WO2020042160A1 - 随机接入方法,数据接收方法及其装置、通信系统 - Google Patents

随机接入方法,数据接收方法及其装置、通信系统 Download PDF

Info

Publication number
WO2020042160A1
WO2020042160A1 PCT/CN2018/103610 CN2018103610W WO2020042160A1 WO 2020042160 A1 WO2020042160 A1 WO 2020042160A1 CN 2018103610 W CN2018103610 W CN 2018103610W WO 2020042160 A1 WO2020042160 A1 WO 2020042160A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
cell
access preamble
downlink control
control channel
Prior art date
Application number
PCT/CN2018/103610
Other languages
English (en)
French (fr)
Inventor
陈哲
宋磊
贾美艺
张磊
王昕�
Original Assignee
富士通株式会社
陈哲
宋磊
贾美艺
张磊
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 陈哲, 宋磊, 贾美艺, 张磊, 王昕� filed Critical 富士通株式会社
Priority to EP18932079.9A priority Critical patent/EP3846572A4/en
Priority to KR1020237021577A priority patent/KR102640815B1/ko
Priority to PCT/CN2018/103610 priority patent/WO2020042160A1/zh
Priority to JP2021504445A priority patent/JP7413349B2/ja
Priority to CN201880095281.XA priority patent/CN112369105A/zh
Priority to KR1020217002209A priority patent/KR20210022114A/ko
Publication of WO2020042160A1 publication Critical patent/WO2020042160A1/zh
Priority to US17/148,072 priority patent/US20210136833A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0838Random access procedures, e.g. with 4-step access using contention-free random access [CFRA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06964Re-selection of one or more beams after beam failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications, and in particular, to a random access method, a data receiving method and device, and a communication system.
  • the random access process is an important process for achieving initial access and uplink synchronization of terminal equipment.
  • the random access process includes a contention-based random access process and a non-contention-based random access process.
  • the random access process is based on non-contention
  • the success of the random access process means that the random access response message (Msg.2) is successfully received
  • the failure of the random access process means that when the sending of the random access preamble related to Msg.2 reaches the maximum
  • the number of times or the related random process exceeds the predetermined time, the user has not successfully received Msg.2
  • the success of the random access process refers to a contention resolution message (Msg.4)
  • Successful reception and failure of the random access process means that when the random access preamble related to Msg.4 reaches the maximum number of times or the related random process exceeds a predetermined time, the user has not successfully received Msg.4.
  • Figures 1B-1C are schematic diagrams of the same and different scenarios, as shown in Figure 1B. After the random access process is initiated by cell 1, the random access response is still received in cell 1, as shown in Figure 1C. It is shown that after the random access procedure is initiated by cell 1, the random access response may be received in cell 2.
  • embodiments of the present invention provide a random access method, a data receiving method, a device, and a communication system.
  • a random access device where the device includes:
  • a first sending unit configured to send a random access preamble to a network device
  • a first determining unit configured to determine when the terminal device receives the first notification, or when the terminal device receives the first notification and meets a condition of the first cell related to the random access preamble; A random access process corresponding to the random access preamble is successfully completed;
  • the first notification is a notification sent from a lower layer of the terminal device to receive a downlink control channel transmission in the first cell, and / or a notification sent from the bottom layer is received for feedback. Notification of the downlink control channel transmission of the random access preamble.
  • a random access device where the device includes:
  • a second sending unit configured to send a random access preamble to a network device
  • a second determining unit configured to: when the terminal device has received downlink allocation on the downlink control channel and the corresponding transmission block received has been successfully decoded, or when the terminal device has received downlink allocation on the downlink control channel, and When the received corresponding transmission block is successfully decoded and the conditions of the first cell related to the random access preamble are satisfied, it is determined that the random access process corresponding to the random access preamble is successfully completed;
  • the downlink control channel is a downlink control channel of a second cell and / or a downlink control channel for feedback of the random access preamble.
  • a data receiving apparatus wherein the apparatus includes:
  • a third sending unit configured to send a random access preamble to the network device
  • a monitoring unit configured to monitor downlink control information in a second cell; wherein the downlink control information is related to the random access preamble;
  • the receiving unit is configured to receive downlink data scheduled by the downlink control information in a first cell, where the first cell and the second cell are different.
  • a random access method includes:
  • the terminal device sends a random access preamble to the network device
  • the terminal device determines (consider) A random access process corresponding to the random access preamble is successfully completed;
  • the first notification is a notification sent from the bottom layer that a downlink control channel transmission in the first cell is received, and / or a downlink control channel transmission that is received from the bottom layer to feed back the random access preamble. announcement of.
  • a random access method includes:
  • the terminal device sends a random access preamble to the network device
  • the terminal device determines that the random access process corresponding to the random access preamble is successfully completed;
  • the downlink control channel is a downlink control channel of a second cell and / or a downlink control channel for feedback of the random access preamble.
  • a data sending method includes:
  • the network device receives the random access preamble sent by the terminal device
  • the network device sends downlink data scheduled by the downlink control information to the terminal device in a first cell, where the first cell and the second cell are different.
  • a communication system including a terminal device including the random access device of the foregoing first or second aspect or the data receiving device of the foregoing third aspect .
  • a beneficial effect of the embodiment of the present invention is that whether the random access process is successful is determined according to the relationship between the received downlink control channel and the random access preamble sent by the cell or terminal device, thereby solving the problems existing in the prior art, and the terminal device It can accurately send and receive data, thereby improving the success rate, reducing the number of retransmissions, and saving energy consumption.
  • FIG. 1A is a schematic diagram of a communication system in this embodiment
  • Embodiment 2 is a flowchart of a random access method in Embodiment 1;
  • Embodiment 3 is a flowchart of a random access method in Embodiment 2;
  • Embodiment 5 is a flowchart of a random access method in Embodiment 4.
  • Embodiment 6 is a flowchart of a data receiving method in Embodiment 5.
  • Embodiment 8 is a schematic structural diagram of a random access device in Embodiment 7.
  • Embodiment 9 is a schematic structural diagram of a random access device in Embodiment 8.
  • FIG. 10 is a schematic structural diagram of a data receiving device in Embodiment 9;
  • FIG. 11 is a schematic structural diagram of a data sending device in Embodiment 10.
  • FIG. 12 is a schematic structural diagram of a network device in Embodiment 11;
  • FIG. 13 is a schematic structural diagram of a terminal device in Embodiment 11;
  • first and second are used to distinguish different elements from each other by title, but they do not indicate the spatial arrangement or chronological order of these elements, and these elements should not be used by these terms. Restricted.
  • the term “and / or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having” and the like refer to the presence of stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term "communication network” or “wireless communication network” may refer to a network that conforms to any of the following communication standards, such as 5G New Radio Access (5GNR, New Radio Access), Long Term Evolution (LTE, Long Term Evolution), Enhanced Long Term Evolution (LTE-A, LTE-Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access) and many more.
  • 5G New Radio Access 5G New Radio Access
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • communication between devices in the communication system may be performed according to a communication protocol at any stage, for example, it may include but is not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G, and 5G , New Radio (NR, New Radio), etc., and / or other communication protocols currently known or to be developed in the future.
  • 1G generation
  • 2G 2.5G, 2.75G
  • 5G New Radio
  • NR, New Radio New Radio
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services to the terminal device.
  • Network devices may include, but are not limited to, the following devices: Base Station (BS, Base Station), Access Point (AP, Access Point), Transmission and Reception Point (TRP, Transmission, Reception Point), Broadcast Transmitter, Mobile Management Entity (MME, Mobile Management entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), and so on.
  • BS Base Station
  • AP Access Point
  • TRP Transmission and Reception Point
  • Broadcast Transmitter Mobile Management Entity
  • MME Mobile Management Entity
  • gateway server
  • RNC Radio Network Controller
  • BSC Base Station Controller
  • the base station may include, but is not limited to, Node B (NodeB or NB), evolved Node B (eNodeB or eNB), 5G base station (gNB), and so on. In addition, it may also include a remote radio head (RRH, Remote Radio Head). , Remote radio unit (RRU, Remote Radio Unit), relay (relay) or low-power node (such as femto, pico, etc.). And the term “base station” may include some or all of their functions, and each base station may provide communication coverage for a particular geographic area.
  • the term "cell” may refer to a base station and / or its coverage area, and may also be expressed as a serving cell, which may be a macro cell or a small cell, depending on the context in which the term is used.
  • the term “User Equipment” (UE) or “Terminal Equipment” (TE) refers to, for example, a device that accesses a communication network through a network device and receives network services.
  • the terminal device may be fixed or mobile, and may also be called a mobile station (MS, Mobile Station), a terminal, a subscriber station (SS, Subscriber Station), an access terminal (AT, Access Terminal), a station, and so on.
  • the terminal device may include, but is not limited to, the following devices: Cellular Phone, Personal Digital Assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication device, handheld device, machine-type communication device, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • PDA Personal Digital Assistant
  • wireless modem wireless communication device
  • handheld device machine-type communication device
  • laptop computer machine-type communication device
  • Cordless phones smartphones, smart watches, digital cameras, and more.
  • the terminal device may also be a machine or device that performs monitoring or measurement.
  • the terminal device may include, but is not limited to, a Machine Type Communication (MTC) terminal, Vehicle communication terminals, device-to-device (D2D) terminals, machine-to-machine (M2M) terminals, and so on.
  • MTC Machine Type Communication
  • D2D device-to-device
  • M2M machine-to-machine
  • FIG. 1A is a schematic diagram of a communication system according to an embodiment of the present invention, and schematically illustrates a case where a user equipment and a network device are taken as an example.
  • the communication system 100 may include a network device 101 and a terminal device 102.
  • FIG. 1A only uses one terminal device and one network device as an example for description, but the embodiment of the present invention is not limited thereto.
  • the network device 101 and the terminal device 102 can perform an existing service or a service that can be implemented in the future.
  • these services may include, but are not limited to: enhanced mobile broadband (eMBB, enhanced Mobile Broadband), large-scale machine type communications (mMTC, massive Machine Type Communication), and high-reliability low-latency communications (URLLC, Ultra-Reliable and Low) -Latency Communication) and so on.
  • eMBB enhanced mobile broadband
  • mMTC large-scale machine type communications
  • URLLC Ultra-Reliable and Low
  • the beam failure recovery technology is mainly aimed at this scenario, using the measurement results of beam power in different directions to quickly locate a new and reliable beam direction, thereby completing the rapid recovery of the link.
  • Beam failure recovery technology is not only very effective in single-carrier communication scenarios, but it can also play an important role in multi-carrier scenarios.
  • the beam failure recovery process can be implemented based on the random access process. For example, for the random access procedure (beam failure recovery), the terminal device sends a beam failure recovery request through the physical random access channel, and the beam fails.
  • the recovery request is a corresponding random access preamble, which notifies the network device of a beam failure, and notifies the network device of the backup beam number it previously maintained, switches the terminal device's beam to the backup beam, and after the network device receives the beam failure recovery request, , Switch its own beam to the backup beam notified by the terminal, and send a beam failure recovery response on the beam, and the beam failure recovery response is the corresponding Random Access Response (RAR, Random Access Response).
  • RAR Random Access Response
  • the embodiment of the present invention is described by taking a random access process corresponding to a beam failure recovery process as an example, but the present invention is not limited thereto, and the present invention is also applicable to other scenarios in which the random access process is applied.
  • FIG. 2 is a flowchart of a random access method according to the first embodiment, which is applied to a terminal device side. As shown in Figure 2, the method includes:
  • Step 201 The terminal device sends a random access preamble to the network device.
  • Step 202 When the terminal device receives the first notification, the terminal device determines that the random access process corresponding to the random access preamble is successfully completed;
  • the first notification is a notification sent from the bottom layer to receive a downlink control channel transmission in the first cell, and / or a notification sent from the bottom layer to receive a downlink control channel transmission for feedback of the random access preamble.
  • the terminal device may initiate a random access process in the first cell. For example, the terminal device sends a random access preamble to the network device in the first cell.
  • the terminal device The random access preamble in the random access preamble set may be selected, and the resources in the random access resource set are used to send the random access preamble; in one embodiment, the network device may allocate a dedicated random access to the terminal device Preamble, and / or random access resource (such as random access channel resource (RACH resource), and / or random access preamble format (Random Access Preamble Format), the terminal device sends a random access preamble according to the network side allocation; the The random access preamble is mapped on the physical layer on the physical random access channel (PRACH). After the terminal device sends the random access preamble, the terminal device ignores the measurement interval that may occur.
  • RACH resource random access channel resource
  • PRACH physical random access channel
  • the random access process may be a random access process for a beam failure recovery process
  • the random access preamble may be a beam failure recovery request, which is used to notify a network device of a beam failure, and the media access of the terminal device
  • the MAC entity can send a non-competitive random access preamble corresponding to the beam failure recovery request, but this embodiment is not used as a limitation.
  • the random access process can also be used in other scenarios (such as handover, reconstruction). Initiated, the random access preamble is not limited to the corresponding beam failure recovery request.
  • the network device after receiving the random access preamble of the terminal device, the network device feeds back a random access response to the terminal device, for example, the physical access control channel (PDCCH) carries the random access response, and the terminal device monitors the random access response.
  • PDCCH transmission or monitoring the PDCCH transmission related to the random access preamble in order to determine whether the control information sent by the network device can be successfully received, and then determine whether the random access process is successful, but in a multi-carrier scenario, the network device will be the terminal
  • the device is configured with multiple carriers, and the serving cell (corresponding carrier) of the terminal device may change, that is, the current serving cell (second cell) may be different or the same as the serving cell (first cell) in step 201.
  • the cell is the cell where the downlink control channel transmission of the random access preamble is monitored and fed back; or the special cell (SpCell), which may include at least one of the following: the main cell of the main cell group (MCG) in the case of dual connectivity (PCell); primary cell (PSCell) of the secondary cell group (SCG) in the case of dual connectivity; primary cell in the case of non-dual connectivity; but Invention is not limited thereto. Therefore, even if a PDCCH transmission is received, it cannot be directly determined that the PDCCH transmission is a random access response to the random access preamble sent in step 201, and it is impossible to determine whether the random access process is successful (completed).
  • the method may further include: (not shown) the bottom layer of the terminal device receives a downlink control channel transmission.
  • the lower layer of the terminal device is defined relative to the upper layer of the terminal device.
  • the lower layer of the terminal device may be the physical layer of the terminal device, and the upper layer of the terminal device may be the MAC layer or the wireless resource.
  • RRC control
  • the downlink control channel transmission is a downlink control channel transmission of the first cell; the first cell is a cell in which a random access process corresponding to the random access preamble is initiated; or the random access is transmitted The cell where the preamble is located.
  • the bottom layer of the terminal device sends a first notification that the downlink control channel transmission is received to the MAC entity of the terminal device.
  • the MAC entity of the terminal device determines (or considers the consumer) ) The random access procedure corresponding to the random access preamble is successfully completed.
  • the terminal device can speculate that the downlink control channel of the first cell can communicate normally, and can further determine that the random access process corresponding to the random access preamble in step 201 is successfully completed.
  • the downlink control channel transmission is to feedback the downlink control channel transmission of the random access preamble in step 201; the bottom layer of the terminal device sends the first entity receiving the downlink control channel transmission to the MAC entity of the terminal device.
  • a notification for example, the downlink control channel transmission is a downlink control channel transmission for feedback of a beam recovery failure request; in step 202, when the MAC entity of the terminal device receives the first notification, it determines (or considers that the consumer) and The random access procedure corresponding to the random access preamble (such as a beam failure recovery request) is successfully completed.
