附记12、根据附记11所述的装置,其中,
所述下行参考信号的索引是由MAC层从高层参数中选出的。
附记13、根据附记1所述的装置,其中,
所述第一小区是以下小区中的至少一个:
发送所述与波束失败恢复相关的上行信号所在的小区;
发起所述与波束失败恢复相关的上行信号的发送所对应的随机过程所在的小区;
所述与波束失败恢复相关的上行信号的发送所对应的随机过程的配置信息所在的小区;
接收所述与波束失败恢复相关的下行信号所在的小区;以及
至少一个或所有的激活的小区;其中,所述激活的小区是指网络设备通过指示信令为终端设备激活的小区。
附记14、根据附记13所述的装置,其中,
所述在第一小区的上行信号是在物理上行链路控制信道(PUCCH)上发送的上行信号和/或在物理上行共享信道(PUSCH)上发送的上行信号。
附记15、根据附记14所述的装置,其中,
所述在物理上行链路控制信道上发送的上行信号是用于承载第一控制信息所调度的下行信号的确认信息。
附记16、根据附记15所述的装置,其中,
所述第一控制信息所关联的搜索空间与所述与波束失败恢复相关的下行信号所关联的搜索空间相同。
附记17、根据附记1所述的装置,其中,
所述激活信令是以下的至少一个:
MAC层的激活信令;
指示终端设备天线面板切换的信令;以及
目标小区是所述第一小区的激活信令。
附记18、根据附记17所述的装置,其中,
所述MAC层的激活信令用于指示发送PUCCH资源所对应的空域传输滤波器。
附记19、根据附记1所述的装置,其中,
所述重配置信令是以下的至少一个:
RRC信令;
与终端设备天线面板相关的重配置信令;以及
目标小区是所述第一小区的重配置信令。
附记20、根据附记19所述的装置,其中,
所述RRC信令重配置了至少一个已配置的PUCCH资源所关联的空间关系参数。
附记21、一种信号接收装置,所述装置包括:
接收单元,其用于在发送了与波束失败恢复相关的下行信号的一段时间之后,并且在发送了激活信令或重配置信令或所述激活信令或重配置信令生效之前,根据和接收与波束失败恢复相关的上行信号或发送下行参考信号相关的空间信息,接收在第一小区的上行信号。
附记22、根据附记21所述的装置,其中,
所述接收单元当接收所述与波束失败恢复相关的上行信号所在的第二小区与所述第一小区是同一小区时,根据和接收所述与波束失败恢复相关的上行信号相关的空间信息,接收在第一小区的上行信号。
附记23、根据附记21或22所述的装置,其中,
所述接收单元当接收所述与波束失败恢复相关的上行信号所在的第二小区与所述第一小区不是同一小区时,根据和发送所述下行参考信号相关的空间信息,接收在第一小区的上行信号。
附记24、根据附记21所述的装置,其中,
所述与波束失败恢复相关的下行信号是波束失败恢复响应和/或波束失败恢复响应所调度的下行数据信息。
附记25、根据附记24所述的装置,其中,
所述波束失败恢复响应是在由高层参数提供的搜索空间上发送的、由小区无线网络临时标识(C-RNTI)或调制与编码策略小区无线网络临时标识(MCS-C-RNTI)加扰的下行控制信息(DCI)。
附记26、根据附记25所述的装置,其中,
所述高层参数由无线资源控制(RRC)信令配置,和/或,
所述高层参数用于配置发生波束失败恢复随机接入响应(BFR RAR)的搜索空间集合(set)。
附记27、根据附记21所述的装置,其中,
所述一段时间满足以下中的至少一个:
所述一段时间是预设数量的符号、时隙或毫秒;
所述一段时间的长度是被高层信令配置的;
所述一段时间的长度与子载波间隔(subcarrier spacing,SCS)相关;以及
所述一段时间的长度与终端设备的能力(UE capability)相关。
附记28、根据附记21所述的装置,其中,
所述与波束失败恢复相关的上行信号是以下的至少一种:
波束失败恢复请求;
为了链路失败恢复的物理随机接入信道(PRACH)接收(reception);以及
与所述与波束失败恢复相关的下行信号相关联的物理随机接入信道(PRACH)接收(reception)。
附记29、根据附记21或28所述的装置,其中,
所述与波束失败恢复相关的上行信号是由高层参数配置的。