  • step 201 Since it is determined that the downlink control channel transmission is to feedback the downlink control channel transmission of the random access preamble, therefore, it is determined that the downlink control channel transmission is a response to the random access preamble in step 201, and then it may be determined to be random with step 201.
  • the random access procedure corresponding to the access preamble is successfully completed.
  • the downlink control channel transmission is the downlink control channel transmission of the random access preamble in step 201 for the first cell.
  • This embodiment This is not a limitation.
  • the downlink control channel transmission is related to a cell radio network temporary identity (C-RNTI) or a random access radio network temporary identity (RA-RNTI).
  • C-RNTI cell radio network temporary identity
  • RA-RNTI random access radio network temporary identity
  • the downlink control channel is controlled by C -RNTI or RA-RNTI is scrambled.
  • C -RNTI cell radio network temporary identity
  • RA-RNTI random access radio network temporary identity
  • the method further includes: (not shown) the terminal device stops sending or receiving uplink and downlink signals related to the random access process. For example, the terminal device stops sending a random access preamble corresponding to the random access process, and / or the terminal device stops receiving a random access response corresponding to the random access process, and / or the terminal device stops sending the random access
  • the uplink transmission indicated by the random access response corresponding to the process is not limited in this embodiment.
  • whether the random access process is successful is determined according to the relationship between the downlink control channel transmission and the random access preamble sent by the cell or the terminal device. Therefore, the terminal device can accurately send and receive data, thereby improving the success rate and reducing retransmission. Times, thereby saving energy. .
  • FIG. 3 is a flowchart of a random access method according to the second embodiment, which is applied to a terminal device side. As shown in Figure 3, the method includes:
  • Step 301 The terminal device sends a random access preamble to the network device.
  • Step 302 When the terminal device receives the first notification and meets the conditions of the first cell related to the random access preamble, the terminal device determines that the random access process corresponding to the random access preamble is successfully completed;
  • the first notification is a notification sent from the bottom layer to receive a downlink control channel transmission in the first cell, and / or a notification sent from the bottom layer to receive a downlink control channel transmission for feedback of the random access preamble.
  • step 301 for the implementation of step 301, refer to step 201 in embodiment 1, and details are not described herein again.
  • the method may further include: (not shown) the bottom layer of the terminal device receives the downlink control channel transmission, and sends the received downlink control channel transmission to the MAC entity of the terminal device.
  • the bottom layer of the terminal device receives the downlink control channel transmission, and sends the received downlink control channel transmission to the MAC entity of the terminal device.
  • the difference from Embodiment 1 is that in Embodiment 1, when the terminal device receives the first notification, that is, it is determined that the random access process corresponding to the random access preamble is successfully completed, In this embodiment, in addition to receiving the first notification, the terminal device also needs to determine whether the condition of the first cell related to the random access preamble is satisfied. When the first notification is received and the condition is satisfied, The terminal device determines that the random access procedure corresponding to the random access preamble is successfully completed.
  • the condition of the first cell related to the random access preamble is that the first cell is the same as the second cell, or the first cell is different from the second cell.
  • the specifics of the first cell and the second cell are For the meaning, refer to Embodiment 1, and details are not described herein again.
  • the downlink control channel transmission is a downlink control channel transmission of the first cell.
  • the bottom layer of the terminal device sends a first notification that the downlink control channel transmission is received to the MAC entity of the terminal device.
  • the MAC entity of the terminal device receives the first notification, and the first cell and the first cell When the two cells are the same, it is determined (or considered to be considered) that the random access process corresponding to the random access preamble is successfully completed.
  • the downlink control channel transmission is the downlink control channel transmission of the first cell and / or the second cell
  • the terminal device can infer the downlink of the first cell and / or the second cell
  • the control channel can communicate normally, and then it can be determined that the random access process corresponding to the random access preamble in step 301 is successfully completed.
  • the downlink control channel transmission is to feedback the downlink control channel transmission of the random access preamble in step 301; the bottom layer of the terminal device sends the first entity receiving the downlink control channel transmission to the MAC entity of the terminal device.
  • a notification for example, the downlink control channel transmission is a downlink control channel transmission for feedback of a beam recovery failure request; in step 302, the MAC entity of the terminal device receives the first notification, and the first cell and the second cell At the same time, it is determined (or considered to be considered) that the random access procedure corresponding to the random access preamble (for example, a beam failure recovery request) is successfully completed.
  • the downlink control channel transmission is to feedback the downlink control channel transmission of the random access preamble, it is determined that the downlink control channel transmission is a response (beam failure recovery request response) to the random access preamble in step 301, and further It may be determined that the random access procedure corresponding to the random access preamble in step 301 is successfully completed.
  • the downlink control channel transmission is the downlink control channel transmission of the random access preamble in step 301 in the first cell.
  • This embodiment This is not a limitation.
  • the downlink control channel transmission is a downlink control channel transmission of the first cell.
  • the bottom layer of the terminal device sends a first notification that the downlink control channel transmission is received to the MAC entity of the terminal device.
  • the MAC entity of the terminal device receives the first notification, and the first cell and the first cell When the two cells are different, it is determined (or considered to be considered) that the random access procedure corresponding to the random access preamble is successfully completed.
  • the terminal device can speculate that the downlink control channel of the first cell can communicate normally, and can further determine that it is random with step 301.
  • the random access procedure corresponding to the access preamble is successfully completed.
  • the downlink control channel transmission is to feedback the downlink control channel transmission of the random access preamble in step 301; the bottom layer of the terminal device sends the first entity receiving the downlink control channel transmission to the MAC entity of the terminal device.
  • a notification for example, the downlink control channel transmission is a downlink control channel transmission for feedback of a beam recovery failure request; in step 302, the MAC entity of the terminal device receives the first notification, and the first cell and the second cell When they are not the same, it is determined (or considered to be considered) that the random access procedure corresponding to the random access preamble (such as a beam failure recovery request) is successfully completed.
  • the downlink control channel transmission is to feedback the downlink control channel transmission of the random access preamble (sent in the first cell)
  • it is determined that the downlink control channel transmission is a response to the random access preamble in step 301 ( (Beam failure recovery request response)
  • the downlink control channel transmission is the downlink control channel transmission of the random access preamble in step 301 in the first cell.
  • This embodiment This is not a limitation.
  • the downlink control channel transmission is related to a cell radio network temporary identity (C-RNTI) or a random access radio network temporary identity (RA-RNTI).
  • C-RNTI cell radio network temporary identity
  • RA-RNTI random access radio network temporary identity
  • the method further includes: (not shown) the terminal device stops sending or receiving uplink and downlink signals related to the random access process.
  • the terminal device stops sending or receiving uplink and downlink signals related to the random access process.
  • a scenario of a random access process can be further clarified by using this condition, that is, a cell in which a random access process corresponding to the random access preamble is initiated (or a cell in which the random access preamble is located) and monitoring Feedback the scenario where the cell (or special cell) where the downlink control channel transmission of the random access preamble is located is the same or different, and determine whether the random access process is based on the relationship between the downlink control channel transmission and the random access preamble sent by the cell or terminal device. Success, as a result, the terminal device can accurately send and receive data, thereby increasing the success rate, reducing the number of retransmissions, and thereby saving energy consumption. .
  • FIG. 4 is a flowchart of a random access method according to Embodiment 3, which is applied to a terminal device side. As shown in Figure 4, the method includes:
  • Step 401 The terminal device sends a random access preamble to the network device.
  • Step 402 When the terminal device has received a downlink allocation on the downlink control channel and the received corresponding transmission block is successfully decoded, the terminal device determines that the random access process corresponding to the random access preamble is successfully completed. ;
  • the downlink control channel is a downlink control channel of the second cell and / or a downlink control channel for feedback of the random access preamble.
  • step 401 for the implementation of step 401, refer to step 201 in embodiment 1, and details are not described herein again.
  • Embodiment 1 the difference from Embodiment 1 is that in Embodiment 1, when the terminal device receives the first notification, it is determined that the random access process corresponding to the random access preamble is successfully completed.
  • the data channel may carry information indicating subsequent uplink and downlink transmissions, or the transmission of the data channel can be used to detect the channel quality, only the data transmitted by the data channel can be successfully received (decoded) according to its instructions. The subsequent information transmission and reception behaviors are performed. Therefore, it is necessary to determine whether the random access process corresponding to the random access preamble is successfully completed not only according to the reception of the PDCCH but also the reception of the downlink data channel (PDSCH) scheduled on the PDCCH. .
  • PDSCH downlink data channel
  • the network device after receiving the random access preamble from the terminal device, the network device feeds back a random access response to the terminal device, for example, the response is carried by the downlink allocation received in the physical downlink control channel (PDCCH), and the terminal The device monitors the downlink assignment or the downlink assignment associated with the random access preamble, in order to determine whether the control information sent by the network device can be successfully received, and then determine whether the random access process is successful.
  • the network device will configure multiple carriers for the terminal device, and the serving cell (corresponding carrier) of the terminal device may change, that is, the current serving cell (second cell) may be the same as the serving cell (first cell) in step 401.
  • the second cell is a cell where the downlink allocation of the random access preamble is monitored and fed back; or a special cell (SpCell), so even if a downlink allocation is received on the PDCCH, the downlink allocation cannot be directly determined It is a random access response to the random access preamble sent in step 401, so it cannot be determined Whether machine access procedure is successful (completed).
  • SpCell special cell
  • the method may further include: (not shown) the terminal device monitors the downlink allocation on the downlink control channel, and when the downlink allocation is received on the PDCCH, the Receive a transport block on the PDSCH (data is transmitted on the PDSCH with the transport block as the basic transmission unit), and decode the received transport block.
  • the downlink allocation refers to downlink control information (DCI) including downlink data scheduling.
  • DCI downlink control information
  • the terminal device receives the PDSCH on the corresponding resource according to the indication information in the DCI.
  • the received PDSCH will pass a preset
  • the rule performs a cyclic redundancy check (CRC).
  • CRC cyclic redundancy check
  • the downlink control channel is a downlink control channel of the second cell; the second cell is a cell where the downlink allocation of the random access preamble is monitored and fed back; or a special cell (SpCell), in step 402
  • the MAC entity of the terminal device receives a downlink allocation on the downlink control channel, and the corresponding transmission block received is successfully decoded, it determines (or considers the consumer) a random access corresponding to the random access preamble. The process completed successfully. Since the downlink allocation of the second cell and the corresponding transmission block are successfully received, it can be inferred that the network device and the terminal device can normally communicate with each other, and it is not necessary to continue the random access process, and then it can be determined in step 401. The random access procedure corresponding to the random access preamble is successfully completed.
  • the transmission block may be a transmission block received by the first cell, but this embodiment is not limited thereto.
  • the downlink control channel is used to feed back the downlink control channel of the random access preamble in step 401; for example, the downlink control channel is used to feed back the downlink control channel for a beam recovery failure request; in step 402,
  • the MAC entity of the terminal device receives a downlink allocation on the downlink control channel, and the corresponding transmission block received is successfully decoded, it determines (or considers the consumer) to be in phase with the random access preamble (such as a beam failure recovery request). The corresponding random access procedure is successfully completed.
  • the network device and the terminal device can normally communicate with each other, and it is not necessary to continue the random access process.
  • the random access procedure corresponding to the random access preamble in step 401 is successfully completed.
  • the transmission block may be a transmission block received by the first cell, but this embodiment is not limited thereto.
  • the downlink control channel is a downlink control channel of the second cell for feedback of the random access preamble in step 401.
  • This embodiment does not Use this as a limitation.
  • the downlink control channel is related to a cell radio network temporary identity (C-RNTI) or a random access radio network temporary identity (RA-RNTI) (PDCCH for the C-RNTI or RA-RNTI).
  • C-RNTI cell radio network temporary identity
  • RA-RNTI random access radio network temporary identity
  • the method further includes: (not shown) the terminal device stops sending or receiving uplink and downlink signals related to the random access process.
  • the terminal device stops sending or receiving uplink and downlink signals related to the random access process.
  • whether the random access process is successful is determined according to the relationship between the downlink control channel and the random access preamble sent by the cell or the terminal device. Therefore, the terminal device can accurately send and receive data, thereby increasing the success rate and reducing the number of retransmissions. To save energy. .
  • FIG. 5 is a flowchart of a random access method according to the fourth embodiment, which is applied to a terminal device side. As shown in Figure 5, the method includes:
  • Step 501 The terminal device sends a random access preamble to the network device.
  • Step 502 When the terminal device has received downlink allocation on the downlink control channel, and the corresponding transmission block received is successfully decoded, and the conditions of the first cell related to the random access preamble are met, the terminal device Determining that the random access procedure corresponding to the random access preamble is successfully completed;
  • the downlink control channel is a downlink control channel of the second cell and / or a downlink control channel for feedback of the random access preamble.
  • step 501 for the implementation of step 501, refer to step 501 in embodiment 1, and details are not described herein again.
  • the method may further include: (not shown) the terminal device monitors the downlink allocation on the downlink control channel, and when the downlink allocation is received on the PDCCH, the The PDSCH receives a transmission block (data is transmitted on the PDSCH with the transmission block as a basic transmission unit), and decodes the received transmission block.
  • the terminal device monitors the downlink allocation on the downlink control channel, and when the downlink allocation is received on the PDCCH, the The PDSCH receives a transmission block (data is transmitted on the PDSCH with the transmission block as a basic transmission unit), and decodes the received transmission block.
  • Embodiment 3 when the terminal device receives the downlink allocation and the corresponding transmission block received is successfully decoded, that is, it is determined to be in accordance with the random access.
  • the random access process corresponding to the preamble is successfully completed.
  • the terminal device in addition to receiving the downlink allocation and receiving the corresponding transmission block successfully decoded, the terminal device also needs to determine whether the random access preamble is satisfied. For the condition of the first cell, when the downlink allocation is received and the corresponding transmission block received is successfully decoded, and the condition is satisfied, the terminal device determines a random access process corresponding to the random access preamble. Completed successfully.
  • the condition of the first cell related to the random access preamble is that the first cell is the same as the second cell, or the first cell is different from the second cell.
  • the second cell is a cell that monitors and feeds back the downlink allocation of the random access preamble; or a special cell (SpCell).
  • the condition is similar to that in Embodiment 2.
  • the downlink control channel is a downlink control channel of the second cell.
  • the MAC entity of the terminal device receives a downlink allocation on the downlink control channel, and the corresponding transmission block received is successfully decoded, and the first cell and the second cell are the same.
  • the random access procedure corresponding to the random access preamble is successfully completed.
  • it can be concluded that normal communication between the network device and the terminal device is possible because the downlink allocation and the corresponding transmission block of the first cell and / or the second cell are successfully received, It is not necessary to continue the random access process, and it can be further determined that the random access process corresponding to the random access preamble in step 501 is successfully completed.
  • the transmission block may be a transmission block received by the first cell and / or the second cell, but this embodiment is not limited thereto.
  • the downlink control channel is used to feed back the random access preamble downlink control channel in step 501; for example, the downlink control channel is used to feed back a downlink control channel for which a beam recovery failure request is requested; in step 502,
  • the MAC entity of the terminal device receives a downlink allocation on the downlink control channel, and the corresponding transmission block received is successfully decoded, and the first cell and the second cell are the same, it determines (or considers the consumer) to be connected with the random access.
  • the random access procedure corresponding to the incoming preamble (such as a beam failure recovery request) is successfully completed.
  • the transmission block may be a transmission block received by the first cell and / or the second cell, but this embodiment is not limited thereto.
  • the downlink control channel is a downlink control channel of the second cell for feedback of the random access preamble in step 501.
  • This embodiment does not Use this as a limitation.
  • the downlink control channel is a downlink control channel of the second cell.
  • the MAC entity of the terminal device receives a downlink allocation on the downlink control channel, and the corresponding transmission block received is
  • the decoding is successful and the first cell and the second cell are different, it is determined (or considered to be considered) that the random access process corresponding to the random access preamble is successfully completed.
  • the network device and the terminal device can already communicate normally and do not need to continue
  • the random access process may further determine that the random access process corresponding to the random access preamble in step 501 is successfully completed.
  • the transmission block may be a transmission block received by the first cell, but this embodiment is not limited thereto.
  • the downlink control channel is used to feed back the random access preamble downlink control channel in step 501; for example, the downlink control channel is used to feed back a downlink control channel for which a beam recovery failure request is requested; in step 502,
  • the MAC entity of the terminal device receives downlink allocation on the downlink control channel, and the corresponding transmission block received is successfully decoded, and the first cell and the second cell are different, it is determined (or considered to be considered) to be different from the random
  • the random access procedure corresponding to the access preamble (such as a beam failure recovery request) is successfully completed.
  • the network device and the terminal device Communication between them is already normal, and it is not necessary to continue the random access process, and it can be further determined that the random access process corresponding to the random access preamble in step 501 is successfully completed.
  • the transmission block may be a transmission block received by the first cell, but this embodiment is not limited thereto.
  • the downlink control channel is a downlink control channel of the second cell for feedback of the random access preamble in step 501.
  • This embodiment does not Use this as a limitation.
  • the downlink control channel is related to a cell radio network temporary identity (C-RNTI) or a random access radio network temporary identity (RA-RNTI).
  • C-RNTI cell radio network temporary identity
  • RA-RNTI random access radio network temporary identity
  • the method further includes: (not shown) the terminal device stops sending or receiving uplink and downlink signals related to the random access process.
  • the terminal device stops sending or receiving uplink and downlink signals related to the random access process.
  • a scenario of a random access process can be further clarified by using this condition, that is, a cell in which a random access process corresponding to the random access preamble is initiated (or a cell in which the random access preamble is located) and monitoring Feedback the scenario where the cell (or special cell) where the downlink allocation of the random access preamble is located is the same or different, and determine whether the random access process is successful according to the relationship between the downlink control channel and the random access preamble sent by the cell or terminal device. Therefore, the terminal device can accurately send and receive data, thereby improving the success rate, reducing the number of retransmissions, and thereby saving energy consumption.
  • embodiments 1-4 may be implemented alone or in any combination of two or more. That is, when determining whether the random access process is successfully completed, any of steps 202, 302, 402, and 502 in embodiment 1-4 may be combined. Two or more steps are judged. When the requirements of at least one of the steps are satisfied, it is determined that the random access process is successfully completed, and examples are not given here one by one.
  • Steps 202, 302, 402, and 502 in the foregoing embodiment 1-4 describe the behavior of the MAC entity of the terminal device in the different scenarios described above, that is, how to determine whether the random access process is successfully completed.
  • the following describes the scenario diagram with reference to embodiment 5 and FIG. 6 Under 1C, the physical layer behavior of the terminal device.
  • FIG. 6 is a flowchart of a random access method according to the fifth embodiment, which is applied to a terminal device side. As shown in Figure 6, the method includes:
  • Step 601 The terminal device sends a random access preamble to the network device.
  • Step 602 The terminal device monitors the downlink control information in the second cell, where the downlink control information is related to the random access preamble;
  • Step 603 The terminal device receives downlink data scheduled by the downlink control information in a first cell, where the first cell and the second cell are different.
  • the terminal device may send the random access preamble in the first cell. That is, the first cell is the cell where the random access preamble is transmitted, but this embodiment is not a limitation.
  • the first cell may also be a cell that provides a reference signal index associated with the downlink control information, and / Or, the beam corresponding to the random access preamble fails to recover the cell where the configuration is located.
  • the first cell is the cell where the random access preamble is sent.
  • the method may further include: (not shown) the terminal device receives A first configuration sent by a network device through high-level signaling, where the first configuration (for example, PRACH-ResourceDedicatedBFR) indicates a specific PRACH resource for beam failure recovery, and the first configuration may include at least one of the following configuration information: beam failure Recovery configured root sequence information, random access opportunity configuration information based on non-competitive beam failure recovery, search space information for receiving beam failure recovery, candidate beam reference signal list information, for distinguishing random access processes (for example, The random access procedure may be a parameter for a random access procedure (for a random access procedure for beam failure recovery) priority, and the terminal device sends the random access preamble in the first cell according to the first configuration.
  • the first configuration for example, PRACH-ResourceDedicatedBFR
  • the first configuration may include at least one of the following configuration information: beam failure Recovery configured root sequence information, random access opportunity configuration information based on non-competitive beam failure recovery, search space
  • the first cell may be a cell that provides a reference signal index associated with the downlink data scheduled by the downlink control information, where the reference signal index is associated with the downlink data, indicating that the downlink data is based on the reference signal index.
  • the method may further include (not shown): the terminal device receives the reference sent by the network device through higher layer signaling in the first cell A signal index, where the reference signal index is an index selected by a network device in a candidate beam reference signal list (candidateBeamRSlist).
  • the reference signal may include at least one of the following: a channel state information reference signal (CSI-RS, Channel State Information Reference Signal), a synchronization signal (SS, Synchronization Signal), and a physical broadcast channel (PBCH, Physical Broadcast Channel).
  • CSI-RS Channel State Information Reference Signal
  • SS Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the first cell may be a cell where the beam failure recovery configuration corresponding to the random access preamble is sent, that is, when the random access preamble is a beam failure recovery request, before step 601, the method may further include: (Not shown)
  • the terminal device receives the first configuration (beam failure recovery configuration) sent by the network device through high-level signaling in the first cell.
  • the first configuration is specifically described above, and is not described here again.
  • the cell where the random access preamble is sent may be the same as the cell that provides the reference signal index, or the cell where the beam failure recovery configuration corresponding to the random access preamble is sent. This embodiment does not use This is a limitation.
  • the downlink control information is related to the random access preamble in step 601, and indicates a random access response (for example, BFR RAR).
  • the downlink control information passes through a downlink control channel.
  • Bearer used for scheduling downlink data.
  • the downlink control channel is to feedback the downlink control channel of the random access preamble, that is, the PDCCH corresponding to PRACH transmission.
  • the downlink control channel For the implementation manner, reference may be made to Embodiment 3 or 4, and details are not described herein again.
  • the method may further include: (not shown) the terminal device receives a second configuration sent by the network device through high-level signaling, and the second configuration indicates random access of the beam failure recovery request A response (BFR RAR, ie, beam failure recovery request response) search space, and monitoring the downlink control information includes: the terminal device receives a downlink control channel (scrambled by C-RNTI) on the search space according to the second configuration, and resolves Obtain the downlink control information after scrambling.
  • BFR RAR beam failure recovery request response
  • the second cell is a cell in which the downlink control information is monitored, or the second cell is a Spcell.
  • the terminal device when the first cell is different from the second cell, in step 603, the terminal device assumes that the downlink data scheduled by the downlink control information is received in the first cell, where the receiving includes detecting, monitoring, At least one of operations such as decoding and decoding.
  • the above-mentioned high-level signaling may be a Media Access Control (MAC, Media Access Control) layer or a Radio Resource Control (RRC) signaling.
  • MAC Media Access Control
  • RRC Radio Resource Control
  • the terminal device when the terminal device receives the downlink data in the first cell, it can be inferred that the channel quality of the first cell has become better, and it can be determined that the beam failure of the first cell has recovered, so that the corresponding randomness can be terminated in time. Process to save energy.
  • FIG. 7 is a flowchart of a data sending method according to Embodiment 6 and is applied to a network device side. As shown in Figure 7, the method includes:
  • Step 701 The network device receives a random access preamble sent by the terminal device.
  • Step 702 The network device sends downlink control information to the terminal device in the second cell.
  • the downlink control information is related to the random access preamble.
  • Step 703 The network device sends the downlink data scheduled by the downlink control information to the terminal device in the first cell, where the first cell is different from the second cell.
  • steps 701 to 703 correspond to steps 601 to 603 in Embodiment 5, and overlaps are not described again.
  • the first cell is the cell in which the random access preamble is sent.
  • the method may further include: (not shown) network equipment passes a high-level The first configuration sent by the signaling to the terminal device.
  • network equipment passes a high-level The first configuration sent by the signaling to the terminal device.
  • the first cell may be a cell that provides a reference signal index associated with the downlink data scheduled by the downlink control information
  • the reference signal may be a candidate beam reference signal
  • the method may further include (not shown): a network
  • the device selects a reference signal index from a candidate beam reference signal list (candidateBeamRSlist), and sends the reference signal index to the terminal device through high-layer signaling in the first cell.
  • candidateBeamRSlist candidate beam reference signal list
  • the first cell may be the cell where the beam failure recovery configuration corresponding to the random access preamble is sent. That is, when the random access preamble is a beam failure recovery request, before step 701, the method may further include: (Not shown) The network device sends the first configuration (beam failure recovery configuration) to the terminal device through high-level signaling in the first cell.
  • the first configuration is specifically as described above, and is not repeated here.
  • the above-mentioned high-level signaling may be a Media Access Control (MAC, Media Access Control) layer or a Radio Resource Control (RRC) signaling.
  • MAC Media Access Control
  • RRC Radio Resource Control
  • the network device scrambles the PDCCH through the C-RNTI.
  • the PDCCH is to feed back the random access preamble PDCCH, carries the DCI through the PDCCH, and sends the PDCCH to the terminal device in the second cell. DCI.
  • the second cell is a cell in which the downlink control information is sent, or the second cell is a Spcell.
  • step 703 when the first cell and the second cell are different, the network device sends the downlink data scheduled by the downlink control information to the terminal device in the first cell, so that the terminal device The cell receives the downlink data scheduled by the downlink control information, but does not receive the downlink data scheduled by the downlink control information on the second cell.
  • the network device sends the downlink data according to the reference signal corresponding to the random access preamble received in step 701.
  • the method may further include (not shown), the network The device configures the corresponding relationship between the random access opportunity (RACH Occasion) of the random access preamble and the reference signal through high-level signaling.
  • the high-level signaling may be RRC signaling, and according to the corresponding relationship and the random access preamble, it may determine A reference signal corresponding to the random access preamble.
  • the antenna port used by the network device to send the downlink data and the antenna port used to send the reference signal are co-located.
  • the reference signal may include at least one of the following: a channel state information reference signal (CSI-RS, Channel State Information Reference Signal), a synchronization signal (SS, Synchronization Signal), a physical broadcast channel (PBCH, Physical Broadcast Channel), and the like.
  • CSI-RS channel state information reference signal
  • SS Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the network device can use the correct instruction information to send downlink data, thereby improving the success rate of data transmission, reducing the number of retransmissions, and further saving energy consumption.
  • Embodiment 7 also provides a random access device. Since the principle of the device to solve the problem is similar to the method of Embodiment 1 or 2, its specific implementation can refer to the implementation of the method of Embodiment 1 or 2. The same content is not repeated.
  • FIG. 8 is a schematic structural diagram of the random access device. As shown in FIG. 8, the device 800 includes:
  • a first sending unit 801, configured to send a random access preamble to a network device
  • the first determining unit 802 is configured to determine when the terminal device receives the first notification, or when the terminal device receives the first notification and meets a condition of the first cell related to the random access preamble. The random access procedure corresponding to the random access preamble is successfully completed;
  • the first notification is a notification sent from the bottom layer of the terminal device that a downlink control channel transmission in the first cell is received, and / or a downlink control channel sent from the bottom layer to feed back the random access preamble. Notification of transmission.
  • the condition is that the first cell and the second cell are the same, or the first cell and the second cell are different.
  • first cell and the second cell are the same, or the first cell and the second cell are different.
  • reference may be made to Embodiment 1 or 2, and details are not described herein again.
  • the random access preamble is a beam failure recovery request
  • the downlink control channel transmission is related to C-RNTI or RA-RNTI.
  • the device further includes: (not shown)
  • a first transceiver unit configured to receive a downlink control channel transmission, and send a first notification of receiving the downlink control channel transmission to the MAC entity of the terminal device, and the MAC entity of the terminal device receives the first notification sent from the bottom layer,
  • the device further includes: (not shown)
  • the first processing unit is configured to stop sending or receiving uplink and downlink signals related to the random access process after the random access process is successfully completed, and / or to ignore a measurement interval that may occur.
  • whether the random access process is successful is determined according to the relationship between the downlink control channel transmission and the random access preamble sent by the cell or the terminal device. Therefore, the terminal device can accurately send and receive data, thereby improving the success rate and reducing retransmission Times, thereby saving energy.
  • This embodiment 8 also provides a random access device. Since the principle of the device to solve the problem is similar to the method of embodiment 3 or 4, its specific implementation can refer to the implementation of the method of embodiment 3 or 4, and the same content will not be described repeatedly.
  • FIG. 9 is a schematic structural diagram of the random access device. As shown in FIG. 9, the device 900 includes:
  • a second sending unit 901, configured to send a random access preamble to a network device
  • a second determining unit 902 configured to: when the terminal device has received downlink allocation on the downlink control channel, and the corresponding transmission block received has been successfully decoded, or when the terminal device has received downlink allocation on the downlink control channel, And when the received corresponding transmission block is successfully decoded and the conditions of the first cell related to the random access preamble are satisfied, it is determined that the random access process corresponding to the random access preamble is successfully completed;
  • the downlink control channel is a downlink control channel of the second cell and / or a downlink control channel for feedback of the random access preamble.
  • the condition is that the first cell and the second cell are the same, or the first cell and the second cell are different.
  • first cell and the second cell are the same, or the first cell and the second cell are different.
  • reference may be made to Embodiment 1 or 2, and details are not described herein again.
  • the transmission block is a transmission block received in the first cell
  • the random access preamble is a beam failure recovery request
  • the downlink control channel is related to C-RNTI or RA-RNTI.
  • the device further includes: (not shown)
  • the second transceiver unit is configured to monitor downlink allocation on the downlink control channel.