附记30、根据附记29所述的装置,其中,
所述高层参数由无线资源控制(RRC)信令承载,和/或,
所述高层参数用于配置波束失败恢复(BFR)专用的接收所述与波束失败恢复相关的上行信号的资源。
附记31、根据附记21所述的装置,其中,
所述下行参考信号是所述第一小区的下行参考信号,和/或,
所述下行参考信号的索引由介质访问控制(MAC)层的信令提供。
附记32、根据附记31所述的装置,其中,
所述下行参考信号的索引是由MAC层从高层参数中选出的。
附记33、根据附记21所述的装置,其中,
所述第一小区是以下小区中的至少一个:
接收所述与波束失败恢复相关的上行信号所在的小区;
发起所述与波束失败恢复相关的上行信号的发送所对应的随机过程所在的小区;
所述与波束失败恢复相关的上行信号的发送所对应的随机过程的配置信息所在的小区;
发送所述与波束失败恢复相关的下行信号所在的小区;以及
至少一个或所有的激活的小区;其中,所述激活的小区是指网络设备通过指示信令为终端设备激活的小区。
附记34、根据附记33所述的装置,其中,
所述在第一小区的上行信号是在物理上行链路控制信道(PUCCH)上接收的上行信号和/或在物理上行共享信道(PUSCH)上接收的上行信号。
附记35、根据附记34所述的装置,其中,
所述在物理上行链路控制信道上接收的上行信号是用于承载第一控制信息所调度的下行信号的确认信息。
附记36、根据附记35所述的装置,其中,
所述第一控制信息所关联的搜索空间与所述与波束失败恢复相关的下行信号所关联的搜索空间相同。
附记37、根据附记21所述的装置,其中,
所述激活信令是以下的至少一个:
MAC层的激活信令;
指示所述网络设备所指示的终端设备天线面板切换的信令;以及
目标小区是所述第一小区的激活信令。
附记38、根据附记37所述的装置,其中,
所述MAC层的激活信令用于指示接收PUCCH资源所对应的空间信息。
附记39、根据附记21所述的装置,其中,
所述重配置信令是以下的至少一个:
RRC信令;
与所述网络设备所指示的终端设备天线面板相关的重配置信令;以及
目标小区是所述第一小区的重配置信令。
附记40、根据附记39所述的装置,其中,
所述RRC信令重配置了至少一个已配置的PUCCH资源所关联的空间关系参数。
附记41、一种终端设备,所述终端设备包括根据附记1-20中的任一项所述的装置。
附记42、一种网络设备,所述网络设备包括根据附记21-40中的任一项所述的装 置。
附记43、一种通信系统,所述通信系统包括根据附记41所述的终端设备和/或根据附记42所述的网络设备。
附记44、一种信号发送方法,所述方法包括:
终端设备在接收到与波束失败恢复相关的下行信号的一段时间之后,并且在接收到或应用激活信令或重配置信令之前,使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。
附记45、根据附记44所述的方法,其中,所述使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号,包括:
当发送所述与波束失败恢复相关的上行信号所在的第二小区与所述第一小区是同一小区时,使用和发送所述与波束失败恢复相关的上行信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。
附记46、根据附记44或45所述的方法,其中,所述使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号,包括:
当发送所述与波束失败恢复相关的上行信号所在的第二小区与所述第一小区不是同一小区时,使用和接收所述下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。
附记47、根据附记44所述的方法,其中,
所述与波束失败恢复相关的下行信号是波束失败恢复响应和/或波束失败恢复响应所调度的下行数据信息。
附记48、根据附记47所述的方法,其中,