  • a transport block is received on a PDSCH scheduled by the PDCCH (data is transmitted on the PDSCH using the transport block as a basic transmission unit).
  • data is transmitted on the PDSCH using the transport block as a basic transmission unit.
  • To decode the received transmission block For a specific implementation manner of the downlink control channel, refer to Embodiment 3, and details are not described herein again.
  • the device further includes: (not shown)
  • the second processing unit is configured to stop sending or receiving uplink and downlink signals related to the random access process after the random access process is successfully completed, and / or to ignore a measurement interval that may occur.
  • whether the random access process is successful is determined according to the relationship between the downlink control channel and the random access preamble sent by the cell or the terminal device. Therefore, the terminal device can accurately send and receive data, thereby increasing the success rate and reducing the number of retransmissions. To save energy.
  • This embodiment 9 also provides a data receiving device. Since the principle of the device to solve the problem is similar to the method of Embodiment 5, its specific implementation can refer to the implementation of the method of Embodiment 5, and the same content will not be described repeatedly.
  • FIG. 10 is a schematic structural diagram of the data receiving device. As shown in FIG. 10, the device 1000 includes:
  • a third sending unit 1001, configured to send a random access preamble to a network device
  • a monitoring unit 1002 is configured to monitor downlink control information in a second cell, where the downlink control information is related to the random access preamble;
  • the receiving unit 1003 is configured to receive downlink data scheduled by the downlink control information in a first cell, where the first cell is different from the second cell.
  • the random access preamble is sent according to a high-level signaling configuration for beam failure recovery, and the random access preamble is a beam failure recovery request.
  • the device may further include: (not shown)
  • a third transceiver unit configured to receive a first configuration sent by a network device through high-level signaling, where the first configuration (for example, PRACH-ResourceDedicatedBFR) indicates a specific PRACH resource used for beam failure recovery.
  • the first configuration can be referred to in detail.
  • the third sending unit 1001 sends the random access preamble in the first cell according to the first configuration; or,
  • a third transceiver unit configured to receive, in the first cell, a reference signal index sent by a network device through high-level signaling, where the reference signal index is an index selected by the network device from a candidate beam reference signal list (candidateBeamRSlist); or,
  • the third transceiver unit is configured to receive the first configuration (beam failure recovery configuration) sent by the network device through high-level signaling in the first cell.
  • the first configuration is specifically described above, and is not described herein again.
  • the terminal device when the terminal device receives the downlink data in the first cell, it can be inferred that the channel quality of the first cell has become better, and it can be determined that the beam failure of the first cell has recovered, so that the corresponding randomness can be terminated in time. Process to save energy.
  • This embodiment 10 also provides a data sending device. Since the principle of the device to solve the problem is similar to the method of Embodiment 6, its specific implementation can refer to the implementation of the method of Embodiment 6, and the same content will not be described repeatedly.
  • FIG. 11 is a schematic structural diagram of the data sending device. As shown in FIG. 11, the device 1100 includes:
  • a first receiving unit 1101, configured to receive a random access preamble sent by a terminal device
  • a fourth sending unit 1102 configured to send downlink control information to the terminal device in a second cell; wherein the downlink control information is related to the random access preamble;
  • a fifth sending unit 1103 is configured to send downlink data scheduled by the downlink control information to the terminal device in a first cell, where the first cell and the second cell are different.
  • the random access preamble is sent according to a high-level signaling configuration for beam failure recovery, and the random access preamble is a beam failure recovery request.
  • the device may further include: (not shown)
  • a fourth transceiver unit configured to send a first configuration to a terminal device through high-level signaling, where the first configuration (for example, PRACH-ResourceDedicatedBFR) indicates a specific PRACH resource for beam failure recovery.
  • the first configuration for example, PRACH-ResourceDedicatedBFR
  • PRACH-ResourceDedicatedBFR a specific PRACH resource for beam failure recovery.
  • a fourth transceiver unit configured to select a reference signal index from a candidate beam reference signal list (candidateBeamRSlist), and send the reference signal index to the terminal device through high-level signaling in the first cell; or,
  • the fourth transceiver unit is configured to send a first configuration (beam failure recovery configuration) to the terminal device in the first cell through high-level signaling.
  • the first configuration is specifically described above, and is not described herein again.
  • the network device can use the correct instruction information to send downlink data, thereby improving the success rate of data transmission, reducing the number of retransmissions, and further saving energy consumption.
  • This embodiment also provides a communication system, and reference may be made to FIG. 1A, and the same contents as those in Embodiments 1 to 2 will not be described again.
  • the communication system 100 may include a terminal device 102 configured with the random access device 800 or 900 described in Embodiment 7 or Embodiment 8, or configured with the data receiving device 1000 described in Embodiment 9. .
  • the communication system may further include: a network device 101 configured with the data sending apparatus 1100 according to the tenth embodiment.
  • This embodiment also provides a network device, which may be, for example, a base station, but the present invention is not limited thereto, and may also be another network device.
  • a network device which may be, for example, a base station, but the present invention is not limited thereto, and may also be another network device.
  • FIG. 12 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • the network device 1200 may include: a processor 1210 (such as a central processing unit CPU) and a memory 1220; the memory 1220 is coupled to the processor 1210.
  • the memory 1220 can store various data; in addition, a program 1230 for information processing is stored, and the program 1230 is executed under the control of the processor 1210.
  • the processor 1210 may be configured to execute the program 1230 to implement the data transmission method described in Embodiment 6.
  • the processor 1210 may be configured to perform the following control: receiving a random access preamble sent by a terminal device; sending downlink control information to the terminal device in a second cell; wherein the downlink control information is related to the random access preamble Sending downlink data scheduled by the downlink control information to the terminal device in a first cell, where the first cell is different from the second cell.
  • the network device 1200 may further include a transceiver 1240, an antenna 1250, and the like; wherein the functions of the above components are similar to those in the prior art, and are not repeated here. It is worth noting that the network device 1200 does not necessarily need to include all the components shown in FIG. 12; in addition, the network device 1200 may also include components not shown in FIG. 12, which can refer to the prior art.
  • An embodiment of the present invention further provides a terminal device, but the present invention is not limited thereto, and may also be another device.
  • FIG. 13 is a schematic diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device 1300 may include a processor 1310 and a memory 1320; the memory 1320 stores data and programs, and is coupled to the processor 1310. It is worth noting that this figure is exemplary; other types of structures can also be used to supplement or replace the structure to implement telecommunication functions or other functions.
  • the processor 1310 may be configured to execute a program to implement the random access method as described in Embodiment 1 or 2.
  • the processor 1310 may be configured to perform the following control: sending a random access preamble to a network device; when the terminal device receives the first notification, or upon receiving the first notification, and satisfying the correlation with the random access preamble When the conditions of the first cell are satisfied, the random access process corresponding to the random access preamble is successfully completed; wherein the first notification is a downlink control channel sent from the bottom layer and received in the first cell A notification of transmission, and / or a notification of a downlink control channel transmission sent from the bottom layer in order to feed back the random access preamble.
  • the processor 1310 may be configured to execute a program to implement the random access method as described in Embodiment 3 or 4.
  • the processor 1310 may be configured to perform the following control: sending a random access preamble to a network device; when a downlink allocation has been received on a downlink control channel, and the corresponding transmission block received has been successfully decoded, or When the downlink control channel receives a downlink allocation, and the corresponding corresponding transmission block is successfully decoded, and the conditions of the first cell related to the random access preamble are met, the terminal device determines a phase with the random access preamble. The corresponding random access procedure is successfully completed; wherein the downlink control channel is a downlink control channel of the second cell and / or a downlink control channel for feedback of the random access preamble.
  • the processor 1310 may be configured to execute a program to implement the data receiving method as described in Embodiment 5.
  • the processor 1310 may be configured to perform the following control: sending a random access preamble to a network device; monitoring downlink control information in a second cell; wherein the downlink control information is related to the random access preamble; receiving in the first cell The downlink data scheduled by the downlink control information, wherein the first cell and the second cell are different.
  • the terminal device 1300 may further include a communication module 1330, an input unit 1340, a display 1350, and a power supply 1360.
  • the functions of the above components are similar to those in the prior art, and are not repeated here. It is worth noting that the terminal device 1300 does not have to include all the components shown in FIG. 13, and the above components are not necessary; in addition, the terminal device 1300 may also include components not shown in FIG. 13. There is technology.
  • FIG. 14 is a flowchart of a data transmitting and receiving method according to this embodiment. As shown in FIG. 14, the method includes:
  • Step 1401 The terminal device sends a random access preamble to the network device.
  • Step 1402 The network device sends downlink control information in the second cell, where the downlink control information is carried by a PDCCH, and the PDCCH is to feed back the PDCCH of the random access preamble;
  • Step 1403 The network device sends downlink data scheduled by the downlink control information in the first cell.
  • Step 1404 The terminal device monitors the downlink control information in the second cell; monitors the downlink data in the first cell, and decodes the downlink data.
  • Steps 1401 and 1404 are implemented by the bottom layer (such as the physical layer) of the terminal device, and details are not described herein again.
  • this embodiment does not limit the execution order of steps 1402-1404, which can be performed simultaneously.
  • Step 1405 When receiving the downlink control channel transmission, the bottom layer of the terminal device sends a first notification to the MAC layer.
  • the first notification may refer to Embodiment 1, and details are not described herein again.
  • step 1405 may be performed simultaneously with step 1404.
  • step 1405 may be performed after the data decoding in step 1404 is successfully performed, or after the DCI is received, the data is translated Execute before code, this embodiment is not used as a limitation
  • step 1406 it is determined whether the condition is satisfied.
  • the MAC entity determines that the random access process corresponding to the random access preamble in step 1401 is successfully completed.
  • step 1406 For the implementation of step 1406, refer to steps 202, 302, 402, and 502 in Embodiment 1-4, which are implemented by the MAC layer of the terminal device, and details are not described herein again.
  • the method may further include: (not shown, optional), the network device sends a reference signal index to the terminal device, and / or the first configuration, and for details, refer to Embodiment 5. I won't repeat them here.
  • An embodiment of the present invention further provides a storage medium storing a computer-readable program, wherein the computer-readable program causes a random access device or a terminal device to execute the random access method according to any one of the embodiments 1 to 4.
  • An embodiment of the present invention further provides a computer-readable program, wherein when the program is executed in a random access device or a terminal device, the program causes the random access device or the terminal device to perform any of the embodiments 1 to 4 A said random access method.
  • An embodiment of the present invention further provides a storage medium storing a computer-readable program, wherein the computer-readable program causes a data receiving apparatus or a terminal device to execute the data receiving method according to Embodiment 5.
  • An embodiment of the present invention further provides a computer-readable program, wherein when the program is executed in a data receiving device or a terminal device, the program causes the data receiving device or the terminal device to perform the data receiving according to Embodiment 5 method.
  • An embodiment of the present invention further provides a storage medium storing a computer-readable program, wherein the computer-readable program causes a data sending apparatus or a network device to execute the data sending method according to the sixth embodiment.
  • An embodiment of the present invention further provides a computer-readable program, wherein when the program is executed in a data sending device or a network device, the program causes the data sending device or the network device to perform the data sending according to the sixth embodiment method.
  • the above devices and methods of the present invention may be implemented by hardware, or may be implemented by hardware in combination with software.
  • the present invention relates to a computer-readable program that, when executed by a logic component, enables the logic component to implement the apparatus or constituent components described above, or enables the logic component to implement various methods described above. Or steps.
  • the present invention also relates to a storage medium for storing the above programs, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, and the like.
  • Each processing method in each device described in connection with the embodiments of the present invention may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams and / or one or more combinations of the functional block diagrams shown in FIGS. 8-13 may correspond to each software module of a computer program flow or to each hardware module.
  • These software modules can correspond to the steps shown in Figure 2-7.
  • These hardware modules can be implemented by using a field programmable gate array (FPGA) to cure these software modules.
  • FPGA field programmable gate array
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor so that the processor can read information from and write information to the storage medium; or the storage medium may be a component of the processor.
  • the processor and the storage medium may reside in an ASIC.
  • This software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module may be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional block diagrams and / or one or more combinations of the functional block diagrams described with reference to FIGS. 8-13 may be implemented as a general-purpose processor, digital signal processor (DSP) for performing the functions described in this application , Application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • DSP digital signal processor
  • ASICs Application specific integrated circuits
  • FPGAs field programmable gate arrays
  • the one or more of the functional block diagrams and / or one or more combinations of the functional block diagrams described with respect to FIGS. 8-13 may also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, multiple microprocessors Processor, one or more microprocessors in conjunction with DSP communications, or any other such configuration.
  • Attachment 1 A random access method, wherein the method includes:
  • the terminal device sends a random access preamble to the network device
  • the terminal device determines (consider) A random access process corresponding to the random access preamble is successfully completed;
  • the first notification is a notification sent from the bottom layer that a downlink control channel transmission in the first cell is received, and / or a downlink control channel transmission that is received from the bottom layer to feed back the random access preamble. announcement of.
  • the terminal device stops sending or receiving uplink and downlink signals related to the random access process.
  • a random access method wherein the method comprises:
  • the terminal device sends a random access preamble to the network device
  • the terminal device determines that the random access process corresponding to the random access preamble is successfully completed;
  • the downlink control channel is a downlink control channel of a second cell and / or a downlink control channel for feedback of the random access preamble.
  • the downlink control channel is related to a C-RNTI or an RA-RNTI.
  • the terminal device stops sending or receiving uplink and downlink signals related to the random access process.
  • the terminal device ignores measurement intervals that may occur.
  • a data receiving method wherein the method comprises:
  • the terminal device sends a random access preamble to the network device
  • the terminal device monitors downlink control information in a second cell; wherein the downlink control information is related to the random access preamble;
  • the terminal device receives downlink data scheduled by the downlink control information in a first cell, where the first cell and the second cell are different.
  • the first cell is a cell that provides a reference signal index associated with downlink data scheduled by the downlink control information, or
  • the first cell is a cell in which the random access preamble is sent, or
  • the first cell is a cell where the beam failure recovery configuration corresponding to the random access preamble is located.
  • a data sending method wherein the method comprises:
  • the network device receives the random access preamble sent by the terminal device
  • the network device sends downlink data scheduled by the downlink control information to the terminal device in a first cell, where the first cell and the second cell are different.
  • the first cell is a cell that provides a reference signal index associated with downlink data scheduled by the downlink control information, or
  • the first cell is a cell in which the random access preamble is received, or
  • the first cell is a cell where the beam failure recovery configuration corresponding to receiving the random access preamble is located.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种随机接入方法,数据接收方法及其装置、通信系统。其中,该随机接入方法包括:终端设备向网络设备发送随机接入前导;在该终端设备接收到第一通知时,或者在该终端设备接收到第一通知,且满足与该随机接入前导相关的第一小区的条件时,该终端设备确定(consider)与该随机接入前导相对应的随机接入过程成功完成;其中,该第一通知是从底层发送的收到在该第一小区的下行控制信道传输的通知,和/或从底层发送的收到为了反馈该随机接入前导的下行控制信道传输的通知,通过本发明实施例,根据下行控制信道传输与小区或终端设备发送的随机接入前导的关系确定随机接入过程是否成功,由此终端设备能够准确的收发数据,从而提高成功率,减少重传次数,进而节省能耗。

Description

随机接入方法,数据接收方法及其装置、通信系统 技术领域
本发明涉及通信领域,特别涉及一种随机接入方法,数据接收方法及其装置、通信系统。
背景技术
随机接入过程是作为实现终端设备初始接入和上行同步的重要过程,随机接入过程包括基于竞争的随机接入过程和基于非竞争的随机接入过程,在随机接入过程是基于非竞争的随机接入过程时,随机接入过程成功是指随机接入响应消息(Msg.2)成功接收,随机接入过程失败是指,当与Msg.2相关的随机接入前导的发送达到最大次数或相关随机过程超出预定时间时,用户还未能成功接收Msg.2;在随机接入过程是基于竞争的随机接入过程时,随机接入过程成功是指竞争解决消息(Msg.4)成功接收,随机接入过程失败是指,当与Msg.4相关的随机接入前导的发送达到最大次数或相关随机过程超出预定时间时,用户还未能成功接收Msg.4。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现,上述确定随机接入过程成功的方法仅针对单载波场景,但当网络设备为终端设备配置了多个载波时,发起随机接入过程所在的小区和接收随机接入响应所在的小区可能相同或不同,图1B-1C是分别是相同和不同的场景示意图,如图1B所示,在小区1发起随机接入过程后,仍在小区1接收该随机接入响应,如图1C所示,在小区1发起随机接入过程后,可能在小区2接收该随机接入响应。
目前,现有技术中还没有完善的在多载波场景下确定随机接入过程是否成功的方法。
为了解决上述问题,本发明实施例提供一种随机接入方法,数据接收方法及其装置、通信系统。
根据本实施例的第一方面,提供一种随机接入装置,其中,所述装置包括:
第一发送单元,其用于向网络设备发送随机接入前导;
第一确定单元,其用于在终端设备接收到第一通知时,或者在终端设备接收到第一通知,且满足与所述随机接入前导相关的第一小区的条件时,确定(consider)与所述随机接入前导相对应的随机接入过程成功完成;
其中,所述第一通知是从所述终端设备的底层(lower layer)发送的收到在所述第一小区的下行控制信道传输的通知,和/或从底层发送的收到为了反馈所述随机接入前导的下行控制信道传输的通知。
根据本实施例的第二方面,提供一种随机接入装置,其中,所述装置包括:
第二发送单元,其用于向网络设备发送随机接入前导;
第二确定单元,其用于在终端设备已在下行控制信道接收到下行分配,且接收到的相应的传输块被成功译码时,或者在终端设备已在下行控制信道接收到下行分配,且接收到的相应的传输块被成功译码,且满足与所述随机接入前导相关的第一小区的条件时,确定与所述随机接入前导相对应的随机接入过程成功完成;
其中,所述下行控制信道是第二小区的下行控制信道和/或为了反馈所述随机接入前导的下行控制信道。
根据本实施例的第三方面,提供一种数据接收装置,其中,所述装置包括:
第三发送单元,其用于向网络设备发送随机接入前导;
监听单元,其用于在第二小区监听下行控制信息;其中,所述下行控制信息与所述随机接入前导相关;
接收单元,其用于在第一小区接收所述下行控制信息所调度的下行数据,其中,所述第一小区和所述第二小区不同。
根据本实施例的第四方面,提供一种随机接入方法,其中,所述方法包括:
终端设备向网络设备发送随机接入前导;
在所述终端设备接收到第一通知时,或者在所述终端设备接收到第一通知,且满足与所述随机接入前导相关的第一小区的条件时,所述终端设备确定(consider)与所述随机接入前导相对应的随机接入过程成功完成;
其中,所述第一通知是从底层发送的收到在所述第一小区的下行控制信道传输的通知,和/或从底层发送的收到为了反馈所述随机接入前导的下行控制信道传输的通 知。
根据本实施例的第五方面,提供一种随机接入方法,其中,所述方法包括:
终端设备向网络设备发送随机接入前导;
在所述终端设备已在下行控制信道接收到下行分配,且接收到的相应的传输块被成功译码时,或者在所述终端设备已在下行控制信道接收到下行分配,且接收到的相应的传输块被成功译码,且满足与所述随机接入前导相关的第一小区的条件时,所述终端设备确定与所述随机接入前导相对应的随机接入过程成功完成;
其中,所述下行控制信道是第二小区的下行控制信道和/或为了反馈所述随机接入前导的下行控制信道。
根据本实施例的第六方面,提供一种数据发送方法,其中,所述方法包括:
网络设备接收到终端设备所发送随机接入前导;
所述网络设备在第二小区向所述终端设备发送下行控制信息;其中,所述下行控制信息与所述随机接入前导相关;
所述网络设备在第一小区向所述终端设备发送由所述下行控制信息所调度的下行数据,其中,所述第一小区和所述第二小区不同。
根据本实施例的第七方面,提供一种通信系统,该通信系统包括终端设备,该终端设备包括前述第一方面或第二方面的随机接入装置,或者包括前述第三方面的数据接收装置。
本发明实施例的有益效果在于,根据接收的下行控制信道与小区或终端设备发送的随机接入前导的关系确定随机接入过程是否成功,由此解决了现有技术中存在的问题,终端设备能够准确的收发数据,从而提高成功率,减少重传次数,进而节省能耗。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施方式,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
在附图中:
图1A是本实施例的通信系统的一示意图;
图1B-图1C是本实施例场景示意图;
图2是实施例1中随机接入方法流程图;
图3是实施例2中随机接入方法流程图;
图4是实施例3中随机接入方法流程图;
图5是实施例4中随机接入方法流程图;
图6是实施例5中数据接收方法流程图;
图7是实施例6中数据发送方法流程图;
图8是实施例7中随机接入装置结构示意图;
图9是实施例8中随机接入装置结构示意图;
图10是实施例9中数据接收装置结构示意图;
图11是实施例10中数据发送装置结构示意图;
图12是实施例11中网络设备结构示意图;
图13是实施例11中终端设备结构示意图;
图14是实施例11中数据收发方法流程图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原 则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。下面结合附图对本发明的各种实施方式进行说明。这些实施方式只是示例性的,不是对本发明的限制。
在本发明实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本发明实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本发明实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如第五代新无线接入(5G NR,New Radio Access)、长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本发明实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB 或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,也可以表示为服务小区,其可以是宏小区或小小区,这取决于使用该术语的上下文。
在本发明实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
以下通过示例对本发明实施例的场景进行说明,但本发明不限于此。
图1A是本发明实施例的通信系统的一示意图,示意性说明了以用户设备和网络设备为例的情况,如图1A所示,通信系统100可以包括网络设备101和终端设备102。为简单起见,图1A仅以一个终端设备和一个网络设备为例进行说明,但本发明实施例不限于此。
在本发明实施例中,网络设备101和终端设备102之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
在未来的高频通信场景中,通信链路容易受到物理条件,例如天气,障碍物,方向角度的变化等因素的影响,从而造成在原有的波束方向上传输失败的情况。波束失败恢复技术主要针对这种场景,利用对不同方向波束功率的测量结果,迅速定位新的可靠的波束方向,从而完成对链路的快速恢复。波束失败恢复技术不仅在单载波通信场景非常有效,而且它在多载波场景也能发挥重要的作用。波束失败恢复过程可以基于随机接入过程实现,例如,为了波束失败恢复的随机接入过程(random access procedure for beam failure recovery),终端设备通过物理随机接入信道发送波束失败恢复请求,该波束失败恢复请求为相应的随机接入前导,通知网络设备发生波束失败,并通知网络设备其之前维护的备份波束编号,将终端设备的波束切换到该备份波束上,网络设备接收到波束失败恢复请求后,将自己的波束切换到终端终端通知的备份波束上,并在该波束上发送一个波束失败恢复响应,而波束失败恢复响应为相应的随机接入响应(RAR,Random Access Response),终端设备在判断满足一些条件时,确定波束失败恢复过程成功,本发明实施例将说明上述条件的实施方式。
值得注意的是,本发明实施例以对应波束失败恢复过程的随机接入过程为例进行说明,但本发明不限于此,本发明也同样适用于其他应用随机接入过程的场景中。
下面结合附图对本发明实施例进行说明。
实施例1
图2是本实施例1的随机接入方法流程图,应用于终端设备侧。如图2所示,该方法包括:
步骤201,终端设备向网络设备发送随机接入前导;
步骤202,在该终端设备接收到第一通知时,该终端设备确定与该随机接入前导相对应的随机接入过程成功完成;
其中,该第一通知是从底层发送的收到在该第一小区的下行控制信道传输的通知,和/或从底层发送的收到为了反馈该随机接入前导的下行控制信道传输的通知。
在本实施例中,在步骤201中,终端设备可以在第一小区发起随机接入过程,例如,终端设备在第一小区向网络设备发送随机接入前导,在一个实施方式中,该终端设备可以选择随机接入前导集合中的随机接入前导,并利用随机接入资源集合中的资源来发送该随机接入前导;在一个实施方式中,网络设备可为终端设备分配专用的随 机接入前导,和/或随机接入资源(如随机接入信道资源(RACH Resource),和/或随机接入前导格式(Random Access Preamble Format),终端设备根据网络侧的分配发送随机接入前导;该随机接入前导部分映射在物理随机接入信道(PRACH)上的物理层,在终端设备发送该随机接入前导后,该终端设备忽视可能出现的测量间隔。
在步骤201中,该随机接入过程可以是针对波束失败恢复过程的随机接入过程,该随机接入前导可以是波束失败恢复请求,用于通知网络设备发生波束失败,该终端设备的媒体接入控制实体(MAC entity)可以发送对应波束失败恢复请求的非竞争随机接入前导,但本实施例并不以此作为限制,该随机接入过程还可以是其他场景下(例如切换、重建)发起的,该随机接入前导并不限制于对应波束失败恢复请求。
在本实施例中,网络设备在接收到终端设备的随机接入前导后,会向终端设备反馈随机接入响应,例如通过物理下行控制信道(PDCCH)承载该随机接入响应,终端设备监听该PDCCH传输或者监听与该随机接入前导相关的PDCCH传输,以便确定是否能够成功接收到网络设备发送的控制信息,进而判断随机接入过程是否成功,但在多载波场景下,网络设备会为终端设备配置多个载波,终端设备的服务小区(对应载波)可能会发生改变,即当前的服务小区(第二小区)可能与步骤201中的服务小区(第一小区)不同或者相同,该第二小区是监听反馈该随机接入前导的下行控制信道传输所在的小区;或者是特殊小区(SpCell),所述特殊小区可以包括如下至少之一:双连接情况下主小区组(MCG)的主小区(PCell);双连接情况下辅小区组(SCG)的主小区(PSCell);非双连接情况下的主小区;但本发明不限于此。因此,即便接收到PDCCH传输,也无法直接地确定该PDCCH传输是针对步骤201中发送的随机接入前导的随机接入响应,进而无法确定随机接入过程是否成功(完成)。
因此,在本实施例中,在步骤202前,该方法还可以包括:(未图示)终端设备的底层接收到下行控制信道传输。
在本实施例中,该终端设备的底层(lower layer)是相对终端设备的高层来定义的,该终端设备的底层可以是终端设备的物理层,该终端设备的高层可以是MAC层或无线资源控制(RRC)层,其具体含义参考现有技术定义,本实施例并不以此作为限制。
在一个实施方式中,该下行控制信道传输是该第一小区的下行控制信道传输;该第一小区是发起该随机接入前导所对应的随机接入过程所在的小区;或者发送该随机 接入前导所在的小区。该终端设备的底层向该终端设备的MAC实体发送接收到该下行控制信道传输的第一通知,在步骤202中,在该终端设备的MAC实体接收到该第一通知时,确定(或认为consider)与该随机接入前导相对应的随机接入过程成功完成。由于确定该下行控制信道传输是该第一小区的下行控制信道传输,该第一小区是发起该随机接入前导所对应的随机接入过程所在的小区;或者发送该随机接入前导所在的小区,由此,终端设备可以推测该第一小区的下行控制信道已经可以正常通信,进而可以确定与步骤201中随机接入前导相对应的随机接入过程成功完成。
在一个实施方式中,该下行控制信道传输是为了反馈该步骤201中随机接入前导的下行控制信道传输;该终端设备的底层向该终端设备的MAC实体发送接收到该下行控制信道传输的第一通知,例如,该下行控制信道传输是为了反馈波束恢复失败请求的下行控制信道传输;在步骤202中,在该终端设备的MAC实体接收到该第一通知时,确定(或认为consider)与该随机接入前导(例如波束失败恢复请求)相对应的随机接入过程成功完成。由于确定该下行控制信道传输是为了反馈该随机接入前导的下行控制信道传输,由此,确定该下行控制信道传输是针对步骤201中随机接入前导的响应,进而可以确定与步骤201中随机接入前导相对应的随机接入过程成功完成。
在本实施例中,上述两个实施方式可以单独实施,也可以结合实施,例如,该下行控制信道传输是第一小区的为了反馈步骤201中随机接入前导的下行控制信道传输,本实施例并不以此作为限制。
在本实施例中,该下行控制信道传输与(is addressed to)小区无线网络临时标识(C-RNTI)或随机接入无线网络临时标识(RA-RNTI)相关,例如该下行控制信道是由C-RNTI或RA-RNTI加扰的,具体加扰方法可以参考现有技术,此处不再赘述。
在本实施例中,在步骤202后,由于随机接入过程成功完成,该方法还包括:(未图示)该终端设备停止发送或接收与该随机接入过程相关的上下行信号。例如,终端设备停止发送与该随机接入过程对应的随机接入前导,和/或终端设备停止接收与该随机接入过程对应的随机接入响应,和/或终端设备停止发送该随机接入过程所对应的随机接入响应所指示的上行传输等,本实施例并不以此作为限制。
通过上述实施例,根据下行控制信道传输与小区或终端设备发送的随机接入前导的关系确定随机接入过程是否成功,由此,终端设备能够准确的收发数据,从而提高 成功率,减少重传次数,进而节省能耗。。
实施例2
图3是本实施例2的随机接入方法流程图,应用于终端设备侧。如图3所示,该方法包括:
步骤301,终端设备向网络设备发送随机接入前导;
步骤302,在该终端设备接收到第一通知,且满足与该随机接入前导相关的第一小区的条件时,该终端设备确定与该随机接入前导相对应的随机接入过程成功完成;
其中,该第一通知是从底层发送的收到在该第一小区的下行控制信道传输的通知,和/或从底层发送的收到为了反馈该随机接入前导的下行控制信道传输的通知。
在本实施例中,步骤301的实施方式请参考实施例1中步骤201,此处不再赘述。
在本实施例中,在步骤302前,该方法还可以包括:(未图示)终端设备的底层接收到下行控制信道传输,并向该终端设备的MAC实体发送接收到该下行控制信道传输的第一通知,该下行控制信道传输的具体实施方式请参考实施例1,此处不再赘述。
在本实施例中,与实施例1的不同之处在于,在实施例1中,在终端设备接收到该第一通知,即确定与该随机接入前导相对应的随机接入过程成功完成,而在本实施例中,除了接收到该第一通知,终端设备还需要判断是否满足与该随机接入前导相关的第一小区的条件,在接收到该第一通知,且满足该条件时,该终端设备确定与该随机接入前导相对应的随机接入过程成功完成。
在本实施例中,该与该随机接入前导相关的第一小区的条件是第一小区与第二小区相同,或者第一小区与第二小区不同,该第一小区和第二小区的具体含义请参考实施例1,此处不再赘述。
在一个实施方式中,该下行控制信道传输是该第一小区的下行控制信道传输。该终端设备的底层向该终端设备的MAC实体发送接收到该下行控制信道传输的第一通知,在步骤302中,在该终端设备的MAC实体接收到该第一通知,且第一小区和第二小区相同时,确定(或认为consider)与该随机接入前导相对应的随机接入过程成功完成。由于该第一小区和第二小区相同,确定该下行控制信道传输是该第一小区和/或第二小区的下行控制信道传输,终端设备可以推测该第一小区和/或第二小区的下 行控制信道已经可以正常通信,进而可以确定与步骤301中随机接入前导相对应的随机接入过程成功完成。
在一个实施方式中,该下行控制信道传输是为了反馈该步骤301中随机接入前导的下行控制信道传输;该终端设备的底层向该终端设备的MAC实体发送接收到该下行控制信道传输的第一通知,例如,该下行控制信道传输是为了反馈波束恢复失败请求的下行控制信道传输;在步骤302中,在该终端设备的MAC实体接收到该第一通知,且第一小区和第二小区相同时,确定(或认为consider)与该随机接入前导(例如波束失败恢复请求)相对应的随机接入过程成功完成。由于确定该下行控制信道传输是为了反馈该随机接入前导的下行控制信道传输,由此,确定该下行控制信道传输是针对步骤301中随机接入前导的响应(波束失败恢复请求响应),进而可以确定与步骤301中随机接入前导相对应的随机接入过程成功完成。
在本实施例中,上述两个实施方式可以单独实施,也可以结合实施,例如,该下行控制信道传输是第一小区的为了反馈步骤301中随机接入前导的下行控制信道传输,本实施例并不以此作为限制。
在一个实施方式中,该下行控制信道传输是该第一小区的下行控制信道传输。该终端设备的底层向该终端设备的MAC实体发送接收到该下行控制信道传输的第一通知,在步骤302中,在该终端设备的MAC实体接收到该第一通知,且第一小区和第二小区不相同时,确定(或认为consider)与该随机接入前导相对应的随机接入过程成功完成。由于该第一小区和第二小区不相同,确定该下行控制信道传输是该第一小区的下行控制信道传输,而非第二小区的下行控制信道传输,该第一小区是发起该随机接入前导所对应的随机接入过程所在的小区;或者,发送该随机接入前导所在的小区,因此终端设备可以推测该第一小区的下行控制信道已经可以正常通信,进而可以确定与步骤301中随机接入前导相对应的随机接入过程成功完成。
在一个实施方式中,该下行控制信道传输是为了反馈该步骤301中随机接入前导的下行控制信道传输;该终端设备的底层向该终端设备的MAC实体发送接收到该下行控制信道传输的第一通知,例如,该下行控制信道传输是为了反馈波束恢复失败请求的下行控制信道传输;在步骤302中,在该终端设备的MAC实体接收到该第一通知,且第一小区和第二小区不相同时,确定(或认为consider)与该随机接入前导(例如波束失败恢复请求)相对应的随机接入过程成功完成。由于确定该下行控制信道传 输是为了反馈该随机接入前导(在第一小区发送的)的下行控制信道传输,由此,确定该下行控制信道传输是针对步骤301中随机接入前导的响应(波束失败恢复请求响应),进而可以确定与步骤301中随机接入前导相对应的随机接入过程成功完成。
在本实施例中,上述两个实施方式可以单独实施,也可以结合实施,例如,该下行控制信道传输是第一小区的为了反馈步骤301中随机接入前导的下行控制信道传输,本实施例并不以此作为限制。
在本实施例中,该下行控制信道传输与(is addressed to)小区无线网络临时标识(C-RNTI)或随机接入无线网络临时标识(RA-RNTI)相关,其具体实施方式可以参考实施例1,此处不再赘述。