所述波束失败恢复响应是在由高层参数提供的搜索空间上接收的、由小区无线网络临时标识(C-RNTI)或调制与编码策略小区无线网络临时标识(MCS-C-RNTI)加扰的下行控制信息(DCI)。
附记49、根据附记48所述的方法,其中,
所述高层参数由无线资源控制(RRC)信令配置,和/或,
所述高层参数用于配置接收波束失败恢复随机接入响应(BFR RAR)的搜索空间集合(set)。
附记50、根据附记44所述的方法,其中,
所述一段时间满足以下中的至少一个:
所述一段时间是预设数量的符号、时隙或毫秒;
所述一段时间的长度是被高层信令配置的;
所述一段时间的长度与子载波间隔(subcarrier spacing,SCS)相关;以及
所述一段时间的长度与终端设备的能力(UE capability)相关。
附记51、根据附记44所述的方法,其中,
所述与波束失败恢复相关的上行信号是以下的至少一种:
波束失败恢复请求;
为了链路失败恢复的物理随机接入信道(PRACH)发送(transmission);以及
与所述与波束失败恢复相关的下行信号相关联的物理随机接入信道(PRACH)发送(transmission)。
附记52、根据附记44或51所述的方法,其中,
所述与波束失败恢复相关的上行信号是由高层参数配置的。
附记53、根据附记52所述的方法,其中,
所述高层参数由无线资源控制(RRC)信令承载,和/或,
所述高层参数用于配置波束失败恢复(BFR)专用的发送所述与波束失败恢复相关的上行信号的资源。
附记54、根据附记44所述的方法,其中,
所述下行参考信号是所述第一小区的下行参考信号,和/或,
所述下行参考信号的索引由介质访问控制(MAC)层的信令提供。
附记55、根据附记54所述的方法,其中,
所述下行参考信号的索引是由MAC层从高层参数中选出的。
附记56、根据附记44所述的方法,其中,
所述第一小区是以下小区中的至少一个:
发送所述与波束失败恢复相关的上行信号所在的小区;
发起所述与波束失败恢复相关的上行信号的发送所对应的随机过程所在的小区;
所述与波束失败恢复相关的上行信号的发送所对应的随机过程的配置信息所在的小区;
接收所述与波束失败恢复相关的下行信号所在的小区;以及
至少一个或所有的激活的小区;其中,所述激活的小区是指网络设备通过指示信令为终端设备激活的小区。
附记57、根据附记56所述的方法,其中,
所述在第一小区的上行信号是在物理上行链路控制信道(PUCCH)上发送的上行信号和/或在物理上行共享信道(PUSCH)上发送的上行信号。
附记58、根据附记57所述的方法,其中,
所述在物理上行链路控制信道上发送的上行信号是用于承载所述与第一控制信息所调度的下行信号的确认信息。
附记59、根据附记58所述的方法,其中,
所述第一控制信息所关联的搜索空间与所述与波束失败恢复相关的下行信号所关联的搜索空间相同。
附记60、根据附记44所述的方法,其中,
所述激活信令是以下的至少一个:
MAC层的激活信令;
指示终端设备天线面板切换的信令;以及
目标小区是所述第一小区的激活信令。
附记61、根据附记60所述的方法,其中,
所述MAC层的激活信令用于指示发送PUCCH资源所对应的空域传输滤波器。
附记62、根据附记44所述的方法,其中,
所述重配置信令是以下的至少一个:
RRC信令;
与终端设备天线面板相关的重配置信令;以及
目标小区是所述第一小区的重配置信令。
附记63、根据附记62所述的方法,其中,
所述RRC信令重配置了至少一个已配置的PUCCH资源所关联的空间关系参数。
附记64、一种信号接收方法,所述方法包括:
网络设备在发送了与波束失败恢复相关的下行信号的一段时间之后,并且在发送了激活信令或重配置信令或所述激活信令或重配置信令生效之前,根据和接收与波束失败恢复相关的上行信号或发送下行参考信号相关的空间信息,接收在第一小区的上行信号。
附记65、根据附记64所述的方法,其中,所述根据和接收与波束失败恢复相关的上行信号或发送下行参考信号相关的空间信息,接收在第一小区的上行信号,包括:
当接收所述与波束失败恢复相关的上行信号所在的第二小区与所述第一小区是同一小区时,根据和接收所述与波束失败恢复相关的上行信号相关的空间信息,接收在第一小区的上行信号。
附记66、根据附记64或65所述的方法,其中,所述根据和接收与波束失败恢复相关的上行信号或发送下行参考信号相关的空间信息,接收在第一小区的上行信号,包括:
当接收所述与波束失败恢复相关的上行信号所在的第二小区与所述第一小区不是同一小区时,根据和发送所述下行参考信号相关的空间信息,接收在第一小区的上行信号。
附记67、根据附记64所述的方法,其中,
所述与波束失败恢复相关的下行信号是波束失败恢复响应和/或波束失败恢复响应所调度的下行数据信息。
附记68、根据附记67所述的方法,其中,
所述波束失败恢复响应是在由高层参数提供的搜索空间上发送的、由小区无线网络临时标识(C-RNTI)或调制与编码策略小区无线网络临时标识(MCS-C-RNTI)加扰的下行控制信息(DCI)。
附记69、根据附记68所述的方法,其中,
所述高层参数由无线资源控制(RRC)信令配置,和/或,
所述高层参数用于配置发生波束失败恢复随机接入响应(BFR RAR)的搜索空间集合(set)。
附记70、根据附记64所述的方法,其中,
所述一段时间满足以下中的至少一个:
所述一段时间是预设数量的符号、时隙或毫秒;
所述一段时间的长度是被高层信令配置的;
所述一段时间的长度与子载波间隔(subcarrier spacing,SCS)相关;以及
所述一段时间的长度与终端设备的能力(UE capability)相关。
附记71、根据附记64所述的方法,其中,
所述与波束失败恢复相关的上行信号是以下的至少一种:
波束失败恢复请求;
为了链路失败恢复的物理随机接入信道(PRACH)接收(reception);以及
与所述与波束失败恢复相关的下行信号相关联的物理随机接入信道(PRACH)接收(reception)。
附记72、根据附记64或71所述的方法,其中,
所述与波束失败恢复相关的上行信号是由高层参数配置的。
附记73、根据附记72所述的方法,其中,
所述高层参数由无线资源控制(RRC)信令承载,和/或,
所述高层参数用于配置波束失败恢复(BFR)专用的接收所述与波束失败恢复相关的上行信号的资源。
附记74、根据附记64所述的方法,其中,
所述下行参考信号是所述第一小区的下行参考信号,和/或,
所述下行参考信号的索引由介质访问控制(MAC)层的信令提供。
附记75、根据附记74所述的方法,其中,
所述下行参考信号的索引是由MAC层从高层参数中选出的。
附记76、根据附记64所述的方法,其中,
所述第一小区是以下小区中的一个:
接收所述与波束失败恢复相关的上行信号所在的小区;
发起所述与波束失败恢复相关的上行信号的发送所对应的随机过程所在的小区;
所述与波束失败恢复相关的上行信号的发送所对应的随机过程的配置信息所在的小区;
发送所述与波束失败恢复相关的下行信号所在的小区;以及
至少一个或所有的激活的小区;其中,所述激活的小区是指网络设备通过指示信令为终端设备激活的小区。
附记77、根据附记76所述的方法,其中,
所述在第一小区的上行信号是在物理上行链路控制信道(PUCCH)上接收的上行信号和/或在物理上行共享信道(PUSCH)上接收的上行信号。
附记78、根据附记77所述的方法,其中,
所述在物理上行链路控制信道上接收的上行信号是用于承载第一控制信息所调度的下行信号的确认信息。
附记79、根据附记78所述的方法,其中,
所述第一控制信息所关联的搜索空间与所述与波束失败恢复相关的下行信号所关联的搜索空间相同。
附记80、根据附记64所述的方法,其中,
所述激活信令是以下的至少一个:
MAC层的激活信令;
指示所述网络设备所指示的终端设备天线面板切换的信令;以及
目标小区是所述第一小区的激活信令。
附记81、根据附记80所述的方法,其中,
所述MAC层的激活信令用于指示接收PUCCH资源所对应的空间信息。
附记82、根据附记64所述的方法,其中,
所述重配置信令是以下的至少一个:
RRC信令;
与所述网络设备所指示的终端设备天线面板相关的重配置信令;以及
目标小区是所述第一小区的重配置信令。
附记83、根据附记82所述的方法,其中,
所述RRC信令重配置了至少一个已配置的PUCCH资源所关联的空间关系参数。