在本实施例中,在步骤302后,由于随机接入过程成功完成,该方法还包括:(未图示)该终端设备停止发送或接收与该随机接入过程相关的上下行信号。其具体实施方式可以参考实施例1,此处不再赘述。
在本实施例中,通过该条件可以进一步明确随机接入过程的场景,即发起该随机接入前导所对应的随机接入过程所在的小区(或发送该随机接入前导所在的小区)与监听反馈该随机接入前导的下行控制信道传输所在的小区(或特殊小区)相同或不同的场景,并根据下行控制信道传输与小区或终端设备发送的随机接入前导的关系确定随机接入过程是否成功,由此,终端设备能够准确的收发数据,从而提高成功率,减少重传次数,进而节省能耗。。
实施例3
图4是本实施例3的随机接入方法流程图,应用于终端设备侧。如图4所示,该方法包括:
步骤401,终端设备向网络设备发送随机接入前导;
步骤402,在该终端设备已在下行控制信道接收到下行分配,且接收到的相应的传输块被成功译码时,该终端设备确定与该随机接入前导相对应的随机接入过程成功完成;
其中,该下行控制信道是第二小区的下行控制信道和/或为了反馈该随机接入前导的下行控制信道。
在本实施例中,步骤401的实施方式请参考实施例1中步骤201,此处不再赘述。
在本实施例中,与实施例1的不同之处在于,在实施例1中,在终端设备接收到该第一通知时,确定与该随机接入前导相对应的随机接入过程成功完成,而在本实施例中,由于,数据信道可能会承载指示后续上下行传输的信息,或者数据信道的发送可以用于检测信道质量,只有成功接收(译码)数据信道传输的数据才能根据其指示的信息进行后续的收发行为,因此,不仅需要根据PDCCH的接收,还需要根据PDCCH上调度的下行数据信道(PDSCH)的接收来判断与该随机接入前导相对应的随机接入过程是否成功完成。
在本实施例中,网络设备在接收到终端设备的随机接入前导后,会向终端设备反馈随机接入响应,例如通过物理下行控制信道(PDCCH)中接收到的下行分配承载该响应,终端设备监听该下行分配(downlink assignment)或者监听与该随机接入前导相关联的下行分配,以便确定是否能够成功接收到网络设备发送的控制信息,进而判断随机接入过程是否成功,在多载波场景下,网络设备会为终端设备配置多个载波,终端设备的服务小区(对应载波)可能会发生改变,即当前的服务小区(第二小区)可能与步骤401中的服务小区(第一小区)不同或者相同,该第二小区是监听反馈该随机接入前导的下行分配所在的小区;或者是特殊小区(SpCell),因此,即便在PDCCH上接收到下行分配,也无法直接地确定该下行分配是针对步骤401中发送的随机接入前导的随机接入响应,进而无法确定随机接入过程是否成功(完成)。
因此,在本实施例中,在步骤402前,该方法还可以包括:(未图示)终端设备监听下行控制信道上的下行分配,在该PDCCH上接收到下行分配时,在该PDCCH调度的PDSCH上接收传输块(在PDSCH上数据以传输块为基本传输单元),对该接收的传输块进行译码。
在本实施例中,该下行分配是指包含有下行数据调度的下行控制信息(DCI)。例如,在终端设备的底层(例如物理层),接收到一个DCI包含有PDSCH的指示,终端设备根据DCI中的指示信息在相应的资源上接收PDSCH,接收到的PDSCH将会通过预先设定的规则进行循环冗余校验(CRC)。当校验成功时,终端设备认为传输块译码成功。
在一个实施方式中,该下行控制信道是该第二小区的下行控制信道;该第二小区是监听反馈该随机接入前导的下行分配所在的小区;或者是特殊小区(SpCell),在步骤402中,该终端设备的MAC实体在该下行控制信道接收到下行分配,且接收到 的相应的传输块被成功译码时,确定(或认为consider)与该随机接入前导相对应的随机接入过程成功完成。由于成功接收该第二小区的下行分配和相应的传输块,由此,可以推断网络设备与终端设备之间已经可以正常通信,不需要继续进行该随机接入过程,进而可以确定与步骤401中随机接入前导相对应的随机接入过程成功完成。
在该实施方式中,可选的,该传输块可以是该第一小区接收的传输块,但本实施例并不以此作为限制。
在一个实施方式中,该下行控制信道是为了反馈该步骤401中随机接入前导的下行控制信道;例如,该下行控制信道是为了反馈波束恢复失败请求的下行控制信道;在步骤402中,在该终端设备的MAC实体在该下行控制信道接收到下行分配,且接收到的相应的传输块被成功译码时,确定(或认为consider)与该随机接入前导(例如波束失败恢复请求)相对应的随机接入过程成功完成。由于成功接收为了反馈该随机接入前导的下行分配和相应的传输块,由此,可以推断网络设备与终端设备之间已经可以正常通信,不需要继续进行该随机接入过程,进而可以确定与步骤401中随机接入前导相对应的随机接入过程成功完成。
在该实施方式中,可选的,该传输块可以是该第一小区接收的传输块,但本实施例并不以此作为限制。
在本实施例中,上述两个实施方式可以单独实施,也可以结合实施,例如,该下行控制信道是第二小区的为了反馈步骤401中随机接入前导的下行控制信道,本实施例并不以此作为限制。
在本实施例中,该下行控制信道与小区无线网络临时标识(C-RNTI)或随机接入无线网络临时标识(RA-RNTI)相关(PDCCH for the C-RNTI or RA-RNTI),其具体实施方式可以参考实施例1,此处不再赘述。
在本实施例中,在步骤402后,由于随机接入过程成功完成,该方法还包括:(未图示)该终端设备停止发送或接收与该随机接入过程相关的上下行信号。其具体实施方式可以参考实施例1,此处不再赘述。
通过上述实施例,根据下行控制信道与小区或终端设备发送的随机接入前导的关系确定随机接入过程是否成功,由此,终端设备能够准确的收发数据,从而提高成功率,减少重传次数,进而节省能耗。。
实施例4
图5是本实施例4的随机接入方法流程图,应用于终端设备侧。如图5所示,该方法包括:
步骤501,终端设备向网络设备发送随机接入前导;
步骤502,在该终端设备已在下行控制信道接收到下行分配,且接收到的相应的传输块被成功译码,且满足与该随机接入前导相关的第一小区的条件时,该终端设备确定与该随机接入前导相对应的随机接入过程成功完成;
其中,该下行控制信道是第二小区的下行控制信道和/或为了反馈该随机接入前导的下行控制信道。
在本实施例中,步骤501的实施方式请参考实施例1中步骤501,此处不再赘述。
因此,在本实施例中,在步骤502前,该方法还可以包括:(未图示)终端设备监听下行控制信道上的下行分配,在该PDCCH上接收到下行分配时,在该PDCCH调度的PDSCH上接收传输块(在PDSCH上数据以传输块为基本传输单元),对该接收的传输块进行译码,该下行控制信道的具体实施方式请参考实施例3,此处不再赘述。
在本实施例中,与实施例3的不同之处在于,在实施例3中,在终端设备接收到该下行分配且接收到的相应的传输块被成功译码,即确定与该随机接入前导相对应的随机接入过程成功完成,而在本实施例中,除了接收到该下行分配且接收到的相应的传输块被成功译码,终端设备还需要判断是否满足与该随机接入前导相关的第一小区的条件,在接收到该下行分配且接收到的相应的传输块被成功译码,且满足该条件时,该终端设备确定与该随机接入前导相对应的随机接入过程成功完成。
在本实施例中,该与该随机接入前导相关的第一小区的条件是第一小区与第二小区相同,或者第一小区与第二小区不同,该第一小区具体含义请参考实施例1,该第二小区是监听反馈该随机接入前导的下行分配的小区;或者特殊小区(SpCell),该条件与实施例2类似。
在一个实施方式中,该下行控制信道是该第二小区的下行控制信道。在步骤502中,该终端设备的MAC实体在该下行控制信道接收到下行分配,且接收到的相应的传输块被成功译码,且第一小区和第二小区相同时,确定(或认为consider)与该随机接入前导相对应的随机接入过程成功完成。在该第一小区和第二小区相同的场景 中,由于成功接收该第一小区和/或第二小区的下行分配和相应的传输块,可以推断网络设备与终端设备之间已经可以正常通信,不需要继续进行该随机接入过程,进而可以确定与步骤501中随机接入前导相对应的随机接入过程成功完成。
在该实施方式中,可选的,该传输块可以是该第一小区和/或第二小区接收的传输块,但本实施例并不以此作为限制。
在一个实施方式中,该下行控制信道是为了反馈该步骤501中随机接入前导的下行控制信道;例如,该下行控制信道是为了反馈波束恢复失败请求的下行控制信道;在步骤502中,在该终端设备的MAC实体在该下行控制信道接收到下行分配,且接收到的相应的传输块被成功译码,且第一小区和第二小区相同时,确定(或认为consider)与该随机接入前导(例如波束失败恢复请求)相对应的随机接入过程成功完成。在该第一小区和第二小区相同的场景中,由于成功接收反馈该随机接入前导的下行分配和相应的传输块,因此,可以推断网络设备与终端设备之间已经可以正常通信,不需要继续进行该随机接入过程,进而可以确定与步骤501中随机接入前导相对应的随机接入过程成功完成。
在该实施方式中,可选的,该传输块可以是该第一小区和/或第二小区接收的传输块,但本实施例并不以此作为限制。
在本实施例中,上述两个实施方式可以单独实施,也可以结合实施,例如,该下行控制信道是第二小区的为了反馈步骤501中随机接入前导的下行控制信道,本实施例并不以此作为限制。
在一个实施方式中,该下行控制信道是该第二小区的下行控制信道,在步骤502中,该终端设备的MAC实体在该下行控制信道接收到下行分配,且接收到的相应的传输块被成功译码,且第一小区和第二小区不相同时,确定(或认为consider)与该随机接入前导相对应的随机接入过程成功完成。在该第一小区和第二小区不相同的场景中,由于成功接收该第二小区的下行分配和相应传输块,因此,可以推断网络设备与终端设备之间已经可以正常通信,不需要继续进行该随机接入过程,进而可以确定与步骤501中随机接入前导相对应的随机接入过程成功完成。
在该实施方式中,可选的,该传输块可以是该第一小区接收的传输块,但本实施例并不以此作为限制。
在一个实施方式中,该下行控制信道是为了反馈该步骤501中随机接入前导的下 行控制信道;例如,该下行控制信道是为了反馈波束恢复失败请求的下行控制信道;在步骤502中,在该终端设备的MAC实体在该下行控制信道接收到下行分配,且接收到的相应的传输块被成功译码,且第一小区和第二小区不相同时,确定(或认为consider)与该随机接入前导(例如波束失败恢复请求)相对应的随机接入过程成功完成。在第一小区和第二小区不相同的场景中,由于成功接收为了反馈该随机接入前导(在第一小区发送的)的下行分配和相应的传输块,因此,可以推断网络设备与终端设备之间已经可以正常通信,不需要继续进行该随机接入过程,进而可以确定与步骤501中随机接入前导相对应的随机接入过程成功完成。
在该实施方式中,可选的,该传输块可以是该第一小区接收的传输块,但本实施例并不以此作为限制。
在本实施例中,上述两个实施方式可以单独实施,也可以结合实施,例如,该下行控制信道是第二小区的为了反馈步骤501中随机接入前导的下行控制信道,本实施例并不以此作为限制。
在本实施例中,该下行控制信道与小区无线网络临时标识(C-RNTI)或随机接入无线网络临时标识(RA-RNTI)相关,其具体实施方式可以参考实施例3,此处不再赘述。
在本实施例中,在步骤502后,由于随机接入过程成功完成,该方法还包括:(未图示)该终端设备停止发送或接收与该随机接入过程相关的上下行信号。其具体实施方式可以参考实施例1,此处不再赘述。
在本实施例中,通过该条件可以进一步明确随机接入过程的场景,即发起该随机接入前导所对应的随机接入过程所在的小区(或发送该随机接入前导所在的小区)与监听反馈该随机接入前导的下行分配所在的小区(或特殊小区)相同或不同的场景,并根据下行控制信道与小区或终端设备发送的随机接入前导的关系确定随机接入过程是否成功,由此,终端设备能够准确的收发数据,从而提高成功率,减少重传次数,进而节省能耗。
需要说明的是,上述实施例1-4可以单独实施,也可以任意两个以上组合实施,即在确定随机接入过程是否成功完成时,可以结合实施例1-4中的步骤202,302,402,502中的任意两个以上步骤判断,在满足其中至少一个步骤的要求时,确 定随机接入过程成功完成,此处不再一一举例。
上述实施例1-4中步骤202,302,402,502说明了在上述不同的场景下,终端设备的MAC实体行为,即如何确定随机接入过程是否成功完成,下面结合实施例5和附图6说明在上述场景图1C下,终端设备的物理层行为。
实施例5
图6是本实施例5的随机接入方法流程图,应用于终端设备侧。如图6所示,该方法包括:
步骤601,终端设备向网络设备发送随机接入前导;
步骤602,终端设备在第二小区监听下行控制信息;其中,该下行控制信息与该随机接入前导相关;
步骤603,该终端设备在第一小区接收该下行控制信息所调度的下行数据,其中,该第一小区和该第二小区不同。
在本实施例中,步骤601的实施方式可以参考实施例1步骤201,此处不再赘述。例如,终端设备可以在第一小区发送该随机接入前导。即第一小区是发送该随机接入前导所在的小区,但本实施例并不以此作为限制,该第一小区还可以是提供与该下行控制信息相关联的参考信号索引的小区,和/或是发送该随机接入前导所对应的波束失败恢复配置所在的小区。
例如,该第一小区是发送该随机接入前导所在的小区,在该随机接入前导是波束失败恢复请求时,在步骤601前,该方法还可以包括:(未图示)该终端设备接收网络设备通过高层信令发送的第一配置,该第一配置(例如PRACH-ResourceDedicatedBFR)指示特定的用于波束失败恢复的PRACH资源,该第一配置可以包括以下至少一种配置信息:为波束失败恢复而配置的根序列信息,基于非竞争波束失败恢复的随机接入机会配置信息,用于接收波束失败恢复的搜索空间信息,候选波束参考信号列表信息,用于区分随机接入过程(例如,该随机接入过程可以是针对(for)波束失败恢复的随机接入过程)优先级的参数,终端设备根据该第一配置在该第一小区发送该随机接入前导。
例如,该第一小区可以是提供与该下行控制信息所调度的下行数据相关联的参考信号索引的小区,其中,参考信号索引与该下行数据相关联,表示该下行数据是根据 该参考信号索引所对应的参考信号所关联的准同定位(quasi co-located,QCL)参数接收的,该方法还可以包括(未图示):终端设备在第一小区接收网络设备通过高层信令发送的参考信号索引,该参考信号索引是网络设备在候选波束参考信号列表(candidateBeamRSlist)中选出的索引。该参考信号可包括如下至少之一:信道状态信息参考信号(CSI-RS,Channel State Information Reference Signal)、同步信号(SS,Synchronization Signal)、物理广播信道(PBCH,Physical Broadcast Channel)。
例如,该第一小区可以是发送该随机接入前导所对应的波束失败恢复配置所在的小区,即在该随机接入前导是波束失败恢复请求时,在步骤601前,该方法还可以包括:(未图示)该终端设备在第一小区接收网络设备通过高层信令发送的第一配置(波束失败恢复配置),该第一配置具体如前所述,此处不再赘述。
在本实施例中,发送随机接入前导所在的小区可以等同于提供参考信号索引的小区,也可以等同于发送随机接入前导所对应的波束失败恢复配置所在的小区,本实施例并不以此作为限制。
在本实施例中,在步骤602中,该下行控制信息与步骤601中的随机接入前导相关,表示随机接入响应(例如BFR RAR),例如,该下行控制信息(DCI)通过下行控制信道承载,用于调度下行数据,该DCI的具体实施方式可以参考现有技术,该下行控制信道是为了反馈该随机接入前导的下行控制信道,即是与PRACH传输对应的PDCCH,该下行控制信道的实施方式可以参考实施例3或4,此处不再赘述。
在本实施例中,在步骤602前,该方法还可以包括:(未图示)终端设备接收网络设备通过高层信令发送的第二配置,该第二配置指示波束失败恢复请求的随机接入响应(BFR RAR,即波束失败恢复请求响应)的搜索空间,监听该下行控制信息包括:终端设备根据该第二配置,在该搜索空间上接收下行控制信道(被C-RNTI加扰),解扰后获得该下行控制信息。
在本实施中,该第二小区即是监听该下行控制信息所在的小区,或者,该第二小区是Spcell。
在本实施例中,在第一小区和第二小区不同时,在步骤603中,终端设备认为(assume)在第一小区接收该下行控制信息调度的下行数据,其中,接收包括检测、监听、解码、译码等动作中的至少一种。
在本实施例中,上述高层信令可以是介质访问控制(MAC,Media Access Control) 层或无线资源控制(RRC)信令。
由此,当终端设备在该第一小区接收到该下行数据时,可以推测该第一小区的信道质量已经变好,进而可以确定第一小区的波束失败已经恢复,从而能够及时终止相应的随机过程,节省能耗。
实施例6
图7是本实施例6的数据发送方法流程图,应用于网络设备侧。如图7所示,该方法包括:
步骤701,网络设备接收到终端设备发送的随机接入前导;
步骤702,该网络设备在第二小区向终端设备发送下行控制信息;其中,该下行控制信息与该随机接入前导相关;
步骤703,该网络设备在第一小区向该终端设备发送由该下行控制信息所调度的下行数据,其中,该第一小区和该第二小区不同。
在本实施例中,步骤701-703与实施例5中步骤601-603对应,重复之处不再赘述。
例如,该第一小区是发送该随机接入前导所在的小区,在该随机接入前导是波束失败恢复请求时,在步骤701前,该方法还可以包括:(未图示)网络设备通过高层信令向该终端设备发送的第一配置,该第一配置的具体实施方式可以参考实施例5,此处不再赘述。
例如,该第一小区可以是提供与该下行控制信息所调度的下行数据相关联的参考信号索引的小区,该参考信号可以是候选波束参考信号,该方法还可以包括(未图示):网络设备在候选波束参考信号列表(candidateBeamRSlist)中选出一个参考信号索引,在第一小区通过高层信令向终端设备发送该参考信号索引。
例如,该第一小区可以是发送该随机接入前导所对应的波束失败恢复配置所在的小区,即在该随机接入前导是波束失败恢复请求时,在步骤701前,该方法还可以包括:(未图示)网络设备在第一小区通过高层信令向终端设备发送第一配置(波束失败恢复配置),该第一配置具体如前所述,此处不再赘述。
在本实施例中,上述高层信令可以是介质访问控制(MAC,Media Access Control)层或无线资源控制(RRC)信令。
在本实施例中,在步骤702中,网络设备通过C-RNTI加扰PDCCH,该PDCCH是为了反馈该随机接入前导的PDCCH,通过该PDCCH承载DCI,并在第二小区向终端设备发送该DCI。
在本实施中,该第二小区即是发送该下行控制信息所在的小区,或者,该第二小区是Spcell。
在本实施例中,在步骤703中,在第一小区和第二小区不同时,网络设备在第一小区向该终端设备发送由该下行控制信息所调度的下行数据,以便终端设备在第一小区上接收该下行控制信息调度的下行数据,而不在该第二小区上接收该下行控制信息调度的下行数据。
在本实施例中,在步骤703中,该网络设备根据步骤701中接收到的随机接入前导所对应的参考信号发送该下行数据;其中,该方法还可以包括(未图示),该网络设备通过高层信令配置该随机接入前导的随机接入时机(RACH occasion)与该参考信号的对应关系,该高层信令可以是RRC信令,根据该对应关系以及随机接入前导,可以确定该随机接入前导对应的参考信号。该网络设备发送该下行数据所使用的天线端口与发送该参考信号所使用的天线端口是准同定位的。该参考信号可包括如下至少之一:信道状态信息参考信号(CSI-RS,Channel State Information Reference Signal)、同步信号(SS,Synchronization Signal)、物理广播信道(PBCH,Physical Broadcast Channel)等。
由此,网络设备能够使用正确的指示信息发送下行数据,从而提高数据传输的成功率,减少重传次数,进而节省能耗。
实施例7
本实施例7还提供一种随机接入装置。由于该装置解决问题的原理与实施例1或2的方法类似,因此其具体的实施可以参考实施例1或2的方法的实施,内容相同之处不再重复说明。
图8是该随机接入装置构成示意图,如图8所示,该装置800包括:
第一发送单元801,其用于向网络设备发送随机接入前导;
第一确定单元802,其用于在终端设备接收到第一通知时,或者在终端设备接收到第一通知,且满足与该随机接入前导相关的第一小区的条件时,确定(consider) 与该随机接入前导相对应的随机接入过程成功完成;
其中,该第一通知是从该终端设备的底层发送的收到在该第一小区的下行控制信道传输的通知,和/或从底层发送的收到为了反馈该随机接入前导的下行控制信道传输的通知。
在本实施例中,第一发送单元801和第一确定单元802的实施方式请参考实施例1步骤201-202,实施例2步骤301-302,此处不再赘述。
在本实施例中,该条件是:该第一小区和第二小区相同,或者该第一小区和第二小区不同。该第一小区和第二小区的实施方式可以参考实施例1或2,此处不再赘述
在本实施例中,随机接入前导是波束失败恢复请求,该下行控制信道传输与(is addressed to)C-RNTI或RA-RNTI相关。
在本实施例中,可选的,该装置还包括:(未图示)
第一收发单元,其用于接收下行控制信道传输,并向该终端设备的MAC实体发送接收到该下行控制信道传输的第一通知,该终端设备的MAC实体接收从底层发送的第一通知,该下行控制信道传输的具体实施方式请参考实施例1,此处不再赘述。
在本实施例中,可选的,该装置还包括:(未图示)
第一处理单元,其用于在随机接入过程成功完成后,停止发送或接收与该随机接入过程相关的上下行信号,和/或用于忽视可能出现的测量间隔。
通过上述实施例,根据下行控制信道传输与小区或终端设备发送的随机接入前导的关系确定随机接入过程是否成功,由此,终端设备能够准确的收发数据,从而提高成功率,减少重传次数,进而节省能耗。
实施例8
本实施例8还提供一种随机接入装置。由于该装置解决问题的原理与实施例3或4的方法类似,因此其具体的实施可以参考实施例3或4的方法的实施,内容相同之处不再重复说明。
图9是该随机接入装置构成示意图,如图9所示,该装置900包括:
第二发送单元901,其用于向网络设备发送随机接入前导;
第二确定单元902,其用于在终端设备已在下行控制信道接收到下行分配,且接收到的相应的传输块被成功译码时,或者在终端设备已在下行控制信道接收到下行分 配,且接收到的相应的传输块被成功译码,且满足与该随机接入前导相关的第一小区的条件时,确定与该随机接入前导相对应的随机接入过程成功完成;
其中,该下行控制信道是第二小区的下行控制信道和/或为了反馈该随机接入前导的下行控制信道。
在本实施例中,第二发送单元901和第二确定单元902的实施方式请参考实施例3步骤401-402,实施例4步骤501-502,此处不再赘述。
在本实施例中,该条件是:该第一小区和第二小区相同,或者该第一小区和第二小区不同。该第一小区和第二小区的实施方式可以参考实施例1或2,此处不再赘述
在本实施例中,该传输块是在该第一小区接收的传输块,该随机接入前导是波束失败恢复请求,该下行控制信道与C-RNTI或RA-RNTI相关。
在本实施例中,可选的,该装置还包括:(未图示)
第二收发单元,其用于监听下行控制信道上的下行分配,在该PDCCH上接收到下行分配时,在该PDCCH调度的PDSCH上接收传输块(在PDSCH上数据以传输块为基本传输单元),对该接收的传输块进行译码,该下行控制信道的具体实施方式请参考实施例3,此处不再赘述。
在本实施例中,可选的,该装置还包括:(未图示)
第二处理单元,其用于在随机接入过程成功完成后,停止发送或接收与该随机接入过程相关的上下行信号,和/或用于忽视可能出现的测量间隔。
通过上述实施例,根据下行控制信道与小区或终端设备发送的随机接入前导的关系确定随机接入过程是否成功,由此,终端设备能够准确的收发数据,从而提高成功率,减少重传次数,进而节省能耗。
实施例9
本实施例9还提供一种数据接收装置。由于该装置解决问题的原理与实施例5的方法类似,因此其具体的实施可以参考实施例5的方法的实施,内容相同之处不再重复说明。
图10是该数据接收装置构成示意图,如图10所示,该装置1000包括:
第三发送单元1001,其用于向网络设备发送随机接入前导;
监听单元1002,其用于在第二小区监听下行控制信息;其中,该下行控制信息 与该随机接入前导相关;
接收单元1003,其用于在第一小区接收该下行控制信息所调度的下行数据,其中,该第一小区和该第二小区不同。
在本实施例中,该第一小区和第二小区的实施方式可以参考实施例5,此处不再赘述。
在本实施例中,第三发送单元1001,监听单元1002,接收单元1003的实施方式可以参考实施例5中步骤601-603。
在本实施例中,该随机接入前导是根据用于波束失败恢复的高层信令配置发送的,该随机接入前导是波束失败恢复请求。
在本实施例中,可选的,该装置还可以包括:(未图示)
第三收发单元,其用于接收网络设备通过高层信令发送的第一配置,该第一配置(例如PRACH-ResourceDedicatedBFR)指示特定的用于波束失败恢复的PRACH资源,该第一配置具体可以参考现有标准,第三发送单元1001根据该第一配置在该第一小区发送该随机接入前导;或者,
第三收发单元,其用于在第一小区接收网络设备通过高层信令发送的参考信号索引,该参考信号索引是网络设备在候选波束参考信号列表(candidateBeamRSlist)中选出的索引;或者,
第三收发单元,其用于在第一小区接收网络设备通过高层信令发送的第一配置(波束失败恢复配置),该第一配置具体如前所述,此处不再赘述。
由此,当终端设备在该第一小区接收到该下行数据时,可以推测该第一小区的信道质量已经变好,进而可以确定第一小区的波束失败已经恢复,从而能够及时终止相应的随机过程,节省能耗。
实施例10
本实施例10还提供一种数据发送装置。由于该装置解决问题的原理与实施例6的方法类似,因此其具体的实施可以参考实施例6的方法的实施,内容相同之处不再重复说明。
图11是该数据发送装置构成示意图,如图11所示,该装置1100包括:
第一接收单元1101,其用于接收到终端设备所发送随机接入前导;
第四发送单元1102,其用于在第二小区向该终端设备发送下行控制信息;其中,所述下行控制信息与所述随机接入前导相关;
第五发送单元1103,其用于在第一小区向所述终端设备发送由所述下行控制信息所调度的下行数据,其中,所述第一小区和所述第二小区不同。
在本实施例中,该第一小区和第二小区的实施方式可以参考实施例5,此处不再赘述。
在本实施例中,第一接收单元1101,第四发送单元1102,第五发送单元1103的实施方式可以参考实施例6中步骤701-703。
在本实施例中,该随机接入前导是根据用于波束失败恢复的高层信令配置发送的,该随机接入前导是波束失败恢复请求。
在本实施例中,可选的,该装置还可以包括:(未图示)
第四收发单元,其用于通过高层信令向终端设备发送第一配置,该第一配置(例如PRACH-ResourceDedicatedBFR)指示特定的用于波束失败恢复的PRACH资源,该第一配置具体可以参考现有标准;或者,
第四收发单元,其用于在候选波束参考信号列表(candidateBeamRSlist)中选出参考信号索引,在第一小区通过高层信令向终端设备发送参考信号索引;或者,
第四收发单元,其用于通过高层信令在第一小区向终端设备发送第一配置(波束失败恢复配置),该第一配置具体如前所述,此处不再赘述。
由此,网络设备能够使用正确的指示信息发送下行数据,从而提高数据传输的成功率,减少重传次数,进而节省能耗。
实施例11
本实施例还提供一种通信系统,可以参考图1A,与实施例1至2相同的内容不再赘述。
在本实施例中,通信系统100可以包括:终端设备102,其配置有实施例7或实施例8所述的随机接入装置800或900,或者配置有实施例9所述的数据接收装置1000。
可选的,该通信系统还可以包括:网络设备101,其配置有如实施例10所述的数据发送装置1100。
本实施例还提供一种网络设备,例如可以是基站,但本发明不限于此,还可以是 其他的网络设备。
图12是本发明实施例的网络设备的构成示意图。如图12所示,网络设备1200可以包括:处理器1210(例如中央处理器CPU)和存储器1220;存储器1220耦合到处理器1210。其中该存储器1220可存储各种数据;此外还存储信息处理的程序1230,并且在处理器1210的控制下执行该程序1230。
例如,处理器1210可以被配置为执行程序1230而实现如实施例6所述的数据发送方法。例如处理器1210可以被配置为进行如下的控制:接收到终端设备所发送随机接入前导;在第二小区向该终端设备发送下行控制信息;其中,该下行控制信息与该随机接入前导相关;在第一小区向该终端设备发送由该下行控制信息所调度的下行数据,其中,该第一小区和该第二小区不同。
此外,如图12所示,网络设备1200还可以包括:收发机1240和天线1250等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1200也并不是必须要包括图12中所示的所有部件;此外,网络设备1200还可以包括图12中没有示出的部件,可以参考现有技术。
本发明实施例还提供一种终端设备,但本发明不限于此,还可以是其他的设备。
图13是本发明实施例的终端设备的示意图。如图13所示,该终端设备1300可以包括处理器1310和存储器1320;存储器1320存储有数据和程序,并耦合到处理器1310。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
例如,处理器1310可以被配置为执行程序而实现如实施例1或2所述的随机接入方法。例如处理器1310可以被配置为进行如下的控制:向网络设备发送随机接入前导;在该终端设备接收到第一通知时,或者在接收到第一通知,且满足与该随机接入前导相关的第一小区的条件时,确定(consider)与该随机接入前导相对应的随机接入过程成功完成;其中,该第一通知是从底层发送的收到在该第一小区的下行控制信道传输的通知,和/或从底层发送的收到为了反馈该随机接入前导的下行控制信道传输的通知。
例如,处理器1310可以被配置为执行程序而实现如实施例3或4所述的随机接入方法。例如处理器1310可以被配置为进行如下的控制:向网络设备发送随机接入 前导;在已在下行控制信道接收到下行分配,且接收到的相应的传输块被成功译码时,或者在已在下行控制信道接收到下行分配,且接收到的相应的传输块被成功译码,且满足与该随机接入前导相关的第一小区的条件时,该终端设备确定与该随机接入前导相对应的随机接入过程成功完成;其中,该下行控制信道是第二小区的下行控制信道和/或为了反馈该随机接入前导的下行控制信道。
例如,处理器1310可以被配置为执行程序而实现如实施例5所述的数据接收方法。例如处理器1310可以被配置为进行如下的控制:向网络设备发送随机接入前导;在第二小区监听下行控制信息;其中,该下行控制信息与该随机接入前导相关;在第一小区接收该下行控制信息所调度的下行数据,其中,该第一小区和该第二小区不同。
如图13所示,该终端设备1300还可以包括:通信模块1330、输入单元1340、显示器1350、电源1360。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备1300也并不是必须要包括图13中所示的所有部件,上述部件并不是必需的;此外,终端设备1300还可以包括图13中没有示出的部件,可以参考现有技术。
图14是本实施例数据收发方法流程图,如图14所示,该方法包括:
步骤1401,终端设备向网络设备发送随机接入前导;
步骤1402,网络设备在第二小区发送下行控制信息,该下行控制信息通过PDCCH承载,该PDCCH是为了反馈该随机接入前导的PDCCH;
步骤1403,网络设备在第一小区发送该下行控制信息所调度的下行数据;
步骤1404,终端设备在第二小区监听下行控制信息;在第一小区监听该下行数据,对该下行数据进行译码。
上述步骤1401-1404的实施方式可以参考实施例5-6,步骤1401,1404由终端设备的底层(例如物理层)实现,此处不再赘述。另外,本实施例并不限定步骤1402-1404的执行顺序,其可以同时进行。
步骤1405,终端设备的底层在接收到下行控制信道传输时,向MAC层发送第一通知,该第一通知具体可以参考实施例1,此处不再赘述。
在本实施例中,并不限定步骤1405和1404的执行顺序,步骤1405可以与步骤1404同时执行,例如步骤1405可以在步骤1404中的数据译码成功之后执行,也可以在DCI接收后数据译码前执行,本实施例并不以此作为限制
步骤1406,判断是否满足条件,在满足时,MAC实体确定与步骤1401中随机接入前导相对应的随机接入过程成功完成。
上述步骤1406的实施方式可以参考实施例1-4中步骤202,302,402,502,其由终端设备的MAC层实现,此处不再赘述。
在本实施例中,在步骤1401前,该方法还可以包括:(未图示,可选),网络设备向终端设备发送参考信号索引,和/或第一配置,具体可以参考实施例5,此处不再赘述。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得随机接入装置或终端设备执行实施例1至4任一个所述的随机接入方法。
本发明实施例还提供一种计算机可读程序,其中当在随机接入装置或终端设备中执行所述程序时,所述程序使得所述随机接入装置或终端设备执行实施例1至4任一个所述的随机接入方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得数据接收装置或终端设备执行实施例5所述的数据接收方法。
本发明实施例还提供一种计算机可读程序,其中当在数据接收装置或终端设备中执行所述程序时,所述程序使得所述数据接收装置或终端设备执行实施例5所述的数据接收方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得数据发送装置或网络设备执行实施例6所述的数据发送方法。
本发明实施例还提供一种计算机可读程序,其中当在数据发送装置或网络设备中执行所述程序时,所述程序使得所述数据发送装置或网络设备执行实施例6所述的数据发送方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的在各装置中的各处理方法可直接体现为硬件、由处理器 执行的软件模块或二者组合。例如,图8-13中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图2-7所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(例如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对图8-13描述的功能框图中的一个或多个和/或功能框图的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立门或晶体管逻辑器件、分立硬件组件、或者其任意适当组合。针对图8-13描述的功能框图中的一个或多个和/或功能框图的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。
附记1、一种随机接入方法,其中,所述方法包括:
终端设备向网络设备发送随机接入前导;
在所述终端设备接收到第一通知时,或者在所述终端设备接收到第一通知,且满足与所述随机接入前导相关的第一小区的条件时,所述终端设备确定(consider)与所述随机接入前导相对应的随机接入过程成功完成;
其中,所述第一通知是从底层发送的收到在所述第一小区的下行控制信道传输的通知,和/或从底层发送的收到为了反馈所述随机接入前导的下行控制信道传输的通 知。
2、根据附记1所述方法,其中,所述第一小区是:
发起所述随机接入前导所对应的随机接入过程所在的小区;或者,
发送所述随机接入前导所在的小区。
3、根据附记1或2所述方法,其中,所述条件是:所述第一小区和第二小区相同,或者所述第一小区和第二小区不同。
4、根据附记3所述方法,其中,所述第二小区是:
监听反馈所述随机接入前导的下行控制信道传输所在的小区;或者,
特殊小区(SpCell)。
5、根据附记1至4任一项所述的方法,其中,所述随机接入前导是波束失败恢复请求。
6、根据附记1至5任一项所述的方法,所述下行控制信道传输与(is addressed to)C-RNTI或RA-RNTI相关。
7、根据附记1至6任一项所述的方法,其中,所述方法还包括:
当所述随机接入过程完成后,所述终端设备停止发送或接收与所述随机接入过程相关的上下行信号。
8、一种随机接入方法,其中,所述方法包括:
终端设备向网络设备发送随机接入前导;
在所述终端设备已在下行控制信道接收到下行分配,且接收到的相应的传输块被成功译码时,或者在所述终端设备已在下行控制信道接收到下行分配,且接收到的相应的传输块被成功译码,且满足与所述随机接入前导相关的第一小区的条件时,所述终端设备确定与所述随机接入前导相对应的随机接入过程成功完成;
其中,所述下行控制信道是第二小区的下行控制信道和/或为了反馈所述随机接入前导的下行控制信道。
9、根据附记8所述方法,其中,所述第一小区是:
发起所述随机接入前导所对应的随机接入过程所在的小区;或者,
发送所述随机接入前导所在的小区。
10、根据附记8或9所述方法,其中,所述条件是:所述第一小区和第二小区相同,或者所述第一小区和第二小区不同。
11、根据附记10所述方法,其中,所述第二小区是:
监听反馈所述随机接入前导的下行分配的小区;或者,
特殊小区(SpCell)。
12、根据附记8至11任一项所述的方法,其中,所述传输块是在所述第一小区接收的传输块。
13、根据附记8至12任一项所述的方法,其中,所述随机接入前导是波束失败恢复请求。
14、根据附记8至13任一项所述的方法,所述下行控制信道与C-RNTI或RA-RNTI相关。
15、根据附记8至14任一项所述的方法,其中,所述方法还包括:
当所述随机接入过程完成后,所述终端设备停止发送或接收与所述随机接入过程相关的上下行信号。
16、根据附记1至15任一项所述的方法,其中,所述方法还包括:
所述终端设备忽视可能出现的测量间隔。
17、一种数据接收方法,其中,所述方法包括:
终端设备向网络设备发送随机接入前导;
所述终端设备在第二小区监听下行控制信息;其中,所述下行控制信息与所述随机接入前导相关;
所述终端设备在第一小区接收所述下行控制信息所调度的下行数据,其中,所述第一小区和所述第二小区不同。
18、根据附记17所述的方法,其中,所述第一小区是提供与所述下行控制信息所调度的下行数据相关联的参考信号索引的小区,或者,
所述第一小区是发送所述随机接入前导所在的小区,或者,
所述第一小区是发送所述随机接入前导所对应的波束失败恢复配置所在的小区。
19、根据附记17或18所述的方法,其中,所述随机接入前导是根据用于波束失败恢复的高层信令配置发送的。
20、根据附记17至19任一项所述的方法,其中,所述第二小区是监听所述下行控制信息所在的小区,或者,所述第二小区是Spcell。
21、根据附记17至20任一项所述方法,其中,所述终端设备根据配置的候选波 束参考信号列表中选出的索引所对应的参考信号接收所述下行数据。
22、一种数据发送方法,其中,所述方法包括:
网络设备接收到终端设备所发送随机接入前导;
所述网络设备在第二小区向所述终端设备发送下行控制信息;其中,所述下行控制信息与所述随机接入前导相关;
所述网络设备在第一小区向所述终端设备发送由所述下行控制信息所调度的下行数据,其中,所述第一小区和所述第二小区不同。
23、根据附记22所述的方法,其中,所述第一小区是提供与所述下行控制信息所调度的下行数据相关联的参考信号索引的小区,或者,
所述第一小区是接收所述随机接入前导所在的小区,或者,
所述第一小区是接收所述随机接入前导所对应的波束失败恢复配置所在的小区。
24、根据附记22或23所述的方法,其中,所述随机接入前导是根据用于波束失败恢复的高层信令配置接收的。
25、根据附记22至24任一项所述的方法,其中,所述第二小区是发送所述下行控制信息所在的小区,或者,所述第二小区是Spcell。
26、根据附记22至25任一项所述方法,其中,所述网络设备发送所述下行数据所使用的天线端口与发送参考信号所使用的天线端口是准同定位的;其中,所述网络设备通过高层信令配置所述随机接入前导的随机接入时机(RACH occasion)与所述参考信号的对应关系。