Claims (20)

  1. 一种信号发送装置,所述装置包括:
    发送单元,其用于在接收到与波束失败恢复相关的下行信号的一段时间之后,并且在接收到或应用激活信令或重配置信令之前,使用和发送与波束失败恢复相关的上行信号或接收下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。
  2. 根据权利要求1所述的装置,其中,
    所述发送单元当发送所述与波束失败恢复相关的上行信号所在的第二小区与所述第一小区是同一小区时,使用和发送所述与波束失败恢复相关的上行信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。
  3. 根据权利要求1或2所述的装置,其中,
    所述发送单元当发送所述与波束失败恢复相关的上行信号所在的第二小区与所述第一小区不是同一小区时,使用和接收所述下行参考信号的空域传输滤波器相同的空域传输滤波器,发送在第一小区的上行信号。
  4. 根据权利要求1所述的装置,其中,
    所述与波束失败恢复相关的下行信号是波束失败恢复响应和/或波束失败恢复响应所调度的下行数据信息。
  5. 根据权利要求4所述的装置,其中,
    所述波束失败恢复响应是在由高层参数提供的搜索空间上接收的、由小区无线网络临时标识(C-RNTI)或调制与编码策略小区无线网络临时标识(MCS-C-RNTI)加扰的下行控制信息(DCI)。
  6. 根据权利要求5所述的装置,其中,
    所述高层参数由无线资源控制(RRC)信令配置,和/或,
    所述高层参数用于配置接收波束失败恢复随机接入响应(BFR RAR)的搜索空间集合(set)。
  7. 根据权利要求1所述的装置,其中,
    所述一段时间满足以下中的至少一个:
    所述一段时间是预设数量的符号、时隙或毫秒;
    所述一段时间的长度是被高层信令配置的;
    所述一段时间的长度与子载波间隔(subcarrier spacing,SCS)相关;以及
    所述一段时间的长度与终端设备的能力(UE capability)相关。
  8. 根据权利要求1所述的装置,其中,
    所述与波束失败恢复相关的上行信号是以下的至少一种:
    波束失败恢复请求;
    为了链路失败恢复的物理随机接入信道(PRACH)发送(transmission);以及
    与所述与波束失败恢复相关的下行信号相关联的物理随机接入信道(PRACH)发送(transmission)。
  9. 根据权利要求1或8所述的装置,其中,
    所述与波束失败恢复相关的上行信号是由高层参数配置的。
  10. 根据权利要求9所述的装置,其中,
    所述高层参数由无线资源控制(RRC)信令承载,和/或,
    所述高层参数用于配置波束失败恢复(BFR)专用的发送所述与波束失败恢复相关的上行信号的资源。
  11. 根据权利要求1所述的装置,其中,
    所述下行参考信号是所述第一小区的下行参考信号,和/或,
    所述下行参考信号的索引由介质访问控制(MAC)层的信令提供。
  12. 根据权利要求11所述的装置,其中,
    所述下行参考信号的索引是由MAC层从高层参数中选出的。
  13. 根据权利要求1所述的装置,其中,
    所述第一小区是以下小区中的至少一个:
    发送所述与波束失败恢复相关的上行信号所在的小区;
    发起所述与波束失败恢复相关的上行信号的发送所对应的随机过程所在的小区;
    所述与波束失败恢复相关的上行信号的发送所对应的随机过程的配置信息所在的小区;
    接收所述与波束失败恢复相关的下行信号所在的小区;以及
    至少一个或所有的激活的小区;其中,所述激活的小区是指网络设备通过指示信令为终端设备激活的小区。
  14. 根据权利要求13所述的装置,其中,
    所述在第一小区的上行信号是在物理上行链路控制信道(PUCCH)上发送的上行信号和/或在物理上行共享信道(PUSCH)上发送的上行信号。
  15. 根据权利要求14所述的装置,其中,
    所述在物理上行链路控制信道上发送的上行信号是用于承载第一控制信息所调度的下行信号的确认信息。
  16. 根据权利要求1所述的装置,其中,
    所述激活信令是以下的至少一个:
    MAC层的激活信令;
    指示终端设备天线面板切换的信令;以及
    目标小区是所述第一小区的激活信令。
  17. 根据权利要求16所述的装置,其中,
    所述MAC层的激活信令用于指示发送PUCCH资源所对应的空域传输滤波器。
  18. 根据权利要求1所述的装置,其中,
    所述重配置信令是以下的至少一个:
    RRC信令;
    与终端设备天线面板相关的重配置信令;以及
    目标小区是所述第一小区的重配置信令。
  19. 根据权利要求18所述的装置,其中,
    所述RRC信令重配置了至少一个已配置的PUCCH资源所关联的空间关系参数。
  20. 一种信号接收装置,所述装置包括:
    接收单元,其用于在发送了与波束失败恢复相关的下行信号的一段时间之后,并且在发送了激活信令或重配置信令或所述激活信令或重配置信令生效之前,根据和接收与波束失败恢复相关的上行信号或发送下行参考信号相关的空间信息,接收在第一小区的上行信号。
PCT/CN2018/107718 2018-09-26 2018-09-26 信号发送方法、信号接收方法及装置 WO2020061844A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201880096972.1A CN112640568B (zh) 2018-09-26 2018-09-26 信号发送方法、信号接收方法及装置
KR1020217005844A KR20210036385A (ko) 2018-09-26 2018-09-26 신호 송신 방법, 신호 수신 방법 및 그 장치
PCT/CN2018/107718 WO2020061844A1 (zh) 2018-09-26 2018-09-26 信号发送方法、信号接收方法及装置
EP18935975.5A EP3860295B1 (en) 2018-09-26 2018-09-26 Signal sending method, and signal receiving method and device
JP2021510183A JP7408633B2 (ja) 2018-09-26 2018-09-26 信号送信方法、信号受信方法及び装置
US17/183,723 US11843437B2 (en) 2018-09-26 2021-02-24 Signal transmission method, signal reception method and apparatuses thereof
US18/385,928 US20240080081A1 (en) 2018-09-26 2023-11-01 Signal transmission method, signal reception method and apparatuses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107718 WO2020061844A1 (zh) 2018-09-26 2018-09-26 信号发送方法、信号接收方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/183,723 Continuation US11843437B2 (en) 2018-09-26 2021-02-24 Signal transmission method, signal reception method and apparatuses thereof

Publications (1)

Publication Number Publication Date
WO2020061844A1 true WO2020061844A1 (zh) 2020-04-02

Family

ID=69953183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107718 WO2020061844A1 (zh) 2018-09-26 2018-09-26 信号发送方法、信号接收方法及装置

Country Status (6)

Country Link
US (2) US11843437B2 (zh)
EP (1) EP3860295B1 (zh)
JP (1) JP7408633B2 (zh)
KR (1) KR20210036385A (zh)
CN (1) CN112640568B (zh)
WO (1) WO2020061844A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113825232A (zh) * 2020-06-19 2021-12-21 北京紫光展锐通信技术有限公司 资源更新方法及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020087361A1 (zh) * 2018-10-31 2020-05-07 富士通株式会社 信号发送方法、天线面板信息的指示方法、装置和系统
JP7306474B2 (ja) * 2019-03-28 2023-07-11 富士通株式会社 ビーム失敗回復方法、装置及び通信システム
US20200314829A1 (en) * 2019-03-29 2020-10-01 Qualcomm Incorporated Signaling-overhead reduction with resource grouping
US11595105B1 (en) * 2021-10-26 2023-02-28 Qualcomm Incorporated Beam failure recovery for a primary cell
EP4344488A1 (en) * 2022-01-13 2024-04-03 ZTE Corporation System and method for determining a beam state of a downlink signal in a link recovery procedure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018059399A1 (zh) * 2016-09-30 2018-04-05 华为技术有限公司 随机接入方法、装置、系统、终端和基站
CN108513737A (zh) * 2018-03-28 2018-09-07 北京小米移动软件有限公司 信息传输方法和信息传输装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3335494A4 (en) 2015-08-11 2018-08-01 Telefonaktiebolaget LM Ericsson (PUBL) Recovery from beam failure
US10426963B2 (en) * 2015-10-30 2019-10-01 Zoll Medical Corporation Estimating shock success by monitoring changes in spectral data
EP3456144B1 (en) * 2016-05-12 2020-10-21 Sharp Kabushiki Kaisha Method and apparatus for selecting radio resources for vehicle (v2x) communications from an overlapping resource pool
CA3035000C (en) 2016-09-26 2022-06-14 Lg Electronics Inc. Uplink transmission/reception method in wireless communication system and device therefor
CN110089041B (zh) 2017-01-17 2021-08-24 高通股份有限公司 用于波束调整请求的系统和方法
US11943677B2 (en) * 2017-01-19 2024-03-26 Qualcomm Incorporated Beam selection and radio link failure during beam recovery
US10194442B2 (en) 2017-02-10 2019-01-29 Qualcomm Incorporated Uplink resources for beam recovery
US11050478B2 (en) * 2017-12-19 2021-06-29 Samsung Electronics Co., Ltd. Method and apparatus for beam reporting in next generation wireless systems
CN112673681B (zh) * 2018-10-11 2024-07-30 联想(新加坡)私人有限公司 确定波束故障恢复后使用的物理上行链路信道功率控制参数值的方法和装置
EP3681086A1 (en) * 2019-01-09 2020-07-15 Comcast Cable Communications, LLC Methods, systems, and apparatuses for beam management
CN111586862B (zh) * 2019-02-15 2024-07-26 华为技术有限公司 信息指示的方法及装置
US11159956B2 (en) * 2019-03-28 2021-10-26 Ofinno, Llc Uplink beam management in wireless communication system
US11398930B2 (en) * 2019-05-02 2022-07-26 Ofinno, Llc Uplink operations of multi-transmission reception points and panel
US20230023719A1 (en) * 2019-11-25 2023-01-26 Samsung Electronics Co., Ltd. Method and apparatus for configuring default beam for network cooperative communication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018059399A1 (zh) * 2016-09-30 2018-04-05 华为技术有限公司 随机接入方法、装置、系统、终端和基站
CN108513737A (zh) * 2018-03-28 2018-09-07 北京小米移动软件有限公司 信息传输方法和信息传输装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC: "Summary #2 on Remaing Issues on Beam Failure Recovery", 3GPP TSG RAN WGI MEETING #94 R1-1809926, vol. RAN WG1, 23 August 2018 (2018-08-23), XP051517280 *
NOKIA ET AL.: "Remaining Issues on Beam Management", 3GPP TSG RAN WG1 MEETING #94 R1 -1809237, vol. RAN WG1, 10 August 2018 (2018-08-10), XP051516604 *
See also references of EP3860295A4 *
SONY: "Summary of SRS", 3GPP TSG RAN WGI MEETING #94 R1-1809814, vol. RAN WG1, 23 August 2018 (2018-08-23), XP051517171 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113825232A (zh) * 2020-06-19 2021-12-21 北京紫光展锐通信技术有限公司 资源更新方法及装置
WO2021253952A1 (zh) * 2020-06-19 2021-12-23 北京紫光展锐通信技术有限公司 资源更新方法及装置