Claims (20)

  1. 一种随机接入装置,其中,所述装置包括:
    第一发送单元,其用于向网络设备发送随机接入前导;
    第一确定单元,其用于在终端设备接收到第一通知时,或者在终端设备接收到第一通知,且满足与所述随机接入前导相关的第一小区的条件时,确定(consider)与所述随机接入前导相对应的随机接入过程成功完成;
    其中,所述第一通知是从所述终端设备的底层(lower layer)发送的收到在所述第一小区的下行控制信道传输的通知,和/或从底层发送的收到为了反馈所述随机接入前导的下行控制信道传输的通知。
  2. 根据权利要求1所述装置,其中,所述第一小区是:
    发起所述随机接入前导所对应的随机接入过程所在的小区;或者,
    发送所述随机接入前导所在的小区。
  3. 根据权利要求1所述装置,其中,所述条件是:所述第一小区和第二小区相同,或者所述第一小区和第二小区不同。
  4. 根据权利要求3所述装置,其中,所述第二小区是:
    监听反馈所述随机接入前导的下行控制信道传输所在的小区;或者,
    特殊小区(SpCell)。
  5. 根据权利要求1所述的装置,其中,所述随机接入前导是波束失败恢复请求。
  6. 根据权利要求1所述的装置,所述下行控制信道传输与(is addressed to)C-RNTI或RA-RNTI相关。
  7. 根据权利要求1所述的装置,其中,所述装置还包括:
    第一处理单元,其用于当所述随机接入过程成功完成后,停止发送或接收与所述随机接入过程相关的上下行信号,和/或用于忽视可能出现的测量间隔。
  8. 一种随机接入装置,其中,所述装置包括:
    第二发送单元,其用于向网络设备发送随机接入前导;
    第二确定单元,其用于在终端设备已在下行控制信道接收到下行分配,且接收到的相应的传输块被成功译码时,或者在终端设备已在下行控制信道接收到下行分配,且接收到的相应的传输块被成功译码,且满足与所述随机接入前导相关的第一小区的 条件时,确定与所述随机接入前导相对应的随机接入过程成功完成;
    其中,所述下行控制信道是第二小区的下行控制信道和/或为了反馈所述随机接入前导的下行控制信道。
  9. 根据权利要求8所述装置,其中,所述第一小区是:
    发起所述随机接入前导所对应的随机接入过程所在的小区;或者,
    发送所述随机接入前导所在的小区。
  10. 根据权利要求8所述装置,其中,所述条件是:所述第一小区和第二小区相同,或者所述第一小区和第二小区不同。
  11. 根据权利要求10所述装置,其中,所述第二小区是:
    监听反馈所述随机接入前导的下行分配的小区;或者,
    特殊小区(SpCell)。
  12. 根据权利要求8所述的装置,其中,所述传输块是在所述第一小区接收的传输块。
  13. 根据权利要求8所述的装置,其中,所述随机接入前导是波束失败恢复请求。
  14. 根据权利要求8所述的装置,所述下行控制信道与C-RNTI或RA-RNTI相关。
  15. 根据权利要求8所述的装置,其中,所述装置还包括:
    第二处理单元,其用于当所述随机接入过程成功完成后,停止发送或接收与所述随机接入过程相关的上下行信号,和/或用于忽视可能出现的测量间隔。
  16. 一种数据接收装置,其中,所述装置包括:
    第三发送单元,其用于向网络设备发送随机接入前导;
    监听单元,其用于在第二小区监听下行控制信息;其中,所述下行控制信息与所述随机接入前导相关;
    接收单元,其用于在第一小区接收所述下行控制信息所调度的下行数据,其中,所述第一小区和所述第二小区不同。
  17. 根据权利要求16所述的装置,其中,所述第一小区是提供与所述下行控制信息所调度的下行数据相关联的参考信号索引的小区,或者,
    所述第一小区是发送所述随机接入前导所在的小区,或者,
    所述第一小区是发送所述随机接入前导所对应的波束失败恢复配置所在的小区。
  18. 根据权利要求16所述的装置,其中,所述随机接入前导是根据用于波束失败恢复的高层信令配置发送的。
  19. 根据权利要求16所述的装置,其中,所述第二小区是监听所述下行控制信息所在的小区,或者,所述第二小区是Spcell。
  20. 根据权利要求16所述的装置,其中,所述随机接入前导是波束失败恢复请求。
PCT/CN2018/103610 2018-08-31 2018-08-31 随机接入方法,数据接收方法及其装置、通信系统 WO2020042160A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP18932079.9A EP3846572A4 (en) 2018-08-31 2018-08-31 DIRECT ACCESS PROCEDURES, DATA RECEPTION PROCEDURES AND DEVICE FOR IT AND COMMUNICATION SYSTEM
KR1020237021577A KR102640815B1 (ko) 2018-08-31 2018-08-31 랜덤 액세스 방법, 데이터 수신 방법 및 그 장치, 및 통신 시스템
PCT/CN2018/103610 WO2020042160A1 (zh) 2018-08-31 2018-08-31 随机接入方法,数据接收方法及其装置、通信系统
JP2021504445A JP7413349B2 (ja) 2018-08-31 2018-08-31 ランダムアクセス方法、データ受信方法及びその装置、通信システム
CN201880095281.XA CN112369105A (zh) 2018-08-31 2018-08-31 随机接入方法,数据接收方法及其装置、通信系统
KR1020217002209A KR20210022114A (ko) 2018-08-31 2018-08-31 랜덤 액세스 방법, 데이터 수신 방법 및 그 장치, 및 통신 시스템
US17/148,072 US20210136833A1 (en) 2018-08-31 2021-01-13 Random access method and data reception method, apparatuses thereof and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/103610 WO2020042160A1 (zh) 2018-08-31 2018-08-31 随机接入方法,数据接收方法及其装置、通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/148,072 Continuation US20210136833A1 (en) 2018-08-31 2021-01-13 Random access method and data reception method, apparatuses thereof and communication system

Publications (1)

Publication Number Publication Date
WO2020042160A1 true WO2020042160A1 (zh) 2020-03-05

Family

ID=69643766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103610 WO2020042160A1 (zh) 2018-08-31 2018-08-31 随机接入方法,数据接收方法及其装置、通信系统

Country Status (6)

Country Link
US (1) US20210136833A1 (zh)
EP (1) EP3846572A4 (zh)
JP (1) JP7413349B2 (zh)
KR (2) KR20210022114A (zh)
CN (1) CN112369105A (zh)
WO (1) WO2020042160A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023201482A1 (en) * 2022-04-18 2023-10-26 Nec Corporation Method, device and computer storage medium of communication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761954A (zh) * 2011-04-29 2012-10-31 中兴通讯股份有限公司 多载波通信系统中上行同步方法及系统
CN104838717A (zh) * 2013-06-06 2015-08-12 华为技术有限公司 一种随机接入的方法和装置
CN106341899A (zh) * 2015-07-14 2017-01-18 中兴通讯股份有限公司 基于非授权载波执行随机接入的方法及装置
CN108282899A (zh) * 2017-01-05 2018-07-13 电信科学技术研究院 一种两步竞争随机接入方法和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7903818B2 (en) * 2008-03-13 2011-03-08 Lg Electronics Inc. Random access method for improving scrambling efficiency
KR101607336B1 (ko) * 2009-06-07 2016-03-30 엘지전자 주식회사 무선 통신 시스템에서 rb 설정 방법 및 장치
KR20130083708A (ko) * 2012-01-13 2013-07-23 주식회사 팬택 무선 통신 시스템에서 랜덤 액세스의 수행장치 및 방법
KR20130097586A (ko) * 2012-02-24 2013-09-03 주식회사 팬택 다중 요소 반송파 시스템에서 랜덤 액세스 절차의 수행 장치 및 방법
CN103582073B (zh) * 2012-07-31 2018-07-27 中兴通讯股份有限公司 一种mtc ue接入lte系统的方法、演进的基站
CN104641582B (zh) * 2012-09-16 2018-03-16 Lg 电子株式会社 在无线通信系统中考虑天线端口关系发送/接收下行链路信号的方法和装置
JP2019110351A (ja) * 2016-04-20 2019-07-04 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
JP6543660B2 (ja) * 2016-07-18 2019-07-10 華碩電腦股▲ふん▼有限公司 無線通信システムにおけるランダムアクセスのための方法及び装置
EP3337055B1 (en) * 2016-12-13 2023-07-05 ASUSTek Computer Inc. Method and apparatus for beam management in a wireless communication system
CN108391319B (zh) * 2017-02-03 2023-05-16 华为技术有限公司 一种发送随机接入前导的方法及其装置
WO2018147346A1 (ja) * 2017-02-10 2018-08-16 株式会社Nttドコモ ユーザ端末及び無線通信方法
US10264622B2 (en) * 2017-03-17 2019-04-16 Ofinno Technologies, Llc Inactive state data forwarding
EP3934330A1 (en) * 2017-06-07 2022-01-05 Samsung Electronics Co., Ltd. System and method of identifying random access response

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761954A (zh) * 2011-04-29 2012-10-31 中兴通讯股份有限公司 多载波通信系统中上行同步方法及系统
CN104838717A (zh) * 2013-06-06 2015-08-12 华为技术有限公司 一种随机接入的方法和装置
CN106341899A (zh) * 2015-07-14 2017-01-18 中兴通讯股份有限公司 基于非授权载波执行随机接入的方法及装置
CN108282899A (zh) * 2017-01-05 2018-07-13 电信科学技术研究院 一种两步竞争随机接入方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3846572A4 *

Also Published As

Publication number Publication date
CN112369105A (zh) 2021-02-12
US20210136833A1 (en) 2021-05-06
EP3846572A1 (en) 2021-07-07
KR20210022114A (ko) 2021-03-02
KR102640815B1 (ko) 2024-02-27
JP2021533613A (ja) 2021-12-02
JP7413349B2 (ja) 2024-01-15
KR20230098718A (ko) 2023-07-04
EP3846572A4 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
US11770870B2 (en) Methods and apparatus related to beam recovery in the secondary cell
WO2019137446A1 (zh) 通信方法和通信设备
WO2019199400A1 (en) Beam failure recovery in connection with switching bwp
KR102587763B1 (ko) Lbt 모니터링 장애를 위한 처리 방법, 디바이스 및 시스템
CN110651519B (zh) 波束失败恢复请求的传输资源配置装置、波束失败请求的响应装置、方法及通信系统
WO2019232798A1 (zh) 功率的确定方法及装置
WO2020037458A1 (zh) 下行信号的监听和发送方法、参数配置方法以及装置
WO2011018043A1 (zh) 一种终端标识的使用方法、系统和设备
WO2020061844A1 (zh) 信号发送方法、信号接收方法及装置
WO2021159510A1 (zh) 上行传输方法以及装置
US20210392692A1 (en) Dynamic rach msg1/msga configuration
CN113557686B (zh) 波束失败恢复方法、装置和通信系统
US11363650B2 (en) Fifth generation (5G) global unique temporary identity (GUTI) reallocation for cellular-internet of things (CIOT)
WO2020042160A1 (zh) 随机接入方法,数据接收方法及其装置、通信系统
US9125173B2 (en) Device and method for access probe enhancements
US20220287019A1 (en) Sidelink aided scalable initial access for massive iiot support
WO2020142932A1 (zh) 数据发送方法及其装置、通信系统
WO2022027527A1 (zh) 信号的发送和接收方法、装置和通信系统
WO2020199022A1 (zh) 选择随机接入类型的方法及装置
US20240205979A1 (en) Techniques for association based optimizations in sidelink systems
WO2020164031A1 (zh) 上行配置方法、上行选择方法及其装置、通信系统
WO2020061729A1 (zh) 信号收发方法、天线面板的指示方法、装置和系统
WO2020061843A1 (zh) 一种在多连接场景中决定配置的生效时间的方法、装置和通信系统
JP2024505435A (ja) 通信方法及び通信装置
CN116235449A (zh) 无线通信方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217002209

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021504445

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018932079

Country of ref document: EP

Effective date: 20210331