Also Published As

Publication number Publication date
EP3860295A1 (en) 2021-08-04
EP3860295A4 (en) 2021-11-10
US11843437B2 (en) 2023-12-12
KR20210036385A (ko) 2021-04-02
US20240080081A1 (en) 2024-03-07
JP7408633B2 (ja) 2024-01-05
JP2021536176A (ja) 2021-12-23
EP3860295B1 (en) 2023-11-22
CN112640568B (zh) 2022-06-28
CN112640568A (zh) 2021-04-09
US20210184749A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
US10820271B2 (en) Method and apparatus of power saving for discontinuous reception
US11082874B2 (en) Method for reporting measurement result by user equipment transceiving data by first radio access technology and second radio access technology, and device therefor
WO2020061844A1 (zh) 信号发送方法、信号接收方法及装置
WO2019137446A1 (zh) 通信方法和通信设备
US9814074B2 (en) Method and apparatus for random access in a wireless communication system that supports multiple carriers
EP3231216B1 (en) Solving ambiguity regarding source cell to fetch wireless device context for successful rrc connection reestablishment to target cell
CN111373809B (zh) 上行信号发送方法、上行信号接收方法、装置和系统
WO2020061866A1 (zh) Lbt监测失败的处理方法、装置和系统
US10728943B2 (en) Apparatus and method for controlling scells in wireless communication system
US12096482B2 (en) Method and apparatus for transmitting and receiving data in wireless communication system
WO2021087927A1 (zh) 随机接入方法、装置和通信系统
WO2020037458A1 (zh) 下行信号的监听和发送方法、参数配置方法以及装置
US12107717B2 (en) Beam failure recovery method and device and communication system
CN114616905A (zh) 用于媒体接入控制层中的随机接入过程的方法和设备
WO2022067796A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2021159401A1 (zh) 随机接入方法、装置和通信系统
WO2020042160A1 (zh) 随机接入方法,数据接收方法及其装置、通信系统
WO2020199022A1 (zh) 选择随机接入类型的方法及装置
WO2020142932A1 (zh) 数据发送方法及其装置、通信系统
KR102719050B1 (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
WO2020061729A1 (zh) 信号收发方法、天线面板的指示方法、装置和系统
WO2020061843A1 (zh) 一种在多连接场景中决定配置的生效时间的方法、装置和通信系统
WO2020199001A1 (zh) 信息发送方法、信息发送装置和通信系统
CN103582048A (zh) 小蜂窝网络中p2p切换指令的保护性传输方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021510183

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217005844

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018935975

Country of ref document: EP

Effective date: 20210426